Merge tag 'kbuild-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE      (2048)
37 #define RPC_BUFFER_POOLSIZE     (8)
38 #define RPC_TASK_POOLSIZE       (8)
39 static struct kmem_cache        *rpc_task_slabp __read_mostly;
40 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
41 static mempool_t        *rpc_task_mempool __read_mostly;
42 static mempool_t        *rpc_buffer_mempool __read_mostly;
43
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63         unsigned long timeout = READ_ONCE(task->tk_timeout);
64
65         if (timeout != 0) {
66                 unsigned long now = jiffies;
67                 if (time_before(now, timeout))
68                         return timeout - now;
69         }
70         return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82         if (list_empty(&task->u.tk_wait.timer_list))
83                 return;
84         task->tk_timeout = 0;
85         list_del(&task->u.tk_wait.timer_list);
86         if (list_empty(&queue->timer_list.list))
87                 cancel_delayed_work(&queue->timer_list.dwork);
88 }
89
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93         unsigned long now = jiffies;
94         queue->timer_list.expires = expires;
95         if (time_before_eq(expires, now))
96                 expires = 0;
97         else
98                 expires -= now;
99         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107                 unsigned long timeout)
108 {
109         task->tk_timeout = timeout;
110         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111                 rpc_set_queue_timer(queue, timeout);
112         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117         if (queue->priority != priority) {
118                 queue->priority = priority;
119                 queue->nr = 1U << priority;
120         }
121 }
122
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125         rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127
128 /*
129  * Add a request to a queue list
130  */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134         struct rpc_task *t;
135
136         list_for_each_entry(t, q, u.tk_wait.list) {
137                 if (t->tk_owner == task->tk_owner) {
138                         list_add_tail(&task->u.tk_wait.links,
139                                         &t->u.tk_wait.links);
140                         /* Cache the queue head in task->u.tk_wait.list */
141                         task->u.tk_wait.list.next = q;
142                         task->u.tk_wait.list.prev = NULL;
143                         return;
144                 }
145         }
146         INIT_LIST_HEAD(&task->u.tk_wait.links);
147         list_add_tail(&task->u.tk_wait.list, q);
148 }
149
150 /*
151  * Remove request from a queue list
152  */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156         struct list_head *q;
157         struct rpc_task *t;
158
159         if (task->u.tk_wait.list.prev == NULL) {
160                 list_del(&task->u.tk_wait.links);
161                 return;
162         }
163         if (!list_empty(&task->u.tk_wait.links)) {
164                 t = list_first_entry(&task->u.tk_wait.links,
165                                 struct rpc_task,
166                                 u.tk_wait.links);
167                 /* Assume __rpc_list_enqueue_task() cached the queue head */
168                 q = t->u.tk_wait.list.next;
169                 list_add_tail(&t->u.tk_wait.list, q);
170                 list_del(&task->u.tk_wait.links);
171         }
172         list_del(&task->u.tk_wait.list);
173 }
174
175 /*
176  * Add new request to a priority queue.
177  */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179                 struct rpc_task *task,
180                 unsigned char queue_priority)
181 {
182         if (unlikely(queue_priority > queue->maxpriority))
183                 queue_priority = queue->maxpriority;
184         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186
187 /*
188  * Add new request to wait queue.
189  *
190  * Swapper tasks always get inserted at the head of the queue.
191  * This should avoid many nasty memory deadlocks and hopefully
192  * improve overall performance.
193  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194  */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196                 struct rpc_task *task,
197                 unsigned char queue_priority)
198 {
199         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200         if (RPC_IS_PRIORITY(queue))
201                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
202         else if (RPC_IS_SWAPPER(task))
203                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204         else
205                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206         task->tk_waitqueue = queue;
207         queue->qlen++;
208         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
209         smp_wmb();
210         rpc_set_queued(task);
211 }
212
213 /*
214  * Remove request from a priority queue.
215  */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218         __rpc_list_dequeue_task(task);
219 }
220
221 /*
222  * Remove request from queue.
223  * Note: must be called with spin lock held.
