Merge tag 'ktest-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57         if (ctx->tx_conf == TLS_HW) {
58                 kfree(tls_offload_ctx_tx(ctx));
59                 kfree(ctx->tx.rec_seq);
60                 kfree(ctx->tx.iv);
61         }
62
63         if (ctx->rx_conf == TLS_HW)
64                 kfree(tls_offload_ctx_rx(ctx));
65
66         tls_ctx_free(NULL, ctx);
67 }
68
69 static void tls_device_gc_task(struct work_struct *work)
70 {
71         struct tls_context *ctx, *tmp;
72         unsigned long flags;
73         LIST_HEAD(gc_list);
74
75         spin_lock_irqsave(&tls_device_lock, flags);
76         list_splice_init(&tls_device_gc_list, &gc_list);
77         spin_unlock_irqrestore(&tls_device_lock, flags);
78
79         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
80                 struct net_device *netdev = ctx->netdev;
81
82                 if (netdev && ctx->tx_conf == TLS_HW) {
83                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
84                                                         TLS_OFFLOAD_CTX_DIR_TX);
85                         dev_put(netdev);
86                         ctx->netdev = NULL;
87                 }
88
89                 list_del(&ctx->list);
90                 tls_device_free_ctx(ctx);
91         }
92 }
93
94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
95 {
96         unsigned long flags;
97
98         spin_lock_irqsave(&tls_device_lock, flags);
99         list_move_tail(&ctx->list, &tls_device_gc_list);
100
101         /* schedule_work inside the spinlock
102          * to make sure tls_device_down waits for that work.
103          */
104         schedule_work(&tls_device_gc_work);
105
106         spin_unlock_irqrestore(&tls_device_lock, flags);
107 }
108
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
111 {
112         struct dst_entry *dst = sk_dst_get(sk);
113         struct net_device *netdev = NULL;
114
115         if (likely(dst)) {
116                 netdev = dst->dev;
117                 dev_hold(netdev);
118         }
119
120         dst_release(dst);
121
122         return netdev;
123 }
124
125 static void destroy_record(struct tls_record_info *record)
126 {
127         int i;
128
129         for (i = 0; i < record->num_frags; i++)
130                 __skb_frag_unref(&record->frags[i]);
131         kfree(record);
132 }
133
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
135 {
136         struct tls_record_info *info, *temp;
137
138         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139                 list_del(&info->list);
140                 destroy_record(info);
141         }
142
143         offload_ctx->retransmit_hint = NULL;
144 }
145
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
147 {
148         struct tls_context *tls_ctx = tls_get_ctx(sk);
149         struct tls_record_info *info, *temp;
150         struct tls_offload_context_tx *ctx;
151         u64 deleted_records = 0;
152         unsigned long flags;
153
154         if (!tls_ctx)
155                 return;
156
157         ctx = tls_offload_ctx_tx(tls_ctx);
158
159         spin_lock_irqsave(&ctx->lock, flags);
160         info = ctx->retransmit_hint;
161         if (info && !before(acked_seq, info->end_seq))
162                 ctx->retransmit_hint = NULL;
163
164         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165                 if (before(acked_seq, info->end_seq))
166                         break;
167                 list_del(&info->list);
168
169                 destroy_record(info);
170                 deleted_records++;
171         }
172
173         ctx->unacked_record_sn += deleted_records;
174         spin_unlock_irqrestore(&ctx->lock, flags);
175 }
176
177 /* At this point, there should be no references on this
178  * socket and no in-flight SKBs associated with this
179  * socket, so it is safe to free all the resources.
