Merge tag 'vfio-v5.11-rc1' of git://github.com/awilliam/linux-vfio
[linux-2.6-microblaze.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68         struct delayed_work     dwork;
69         u32                     last_bucket;
70         bool                    exiting;
71         bool                    early_drop;
72         long                    next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV      128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES     (16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO  50u
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90         /* 1) Acquire the lock */
91         spin_lock(lock);
92
93         /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94          * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95          */
96         if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97                 return;
98
99         /* fast path failed, unlock */
100         spin_unlock(lock);
101
102         /* Slow path 1) get global lock */
103         spin_lock(&nf_conntrack_locks_all_lock);
104
105         /* Slow path 2) get the lock we want */
106         spin_lock(lock);
107
108         /* Slow path 3) release the global lock */
109         spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115         h1 %= CONNTRACK_LOCKS;
116         h2 %= CONNTRACK_LOCKS;
117         spin_unlock(&nf_conntrack_locks[h1]);
118         if (h1 != h2)
119                 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124                                      unsigned int h2, unsigned int sequence)
125 {
126         h1 %= CONNTRACK_LOCKS;
127         h2 %= CONNTRACK_LOCKS;
128         if (h1 <= h2) {
129                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130                 if (h1 != h2)
131                         spin_lock_nested(&nf_conntrack_locks[h2],
132                                          SINGLE_DEPTH_NESTING);
133         } else {
134                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135                 spin_lock_nested(&nf_conntrack_locks[h1],
136                                  SINGLE_DEPTH_NESTING);
137         }
138         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139                 nf_conntrack_double_unlock(h1, h2);
140                 return true;
141         }
142         return false;
143 }
144
145 static void nf_conntrack_all_lock(void)
146         __acquires(&nf_conntrack_locks_all_lock)
147 {
148         int i;
149
150         spin_lock(&nf_conntrack_locks_all_lock);
151
152         nf_conntrack_locks_all = true;
153
154         for (i = 0; i < CONNTRACK_LOCKS; i++) {
155                 spin_lock(&nf_conntrack_locks[i]);
156
157                 /* This spin_unlock provides the "release" to ensure that
158                  * nf_conntrack_locks_all==true is visible to everyone that
159                  * acquired spin_lock(&nf_conntrack_locks[]).
160                  */
161                 spin_unlock(&nf_conntrack_locks[i]);
162         }
163 }
164
165 static void nf_conntrack_all_unlock(void)
166         __releases(&nf_conntrack_locks_all_lock)
167 {
168         /* All prior stores must be complete before we clear
169          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
170          * might observe the false value but not the entire
171          * critical section.
172          * It pairs with the smp_load_acquire() in nf_conntrack_lock()
173          */
174         smp_store_release(&nf_conntrack_locks_all, false);
175         spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 EXPORT_SYMBOL_GPL(nf_conntrack_max);
183 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185
186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187                               const struct net *net)
188 {
189         unsigned int n;
190         u32 seed;
191
192         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193
194         /* The direction must be ignored, so we hash everything up to the
195          * destination ports (which is a multiple of 4) and treat the last
196          * three bytes manually.
