Merge tag 'drm-msm-fixes-2022-06-20' of https://gitlab.freedesktop.org/drm/msm into...
[linux-2.6-microblaze.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58         if (ctx->tx_conf == TLS_HW) {
59                 kfree(tls_offload_ctx_tx(ctx));
60                 kfree(ctx->tx.rec_seq);
61                 kfree(ctx->tx.iv);
62         }
63
64         if (ctx->rx_conf == TLS_HW)
65                 kfree(tls_offload_ctx_rx(ctx));
66
67         tls_ctx_free(NULL, ctx);
68 }
69
70 static void tls_device_gc_task(struct work_struct *work)
71 {
72         struct tls_context *ctx, *tmp;
73         unsigned long flags;
74         LIST_HEAD(gc_list);
75
76         spin_lock_irqsave(&tls_device_lock, flags);
77         list_splice_init(&tls_device_gc_list, &gc_list);
78         spin_unlock_irqrestore(&tls_device_lock, flags);
79
80         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81                 struct net_device *netdev = ctx->netdev;
82
83                 if (netdev && ctx->tx_conf == TLS_HW) {
84                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85                                                         TLS_OFFLOAD_CTX_DIR_TX);
86                         dev_put(netdev);
87                         ctx->netdev = NULL;
88                 }
89
90                 list_del(&ctx->list);
91                 tls_device_free_ctx(ctx);
92         }
93 }
94
95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97         unsigned long flags;
98
99         spin_lock_irqsave(&tls_device_lock, flags);
100         list_move_tail(&ctx->list, &tls_device_gc_list);
101
102         /* schedule_work inside the spinlock
103          * to make sure tls_device_down waits for that work.
104          */
105         schedule_work(&tls_device_gc_work);
106
107         spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109
110 /* We assume that the socket is already connected */
111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113         struct dst_entry *dst = sk_dst_get(sk);
114         struct net_device *netdev = NULL;
115
116         if (likely(dst)) {
117                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
118                 dev_hold(netdev);
119         }
120
121         dst_release(dst);
122
123         return netdev;
124 }
125
126 static void destroy_record(struct tls_record_info *record)
127 {
128         int i;
129
130         for (i = 0; i < record->num_frags; i++)
131                 __skb_frag_unref(&record->frags[i], false);
132         kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137         struct tls_record_info *info, *temp;
138
139         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140                 list_del(&info->list);
141                 destroy_record(info);
142         }
143
144         offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_record_info *info, *temp;
151         struct tls_offload_context_tx *ctx;
152         u64 deleted_records = 0;
153         unsigned long flags;
154
155         if (!tls_ctx)
156                 return;
157
158         ctx = tls_offload_ctx_tx(tls_ctx);
159
160         spin_lock_irqsave(&ctx->lock, flags);
161         info = ctx->retransmit_hint;
162         if (info && !before(acked_seq, info->end_seq))
163                 ctx->retransmit_hint = NULL;
164
165         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166                 if (before(acked_seq, info->end_seq))
167                         break;
168                 list_del(&info->list);
169
170                 destroy_record(info);
171                 deleted_records++;
172         }
173
174         ctx->unacked_record_sn += deleted_records;
175         spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177
178 /* At this point, there should be no references on this
179  * socket and no in-flight SKBs associated with this
180  * socket, so it is safe to free all the resources.
181  */
182 void tls_device_sk_destruct(struct sock *sk)
183 {
184         struct tls_context *tls_ctx = tls_get_ctx(sk);
185         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186
187         tls_ctx->sk_destruct(sk);
188
189         if (tls_ctx->tx_conf == TLS_HW) {
190                 if (ctx->open_record)
191                         destroy_record(ctx->open_record);
192                 delete_all_records(ctx);
193                 crypto_free_aead(ctx->aead_send);
194                 clean_acked_data_disable(inet_csk(sk));
195         }
196
197         if (refcount_dec_and_test(&tls_ctx->refcount))
198                 tls_device_queue_ctx_destruction(tls_ctx);
199 }
200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
201
202 void tls_device_free_resources_tx(struct sock *sk)
203 {
204         struct tls_context *tls_ctx = tls_get_ctx(sk);
205
206         tls_free_partial_record(sk, tls_ctx);
207 }
208
209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
210 {
211         struct tls_context *tls_ctx = tls_get_ctx(sk);
212
213         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
214         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
215 }
216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
217
218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
219                                  u32 seq)
220 {
221         struct net_device *netdev;
222         struct sk_buff *skb;
223         int err = 0;
224         u8 *rcd_sn;
225
226         skb = tcp_write_queue_tail(sk);
227         if (skb)
228                 TCP_SKB_CB(skb)->eor = 1;
229
230         rcd_sn = tls_ctx->tx.rec_seq;
231
232         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
233         down_read(&device_offload_lock);
234         netdev = tls_ctx->netdev;
235         if (netdev)
236                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
237                                                          rcd_sn,
238                                                          TLS_OFFLOAD_CTX_DIR_TX);
239         up_read(&device_offload_lock);
240         if (err)
241                 return;
242
243         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 }
245
246 static void tls_append_frag(struct tls_record_info *record,
247                             struct page_frag *pfrag,
248                             int size)
249 {
250         skb_frag_t *frag;
251
252         frag = &record->frags[record->num_frags - 1];
253         if (skb_frag_page(frag) == pfrag->page &&
254             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
255                 skb_frag_size_add(frag, size);
256         } else {
257                 ++frag;
258                 __skb_frag_set_page(frag, pfrag->page);
259                 skb_frag_off_set(frag, pfrag->offset);
260                 skb_frag_size_set(frag, size);
261                 ++record->num_frags;
262                 get_page(pfrag->page);
263         }
264
265         pfrag->offset += size;
266         record->len += size;
267 }
268
269 static int tls_push_record(struct sock *sk,
270                            struct tls_context *ctx,
