949163fe68afdeb95638998b8b28499d930ae023
[linux-2.6-microblaze.git] / net / sched / sch_fq_pie.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Flow Queue PIE discipline
3  *
4  * Copyright (C) 2019 Mohit P. Tahiliani <tahiliani@nitk.edu.in>
5  * Copyright (C) 2019 Sachin D. Patil <sdp.sachin@gmail.com>
6  * Copyright (C) 2019 V. Saicharan <vsaicharan1998@gmail.com>
7  * Copyright (C) 2019 Mohit Bhasi <mohitbhasi1998@gmail.com>
8  * Copyright (C) 2019 Leslie Monis <lesliemonis@gmail.com>
9  * Copyright (C) 2019 Gautam Ramakrishnan <gautamramk@gmail.com>
10  */
11
12 #include <linux/jhash.h>
13 #include <linux/sizes.h>
14 #include <linux/vmalloc.h>
15 #include <net/pkt_cls.h>
16 #include <net/pie.h>
17
18 /* Flow Queue PIE
19  *
20  * Principles:
21  *   - Packets are classified on flows.
22  *   - This is a Stochastic model (as we use a hash, several flows might
23  *                                 be hashed to the same slot)
24  *   - Each flow has a PIE managed queue.
25  *   - Flows are linked onto two (Round Robin) lists,
26  *     so that new flows have priority on old ones.
27  *   - For a given flow, packets are not reordered.
28  *   - Drops during enqueue only.
29  *   - ECN capability is off by default.
30  *   - ECN threshold (if ECN is enabled) is at 10% by default.
31  *   - Uses timestamps to calculate queue delay by default.
32  */
33
34 /**
35  * struct fq_pie_flow - contains data for each flow
36  * @vars:       pie vars associated with the flow
37  * @deficit:    number of remaining byte credits
38  * @backlog:    size of data in the flow
39  * @qlen:       number of packets in the flow
40  * @flowchain:  flowchain for the flow
41  * @head:       first packet in the flow
42  * @tail:       last packet in the flow
43  */
44 struct fq_pie_flow {
45         struct pie_vars vars;
46         s32 deficit;
47         u32 backlog;
48         u32 qlen;
49         struct list_head flowchain;
50         struct sk_buff *head;
51         struct sk_buff *tail;
52 };
53
54 struct fq_pie_sched_data {
55         struct tcf_proto __rcu *filter_list; /* optional external classifier */
56         struct tcf_block *block;
57         struct fq_pie_flow *flows;
58         struct Qdisc *sch;
59         struct list_head old_flows;
60         struct list_head new_flows;
61         struct pie_params p_params;
62         u32 ecn_prob;
63         u32 flows_cnt;
64         u32 quantum;
65         u32 memory_limit;
66         u32 new_flow_count;
67         u32 memory_usage;
68         u32 overmemory;
69         struct pie_stats stats;
70         struct timer_list adapt_timer;
71 };
72
73 static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q,
74                                 struct sk_buff *skb)
75 {
76         return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
77 }
78
79 static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch,
80                                     int *qerr)
81 {
82         struct fq_pie_sched_data *q = qdisc_priv(sch);
83         struct tcf_proto *filter;
84         struct tcf_result res;
85         int result;
86
87         if (TC_H_MAJ(skb->priority) == sch->handle &&
88             TC_H_MIN(skb->priority) > 0 &&
89             TC_H_MIN(skb->priority) <= q->flows_cnt)
90                 return TC_H_MIN(skb->priority);
91
92         filter = rcu_dereference_bh(q->filter_list);
93         if (!filter)
94                 return fq_pie_hash(q, skb) + 1;
95
96         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
97         result = tcf_classify(skb, filter, &res, false);
98         if (result >= 0) {
99 #ifdef CONFIG_NET_CLS_ACT
100                 switch (result) {
101                 case TC_ACT_STOLEN:
102                 case TC_ACT_QUEUED:
103                 case TC_ACT_TRAP:
104                         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
105                         fallthrough;
106                 case TC_ACT_SHOT:
107                         return 0;
108                 }
109 #endif
110                 if (TC_H_MIN(res.classid) <= q->flows_cnt)
111                         return TC_H_MIN(res.classid);
112         }
113         return 0;
114 }
115
116 /* add skb to flow queue (tail add) */