224  */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227         __rpc_disable_timer(queue, task);
228         if (RPC_IS_PRIORITY(queue))
229                 __rpc_remove_wait_queue_priority(task);
230         else
231                 list_del(&task->u.tk_wait.list);
232         queue->qlen--;
233 }
234
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237         int i;
238
239         spin_lock_init(&queue->lock);
240         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241                 INIT_LIST_HEAD(&queue->tasks[i]);
242         queue->maxpriority = nr_queues - 1;
243         rpc_reset_waitqueue_priority(queue);
244         queue->qlen = 0;
245         queue->timer_list.expires = 0;
246         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247         INIT_LIST_HEAD(&queue->timer_list.list);
248         rpc_assign_waitqueue_name(queue, qname);
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259         __rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265         cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271         freezable_schedule_unsafe();
272         if (signal_pending_state(mode, current))
273                 return -ERESTARTSYS;
274         return 0;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280         static atomic_t rpc_pid;
281
282         task->tk_pid = atomic_inc_return(&rpc_pid);
283 }
284 #else
285 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287 }
288 #endif
289
290 static void rpc_set_active(struct rpc_task *task)
291 {
292         rpc_task_set_debuginfo(task);
293         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
294         trace_rpc_task_begin(task, NULL);
295 }
296
297 /*
298  * Mark an RPC call as having completed by clearing the 'active' bit
299  * and then waking up all tasks that were sleeping.
300  */
301 static int rpc_complete_task(struct rpc_task *task)
302 {
303         void *m = &task->tk_runstate;
304         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
305         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
306         unsigned long flags;
307         int ret;
308
309         trace_rpc_task_complete(task, NULL);
310
311         spin_lock_irqsave(&wq->lock, flags);
312         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
313         ret = atomic_dec_and_test(&task->tk_count);
314         if (waitqueue_active(wq))
315                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
316         spin_unlock_irqrestore(&wq->lock, flags);
317         return ret;
318 }
319
320 /*
321  * Allow callers to wait for completion of an RPC call
322  *
323  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
324  * to enforce taking of the wq->lock and hence avoid races with
325  * rpc_complete_task().
326  */
327 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
328 {
329         if (action == NULL)
330                 action = rpc_wait_bit_killable;
331         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
332                         action, TASK_KILLABLE);
333 }
334 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
335
336 /*
337  * Make an RPC task runnable.
338  *
339  * Note: If the task is ASYNC, and is being made runnable after sitting on an
340  * rpc_wait_queue, this must be called with the queue spinlock held to protect
341  * the wait queue operation.
342  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
343  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
344  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
345  * the RPC_TASK_RUNNING flag.
346  */
347 static void rpc_make_runnable(struct workqueue_struct *wq,
348                 struct rpc_task *task)
349 {
350         bool need_wakeup = !rpc_test_and_set_running(task);
351
352         rpc_clear_queued(task);
353         if (!need_wakeup)
354                 return;
355         if (RPC_IS_ASYNC(task)) {
356                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
357                 queue_work(wq, &task->u.tk_work);
358         } else
359                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
360 }
361
362 /*
363  * Prepare for sleeping on a wait queue.
364  * By always appending tasks to the list we ensure FIFO behavior.
365  * NB: An RPC task will only receive interrupt-driven events as long
366  * as it's on a wait queue.
367  */
368 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
369                 struct rpc_task *task,
370                 unsigned char queue_priority)
371 {
372         trace_rpc_task_sleep(task, q);
373
374         __rpc_add_wait_queue(q, task, queue_priority);
375 }
376
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378                 struct rpc_task *task,
379                 unsigned char queue_priority)
380 {
381         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
382                 return;
383         __rpc_do_sleep_on_priority(q, task, queue_priority);
384 }
385
386 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
387                 struct rpc_task *task, unsigned long timeout,
388                 unsigned char queue_priority)
389 {
390         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391                 return;
392         if (time_is_after_jiffies(timeout)) {
393                 __rpc_do_sleep_on_priority(q, task, queue_priority);
394                 __rpc_add_timer(q, task, timeout);
395         } else
396                 task->tk_status = -ETIMEDOUT;
397 }
398
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402                 task->tk_callback = action;
403 }
404
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407         /* We shouldn't ever put an inactive task to sleep */
408         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409                 task->tk_status = -EIO;
410                 rpc_put_task_async(task);
411                 return false;
412         }
413         return true;
414 }
415
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417                                 rpc_action action, unsigned long timeout)
418 {
419         if (!rpc_sleep_check_activated(task))
420                 return;
421
422         rpc_set_tk_callback(task, action);
423
424         /*
425          * Protect the queue operations.