271                            struct tls_offload_context_tx *offload_ctx,
272                            struct tls_record_info *record,
273                            int flags)
274 {
275         struct tls_prot_info *prot = &ctx->prot_info;
276         struct tcp_sock *tp = tcp_sk(sk);
277         skb_frag_t *frag;
278         int i;
279
280         record->end_seq = tp->write_seq + record->len;
281         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
282         offload_ctx->open_record = NULL;
283
284         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
285                 tls_device_resync_tx(sk, ctx, tp->write_seq);
286
287         tls_advance_record_sn(sk, prot, &ctx->tx);
288
289         for (i = 0; i < record->num_frags; i++) {
290                 frag = &record->frags[i];
291                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
292                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
293                             skb_frag_size(frag), skb_frag_off(frag));
294                 sk_mem_charge(sk, skb_frag_size(frag));
295                 get_page(skb_frag_page(frag));
296         }
297         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
298
299         /* all ready, send */
300         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 }
302
303 static int tls_device_record_close(struct sock *sk,
304                                    struct tls_context *ctx,
305                                    struct tls_record_info *record,
306                                    struct page_frag *pfrag,
307                                    unsigned char record_type)
308 {
309         struct tls_prot_info *prot = &ctx->prot_info;
310         int ret;
311
312         /* append tag
313          * device will fill in the tag, we just need to append a placeholder
314          * use socket memory to improve coalescing (re-using a single buffer
315          * increases frag count)
316          * if we can't allocate memory now, steal some back from data
317          */
318         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
319                                         sk->sk_allocation))) {
320                 ret = 0;
321                 tls_append_frag(record, pfrag, prot->tag_size);
322         } else {
323                 ret = prot->tag_size;
324                 if (record->len <= prot->overhead_size)
325                         return -ENOMEM;
326         }
327
328         /* fill prepend */
329         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
330                          record->len - prot->overhead_size,
331                          record_type);
332         return ret;
333 }
334
335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
336                                  struct page_frag *pfrag,
337                                  size_t prepend_size)
338 {
339         struct tls_record_info *record;
340         skb_frag_t *frag;
341
342         record = kmalloc(sizeof(*record), GFP_KERNEL);
343         if (!record)
344                 return -ENOMEM;
345
346         frag = &record->frags[0];
347         __skb_frag_set_page(frag, pfrag->page);
348         skb_frag_off_set(frag, pfrag->offset);
349         skb_frag_size_set(frag, prepend_size);
350
351         get_page(pfrag->page);
352         pfrag->offset += prepend_size;
353
354         record->num_frags = 1;
355         record->len = prepend_size;
356         offload_ctx->open_record = record;
357         return 0;
358 }
359
360 static int tls_do_allocation(struct sock *sk,
361                              struct tls_offload_context_tx *offload_ctx,
362                              struct page_frag *pfrag,
363                              size_t prepend_size)
364 {
365         int ret;
366
367         if (!offload_ctx->open_record) {
368                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
369                                                    sk->sk_allocation))) {
370                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
371                         sk_stream_moderate_sndbuf(sk);
372                         return -ENOMEM;
373                 }
374
375                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
376                 if (ret)
377                         return ret;
378
379                 if (pfrag->size > pfrag->offset)
380                         return 0;
381         }
382
383         if (!sk_page_frag_refill(sk, pfrag))
384                 return -ENOMEM;
385
386         return 0;
387 }
388
389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
390 {
391         size_t pre_copy, nocache;
392
393         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
394         if (pre_copy) {
395                 pre_copy = min(pre_copy, bytes);
396                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
397                         return -EFAULT;
398                 bytes -= pre_copy;
399                 addr += pre_copy;
400         }
401
402         nocache = round_down(bytes, SMP_CACHE_BYTES);
403         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
404                 return -EFAULT;
405         bytes -= nocache;
406         addr += nocache;
407
408         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
409                 return -EFAULT;
410
411         return 0;
412 }
413
414 union tls_iter_offset {
415         struct iov_iter *msg_iter;
416         int offset;
417 };
418
419 static int tls_push_data(struct sock *sk,
420                          union tls_iter_offset iter_offset,
421                          size_t size, int flags,
422                          unsigned char record_type,
423                          struct page *zc_page)
424 {
425         struct tls_context *tls_ctx = tls_get_ctx(sk);
426         struct tls_prot_info *prot = &tls_ctx->prot_info;
427         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
428         struct tls_record_info *record;
429         int tls_push_record_flags;
430         struct page_frag *pfrag;
431         size_t orig_size = size;
432         u32 max_open_record_len;
433         bool more = false;
434         bool done = false;
435         int copy, rc = 0;
436         long timeo;
437
438         if (flags &
439             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
440                 return -EOPNOTSUPP;
441
442         if (unlikely(sk->sk_err))
443                 return -sk->sk_err;
444
445         flags |= MSG_SENDPAGE_DECRYPTED;
446         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
447
448         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
449         if (tls_is_partially_sent_record(tls_ctx)) {
450                 rc = tls_push_partial_record(sk, tls_ctx, flags);
451                 if (rc < 0)
452                         return rc;
453         }
454
455         pfrag = sk_page_frag(sk);
456
457         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
458          * we need to leave room for an authentication tag.