180  */
181 void tls_device_sk_destruct(struct sock *sk)
182 {
183         struct tls_context *tls_ctx = tls_get_ctx(sk);
184         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
185
186         tls_ctx->sk_destruct(sk);
187
188         if (tls_ctx->tx_conf == TLS_HW) {
189                 if (ctx->open_record)
190                         destroy_record(ctx->open_record);
191                 delete_all_records(ctx);
192                 crypto_free_aead(ctx->aead_send);
193                 clean_acked_data_disable(inet_csk(sk));
194         }
195
196         if (refcount_dec_and_test(&tls_ctx->refcount))
197                 tls_device_queue_ctx_destruction(tls_ctx);
198 }
199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
200
201 void tls_device_free_resources_tx(struct sock *sk)
202 {
203         struct tls_context *tls_ctx = tls_get_ctx(sk);
204
205         tls_free_partial_record(sk, tls_ctx);
206 }
207
208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
209 {
210         struct tls_context *tls_ctx = tls_get_ctx(sk);
211
212         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
213         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
214 }
215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
216
217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
218                                  u32 seq)
219 {
220         struct net_device *netdev;
221         struct sk_buff *skb;
222         int err = 0;
223         u8 *rcd_sn;
224
225         skb = tcp_write_queue_tail(sk);
226         if (skb)
227                 TCP_SKB_CB(skb)->eor = 1;
228
229         rcd_sn = tls_ctx->tx.rec_seq;
230
231         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
232         down_read(&device_offload_lock);
233         netdev = tls_ctx->netdev;
234         if (netdev)
235                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
236                                                          rcd_sn,
237                                                          TLS_OFFLOAD_CTX_DIR_TX);
238         up_read(&device_offload_lock);
239         if (err)
240                 return;
241
242         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
243 }
244
245 static void tls_append_frag(struct tls_record_info *record,
246                             struct page_frag *pfrag,
247                             int size)
248 {
249         skb_frag_t *frag;
250
251         frag = &record->frags[record->num_frags - 1];
252         if (skb_frag_page(frag) == pfrag->page &&
253             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
254                 skb_frag_size_add(frag, size);
255         } else {
256                 ++frag;
257                 __skb_frag_set_page(frag, pfrag->page);
258                 skb_frag_off_set(frag, pfrag->offset);
259                 skb_frag_size_set(frag, size);
260                 ++record->num_frags;
261                 get_page(pfrag->page);
262         }
263
264         pfrag->offset += size;
265         record->len += size;
266 }
267
268 static int tls_push_record(struct sock *sk,
269                            struct tls_context *ctx,
270                            struct tls_offload_context_tx *offload_ctx,
271                            struct tls_record_info *record,
272                            int flags)
273 {
274         struct tls_prot_info *prot = &ctx->prot_info;
275         struct tcp_sock *tp = tcp_sk(sk);
276         skb_frag_t *frag;
277         int i;
278
279         record->end_seq = tp->write_seq + record->len;
280         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
281         offload_ctx->open_record = NULL;
282
283         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
284                 tls_device_resync_tx(sk, ctx, tp->write_seq);
285
286         tls_advance_record_sn(sk, prot, &ctx->tx);
287
288         for (i = 0; i < record->num_frags; i++) {
289                 frag = &record->frags[i];
290                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
291                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
292                             skb_frag_size(frag), skb_frag_off(frag));
293                 sk_mem_charge(sk, skb_frag_size(frag));
294                 get_page(skb_frag_page(frag));
295         }
296         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
297
298         /* all ready, send */
299         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
300 }
301
302 static int tls_device_record_close(struct sock *sk,
303                                    struct tls_context *ctx,
304                                    struct tls_record_info *record,
305                                    struct page_frag *pfrag,
306                                    unsigned char record_type)
307 {
308         struct tls_prot_info *prot = &ctx->prot_info;
309         int ret;
310
311         /* append tag
312          * device will fill in the tag, we just need to append a placeholder
313          * use socket memory to improve coalescing (re-using a single buffer
314          * increases frag count)
315          * if we can't allocate memory now, steal some back from data
316          */
317         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
318                                         sk->sk_allocation))) {
319                 ret = 0;
320                 tls_append_frag(record, pfrag, prot->tag_size);
321         } else {
322                 ret = prot->tag_size;
323                 if (record->len <= prot->overhead_size)
324                         return -ENOMEM;
325         }
326
327         /* fill prepend */
328         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
329                          record->len - prot->overhead_size,
330                          record_type);
331         return ret;
332 }
333
334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
335                                  struct page_frag *pfrag,
336                                  size_t prepend_size)
337 {
338         struct tls_record_info *record;
339         skb_frag_t *frag;
340
341         record = kmalloc(sizeof(*record), GFP_KERNEL);
342         if (!record)
343                 return -ENOMEM;
344
345         frag = &record->frags[0];
346         __skb_frag_set_page(frag, pfrag->page);
347         skb_frag_off_set(frag, pfrag->offset);
348         skb_frag_size_set(frag, prepend_size);
349
350         get_page(pfrag->page);
351         pfrag->offset += prepend_size;
352
353         record->num_frags = 1;
354         record->len = prepend_size;
355         offload_ctx->open_record = record;
356         return 0;
357 }
358
359 static int tls_do_allocation(struct sock *sk,
360                              struct tls_offload_context_tx *offload_ctx,
361                              struct page_frag *pfrag,
362                              size_t prepend_size)
363 {
364         int ret;
365
366         if (!offload_ctx->open_record) {
367                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
368                                                    sk->sk_allocation))) {
369                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