426          */
427         spin_lock(&q->lock);
428         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429         spin_unlock(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434                                 rpc_action action)
435 {
436         if (!rpc_sleep_check_activated(task))
437                 return;
438
439         rpc_set_tk_callback(task, action);
440
441         WARN_ON_ONCE(task->tk_timeout != 0);
442         /*
443          * Protect the queue operations.
444          */
445         spin_lock(&q->lock);
446         __rpc_sleep_on_priority(q, task, task->tk_priority);
447         spin_unlock(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452                 struct rpc_task *task, unsigned long timeout, int priority)
453 {
454         if (!rpc_sleep_check_activated(task))
455                 return;
456
457         priority -= RPC_PRIORITY_LOW;
458         /*
459          * Protect the queue operations.
460          */
461         spin_lock(&q->lock);
462         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463         spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468                 int priority)
469 {
470         if (!rpc_sleep_check_activated(task))
471                 return;
472
473         WARN_ON_ONCE(task->tk_timeout != 0);
474         priority -= RPC_PRIORITY_LOW;
475         /*
476          * Protect the queue operations.
477          */
478         spin_lock(&q->lock);
479         __rpc_sleep_on_priority(q, task, priority);
480         spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483
484 /**
485  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486  * @wq: workqueue on which to run task
487  * @queue: wait queue
488  * @task: task to be woken up
489  *
490  * Caller must hold queue->lock, and have cleared the task queued flag.
491  */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493                 struct rpc_wait_queue *queue,
494                 struct rpc_task *task)
495 {
496         /* Has the task been executed yet? If not, we cannot wake it up! */
497         if (!RPC_IS_ACTIVATED(task)) {
498                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
499                 return;
500         }
501
502         trace_rpc_task_wakeup(task, queue);
503
504         __rpc_remove_wait_queue(queue, task);
505
506         rpc_make_runnable(wq, task);
507 }
508
509 /*
510  * Wake up a queued task while the queue lock is being held
511  */
512 static struct rpc_task *
513 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
514                 struct rpc_wait_queue *queue, struct rpc_task *task,
515                 bool (*action)(struct rpc_task *, void *), void *data)
516 {
517         if (RPC_IS_QUEUED(task)) {
518                 smp_rmb();
519                 if (task->tk_waitqueue == queue) {
520                         if (action == NULL || action(task, data)) {
521                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
522                                 return task;
523                         }
524                 }
525         }
526         return NULL;
527 }
528
529 /*
530  * Wake up a queued task while the queue lock is being held
531  */
532 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
533                                           struct rpc_task *task)
534 {
535         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
536                                                    task, NULL, NULL);
537 }
538
539 /*
540  * Wake up a task on a specific queue
541  */
542 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
543 {
544         if (!RPC_IS_QUEUED(task))
545                 return;
546         spin_lock(&queue->lock);
547         rpc_wake_up_task_queue_locked(queue, task);
548         spin_unlock(&queue->lock);
549 }
550 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
551
552 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
553 {
554         task->tk_status = *(int *)status;
555         return true;
556 }
557
558 static void
559 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
560                 struct rpc_task *task, int status)
561 {
562         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
563                         task, rpc_task_action_set_status, &status);
564 }
565
566 /**
567  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
568  * @queue: pointer to rpc_wait_queue
569  * @task: pointer to rpc_task
570  * @status: integer error value
571  *
572  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
573  * set to the value of @status.
574  */
575 void
576 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
577                 struct rpc_task *task, int status)
578 {
579         if (!RPC_IS_QUEUED(task))
580                 return;
581         spin_lock(&queue->lock);
582         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
583         spin_unlock(&queue->lock);
584 }
585
586 /*
587  * Wake up the next task on a priority queue.
588  */
589 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
590 {
591         struct list_head *q;
592         struct rpc_task *task;
593
594         /*
595          * Service the privileged queue.
596          */
597         q = &queue->tasks[RPC_NR_PRIORITY - 1];
598         if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
599                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
600                 goto out;
601         }
602
603         /*
604          * Service a batch of tasks from a single owner.