459          */
460         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
461                               prot->prepend_size;
462         do {
463                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
464                 if (unlikely(rc)) {
465                         rc = sk_stream_wait_memory(sk, &timeo);
466                         if (!rc)
467                                 continue;
468
469                         record = ctx->open_record;
470                         if (!record)
471                                 break;
472 handle_error:
473                         if (record_type != TLS_RECORD_TYPE_DATA) {
474                                 /* avoid sending partial
475                                  * record with type !=
476                                  * application_data
477                                  */
478                                 size = orig_size;
479                                 destroy_record(record);
480                                 ctx->open_record = NULL;
481                         } else if (record->len > prot->prepend_size) {
482                                 goto last_record;
483                         }
484
485                         break;
486                 }
487
488                 record = ctx->open_record;
489
490                 copy = min_t(size_t, size, max_open_record_len - record->len);
491                 if (copy && zc_page) {
492                         struct page_frag zc_pfrag;
493
494                         zc_pfrag.page = zc_page;
495                         zc_pfrag.offset = iter_offset.offset;
496                         zc_pfrag.size = copy;
497                         tls_append_frag(record, &zc_pfrag, copy);
498                 } else if (copy) {
499                         copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
500
501                         rc = tls_device_copy_data(page_address(pfrag->page) +
502                                                   pfrag->offset, copy,
503                                                   iter_offset.msg_iter);
504                         if (rc)
505                                 goto handle_error;
506                         tls_append_frag(record, pfrag, copy);
507                 }
508
509                 size -= copy;
510                 if (!size) {
511 last_record:
512                         tls_push_record_flags = flags;
513                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
514                                 more = true;
515                                 break;
516                         }
517
518                         done = true;
519                 }
520
521                 if (done || record->len >= max_open_record_len ||
522                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
523                         rc = tls_device_record_close(sk, tls_ctx, record,
524                                                      pfrag, record_type);
525                         if (rc) {
526                                 if (rc > 0) {
527                                         size += rc;
528                                 } else {
529                                         size = orig_size;
530                                         destroy_record(record);
531                                         ctx->open_record = NULL;
532                                         break;
533                                 }
534                         }
535
536                         rc = tls_push_record(sk,
537                                              tls_ctx,
538                                              ctx,
539                                              record,
540                                              tls_push_record_flags);
541                         if (rc < 0)
542                                 break;
543                 }
544         } while (!done);
545
546         tls_ctx->pending_open_record_frags = more;
547
548         if (orig_size - size > 0)
549                 rc = orig_size - size;
550
551         return rc;
552 }
553
554 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
555 {
556         unsigned char record_type = TLS_RECORD_TYPE_DATA;
557         struct tls_context *tls_ctx = tls_get_ctx(sk);
558         union tls_iter_offset iter;
559         int rc;
560
561         mutex_lock(&tls_ctx->tx_lock);
562         lock_sock(sk);
563
564         if (unlikely(msg->msg_controllen)) {
565                 rc = tls_proccess_cmsg(sk, msg, &record_type);
566                 if (rc)
567                         goto out;
568         }
569
570         iter.msg_iter = &msg->msg_iter;
571         rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
572
573 out:
574         release_sock(sk);
575         mutex_unlock(&tls_ctx->tx_lock);
576         return rc;
577 }
578
579 int tls_device_sendpage(struct sock *sk, struct page *page,
580                         int offset, size_t size, int flags)
581 {
582         struct tls_context *tls_ctx = tls_get_ctx(sk);
583         union tls_iter_offset iter_offset;
584         struct iov_iter msg_iter;
585         char *kaddr;
586         struct kvec iov;
587         int rc;
588
589         if (flags & MSG_SENDPAGE_NOTLAST)
590                 flags |= MSG_MORE;
591
592         mutex_lock(&tls_ctx->tx_lock);
593         lock_sock(sk);
594
595         if (flags & MSG_OOB) {
596                 rc = -EOPNOTSUPP;
597                 goto out;
598         }
599
600         if (tls_ctx->zerocopy_sendfile) {
601                 iter_offset.offset = offset;
602                 rc = tls_push_data(sk, iter_offset, size,
603                                    flags, TLS_RECORD_TYPE_DATA, page);
604                 goto out;
605         }
606
607         kaddr = kmap(page);
608         iov.iov_base = kaddr + offset;
609         iov.iov_len = size;
610         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
611         iter_offset.msg_iter = &msg_iter;
612         rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
613                            NULL);
614         kunmap(page);
615
616 out:
617         release_sock(sk);
618         mutex_unlock(&tls_ctx->tx_lock);
619         return rc;
620 }
621
622 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
623                                        u32 seq, u64 *p_record_sn)
624 {
625         u64 record_sn = context->hint_record_sn;
626         struct tls_record_info *info, *last;
627
628         info = context->retransmit_hint;
629         if (!info ||
630             before(seq, info->end_seq - info->len)) {
631                 /* if retransmit_hint is irrelevant start
632                  * from the beginning of the list
633                  */
634                 info = list_first_entry_or_null(&context->records_list,
635                                                 struct tls_record_info, list);
636                 if (!info)
637                         return NULL;
638                 /* send the start_marker record if seq number is before the
639                  * tls offload start marker sequence number. This record is
640                  * required to handle TCP packets which are before TLS offload
641                  * started.