197          */
198         seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199         n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200         return jhash2((u32 *)tuple, n, seed ^
201                       (((__force __u16)tuple->dst.u.all << 16) |
202                       tuple->dst.protonum));
203 }
204
205 static u32 scale_hash(u32 hash)
206 {
207         return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209
210 static u32 __hash_conntrack(const struct net *net,
211                             const struct nf_conntrack_tuple *tuple,
212                             unsigned int size)
213 {
214         return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216
217 static u32 hash_conntrack(const struct net *net,
218                           const struct nf_conntrack_tuple *tuple)
219 {
220         return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222
223 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
224                                   unsigned int dataoff,
225                                   struct nf_conntrack_tuple *tuple)
226 {       struct {
227                 __be16 sport;
228                 __be16 dport;
229         } _inet_hdr, *inet_hdr;
230
231         /* Actually only need first 4 bytes to get ports. */
232         inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
233         if (!inet_hdr)
234                 return false;
235
236         tuple->src.u.udp.port = inet_hdr->sport;
237         tuple->dst.u.udp.port = inet_hdr->dport;
238         return true;
239 }
240
241 static bool
242 nf_ct_get_tuple(const struct sk_buff *skb,
243                 unsigned int nhoff,
244                 unsigned int dataoff,
245                 u_int16_t l3num,
246                 u_int8_t protonum,
247                 struct net *net,
248                 struct nf_conntrack_tuple *tuple)
249 {
250         unsigned int size;
251         const __be32 *ap;
252         __be32 _addrs[8];
253
254         memset(tuple, 0, sizeof(*tuple));
255
256         tuple->src.l3num = l3num;
257         switch (l3num) {
258         case NFPROTO_IPV4:
259                 nhoff += offsetof(struct iphdr, saddr);
260                 size = 2 * sizeof(__be32);
261                 break;
262         case NFPROTO_IPV6:
263                 nhoff += offsetof(struct ipv6hdr, saddr);
264                 size = sizeof(_addrs);
265                 break;
266         default:
267                 return true;
268         }
269
270         ap = skb_header_pointer(skb, nhoff, size, _addrs);
271         if (!ap)
272                 return false;
273
274         switch (l3num) {
275         case NFPROTO_IPV4:
276                 tuple->src.u3.ip = ap[0];
277                 tuple->dst.u3.ip = ap[1];
278                 break;
279         case NFPROTO_IPV6:
280                 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
281                 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
282                 break;
283         }
284
285         tuple->dst.protonum = protonum;
286         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
287
288         switch (protonum) {
289 #if IS_ENABLED(CONFIG_IPV6)
290         case IPPROTO_ICMPV6:
291                 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
292 #endif
293         case IPPROTO_ICMP:
294                 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
295 #ifdef CONFIG_NF_CT_PROTO_GRE
296         case IPPROTO_GRE:
297                 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
298 #endif
299         case IPPROTO_TCP:
300         case IPPROTO_UDP: /* fallthrough */
301                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
302 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
303         case IPPROTO_UDPLITE:
304                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
305 #endif
306 #ifdef CONFIG_NF_CT_PROTO_SCTP
307         case IPPROTO_SCTP:
308                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
309 #endif
310 #ifdef CONFIG_NF_CT_PROTO_DCCP
311         case IPPROTO_DCCP:
312                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
313 #endif
314         default:
315                 break;
316         }
317
318         return true;
319 }
320
321 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
322                             u_int8_t *protonum)
323 {
324         int dataoff = -1;
325         const struct iphdr *iph;
326         struct iphdr _iph;
327
328         iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
329         if (!iph)
330                 return -1;
331
332         /* Conntrack defragments packets, we might still see fragments
333          * inside ICMP packets though.
334          */
335         if (iph->frag_off & htons(IP_OFFSET))
336                 return -1;
337
338         dataoff = nhoff + (iph->ihl << 2);
339         *protonum = iph->protocol;
340
341         /* Check bogus IP headers */
342         if (dataoff > skb->len) {
343                 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
344                          nhoff, iph->ihl << 2, skb->len);
345                 return -1;
346         }
347         return dataoff;
348 }
349
350 #if IS_ENABLED(CONFIG_IPV6)
351 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
352                             u8 *protonum)
353 {
354         int protoff = -1;
355         unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
356         __be16 frag_off;
357         u8 nexthdr;
358
359         if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
360                           &nexthdr, sizeof(nexthdr)) != 0) {
361                 pr_debug("can't get nexthdr\n");
362                 return -1;
363         }
364         protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
365         /*
366          * (protoff == skb->len) means the packet has not data, just
367          * IPv6 and possibly extensions headers, but it is tracked anyway
368          */
369         if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
370                 pr_debug("can't find proto in pkt\n");
371                 return -1;
372         }
373
374         *protonum = nexthdr;
375         return protoff;
376 }
377 #endif
378