605          */
606         q = &queue->tasks[queue->priority];
607         if (!list_empty(q) && queue->nr) {
608                 queue->nr--;
609                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
610                 goto out;
611         }
612
613         /*
614          * Service the next queue.
615          */
616         do {
617                 if (q == &queue->tasks[0])
618                         q = &queue->tasks[queue->maxpriority];
619                 else
620                         q = q - 1;
621                 if (!list_empty(q)) {
622                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
623                         goto new_queue;
624                 }
625         } while (q != &queue->tasks[queue->priority]);
626
627         rpc_reset_waitqueue_priority(queue);
628         return NULL;
629
630 new_queue:
631         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
632 out:
633         return task;
634 }
635
636 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
637 {
638         if (RPC_IS_PRIORITY(queue))
639                 return __rpc_find_next_queued_priority(queue);
640         if (!list_empty(&queue->tasks[0]))
641                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
642         return NULL;
643 }
644
645 /*
646  * Wake up the first task on the wait queue.
647  */
648 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
649                 struct rpc_wait_queue *queue,
650                 bool (*func)(struct rpc_task *, void *), void *data)
651 {
652         struct rpc_task *task = NULL;
653
654         spin_lock(&queue->lock);
655         task = __rpc_find_next_queued(queue);
656         if (task != NULL)
657                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
658                                 task, func, data);
659         spin_unlock(&queue->lock);
660
661         return task;
662 }
663
664 /*
665  * Wake up the first task on the wait queue.
666  */
667 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
668                 bool (*func)(struct rpc_task *, void *), void *data)
669 {
670         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
671 }
672 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
673
674 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
675 {
676         return true;
677 }
678
679 /*
680  * Wake up the next task on the wait queue.
681 */
682 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
683 {
684         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
685 }
686 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
687
688 /**
689  * rpc_wake_up_locked - wake up all rpc_tasks
690  * @queue: rpc_wait_queue on which the tasks are sleeping
691  *
692  */
693 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
694 {
695         struct rpc_task *task;
696
697         for (;;) {
698                 task = __rpc_find_next_queued(queue);
699                 if (task == NULL)
700                         break;
701                 rpc_wake_up_task_queue_locked(queue, task);
702         }
703 }
704
705 /**
706  * rpc_wake_up - wake up all rpc_tasks
707  * @queue: rpc_wait_queue on which the tasks are sleeping
708  *
709  * Grabs queue->lock
710  */
711 void rpc_wake_up(struct rpc_wait_queue *queue)
712 {
713         spin_lock(&queue->lock);
714         rpc_wake_up_locked(queue);
715         spin_unlock(&queue->lock);
716 }
717 EXPORT_SYMBOL_GPL(rpc_wake_up);
718
719 /**
720  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
721  * @queue: rpc_wait_queue on which the tasks are sleeping
722  * @status: status value to set
723  */
724 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
725 {
726         struct rpc_task *task;
727
728         for (;;) {
729                 task = __rpc_find_next_queued(queue);
730                 if (task == NULL)
731                         break;
732                 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
733         }
734 }
735
736 /**
737  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
738  * @queue: rpc_wait_queue on which the tasks are sleeping
739  * @status: status value to set
740  *
741  * Grabs queue->lock
742  */
743 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
744 {
745         spin_lock(&queue->lock);
746         rpc_wake_up_status_locked(queue, status);
747         spin_unlock(&queue->lock);
748 }
749 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
750
751 static void __rpc_queue_timer_fn(struct work_struct *work)
752 {
753         struct rpc_wait_queue *queue = container_of(work,
754                         struct rpc_wait_queue,
755                         timer_list.dwork.work);
756         struct rpc_task *task, *n;
757         unsigned long expires, now, timeo;
758
759         spin_lock(&queue->lock);
760         expires = now = jiffies;
761         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
762                 timeo = task->tk_timeout;
763                 if (time_after_eq(now, timeo)) {