370                         sk_stream_moderate_sndbuf(sk);
371                         return -ENOMEM;
372                 }
373
374                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
375                 if (ret)
376                         return ret;
377
378                 if (pfrag->size > pfrag->offset)
379                         return 0;
380         }
381
382         if (!sk_page_frag_refill(sk, pfrag))
383                 return -ENOMEM;
384
385         return 0;
386 }
387
388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
389 {
390         size_t pre_copy, nocache;
391
392         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
393         if (pre_copy) {
394                 pre_copy = min(pre_copy, bytes);
395                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
396                         return -EFAULT;
397                 bytes -= pre_copy;
398                 addr += pre_copy;
399         }
400
401         nocache = round_down(bytes, SMP_CACHE_BYTES);
402         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
403                 return -EFAULT;
404         bytes -= nocache;
405         addr += nocache;
406
407         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
408                 return -EFAULT;
409
410         return 0;
411 }
412
413 static int tls_push_data(struct sock *sk,
414                          struct iov_iter *msg_iter,
415                          size_t size, int flags,
416                          unsigned char record_type)
417 {
418         struct tls_context *tls_ctx = tls_get_ctx(sk);
419         struct tls_prot_info *prot = &tls_ctx->prot_info;
420         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
421         struct tls_record_info *record = ctx->open_record;
422         int tls_push_record_flags;
423         struct page_frag *pfrag;
424         size_t orig_size = size;
425         u32 max_open_record_len;
426         bool more = false;
427         bool done = false;
428         int copy, rc = 0;
429         long timeo;
430
431         if (flags &
432             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
433                 return -EOPNOTSUPP;
434
435         if (unlikely(sk->sk_err))
436                 return -sk->sk_err;
437
438         flags |= MSG_SENDPAGE_DECRYPTED;
439         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
440
441         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
442         if (tls_is_partially_sent_record(tls_ctx)) {
443                 rc = tls_push_partial_record(sk, tls_ctx, flags);
444                 if (rc < 0)
445                         return rc;
446         }
447
448         pfrag = sk_page_frag(sk);
449
450         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
451          * we need to leave room for an authentication tag.
452          */
453         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
454                               prot->prepend_size;
455         do {
456                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
457                 if (unlikely(rc)) {
458                         rc = sk_stream_wait_memory(sk, &timeo);
459                         if (!rc)
460                                 continue;
461
462                         record = ctx->open_record;
463                         if (!record)
464                                 break;
465 handle_error:
466                         if (record_type != TLS_RECORD_TYPE_DATA) {
467                                 /* avoid sending partial
468                                  * record with type !=
469                                  * application_data
470                                  */
471                                 size = orig_size;
472                                 destroy_record(record);
473                                 ctx->open_record = NULL;
474                         } else if (record->len > prot->prepend_size) {
475                                 goto last_record;
476                         }
477
478                         break;
479                 }
480
481                 record = ctx->open_record;
482                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
483                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
484
485                 rc = tls_device_copy_data(page_address(pfrag->page) +
486                                           pfrag->offset, copy, msg_iter);
487                 if (rc)
488                         goto handle_error;
489                 tls_append_frag(record, pfrag, copy);
490
491                 size -= copy;
492                 if (!size) {
493 last_record:
494                         tls_push_record_flags = flags;
495                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
496                                 more = true;
497                                 break;
498                         }
499
500                         done = true;
501                 }
502
503                 if (done || record->len >= max_open_record_len ||
504                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
505                         rc = tls_device_record_close(sk, tls_ctx, record,
506                                                      pfrag, record_type);
507                         if (rc) {
508                                 if (rc > 0) {
509                                         size += rc;
510                                 } else {
511                                         size = orig_size;
512                                         destroy_record(record);
513                                         ctx->open_record = NULL;
514                                         break;
515                                 }
516                         }
517
518                         rc = tls_push_record(sk,
519                                              tls_ctx,
520                                              ctx,
521                                              record,
522                                              tls_push_record_flags);
523                         if (rc < 0)
524                                 break;
525                 }
526         } while (!done);
527
528         tls_ctx->pending_open_record_frags = more;
529
530         if (orig_size - size > 0)
531                 rc = orig_size - size;
532
533         return rc;
534 }
535
536 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
537 {
538         unsigned char record_type = TLS_RECORD_TYPE_DATA;
539         struct tls_context *tls_ctx = tls_get_ctx(sk);
540         int rc;
541
542         mutex_lock(&tls_ctx->tx_lock);
543         lock_sock(sk);
544
545         if (unlikely(msg->msg_controllen)) {
546                 rc = tls_proccess_cmsg(sk, msg, &record_type);
547                 if (rc)
548                         goto out;
549         }
550
551         rc = tls_push_data(sk, &msg->msg_iter, size,
552                            msg->msg_flags, record_type);
553
554 out:
555         release_sock(sk);
556         mutex_unlock(&tls_ctx->tx_lock);
557         return rc;
558 }
559