642                  *  And if it's not start marker, look if this seq number
643                  * belongs to the list.
644                  */
645                 if (likely(!tls_record_is_start_marker(info))) {
646                         /* we have the first record, get the last record to see
647                          * if this seq number belongs to the list.
648                          */
649                         last = list_last_entry(&context->records_list,
650                                                struct tls_record_info, list);
651
652                         if (!between(seq, tls_record_start_seq(info),
653                                      last->end_seq))
654                                 return NULL;
655                 }
656                 record_sn = context->unacked_record_sn;
657         }
658
659         /* We just need the _rcu for the READ_ONCE() */
660         rcu_read_lock();
661         list_for_each_entry_from_rcu(info, &context->records_list, list) {
662                 if (before(seq, info->end_seq)) {
663                         if (!context->retransmit_hint ||
664                             after(info->end_seq,
665                                   context->retransmit_hint->end_seq)) {
666                                 context->hint_record_sn = record_sn;
667                                 context->retransmit_hint = info;
668                         }
669                         *p_record_sn = record_sn;
670                         goto exit_rcu_unlock;
671                 }
672                 record_sn++;
673         }
674         info = NULL;
675
676 exit_rcu_unlock:
677         rcu_read_unlock();
678         return info;
679 }
680 EXPORT_SYMBOL(tls_get_record);
681
682 static int tls_device_push_pending_record(struct sock *sk, int flags)
683 {
684         union tls_iter_offset iter;
685         struct iov_iter msg_iter;
686
687         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
688         iter.msg_iter = &msg_iter;
689         return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
690 }
691
692 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
693 {
694         if (tls_is_partially_sent_record(ctx)) {
695                 gfp_t sk_allocation = sk->sk_allocation;
696
697                 WARN_ON_ONCE(sk->sk_write_pending);
698
699                 sk->sk_allocation = GFP_ATOMIC;
700                 tls_push_partial_record(sk, ctx,
701                                         MSG_DONTWAIT | MSG_NOSIGNAL |
702                                         MSG_SENDPAGE_DECRYPTED);
703                 sk->sk_allocation = sk_allocation;
704         }
705 }
706
707 static void tls_device_resync_rx(struct tls_context *tls_ctx,
708                                  struct sock *sk, u32 seq, u8 *rcd_sn)
709 {
710         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
711         struct net_device *netdev;
712
713         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
714         rcu_read_lock();
715         netdev = READ_ONCE(tls_ctx->netdev);
716         if (netdev)
717                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
718                                                    TLS_OFFLOAD_CTX_DIR_RX);
719         rcu_read_unlock();
720         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
721 }
722
723 static bool
724 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
725                            s64 resync_req, u32 *seq, u16 *rcd_delta)
726 {
727         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
728         u32 req_seq = resync_req >> 32;
729         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
730         u16 i;
731
732         *rcd_delta = 0;
733
734         if (is_async) {
735                 /* shouldn't get to wraparound:
736                  * too long in async stage, something bad happened
737                  */
738                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
739                         return false;
740
741                 /* asynchronous stage: log all headers seq such that
742                  * req_seq <= seq <= end_seq, and wait for real resync request
743                  */
744                 if (before(*seq, req_seq))
745                         return false;
746                 if (!after(*seq, req_end) &&
747                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
748                         resync_async->log[resync_async->loglen++] = *seq;
749
750                 resync_async->rcd_delta++;
751
752                 return false;
753         }
754
755         /* synchronous stage: check against the logged entries and
756          * proceed to check the next entries if no match was found
757          */
758         for (i = 0; i < resync_async->loglen; i++)
759                 if (req_seq == resync_async->log[i] &&
760                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
761                         *rcd_delta = resync_async->rcd_delta - i;
762                         *seq = req_seq;
763                         resync_async->loglen = 0;
764                         resync_async->rcd_delta = 0;
765                         return true;
766                 }
767
768         resync_async->loglen = 0;
769         resync_async->rcd_delta = 0;
770
771         if (req_seq == *seq &&
772             atomic64_try_cmpxchg(&resync_async->req,
773                                  &resync_req, 0))
774                 return true;
775
776         return false;
777 }
778
779 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
780 {
781         struct tls_context *tls_ctx = tls_get_ctx(sk);
782         struct tls_offload_context_rx *rx_ctx;
783         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
784         u32 sock_data, is_req_pending;
785         struct tls_prot_info *prot;
786         s64 resync_req;
787         u16 rcd_delta;
788         u32 req_seq;
789
790         if (tls_ctx->rx_conf != TLS_HW)
791                 return;
792         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
793                 return;
794
795         prot = &tls_ctx->prot_info;
796         rx_ctx = tls_offload_ctx_rx(tls_ctx);
