Merge branch 'stable/for-linus-5.11' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 if (err == -EBADMSG)
172                         TLS_INC_STATS(sock_net(skb->sk),
173                                       LINUX_MIB_TLSDECRYPTERROR);
174                 ctx->async_wait.err = err;
175                 tls_err_abort(skb->sk, err);
176         } else {
177                 struct strp_msg *rxm = strp_msg(skb);
178                 int pad;
179
180                 pad = padding_length(ctx, prot, skb);
181                 if (pad < 0) {
182                         ctx->async_wait.err = pad;
183                         tls_err_abort(skb->sk, pad);
184                 } else {
185                         rxm->full_len -= pad;
186                         rxm->offset += prot->prepend_size;
187                         rxm->full_len -= prot->overhead_size;
188                 }
189         }
190
191         /* After using skb->sk to propagate sk through crypto async callback
192          * we need to NULL it again.
193          */
194         skb->sk = NULL;
195
196
197         /* Free the destination pages if skb was not decrypted inplace */
198         if (sgout != sgin) {
199                 /* Skip the first S/G entry as it points to AAD */
200                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201                         if (!sg)
202                                 break;
203                         put_page(sg_page(sg));
204                 }
205         }
206
207         kfree(aead_req);
208
209         spin_lock_bh(&ctx->decrypt_compl_lock);
210         pending = atomic_dec_return(&ctx->decrypt_pending);
211
212         if (!pending && ctx->async_notify)
213                 complete(&ctx->async_wait.completion);
214         spin_unlock_bh(&ctx->decrypt_compl_lock);
215 }
216
217 static int tls_do_decryption(struct sock *sk,
218                              struct sk_buff *skb,
219                              struct scatterlist *sgin,
220                              struct scatterlist *sgout,
221                              char *iv_recv,
222                              size_t data_len,
223                              struct aead_request *aead_req,
224                              bool async)
225 {
226         struct tls_context *tls_ctx = tls_get_ctx(sk);
227         struct tls_prot_info *prot = &tls_ctx->prot_info;
228         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
229         int ret;
230
231         aead_request_set_tfm(aead_req, ctx->aead_recv);
232         aead_request_set_ad(aead_req, prot->aad_size);
233         aead_request_set_crypt(aead_req, sgin, sgout,
234                                data_len + prot->tag_size,
235                                (u8 *)iv_recv);
236
237         if (async) {
238                 /* Using skb->sk to push sk through to crypto async callback
239                  * handler. This allows propagating errors up to the socket
240                  * if needed. It _must_ be cleared in the async handler
241                  * before consume_skb is called. We _know_ skb->sk is NULL
242                  * because it is a clone from strparser.
243                  */
244                 skb->sk = sk;
245                 aead_request_set_callback(aead_req,
246                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
247                                           tls_decrypt_done, skb);
248                 atomic_inc(&ctx->decrypt_pending);
249         } else {
250                 aead_request_set_callback(aead_req,
251                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
252                                           crypto_req_done, &ctx->async_wait);
253         }
254
255         ret = crypto_aead_decrypt(aead_req);
256         if (ret == -EINPROGRESS) {
257                 if (async)
258                         return ret;
259
260                 ret = crypto_wait_req(ret, &ctx->async_wait);
261         }
262
263         if (async)
264                 atomic_dec(&ctx->decrypt_pending);
265
266         return ret;
267 }
268
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271         struct tls_context *tls_ctx = tls_get_ctx(sk);
272         struct tls_prot_info *prot = &tls_ctx->prot_info;
273         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274         struct tls_rec *rec = ctx->open_rec;
275
276         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277         if (target_size > 0)
278                 target_size += prot->overhead_size;
279         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284         struct tls_context *tls_ctx = tls_get_ctx(sk);
285         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286         struct tls_rec *rec = ctx->open_rec;
287         struct sk_msg *msg_en = &rec->msg_encrypted;
288
289         return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_prot_info *prot = &tls_ctx->prot_info;
296         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297         struct tls_rec *rec = ctx->open_rec;
298         struct sk_msg *msg_pl = &rec->msg_plaintext;
299         struct sk_msg *msg_en = &rec->msg_encrypted;
300         int skip, len;
301
302         /* We add page references worth len bytes from encrypted sg
303          * at the end of plaintext sg. It is guaranteed that msg_en
304          * has enough required room (ensured by caller).
305          */
306         len = required - msg_pl->sg.size;
307
308         /* Skip initial bytes in msg_en's data to be able to use
309          * same offset of both plain and encrypted data.
310          */
311         skip = prot->prepend_size + msg_pl->sg.size;
312
313         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315
316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318         struct tls_context *tls_ctx = tls_get_ctx(sk);
319         struct tls_prot_info *prot = &tls_ctx->prot_info;
320         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321         struct sk_msg *msg_pl, *msg_en;
322         struct tls_rec *rec;
323         int mem_size;
324
325         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326
327         rec = kzalloc(mem_size, sk->sk_allocation);
328         if (!rec)
329                 return NULL;
330
331         msg_pl = &rec->msg_plaintext;
332         msg_en = &rec->msg_encrypted;
333
334         sk_msg_init(msg_pl);
335         sk_msg_init(msg_en);
336
337         sg_init_table(rec->sg_aead_in, 2);
338         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339         sg_unmark_end(&rec->sg_aead_in[1]);
340
341         sg_init_table(rec->sg_aead_out, 2);
342         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343         sg_unmark_end(&rec->sg_aead_out[1]);
344
345         return rec;
346 }
347
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350         sk_msg_free(sk, &rec->msg_encrypted);
351         sk_msg_free(sk, &rec->msg_plaintext);
352         kfree(rec);
353 }
354
355 static void tls_free_open_rec(struct sock *sk)
356 {
357         struct tls_context *tls_ctx = tls_get_ctx(sk);
358         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359         struct tls_rec *rec = ctx->open_rec;
360
361         if (rec) {
362                 tls_free_rec(sk, rec);
363                 ctx->open_rec = NULL;
364         }
365 }
366
367 int tls_tx_records(struct sock *sk, int flags)
368 {
369         struct tls_context *tls_ctx = tls_get_ctx(sk);
370         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371         struct tls_rec *rec, *tmp;
372         struct sk_msg *msg_en;
373         int tx_flags, rc = 0;
374
375         if (tls_is_partially_sent_record(tls_ctx)) {
376                 rec = list_first_entry(&ctx->tx_list,
377                                        struct tls_rec, list);
378
379                 if (flags == -1)
380                         tx_flags = rec->tx_flags;
381                 else
382                         tx_flags = flags;
383
384                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385                 if (rc)
386                         goto tx_err;
387
388                 /* Full record has been transmitted.