379 static int get_l4proto(const struct sk_buff *skb,
380                        unsigned int nhoff, u8 pf, u8 *l4num)
381 {
382         switch (pf) {
383         case NFPROTO_IPV4:
384                 return ipv4_get_l4proto(skb, nhoff, l4num);
385 #if IS_ENABLED(CONFIG_IPV6)
386         case NFPROTO_IPV6:
387                 return ipv6_get_l4proto(skb, nhoff, l4num);
388 #endif
389         default:
390                 *l4num = 0;
391                 break;
392         }
393         return -1;
394 }
395
396 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
397                        u_int16_t l3num,
398                        struct net *net, struct nf_conntrack_tuple *tuple)
399 {
400         u8 protonum;
401         int protoff;
402
403         protoff = get_l4proto(skb, nhoff, l3num, &protonum);
404         if (protoff <= 0)
405                 return false;
406
407         return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
408 }
409 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
410
411 bool
412 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
413                    const struct nf_conntrack_tuple *orig)
414 {
415         memset(inverse, 0, sizeof(*inverse));
416
417         inverse->src.l3num = orig->src.l3num;
418
419         switch (orig->src.l3num) {
420         case NFPROTO_IPV4:
421                 inverse->src.u3.ip = orig->dst.u3.ip;
422                 inverse->dst.u3.ip = orig->src.u3.ip;
423                 break;
424         case NFPROTO_IPV6:
425                 inverse->src.u3.in6 = orig->dst.u3.in6;
426                 inverse->dst.u3.in6 = orig->src.u3.in6;
427                 break;
428         default:
429                 break;
430         }
431
432         inverse->dst.dir = !orig->dst.dir;
433
434         inverse->dst.protonum = orig->dst.protonum;
435
436         switch (orig->dst.protonum) {
437         case IPPROTO_ICMP:
438                 return nf_conntrack_invert_icmp_tuple(inverse, orig);
439 #if IS_ENABLED(CONFIG_IPV6)
440         case IPPROTO_ICMPV6:
441                 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
442 #endif
443         }
444
445         inverse->src.u.all = orig->dst.u.all;
446         inverse->dst.u.all = orig->src.u.all;
447         return true;
448 }
449 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
450
451 /* Generate a almost-unique pseudo-id for a given conntrack.
452  *
453  * intentionally doesn't re-use any of the seeds used for hash
454  * table location, we assume id gets exposed to userspace.
455  *
456  * Following nf_conn items do not change throughout lifetime
457  * of the nf_conn:
458  *
459  * 1. nf_conn address
460  * 2. nf_conn->master address (normally NULL)
461  * 3. the associated net namespace
462  * 4. the original direction tuple
463  */
464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466         static __read_mostly siphash_key_t ct_id_seed;
467         unsigned long a, b, c, d;
468
469         net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470
471         a = (unsigned long)ct;
472         b = (unsigned long)ct->master;
473         c = (unsigned long)nf_ct_net(ct);
474         d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
475                                    sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
476                                    &ct_id_seed);
477 #ifdef CONFIG_64BIT
478         return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
479 #else
480         return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
481 #endif
482 }
483 EXPORT_SYMBOL_GPL(nf_ct_get_id);
484
485 static void
486 clean_from_lists(struct nf_conn *ct)
487 {
488         pr_debug("clean_from_lists(%p)\n", ct);
489         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
490         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
491
492         /* Destroy all pending expectations */
493         nf_ct_remove_expectations(ct);
494 }
495
496 /* must be called with local_bh_disable */
497 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
498 {
499         struct ct_pcpu *pcpu;
500
501         /* add this conntrack to the (per cpu) dying list */
502         ct->cpu = smp_processor_id();
503         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
504
505         spin_lock(&pcpu->lock);
506         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
507                              &pcpu->dying);
508         spin_unlock(&pcpu->lock);
509 }
510
511 /* must be called with local_bh_disable */
512 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
513 {
514         struct ct_pcpu *pcpu;
515
516         /* add this conntrack to the (per cpu) unconfirmed list */
517         ct->cpu = smp_processor_id();
518         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
519
520         spin_lock(&pcpu->lock);
521         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
522                              &pcpu->unconfirmed);
523         spin_unlock(&pcpu->lock);
524 }
525
526 /* must be called with local_bh_disable */
527 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
528 {
529         struct ct_pcpu *pcpu;
530
531         /* We overload first tuple to link into unconfirmed or dying list.*/
532         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
533
534         spin_lock(&pcpu->lock);
535         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
536         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
537         spin_unlock(&pcpu->lock);
538 }
539
540 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
541
542 /* Released via destroy_conntrack() */
543 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
544                                  const struct nf_conntrack_zone *zone,
545                                  gfp_t flags)
546 {
547         struct nf_conn *tmpl, *p;
548
549         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
550                 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
551                 if (!tmpl)
552                         return NULL;
553
554                 p = tmpl;
555                 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556                 if (tmpl != p) {
557                         tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