117 static inline void flow_queue_add(struct fq_pie_flow *flow,
118                                   struct sk_buff *skb)
119 {
120         if (!flow->head)
121                 flow->head = skb;
122         else
123                 flow->tail->next = skb;
124         flow->tail = skb;
125         skb->next = NULL;
126 }
127
128 static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
129                                 struct sk_buff **to_free)
130 {
131         struct fq_pie_sched_data *q = qdisc_priv(sch);
132         struct fq_pie_flow *sel_flow;
133         int ret;
134         u8 memory_limited = false;
135         u8 enqueue = false;
136         u32 pkt_len;
137         u32 idx;
138
139         /* Classifies packet into corresponding flow */
140         idx = fq_pie_classify(skb, sch, &ret);
141         sel_flow = &q->flows[idx];
142
143         /* Checks whether adding a new packet would exceed memory limit */
144         get_pie_cb(skb)->mem_usage = skb->truesize;
145         memory_limited = q->memory_usage > q->memory_limit + skb->truesize;
146
147         /* Checks if the qdisc is full */
148         if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
149                 q->stats.overlimit++;
150                 goto out;
151         } else if (unlikely(memory_limited)) {
152                 q->overmemory++;
153         }
154
155         if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars,
156                             sel_flow->backlog, skb->len)) {
157                 enqueue = true;
158         } else if (q->p_params.ecn &&
159                    sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob &&
160                    INET_ECN_set_ce(skb)) {
161                 /* If packet is ecn capable, mark it if drop probability
162                  * is lower than the parameter ecn_prob, else drop it.
163                  */
164                 q->stats.ecn_mark++;
165                 enqueue = true;
166         }
167         if (enqueue) {
168                 /* Set enqueue time only when dq_rate_estimator is disabled. */
169                 if (!q->p_params.dq_rate_estimator)
170                         pie_set_enqueue_time(skb);
171
172                 pkt_len = qdisc_pkt_len(skb);
173                 q->stats.packets_in++;
174                 q->memory_usage += skb->truesize;
175                 sch->qstats.backlog += pkt_len;
176                 sch->q.qlen++;
177                 flow_queue_add(sel_flow, skb);
178                 if (list_empty(&sel_flow->flowchain)) {
179                         list_add_tail(&sel_flow->flowchain, &q->new_flows);
180                         q->new_flow_count++;
181                         sel_flow->deficit = q->quantum;
182                         sel_flow->qlen = 0;
183                         sel_flow->backlog = 0;
184                 }
185                 sel_flow->qlen++;
186                 sel_flow->backlog += pkt_len;
187                 return NET_XMIT_SUCCESS;
188         }
189 out:
190         q->stats.dropped++;
191         sel_flow->vars.accu_prob = 0;
192         __qdisc_drop(skb, to_free);
193         qdisc_qstats_drop(sch);
194         return NET_XMIT_CN;
195 }
196
197 static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = {
198         [TCA_FQ_PIE_LIMIT]              = {.type = NLA_U32},
199         [TCA_FQ_PIE_FLOWS]              = {.type = NLA_U32},
200         [TCA_FQ_PIE_TARGET]             = {.type = NLA_U32},
201         [TCA_FQ_PIE_TUPDATE]            = {.type = NLA_U32},
202         [TCA_FQ_PIE_ALPHA]              = {.type = NLA_U32},
203         [TCA_FQ_PIE_BETA]               = {.type = NLA_U32},
204         [TCA_FQ_PIE_QUANTUM]            = {.type = NLA_U32},
205         [TCA_FQ_PIE_MEMORY_LIMIT]       = {.type = NLA_U32},
206         [TCA_FQ_PIE_ECN_PROB]           = {.type = NLA_U32},
207         [TCA_FQ_PIE_ECN]                = {.type = NLA_U32},
208         [TCA_FQ_PIE_BYTEMODE]           = {.type = NLA_U32},
209         [TCA_FQ_PIE_DQ_RATE_ESTIMATOR]  = {.type = NLA_U32},
210 };
211
212 static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow)
213 {
214         struct sk_buff *skb = flow->head;
215
216         flow->head = skb->next;
217         skb->next = NULL;