389                  * Remove the head of tx_list
390                  */
391                 list_del(&rec->list);
392                 sk_msg_free(sk, &rec->msg_plaintext);
393                 kfree(rec);
394         }
395
396         /* Tx all ready records */
397         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398                 if (READ_ONCE(rec->tx_ready)) {
399                         if (flags == -1)
400                                 tx_flags = rec->tx_flags;
401                         else
402                                 tx_flags = flags;
403
404                         msg_en = &rec->msg_encrypted;
405                         rc = tls_push_sg(sk, tls_ctx,
406                                          &msg_en->sg.data[msg_en->sg.curr],
407                                          0, tx_flags);
408                         if (rc)
409                                 goto tx_err;
410
411                         list_del(&rec->list);
412                         sk_msg_free(sk, &rec->msg_plaintext);
413                         kfree(rec);
414                 } else {
415                         break;
416                 }
417         }
418
419 tx_err:
420         if (rc < 0 && rc != -EAGAIN)
421                 tls_err_abort(sk, EBADMSG);
422
423         return rc;
424 }
425
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428         struct aead_request *aead_req = (struct aead_request *)req;
429         struct sock *sk = req->data;
430         struct tls_context *tls_ctx = tls_get_ctx(sk);
431         struct tls_prot_info *prot = &tls_ctx->prot_info;
432         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433         struct scatterlist *sge;
434         struct sk_msg *msg_en;
435         struct tls_rec *rec;
436         bool ready = false;
437         int pending;
438
439         rec = container_of(aead_req, struct tls_rec, aead_req);
440         msg_en = &rec->msg_encrypted;
441
442         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443         sge->offset -= prot->prepend_size;
444         sge->length += prot->prepend_size;
445
446         /* Check if error is previously set on socket */
447         if (err || sk->sk_err) {
448                 rec = NULL;
449
450                 /* If err is already set on socket, return the same code */
451                 if (sk->sk_err) {
452                         ctx->async_wait.err = sk->sk_err;
453                 } else {
454                         ctx->async_wait.err = err;
455                         tls_err_abort(sk, err);
456                 }
457         }
458
459         if (rec) {
460                 struct tls_rec *first_rec;
461
462                 /* Mark the record as ready for transmission */
463                 smp_store_mb(rec->tx_ready, true);
464
465                 /* If received record is at head of tx_list, schedule tx */
466                 first_rec = list_first_entry(&ctx->tx_list,
467                                              struct tls_rec, list);
468                 if (rec == first_rec)
469                         ready = true;
470         }
471
472         spin_lock_bh(&ctx->encrypt_compl_lock);
473         pending = atomic_dec_return(&ctx->encrypt_pending);
474
475         if (!pending && ctx->async_notify)
476                 complete(&ctx->async_wait.completion);
477         spin_unlock_bh(&ctx->encrypt_compl_lock);
478
479         if (!ready)
480                 return;
481
482         /* Schedule the transmission */
483         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484                 schedule_delayed_work(&ctx->tx_work.work, 1);
485 }
486
487 static int tls_do_encryption(struct sock *sk,
488                              struct tls_context *tls_ctx,
489                              struct tls_sw_context_tx *ctx,
490                              struct aead_request *aead_req,
491                              size_t data_len, u32 start)
492 {
493         struct tls_prot_info *prot = &tls_ctx->prot_info;
494         struct tls_rec *rec = ctx->open_rec;
495         struct sk_msg *msg_en = &rec->msg_encrypted;
496         struct scatterlist *sge = sk_msg_elem(msg_en, start);
497         int rc, iv_offset = 0;
498
499         /* For CCM based ciphers, first byte of IV is a constant */
500         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
502                 iv_offset = 1;
503         }
504
505         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506                prot->iv_size + prot->salt_size);
507
508         xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
509
510         sge->offset += prot->prepend_size;
511         sge->length -= prot->prepend_size;
512
513         msg_en->sg.curr = start;
514
515         aead_request_set_tfm(aead_req, ctx->aead_send);
516         aead_request_set_ad(aead_req, prot->aad_size);
517         aead_request_set_crypt(aead_req, rec->sg_aead_in,
518                                rec->sg_aead_out,
519                                data_len, rec->iv_data);
520
521         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522                                   tls_encrypt_done, sk);
523
524         /* Add the record in tx_list */
525         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526         atomic_inc(&ctx->encrypt_pending);
527
528         rc = crypto_aead_encrypt(aead_req);
529         if (!rc || rc != -EINPROGRESS) {
530                 atomic_dec(&ctx->encrypt_pending);
531                 sge->offset -= prot->prepend_size;
532                 sge->length += prot->prepend_size;
533         }
534
535         if (!rc) {
536                 WRITE_ONCE(rec->tx_ready, true);
537         } else if (rc != -EINPROGRESS) {
538                 list_del(&rec->list);
539                 return rc;
540         }
541
542         /* Unhook the record from context if encryption is not failure */
543         ctx->open_rec = NULL;
544         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
545         return rc;
546 }
547
548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549                                  struct tls_rec **to, struct sk_msg *msg_opl,
550                                  struct sk_msg *msg_oen, u32 split_point,
551                                  u32 tx_overhead_size, u32 *orig_end)
552 {
553         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554         struct scatterlist *sge, *osge, *nsge;
555         u32 orig_size = msg_opl->sg.size;
556         struct scatterlist tmp = { };
557         struct sk_msg *msg_npl;
558         struct tls_rec *new;
559         int ret;
560
561         new = tls_get_rec(sk);
562         if (!new)
563                 return -ENOMEM;
564         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565                            tx_overhead_size, 0);
566         if (ret < 0) {
567                 tls_free_rec(sk, new);
568                 return ret;
569         }
570
571         *orig_end = msg_opl->sg.end;
572         i = msg_opl->sg.start;
573         sge = sk_msg_elem(msg_opl, i);
574         while (apply && sge->length) {
575                 if (sge->length > apply) {
576                         u32 len = sge->length - apply;
577
578                         get_page(sg_page(sge));
579                         sg_set_page(&tmp, sg_page(sge), len,
580                                     sge->offset + apply);
581                         sge->length = apply;
582                         bytes += apply;
583                         apply = 0;
584                 } else {
585                         apply -= sge->length;
586                         bytes += sge->length;
587                 }
588
589                 sk_msg_iter_var_next(i);
590                 if (i == msg_opl->sg.end)
591                         break;
592                 sge = sk_msg_elem(msg_opl, i);
593         }
594
595         msg_opl->sg.end = i;
596         msg_opl->sg.curr = i;
597         msg_opl->sg.copybreak = 0;
598         msg_opl->apply_bytes = 0;
599         msg_opl->sg.size = bytes;
600
601         msg_npl = &new->msg_plaintext;
602         msg_npl->apply_bytes = apply;
603         msg_npl->sg.size = orig_size - bytes;
604
605         j = msg_npl->sg.start;
606         nsge = sk_msg_elem(msg_npl, j);
607         if (tmp.length) {
608                 memcpy(nsge, &tmp, sizeof(*nsge));
609                 sk_msg_iter_var_next(j);
610                 nsge = sk_msg_elem(msg_npl, j);
611         }
612
613         osge = sk_msg_elem(msg_opl, i);
614         while (osge->length) {
615                 memcpy(nsge, osge, sizeof(*nsge));
616                 sg_unmark_end(nsge);
617                 sk_msg_iter_var_next(i);
618                 sk_msg_iter_var_next(j);
619                 if (i == *orig_end)
620                         break;
621                 osge = sk_msg_elem(msg_opl, i);
622                 nsge = sk_msg_elem(msg_npl, j);
623         }
624
625         msg_npl->sg.end = j;
626         msg_npl->sg.curr = j;
627         msg_npl->sg.copybreak = 0;
628
629         *to = new;
630         return 0;
631 }
632
633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634                                   struct tls_rec *from, u32 orig_end)
635 {
636         struct sk_msg *msg_npl = &from->msg_plaintext;
637         struct sk_msg *msg_opl = &to->msg_plaintext;
638         struct scatterlist *osge, *nsge;
639         u32 i, j;
640
641         i = msg_opl->sg.end;
642         sk_msg_iter_var_prev(i);
643         j = msg_npl->sg.start;
644
645         osge = sk_msg_elem(msg_opl, i);
646         nsge = sk_msg_elem(msg_npl, j);
647
648         if (sg_page(osge) == sg_page(nsge) &&
649             osge->offset + osge->length == nsge->offset) {
650                 osge->length += nsge->length;
651                 put_page(sg_page(nsge));
652         }
653
654         msg_opl->sg.end = orig_end;
655         msg_opl->sg.curr = orig_end;
656         msg_opl->sg.copybreak = 0;
657         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658         msg_opl->sg.size += msg_npl->sg.size;
659
660         sk_msg_free(sk, &to->msg_encrypted);
661         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
662
663         kfree(from);
664 }
665
666 static int tls_push_record(struct sock *sk, int flags,
667                            unsigned char record_type)
668 {
669         struct tls_context *tls_ctx = tls_get_ctx(sk);
670         struct tls_prot_info *prot = &tls_ctx->prot_info;
671         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673         u32 i, split_point, orig_end;
674         struct sk_msg *msg_pl, *msg_en;
675         struct aead_request *req;
676         bool split;
677         int rc;
678
679         if (!rec)
680                 return 0;
681
682         msg_pl = &rec->msg_plaintext;
683         msg_en = &rec->msg_encrypted;
684
685         split_point = msg_pl->apply_bytes;
686         split = split_point && split_point < msg_pl->sg.size;
687         if (unlikely((!split &&
688                       msg_pl->sg.size +
689                       prot->overhead_size > msg_en->sg.size) ||
690                      (split &&
691                       split_point +
692                       prot->overhead_size > msg_en->sg.size))) {
693                 split = true;
694                 split_point = msg_en->sg.size;
695         }
696         if (split) {
697                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698                                            split_point, prot->overhead_size,
699                                            &orig_end);
700                 if (rc < 0)
701                         return rc;
702                 /* This can happen if above tls_split_open_record allocates
703                  * a single large encryption buffer instead of two smaller
704                  * ones. In this case adjust pointers and continue without
705                  * split.