560 int tls_device_sendpage(struct sock *sk, struct page *page,
561                         int offset, size_t size, int flags)
562 {
563         struct tls_context *tls_ctx = tls_get_ctx(sk);
564         struct iov_iter msg_iter;
565         char *kaddr;
566         struct kvec iov;
567         int rc;
568
569         if (flags & MSG_SENDPAGE_NOTLAST)
570                 flags |= MSG_MORE;
571
572         mutex_lock(&tls_ctx->tx_lock);
573         lock_sock(sk);
574
575         if (flags & MSG_OOB) {
576                 rc = -EOPNOTSUPP;
577                 goto out;
578         }
579
580         kaddr = kmap(page);
581         iov.iov_base = kaddr + offset;
582         iov.iov_len = size;
583         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
584         rc = tls_push_data(sk, &msg_iter, size,
585                            flags, TLS_RECORD_TYPE_DATA);
586         kunmap(page);
587
588 out:
589         release_sock(sk);
590         mutex_unlock(&tls_ctx->tx_lock);
591         return rc;
592 }
593
594 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
595                                        u32 seq, u64 *p_record_sn)
596 {
597         u64 record_sn = context->hint_record_sn;
598         struct tls_record_info *info, *last;
599
600         info = context->retransmit_hint;
601         if (!info ||
602             before(seq, info->end_seq - info->len)) {
603                 /* if retransmit_hint is irrelevant start
604                  * from the beggining of the list
605                  */
606                 info = list_first_entry_or_null(&context->records_list,
607                                                 struct tls_record_info, list);
608                 if (!info)
609                         return NULL;
610                 /* send the start_marker record if seq number is before the
611                  * tls offload start marker sequence number. This record is
612                  * required to handle TCP packets which are before TLS offload
613                  * started.
614                  *  And if it's not start marker, look if this seq number
615                  * belongs to the list.
616                  */
617                 if (likely(!tls_record_is_start_marker(info))) {
618                         /* we have the first record, get the last record to see
619                          * if this seq number belongs to the list.
620                          */
621                         last = list_last_entry(&context->records_list,
622                                                struct tls_record_info, list);
623
624                         if (!between(seq, tls_record_start_seq(info),
625                                      last->end_seq))
626                                 return NULL;
627                 }
628                 record_sn = context->unacked_record_sn;
629         }
630
631         /* We just need the _rcu for the READ_ONCE() */
632         rcu_read_lock();
633         list_for_each_entry_from_rcu(info, &context->records_list, list) {
634                 if (before(seq, info->end_seq)) {
635                         if (!context->retransmit_hint ||
636                             after(info->end_seq,
637                                   context->retransmit_hint->end_seq)) {
638                                 context->hint_record_sn = record_sn;
639                                 context->retransmit_hint = info;
640                         }
641                         *p_record_sn = record_sn;
642                         goto exit_rcu_unlock;
643                 }
644                 record_sn++;
645         }
646         info = NULL;
647
648 exit_rcu_unlock:
649         rcu_read_unlock();
650         return info;
651 }
652 EXPORT_SYMBOL(tls_get_record);
653
654 static int tls_device_push_pending_record(struct sock *sk, int flags)
655 {
656         struct iov_iter msg_iter;
657
658         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
659         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
660 }
661
662 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
663 {
664         if (tls_is_partially_sent_record(ctx)) {
665                 gfp_t sk_allocation = sk->sk_allocation;
666
667                 WARN_ON_ONCE(sk->sk_write_pending);
668
669                 sk->sk_allocation = GFP_ATOMIC;
670                 tls_push_partial_record(sk, ctx,
671                                         MSG_DONTWAIT | MSG_NOSIGNAL |
672                                         MSG_SENDPAGE_DECRYPTED);
673                 sk->sk_allocation = sk_allocation;
674         }
675 }
676
677 static void tls_device_resync_rx(struct tls_context *tls_ctx,
678                                  struct sock *sk, u32 seq, u8 *rcd_sn)
679 {
680         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
681         struct net_device *netdev;
682
683         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
684                 return;
685
686         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
687         netdev = READ_ONCE(tls_ctx->netdev);
688         if (netdev)
689                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
690                                                    TLS_OFFLOAD_CTX_DIR_RX);
691         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
692         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
693 }
694
695 static bool
696 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
697                            s64 resync_req, u32 *seq, u16 *rcd_delta)
698 {
699         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
700         u32 req_seq = resync_req >> 32;
701         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
702         u16 i;
703
704         *rcd_delta = 0;
705
706         if (is_async) {
707                 /* shouldn't get to wraparound:
708                  * too long in async stage, something bad happened
709                  */
710                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
711                         return false;
712
713                 /* asynchronous stage: log all headers seq such that
714                  * req_seq <= seq <= end_seq, and wait for real resync request
715                  */
716                 if (before(*seq, req_seq))
717                         return false;
718                 if (!after(*seq, req_end) &&
719                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
720                         resync_async->log[resync_async->loglen++] = *seq;
721
722                 resync_async->rcd_delta++;
723
724                 return false;
725         }
726
727         /* synchronous stage: check against the logged entries and
728          * proceed to check the next entries if no match was found
729          */
730         for (i = 0; i < resync_async->loglen; i++)
731                 if (req_seq == resync_async->log[i] &&
732                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
733                         *rcd_delta = resync_async->rcd_delta - i;
734                         *seq = req_seq;
735                         resync_async->loglen = 0;
736                         resync_async->rcd_delta = 0;