558                         tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
559                 }
560         } else {
561                 tmpl = kzalloc(sizeof(*tmpl), flags);
562                 if (!tmpl)
563                         return NULL;
564         }
565
566         tmpl->status = IPS_TEMPLATE;
567         write_pnet(&tmpl->ct_net, net);
568         nf_ct_zone_add(tmpl, zone);
569         atomic_set(&tmpl->ct_general.use, 0);
570
571         return tmpl;
572 }
573 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
574
575 void nf_ct_tmpl_free(struct nf_conn *tmpl)
576 {
577         nf_ct_ext_destroy(tmpl);
578
579         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580                 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581         else
582                 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589         struct nf_conn *master = ct->master;
590
591         if (master)
592                 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599         struct nf_conn *ct = (struct nf_conn *)nfct;
600
601         pr_debug("destroy_conntrack(%p)\n", ct);
602         WARN_ON(atomic_read(&nfct->use) != 0);
603
604         if (unlikely(nf_ct_is_template(ct))) {
605                 nf_ct_tmpl_free(ct);
606                 return;
607         }
608
609         if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610                 destroy_gre_conntrack(ct);
611
612         local_bh_disable();
613         /* Expectations will have been removed in clean_from_lists,
614          * except TFTP can create an expectation on the first packet,
615          * before connection is in the list, so we need to clean here,
616          * too.
617          */
618         nf_ct_remove_expectations(ct);
619
620         nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622         local_bh_enable();
623
624         if (ct->master)
625                 nf_ct_put(ct->master);
626
627         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628         nf_conntrack_free(ct);
629 }
630
631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633         struct net *net = nf_ct_net(ct);
634         unsigned int hash, reply_hash;
635         unsigned int sequence;
636
637         nf_ct_helper_destroy(ct);
638
639         local_bh_disable();
640         do {
641                 sequence = read_seqcount_begin(&nf_conntrack_generation);
642                 hash = hash_conntrack(net,
643                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644                 reply_hash = hash_conntrack(net,
645                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648         clean_from_lists(ct);
649         nf_conntrack_double_unlock(hash, reply_hash);
650
651         nf_ct_add_to_dying_list(ct);
652
653         local_bh_enable();
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658         struct nf_conn_tstamp *tstamp;
659
660         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661                 return false;
662
663         tstamp = nf_conn_tstamp_find(ct);
664         if (tstamp && tstamp->stop == 0)
665                 tstamp->stop = ktime_get_real_ns();
666
667         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668                                     portid, report) < 0) {
669                 /* destroy event was not delivered. nf_ct_put will
670                  * be done by event cache worker on redelivery.
671                  */
672                 nf_ct_delete_from_lists(ct);
673                 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674                 return false;
675         }
676
677         nf_conntrack_ecache_work(nf_ct_net(ct));
678         nf_ct_delete_from_lists(ct);
679         nf_ct_put(ct);
680         return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686                 const struct nf_conntrack_tuple *tuple,
687                 const struct nf_conntrack_zone *zone,
688                 const struct net *net)
689 {
690         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692         /* A conntrack can be recreated with the equal tuple,
693          * so we need to check that the conntrack is confirmed
694          */
695         return nf_ct_tuple_equal(tuple, &h->tuple) &&
696                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697                nf_ct_is_confirmed(ct) &&
698                net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704         return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705                                  &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706                nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707                                  &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710                net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716         if (!atomic_inc_not_zero(&ct->ct_general.use))
717                 return;
718
719         if (nf_ct_should_gc(ct))
720                 nf_ct_kill(ct);
721
722         nf_ct_put(ct);
723 }
724
725 /*
726  * Warning :
727  * - Caller must take a reference on returned object
728  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729  */
730 static struct nf_conntrack_tuple_hash *
731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732                       const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734         struct nf_conntrack_tuple_hash *h;
735         struct hlist_nulls_head *ct_hash;
736         struct hlist_nulls_node *n;
737         unsigned int bucket, hsize;
738
739 begin:
740         nf_conntrack_get_ht(&ct_hash, &hsize);
741         bucket = reciprocal_scale(hash, hsize);
742
743         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744                 struct nf_conn *ct;
745
746                 ct = nf_ct_tuplehash_to_ctrack(h);
747                 if (nf_ct_is_expired(ct)) {
748                         nf_ct_gc_expired(ct);
749                         continue;
750                 }
751
752                 if (nf_ct_key_equal(h, tuple, zone, net))
753                         return h;
754         }
755         /*
756          * if the nulls value we got at the end of this lookup is
757          * not the expected one, we must restart lookup.
