ed5e6f1df9c7f9a4919fd3bfa53f101020cf0835
[linux-2.6-microblaze.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 #include "tls.h"
48
49 struct tls_decrypt_arg {
50         struct_group(inargs,
51         bool zc;
52         bool async;
53         u8 tail;
54         );
55
56         struct sk_buff *skb;
57 };
58
59 struct tls_decrypt_ctx {
60         u8 iv[MAX_IV_SIZE];
61         u8 aad[TLS_MAX_AAD_SIZE];
62         u8 tail;
63         struct scatterlist sg[];
64 };
65
66 noinline void tls_err_abort(struct sock *sk, int err)
67 {
68         WARN_ON_ONCE(err >= 0);
69         /* sk->sk_err should contain a positive error code. */
70         sk->sk_err = -err;
71         sk_error_report(sk);
72 }
73
74 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75                      unsigned int recursion_level)
76 {
77         int start = skb_headlen(skb);
78         int i, chunk = start - offset;
79         struct sk_buff *frag_iter;
80         int elt = 0;
81
82         if (unlikely(recursion_level >= 24))
83                 return -EMSGSIZE;
84
85         if (chunk > 0) {
86                 if (chunk > len)
87                         chunk = len;
88                 elt++;
89                 len -= chunk;
90                 if (len == 0)
91                         return elt;
92                 offset += chunk;
93         }
94
95         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
96                 int end;
97
98                 WARN_ON(start > offset + len);
99
100                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101                 chunk = end - offset;
102                 if (chunk > 0) {
103                         if (chunk > len)
104                                 chunk = len;
105                         elt++;
106                         len -= chunk;
107                         if (len == 0)
108                                 return elt;
109                         offset += chunk;
110                 }
111                 start = end;
112         }
113
114         if (unlikely(skb_has_frag_list(skb))) {
115                 skb_walk_frags(skb, frag_iter) {
116                         int end, ret;
117
118                         WARN_ON(start > offset + len);
119
120                         end = start + frag_iter->len;
121                         chunk = end - offset;
122                         if (chunk > 0) {
123                                 if (chunk > len)
124                                         chunk = len;
125                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
126                                                 recursion_level + 1);
127                                 if (unlikely(ret < 0))
128                                         return ret;
129                                 elt += ret;
130                                 len -= chunk;
131                                 if (len == 0)
132                                         return elt;
133                                 offset += chunk;
134                         }
135                         start = end;
136                 }
137         }
138         BUG_ON(len);
139         return elt;
140 }
141
142 /* Return the number of scatterlist elements required to completely map the
143  * skb, or -EMSGSIZE if the recursion depth is exceeded.
144  */
145 static int skb_nsg(struct sk_buff *skb, int offset, int len)
146 {
147         return __skb_nsg(skb, offset, len, 0);
148 }
149
150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151                               struct tls_decrypt_arg *darg)
152 {
153         struct strp_msg *rxm = strp_msg(skb);
154         struct tls_msg *tlm = tls_msg(skb);
155         int sub = 0;
156
157         /* Determine zero-padding length */
158         if (prot->version == TLS_1_3_VERSION) {
159                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160                 char content_type = darg->zc ? darg->tail : 0;
161                 int err;
162
163                 while (content_type == 0) {
164                         if (offset < prot->prepend_size)
165                                 return -EBADMSG;
166                         err = skb_copy_bits(skb, rxm->offset + offset,
167                                             &content_type, 1);
168                         if (err)
169                                 return err;
170                         if (content_type)
171                                 break;
172                         sub++;
173                         offset--;
174                 }
175                 tlm->control = content_type;
176         }
177         return sub;
178 }
179
180 static void tls_decrypt_done(struct crypto_async_request *req, int err)
181 {
182         struct aead_request *aead_req = (struct aead_request *)req;
183         struct scatterlist *sgout = aead_req->dst;
184         struct scatterlist *sgin = aead_req->src;
185         struct tls_sw_context_rx *ctx;
186         struct tls_context *tls_ctx;
187         struct scatterlist *sg;
188         unsigned int pages;
189         struct sock *sk;
190
191         sk = (struct sock *)req->data;
192         tls_ctx = tls_get_ctx(sk);
193         ctx = tls_sw_ctx_rx(tls_ctx);
194
195         /* Propagate if there was an err */
196         if (err) {
197                 if (err == -EBADMSG)
198                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199                 ctx->async_wait.err = err;
200                 tls_err_abort(sk, err);
201         }
202
203         /* Free the destination pages if skb was not decrypted inplace */
204         if (sgout != sgin) {
205                 /* Skip the first S/G entry as it points to AAD */
206                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
207                         if (!sg)
208                                 break;
209                         put_page(sg_page(sg));
210                 }
211         }
212
213         kfree(aead_req);
214
215         spin_lock_bh(&ctx->decrypt_compl_lock);
216         if (!atomic_dec_return(&ctx->decrypt_pending))
217                 complete(&ctx->async_wait.completion);
218         spin_unlock_bh(&ctx->decrypt_compl_lock);
219 }
220
221 static int tls_do_decryption(struct sock *sk,
222                              struct scatterlist *sgin,
223                              struct scatterlist *sgout,
224                              char *iv_recv,
225                              size_t data_len,
226                              struct aead_request *aead_req,
227                              struct tls_decrypt_arg *darg)
228 {
229         struct tls_context *tls_ctx = tls_get_ctx(sk);
230         struct tls_prot_info *prot = &tls_ctx->prot_info;
231         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232         int ret;
233
234         aead_request_set_tfm(aead_req, ctx->aead_recv);
235         aead_request_set_ad(aead_req, prot->aad_size);
236         aead_request_set_crypt(aead_req, sgin, sgout,
237                                data_len + prot->tag_size,
238                                (u8 *)iv_recv);
239
240         if (darg->async) {
241                 aead_request_set_callback(aead_req,
242                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
243                                           tls_decrypt_done, sk);
244                 atomic_inc(&ctx->decrypt_pending);
245         } else {
246                 aead_request_set_callback(aead_req,
247                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
248                                           crypto_req_done, &ctx->async_wait);
249         }
250
251         ret = crypto_aead_decrypt(aead_req);
252         if (ret == -EINPROGRESS) {
253                 if (darg->async)
254                         return 0;
255
256                 ret = crypto_wait_req(ret, &ctx->async_wait);
257         }
258         darg->async = false;
259
260         return ret;
261 }
262
263 static void tls_trim_both_msgs(struct sock *sk, int target_size)
264 {
265         struct tls_context *tls_ctx = tls_get_ctx(sk);
266         struct tls_prot_info *prot = &tls_ctx->prot_info;
267         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268         struct tls_rec *rec = ctx->open_rec;
269
270         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
271         if (target_size > 0)
272                 target_size += prot->overhead_size;
273         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
274 }
275
276 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
277 {
278         struct tls_context *tls_ctx = tls_get_ctx(sk);
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281         struct sk_msg *msg_en = &rec->msg_encrypted;
282
283         return sk_msg_alloc(sk, msg_en, len, 0);
284 }
285
286 static int tls_clone_plaintext_msg(struct sock *sk, int required)
287 {
288         struct tls_context *tls_ctx = tls_get_ctx(sk);
289         struct tls_prot_info *prot = &tls_ctx->prot_info;
290         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291         struct tls_rec *rec = ctx->open_rec;
292         struct sk_msg *msg_pl = &rec->msg_plaintext;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294         int skip, len;
295
296         /* We add page references worth len bytes from encrypted sg
297          * at the end of plaintext sg. It is guaranteed that msg_en
298          * has enough required room (ensured by caller).
299          */
300         len = required - msg_pl->sg.size;
301
302         /* Skip initial bytes in msg_en's data to be able to use
303          * same offset of both plain and encrypted data.
304          */
305         skip = prot->prepend_size + msg_pl->sg.size;
306
307         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
308 }
309
310 static struct tls_rec *tls_get_rec(struct sock *sk)
311 {
312         struct tls_context *tls_ctx = tls_get_ctx(sk);
313         struct tls_prot_info *prot = &tls_ctx->prot_info;
314         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315         struct sk_msg *msg_pl, *msg_en;
316         struct tls_rec *rec;
317         int mem_size;
318
319         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
320
321         rec = kzalloc(mem_size, sk->sk_allocation);
322         if (!rec)
323                 return NULL;
324
325         msg_pl = &rec->msg_plaintext;
326         msg_en = &rec->msg_encrypted;
327
328         sk_msg_init(msg_pl);
329         sk_msg_init(msg_en);
330
331         sg_init_table(rec->sg_aead_in, 2);
332         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333         sg_unmark_end(&rec->sg_aead_in[1]);
334
335         sg_init_table(rec->sg_aead_out, 2);
336         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337         sg_unmark_end(&rec->sg_aead_out[1]);
338
339         return rec;
340 }
341
342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
343 {
344         sk_msg_free(sk, &rec->msg_encrypted);
345         sk_msg_free(sk, &rec->msg_plaintext);
346         kfree(rec);
347 }
348
349 static void tls_free_open_rec(struct sock *sk)
350 {
351         struct tls_context *tls_ctx = tls_get_ctx(sk);
352         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353         struct tls_rec *rec = ctx->open_rec;
354
355         if (rec) {
356                 tls_free_rec(sk, rec);
357                 ctx->open_rec = NULL;
358         }
359 }
360
361 int tls_tx_records(struct sock *sk, int flags)
362 {
363         struct tls_context *tls_ctx = tls_get_ctx(sk);
364         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365         struct tls_rec *rec, *tmp;
366         struct sk_msg *msg_en;
367         int tx_flags, rc = 0;
368
369         if (tls_is_partially_sent_record(tls_ctx)) {
370                 rec = list_first_entry(&ctx->tx_list,
371                                        struct tls_rec, list);
372
373                 if (flags == -1)
374                         tx_flags = rec->tx_flags;
375                 else
376                         tx_flags = flags;
377
378                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
379                 if (rc)
380                         goto tx_err;
381
382                 /* Full record has been transmitted.