706                  */
707                 if (!msg_pl->sg.size) {
708                         tls_merge_open_record(sk, rec, tmp, orig_end);
709                         msg_pl = &rec->msg_plaintext;
710                         msg_en = &rec->msg_encrypted;
711                         split = false;
712                 }
713                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714                             prot->overhead_size);
715         }
716
717         rec->tx_flags = flags;
718         req = &rec->aead_req;
719
720         i = msg_pl->sg.end;
721         sk_msg_iter_var_prev(i);
722
723         rec->content_type = record_type;
724         if (prot->version == TLS_1_3_VERSION) {
725                 /* Add content type to end of message.  No padding added */
726                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727                 sg_mark_end(&rec->sg_content_type);
728                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729                          &rec->sg_content_type);
730         } else {
731                 sg_mark_end(sk_msg_elem(msg_pl, i));
732         }
733
734         if (msg_pl->sg.end < msg_pl->sg.start) {
735                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
737                          msg_pl->sg.data);
738         }
739
740         i = msg_pl->sg.start;
741         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
742
743         i = msg_en->sg.end;
744         sk_msg_iter_var_prev(i);
745         sg_mark_end(sk_msg_elem(msg_en, i));
746
747         i = msg_en->sg.start;
748         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
749
750         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751                      tls_ctx->tx.rec_seq, record_type, prot);
752
753         tls_fill_prepend(tls_ctx,
754                          page_address(sg_page(&msg_en->sg.data[i])) +
755                          msg_en->sg.data[i].offset,
756                          msg_pl->sg.size + prot->tail_size,
757                          record_type);
758
759         tls_ctx->pending_open_record_frags = false;
760
761         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
762                                msg_pl->sg.size + prot->tail_size, i);
763         if (rc < 0) {
764                 if (rc != -EINPROGRESS) {
765                         tls_err_abort(sk, EBADMSG);
766                         if (split) {
767                                 tls_ctx->pending_open_record_frags = true;
768                                 tls_merge_open_record(sk, rec, tmp, orig_end);
769                         }
770                 }
771                 ctx->async_capable = 1;
772                 return rc;
773         } else if (split) {
774                 msg_pl = &tmp->msg_plaintext;
775                 msg_en = &tmp->msg_encrypted;
776                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
777                 tls_ctx->pending_open_record_frags = true;
778                 ctx->open_rec = tmp;
779         }
780
781         return tls_tx_records(sk, flags);
782 }
783
784 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
785                                bool full_record, u8 record_type,
786                                ssize_t *copied, int flags)
787 {
788         struct tls_context *tls_ctx = tls_get_ctx(sk);
789         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
790         struct sk_msg msg_redir = { };
791         struct sk_psock *psock;
792         struct sock *sk_redir;
793         struct tls_rec *rec;
794         bool enospc, policy;
795         int err = 0, send;
796         u32 delta = 0;
797
798         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
799         psock = sk_psock_get(sk);
800         if (!psock || !policy) {
801                 err = tls_push_record(sk, flags, record_type);
802                 if (err && sk->sk_err == EBADMSG) {
803                         *copied -= sk_msg_free(sk, msg);
804                         tls_free_open_rec(sk);
805                         err = -sk->sk_err;
806                 }
807                 if (psock)
808                         sk_psock_put(sk, psock);
809                 return err;
810         }
811 more_data:
812         enospc = sk_msg_full(msg);
813         if (psock->eval == __SK_NONE) {
814                 delta = msg->sg.size;
815                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
816                 delta -= msg->sg.size;
817         }
818         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
819             !enospc && !full_record) {
820                 err = -ENOSPC;
821                 goto out_err;
822         }
823         msg->cork_bytes = 0;
824         send = msg->sg.size;
825         if (msg->apply_bytes && msg->apply_bytes < send)
826                 send = msg->apply_bytes;
827
828         switch (psock->eval) {
829         case __SK_PASS:
830                 err = tls_push_record(sk, flags, record_type);
831                 if (err && sk->sk_err == EBADMSG) {
832                         *copied -= sk_msg_free(sk, msg);
833                         tls_free_open_rec(sk);
834                         err = -sk->sk_err;
835                         goto out_err;
836                 }
837                 break;
838         case __SK_REDIRECT:
839                 sk_redir = psock->sk_redir;
840                 memcpy(&msg_redir, msg, sizeof(*msg));
841                 if (msg->apply_bytes < send)
842                         msg->apply_bytes = 0;
843                 else
844                         msg->apply_bytes -= send;
845                 sk_msg_return_zero(sk, msg, send);
846                 msg->sg.size -= send;
847                 release_sock(sk);
848                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
849                 lock_sock(sk);
850                 if (err < 0) {
851                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
852                         msg->sg.size = 0;
853                 }
854                 if (msg->sg.size == 0)
855                         tls_free_open_rec(sk);
856                 break;
857         case __SK_DROP:
858         default:
859                 sk_msg_free_partial(sk, msg, send);
860                 if (msg->apply_bytes < send)
861                         msg->apply_bytes = 0;
862                 else
863                         msg->apply_bytes -= send;
864                 if (msg->sg.size == 0)
865                         tls_free_open_rec(sk);
866                 *copied -= (send + delta);
867                 err = -EACCES;
868         }
869
870         if (likely(!err)) {
871                 bool reset_eval = !ctx->open_rec;
872
873                 rec = ctx->open_rec;
874                 if (rec) {
875                         msg = &rec->msg_plaintext;
876                         if (!msg->apply_bytes)
877                                 reset_eval = true;
878                 }
879                 if (reset_eval) {
880                         psock->eval = __SK_NONE;
881                         if (psock->sk_redir) {
882                                 sock_put(psock->sk_redir);
883                                 psock->sk_redir = NULL;
884                         }
885                 }
886                 if (rec)
887                         goto more_data;
888         }
889  out_err:
890         sk_psock_put(sk, psock);
891         return err;
892 }
893
894 static int tls_sw_push_pending_record(struct sock *sk, int flags)
895 {
896         struct tls_context *tls_ctx = tls_get_ctx(sk);
897         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
898         struct tls_rec *rec = ctx->open_rec;
899         struct sk_msg *msg_pl;
900         size_t copied;
901
902         if (!rec)
903                 return 0;
904
905         msg_pl = &rec->msg_plaintext;
906         copied = msg_pl->sg.size;
907         if (!copied)
908                 return 0;
909
910         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
911                                    &copied, flags);
912 }
913
914 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
915 {
916         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
917         struct tls_context *tls_ctx = tls_get_ctx(sk);
918         struct tls_prot_info *prot = &tls_ctx->prot_info;
919         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
920         bool async_capable = ctx->async_capable;
921         unsigned char record_type = TLS_RECORD_TYPE_DATA;
922         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
923         bool eor = !(msg->msg_flags & MSG_MORE);
924         size_t try_to_copy;
925         ssize_t copied = 0;
926         struct sk_msg *msg_pl, *msg_en;
927         struct tls_rec *rec;
928         int required_size;
929         int num_async = 0;
930         bool full_record;
931         int record_room;
932         int num_zc = 0;
933         int orig_size;
934         int ret = 0;
935         int pending;
936
937         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
938                                MSG_CMSG_COMPAT))
939                 return -EOPNOTSUPP;
940
941         mutex_lock(&tls_ctx->tx_lock);
942         lock_sock(sk);
943
944         if (unlikely(msg->msg_controllen)) {
945                 ret = tls_proccess_cmsg(sk, msg, &record_type);
946                 if (ret) {
947                         if (ret == -EINPROGRESS)
948                                 num_async++;
949                         else if (ret != -EAGAIN)
950                                 goto send_end;
951                 }
952         }
953
954         while (msg_data_left(msg)) {
955                 if (sk->sk_err) {
956                         ret = -sk->sk_err;
957                         goto send_end;
958                 }
959
960                 if (ctx->open_rec)
961                         rec = ctx->open_rec;
962                 else
963                         rec = ctx->open_rec = tls_get_rec(sk);
964                 if (!rec) {
965                         ret = -ENOMEM;
966                         goto send_end;
967                 }
968
969                 msg_pl = &rec->msg_plaintext;
970                 msg_en = &rec->msg_encrypted;
971
972                 orig_size = msg_pl->sg.size;
973                 full_record = false;
974                 try_to_copy = msg_data_left(msg);
975                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
976                 if (try_to_copy >= record_room) {
977                         try_to_copy = record_room;
978                         full_record = true;
979                 }
980
981                 required_size = msg_pl->sg.size + try_to_copy +
982                                 prot->overhead_size;
983
984                 if (!sk_stream_memory_free(sk))
985                         goto wait_for_sndbuf;
986
987 alloc_encrypted:
988                 ret = tls_alloc_encrypted_msg(sk, required_size);
989                 if (ret) {
990                         if (ret != -ENOSPC)
991                                 goto wait_for_memory;
992
993                         /* Adjust try_to_copy according to the amount that was
994                          * actually allocated. The difference is due
995                          * to max sg elements limit
996                          */
997                         try_to_copy -= required_size - msg_en->sg.size;
998                         full_record = true;
999                 }
1000
1001                 if (!is_kvec && (full_record || eor) && !async_capable) {
1002                         u32 first = msg_pl->sg.end;
1003
1004                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1005                                                         msg_pl, try_to_copy);
1006                         if (ret)
1007                                 goto fallback_to_reg_send;
1008
1009                         num_zc++;
1010                         copied += try_to_copy;
1011
1012                         sk_msg_sg_copy_set(msg_pl, first);
1013                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1014                                                   record_type, &copied,
1015                                                   msg->msg_flags);
1016                         if (ret) {
1017                                 if (ret == -EINPROGRESS)
1018                                         num_async++;
1019                                 else if (ret == -ENOMEM)
1020                                         goto wait_for_memory;
1021                                 else if (ctx->open_rec && ret == -ENOSPC)
1022                                         goto rollback_iter;
1023                                 else if (ret != -EAGAIN)
1024                                         goto send_end;
1025                         }
1026                         continue;
1027 rollback_iter:
1028                         copied -= try_to_copy;
1029                         sk_msg_sg_copy_clear(msg_pl, first);
1030                         iov_iter_revert(&msg->msg_iter,
1031                                         msg_pl->sg.size - orig_size);
1032 fallback_to_reg_send:
1033                         sk_msg_trim(sk, msg_pl, orig_size);
1034                 }
1035
1036                 required_size = msg_pl->sg.size + try_to_copy;
1037
1038                 ret = tls_clone_plaintext_msg(sk, required_size);
1039                 if (ret) {
1040                         if (ret != -ENOSPC)
1041                                 goto send_end;
1042
1043                         /* Adjust try_to_copy according to the amount that was
1044                          * actually allocated. The difference is due
1045                          * to max sg elements limit
1046                          */
1047                         try_to_copy -= required_size - msg_pl->sg.size;
1048                         full_record = true;
1049                         sk_msg_trim(sk, msg_en,
1050                                     msg_pl->sg.size + prot->overhead_size);
1051                 }
1052
1053                 if (try_to_copy) {
1054                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1055                                                        msg_pl, try_to_copy);
1056                         if (ret < 0)
1057                                 goto trim_sgl;
1058                 }
1059
1060                 /* Open records defined only if successfully copied, otherwise
1061                  * we would trim the sg but not reset the open record frags.