764                         trace_rpc_task_timeout(task, task->tk_action);
765                         task->tk_status = -ETIMEDOUT;
766                         rpc_wake_up_task_queue_locked(queue, task);
767                         continue;
768                 }
769                 if (expires == now || time_after(expires, timeo))
770                         expires = timeo;
771         }
772         if (!list_empty(&queue->timer_list.list))
773                 rpc_set_queue_timer(queue, expires);
774         spin_unlock(&queue->lock);
775 }
776
777 static void __rpc_atrun(struct rpc_task *task)
778 {
779         if (task->tk_status == -ETIMEDOUT)
780                 task->tk_status = 0;
781 }
782
783 /*
784  * Run a task at a later time
785  */
786 void rpc_delay(struct rpc_task *task, unsigned long delay)
787 {
788         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
789 }
790 EXPORT_SYMBOL_GPL(rpc_delay);
791
792 /*
793  * Helper to call task->tk_ops->rpc_call_prepare
794  */
795 void rpc_prepare_task(struct rpc_task *task)
796 {
797         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
798 }
799
800 static void
801 rpc_init_task_statistics(struct rpc_task *task)
802 {
803         /* Initialize retry counters */
804         task->tk_garb_retry = 2;
805         task->tk_cred_retry = 2;
806         task->tk_rebind_retry = 2;
807
808         /* starting timestamp */
809         task->tk_start = ktime_get();
810 }
811
812 static void
813 rpc_reset_task_statistics(struct rpc_task *task)
814 {
815         task->tk_timeouts = 0;
816         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
817         rpc_init_task_statistics(task);
818 }
819
820 /*
821  * Helper that calls task->tk_ops->rpc_call_done if it exists
822  */
823 void rpc_exit_task(struct rpc_task *task)
824 {
825         trace_rpc_task_end(task, task->tk_action);
826         task->tk_action = NULL;
827         if (task->tk_ops->rpc_count_stats)
828                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
829         else if (task->tk_client)
830                 rpc_count_iostats(task, task->tk_client->cl_metrics);
831         if (task->tk_ops->rpc_call_done != NULL) {
832                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
833                 if (task->tk_action != NULL) {
834                         /* Always release the RPC slot and buffer memory */
835                         xprt_release(task);
836                         rpc_reset_task_statistics(task);
837                 }
838         }
839 }
840
841 void rpc_signal_task(struct rpc_task *task)
842 {
843         struct rpc_wait_queue *queue;
844
845         if (!RPC_IS_ACTIVATED(task))
846                 return;
847
848         trace_rpc_task_signalled(task, task->tk_action);
849         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
850         smp_mb__after_atomic();
851         queue = READ_ONCE(task->tk_waitqueue);
852         if (queue)
853                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
854 }
855
856 void rpc_exit(struct rpc_task *task, int status)
857 {
858         task->tk_status = status;
859         task->tk_action = rpc_exit_task;
860         rpc_wake_up_queued_task(task->tk_waitqueue, task);
861 }
862 EXPORT_SYMBOL_GPL(rpc_exit);
863
864 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
865 {
866         if (ops->rpc_release != NULL)
867                 ops->rpc_release(calldata);
868 }
869
870 /*
871  * This is the RPC `scheduler' (or rather, the finite state machine).
872  */
873 static void __rpc_execute(struct rpc_task *task)
874 {
875         struct rpc_wait_queue *queue;
876         int task_is_async = RPC_IS_ASYNC(task);
877         int status = 0;
878
879         WARN_ON_ONCE(RPC_IS_QUEUED(task));
880         if (RPC_IS_QUEUED(task))
881                 return;
882
883         for (;;) {
884                 void (*do_action)(struct rpc_task *);
885
886                 /*
887                  * Perform the next FSM step or a pending callback.
888                  *
889                  * tk_action may be NULL if the task has been killed.
890                  * In particular, note that rpc_killall_tasks may
891                  * do this at any time, so beware when dereferencing.
892                  */
893                 do_action = task->tk_action;
894                 if (task->tk_callback) {
895                         do_action = task->tk_callback;
896                         task->tk_callback = NULL;
897                 }
898                 if (!do_action)
899                         break;
900                 trace_rpc_task_run_action(task, do_action);
901                 do_action(task);
902
903                 /*
904                  * Lockless check for whether task is sleeping or not.
905                  */
906                 if (!RPC_IS_QUEUED(task))
907                         continue;
908
909                 /*
910                  * Signalled tasks should exit rather than sleep.