797         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
798
799         switch (rx_ctx->resync_type) {
800         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
801                 resync_req = atomic64_read(&rx_ctx->resync_req);
802                 req_seq = resync_req >> 32;
803                 seq += TLS_HEADER_SIZE - 1;
804                 is_req_pending = resync_req;
805
806                 if (likely(!is_req_pending) || req_seq != seq ||
807                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
808                         return;
809                 break;
810         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
811                 if (likely(!rx_ctx->resync_nh_do_now))
812                         return;
813
814                 /* head of next rec is already in, note that the sock_inq will
815                  * include the currently parsed message when called from parser
816                  */
817                 sock_data = tcp_inq(sk);
818                 if (sock_data > rcd_len) {
819                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
820                                                             rcd_len);
821                         return;
822                 }
823
824                 rx_ctx->resync_nh_do_now = 0;
825                 seq += rcd_len;
826                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
827                 break;
828         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
829                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
830                 is_req_pending = resync_req;
831                 if (likely(!is_req_pending))
832                         return;
833
834                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
835                                                 resync_req, &seq, &rcd_delta))
836                         return;
837                 tls_bigint_subtract(rcd_sn, rcd_delta);
838                 break;
839         }
840
841         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
842 }
843
844 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
845                                            struct tls_offload_context_rx *ctx,
846                                            struct sock *sk, struct sk_buff *skb)
847 {
848         struct strp_msg *rxm;
849
850         /* device will request resyncs by itself based on stream scan */
851         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
852                 return;
853         /* already scheduled */
854         if (ctx->resync_nh_do_now)
855                 return;
856         /* seen decrypted fragments since last fully-failed record */
857         if (ctx->resync_nh_reset) {
858                 ctx->resync_nh_reset = 0;
859                 ctx->resync_nh.decrypted_failed = 1;
860                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
861                 return;
862         }
863
864         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
865                 return;
866
867         /* doing resync, bump the next target in case it fails */
868         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
869                 ctx->resync_nh.decrypted_tgt *= 2;
870         else
871                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
872
873         rxm = strp_msg(skb);
874
875         /* head of next rec is already in, parser will sync for us */
876         if (tcp_inq(sk) > rxm->full_len) {
877                 trace_tls_device_rx_resync_nh_schedule(sk);
878                 ctx->resync_nh_do_now = 1;
879         } else {
880                 struct tls_prot_info *prot = &tls_ctx->prot_info;
881                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
882
883                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
884                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
885
886                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
887                                      rcd_sn);
888         }
889 }
890
891 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
892 {
893         struct strp_msg *rxm = strp_msg(skb);
894         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
895         struct sk_buff *skb_iter, *unused;
896         struct scatterlist sg[1];
897         char *orig_buf, *buf;
898
899         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
900                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
901         if (!orig_buf)
902                 return -ENOMEM;
903         buf = orig_buf;
904
905         nsg = skb_cow_data(skb, 0, &unused);
906         if (unlikely(nsg < 0)) {
907                 err = nsg;
908                 goto free_buf;
909         }
910
911         sg_init_table(sg, 1);
912         sg_set_buf(&sg[0], buf,
913                    rxm->full_len + TLS_HEADER_SIZE +
914                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
915         err = skb_copy_bits(skb, offset, buf,
916                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
917         if (err)
918                 goto free_buf;
919
920         /* We are interested only in the decrypted data not the auth */
921         err = decrypt_skb(sk, skb, sg);
922         if (err != -EBADMSG)
923                 goto free_buf;
924         else
925                 err = 0;
926
927         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
928
929         if (skb_pagelen(skb) > offset) {
930                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
931
932                 if (skb->decrypted) {
933                         err = skb_store_bits(skb, offset, buf, copy);
934                         if (err)
935                                 goto free_buf;
936                 }
937
938                 offset += copy;
939                 buf += copy;
940         }
941
942         pos = skb_pagelen(skb);
943         skb_walk_frags(skb, skb_iter) {
944                 int frag_pos;
945
946                 /* Practically all frags must belong to msg if reencrypt
947                  * is needed with current strparser and coalescing logic,
948                  * but strparser may "get optimized", so let's be safe.