383                  * Remove the head of tx_list
384                  */
385                 list_del(&rec->list);
386                 sk_msg_free(sk, &rec->msg_plaintext);
387                 kfree(rec);
388         }
389
390         /* Tx all ready records */
391         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392                 if (READ_ONCE(rec->tx_ready)) {
393                         if (flags == -1)
394                                 tx_flags = rec->tx_flags;
395                         else
396                                 tx_flags = flags;
397
398                         msg_en = &rec->msg_encrypted;
399                         rc = tls_push_sg(sk, tls_ctx,
400                                          &msg_en->sg.data[msg_en->sg.curr],
401                                          0, tx_flags);
402                         if (rc)
403                                 goto tx_err;
404
405                         list_del(&rec->list);
406                         sk_msg_free(sk, &rec->msg_plaintext);
407                         kfree(rec);
408                 } else {
409                         break;
410                 }
411         }
412
413 tx_err:
414         if (rc < 0 && rc != -EAGAIN)
415                 tls_err_abort(sk, -EBADMSG);
416
417         return rc;
418 }
419
420 static void tls_encrypt_done(struct crypto_async_request *req, int err)
421 {
422         struct aead_request *aead_req = (struct aead_request *)req;
423         struct sock *sk = req->data;
424         struct tls_context *tls_ctx = tls_get_ctx(sk);
425         struct tls_prot_info *prot = &tls_ctx->prot_info;
426         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427         struct scatterlist *sge;
428         struct sk_msg *msg_en;
429         struct tls_rec *rec;
430         bool ready = false;
431         int pending;
432
433         rec = container_of(aead_req, struct tls_rec, aead_req);
434         msg_en = &rec->msg_encrypted;
435
436         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437         sge->offset -= prot->prepend_size;
438         sge->length += prot->prepend_size;
439
440         /* Check if error is previously set on socket */
441         if (err || sk->sk_err) {
442                 rec = NULL;
443
444                 /* If err is already set on socket, return the same code */
445                 if (sk->sk_err) {
446                         ctx->async_wait.err = -sk->sk_err;
447                 } else {
448                         ctx->async_wait.err = err;
449                         tls_err_abort(sk, err);
450                 }
451         }
452
453         if (rec) {
454                 struct tls_rec *first_rec;
455
456                 /* Mark the record as ready for transmission */
457                 smp_store_mb(rec->tx_ready, true);
458
459                 /* If received record is at head of tx_list, schedule tx */
460                 first_rec = list_first_entry(&ctx->tx_list,
461                                              struct tls_rec, list);
462                 if (rec == first_rec)
463                         ready = true;
464         }
465
466         spin_lock_bh(&ctx->encrypt_compl_lock);
467         pending = atomic_dec_return(&ctx->encrypt_pending);
468
469         if (!pending && ctx->async_notify)
470                 complete(&ctx->async_wait.completion);
471         spin_unlock_bh(&ctx->encrypt_compl_lock);
472
473         if (!ready)
474                 return;
475
476         /* Schedule the transmission */
477         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478                 schedule_delayed_work(&ctx->tx_work.work, 1);
479 }
480
481 static int tls_do_encryption(struct sock *sk,
482                              struct tls_context *tls_ctx,
483                              struct tls_sw_context_tx *ctx,
484                              struct aead_request *aead_req,
485                              size_t data_len, u32 start)
486 {
487         struct tls_prot_info *prot = &tls_ctx->prot_info;
488         struct tls_rec *rec = ctx->open_rec;
489         struct sk_msg *msg_en = &rec->msg_encrypted;
490         struct scatterlist *sge = sk_msg_elem(msg_en, start);
491         int rc, iv_offset = 0;
492
493         /* For CCM based ciphers, first byte of IV is a constant */
494         switch (prot->cipher_type) {
495         case TLS_CIPHER_AES_CCM_128:
496                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
497                 iv_offset = 1;
498                 break;
499         case TLS_CIPHER_SM4_CCM:
500                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
501                 iv_offset = 1;
502                 break;
503         }
504
505         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506                prot->iv_size + prot->salt_size);
507
508         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509                             tls_ctx->tx.rec_seq);
510
511         sge->offset += prot->prepend_size;
512         sge->length -= prot->prepend_size;
513
514         msg_en->sg.curr = start;
515
516         aead_request_set_tfm(aead_req, ctx->aead_send);
517         aead_request_set_ad(aead_req, prot->aad_size);
518         aead_request_set_crypt(aead_req, rec->sg_aead_in,
519                                rec->sg_aead_out,
520                                data_len, rec->iv_data);
521
522         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523                                   tls_encrypt_done, sk);
524
525         /* Add the record in tx_list */
526         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527         atomic_inc(&ctx->encrypt_pending);
528
529         rc = crypto_aead_encrypt(aead_req);
530         if (!rc || rc != -EINPROGRESS) {
531                 atomic_dec(&ctx->encrypt_pending);
532                 sge->offset -= prot->prepend_size;
533                 sge->length += prot->prepend_size;
534         }
535
536         if (!rc) {
537                 WRITE_ONCE(rec->tx_ready, true);
538         } else if (rc != -EINPROGRESS) {
539                 list_del(&rec->list);
540                 return rc;
541         }
542
543         /* Unhook the record from context if encryption is not failure */
544         ctx->open_rec = NULL;
545         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546         return rc;
547 }
548
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550                                  struct tls_rec **to, struct sk_msg *msg_opl,
551                                  struct sk_msg *msg_oen, u32 split_point,
552                                  u32 tx_overhead_size, u32 *orig_end)
553 {
554         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555         struct scatterlist *sge, *osge, *nsge;
556         u32 orig_size = msg_opl->sg.size;
557         struct scatterlist tmp = { };
558         struct sk_msg *msg_npl;
559         struct tls_rec *new;
560         int ret;
561
562         new = tls_get_rec(sk);
563         if (!new)
564                 return -ENOMEM;
565         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566                            tx_overhead_size, 0);
567         if (ret < 0) {
568                 tls_free_rec(sk, new);
569                 return ret;
570         }
571
572         *orig_end = msg_opl->sg.end;
573         i = msg_opl->sg.start;
574         sge = sk_msg_elem(msg_opl, i);
575         while (apply && sge->length) {
576                 if (sge->length > apply) {
577                         u32 len = sge->length - apply;
578
579                         get_page(sg_page(sge));
580                         sg_set_page(&tmp, sg_page(sge), len,
581                                     sge->offset + apply);
582                         sge->length = apply;
583                         bytes += apply;
584                         apply = 0;
585                 } else {
586                         apply -= sge->length;
587                         bytes += sge->length;
588                 }
589
590                 sk_msg_iter_var_next(i);
591                 if (i == msg_opl->sg.end)
592                         break;
593                 sge = sk_msg_elem(msg_opl, i);
594         }
595
596         msg_opl->sg.end = i;
597         msg_opl->sg.curr = i;
598         msg_opl->sg.copybreak = 0;
599         msg_opl->apply_bytes = 0;
600         msg_opl->sg.size = bytes;
601
602         msg_npl = &new->msg_plaintext;
603         msg_npl->apply_bytes = apply;
604         msg_npl->sg.size = orig_size - bytes;
605
606         j = msg_npl->sg.start;
607         nsge = sk_msg_elem(msg_npl, j);
608         if (tmp.length) {
609                 memcpy(nsge, &tmp, sizeof(*nsge));
610                 sk_msg_iter_var_next(j);
611                 nsge = sk_msg_elem(msg_npl, j);
612         }
613
614         osge = sk_msg_elem(msg_opl, i);
615         while (osge->length) {
616                 memcpy(nsge, osge, sizeof(*nsge));
617                 sg_unmark_end(nsge);
618                 sk_msg_iter_var_next(i);
619                 sk_msg_iter_var_next(j);
620                 if (i == *orig_end)
621                         break;
622                 osge = sk_msg_elem(msg_opl, i);
623                 nsge = sk_msg_elem(msg_npl, j);
624         }
625
626         msg_npl->sg.end = j;
627         msg_npl->sg.curr = j;
628         msg_npl->sg.copybreak = 0;
629
630         *to = new;
631         return 0;
632 }
633
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635                                   struct tls_rec *from, u32 orig_end)
636 {
637         struct sk_msg *msg_npl = &from->msg_plaintext;
638         struct sk_msg *msg_opl = &to->msg_plaintext;
639         struct scatterlist *osge, *nsge;
640         u32 i, j;
641
642         i = msg_opl->sg.end;
643         sk_msg_iter_var_prev(i);
644         j = msg_npl->sg.start;
645
646         osge = sk_msg_elem(msg_opl, i);
647         nsge = sk_msg_elem(msg_npl, j);
648
649         if (sg_page(osge) == sg_page(nsge) &&
650             osge->offset + osge->length == nsge->offset) {
651                 osge->length += nsge->length;
652                 put_page(sg_page(nsge));
653         }
654
655         msg_opl->sg.end = orig_end;
656         msg_opl->sg.curr = orig_end;
657         msg_opl->sg.copybreak = 0;
658         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659         msg_opl->sg.size += msg_npl->sg.size;
660
661         sk_msg_free(sk, &to->msg_encrypted);
662         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664         kfree(from);
665 }
666
667 static int tls_push_record(struct sock *sk, int flags,
668                            unsigned char record_type)
669 {
670         struct tls_context *tls_ctx = tls_get_ctx(sk);
671         struct tls_prot_info *prot = &tls_ctx->prot_info;
672         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674         u32 i, split_point, orig_end;
675         struct sk_msg *msg_pl, *msg_en;
676         struct aead_request *req;
677         bool split;
678         int rc;
679
680         if (!rec)
681                 return 0;
682
683         msg_pl = &rec->msg_plaintext;
684         msg_en = &rec->msg_encrypted;
685
686         split_point = msg_pl->apply_bytes;
687         split = split_point && split_point < msg_pl->sg.size;
688         if (unlikely((!split &&
689                       msg_pl->sg.size +
690                       prot->overhead_size > msg_en->sg.size) ||
691                      (split &&
692                       split_point +
693                       prot->overhead_size > msg_en->sg.size))) {
694                 split = true;
695                 split_point = msg_en->sg.size;
696         }
697         if (split) {
698                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699                                            split_point, prot->overhead_size,
700                                            &orig_end);
701                 if (rc < 0)
702                         return rc;
703                 /* This can happen if above tls_split_open_record allocates
704                  * a single large encryption buffer instead of two smaller
705                  * ones. In this case adjust pointers and continue without
706                  * split.