737                         return true;
738                 }
739
740         resync_async->loglen = 0;
741         resync_async->rcd_delta = 0;
742
743         if (req_seq == *seq &&
744             atomic64_try_cmpxchg(&resync_async->req,
745                                  &resync_req, 0))
746                 return true;
747
748         return false;
749 }
750
751 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
752 {
753         struct tls_context *tls_ctx = tls_get_ctx(sk);
754         struct tls_offload_context_rx *rx_ctx;
755         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
756         u32 sock_data, is_req_pending;
757         struct tls_prot_info *prot;
758         s64 resync_req;
759         u16 rcd_delta;
760         u32 req_seq;
761
762         if (tls_ctx->rx_conf != TLS_HW)
763                 return;
764
765         prot = &tls_ctx->prot_info;
766         rx_ctx = tls_offload_ctx_rx(tls_ctx);
767         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
768
769         switch (rx_ctx->resync_type) {
770         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
771                 resync_req = atomic64_read(&rx_ctx->resync_req);
772                 req_seq = resync_req >> 32;
773                 seq += TLS_HEADER_SIZE - 1;
774                 is_req_pending = resync_req;
775
776                 if (likely(!is_req_pending) || req_seq != seq ||
777                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
778                         return;
779                 break;
780         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
781                 if (likely(!rx_ctx->resync_nh_do_now))
782                         return;
783
784                 /* head of next rec is already in, note that the sock_inq will
785                  * include the currently parsed message when called from parser
786                  */
787                 sock_data = tcp_inq(sk);
788                 if (sock_data > rcd_len) {
789                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
790                                                             rcd_len);
791                         return;
792                 }
793
794                 rx_ctx->resync_nh_do_now = 0;
795                 seq += rcd_len;
796                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
797                 break;
798         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
799                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
800                 is_req_pending = resync_req;
801                 if (likely(!is_req_pending))
802                         return;
803
804                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
805                                                 resync_req, &seq, &rcd_delta))
806                         return;
807                 tls_bigint_subtract(rcd_sn, rcd_delta);
808                 break;
809         }
810
811         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
812 }
813
814 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
815                                            struct tls_offload_context_rx *ctx,
816                                            struct sock *sk, struct sk_buff *skb)
817 {
818         struct strp_msg *rxm;
819
820         /* device will request resyncs by itself based on stream scan */
821         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
822                 return;
823         /* already scheduled */
824         if (ctx->resync_nh_do_now)
825                 return;
826         /* seen decrypted fragments since last fully-failed record */
827         if (ctx->resync_nh_reset) {
828                 ctx->resync_nh_reset = 0;
829                 ctx->resync_nh.decrypted_failed = 1;
830                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
831                 return;
832         }
833
834         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
835                 return;
836
837         /* doing resync, bump the next target in case it fails */
838         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
839                 ctx->resync_nh.decrypted_tgt *= 2;
840         else
841                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
842
843         rxm = strp_msg(skb);
844
845         /* head of next rec is already in, parser will sync for us */
846         if (tcp_inq(sk) > rxm->full_len) {
847                 trace_tls_device_rx_resync_nh_schedule(sk);
848                 ctx->resync_nh_do_now = 1;
849         } else {
850                 struct tls_prot_info *prot = &tls_ctx->prot_info;
851                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
852
853                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
854                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
855
856                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
857                                      rcd_sn);
858         }
859 }
860
861 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
862 {
863         struct strp_msg *rxm = strp_msg(skb);
864         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
865         struct sk_buff *skb_iter, *unused;
866         struct scatterlist sg[1];
867         char *orig_buf, *buf;
868
869         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
870                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
871         if (!orig_buf)
872                 return -ENOMEM;
873         buf = orig_buf;
874
875         nsg = skb_cow_data(skb, 0, &unused);
876         if (unlikely(nsg < 0)) {
877                 err = nsg;
878                 goto free_buf;
879         }
880
881         sg_init_table(sg, 1);
882         sg_set_buf(&sg[0], buf,
883                    rxm->full_len + TLS_HEADER_SIZE +
884                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
885         err = skb_copy_bits(skb, offset, buf,
886                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
887         if (err)
888                 goto free_buf;
889
890         /* We are interested only in the decrypted data not the auth */
891         err = decrypt_skb(sk, skb, sg);
892         if (err != -EBADMSG)
893                 goto free_buf;
894         else
895                 err = 0;
896
897         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
898
899         if (skb_pagelen(skb) > offset) {
900                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
901
902                 if (skb->decrypted) {
903                         err = skb_store_bits(skb, offset, buf, copy);
904                         if (err)
905                                 goto free_buf;
906                 }
907
908                 offset += copy;
909                 buf += copy;
910         }
911
912         pos = skb_pagelen(skb);
913         skb_walk_frags(skb, skb_iter) {
914                 int frag_pos;
915
916                 /* Practically all frags must belong to msg if reencrypt
917                  * is needed with current strparser and coalescing logic,
918                  * but strparser may "get optimized", so let's be safe.