949                  */
950                 if (pos + skb_iter->len <= offset)
951                         goto done_with_frag;
952                 if (pos >= data_len + rxm->offset)
953                         break;
954
955                 frag_pos = offset - pos;
956                 copy = min_t(int, skb_iter->len - frag_pos,
957                              data_len + rxm->offset - offset);
958
959                 if (skb_iter->decrypted) {
960                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
961                         if (err)
962                                 goto free_buf;
963                 }
964
965                 offset += copy;
966                 buf += copy;
967 done_with_frag:
968                 pos += skb_iter->len;
969         }
970
971 free_buf:
972         kfree(orig_buf);
973         return err;
974 }
975
976 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
977                          struct sk_buff *skb, struct strp_msg *rxm)
978 {
979         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
980         int is_decrypted = skb->decrypted;
981         int is_encrypted = !is_decrypted;
982         struct sk_buff *skb_iter;
983
984         /* Check if all the data is decrypted already */
985         skb_walk_frags(skb, skb_iter) {
986                 is_decrypted &= skb_iter->decrypted;
987                 is_encrypted &= !skb_iter->decrypted;
988         }
989
990         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
991                                    tls_ctx->rx.rec_seq, rxm->full_len,
992                                    is_encrypted, is_decrypted);
993
994         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
995                 if (likely(is_encrypted || is_decrypted))
996                         return is_decrypted;
997
998                 /* After tls_device_down disables the offload, the next SKB will
999                  * likely have initial fragments decrypted, and final ones not
1000                  * decrypted. We need to reencrypt that single SKB.
1001                  */
1002                 return tls_device_reencrypt(sk, skb);
1003         }
1004
1005         /* Return immediately if the record is either entirely plaintext or
1006          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1007          * record.
1008          */
1009         if (is_decrypted) {
1010                 ctx->resync_nh_reset = 1;
1011                 return is_decrypted;
1012         }
1013         if (is_encrypted) {
1014                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1015                 return 0;
1016         }
1017
1018         ctx->resync_nh_reset = 1;
1019         return tls_device_reencrypt(sk, skb);
1020 }
1021
1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1023                               struct net_device *netdev)
1024 {
1025         if (sk->sk_destruct != tls_device_sk_destruct) {
1026                 refcount_set(&ctx->refcount, 1);
1027                 dev_hold(netdev);
1028                 ctx->netdev = netdev;
1029                 spin_lock_irq(&tls_device_lock);
1030                 list_add_tail(&ctx->list, &tls_device_list);
1031                 spin_unlock_irq(&tls_device_lock);
1032
1033                 ctx->sk_destruct = sk->sk_destruct;
1034                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1035         }
1036 }
1037
1038 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1039 {
1040         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1041         struct tls_context *tls_ctx = tls_get_ctx(sk);
1042         struct tls_prot_info *prot = &tls_ctx->prot_info;
1043         struct tls_record_info *start_marker_record;
1044         struct tls_offload_context_tx *offload_ctx;
1045         struct tls_crypto_info *crypto_info;
1046         struct net_device *netdev;
1047         char *iv, *rec_seq;
1048         struct sk_buff *skb;
1049         __be64 rcd_sn;
1050         int rc;
1051
1052         if (!ctx)
1053                 return -EINVAL;
1054
1055         if (ctx->priv_ctx_tx)
1056                 return -EEXIST;
1057
1058         netdev = get_netdev_for_sock(sk);
1059         if (!netdev) {
1060                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1061                 return -EINVAL;
1062         }
1063
1064         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1065                 rc = -EOPNOTSUPP;
1066                 goto release_netdev;
1067         }
1068
1069         crypto_info = &ctx->crypto_send.info;
1070         if (crypto_info->version != TLS_1_2_VERSION) {
1071                 rc = -EOPNOTSUPP;
1072                 goto release_netdev;
1073         }
1074
1075         switch (crypto_info->cipher_type) {
1076         case TLS_CIPHER_AES_GCM_128:
1077                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1078                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1079                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1080                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1081                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1082                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1083                 rec_seq =
1084                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1085                 break;
1086         default:
1087                 rc = -EINVAL;
1088                 goto release_netdev;
1089         }
1090
1091         /* Sanity-check the rec_seq_size for stack allocations */
1092         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1093                 rc = -EINVAL;
1094                 goto release_netdev;
1095         }
1096
1097         prot->version = crypto_info->version;
1098         prot->cipher_type = crypto_info->cipher_type;
1099         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1100         prot->tag_size = tag_size;
1101         prot->overhead_size = prot->prepend_size + prot->tag_size;
1102         prot->iv_size = iv_size;
1103         prot->salt_size = salt_size;
1104         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1105                              GFP_KERNEL);
1106         if (!ctx->tx.iv) {
1107                 rc = -ENOMEM;
1108                 goto release_netdev;
1109         }
1110
1111         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1112
1113         prot->rec_seq_size = rec_seq_size;
1114         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1115         if (!ctx->tx.rec_seq) {
1116                 rc = -ENOMEM;
1117                 goto free_iv;
1118         }
1119
1120         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1121         if (!start_marker_record) {
1122                 rc = -ENOMEM;
1123                 goto free_rec_seq;
1124         }
1125
1126         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1127         if (!offload_ctx) {
1128                 rc = -ENOMEM;
1129                 goto free_marker_record;
1130         }
1131
1132         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1133         if (rc)
1134                 goto free_offload_ctx;
1135
1136         /* start at rec_seq - 1 to account for the start marker record */
1137         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1138         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1139
1140         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1141         start_marker_record->len = 0;
1142         start_marker_record->num_frags = 0;
1143
1144         INIT_LIST_HEAD(&offload_ctx->records_list);
1145         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1146         spin_lock_init(&offload_ctx->lock);
1147         sg_init_table(offload_ctx->sg_tx_data,
1148                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1149
1150         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1151         ctx->push_pending_record = tls_device_push_pending_record;
1152
1153         /* TLS offload is greatly simplified if we don't send
1154          * SKBs where only part of the payload needs to be encrypted.