1062                  */
1063                 tls_ctx->pending_open_record_frags = true;
1064                 copied += try_to_copy;
1065                 if (full_record || eor) {
1066                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1067                                                   record_type, &copied,
1068                                                   msg->msg_flags);
1069                         if (ret) {
1070                                 if (ret == -EINPROGRESS)
1071                                         num_async++;
1072                                 else if (ret == -ENOMEM)
1073                                         goto wait_for_memory;
1074                                 else if (ret != -EAGAIN) {
1075                                         if (ret == -ENOSPC)
1076                                                 ret = 0;
1077                                         goto send_end;
1078                                 }
1079                         }
1080                 }
1081
1082                 continue;
1083
1084 wait_for_sndbuf:
1085                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086 wait_for_memory:
1087                 ret = sk_stream_wait_memory(sk, &timeo);
1088                 if (ret) {
1089 trim_sgl:
1090                         if (ctx->open_rec)
1091                                 tls_trim_both_msgs(sk, orig_size);
1092                         goto send_end;
1093                 }
1094
1095                 if (ctx->open_rec && msg_en->sg.size < required_size)
1096                         goto alloc_encrypted;
1097         }
1098
1099         if (!num_async) {
1100                 goto send_end;
1101         } else if (num_zc) {
1102                 /* Wait for pending encryptions to get completed */
1103                 spin_lock_bh(&ctx->encrypt_compl_lock);
1104                 ctx->async_notify = true;
1105
1106                 pending = atomic_read(&ctx->encrypt_pending);
1107                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1108                 if (pending)
1109                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1110                 else
1111                         reinit_completion(&ctx->async_wait.completion);
1112
1113                 /* There can be no concurrent accesses, since we have no
1114                  * pending encrypt operations
1115                  */
1116                 WRITE_ONCE(ctx->async_notify, false);
1117
1118                 if (ctx->async_wait.err) {
1119                         ret = ctx->async_wait.err;
1120                         copied = 0;
1121                 }
1122         }
1123
1124         /* Transmit if any encryptions have completed */
1125         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1126                 cancel_delayed_work(&ctx->tx_work.work);
1127                 tls_tx_records(sk, msg->msg_flags);
1128         }
1129
1130 send_end:
1131         ret = sk_stream_error(sk, msg->msg_flags, ret);
1132
1133         release_sock(sk);
1134         mutex_unlock(&tls_ctx->tx_lock);
1135         return copied > 0 ? copied : ret;
1136 }
1137
1138 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1139                               int offset, size_t size, int flags)
1140 {
1141         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1142         struct tls_context *tls_ctx = tls_get_ctx(sk);
1143         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1144         struct tls_prot_info *prot = &tls_ctx->prot_info;
1145         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1146         struct sk_msg *msg_pl;
1147         struct tls_rec *rec;
1148         int num_async = 0;
1149         ssize_t copied = 0;
1150         bool full_record;
1151         int record_room;
1152         int ret = 0;
1153         bool eor;
1154
1155         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1156         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1157
1158         /* Call the sk_stream functions to manage the sndbuf mem. */
1159         while (size > 0) {
1160                 size_t copy, required_size;
1161
1162                 if (sk->sk_err) {
1163                         ret = -sk->sk_err;
1164                         goto sendpage_end;
1165                 }
1166
1167                 if (ctx->open_rec)
1168                         rec = ctx->open_rec;
1169                 else
1170                         rec = ctx->open_rec = tls_get_rec(sk);
1171                 if (!rec) {
1172                         ret = -ENOMEM;
1173                         goto sendpage_end;
1174                 }
1175
1176                 msg_pl = &rec->msg_plaintext;
1177
1178                 full_record = false;
1179                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1180                 copy = size;
1181                 if (copy >= record_room) {
1182                         copy = record_room;
1183                         full_record = true;
1184                 }
1185
1186                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1187
1188                 if (!sk_stream_memory_free(sk))
1189                         goto wait_for_sndbuf;
1190 alloc_payload:
1191                 ret = tls_alloc_encrypted_msg(sk, required_size);
1192                 if (ret) {
1193                         if (ret != -ENOSPC)
1194                                 goto wait_for_memory;
1195
1196                         /* Adjust copy according to the amount that was
1197                          * actually allocated. The difference is due
1198                          * to max sg elements limit
1199                          */
1200                         copy -= required_size - msg_pl->sg.size;
1201                         full_record = true;
1202                 }
1203
1204                 sk_msg_page_add(msg_pl, page, copy, offset);
1205                 sk_mem_charge(sk, copy);
1206
1207                 offset += copy;
1208                 size -= copy;
1209                 copied += copy;
1210
1211                 tls_ctx->pending_open_record_frags = true;
1212                 if (full_record || eor || sk_msg_full(msg_pl)) {
1213                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1214                                                   record_type, &copied, flags);
1215                         if (ret) {
1216                                 if (ret == -EINPROGRESS)
1217                                         num_async++;
1218                                 else if (ret == -ENOMEM)
1219                                         goto wait_for_memory;
1220                                 else if (ret != -EAGAIN) {
1221                                         if (ret == -ENOSPC)
1222                                                 ret = 0;
1223                                         goto sendpage_end;
1224                                 }
1225                         }
1226                 }
1227                 continue;
1228 wait_for_sndbuf:
1229                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1230 wait_for_memory:
1231                 ret = sk_stream_wait_memory(sk, &timeo);
1232                 if (ret) {
1233                         if (ctx->open_rec)
1234                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1235                         goto sendpage_end;
1236                 }
1237
1238                 if (ctx->open_rec)
1239                         goto alloc_payload;
1240         }
1241
1242         if (num_async) {
1243                 /* Transmit if any encryptions have completed */
1244                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1245                         cancel_delayed_work(&ctx->tx_work.work);
1246                         tls_tx_records(sk, flags);
1247                 }
1248         }
1249 sendpage_end:
1250         ret = sk_stream_error(sk, flags, ret);
1251         return copied > 0 ? copied : ret;
1252 }
1253
1254 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1255                            int offset, size_t size, int flags)
1256 {
1257         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1258                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1259                       MSG_NO_SHARED_FRAGS))
1260                 return -EOPNOTSUPP;
1261
1262         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1263 }
1264
1265 int tls_sw_sendpage(struct sock *sk, struct page *page,
1266                     int offset, size_t size, int flags)
1267 {
1268         struct tls_context *tls_ctx = tls_get_ctx(sk);
1269         int ret;
1270
1271         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1272                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1273                 return -EOPNOTSUPP;
1274
1275         mutex_lock(&tls_ctx->tx_lock);
1276         lock_sock(sk);
1277         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1278         release_sock(sk);
1279         mutex_unlock(&tls_ctx->tx_lock);
1280         return ret;
1281 }
1282
1283 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1284                                      int flags, long timeo, int *err)
1285 {
1286         struct tls_context *tls_ctx = tls_get_ctx(sk);
1287         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1288         struct sk_buff *skb;
1289         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1290
1291         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1292                 if (sk->sk_err) {
1293                         *err = sock_error(sk);
1294                         return NULL;
1295                 }
1296
1297                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1298                         __strp_unpause(&ctx->strp);
1299                         if (ctx->recv_pkt)
1300                                 return ctx->recv_pkt;
1301                 }
1302
1303                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1304                         return NULL;
1305
1306                 if (sock_flag(sk, SOCK_DONE))
1307                         return NULL;
1308
1309                 if ((flags & MSG_DONTWAIT) || !timeo) {
1310                         *err = -EAGAIN;
1311                         return NULL;
1312                 }
1313
1314                 add_wait_queue(sk_sleep(sk), &wait);
1315                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316                 sk_wait_event(sk, &timeo,
1317                               ctx->recv_pkt != skb ||
1318                               !sk_psock_queue_empty(psock),
1319                               &wait);
1320                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1321                 remove_wait_queue(sk_sleep(sk), &wait);
1322
1323                 /* Handle signals */
1324                 if (signal_pending(current)) {
1325                         *err = sock_intr_errno(timeo);
1326                         return NULL;
1327                 }
1328         }
1329
1330         return skb;
1331 }
1332
1333 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1334                                int length, int *pages_used,
1335                                unsigned int *size_used,
1336                                struct scatterlist *to,
1337                                int to_max_pages)
1338 {
1339         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1340         struct page *pages[MAX_SKB_FRAGS];
1341         unsigned int size = *size_used;
1342         ssize_t copied, use;
1343         size_t offset;
1344
1345         while (length > 0) {
1346                 i = 0;
1347                 maxpages = to_max_pages - num_elem;
1348                 if (maxpages == 0) {
1349                         rc = -EFAULT;
1350                         goto out;
1351                 }
1352                 copied = iov_iter_get_pages(from, pages,
1353                                             length,
1354                                             maxpages, &offset);
1355                 if (copied <= 0) {
1356                         rc = -EFAULT;
1357                         goto out;
1358                 }
1359
1360                 iov_iter_advance(from, copied);
1361
1362                 length -= copied;
1363                 size += copied;
1364                 while (copied) {
1365                         use = min_t(int, copied, PAGE_SIZE - offset);
1366
1367                         sg_set_page(&to[num_elem],
1368                                     pages[i], use, offset);
1369                         sg_unmark_end(&to[num_elem]);
1370                         /* We do not uncharge memory from this API */
1371
1372                         offset = 0;
1373                         copied -= use;
1374
1375                         i++;
1376                         num_elem++;
1377                 }
1378         }
1379         /* Mark the end in the last sg entry if newly added */
1380         if (num_elem > *pages_used)
1381                 sg_mark_end(&to[num_elem - 1]);
1382 out:
1383         if (rc)
1384                 iov_iter_revert(from, size - *size_used);
1385         *size_used = size;
1386         *pages_used = num_elem;
1387
1388         return rc;
1389 }
1390
1391 /* This function decrypts the input skb into either out_iov or in out_sg
1392  * or in skb buffers itself. The input parameter 'zc' indicates if
1393  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1394  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1395  * NULL, then the decryption happens inside skb buffers itself, i.e.