218         return skb;
219 }
220
221 static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch)
222 {
223         struct fq_pie_sched_data *q = qdisc_priv(sch);
224         struct sk_buff *skb = NULL;
225         struct fq_pie_flow *flow;
226         struct list_head *head;
227         u32 pkt_len;
228
229 begin:
230         head = &q->new_flows;
231         if (list_empty(head)) {
232                 head = &q->old_flows;
233                 if (list_empty(head))
234                         return NULL;
235         }
236
237         flow = list_first_entry(head, struct fq_pie_flow, flowchain);
238         /* Flow has exhausted all its credits */
239         if (flow->deficit <= 0) {
240                 flow->deficit += q->quantum;
241                 list_move_tail(&flow->flowchain, &q->old_flows);
242                 goto begin;
243         }
244
245         if (flow->head) {
246                 skb = dequeue_head(flow);
247                 pkt_len = qdisc_pkt_len(skb);
248                 sch->qstats.backlog -= pkt_len;
249                 sch->q.qlen--;
250                 qdisc_bstats_update(sch, skb);
251         }
252
253         if (!skb) {
254                 /* force a pass through old_flows to prevent starvation */
255                 if (head == &q->new_flows && !list_empty(&q->old_flows))
256                         list_move_tail(&flow->flowchain, &q->old_flows);
257                 else
258                         list_del_init(&flow->flowchain);
259                 goto begin;
260         }
261
262         flow->qlen--;
263         flow->deficit -= pkt_len;
264         flow->backlog -= pkt_len;
265         q->memory_usage -= get_pie_cb(skb)->mem_usage;
266         pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog);
267         return skb;
268 }
269
270 static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt,
271                          struct netlink_ext_ack *extack)
272 {
273         struct fq_pie_sched_data *q = qdisc_priv(sch);
274         struct nlattr *tb[TCA_FQ_PIE_MAX + 1];
275         unsigned int len_dropped = 0;
276         unsigned int num_dropped = 0;
277         int err;
278
279         if (!opt)
280                 return -EINVAL;
281
282         err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack);
283         if (err < 0)
284                 return err;
285
286         sch_tree_lock(sch);
287         if (tb[TCA_FQ_PIE_LIMIT]) {
288                 u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]);
289
290                 q->p_params.limit = limit;
291                 sch->limit = limit;
292         }
293         if (tb[TCA_FQ_PIE_FLOWS]) {
294                 if (q->flows) {
295                         NL_SET_ERR_MSG_MOD(extack,
296                                            "Number of flows cannot be changed");
297                         goto flow_error;
298                 }
299                 q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]);
300                 if (!q->flows_cnt || q->flows_cnt >= 65536) {
301                         NL_SET_ERR_MSG_MOD(extack,
302                                            "Number of flows must range in [1..65535]");
303                         goto flow_error;
304                 }
305         }
306
307         /* convert from microseconds to pschedtime */
308         if (tb[TCA_FQ_PIE_TARGET]) {
309                 /* target is in us */
310                 u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]);
311
312                 /* convert to pschedtime */
313                 q->p_params.target =
314                         PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
315         }
316
317         /* tupdate is in jiffies */
318         if (tb[TCA_FQ_PIE_TUPDATE])
319                 q->p_params.tupdate =
320                         usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE]));
321
322         if (tb[TCA_FQ_PIE_ALPHA])
323                 q->p_params.alpha = nla_get_u32(tb[TCA_FQ_PIE_ALPHA]);
324
325         if (tb[TCA_FQ_PIE_BETA])
326                 q->p_params.beta = nla_get_u32(tb[TCA_FQ_PIE_BETA]);
327
328         if (tb[TCA_FQ_PIE_QUANTUM])
329                 q->quantum = nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]);