1155          * So mark the last skb in the write queue as end of record.
1156          */
1157         skb = tcp_write_queue_tail(sk);
1158         if (skb)
1159                 TCP_SKB_CB(skb)->eor = 1;
1160
1161         /* Avoid offloading if the device is down
1162          * We don't want to offload new flows after
1163          * the NETDEV_DOWN event
1164          *
1165          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1166          * handler thus protecting from the device going down before
1167          * ctx was added to tls_device_list.
1168          */
1169         down_read(&device_offload_lock);
1170         if (!(netdev->flags & IFF_UP)) {
1171                 rc = -EINVAL;
1172                 goto release_lock;
1173         }
1174
1175         ctx->priv_ctx_tx = offload_ctx;
1176         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1177                                              &ctx->crypto_send.info,
1178                                              tcp_sk(sk)->write_seq);
1179         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1180                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1181         if (rc)
1182                 goto release_lock;
1183
1184         tls_device_attach(ctx, sk, netdev);
1185         up_read(&device_offload_lock);
1186
1187         /* following this assignment tls_is_sk_tx_device_offloaded
1188          * will return true and the context might be accessed
1189          * by the netdev's xmit function.
1190          */
1191         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1192         dev_put(netdev);
1193
1194         return 0;
1195
1196 release_lock:
1197         up_read(&device_offload_lock);
1198         clean_acked_data_disable(inet_csk(sk));
1199         crypto_free_aead(offload_ctx->aead_send);
1200 free_offload_ctx:
1201         kfree(offload_ctx);
1202         ctx->priv_ctx_tx = NULL;
1203 free_marker_record:
1204         kfree(start_marker_record);
1205 free_rec_seq:
1206         kfree(ctx->tx.rec_seq);
1207 free_iv:
1208         kfree(ctx->tx.iv);
1209 release_netdev:
1210         dev_put(netdev);
1211         return rc;
1212 }
1213
1214 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1215 {
1216         struct tls12_crypto_info_aes_gcm_128 *info;
1217         struct tls_offload_context_rx *context;
1218         struct net_device *netdev;
1219         int rc = 0;
1220
1221         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1222                 return -EOPNOTSUPP;
1223
1224         netdev = get_netdev_for_sock(sk);
1225         if (!netdev) {
1226                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1227                 return -EINVAL;
1228         }
1229
1230         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1231                 rc = -EOPNOTSUPP;
1232                 goto release_netdev;
1233         }
1234
1235         /* Avoid offloading if the device is down
1236          * We don't want to offload new flows after
1237          * the NETDEV_DOWN event
1238          *
1239          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1240          * handler thus protecting from the device going down before
1241          * ctx was added to tls_device_list.