707                  */
708                 if (!msg_pl->sg.size) {
709                         tls_merge_open_record(sk, rec, tmp, orig_end);
710                         msg_pl = &rec->msg_plaintext;
711                         msg_en = &rec->msg_encrypted;
712                         split = false;
713                 }
714                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715                             prot->overhead_size);
716         }
717
718         rec->tx_flags = flags;
719         req = &rec->aead_req;
720
721         i = msg_pl->sg.end;
722         sk_msg_iter_var_prev(i);
723
724         rec->content_type = record_type;
725         if (prot->version == TLS_1_3_VERSION) {
726                 /* Add content type to end of message.  No padding added */
727                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728                 sg_mark_end(&rec->sg_content_type);
729                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730                          &rec->sg_content_type);
731         } else {
732                 sg_mark_end(sk_msg_elem(msg_pl, i));
733         }
734
735         if (msg_pl->sg.end < msg_pl->sg.start) {
736                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738                          msg_pl->sg.data);
739         }
740
741         i = msg_pl->sg.start;
742         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744         i = msg_en->sg.end;
745         sk_msg_iter_var_prev(i);
746         sg_mark_end(sk_msg_elem(msg_en, i));
747
748         i = msg_en->sg.start;
749         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752                      tls_ctx->tx.rec_seq, record_type, prot);
753
754         tls_fill_prepend(tls_ctx,
755                          page_address(sg_page(&msg_en->sg.data[i])) +
756                          msg_en->sg.data[i].offset,
757                          msg_pl->sg.size + prot->tail_size,
758                          record_type);
759
760         tls_ctx->pending_open_record_frags = false;
761
762         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763                                msg_pl->sg.size + prot->tail_size, i);
764         if (rc < 0) {
765                 if (rc != -EINPROGRESS) {
766                         tls_err_abort(sk, -EBADMSG);
767                         if (split) {
768                                 tls_ctx->pending_open_record_frags = true;
769                                 tls_merge_open_record(sk, rec, tmp, orig_end);
770                         }
771                 }
772                 ctx->async_capable = 1;
773                 return rc;
774         } else if (split) {
775                 msg_pl = &tmp->msg_plaintext;
776                 msg_en = &tmp->msg_encrypted;
777                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778                 tls_ctx->pending_open_record_frags = true;
779                 ctx->open_rec = tmp;
780         }
781
782         return tls_tx_records(sk, flags);
783 }
784
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786                                bool full_record, u8 record_type,
787                                ssize_t *copied, int flags)
788 {
789         struct tls_context *tls_ctx = tls_get_ctx(sk);
790         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791         struct sk_msg msg_redir = { };
792         struct sk_psock *psock;
793         struct sock *sk_redir;
794         struct tls_rec *rec;
795         bool enospc, policy;
796         int err = 0, send;
797         u32 delta = 0;
798
799         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800         psock = sk_psock_get(sk);
801         if (!psock || !policy) {
802                 err = tls_push_record(sk, flags, record_type);
803                 if (err && sk->sk_err == EBADMSG) {
804                         *copied -= sk_msg_free(sk, msg);
805                         tls_free_open_rec(sk);
806                         err = -sk->sk_err;
807                 }
808                 if (psock)
809                         sk_psock_put(sk, psock);
810                 return err;
811         }
812 more_data:
813         enospc = sk_msg_full(msg);
814         if (psock->eval == __SK_NONE) {
815                 delta = msg->sg.size;
816                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817                 delta -= msg->sg.size;
818         }
819         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820             !enospc && !full_record) {
821                 err = -ENOSPC;
822                 goto out_err;
823         }
824         msg->cork_bytes = 0;
825         send = msg->sg.size;
826         if (msg->apply_bytes && msg->apply_bytes < send)
827                 send = msg->apply_bytes;
828
829         switch (psock->eval) {
830         case __SK_PASS:
831                 err = tls_push_record(sk, flags, record_type);
832                 if (err && sk->sk_err == EBADMSG) {
833                         *copied -= sk_msg_free(sk, msg);
834                         tls_free_open_rec(sk);
835                         err = -sk->sk_err;
836                         goto out_err;
837                 }
838                 break;
839         case __SK_REDIRECT:
840                 sk_redir = psock->sk_redir;
841                 memcpy(&msg_redir, msg, sizeof(*msg));
842                 if (msg->apply_bytes < send)
843                         msg->apply_bytes = 0;
844                 else
845                         msg->apply_bytes -= send;
846                 sk_msg_return_zero(sk, msg, send);
847                 msg->sg.size -= send;
848                 release_sock(sk);
849                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850                 lock_sock(sk);
851                 if (err < 0) {
852                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853                         msg->sg.size = 0;
854                 }
855                 if (msg->sg.size == 0)
856                         tls_free_open_rec(sk);
857                 break;
858         case __SK_DROP:
859         default:
860                 sk_msg_free_partial(sk, msg, send);
861                 if (msg->apply_bytes < send)
862                         msg->apply_bytes = 0;
863                 else
864                         msg->apply_bytes -= send;
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 *copied -= (send + delta);
868                 err = -EACCES;
869         }
870
871         if (likely(!err)) {
872                 bool reset_eval = !ctx->open_rec;
873
874                 rec = ctx->open_rec;
875                 if (rec) {
876                         msg = &rec->msg_plaintext;
877                         if (!msg->apply_bytes)
878                                 reset_eval = true;
879                 }
880                 if (reset_eval) {
881                         psock->eval = __SK_NONE;
882                         if (psock->sk_redir) {
883                                 sock_put(psock->sk_redir);
884                                 psock->sk_redir = NULL;
885                         }
886                 }
887                 if (rec)
888                         goto more_data;
889         }
890  out_err:
891         sk_psock_put(sk, psock);
892         return err;
893 }
894
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897         struct tls_context *tls_ctx = tls_get_ctx(sk);
898         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899         struct tls_rec *rec = ctx->open_rec;
900         struct sk_msg *msg_pl;
901         size_t copied;
902
903         if (!rec)
904                 return 0;
905
906         msg_pl = &rec->msg_plaintext;
907         copied = msg_pl->sg.size;
908         if (!copied)
909                 return 0;
910
911         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912                                    &copied, flags);
913 }
914
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918         struct tls_context *tls_ctx = tls_get_ctx(sk);
919         struct tls_prot_info *prot = &tls_ctx->prot_info;
920         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921         bool async_capable = ctx->async_capable;
922         unsigned char record_type = TLS_RECORD_TYPE_DATA;
923         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924         bool eor = !(msg->msg_flags & MSG_MORE);
925         size_t try_to_copy;
926         ssize_t copied = 0;
927         struct sk_msg *msg_pl, *msg_en;
928         struct tls_rec *rec;
929         int required_size;
930         int num_async = 0;
931         bool full_record;
932         int record_room;
933         int num_zc = 0;
934         int orig_size;
935         int ret = 0;
936         int pending;
937
938         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939                                MSG_CMSG_COMPAT))
940                 return -EOPNOTSUPP;
941
942         mutex_lock(&tls_ctx->tx_lock);
943         lock_sock(sk);
944
945         if (unlikely(msg->msg_controllen)) {
946                 ret = tls_process_cmsg(sk, msg, &record_type);
947                 if (ret) {
948                         if (ret == -EINPROGRESS)
949                                 num_async++;
950                         else if (ret != -EAGAIN)
951                                 goto send_end;
952                 }
953         }
954
955         while (msg_data_left(msg)) {
956                 if (sk->sk_err) {
957                         ret = -sk->sk_err;
958                         goto send_end;
959                 }
960
961                 if (ctx->open_rec)
962                         rec = ctx->open_rec;
963                 else
964                         rec = ctx->open_rec = tls_get_rec(sk);
965                 if (!rec) {
966                         ret = -ENOMEM;
967                         goto send_end;
968                 }
969
970                 msg_pl = &rec->msg_plaintext;
971                 msg_en = &rec->msg_encrypted;
972
973                 orig_size = msg_pl->sg.size;
974                 full_record = false;
975                 try_to_copy = msg_data_left(msg);
976                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977                 if (try_to_copy >= record_room) {
978                         try_to_copy = record_room;
979                         full_record = true;
980                 }
981
982                 required_size = msg_pl->sg.size + try_to_copy +
983                                 prot->overhead_size;
984
985                 if (!sk_stream_memory_free(sk))
986                         goto wait_for_sndbuf;
987
988 alloc_encrypted:
989                 ret = tls_alloc_encrypted_msg(sk, required_size);
990                 if (ret) {
991                         if (ret != -ENOSPC)
992                                 goto wait_for_memory;
993
994                         /* Adjust try_to_copy according to the amount that was
995                          * actually allocated. The difference is due
996                          * to max sg elements limit
997                          */
998                         try_to_copy -= required_size - msg_en->sg.size;
999                         full_record = true;
1000                 }
1001
1002                 if (!is_kvec && (full_record || eor) && !async_capable) {
1003                         u32 first = msg_pl->sg.end;
1004
1005                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                         msg_pl, try_to_copy);
1007                         if (ret)
1008                                 goto fallback_to_reg_send;
1009
1010                         num_zc++;
1011                         copied += try_to_copy;
1012
1013                         sk_msg_sg_copy_set(msg_pl, first);
1014                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                   record_type, &copied,
1016                                                   msg->msg_flags);
1017                         if (ret) {
1018                                 if (ret == -EINPROGRESS)
1019                                         num_async++;
1020                                 else if (ret == -ENOMEM)
1021                                         goto wait_for_memory;
1022                                 else if (ctx->open_rec && ret == -ENOSPC)
1023                                         goto rollback_iter;
1024                                 else if (ret != -EAGAIN)
1025                                         goto send_end;
1026                         }
1027                         continue;
1028 rollback_iter:
1029                         copied -= try_to_copy;
1030                         sk_msg_sg_copy_clear(msg_pl, first);
1031                         iov_iter_revert(&msg->msg_iter,
1032                                         msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034                         sk_msg_trim(sk, msg_pl, orig_size);
1035                 }
1036
1037                 required_size = msg_pl->sg.size + try_to_copy;
1038
1039                 ret = tls_clone_plaintext_msg(sk, required_size);
1040                 if (ret) {
1041                         if (ret != -ENOSPC)
1042                                 goto send_end;
1043
1044                         /* Adjust try_to_copy according to the amount that was
1045                          * actually allocated. The difference is due
1046                          * to max sg elements limit
1047                          */
1048                         try_to_copy -= required_size - msg_pl->sg.size;
1049                         full_record = true;
1050                         sk_msg_trim(sk, msg_en,
1051                                     msg_pl->sg.size + prot->overhead_size);
1052                 }
1053
1054                 if (try_to_copy) {
1055                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                        msg_pl, try_to_copy);
1057                         if (ret < 0)
1058                                 goto trim_sgl;
1059                 }
1060
1061                 /* Open records defined only if successfully copied, otherwise
1062                  * we would trim the sg but not reset the open record frags.