1396  * zero-copy gets disabled and 'zc' is updated.
1397  */
1398
1399 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1400                             struct iov_iter *out_iov,
1401                             struct scatterlist *out_sg,
1402                             int *chunk, bool *zc, bool async)
1403 {
1404         struct tls_context *tls_ctx = tls_get_ctx(sk);
1405         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1406         struct tls_prot_info *prot = &tls_ctx->prot_info;
1407         struct strp_msg *rxm = strp_msg(skb);
1408         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1409         struct aead_request *aead_req;
1410         struct sk_buff *unused;
1411         u8 *aad, *iv, *mem = NULL;
1412         struct scatterlist *sgin = NULL;
1413         struct scatterlist *sgout = NULL;
1414         const int data_len = rxm->full_len - prot->overhead_size +
1415                              prot->tail_size;
1416         int iv_offset = 0;
1417
1418         if (*zc && (out_iov || out_sg)) {
1419                 if (out_iov)
1420                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1421                 else
1422                         n_sgout = sg_nents(out_sg);
1423                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1424                                  rxm->full_len - prot->prepend_size);
1425         } else {
1426                 n_sgout = 0;
1427                 *zc = false;
1428                 n_sgin = skb_cow_data(skb, 0, &unused);
1429         }
1430
1431         if (n_sgin < 1)
1432                 return -EBADMSG;
1433
1434         /* Increment to accommodate AAD */
1435         n_sgin = n_sgin + 1;
1436
1437         nsg = n_sgin + n_sgout;
1438
1439         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1440         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1441         mem_size = mem_size + prot->aad_size;
1442         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1443
1444         /* Allocate a single block of memory which contains
1445          * aead_req || sgin[] || sgout[] || aad || iv.
1446          * This order achieves correct alignment for aead_req, sgin, sgout.
1447          */
1448         mem = kmalloc(mem_size, sk->sk_allocation);
1449         if (!mem)
1450                 return -ENOMEM;
1451
1452         /* Segment the allocated memory */
1453         aead_req = (struct aead_request *)mem;
1454         sgin = (struct scatterlist *)(mem + aead_size);
1455         sgout = sgin + n_sgin;
1456         aad = (u8 *)(sgout + n_sgout);
1457         iv = aad + prot->aad_size;
1458
1459         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1460         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1461                 iv[0] = 2;
1462                 iv_offset = 1;
1463         }
1464
1465         /* Prepare IV */
1466         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1467                             iv + iv_offset + prot->salt_size,
1468                             prot->iv_size);
1469         if (err < 0) {
1470                 kfree(mem);
1471                 return err;
1472         }
1473         if (prot->version == TLS_1_3_VERSION ||
1474             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1475                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1476                        crypto_aead_ivsize(ctx->aead_recv));
1477         else
1478                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1479
1480         xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1481
1482         /* Prepare AAD */
1483         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1484                      prot->tail_size,
1485                      tls_ctx->rx.rec_seq, ctx->control, prot);
1486
1487         /* Prepare sgin */
1488         sg_init_table(sgin, n_sgin);
1489         sg_set_buf(&sgin[0], aad, prot->aad_size);
1490         err = skb_to_sgvec(skb, &sgin[1],
1491                            rxm->offset + prot->prepend_size,
1492                            rxm->full_len - prot->prepend_size);
1493         if (err < 0) {
1494                 kfree(mem);
1495                 return err;
1496         }
1497
1498         if (n_sgout) {
1499                 if (out_iov) {
1500                         sg_init_table(sgout, n_sgout);
1501                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1502
1503                         *chunk = 0;
1504                         err = tls_setup_from_iter(sk, out_iov, data_len,
1505                                                   &pages, chunk, &sgout[1],
1506                                                   (n_sgout - 1));
1507                         if (err < 0)
1508                                 goto fallback_to_reg_recv;
1509                 } else if (out_sg) {
1510                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1511                 } else {
1512                         goto fallback_to_reg_recv;
1513                 }
1514         } else {
1515 fallback_to_reg_recv:
1516                 sgout = sgin;
1517                 pages = 0;
1518                 *chunk = data_len;
1519                 *zc = false;
1520         }
1521
1522         /* Prepare and submit AEAD request */
1523         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1524                                 data_len, aead_req, async);
1525         if (err == -EINPROGRESS)
1526                 return err;
1527
1528         /* Release the pages in case iov was mapped to pages */
1529         for (; pages > 0; pages--)
1530                 put_page(sg_page(&sgout[pages]));
1531
1532         kfree(mem);
1533         return err;
1534 }
1535
1536 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1537                               struct iov_iter *dest, int *chunk, bool *zc,
1538                               bool async)
1539 {
1540         struct tls_context *tls_ctx = tls_get_ctx(sk);
1541         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1542         struct tls_prot_info *prot = &tls_ctx->prot_info;
1543         struct strp_msg *rxm = strp_msg(skb);
1544         int pad, err = 0;
1545
1546         if (!ctx->decrypted) {
1547                 if (tls_ctx->rx_conf == TLS_HW) {
1548                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1549                         if (err < 0)
1550                                 return err;
1551                 }
1552
1553                 /* Still not decrypted after tls_device */
1554                 if (!ctx->decrypted) {
1555                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1556                                                async);
1557                         if (err < 0) {
1558                                 if (err == -EINPROGRESS)
1559                                         tls_advance_record_sn(sk, prot,
1560                                                               &tls_ctx->rx);
1561                                 else if (err == -EBADMSG)
1562                                         TLS_INC_STATS(sock_net(sk),
1563                                                       LINUX_MIB_TLSDECRYPTERROR);
1564                                 return err;
1565                         }
1566                 } else {
1567                         *zc = false;
1568                 }
1569
1570                 pad = padding_length(ctx, prot, skb);
1571                 if (pad < 0)
1572                         return pad;
1573
1574                 rxm->full_len -= pad;
1575                 rxm->offset += prot->prepend_size;
1576                 rxm->full_len -= prot->overhead_size;
1577                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1578                 ctx->decrypted = 1;
1579                 ctx->saved_data_ready(sk);
1580         } else {
1581                 *zc = false;
1582         }
1583
1584         return err;
1585 }
1586
1587 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1588                 struct scatterlist *sgout)
1589 {
1590         bool zc = true;
1591         int chunk;
1592
1593         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1594 }
1595
1596 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1597                                unsigned int len)
1598 {
1599         struct tls_context *tls_ctx = tls_get_ctx(sk);
1600         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1601
1602         if (skb) {
1603                 struct strp_msg *rxm = strp_msg(skb);
1604
1605                 if (len < rxm->full_len) {
1606                         rxm->offset += len;
1607                         rxm->full_len -= len;
1608                         return false;
1609                 }
1610                 consume_skb(skb);
1611         }
1612
1613         /* Finished with message */
1614         ctx->recv_pkt = NULL;
1615         __strp_unpause(&ctx->strp);
1616
1617         return true;
1618 }
1619
1620 /* This function traverses the rx_list in tls receive context to copies the
1621  * decrypted records into the buffer provided by caller zero copy is not
1622  * true. Further, the records are removed from the rx_list if it is not a peek
1623  * case and the record has been consumed completely.