919                  */
920                 if (pos + skb_iter->len <= offset)
921                         goto done_with_frag;
922                 if (pos >= data_len + rxm->offset)
923                         break;
924
925                 frag_pos = offset - pos;
926                 copy = min_t(int, skb_iter->len - frag_pos,
927                              data_len + rxm->offset - offset);
928
929                 if (skb_iter->decrypted) {
930                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
931                         if (err)
932                                 goto free_buf;
933                 }
934
935                 offset += copy;
936                 buf += copy;
937 done_with_frag:
938                 pos += skb_iter->len;
939         }
940
941 free_buf:
942         kfree(orig_buf);
943         return err;
944 }
945
946 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
947                          struct sk_buff *skb, struct strp_msg *rxm)
948 {
949         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
950         int is_decrypted = skb->decrypted;
951         int is_encrypted = !is_decrypted;
952         struct sk_buff *skb_iter;
953
954         /* Check if all the data is decrypted already */
955         skb_walk_frags(skb, skb_iter) {
956                 is_decrypted &= skb_iter->decrypted;
957                 is_encrypted &= !skb_iter->decrypted;
958         }
959
960         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
961                                    tls_ctx->rx.rec_seq, rxm->full_len,
962                                    is_encrypted, is_decrypted);
963
964         ctx->sw.decrypted |= is_decrypted;
965
966         /* Return immediately if the record is either entirely plaintext or
967          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
968          * record.
969          */
970         if (is_decrypted) {
971                 ctx->resync_nh_reset = 1;
972                 return 0;
973         }
974         if (is_encrypted) {
975                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
976                 return 0;
977         }
978
979         ctx->resync_nh_reset = 1;
980         return tls_device_reencrypt(sk, skb);
981 }
982
983 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
984                               struct net_device *netdev)
985 {
986         if (sk->sk_destruct != tls_device_sk_destruct) {
987                 refcount_set(&ctx->refcount, 1);
988                 dev_hold(netdev);
989                 ctx->netdev = netdev;
990                 spin_lock_irq(&tls_device_lock);
991                 list_add_tail(&ctx->list, &tls_device_list);
992                 spin_unlock_irq(&tls_device_lock);
993
994                 ctx->sk_destruct = sk->sk_destruct;
995                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
996         }
997 }
998
999 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1000 {
1001         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1002         struct tls_context *tls_ctx = tls_get_ctx(sk);
1003         struct tls_prot_info *prot = &tls_ctx->prot_info;
1004         struct tls_record_info *start_marker_record;
1005         struct tls_offload_context_tx *offload_ctx;
1006         struct tls_crypto_info *crypto_info;
1007         struct net_device *netdev;
1008         char *iv, *rec_seq;
1009         struct sk_buff *skb;
1010         __be64 rcd_sn;
1011         int rc;
1012
1013         if (!ctx)
1014                 return -EINVAL;
1015
1016         if (ctx->priv_ctx_tx)
1017                 return -EEXIST;
1018
1019         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1020         if (!start_marker_record)
1021                 return -ENOMEM;
1022
1023         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1024         if (!offload_ctx) {
1025                 rc = -ENOMEM;
1026                 goto free_marker_record;
1027         }
1028
1029         crypto_info = &ctx->crypto_send.info;
1030         if (crypto_info->version != TLS_1_2_VERSION) {
1031                 rc = -EOPNOTSUPP;
1032                 goto free_offload_ctx;
1033         }
1034
1035         switch (crypto_info->cipher_type) {
1036         case TLS_CIPHER_AES_GCM_128:
1037                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1038                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1039                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1040                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1041                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1042                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1043                 rec_seq =
1044                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1045                 break;
1046         default:
1047                 rc = -EINVAL;
1048                 goto free_offload_ctx;
1049         }
1050
1051         /* Sanity-check the rec_seq_size for stack allocations */
1052         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1053                 rc = -EINVAL;
1054                 goto free_offload_ctx;
1055         }
1056
1057         prot->version = crypto_info->version;
1058         prot->cipher_type = crypto_info->cipher_type;
1059         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1060         prot->tag_size = tag_size;
1061         prot->overhead_size = prot->prepend_size + prot->tag_size;
1062         prot->iv_size = iv_size;
1063         prot->salt_size = salt_size;
1064         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1065                              GFP_KERNEL);
1066         if (!ctx->tx.iv) {
1067                 rc = -ENOMEM;
1068                 goto free_offload_ctx;
1069         }
1070
1071         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1072
1073         prot->rec_seq_size = rec_seq_size;
1074         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1075         if (!ctx->tx.rec_seq) {
1076                 rc = -ENOMEM;
1077                 goto free_iv;
1078         }
1079
1080         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1081         if (rc)
1082                 goto free_rec_seq;
1083
1084         /* start at rec_seq - 1 to account for the start marker record */
1085         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1086         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1087
1088         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1089         start_marker_record->len = 0;
1090         start_marker_record->num_frags = 0;
1091
1092         INIT_LIST_HEAD(&offload_ctx->records_list);
1093         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1094         spin_lock_init(&offload_ctx->lock);
1095         sg_init_table(offload_ctx->sg_tx_data,
1096                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1097
1098         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1099         ctx->push_pending_record = tls_device_push_pending_record;
1100
1101         /* TLS offload is greatly simplified if we don't send
1102          * SKBs where only part of the payload needs to be encrypted.