1063                  */
1064                 tls_ctx->pending_open_record_frags = true;
1065                 copied += try_to_copy;
1066                 if (full_record || eor) {
1067                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                   record_type, &copied,
1069                                                   msg->msg_flags);
1070                         if (ret) {
1071                                 if (ret == -EINPROGRESS)
1072                                         num_async++;
1073                                 else if (ret == -ENOMEM)
1074                                         goto wait_for_memory;
1075                                 else if (ret != -EAGAIN) {
1076                                         if (ret == -ENOSPC)
1077                                                 ret = 0;
1078                                         goto send_end;
1079                                 }
1080                         }
1081                 }
1082
1083                 continue;
1084
1085 wait_for_sndbuf:
1086                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088                 ret = sk_stream_wait_memory(sk, &timeo);
1089                 if (ret) {
1090 trim_sgl:
1091                         if (ctx->open_rec)
1092                                 tls_trim_both_msgs(sk, orig_size);
1093                         goto send_end;
1094                 }
1095
1096                 if (ctx->open_rec && msg_en->sg.size < required_size)
1097                         goto alloc_encrypted;
1098         }
1099
1100         if (!num_async) {
1101                 goto send_end;
1102         } else if (num_zc) {
1103                 /* Wait for pending encryptions to get completed */
1104                 spin_lock_bh(&ctx->encrypt_compl_lock);
1105                 ctx->async_notify = true;
1106
1107                 pending = atomic_read(&ctx->encrypt_pending);
1108                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                 if (pending)
1110                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                 else
1112                         reinit_completion(&ctx->async_wait.completion);
1113
1114                 /* There can be no concurrent accesses, since we have no
1115                  * pending encrypt operations
1116                  */
1117                 WRITE_ONCE(ctx->async_notify, false);
1118
1119                 if (ctx->async_wait.err) {
1120                         ret = ctx->async_wait.err;
1121                         copied = 0;
1122                 }
1123         }
1124
1125         /* Transmit if any encryptions have completed */
1126         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                 cancel_delayed_work(&ctx->tx_work.work);
1128                 tls_tx_records(sk, msg->msg_flags);
1129         }
1130
1131 send_end:
1132         ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134         release_sock(sk);
1135         mutex_unlock(&tls_ctx->tx_lock);
1136         return copied > 0 ? copied : ret;
1137 }
1138
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                               int offset, size_t size, int flags)
1141 {
1142         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143         struct tls_context *tls_ctx = tls_get_ctx(sk);
1144         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145         struct tls_prot_info *prot = &tls_ctx->prot_info;
1146         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147         struct sk_msg *msg_pl;
1148         struct tls_rec *rec;
1149         int num_async = 0;
1150         ssize_t copied = 0;
1151         bool full_record;
1152         int record_room;
1153         int ret = 0;
1154         bool eor;
1155
1156         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159         /* Call the sk_stream functions to manage the sndbuf mem. */
1160         while (size > 0) {
1161                 size_t copy, required_size;
1162
1163                 if (sk->sk_err) {
1164                         ret = -sk->sk_err;
1165                         goto sendpage_end;
1166                 }
1167
1168                 if (ctx->open_rec)
1169                         rec = ctx->open_rec;
1170                 else
1171                         rec = ctx->open_rec = tls_get_rec(sk);
1172                 if (!rec) {
1173                         ret = -ENOMEM;
1174                         goto sendpage_end;
1175                 }
1176
1177                 msg_pl = &rec->msg_plaintext;
1178
1179                 full_record = false;
1180                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                 copy = size;
1182                 if (copy >= record_room) {
1183                         copy = record_room;
1184                         full_record = true;
1185                 }
1186
1187                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                 if (!sk_stream_memory_free(sk))
1190                         goto wait_for_sndbuf;
1191 alloc_payload:
1192                 ret = tls_alloc_encrypted_msg(sk, required_size);
1193                 if (ret) {
1194                         if (ret != -ENOSPC)
1195                                 goto wait_for_memory;
1196
1197                         /* Adjust copy according to the amount that was
1198                          * actually allocated. The difference is due
1199                          * to max sg elements limit
1200                          */
1201                         copy -= required_size - msg_pl->sg.size;
1202                         full_record = true;
1203                 }
1204
1205                 sk_msg_page_add(msg_pl, page, copy, offset);
1206                 sk_mem_charge(sk, copy);
1207
1208                 offset += copy;
1209                 size -= copy;
1210                 copied += copy;
1211
1212                 tls_ctx->pending_open_record_frags = true;
1213                 if (full_record || eor || sk_msg_full(msg_pl)) {
1214                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                   record_type, &copied, flags);
1216                         if (ret) {
1217                                 if (ret == -EINPROGRESS)
1218                                         num_async++;
1219                                 else if (ret == -ENOMEM)
1220                                         goto wait_for_memory;
1221                                 else if (ret != -EAGAIN) {
1222                                         if (ret == -ENOSPC)
1223                                                 ret = 0;
1224                                         goto sendpage_end;
1225                                 }
1226                         }
1227                 }
1228                 continue;
1229 wait_for_sndbuf:
1230                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232                 ret = sk_stream_wait_memory(sk, &timeo);
1233                 if (ret) {
1234                         if (ctx->open_rec)
1235                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                         goto sendpage_end;
1237                 }
1238
1239                 if (ctx->open_rec)
1240                         goto alloc_payload;
1241         }
1242
1243         if (num_async) {
1244                 /* Transmit if any encryptions have completed */
1245                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                         cancel_delayed_work(&ctx->tx_work.work);
1247                         tls_tx_records(sk, flags);
1248                 }
1249         }
1250 sendpage_end:
1251         ret = sk_stream_error(sk, flags, ret);
1252         return copied > 0 ? copied : ret;
1253 }
1254
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                            int offset, size_t size, int flags)
1257 {
1258         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                       MSG_NO_SHARED_FRAGS))
1261                 return -EOPNOTSUPP;
1262
1263         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                     int offset, size_t size, int flags)
1268 {
1269         struct tls_context *tls_ctx = tls_get_ctx(sk);
1270         int ret;
1271
1272         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                 return -EOPNOTSUPP;
1275
1276         mutex_lock(&tls_ctx->tx_lock);
1277         lock_sock(sk);
1278         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279         release_sock(sk);
1280         mutex_unlock(&tls_ctx->tx_lock);
1281         return ret;
1282 }
1283
1284 static int
1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1286                 long timeo)
1287 {
1288         struct tls_context *tls_ctx = tls_get_ctx(sk);
1289         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292         while (!ctx->recv_pkt) {
1293                 if (!sk_psock_queue_empty(psock))
1294                         return 0;
1295
1296                 if (sk->sk_err)
1297                         return sock_error(sk);
1298
1299                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1300                         __strp_unpause(&ctx->strp);
1301                         if (ctx->recv_pkt)
1302                                 break;
1303                 }
1304
1305                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1306                         return 0;
1307
1308                 if (sock_flag(sk, SOCK_DONE))
1309                         return 0;
1310
1311                 if (nonblock || !timeo)
1312                         return -EAGAIN;
1313
1314                 add_wait_queue(sk_sleep(sk), &wait);
1315                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316                 sk_wait_event(sk, &timeo,
1317                               ctx->recv_pkt || !sk_psock_queue_empty(psock),
1318                               &wait);
1319                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1320                 remove_wait_queue(sk_sleep(sk), &wait);
1321
1322                 /* Handle signals */
1323                 if (signal_pending(current))
1324                         return sock_intr_errno(timeo);
1325         }
1326
1327         return 1;
1328 }
1329
1330 static int tls_setup_from_iter(struct iov_iter *from,
1331                                int length, int *pages_used,
1332                                struct scatterlist *to,
1333                                int to_max_pages)
1334 {
1335         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1336         struct page *pages[MAX_SKB_FRAGS];
1337         unsigned int size = 0;
1338         ssize_t copied, use;
1339         size_t offset;
1340
1341         while (length > 0) {
1342                 i = 0;
1343                 maxpages = to_max_pages - num_elem;
1344                 if (maxpages == 0) {
1345                         rc = -EFAULT;
1346                         goto out;
1347                 }
1348                 copied = iov_iter_get_pages(from, pages,
1349                                             length,
1350                                             maxpages, &offset);
1351                 if (copied <= 0) {
1352                         rc = -EFAULT;
1353                         goto out;
1354                 }
1355
1356                 iov_iter_advance(from, copied);
1357
1358                 length -= copied;
1359                 size += copied;
1360                 while (copied) {
1361                         use = min_t(int, copied, PAGE_SIZE - offset);
1362
1363                         sg_set_page(&to[num_elem],
1364                                     pages[i], use, offset);
1365                         sg_unmark_end(&to[num_elem]);
1366                         /* We do not uncharge memory from this API */
1367
1368                         offset = 0;
1369                         copied -= use;
1370
1371                         i++;
1372                         num_elem++;
1373                 }
1374         }
1375         /* Mark the end in the last sg entry if newly added */
1376         if (num_elem > *pages_used)
1377                 sg_mark_end(&to[num_elem - 1]);
1378 out:
1379         if (rc)
1380                 iov_iter_revert(from, size);
1381         *pages_used = num_elem;
1382
1383         return rc;
1384 }
1385
1386 static struct sk_buff *
1387 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1388                      unsigned int full_len)
1389 {
1390         struct strp_msg *clr_rxm;
1391         struct sk_buff *clr_skb;
1392         int err;
1393
1394         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1395                                        &err, sk->sk_allocation);
1396         if (!clr_skb)
1397                 return NULL;
1398
1399         skb_copy_header(clr_skb, skb);
1400         clr_skb->len = full_len;
1401         clr_skb->data_len = full_len;
1402
1403         clr_rxm = strp_msg(clr_skb);
1404         clr_rxm->offset = 0;
1405
1406         return clr_skb;
1407 }
1408
1409 /* Decrypt handlers
1410  *
1411  * tls_decrypt_sg() and tls_decrypt_device() are decrypt handlers.