1624  */
1625 static int process_rx_list(struct tls_sw_context_rx *ctx,
1626                            struct msghdr *msg,
1627                            u8 *control,
1628                            bool *cmsg,
1629                            size_t skip,
1630                            size_t len,
1631                            bool zc,
1632                            bool is_peek)
1633 {
1634         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1635         u8 ctrl = *control;
1636         u8 msgc = *cmsg;
1637         struct tls_msg *tlm;
1638         ssize_t copied = 0;
1639
1640         /* Set the record type in 'control' if caller didn't pass it */
1641         if (!ctrl && skb) {
1642                 tlm = tls_msg(skb);
1643                 ctrl = tlm->control;
1644         }
1645
1646         while (skip && skb) {
1647                 struct strp_msg *rxm = strp_msg(skb);
1648                 tlm = tls_msg(skb);
1649
1650                 /* Cannot process a record of different type */
1651                 if (ctrl != tlm->control)
1652                         return 0;
1653
1654                 if (skip < rxm->full_len)
1655                         break;
1656
1657                 skip = skip - rxm->full_len;
1658                 skb = skb_peek_next(skb, &ctx->rx_list);
1659         }
1660
1661         while (len && skb) {
1662                 struct sk_buff *next_skb;
1663                 struct strp_msg *rxm = strp_msg(skb);
1664                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1665
1666                 tlm = tls_msg(skb);
1667
1668                 /* Cannot process a record of different type */
1669                 if (ctrl != tlm->control)
1670                         return 0;
1671
1672                 /* Set record type if not already done. For a non-data record,
1673                  * do not proceed if record type could not be copied.
1674                  */
1675                 if (!msgc) {
1676                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1677                                             sizeof(ctrl), &ctrl);
1678                         msgc = true;
1679                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1680                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1681                                         return -EIO;
1682
1683                                 *cmsg = msgc;
1684                         }
1685                 }
1686
1687                 if (!zc || (rxm->full_len - skip) > len) {
1688                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1689                                                     msg, chunk);
1690                         if (err < 0)
1691                                 return err;
1692                 }
1693
1694                 len = len - chunk;
1695                 copied = copied + chunk;
1696
1697                 /* Consume the data from record if it is non-peek case*/
1698                 if (!is_peek) {
1699                         rxm->offset = rxm->offset + chunk;
1700                         rxm->full_len = rxm->full_len - chunk;
1701
1702                         /* Return if there is unconsumed data in the record */
1703                         if (rxm->full_len - skip)
1704                                 break;
1705                 }
1706
1707                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1708                  * So from the 2nd record, 'skip' should be 0.
1709                  */
1710                 skip = 0;
1711
1712                 if (msg)
1713                         msg->msg_flags |= MSG_EOR;
1714
1715                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1716
1717                 if (!is_peek) {
1718                         skb_unlink(skb, &ctx->rx_list);
1719                         consume_skb(skb);
1720                 }
1721
1722                 skb = next_skb;
1723         }
1724
1725         *control = ctrl;
1726         return copied;
1727 }
1728
1729 int tls_sw_recvmsg(struct sock *sk,
1730                    struct msghdr *msg,
1731                    size_t len,
1732                    int nonblock,
1733                    int flags,
1734                    int *addr_len)
1735 {
1736         struct tls_context *tls_ctx = tls_get_ctx(sk);
1737         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1738         struct tls_prot_info *prot = &tls_ctx->prot_info;
1739         struct sk_psock *psock;
1740         unsigned char control = 0;
1741         ssize_t decrypted = 0;
1742         struct strp_msg *rxm;
1743         struct tls_msg *tlm;
1744         struct sk_buff *skb;
1745         ssize_t copied = 0;
1746         bool cmsg = false;
1747         int target, err = 0;
1748         long timeo;
1749         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1750         bool is_peek = flags & MSG_PEEK;
1751         bool bpf_strp_enabled;
1752         int num_async = 0;
1753         int pending;
1754
1755         flags |= nonblock;
1756
1757         if (unlikely(flags & MSG_ERRQUEUE))
1758                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1759
1760         psock = sk_psock_get(sk);
1761         lock_sock(sk);
1762         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1763
1764         /* Process pending decrypted records. It must be non-zero-copy */
1765         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1766                               is_peek);
1767         if (err < 0) {
1768                 tls_err_abort(sk, err);
1769                 goto end;
1770         } else {
1771                 copied = err;
1772         }
1773
1774         if (len <= copied)
1775                 goto recv_end;
1776
1777         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1778         len = len - copied;
1779         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1780
1781         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1782                 bool retain_skb = false;
1783                 bool zc = false;
1784                 int to_decrypt;
1785                 int chunk = 0;
1786                 bool async_capable;
1787                 bool async = false;
1788
1789                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1790                 if (!skb) {
1791                         if (psock) {
1792                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1793                                                             msg, len, flags);
1794
1795                                 if (ret > 0) {
1796                                         decrypted += ret;
1797                                         len -= ret;
1798                                         continue;
1799                                 }
1800                         }
1801                         goto recv_end;
1802                 } else {
1803                         tlm = tls_msg(skb);
1804                         if (prot->version == TLS_1_3_VERSION)
1805                                 tlm->control = 0;
1806                         else
1807                                 tlm->control = ctx->control;
1808                 }
1809
1810                 rxm = strp_msg(skb);
1811
1812                 to_decrypt = rxm->full_len - prot->overhead_size;
1813
1814                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1815                     ctx->control == TLS_RECORD_TYPE_DATA &&
1816                     prot->version != TLS_1_3_VERSION &&
1817                     !bpf_strp_enabled)
1818                         zc = true;
1819
1820                 /* Do not use async mode if record is non-data */
1821                 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1822                         async_capable = ctx->async_capable;
1823                 else
1824                         async_capable = false;
1825
1826                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1827                                          &chunk, &zc, async_capable);
1828                 if (err < 0 && err != -EINPROGRESS) {
1829                         tls_err_abort(sk, EBADMSG);
1830                         goto recv_end;
1831                 }
1832
1833                 if (err == -EINPROGRESS) {
1834                         async = true;
1835                         num_async++;
1836                 } else if (prot->version == TLS_1_3_VERSION) {
1837                         tlm->control = ctx->control;
1838                 }
1839
1840                 /* If the type of records being processed is not known yet,
1841                  * set it to record type just dequeued. If it is already known,
1842                  * but does not match the record type just dequeued, go to end.
1843                  * We always get record type here since for tls1.2, record type
1844                  * is known just after record is dequeued from stream parser.
1845                  * For tls1.3, we disable async.