911                  */
912                 if (RPC_SIGNALLED(task)) {
913                         task->tk_rpc_status = -ERESTARTSYS;
914                         rpc_exit(task, -ERESTARTSYS);
915                 }
916
917                 /*
918                  * The queue->lock protects against races with
919                  * rpc_make_runnable().
920                  *
921                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
922                  * rpc_task, rpc_make_runnable() can assign it to a
923                  * different workqueue. We therefore cannot assume that the
924                  * rpc_task pointer may still be dereferenced.
925                  */
926                 queue = task->tk_waitqueue;
927                 spin_lock(&queue->lock);
928                 if (!RPC_IS_QUEUED(task)) {
929                         spin_unlock(&queue->lock);
930                         continue;
931                 }
932                 rpc_clear_running(task);
933                 spin_unlock(&queue->lock);
934                 if (task_is_async)
935                         return;
936
937                 /* sync task: sleep here */
938                 trace_rpc_task_sync_sleep(task, task->tk_action);
939                 status = out_of_line_wait_on_bit(&task->tk_runstate,
940                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
941                                 TASK_KILLABLE);
942                 if (status < 0) {
943                         /*
944                          * When a sync task receives a signal, it exits with
945                          * -ERESTARTSYS. In order to catch any callbacks that
946                          * clean up after sleeping on some queue, we don't
947                          * break the loop here, but go around once more.
948                          */
949                         trace_rpc_task_signalled(task, task->tk_action);
950                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
951                         task->tk_rpc_status = -ERESTARTSYS;
952                         rpc_exit(task, -ERESTARTSYS);
953                 }
954                 trace_rpc_task_sync_wake(task, task->tk_action);
955         }
956
957         /* Release all resources associated with the task */
958         rpc_release_task(task);
959 }
960
961 /*
962  * User-visible entry point to the scheduler.
963  *
964  * This may be called recursively if e.g. an async NFS task updates
965  * the attributes and finds that dirty pages must be flushed.
966  * NOTE: Upon exit of this function the task is guaranteed to be
967  *       released. In particular note that tk_release() will have
968  *       been called, so your task memory may have been freed.
969  */
970 void rpc_execute(struct rpc_task *task)
971 {
972         bool is_async = RPC_IS_ASYNC(task);
973
974         rpc_set_active(task);
975         rpc_make_runnable(rpciod_workqueue, task);
976         if (!is_async) {
977                 unsigned int pflags = memalloc_nofs_save();
978                 __rpc_execute(task);
979                 memalloc_nofs_restore(pflags);
980         }
981 }
982
983 static void rpc_async_schedule(struct work_struct *work)
984 {
985         unsigned int pflags = memalloc_nofs_save();
986
987         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
988         memalloc_nofs_restore(pflags);
989 }
990
991 /**
992  * rpc_malloc - allocate RPC buffer resources
993  * @task: RPC task
994  *
995  * A single memory region is allocated, which is split between the
996  * RPC call and RPC reply that this task is being used for. When
997  * this RPC is retired, the memory is released by calling rpc_free.
998  *
999  * To prevent rpciod from hanging, this allocator never sleeps,
1000  * returning -ENOMEM and suppressing warning if the request cannot
1001  * be serviced immediately. The caller can arrange to sleep in a
1002  * way that is safe for rpciod.
1003  *
1004  * Most requests are 'small' (under 2KiB) and can be serviced from a
1005  * mempool, ensuring that NFS reads and writes can always proceed,
1006  * and that there is good locality of reference for these buffers.