1412  * They must transform the darg in/out argument are as follows:
1413  *       |          Input            |         Output
1414  * -------------------------------------------------------------------
1415  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1416  * async | Async decrypt allowed     | Async crypto used / in progress
1417  *   skb |            *              | Output skb
1418  */
1419
1420 /* This function decrypts the input skb into either out_iov or in out_sg
1421  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1422  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1423  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1424  * NULL, then the decryption happens inside skb buffers itself, i.e.
1425  * zero-copy gets disabled and 'darg->zc' is updated.
1426  */
1427 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1428                           struct scatterlist *out_sg,
1429                           struct tls_decrypt_arg *darg)
1430 {
1431         struct tls_context *tls_ctx = tls_get_ctx(sk);
1432         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1433         struct tls_prot_info *prot = &tls_ctx->prot_info;
1434         int n_sgin, n_sgout, aead_size, err, pages = 0;
1435         struct sk_buff *skb = tls_strp_msg(ctx);
1436         const struct strp_msg *rxm = strp_msg(skb);
1437         const struct tls_msg *tlm = tls_msg(skb);
1438         struct aead_request *aead_req;
1439         struct scatterlist *sgin = NULL;
1440         struct scatterlist *sgout = NULL;
1441         const int data_len = rxm->full_len - prot->overhead_size;
1442         int tail_pages = !!prot->tail_size;
1443         struct tls_decrypt_ctx *dctx;
1444         struct sk_buff *clear_skb;
1445         int iv_offset = 0;
1446         u8 *mem;
1447
1448         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1449                          rxm->full_len - prot->prepend_size);
1450         if (n_sgin < 1)
1451                 return n_sgin ?: -EBADMSG;
1452
1453         if (darg->zc && (out_iov || out_sg)) {
1454                 clear_skb = NULL;
1455
1456                 if (out_iov)
1457                         n_sgout = 1 + tail_pages +
1458                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1459                 else
1460                         n_sgout = sg_nents(out_sg);
1461         } else {
1462                 darg->zc = false;
1463
1464                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1465                 if (!clear_skb)
1466                         return -ENOMEM;
1467
1468                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1469         }
1470
1471         /* Increment to accommodate AAD */
1472         n_sgin = n_sgin + 1;
1473
1474         /* Allocate a single block of memory which contains
1475          *   aead_req || tls_decrypt_ctx.
1476          * Both structs are variable length.
1477          */
1478         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1479         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1480                       sk->sk_allocation);
1481         if (!mem) {
1482                 err = -ENOMEM;
1483                 goto exit_free_skb;
1484         }
1485
1486         /* Segment the allocated memory */
1487         aead_req = (struct aead_request *)mem;
1488         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1489         sgin = &dctx->sg[0];
1490         sgout = &dctx->sg[n_sgin];
1491
1492         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1493         switch (prot->cipher_type) {
1494         case TLS_CIPHER_AES_CCM_128:
1495                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1496                 iv_offset = 1;
1497                 break;
1498         case TLS_CIPHER_SM4_CCM:
1499                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1500                 iv_offset = 1;
1501                 break;
1502         }
1503
1504         /* Prepare IV */
1505         if (prot->version == TLS_1_3_VERSION ||
1506             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1507                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1508                        prot->iv_size + prot->salt_size);
1509         } else {
1510                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1511                                     &dctx->iv[iv_offset] + prot->salt_size,
1512                                     prot->iv_size);
1513                 if (err < 0)
1514                         goto exit_free;
1515                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1516         }
1517         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1518
1519         /* Prepare AAD */
1520         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1521                      prot->tail_size,
1522                      tls_ctx->rx.rec_seq, tlm->control, prot);
1523
1524         /* Prepare sgin */
1525         sg_init_table(sgin, n_sgin);
1526         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1527         err = skb_to_sgvec(skb, &sgin[1],
1528                            rxm->offset + prot->prepend_size,
1529                            rxm->full_len - prot->prepend_size);
1530         if (err < 0)
1531                 goto exit_free;
1532
1533         if (clear_skb) {
1534                 sg_init_table(sgout, n_sgout);
1535                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1536
1537                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1538                                    data_len + prot->tail_size);
1539                 if (err < 0)
1540                         goto exit_free;
1541         } else if (out_iov) {
1542                 sg_init_table(sgout, n_sgout);
1543                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1544
1545                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1546                                           (n_sgout - 1 - tail_pages));
1547                 if (err < 0)
1548                         goto exit_free_pages;
1549
1550                 if (prot->tail_size) {
1551                         sg_unmark_end(&sgout[pages]);
1552                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1553                                    prot->tail_size);
1554                         sg_mark_end(&sgout[pages + 1]);
1555                 }
1556         } else if (out_sg) {
1557                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1558         }
1559
1560         /* Prepare and submit AEAD request */
1561         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1562                                 data_len + prot->tail_size, aead_req, darg);
1563         if (err)
1564                 goto exit_free_pages;
1565
1566         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1567         clear_skb = NULL;
1568
1569         if (unlikely(darg->async)) {
1570                 err = tls_strp_msg_hold(sk, skb, &ctx->async_hold);
1571                 if (err)
1572                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1573                 return err;
1574         }
1575
1576         if (prot->tail_size)
1577                 darg->tail = dctx->tail;
1578
1579 exit_free_pages:
1580         /* Release the pages in case iov was mapped to pages */
1581         for (; pages > 0; pages--)
1582                 put_page(sg_page(&sgout[pages]));
1583 exit_free:
1584         kfree(mem);
1585 exit_free_skb:
1586         consume_skb(clear_skb);
1587         return err;
1588 }
1589
1590 static int
1591 tls_decrypt_device(struct sock *sk, struct tls_context *tls_ctx,
1592                    struct tls_decrypt_arg *darg)
1593 {
1594         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1595         int err;
1596
1597         if (tls_ctx->rx_conf != TLS_HW)
1598                 return 0;
1599
1600         err = tls_device_decrypted(sk, tls_ctx);
1601         if (err <= 0)
1602                 return err;
1603
1604         darg->zc = false;
1605         darg->async = false;
1606         darg->skb = tls_strp_msg(ctx);
1607         ctx->recv_pkt = NULL;
1608         return 1;
1609 }
1610
1611 static int tls_rx_one_record(struct sock *sk, struct iov_iter *dest,
1612                              struct tls_decrypt_arg *darg)
1613 {
1614         struct tls_context *tls_ctx = tls_get_ctx(sk);
1615         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1616         struct tls_prot_info *prot = &tls_ctx->prot_info;
1617         struct strp_msg *rxm;
1618         int pad, err;
1619
1620         err = tls_decrypt_device(sk, tls_ctx, darg);
1621         if (err < 0)
1622                 return err;
1623         if (err)
1624                 goto decrypt_done;
1625
1626         err = tls_decrypt_sg(sk, dest, NULL, darg);
1627         if (err < 0) {
1628                 if (err == -EBADMSG)
1629                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1630                 return err;
1631         }
1632         if (darg->async)
1633                 goto decrypt_done;
1634         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1635         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1636                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1637                 darg->zc = false;
1638                 if (!darg->tail)
1639                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1640                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1641                 return tls_rx_one_record(sk, dest, darg);
1642         }
1643
1644 decrypt_done:
1645         if (darg->skb == ctx->recv_pkt)
1646                 ctx->recv_pkt = NULL;
1647
1648         pad = tls_padding_length(prot, darg->skb, darg);
1649         if (pad < 0) {
1650                 consume_skb(darg->skb);
1651                 return pad;
1652         }
1653
1654         rxm = strp_msg(darg->skb);
1655         rxm->full_len -= pad;
1656         rxm->offset += prot->prepend_size;
1657         rxm->full_len -= prot->overhead_size;
1658         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1659
1660         return 0;
1661 }
1662
1663 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1664 {
1665         struct tls_decrypt_arg darg = { .zc = true, };
1666
1667         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1668 }
1669
1670 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1671                                    u8 *control)
1672 {
1673         int err;
1674
1675         if (!*control) {
1676                 *control = tlm->control;
1677                 if (!*control)
1678                         return -EBADMSG;
1679
1680                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1681                                sizeof(*control), control);
1682                 if (*control != TLS_RECORD_TYPE_DATA) {
1683                         if (err || msg->msg_flags & MSG_CTRUNC)
1684                                 return -EIO;
1685                 }
1686         } else if (*control != tlm->control) {
1687                 return 0;
1688         }
1689
1690         return 1;
1691 }
1692
1693 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1694 {
1695         consume_skb(ctx->recv_pkt);
1696         ctx->recv_pkt = NULL;
1697         __strp_unpause(&ctx->strp);
1698 }
1699
1700 /* This function traverses the rx_list in tls receive context to copies the
1701  * decrypted records into the buffer provided by caller zero copy is not
1702  * true. Further, the records are removed from the rx_list if it is not a peek
1703  * case and the record has been consumed completely.