1846                  */
1847
1848                 if (!control)
1849                         control = tlm->control;
1850                 else if (control != tlm->control)
1851                         goto recv_end;
1852
1853                 if (!cmsg) {
1854                         int cerr;
1855
1856                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1857                                         sizeof(control), &control);
1858                         cmsg = true;
1859                         if (control != TLS_RECORD_TYPE_DATA) {
1860                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1861                                         err = -EIO;
1862                                         goto recv_end;
1863                                 }
1864                         }
1865                 }
1866
1867                 if (async)
1868                         goto pick_next_record;
1869
1870                 if (!zc) {
1871                         if (bpf_strp_enabled) {
1872                                 err = sk_psock_tls_strp_read(psock, skb);
1873                                 if (err != __SK_PASS) {
1874                                         rxm->offset = rxm->offset + rxm->full_len;
1875                                         rxm->full_len = 0;
1876                                         if (err == __SK_DROP)
1877                                                 consume_skb(skb);
1878                                         ctx->recv_pkt = NULL;
1879                                         __strp_unpause(&ctx->strp);
1880                                         continue;
1881                                 }
1882                         }
1883
1884                         if (rxm->full_len > len) {
1885                                 retain_skb = true;
1886                                 chunk = len;
1887                         } else {
1888                                 chunk = rxm->full_len;
1889                         }
1890
1891                         err = skb_copy_datagram_msg(skb, rxm->offset,
1892                                                     msg, chunk);
1893                         if (err < 0)
1894                                 goto recv_end;
1895
1896                         if (!is_peek) {
1897                                 rxm->offset = rxm->offset + chunk;
1898                                 rxm->full_len = rxm->full_len - chunk;
1899                         }
1900                 }
1901
1902 pick_next_record:
1903                 if (chunk > len)
1904                         chunk = len;
1905
1906                 decrypted += chunk;
1907                 len -= chunk;
1908
1909                 /* For async or peek case, queue the current skb */
1910                 if (async || is_peek || retain_skb) {
1911                         skb_queue_tail(&ctx->rx_list, skb);
1912                         skb = NULL;
1913                 }
1914
1915                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1916                         /* Return full control message to
1917                          * userspace before trying to parse
1918                          * another message type
1919                          */
1920                         msg->msg_flags |= MSG_EOR;
1921                         if (control != TLS_RECORD_TYPE_DATA)
1922                                 goto recv_end;
1923                 } else {
1924                         break;
1925                 }
1926         }
1927
1928 recv_end:
1929         if (num_async) {
1930                 /* Wait for all previously submitted records to be decrypted */
1931                 spin_lock_bh(&ctx->decrypt_compl_lock);
1932                 ctx->async_notify = true;
1933                 pending = atomic_read(&ctx->decrypt_pending);
1934                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1935                 if (pending) {
1936                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1937                         if (err) {
1938                                 /* one of async decrypt failed */
1939                                 tls_err_abort(sk, err);
1940                                 copied = 0;
1941                                 decrypted = 0;
1942                                 goto end;
1943                         }
1944                 } else {
1945                         reinit_completion(&ctx->async_wait.completion);
1946                 }
1947
1948                 /* There can be no concurrent accesses, since we have no
1949                  * pending decrypt operations
1950                  */
1951                 WRITE_ONCE(ctx->async_notify, false);
1952
1953                 /* Drain records from the rx_list & copy if required */
1954                 if (is_peek || is_kvec)
1955                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1956                                               decrypted, false, is_peek);
1957                 else
1958                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1959                                               decrypted, true, is_peek);
1960                 if (err < 0) {
1961                         tls_err_abort(sk, err);
1962                         copied = 0;
1963                         goto end;
1964                 }
1965         }
1966
1967         copied += decrypted;
1968
1969 end:
1970         release_sock(sk);
1971         if (psock)
1972                 sk_psock_put(sk, psock);
1973         return copied ? : err;
1974 }
1975
1976 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1977                            struct pipe_inode_info *pipe,
1978                            size_t len, unsigned int flags)
1979 {
1980         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1981         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1982         struct strp_msg *rxm = NULL;
1983         struct sock *sk = sock->sk;
1984         struct sk_buff *skb;
1985         ssize_t copied = 0;
1986         int err = 0;
1987         long timeo;
1988         int chunk;
1989         bool zc = false;
1990
1991         lock_sock(sk);
1992
1993         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1994
1995         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1996         if (!skb)
1997                 goto splice_read_end;
1998
1999         if (!ctx->decrypted) {
2000                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2001
2002                 /* splice does not support reading control messages */
2003                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2004                         err = -EINVAL;
2005                         goto splice_read_end;
2006                 }
2007
2008                 if (err < 0) {
2009                         tls_err_abort(sk, EBADMSG);
2010                         goto splice_read_end;
2011                 }
2012                 ctx->decrypted = 1;
2013         }
2014         rxm = strp_msg(skb);
2015
2016         chunk = min_t(unsigned int, rxm->full_len, len);
2017         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2018         if (copied < 0)
2019                 goto splice_read_end;
2020
2021         if (likely(!(flags & MSG_PEEK)))
2022                 tls_sw_advance_skb(sk, skb, copied);
2023
2024 splice_read_end:
2025         release_sock(sk);
2026         return copied ? : err;
2027 }
2028
2029 bool tls_sw_stream_read(const struct sock *sk)
2030 {
2031         struct tls_context *tls_ctx = tls_get_ctx(sk);
2032         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033         bool ingress_empty = true;
2034         struct sk_psock *psock;
2035
2036         rcu_read_lock();
2037         psock = sk_psock(sk);
2038         if (psock)
2039                 ingress_empty = list_empty(&psock->ingress_msg);
2040         rcu_read_unlock();
2041
2042         return !ingress_empty || ctx->recv_pkt ||
2043                 !skb_queue_empty(&ctx->rx_list);
2044 }
2045
2046 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2047 {
2048         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2049         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050         struct tls_prot_info *prot = &tls_ctx->prot_info;
2051         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2052         struct strp_msg *rxm = strp_msg(skb);
2053         size_t cipher_overhead;
2054         size_t data_len = 0;
2055         int ret;
2056
2057         /* Verify that we have a full TLS header, or wait for more data */
2058         if (rxm->offset + prot->prepend_size > skb->len)
2059                 return 0;
2060
2061         /* Sanity-check size of on-stack buffer. */
2062         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2063                 ret = -EINVAL;
2064                 goto read_failure;
2065         }
2066
2067         /* Linearize header to local buffer */
2068         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2069
2070         if (ret < 0)
2071                 goto read_failure;
2072
2073         ctx->control = header[0];
2074
2075         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2076
2077         cipher_overhead = prot->tag_size;
2078         if (prot->version != TLS_1_3_VERSION &&
2079             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2080                 cipher_overhead += prot->iv_size;
2081
2082         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083             prot->tail_size) {
2084                 ret = -EMSGSIZE;
2085                 goto read_failure;
2086         }
2087         if (data_len < cipher_overhead) {
2088                 ret = -EBADMSG;
2089                 goto read_failure;
2090         }
2091
2092         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093         if (header[1] != TLS_1_2_VERSION_MINOR ||
2094             header[2] != TLS_1_2_VERSION_MAJOR) {
2095                 ret = -EINVAL;
2096                 goto read_failure;
2097         }
2098
2099         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2101         return data_len + TLS_HEADER_SIZE;
2102
2103 read_failure:
2104         tls_err_abort(strp->sk, ret);
2105
2106         return ret;
2107 }
2108
2109 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110 {
2111         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113
2114         ctx->decrypted = 0;
2115
2116         ctx->recv_pkt = skb;
2117         strp_pause(strp);
2118
2119         ctx->saved_data_ready(strp->sk);
2120 }
2121
2122 static void tls_data_ready(struct sock *sk)
2123 {
2124         struct tls_context *tls_ctx = tls_get_ctx(sk);
2125         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126         struct sk_psock *psock;
2127
2128         strp_data_ready(&ctx->strp);
2129
2130         psock = sk_psock_get(sk);
2131         if (psock) {
2132                 if (!list_empty(&psock->ingress_msg))
2133                         ctx->saved_data_ready(sk);
2134                 sk_psock_put(sk, psock);
2135         }
2136 }
2137
2138 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139 {
2140         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141
2142         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144         cancel_delayed_work_sync(&ctx->tx_work.work);
2145 }
2146
2147 void tls_sw_release_resources_tx(struct sock *sk)
2148 {
2149         struct tls_context *tls_ctx = tls_get_ctx(sk);
2150         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151         struct tls_rec *rec, *tmp;
2152         int pending;
2153
2154         /* Wait for any pending async encryptions to complete */
2155         spin_lock_bh(&ctx->encrypt_compl_lock);
2156         ctx->async_notify = true;
2157         pending = atomic_read(&ctx->encrypt_pending);
2158         spin_unlock_bh(&ctx->encrypt_compl_lock);
2159
2160         if (pending)
2161                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162
2163         tls_tx_records(sk, -1);
2164
2165         /* Free up un-sent records in tx_list. First, free
2166          * the partially sent record if any at head of tx_list.
2167          */
2168         if (tls_ctx->partially_sent_record) {
2169                 tls_free_partial_record(sk, tls_ctx);
2170                 rec = list_first_entry(&ctx->tx_list,
2171                                        struct tls_rec, list);
2172                 list_del(&rec->list);
2173                 sk_msg_free(sk, &rec->msg_plaintext);
2174                 kfree(rec);
2175         }
2176
2177         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178                 list_del(&rec->list);
2179                 sk_msg_free(sk, &rec->msg_encrypted);
2180                 sk_msg_free(sk, &rec->msg_plaintext);
2181                 kfree(rec);
2182         }
2183
2184         crypto_free_aead(ctx->aead_send);
2185         tls_free_open_rec(sk);
2186 }
2187
2188 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189 {
2190         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191
2192         kfree(ctx);
2193 }
2194
2195 void tls_sw_release_resources_rx(struct sock *sk)
2196 {
2197         struct tls_context *tls_ctx = tls_get_ctx(sk);
2198         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199
2200         kfree(tls_ctx->rx.rec_seq);
2201         kfree(tls_ctx->rx.iv);
2202
2203         if (ctx->aead_recv) {
2204                 kfree_skb(ctx->recv_pkt);
2205                 ctx->recv_pkt = NULL;
2206                 skb_queue_purge(&ctx->rx_list);
2207                 crypto_free_aead(ctx->aead_recv);
2208                 strp_stop(&ctx->strp);
2209                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2210                  * we still want to strp_stop(), but sk->sk_data_ready was
2211                  * never swapped.