1007  */
1008 int rpc_malloc(struct rpc_task *task)
1009 {
1010         struct rpc_rqst *rqst = task->tk_rqstp;
1011         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1012         struct rpc_buffer *buf;
1013         gfp_t gfp = GFP_NOFS;
1014
1015         if (RPC_IS_SWAPPER(task))
1016                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1017
1018         size += sizeof(struct rpc_buffer);
1019         if (size <= RPC_BUFFER_MAXSIZE)
1020                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1021         else
1022                 buf = kmalloc(size, gfp);
1023
1024         if (!buf)
1025                 return -ENOMEM;
1026
1027         buf->len = size;
1028         rqst->rq_buffer = buf->data;
1029         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1030         return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(rpc_malloc);
1033
1034 /**
1035  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1036  * @task: RPC task
1037  *
1038  */
1039 void rpc_free(struct rpc_task *task)
1040 {
1041         void *buffer = task->tk_rqstp->rq_buffer;
1042         size_t size;
1043         struct rpc_buffer *buf;
1044
1045         buf = container_of(buffer, struct rpc_buffer, data);
1046         size = buf->len;
1047
1048         if (size <= RPC_BUFFER_MAXSIZE)
1049                 mempool_free(buf, rpc_buffer_mempool);
1050         else
1051                 kfree(buf);
1052 }
1053 EXPORT_SYMBOL_GPL(rpc_free);
1054
1055 /*
1056  * Creation and deletion of RPC task structures
1057  */
1058 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1059 {
1060         memset(task, 0, sizeof(*task));
1061         atomic_set(&task->tk_count, 1);
1062         task->tk_flags  = task_setup_data->flags;
1063         task->tk_ops = task_setup_data->callback_ops;
1064         task->tk_calldata = task_setup_data->callback_data;
1065         INIT_LIST_HEAD(&task->tk_task);
1066
1067         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1068         task->tk_owner = current->tgid;
1069
1070         /* Initialize workqueue for async tasks */
1071         task->tk_workqueue = task_setup_data->workqueue;
1072
1073         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1074                         xprt_get(task_setup_data->rpc_xprt));
1075
1076         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1077
1078         if (task->tk_ops->rpc_call_prepare != NULL)
1079                 task->tk_action = rpc_prepare_task;
1080
1081         rpc_init_task_statistics(task);
1082 }
1083
1084 static struct rpc_task *
1085 rpc_alloc_task(void)
1086 {
1087         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1088 }
1089
1090 /*
1091  * Create a new task for the specified client.
1092  */
1093 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1094 {
1095         struct rpc_task *task = setup_data->task;
1096         unsigned short flags = 0;
1097
1098         if (task == NULL) {
1099                 task = rpc_alloc_task();
1100                 flags = RPC_TASK_DYNAMIC;
1101         }
1102
1103         rpc_init_task(task, setup_data);
1104         task->tk_flags |= flags;
1105         return task;
1106 }
1107
1108 /*
1109  * rpc_free_task - release rpc task and perform cleanups
1110  *
1111  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1112  * in order to work around a workqueue dependency issue.
1113  *
1114  * Tejun Heo states:
1115  * "Workqueue currently considers two work items to be the same if they're
1116  * on the same address and won't execute them concurrently - ie. it
1117  * makes a work item which is queued again while being executed wait
1118  * for the previous execution to complete.
1119  *
1120  * If a work function frees the work item, and then waits for an event
1121  * which should be performed by another work item and *that* work item
1122  * recycles the freed work item, it can create a false dependency loop.
1123  * There really is no reliable way to detect this short of verifying
1124  * every memory free."
1125  *
1126  */
1127 static void rpc_free_task(struct rpc_task *task)
1128 {
1129         unsigned short tk_flags = task->tk_flags;
1130
1131         put_rpccred(task->tk_op_cred);
1132         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1133
1134         if (tk_flags & RPC_TASK_DYNAMIC)
1135                 mempool_free(task, rpc_task_mempool);
1136 }
1137
1138 static void rpc_async_release(struct work_struct *work)
1139 {
1140         unsigned int pflags = memalloc_nofs_save();
1141
1142         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1143         memalloc_nofs_restore(pflags);
1144 }
1145
1146 static void rpc_release_resources_task(struct rpc_task *task)
1147 {
1148         xprt_release(task);
1149         if (task->tk_msg.rpc_cred) {
1150                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1151                         put_cred(task->tk_msg.rpc_cred);
1152                 task->tk_msg.rpc_cred = NULL;
1153         }
1154         rpc_task_release_client(task);
1155 }
1156
1157 static void rpc_final_put_task(struct rpc_task *task,
1158                 struct workqueue_struct *q)
1159 {
1160         if (q != NULL) {
1161                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1162                 queue_work(q, &task->u.tk_work);
1163         } else
1164                 rpc_free_task(task);
1165 }
1166
1167 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1168 {
1169         if (atomic_dec_and_test(&task->tk_count)) {
1170                 rpc_release_resources_task(task);
1171                 rpc_final_put_task(task, q);
1172         }
1173 }
1174
1175 void rpc_put_task(struct rpc_task *task)
1176 {
1177         rpc_do_put_task(task, NULL);
1178 }
1179 EXPORT_SYMBOL_GPL(rpc_put_task);
1180
1181 void rpc_put_task_async(struct rpc_task *task)
1182 {
1183         rpc_do_put_task(task, task->tk_workqueue);
1184 }
1185 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1186
1187 static void rpc_release_task(struct rpc_task *task)
1188 {
1189         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1190
1191         rpc_release_resources_task(task);
1192
1193         /*
1194          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1195          * so it should be safe to use task->tk_count as a test for whether
1196          * or not any other processes still hold references to our rpc_task.