1704  */
1705 static int process_rx_list(struct tls_sw_context_rx *ctx,
1706                            struct msghdr *msg,
1707                            u8 *control,
1708                            size_t skip,
1709                            size_t len,
1710                            bool is_peek)
1711 {
1712         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1713         struct tls_msg *tlm;
1714         ssize_t copied = 0;
1715         int err;
1716
1717         while (skip && skb) {
1718                 struct strp_msg *rxm = strp_msg(skb);
1719                 tlm = tls_msg(skb);
1720
1721                 err = tls_record_content_type(msg, tlm, control);
1722                 if (err <= 0)
1723                         goto out;
1724
1725                 if (skip < rxm->full_len)
1726                         break;
1727
1728                 skip = skip - rxm->full_len;
1729                 skb = skb_peek_next(skb, &ctx->rx_list);
1730         }
1731
1732         while (len && skb) {
1733                 struct sk_buff *next_skb;
1734                 struct strp_msg *rxm = strp_msg(skb);
1735                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1736
1737                 tlm = tls_msg(skb);
1738
1739                 err = tls_record_content_type(msg, tlm, control);
1740                 if (err <= 0)
1741                         goto out;
1742
1743                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1744                                             msg, chunk);
1745                 if (err < 0)
1746                         goto out;
1747
1748                 len = len - chunk;
1749                 copied = copied + chunk;
1750
1751                 /* Consume the data from record if it is non-peek case*/
1752                 if (!is_peek) {
1753                         rxm->offset = rxm->offset + chunk;
1754                         rxm->full_len = rxm->full_len - chunk;
1755
1756                         /* Return if there is unconsumed data in the record */
1757                         if (rxm->full_len - skip)
1758                                 break;
1759                 }
1760
1761                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1762                  * So from the 2nd record, 'skip' should be 0.
1763                  */
1764                 skip = 0;
1765
1766                 if (msg)
1767                         msg->msg_flags |= MSG_EOR;
1768
1769                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1770
1771                 if (!is_peek) {
1772                         __skb_unlink(skb, &ctx->rx_list);
1773                         consume_skb(skb);
1774                 }
1775
1776                 skb = next_skb;
1777         }
1778         err = 0;
1779
1780 out:
1781         return copied ? : err;
1782 }
1783
1784 static void
1785 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1786                        size_t len_left, size_t decrypted, ssize_t done,
1787                        size_t *flushed_at)
1788 {
1789         size_t max_rec;
1790
1791         if (len_left <= decrypted)
1792                 return;
1793
1794         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1795         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1796                 return;
1797
1798         *flushed_at = done;
1799         sk_flush_backlog(sk);
1800 }
1801
1802 static long tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1803                                bool nonblock)
1804 {
1805         long timeo;
1806         int err;
1807
1808         lock_sock(sk);
1809
1810         timeo = sock_rcvtimeo(sk, nonblock);
1811
1812         while (unlikely(ctx->reader_present)) {
1813                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1814
1815                 ctx->reader_contended = 1;
1816
1817                 add_wait_queue(&ctx->wq, &wait);
1818                 sk_wait_event(sk, &timeo,
1819                               !READ_ONCE(ctx->reader_present), &wait);
1820                 remove_wait_queue(&ctx->wq, &wait);
1821
1822                 if (timeo <= 0) {
1823                         err = -EAGAIN;
1824                         goto err_unlock;
1825                 }
1826                 if (signal_pending(current)) {
1827                         err = sock_intr_errno(timeo);
1828                         goto err_unlock;
1829                 }
1830         }
1831
1832         WRITE_ONCE(ctx->reader_present, 1);
1833
1834         return timeo;
1835
1836 err_unlock:
1837         release_sock(sk);
1838         return err;
1839 }
1840
1841 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1842 {
1843         if (unlikely(ctx->reader_contended)) {
1844                 if (wq_has_sleeper(&ctx->wq))
1845                         wake_up(&ctx->wq);
1846                 else
1847                         ctx->reader_contended = 0;
1848
1849                 WARN_ON_ONCE(!ctx->reader_present);
1850         }
1851
1852         WRITE_ONCE(ctx->reader_present, 0);
1853         release_sock(sk);
1854 }
1855
1856 int tls_sw_recvmsg(struct sock *sk,
1857                    struct msghdr *msg,
1858                    size_t len,
1859                    int flags,
1860                    int *addr_len)
1861 {
1862         struct tls_context *tls_ctx = tls_get_ctx(sk);
1863         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1864         struct tls_prot_info *prot = &tls_ctx->prot_info;
1865         ssize_t decrypted = 0, async_copy_bytes = 0;
1866         struct sk_psock *psock;
1867         unsigned char control = 0;
1868         size_t flushed_at = 0;
1869         struct strp_msg *rxm;
1870         struct tls_msg *tlm;
1871         struct sk_buff *skb;
1872         ssize_t copied = 0;
1873         bool async = false;
1874         int target, err = 0;
1875         long timeo;
1876         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1877         bool is_peek = flags & MSG_PEEK;
1878         bool bpf_strp_enabled;
1879         bool zc_capable;
1880
1881         if (unlikely(flags & MSG_ERRQUEUE))
1882                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1883
1884         psock = sk_psock_get(sk);
1885         timeo = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1886         if (timeo < 0)
1887                 return timeo;
1888         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1889
1890         /* If crypto failed the connection is broken */
1891         err = ctx->async_wait.err;
1892         if (err)
1893                 goto end;
1894
1895         /* Process pending decrypted records. It must be non-zero-copy */
1896         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1897         if (err < 0)
1898                 goto end;
1899
1900         copied = err;
1901         if (len <= copied)
1902                 goto end;
1903
1904         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1905         len = len - copied;
1906
1907         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1908                 ctx->zc_capable;
1909         decrypted = 0;
1910         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1911                 struct tls_decrypt_arg darg;
1912                 int to_decrypt, chunk;
1913
1914                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, timeo);
1915                 if (err <= 0) {
1916                         if (psock) {
1917                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1918                                                        flags);
1919                                 if (chunk > 0) {
1920                                         decrypted += chunk;
1921                                         len -= chunk;
1922                                         continue;
1923                                 }
1924                         }
1925                         goto recv_end;
1926                 }
1927
1928                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1929
1930                 rxm = strp_msg(ctx->recv_pkt);
1931                 tlm = tls_msg(ctx->recv_pkt);
1932
1933                 to_decrypt = rxm->full_len - prot->overhead_size;
1934
1935                 if (zc_capable && to_decrypt <= len &&
1936                     tlm->control == TLS_RECORD_TYPE_DATA)
1937                         darg.zc = true;
1938
1939                 /* Do not use async mode if record is non-data */
1940                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1941                         darg.async = ctx->async_capable;
1942                 else
1943                         darg.async = false;
1944
1945                 err = tls_rx_one_record(sk, &msg->msg_iter, &darg);
1946                 if (err < 0) {
1947                         tls_err_abort(sk, -EBADMSG);
1948                         goto recv_end;
1949                 }
1950
1951                 skb = darg.skb;
1952                 rxm = strp_msg(skb);
1953                 tlm = tls_msg(skb);
1954
1955                 async |= darg.async;
1956
1957                 /* If the type of records being processed is not known yet,
1958                  * set it to record type just dequeued. If it is already known,
1959                  * but does not match the record type just dequeued, go to end.
1960                  * We always get record type here since for tls1.2, record type
1961                  * is known just after record is dequeued from stream parser.
1962                  * For tls1.3, we disable async.