1103          * So mark the last skb in the write queue as end of record.
1104          */
1105         skb = tcp_write_queue_tail(sk);
1106         if (skb)
1107                 TCP_SKB_CB(skb)->eor = 1;
1108
1109         netdev = get_netdev_for_sock(sk);
1110         if (!netdev) {
1111                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1112                 rc = -EINVAL;
1113                 goto disable_cad;
1114         }
1115
1116         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1117                 rc = -EOPNOTSUPP;
1118                 goto release_netdev;
1119         }
1120
1121         /* Avoid offloading if the device is down
1122          * We don't want to offload new flows after
1123          * the NETDEV_DOWN event
1124          *
1125          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1126          * handler thus protecting from the device going down before
1127          * ctx was added to tls_device_list.
1128          */
1129         down_read(&device_offload_lock);
1130         if (!(netdev->flags & IFF_UP)) {
1131                 rc = -EINVAL;
1132                 goto release_lock;
1133         }
1134
1135         ctx->priv_ctx_tx = offload_ctx;
1136         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1137                                              &ctx->crypto_send.info,
1138                                              tcp_sk(sk)->write_seq);
1139         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1140                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1141         if (rc)
1142                 goto release_lock;
1143
1144         tls_device_attach(ctx, sk, netdev);
1145         up_read(&device_offload_lock);
1146
1147         /* following this assignment tls_is_sk_tx_device_offloaded
1148          * will return true and the context might be accessed
1149          * by the netdev's xmit function.
1150          */
1151         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1152         dev_put(netdev);
1153
1154         return 0;
1155
1156 release_lock:
1157         up_read(&device_offload_lock);
1158 release_netdev:
1159         dev_put(netdev);
1160 disable_cad:
1161         clean_acked_data_disable(inet_csk(sk));
1162         crypto_free_aead(offload_ctx->aead_send);
1163 free_rec_seq:
1164         kfree(ctx->tx.rec_seq);
1165 free_iv:
1166         kfree(ctx->tx.iv);
1167 free_offload_ctx:
1168         kfree(offload_ctx);
1169         ctx->priv_ctx_tx = NULL;
1170 free_marker_record:
1171         kfree(start_marker_record);
1172         return rc;
1173 }
1174
1175 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1176 {
1177         struct tls12_crypto_info_aes_gcm_128 *info;
1178         struct tls_offload_context_rx *context;
1179         struct net_device *netdev;
1180         int rc = 0;
1181
1182         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1183                 return -EOPNOTSUPP;
1184
1185         netdev = get_netdev_for_sock(sk);
1186         if (!netdev) {
1187                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1188                 return -EINVAL;
1189         }
1190
1191         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1192                 rc = -EOPNOTSUPP;
1193                 goto release_netdev;
1194         }
1195
1196         /* Avoid offloading if the device is down
1197          * We don't want to offload new flows after
1198          * the NETDEV_DOWN event
1199          *
1200          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1201          * handler thus protecting from the device going down before
1202          * ctx was added to tls_device_list.