1242          */
1243         down_read(&device_offload_lock);
1244         if (!(netdev->flags & IFF_UP)) {
1245                 rc = -EINVAL;
1246                 goto release_lock;
1247         }
1248
1249         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1250         if (!context) {
1251                 rc = -ENOMEM;
1252                 goto release_lock;
1253         }
1254         context->resync_nh_reset = 1;
1255
1256         ctx->priv_ctx_rx = context;
1257         rc = tls_set_sw_offload(sk, ctx, 0);
1258         if (rc)
1259                 goto release_ctx;
1260
1261         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1262                                              &ctx->crypto_recv.info,
1263                                              tcp_sk(sk)->copied_seq);
1264         info = (void *)&ctx->crypto_recv.info;
1265         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1266                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1267         if (rc)
1268                 goto free_sw_resources;
1269
1270         tls_device_attach(ctx, sk, netdev);
1271         up_read(&device_offload_lock);
1272
1273         dev_put(netdev);
1274
1275         return 0;
1276
1277 free_sw_resources:
1278         up_read(&device_offload_lock);
1279         tls_sw_free_resources_rx(sk);
1280         down_read(&device_offload_lock);
1281 release_ctx:
1282         ctx->priv_ctx_rx = NULL;
1283 release_lock:
1284         up_read(&device_offload_lock);
1285 release_netdev:
1286         dev_put(netdev);
1287         return rc;
1288 }
1289
1290 void tls_device_offload_cleanup_rx(struct sock *sk)
1291 {
1292         struct tls_context *tls_ctx = tls_get_ctx(sk);
1293         struct net_device *netdev;
1294
1295         down_read(&device_offload_lock);
1296         netdev = tls_ctx->netdev;
1297         if (!netdev)
1298                 goto out;
1299
1300         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1301                                         TLS_OFFLOAD_CTX_DIR_RX);
1302
1303         if (tls_ctx->tx_conf != TLS_HW) {
1304                 dev_put(netdev);
1305                 tls_ctx->netdev = NULL;
1306         } else {
1307                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1308         }
1309 out:
1310         up_read(&device_offload_lock);
1311         tls_sw_release_resources_rx(sk);
1312 }
1313
1314 static int tls_device_down(struct net_device *netdev)
1315 {
1316         struct tls_context *ctx, *tmp;
1317         unsigned long flags;
1318         LIST_HEAD(list);
1319
1320         /* Request a write lock to block new offload attempts */
1321         down_write(&device_offload_lock);
1322
1323         spin_lock_irqsave(&tls_device_lock, flags);
1324         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1325                 if (ctx->netdev != netdev ||
1326                     !refcount_inc_not_zero(&ctx->refcount))
1327                         continue;
1328
1329                 list_move(&ctx->list, &list);
1330         }
1331         spin_unlock_irqrestore(&tls_device_lock, flags);
1332
1333         list_for_each_entry_safe(ctx, tmp, &list, list) {
1334                 /* Stop offloaded TX and switch to the fallback.
1335                  * tls_is_sk_tx_device_offloaded will return false.
1336                  */
1337                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1338
1339                 /* Stop the RX and TX resync.
1340                  * tls_dev_resync must not be called after tls_dev_del.
1341                  */
1342                 WRITE_ONCE(ctx->netdev, NULL);
1343
1344                 /* Start skipping the RX resync logic completely. */
1345                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1346
1347                 /* Sync with inflight packets. After this point:
1348                  * TX: no non-encrypted packets will be passed to the driver.
1349                  * RX: resync requests from the driver will be ignored.
1350                  */
1351                 synchronize_net();
1352
1353                 /* Release the offload context on the driver side. */
1354                 if (ctx->tx_conf == TLS_HW)
1355                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1356                                                         TLS_OFFLOAD_CTX_DIR_TX);
1357                 if (ctx->rx_conf == TLS_HW &&
1358                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1359                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1360                                                         TLS_OFFLOAD_CTX_DIR_RX);
1361
1362                 dev_put(netdev);
1363
1364                 /* Move the context to a separate list for two reasons:
1365                  * 1. When the context is deallocated, list_del is called.
1366                  * 2. It's no longer an offloaded context, so we don't want to
1367                  *    run offload-specific code on this context.
1368                  */
1369                 spin_lock_irqsave(&tls_device_lock, flags);
1370                 list_move_tail(&ctx->list, &tls_device_down_list);
1371                 spin_unlock_irqrestore(&tls_device_lock, flags);
1372
1373                 /* Device contexts for RX and TX will be freed in on sk_destruct
1374                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1375                  * Now release the ref taken above.
1376                  */
1377                 if (refcount_dec_and_test(&ctx->refcount))
1378                         tls_device_free_ctx(ctx);
1379         }
1380
1381         up_write(&device_offload_lock);
1382
1383         flush_work(&tls_device_gc_work);
1384
1385         return NOTIFY_DONE;
1386 }
1387
1388 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1389                          void *ptr)
1390 {
1391         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1392
1393         if (!dev->tlsdev_ops &&
1394             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1395                 return NOTIFY_DONE;
1396
1397         switch (event) {
1398         case NETDEV_REGISTER:
1399         case NETDEV_FEAT_CHANGE:
1400                 if (netif_is_bond_master(dev))
1401                         return NOTIFY_DONE;
1402                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1403                     !dev->tlsdev_ops->tls_dev_resync)
1404                         return NOTIFY_BAD;
1405
1406                 if  (dev->tlsdev_ops &&
1407                      dev->tlsdev_ops->tls_dev_add &&
1408                      dev->tlsdev_ops->tls_dev_del)
1409                         return NOTIFY_DONE;
1410                 else
1411                         return NOTIFY_BAD;
1412         case NETDEV_DOWN:
1413                 return tls_device_down(dev);
1414         }
1415         return NOTIFY_DONE;
1416 }
1417
1418 static struct notifier_block tls_dev_notifier = {
1419         .notifier_call  = tls_dev_event,
1420 };
1421
1422 void __init tls_device_init(void)
1423 {
1424         register_netdevice_notifier(&tls_dev_notifier);
1425 }
1426
1427 void __exit tls_device_cleanup(void)
1428 {
1429         unregister_netdevice_notifier(&tls_dev_notifier);
1430         flush_work(&tls_device_gc_work);
1431         clean_acked_data_flush();
1432 }