1963                  */
1964                 err = tls_record_content_type(msg, tlm, &control);
1965                 if (err <= 0) {
1966                         tls_rx_rec_done(ctx);
1967 put_on_rx_list_err:
1968                         __skb_queue_tail(&ctx->rx_list, skb);
1969                         goto recv_end;
1970                 }
1971
1972                 /* periodically flush backlog, and feed strparser */
1973                 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1974                                        decrypted + copied, &flushed_at);
1975
1976                 /* TLS 1.3 may have updated the length by more than overhead */
1977                 chunk = rxm->full_len;
1978                 tls_rx_rec_done(ctx);
1979
1980                 if (!darg.zc) {
1981                         bool partially_consumed = chunk > len;
1982
1983                         if (async) {
1984                                 /* TLS 1.2-only, to_decrypt must be text len */
1985                                 chunk = min_t(int, to_decrypt, len);
1986                                 async_copy_bytes += chunk;
1987 put_on_rx_list:
1988                                 decrypted += chunk;
1989                                 len -= chunk;
1990                                 __skb_queue_tail(&ctx->rx_list, skb);
1991                                 continue;
1992                         }
1993
1994                         if (bpf_strp_enabled) {
1995                                 err = sk_psock_tls_strp_read(psock, skb);
1996                                 if (err != __SK_PASS) {
1997                                         rxm->offset = rxm->offset + rxm->full_len;
1998                                         rxm->full_len = 0;
1999                                         if (err == __SK_DROP)
2000                                                 consume_skb(skb);
2001                                         continue;
2002                                 }
2003                         }
2004
2005                         if (partially_consumed)
2006                                 chunk = len;
2007
2008                         err = skb_copy_datagram_msg(skb, rxm->offset,
2009                                                     msg, chunk);
2010                         if (err < 0)
2011                                 goto put_on_rx_list_err;
2012
2013                         if (is_peek)
2014                                 goto put_on_rx_list;
2015
2016                         if (partially_consumed) {
2017                                 rxm->offset += chunk;
2018                                 rxm->full_len -= chunk;
2019                                 goto put_on_rx_list;
2020                         }
2021                 }
2022
2023                 decrypted += chunk;
2024                 len -= chunk;
2025
2026                 consume_skb(skb);
2027
2028                 /* Return full control message to userspace before trying
2029                  * to parse another message type
2030                  */
2031                 msg->msg_flags |= MSG_EOR;
2032                 if (control != TLS_RECORD_TYPE_DATA)
2033                         break;
2034         }
2035
2036 recv_end:
2037         if (async) {
2038                 int ret, pending;
2039
2040                 /* Wait for all previously submitted records to be decrypted */
2041                 spin_lock_bh(&ctx->decrypt_compl_lock);
2042                 reinit_completion(&ctx->async_wait.completion);
2043                 pending = atomic_read(&ctx->decrypt_pending);
2044                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2045                 ret = 0;
2046                 if (pending)
2047                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2048                 __skb_queue_purge(&ctx->async_hold);
2049
2050                 if (ret) {
2051                         if (err >= 0 || err == -EINPROGRESS)
2052                                 err = ret;
2053                         decrypted = 0;
2054                         goto end;
2055                 }
2056
2057                 /* Drain records from the rx_list & copy if required */
2058                 if (is_peek || is_kvec)
2059                         err = process_rx_list(ctx, msg, &control, copied,
2060                                               decrypted, is_peek);
2061                 else
2062                         err = process_rx_list(ctx, msg, &control, 0,
2063                                               async_copy_bytes, is_peek);
2064                 decrypted = max(err, 0);
2065         }
2066
2067         copied += decrypted;
2068
2069 end:
2070         tls_rx_reader_unlock(sk, ctx);
2071         if (psock)
2072                 sk_psock_put(sk, psock);
2073         return copied ? : err;
2074 }
2075
2076 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2077                            struct pipe_inode_info *pipe,
2078                            size_t len, unsigned int flags)
2079 {
2080         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2081         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2082         struct strp_msg *rxm = NULL;
2083         struct sock *sk = sock->sk;
2084         struct tls_msg *tlm;
2085         struct sk_buff *skb;
2086         ssize_t copied = 0;
2087         int err = 0;
2088         long timeo;
2089         int chunk;
2090
2091         timeo = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2092         if (timeo < 0)
2093                 return timeo;
2094
2095         if (!skb_queue_empty(&ctx->rx_list)) {
2096                 skb = __skb_dequeue(&ctx->rx_list);
2097         } else {
2098                 struct tls_decrypt_arg darg;
2099
2100                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2101                                       timeo);
2102                 if (err <= 0)
2103                         goto splice_read_end;
2104
2105                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2106
2107                 err = tls_rx_one_record(sk, NULL, &darg);
2108                 if (err < 0) {
2109                         tls_err_abort(sk, -EBADMSG);
2110                         goto splice_read_end;
2111                 }
2112
2113                 tls_rx_rec_done(ctx);
2114                 skb = darg.skb;
2115         }
2116
2117         rxm = strp_msg(skb);
2118         tlm = tls_msg(skb);
2119
2120         /* splice does not support reading control messages */
2121         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2122                 err = -EINVAL;
2123                 goto splice_requeue;
2124         }
2125
2126         chunk = min_t(unsigned int, rxm->full_len, len);
2127         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2128         if (copied < 0)
2129                 goto splice_requeue;
2130
2131         if (chunk < rxm->full_len) {
2132                 rxm->offset += len;
2133                 rxm->full_len -= len;
2134                 goto splice_requeue;
2135         }
2136
2137         consume_skb(skb);
2138
2139 splice_read_end:
2140         tls_rx_reader_unlock(sk, ctx);
2141         return copied ? : err;
2142
2143 splice_requeue:
2144         __skb_queue_head(&ctx->rx_list, skb);
2145         goto splice_read_end;
2146 }
2147
2148 bool tls_sw_sock_is_readable(struct sock *sk)
2149 {
2150         struct tls_context *tls_ctx = tls_get_ctx(sk);
2151         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2152         bool ingress_empty = true;
2153         struct sk_psock *psock;
2154
2155         rcu_read_lock();
2156         psock = sk_psock(sk);
2157         if (psock)
2158                 ingress_empty = list_empty(&psock->ingress_msg);
2159         rcu_read_unlock();
2160
2161         return !ingress_empty || ctx->recv_pkt ||
2162                 !skb_queue_empty(&ctx->rx_list);
2163 }
2164
2165 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2166 {
2167         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2168         struct tls_prot_info *prot = &tls_ctx->prot_info;
2169         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2170         struct strp_msg *rxm = strp_msg(skb);
2171         struct tls_msg *tlm = tls_msg(skb);
2172         size_t cipher_overhead;
2173         size_t data_len = 0;
2174         int ret;
2175
2176         /* Verify that we have a full TLS header, or wait for more data */
2177         if (rxm->offset + prot->prepend_size > skb->len)
2178                 return 0;
2179
2180         /* Sanity-check size of on-stack buffer. */
2181         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2182                 ret = -EINVAL;
2183                 goto read_failure;
2184         }
2185
2186         /* Linearize header to local buffer */
2187         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2188         if (ret < 0)
2189                 goto read_failure;
2190
2191         tlm->control = header[0];
2192
2193         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2194
2195         cipher_overhead = prot->tag_size;
2196         if (prot->version != TLS_1_3_VERSION &&
2197             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2198                 cipher_overhead += prot->iv_size;
2199
2200         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2201             prot->tail_size) {
2202                 ret = -EMSGSIZE;
2203                 goto read_failure;
2204         }
2205         if (data_len < cipher_overhead) {
2206                 ret = -EBADMSG;
2207                 goto read_failure;
2208         }
2209
2210         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2211         if (header[1] != TLS_1_2_VERSION_MINOR ||
2212             header[2] != TLS_1_2_VERSION_MAJOR) {
2213                 ret = -EINVAL;
2214                 goto read_failure;
2215         }
2216
2217         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2218                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2219         return data_len + TLS_HEADER_SIZE;
2220
2221 read_failure:
2222         tls_err_abort(strp->sk, ret);
2223
2224         return ret;
2225 }
2226
2227 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2228 {
2229         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2230         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232         ctx->recv_pkt = skb;
2233         strp_pause(strp);
2234
2235         ctx->saved_data_ready(strp->sk);
2236 }
2237
2238 static void tls_data_ready(struct sock *sk)
2239 {
2240         struct tls_context *tls_ctx = tls_get_ctx(sk);
2241         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2242         struct sk_psock *psock;
2243
2244         strp_data_ready(&ctx->strp);
2245
2246         psock = sk_psock_get(sk);
2247         if (psock) {
2248                 if (!list_empty(&psock->ingress_msg))
2249                         ctx->saved_data_ready(sk);
2250                 sk_psock_put(sk, psock);
2251         }
2252 }
2253
2254 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2255 {
2256         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2257
2258         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2259         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2260         cancel_delayed_work_sync(&ctx->tx_work.work);
2261 }
2262
2263 void tls_sw_release_resources_tx(struct sock *sk)
2264 {
2265         struct tls_context *tls_ctx = tls_get_ctx(sk);
2266         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2267         struct tls_rec *rec, *tmp;
2268         int pending;
2269
2270         /* Wait for any pending async encryptions to complete */
2271         spin_lock_bh(&ctx->encrypt_compl_lock);
2272         ctx->async_notify = true;
2273         pending = atomic_read(&ctx->encrypt_pending);
2274         spin_unlock_bh(&ctx->encrypt_compl_lock);
2275
2276         if (pending)
2277                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2278
2279         tls_tx_records(sk, -1);
2280
2281         /* Free up un-sent records in tx_list. First, free
2282          * the partially sent record if any at head of tx_list.
2283          */
2284         if (tls_ctx->partially_sent_record) {
2285                 tls_free_partial_record(sk, tls_ctx);
2286                 rec = list_first_entry(&ctx->tx_list,
2287                                        struct tls_rec, list);
2288                 list_del(&rec->list);
2289                 sk_msg_free(sk, &rec->msg_plaintext);
2290                 kfree(rec);
2291         }
2292
2293         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2294                 list_del(&rec->list);
2295                 sk_msg_free(sk, &rec->msg_encrypted);
2296                 sk_msg_free(sk, &rec->msg_plaintext);
2297                 kfree(rec);
2298         }
2299
2300         crypto_free_aead(ctx->aead_send);
2301         tls_free_open_rec(sk);
2302 }
2303
2304 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2305 {
2306         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2307
2308         kfree(ctx);
2309 }
2310
2311 void tls_sw_release_resources_rx(struct sock *sk)
2312 {
2313         struct tls_context *tls_ctx = tls_get_ctx(sk);
2314         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2315
2316         kfree(tls_ctx->rx.rec_seq);
2317         kfree(tls_ctx->rx.iv);
2318
2319         if (ctx->aead_recv) {
2320                 kfree_skb(ctx->recv_pkt);
2321                 ctx->recv_pkt = NULL;
2322                 __skb_queue_purge(&ctx->rx_list);
2323                 crypto_free_aead(ctx->aead_recv);
2324                 strp_stop(&ctx->strp);
2325                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2326                  * we still want to strp_stop(), but sk->sk_data_ready was
2327                  * never swapped.