330
331         if (tb[TCA_FQ_PIE_MEMORY_LIMIT])
332                 q->memory_limit = nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]);
333
334         if (tb[TCA_FQ_PIE_ECN_PROB])
335                 q->ecn_prob = nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]);
336
337         if (tb[TCA_FQ_PIE_ECN])
338                 q->p_params.ecn = nla_get_u32(tb[TCA_FQ_PIE_ECN]);
339
340         if (tb[TCA_FQ_PIE_BYTEMODE])
341                 q->p_params.bytemode = nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]);
342
343         if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR])
344                 q->p_params.dq_rate_estimator =
345                         nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]);
346
347         /* Drop excess packets if new limit is lower */
348         while (sch->q.qlen > sch->limit) {
349                 struct sk_buff *skb = fq_pie_qdisc_dequeue(sch);
350
351                 len_dropped += qdisc_pkt_len(skb);
352                 num_dropped += 1;
353                 rtnl_kfree_skbs(skb, skb);
354         }
355         qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped);
356
357         sch_tree_unlock(sch);
358         return 0;
359
360 flow_error:
361         sch_tree_unlock(sch);
362         return -EINVAL;
363 }
364
365 static void fq_pie_timer(struct timer_list *t)
366 {
367         struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer);
368         struct Qdisc *sch = q->sch;
369         spinlock_t *root_lock; /* to lock qdisc for probability calculations */
370         u16 idx;
371
372         root_lock = qdisc_lock(qdisc_root_sleeping(sch));
373         spin_lock(root_lock);
374
375         for (idx = 0; idx < q->flows_cnt; idx++)
376                 pie_calculate_probability(&q->p_params, &q->flows[idx].vars,
377                                           q->flows[idx].backlog);
378
379         /* reset the timer to fire after 'tupdate' jiffies. */
380         if (q->p_params.tupdate)
381                 mod_timer(&q->adapt_timer, jiffies + q->p_params.tupdate);
382
383         spin_unlock(root_lock);
384 }
385
386 static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt,
387                        struct netlink_ext_ack *extack)
388 {
389         struct fq_pie_sched_data *q = qdisc_priv(sch);
390         int err;
391         u16 idx;
392
393         pie_params_init(&q->p_params);
394         sch->limit = 10 * 1024;
395         q->p_params.limit = sch->limit;
396         q->quantum = psched_mtu(qdisc_dev(sch));
397         q->sch = sch;
398         q->ecn_prob = 10;
399         q->flows_cnt = 1024;
400         q->memory_limit = SZ_32M;
401
402         INIT_LIST_HEAD(&q->new_flows);
403         INIT_LIST_HEAD(&q->old_flows);
404         timer_setup(&q->adapt_timer, fq_pie_timer, 0);
405
406         if (opt) {
407                 err = fq_pie_change(sch, opt, extack);
408
409                 if (err)
410                         return err;
411         }
412
413         err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
414         if (err)
415                 goto init_failure;
416
417         q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow),
418                             GFP_KERNEL);
419         if (!q->flows) {
420                 err = -ENOMEM;
421                 goto init_failure;
422         }
423         for (idx = 0; idx < q->flows_cnt; idx++) {
424                 struct fq_pie_flow *flow = q->flows + idx;
425
426                 INIT_LIST_HEAD(&flow->flowchain);
427                 pie_vars_init(&flow->vars);
428         }
429
430         mod_timer(&q->adapt_timer, jiffies + HZ / 2);
431
432         return 0;
433
434 init_failure:
435         q->flows_cnt = 0;
436
437         return err;
438 }
439
440 static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb)
441 {
442         struct fq_pie_sched_data *q = qdisc_priv(sch);
443         struct nlattr *opts;
444
445         opts = nla_nest_start(skb, TCA_OPTIONS);
446         if (!opts)
447                 return -EMSGSIZE;
448
449         /* convert target from pschedtime to us */
450         if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, sch->limit) ||