1203          */
1204         down_read(&device_offload_lock);
1205         if (!(netdev->flags & IFF_UP)) {
1206                 rc = -EINVAL;
1207                 goto release_lock;
1208         }
1209
1210         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1211         if (!context) {
1212                 rc = -ENOMEM;
1213                 goto release_lock;
1214         }
1215         context->resync_nh_reset = 1;
1216
1217         ctx->priv_ctx_rx = context;
1218         rc = tls_set_sw_offload(sk, ctx, 0);
1219         if (rc)
1220                 goto release_ctx;
1221
1222         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1223                                              &ctx->crypto_recv.info,
1224                                              tcp_sk(sk)->copied_seq);
1225         info = (void *)&ctx->crypto_recv.info;
1226         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1227                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1228         if (rc)
1229                 goto free_sw_resources;
1230
1231         tls_device_attach(ctx, sk, netdev);
1232         up_read(&device_offload_lock);
1233
1234         dev_put(netdev);
1235
1236         return 0;
1237
1238 free_sw_resources:
1239         up_read(&device_offload_lock);
1240         tls_sw_free_resources_rx(sk);
1241         down_read(&device_offload_lock);
1242 release_ctx:
1243         ctx->priv_ctx_rx = NULL;
1244 release_lock:
1245         up_read(&device_offload_lock);
1246 release_netdev:
1247         dev_put(netdev);
1248         return rc;
1249 }
1250
1251 void tls_device_offload_cleanup_rx(struct sock *sk)
1252 {
1253         struct tls_context *tls_ctx = tls_get_ctx(sk);
1254         struct net_device *netdev;
1255
1256         down_read(&device_offload_lock);
1257         netdev = tls_ctx->netdev;
1258         if (!netdev)
1259                 goto out;
1260
1261         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1262                                         TLS_OFFLOAD_CTX_DIR_RX);
1263
1264         if (tls_ctx->tx_conf != TLS_HW) {
1265                 dev_put(netdev);
1266                 tls_ctx->netdev = NULL;
1267         } else {
1268                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1269         }
1270 out:
1271         up_read(&device_offload_lock);
1272         tls_sw_release_resources_rx(sk);
1273 }
1274
1275 static int tls_device_down(struct net_device *netdev)
1276 {
1277         struct tls_context *ctx, *tmp;
1278         unsigned long flags;
1279         LIST_HEAD(list);
1280
1281         /* Request a write lock to block new offload attempts */
1282         down_write(&device_offload_lock);
1283
1284         spin_lock_irqsave(&tls_device_lock, flags);
1285         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1286                 if (ctx->netdev != netdev ||
1287                     !refcount_inc_not_zero(&ctx->refcount))
1288                         continue;
1289
1290                 list_move(&ctx->list, &list);
1291         }
1292         spin_unlock_irqrestore(&tls_device_lock, flags);
1293
1294         list_for_each_entry_safe(ctx, tmp, &list, list) {
1295                 if (ctx->tx_conf == TLS_HW)
1296                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1297                                                         TLS_OFFLOAD_CTX_DIR_TX);
1298                 if (ctx->rx_conf == TLS_HW &&
1299                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1300                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1301                                                         TLS_OFFLOAD_CTX_DIR_RX);
1302                 WRITE_ONCE(ctx->netdev, NULL);
1303                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1304                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1305                         usleep_range(10, 200);
1306                 dev_put(netdev);
1307                 list_del_init(&ctx->list);
1308
1309                 if (refcount_dec_and_test(&ctx->refcount))
1310                         tls_device_free_ctx(ctx);
1311         }
1312
1313         up_write(&device_offload_lock);
1314
1315         flush_work(&tls_device_gc_work);
1316
1317         return NOTIFY_DONE;
1318 }
1319
1320 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1321                          void *ptr)
1322 {
1323         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1324
1325         if (!dev->tlsdev_ops &&
1326             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1327                 return NOTIFY_DONE;
1328
1329         switch (event) {
1330         case NETDEV_REGISTER:
1331         case NETDEV_FEAT_CHANGE:
1332                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1333                     !dev->tlsdev_ops->tls_dev_resync)
1334                         return NOTIFY_BAD;
1335
1336                 if  (dev->tlsdev_ops &&
1337                      dev->tlsdev_ops->tls_dev_add &&
1338                      dev->tlsdev_ops->tls_dev_del)
1339                         return NOTIFY_DONE;
1340                 else
1341                         return NOTIFY_BAD;
1342         case NETDEV_DOWN:
1343                 return tls_device_down(dev);
1344         }
1345         return NOTIFY_DONE;
1346 }
1347
1348 static struct notifier_block tls_dev_notifier = {
1349         .notifier_call  = tls_dev_event,
1350 };
1351
1352 void __init tls_device_init(void)
1353 {
1354         register_netdevice_notifier(&tls_dev_notifier);
1355 }
1356
1357 void __exit tls_device_cleanup(void)
1358 {
1359         unregister_netdevice_notifier(&tls_dev_notifier);
1360         flush_work(&tls_device_gc_work);
1361         clean_acked_data_flush();
1362 }