2328                  */
2329                 if (ctx->saved_data_ready) {
2330                         write_lock_bh(&sk->sk_callback_lock);
2331                         sk->sk_data_ready = ctx->saved_data_ready;
2332                         write_unlock_bh(&sk->sk_callback_lock);
2333                 }
2334         }
2335 }
2336
2337 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2338 {
2339         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2340
2341         strp_done(&ctx->strp);
2342 }
2343
2344 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2345 {
2346         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2347
2348         kfree(ctx);
2349 }
2350
2351 void tls_sw_free_resources_rx(struct sock *sk)
2352 {
2353         struct tls_context *tls_ctx = tls_get_ctx(sk);
2354
2355         tls_sw_release_resources_rx(sk);
2356         tls_sw_free_ctx_rx(tls_ctx);
2357 }
2358
2359 /* The work handler to transmitt the encrypted records in tx_list */
2360 static void tx_work_handler(struct work_struct *work)
2361 {
2362         struct delayed_work *delayed_work = to_delayed_work(work);
2363         struct tx_work *tx_work = container_of(delayed_work,
2364                                                struct tx_work, work);
2365         struct sock *sk = tx_work->sk;
2366         struct tls_context *tls_ctx = tls_get_ctx(sk);
2367         struct tls_sw_context_tx *ctx;
2368
2369         if (unlikely(!tls_ctx))
2370                 return;
2371
2372         ctx = tls_sw_ctx_tx(tls_ctx);
2373         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2374                 return;
2375
2376         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2377                 return;
2378         mutex_lock(&tls_ctx->tx_lock);
2379         lock_sock(sk);
2380         tls_tx_records(sk, -1);
2381         release_sock(sk);
2382         mutex_unlock(&tls_ctx->tx_lock);
2383 }
2384
2385 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2386 {
2387         struct tls_rec *rec;
2388
2389         rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2390         if (!rec)
2391                 return false;
2392
2393         return READ_ONCE(rec->tx_ready);
2394 }
2395
2396 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2397 {
2398         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2399
2400         /* Schedule the transmission if tx list is ready */
2401         if (tls_is_tx_ready(tx_ctx) &&
2402             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2403                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2404 }
2405
2406 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2407 {
2408         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2409
2410         write_lock_bh(&sk->sk_callback_lock);
2411         rx_ctx->saved_data_ready = sk->sk_data_ready;
2412         sk->sk_data_ready = tls_data_ready;
2413         write_unlock_bh(&sk->sk_callback_lock);
2414
2415         strp_check_rcv(&rx_ctx->strp);
2416 }
2417
2418 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2419 {
2420         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2421
2422         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2423                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2424 }
2425
2426 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2427 {
2428         struct tls_context *tls_ctx = tls_get_ctx(sk);
2429         struct tls_prot_info *prot = &tls_ctx->prot_info;
2430         struct tls_crypto_info *crypto_info;
2431         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2432         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2433         struct cipher_context *cctx;
2434         struct crypto_aead **aead;
2435         struct strp_callbacks cb;
2436         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2437         struct crypto_tfm *tfm;
2438         char *iv, *rec_seq, *key, *salt, *cipher_name;
2439         size_t keysize;
2440         int rc = 0;
2441
2442         if (!ctx) {
2443                 rc = -EINVAL;
2444                 goto out;
2445         }
2446
2447         if (tx) {
2448                 if (!ctx->priv_ctx_tx) {
2449                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2450                         if (!sw_ctx_tx) {
2451                                 rc = -ENOMEM;
2452                                 goto out;
2453                         }
2454                         ctx->priv_ctx_tx = sw_ctx_tx;
2455                 } else {
2456                         sw_ctx_tx =
2457                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2458                 }
2459         } else {
2460                 if (!ctx->priv_ctx_rx) {
2461                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2462                         if (!sw_ctx_rx) {
2463                                 rc = -ENOMEM;
2464                                 goto out;
2465                         }
2466                         ctx->priv_ctx_rx = sw_ctx_rx;
2467                 } else {
2468                         sw_ctx_rx =
2469                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2470                 }
2471         }
2472
2473         if (tx) {
2474                 crypto_init_wait(&sw_ctx_tx->async_wait);
2475                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2476                 crypto_info = &ctx->crypto_send.info;
2477                 cctx = &ctx->tx;
2478                 aead = &sw_ctx_tx->aead_send;
2479                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2480                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2481                 sw_ctx_tx->tx_work.sk = sk;
2482         } else {
2483                 crypto_init_wait(&sw_ctx_rx->async_wait);
2484                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2485                 init_waitqueue_head(&sw_ctx_rx->wq);
2486                 crypto_info = &ctx->crypto_recv.info;
2487                 cctx = &ctx->rx;
2488                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2489                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2490                 aead = &sw_ctx_rx->aead_recv;
2491         }
2492
2493         switch (crypto_info->cipher_type) {
2494         case TLS_CIPHER_AES_GCM_128: {
2495                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2496
2497                 gcm_128_info = (void *)crypto_info;
2498                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2499                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2500                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2501                 iv = gcm_128_info->iv;
2502                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2503                 rec_seq = gcm_128_info->rec_seq;
2504                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2505                 key = gcm_128_info->key;
2506                 salt = gcm_128_info->salt;
2507                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2508                 cipher_name = "gcm(aes)";
2509                 break;
2510         }
2511         case TLS_CIPHER_AES_GCM_256: {
2512                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2513
2514                 gcm_256_info = (void *)crypto_info;
2515                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2516                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2517                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2518                 iv = gcm_256_info->iv;
2519                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2520                 rec_seq = gcm_256_info->rec_seq;
2521                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2522                 key = gcm_256_info->key;
2523                 salt = gcm_256_info->salt;
2524                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2525                 cipher_name = "gcm(aes)";
2526                 break;
2527         }
2528         case TLS_CIPHER_AES_CCM_128: {
2529                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2530
2531                 ccm_128_info = (void *)crypto_info;
2532                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2533                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2534                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2535                 iv = ccm_128_info->iv;
2536                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2537                 rec_seq = ccm_128_info->rec_seq;
2538                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2539                 key = ccm_128_info->key;
2540                 salt = ccm_128_info->salt;
2541                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2542                 cipher_name = "ccm(aes)";
2543                 break;
2544         }
2545         case TLS_CIPHER_CHACHA20_POLY1305: {
2546                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2547
2548                 chacha20_poly1305_info = (void *)crypto_info;
2549                 nonce_size = 0;
2550                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2551                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2552                 iv = chacha20_poly1305_info->iv;
2553                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2554                 rec_seq = chacha20_poly1305_info->rec_seq;
2555                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2556                 key = chacha20_poly1305_info->key;
2557                 salt = chacha20_poly1305_info->salt;
2558                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2559                 cipher_name = "rfc7539(chacha20,poly1305)";
2560                 break;
2561         }
2562         case TLS_CIPHER_SM4_GCM: {
2563                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2564
2565                 sm4_gcm_info = (void *)crypto_info;
2566                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2567                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2568                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2569                 iv = sm4_gcm_info->iv;
2570                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2571                 rec_seq = sm4_gcm_info->rec_seq;
2572                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2573                 key = sm4_gcm_info->key;
2574                 salt = sm4_gcm_info->salt;
2575                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2576                 cipher_name = "gcm(sm4)";
2577                 break;
2578         }
2579         case TLS_CIPHER_SM4_CCM: {
2580                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2581
2582                 sm4_ccm_info = (void *)crypto_info;
2583                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2584                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2585                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2586                 iv = sm4_ccm_info->iv;
2587                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2588                 rec_seq = sm4_ccm_info->rec_seq;
2589                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2590                 key = sm4_ccm_info->key;
2591                 salt = sm4_ccm_info->salt;
2592                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2593                 cipher_name = "ccm(sm4)";
2594                 break;
2595         }
2596         default:
2597                 rc = -EINVAL;
2598                 goto free_priv;
2599         }
2600
2601         if (crypto_info->version == TLS_1_3_VERSION) {
2602                 nonce_size = 0;
2603                 prot->aad_size = TLS_HEADER_SIZE;
2604                 prot->tail_size = 1;
2605         } else {
2606                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2607                 prot->tail_size = 0;
2608         }
2609
2610         /* Sanity-check the sizes for stack allocations. */
2611         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2612             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2613             prot->aad_size > TLS_MAX_AAD_SIZE) {
2614                 rc = -EINVAL;
2615                 goto free_priv;
2616         }
2617
2618         prot->version = crypto_info->version;
2619         prot->cipher_type = crypto_info->cipher_type;
2620         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2621         prot->tag_size = tag_size;
2622         prot->overhead_size = prot->prepend_size +
2623                               prot->tag_size + prot->tail_size;
2624         prot->iv_size = iv_size;
2625         prot->salt_size = salt_size;
2626         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2627         if (!cctx->iv) {
2628                 rc = -ENOMEM;
2629                 goto free_priv;
2630         }
2631         /* Note: 128 & 256 bit salt are the same size */
2632         prot->rec_seq_size = rec_seq_size;
2633         memcpy(cctx->iv, salt, salt_size);
2634         memcpy(cctx->iv + salt_size, iv, iv_size);
2635         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2636         if (!cctx->rec_seq) {
2637                 rc = -ENOMEM;
2638                 goto free_iv;
2639         }
2640
2641         if (!*aead) {
2642                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2643                 if (IS_ERR(*aead)) {
2644                         rc = PTR_ERR(*aead);
2645                         *aead = NULL;
2646                         goto free_rec_seq;
2647                 }
2648         }
2649
2650         ctx->push_pending_record = tls_sw_push_pending_record;
2651
2652         rc = crypto_aead_setkey(*aead, key, keysize);
2653
2654         if (rc)
2655                 goto free_aead;
2656
2657         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2658         if (rc)
2659                 goto free_aead;
2660
2661         if (sw_ctx_rx) {
2662                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2663
2664                 tls_update_rx_zc_capable(ctx);
2665                 sw_ctx_rx->async_capable =
2666                         crypto_info->version != TLS_1_3_VERSION &&
2667                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2668
2669                 /* Set up strparser */
2670                 memset(&cb, 0, sizeof(cb));
2671                 cb.rcv_msg = tls_queue;
2672                 cb.parse_msg = tls_read_size;
2673
2674                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2675         }
2676
2677         goto out;
2678
2679 free_aead:
2680         crypto_free_aead(*aead);
2681         *aead = NULL;
2682 free_rec_seq:
2683         kfree(cctx->rec_seq);
2684         cctx->rec_seq = NULL;
2685 free_iv:
2686         kfree(cctx->iv);
2687         cctx->iv = NULL;
2688 free_priv:
2689         if (tx) {
2690                 kfree(ctx->priv_ctx_tx);
2691                 ctx->priv_ctx_tx = NULL;
2692         } else {
2693                 kfree(ctx->priv_ctx_rx);
2694                 ctx->priv_ctx_rx = NULL;
2695         }
2696 out:
2697         return rc;
2698 }