451             nla_put_u32(skb, TCA_FQ_PIE_FLOWS, q->flows_cnt) ||
452             nla_put_u32(skb, TCA_FQ_PIE_TARGET,
453                         ((u32)PSCHED_TICKS2NS(q->p_params.target)) /
454                         NSEC_PER_USEC) ||
455             nla_put_u32(skb, TCA_FQ_PIE_TUPDATE,
456                         jiffies_to_usecs(q->p_params.tupdate)) ||
457             nla_put_u32(skb, TCA_FQ_PIE_ALPHA, q->p_params.alpha) ||
458             nla_put_u32(skb, TCA_FQ_PIE_BETA, q->p_params.beta) ||
459             nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, q->quantum) ||
460             nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT, q->memory_limit) ||
461             nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, q->ecn_prob) ||
462             nla_put_u32(skb, TCA_FQ_PIE_ECN, q->p_params.ecn) ||
463             nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, q->p_params.bytemode) ||
464             nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR,
465                         q->p_params.dq_rate_estimator))
466                 goto nla_put_failure;
467
468         return nla_nest_end(skb, opts);
469
470 nla_put_failure:
471         nla_nest_cancel(skb, opts);
472         return -EMSGSIZE;
473 }
474
475 static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
476 {
477         struct fq_pie_sched_data *q = qdisc_priv(sch);
478         struct tc_fq_pie_xstats st = {
479                 .packets_in     = q->stats.packets_in,
480                 .overlimit      = q->stats.overlimit,
481                 .overmemory     = q->overmemory,
482                 .dropped        = q->stats.dropped,
483                 .ecn_mark       = q->stats.ecn_mark,
484                 .new_flow_count = q->new_flow_count,
485                 .memory_usage   = q->memory_usage,
486         };
487         struct list_head *pos;
488
489         sch_tree_lock(sch);
490         list_for_each(pos, &q->new_flows)
491                 st.new_flows_len++;
492
493         list_for_each(pos, &q->old_flows)
494                 st.old_flows_len++;
495         sch_tree_unlock(sch);
496
497         return gnet_stats_copy_app(d, &st, sizeof(st));
498 }
499
500 static void fq_pie_reset(struct Qdisc *sch)
501 {
502         struct fq_pie_sched_data *q = qdisc_priv(sch);
503         u16 idx;
504
505         INIT_LIST_HEAD(&q->new_flows);
506         INIT_LIST_HEAD(&q->old_flows);
507         for (idx = 0; idx < q->flows_cnt; idx++) {
508                 struct fq_pie_flow *flow = q->flows + idx;
509
510                 /* Removes all packets from flow */
511                 rtnl_kfree_skbs(flow->head, flow->tail);
512                 flow->head = NULL;
513
514                 INIT_LIST_HEAD(&flow->flowchain);
515                 pie_vars_init(&flow->vars);
516         }
517
518         sch->q.qlen = 0;
519         sch->qstats.backlog = 0;
520 }
521
522 static void fq_pie_destroy(struct Qdisc *sch)
523 {
524         struct fq_pie_sched_data *q = qdisc_priv(sch);
525
526         tcf_block_put(q->block);
527         del_timer_sync(&q->adapt_timer);
528         kvfree(q->flows);
529 }
530
531 static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = {
532         .id             = "fq_pie",
533         .priv_size      = sizeof(struct fq_pie_sched_data),
534         .enqueue        = fq_pie_qdisc_enqueue,
535         .dequeue        = fq_pie_qdisc_dequeue,
536         .peek           = qdisc_peek_dequeued,
537         .init           = fq_pie_init,
538         .destroy        = fq_pie_destroy,
539         .reset          = fq_pie_reset,
540         .change         = fq_pie_change,
541         .dump           = fq_pie_dump,
542         .dump_stats     = fq_pie_dump_stats,
543         .owner          = THIS_MODULE,
544 };
545
546 static int __init fq_pie_module_init(void)
547 {
548         return register_qdisc(&fq_pie_qdisc_ops);
549 }
550
551 static void __exit fq_pie_module_exit(void)
552 {
553         unregister_qdisc(&fq_pie_qdisc_ops);
554 }
555
556 module_init(fq_pie_module_init);
557 module_exit(fq_pie_module_exit);
558
559 MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)");
560 MODULE_AUTHOR("Mohit P. Tahiliani");
561 MODULE_LICENSE("GPL");