2212                  */
2213                 if (ctx->saved_data_ready) {
2214                         write_lock_bh(&sk->sk_callback_lock);
2215                         sk->sk_data_ready = ctx->saved_data_ready;
2216                         write_unlock_bh(&sk->sk_callback_lock);
2217                 }
2218         }
2219 }
2220
2221 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222 {
2223         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225         strp_done(&ctx->strp);
2226 }
2227
2228 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229 {
2230         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232         kfree(ctx);
2233 }
2234
2235 void tls_sw_free_resources_rx(struct sock *sk)
2236 {
2237         struct tls_context *tls_ctx = tls_get_ctx(sk);
2238
2239         tls_sw_release_resources_rx(sk);
2240         tls_sw_free_ctx_rx(tls_ctx);
2241 }
2242
2243 /* The work handler to transmitt the encrypted records in tx_list */
2244 static void tx_work_handler(struct work_struct *work)
2245 {
2246         struct delayed_work *delayed_work = to_delayed_work(work);
2247         struct tx_work *tx_work = container_of(delayed_work,
2248                                                struct tx_work, work);
2249         struct sock *sk = tx_work->sk;
2250         struct tls_context *tls_ctx = tls_get_ctx(sk);
2251         struct tls_sw_context_tx *ctx;
2252
2253         if (unlikely(!tls_ctx))
2254                 return;
2255
2256         ctx = tls_sw_ctx_tx(tls_ctx);
2257         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258                 return;
2259
2260         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261                 return;
2262         mutex_lock(&tls_ctx->tx_lock);
2263         lock_sock(sk);
2264         tls_tx_records(sk, -1);
2265         release_sock(sk);
2266         mutex_unlock(&tls_ctx->tx_lock);
2267 }
2268
2269 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270 {
2271         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272
2273         /* Schedule the transmission if tx list is ready */
2274         if (is_tx_ready(tx_ctx) &&
2275             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277 }
2278
2279 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280 {
2281         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282
2283         write_lock_bh(&sk->sk_callback_lock);
2284         rx_ctx->saved_data_ready = sk->sk_data_ready;
2285         sk->sk_data_ready = tls_data_ready;
2286         write_unlock_bh(&sk->sk_callback_lock);
2287
2288         strp_check_rcv(&rx_ctx->strp);
2289 }
2290
2291 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292 {
2293         struct tls_context *tls_ctx = tls_get_ctx(sk);
2294         struct tls_prot_info *prot = &tls_ctx->prot_info;
2295         struct tls_crypto_info *crypto_info;
2296         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299         struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2300         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2301         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2302         struct cipher_context *cctx;
2303         struct crypto_aead **aead;
2304         struct strp_callbacks cb;
2305         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2306         struct crypto_tfm *tfm;
2307         char *iv, *rec_seq, *key, *salt, *cipher_name;
2308         size_t keysize;
2309         int rc = 0;
2310
2311         if (!ctx) {
2312                 rc = -EINVAL;
2313                 goto out;
2314         }
2315
2316         if (tx) {
2317                 if (!ctx->priv_ctx_tx) {
2318                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2319                         if (!sw_ctx_tx) {
2320                                 rc = -ENOMEM;
2321                                 goto out;
2322                         }
2323                         ctx->priv_ctx_tx = sw_ctx_tx;
2324                 } else {
2325                         sw_ctx_tx =
2326                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2327                 }
2328         } else {
2329                 if (!ctx->priv_ctx_rx) {
2330                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2331                         if (!sw_ctx_rx) {
2332                                 rc = -ENOMEM;
2333                                 goto out;
2334                         }
2335                         ctx->priv_ctx_rx = sw_ctx_rx;
2336                 } else {
2337                         sw_ctx_rx =
2338                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2339                 }
2340         }
2341
2342         if (tx) {
2343                 crypto_init_wait(&sw_ctx_tx->async_wait);
2344                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2345                 crypto_info = &ctx->crypto_send.info;
2346                 cctx = &ctx->tx;
2347                 aead = &sw_ctx_tx->aead_send;
2348                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2349                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2350                 sw_ctx_tx->tx_work.sk = sk;
2351         } else {
2352                 crypto_init_wait(&sw_ctx_rx->async_wait);
2353                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2354                 crypto_info = &ctx->crypto_recv.info;
2355                 cctx = &ctx->rx;
2356                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2357                 aead = &sw_ctx_rx->aead_recv;
2358         }
2359
2360         switch (crypto_info->cipher_type) {
2361         case TLS_CIPHER_AES_GCM_128: {
2362                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2363                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2364                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2365                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2366                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2367                 rec_seq =
2368                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2369                 gcm_128_info =
2370                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2371                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2372                 key = gcm_128_info->key;
2373                 salt = gcm_128_info->salt;
2374                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2375                 cipher_name = "gcm(aes)";
2376                 break;
2377         }
2378         case TLS_CIPHER_AES_GCM_256: {
2379                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2380                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2381                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2382                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2383                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2384                 rec_seq =
2385                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2386                 gcm_256_info =
2387                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2388                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2389                 key = gcm_256_info->key;
2390                 salt = gcm_256_info->salt;
2391                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2392                 cipher_name = "gcm(aes)";
2393                 break;
2394         }
2395         case TLS_CIPHER_AES_CCM_128: {
2396                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2397                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2398                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2399                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2400                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2401                 rec_seq =
2402                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2403                 ccm_128_info =
2404                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2405                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2406                 key = ccm_128_info->key;
2407                 salt = ccm_128_info->salt;
2408                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2409                 cipher_name = "ccm(aes)";
2410                 break;
2411         }
2412         case TLS_CIPHER_CHACHA20_POLY1305: {
2413                 chacha20_poly1305_info = (void *)crypto_info;
2414                 nonce_size = 0;
2415                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2416                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2417                 iv = chacha20_poly1305_info->iv;
2418                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2419                 rec_seq = chacha20_poly1305_info->rec_seq;
2420                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2421                 key = chacha20_poly1305_info->key;
2422                 salt = chacha20_poly1305_info->salt;
2423                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2424                 cipher_name = "rfc7539(chacha20,poly1305)";
2425                 break;
2426         }
2427         default:
2428                 rc = -EINVAL;
2429                 goto free_priv;
2430         }
2431
2432         /* Sanity-check the sizes for stack allocations. */
2433         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2434             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2435                 rc = -EINVAL;
2436                 goto free_priv;
2437         }
2438
2439         if (crypto_info->version == TLS_1_3_VERSION) {
2440                 nonce_size = 0;
2441                 prot->aad_size = TLS_HEADER_SIZE;
2442                 prot->tail_size = 1;
2443         } else {
2444                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2445                 prot->tail_size = 0;
2446         }
2447
2448         prot->version = crypto_info->version;
2449         prot->cipher_type = crypto_info->cipher_type;
2450         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2451         prot->tag_size = tag_size;
2452         prot->overhead_size = prot->prepend_size +
2453                               prot->tag_size + prot->tail_size;
2454         prot->iv_size = iv_size;
2455         prot->salt_size = salt_size;
2456         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2457         if (!cctx->iv) {
2458                 rc = -ENOMEM;
2459                 goto free_priv;
2460         }
2461         /* Note: 128 & 256 bit salt are the same size */
2462         prot->rec_seq_size = rec_seq_size;
2463         memcpy(cctx->iv, salt, salt_size);
2464         memcpy(cctx->iv + salt_size, iv, iv_size);
2465         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2466         if (!cctx->rec_seq) {
2467                 rc = -ENOMEM;
2468                 goto free_iv;
2469         }
2470
2471         if (!*aead) {
2472                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2473                 if (IS_ERR(*aead)) {
2474                         rc = PTR_ERR(*aead);
2475                         *aead = NULL;
2476                         goto free_rec_seq;
2477                 }
2478         }
2479
2480         ctx->push_pending_record = tls_sw_push_pending_record;
2481
2482         rc = crypto_aead_setkey(*aead, key, keysize);
2483
2484         if (rc)
2485                 goto free_aead;
2486
2487         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2488         if (rc)
2489                 goto free_aead;
2490
2491         if (sw_ctx_rx) {
2492                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2493
2494                 if (crypto_info->version == TLS_1_3_VERSION)
2495                         sw_ctx_rx->async_capable = 0;
2496                 else
2497                         sw_ctx_rx->async_capable =
2498                                 !!(tfm->__crt_alg->cra_flags &
2499                                    CRYPTO_ALG_ASYNC);
2500
2501                 /* Set up strparser */
2502                 memset(&cb, 0, sizeof(cb));
2503                 cb.rcv_msg = tls_queue;
2504                 cb.parse_msg = tls_read_size;
2505
2506                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2507         }
2508
2509         goto out;
2510
2511 free_aead:
2512         crypto_free_aead(*aead);
2513         *aead = NULL;
2514 free_rec_seq:
2515         kfree(cctx->rec_seq);
2516         cctx->rec_seq = NULL;
2517 free_iv:
2518         kfree(cctx->iv);
2519         cctx->iv = NULL;
2520 free_priv:
2521         if (tx) {
2522                 kfree(ctx->priv_ctx_tx);
2523                 ctx->priv_ctx_tx = NULL;
2524         } else {
2525                 kfree(ctx->priv_ctx_rx);
2526                 ctx->priv_ctx_rx = NULL;
2527         }
2528 out:
2529         return rc;
2530 }