1197          */
1198         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1199                 /* Wake up anyone who may be waiting for task completion */
1200                 if (!rpc_complete_task(task))
1201                         return;
1202         } else {
1203                 if (!atomic_dec_and_test(&task->tk_count))
1204                         return;
1205         }
1206         rpc_final_put_task(task, task->tk_workqueue);
1207 }
1208
1209 int rpciod_up(void)
1210 {
1211         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1212 }
1213
1214 void rpciod_down(void)
1215 {
1216         module_put(THIS_MODULE);
1217 }
1218
1219 /*
1220  * Start up the rpciod workqueue.
1221  */
1222 static int rpciod_start(void)
1223 {
1224         struct workqueue_struct *wq;
1225
1226         /*
1227          * Create the rpciod thread and wait for it to start.
1228          */
1229         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1230         if (!wq)
1231                 goto out_failed;
1232         rpciod_workqueue = wq;
1233         /* Note: highpri because network receive is latency sensitive */
1234         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1235         if (!wq)
1236                 goto free_rpciod;
1237         xprtiod_workqueue = wq;
1238         return 1;
1239 free_rpciod:
1240         wq = rpciod_workqueue;
1241         rpciod_workqueue = NULL;
1242         destroy_workqueue(wq);
1243 out_failed:
1244         return 0;
1245 }
1246
1247 static void rpciod_stop(void)
1248 {
1249         struct workqueue_struct *wq = NULL;
1250
1251         if (rpciod_workqueue == NULL)
1252                 return;
1253
1254         wq = rpciod_workqueue;
1255         rpciod_workqueue = NULL;
1256         destroy_workqueue(wq);
1257         wq = xprtiod_workqueue;
1258         xprtiod_workqueue = NULL;
1259         destroy_workqueue(wq);
1260 }
1261
1262 void
1263 rpc_destroy_mempool(void)
1264 {
1265         rpciod_stop();
1266         mempool_destroy(rpc_buffer_mempool);
1267         mempool_destroy(rpc_task_mempool);
1268         kmem_cache_destroy(rpc_task_slabp);
1269         kmem_cache_destroy(rpc_buffer_slabp);
1270         rpc_destroy_wait_queue(&delay_queue);
1271 }
1272
1273 int
1274 rpc_init_mempool(void)
1275 {
1276         /*
1277          * The following is not strictly a mempool initialisation,
1278          * but there is no harm in doing it here
1279          */
1280         rpc_init_wait_queue(&delay_queue, "delayq");
1281         if (!rpciod_start())
1282                 goto err_nomem;
1283
1284         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1285                                              sizeof(struct rpc_task),
1286                                              0, SLAB_HWCACHE_ALIGN,
1287                                              NULL);
1288         if (!rpc_task_slabp)
1289                 goto err_nomem;
1290         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1291                                              RPC_BUFFER_MAXSIZE,
1292                                              0, SLAB_HWCACHE_ALIGN,
1293                                              NULL);
1294         if (!rpc_buffer_slabp)
1295                 goto err_nomem;
1296         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1297                                                     rpc_task_slabp);
1298         if (!rpc_task_mempool)
1299                 goto err_nomem;
1300         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1301                                                       rpc_buffer_slabp);
1302         if (!rpc_buffer_mempool)
1303                 goto err_nomem;
1304         return 0;
1305 err_nomem:
1306         rpc_destroy_mempool();
1307         return -ENOMEM;
1308 }