758          * We probably met an item that was moved to another chain.
759          */
760         if (get_nulls_value(n) != bucket) {
761                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762                 goto begin;
763         }
764
765         return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771                         const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773         struct nf_conntrack_tuple_hash *h;
774         struct nf_conn *ct;
775
776         rcu_read_lock();
777
778         h = ____nf_conntrack_find(net, zone, tuple, hash);
779         if (h) {
780                 /* We have a candidate that matches the tuple we're interested
781                  * in, try to obtain a reference and re-check tuple
782                  */
783                 ct = nf_ct_tuplehash_to_ctrack(h);
784                 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785                         if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786                                 goto found;
787
788                         /* TYPESAFE_BY_RCU recycled the candidate */
789                         nf_ct_put(ct);
790                 }
791
792                 h = NULL;
793         }
794 found:
795         rcu_read_unlock();
796
797         return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802                       const struct nf_conntrack_tuple *tuple)
803 {
804         return __nf_conntrack_find_get(net, zone, tuple,
805                                        hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810                                        unsigned int hash,
811                                        unsigned int reply_hash)
812 {
813         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814                            &nf_conntrack_hash[hash]);
815         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816                            &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822         const struct nf_conntrack_zone *zone;
823         struct net *net = nf_ct_net(ct);
824         unsigned int hash, reply_hash;
825         struct nf_conntrack_tuple_hash *h;
826         struct hlist_nulls_node *n;
827         unsigned int sequence;
828
829         zone = nf_ct_zone(ct);
830
831         local_bh_disable();
832         do {
833                 sequence = read_seqcount_begin(&nf_conntrack_generation);
834                 hash = hash_conntrack(net,
835                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836                 reply_hash = hash_conntrack(net,
837                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840         /* See if there's one in the list already, including reverse */
841         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843                                     zone, net))
844                         goto out;
845
846         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848                                     zone, net))
849                         goto out;
850
851         smp_wmb();
852         /* The caller holds a reference to this object */
853         atomic_set(&ct->ct_general.use, 2);
854         __nf_conntrack_hash_insert(ct, hash, reply_hash);
855         nf_conntrack_double_unlock(hash, reply_hash);
856         NF_CT_STAT_INC(net, insert);
857         local_bh_enable();
858         return 0;
859
860 out:
861         nf_conntrack_double_unlock(hash, reply_hash);
862         local_bh_enable();
863         return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866
867 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
868                     unsigned int bytes)
869 {
870         struct nf_conn_acct *acct;
871
872         acct = nf_conn_acct_find(ct);
873         if (acct) {
874                 struct nf_conn_counter *counter = acct->counter;
875
876                 atomic64_add(packets, &counter[dir].packets);
877                 atomic64_add(bytes, &counter[dir].bytes);
878         }
879 }
880 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
881
882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883                              const struct nf_conn *loser_ct)
884 {
885         struct nf_conn_acct *acct;
886
887         acct = nf_conn_acct_find(loser_ct);
888         if (acct) {
889                 struct nf_conn_counter *counter = acct->counter;
890                 unsigned int bytes;
891
892                 /* u32 should be fine since we must have seen one packet. */
893                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
895         }
896 }
897
898 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
899 {
900         struct nf_conn_tstamp *tstamp;
901
902         atomic_inc(&ct->ct_general.use);
903         ct->status |= IPS_CONFIRMED;
904
905         /* set conntrack timestamp, if enabled. */
906         tstamp = nf_conn_tstamp_find(ct);
907         if (tstamp)
908                 tstamp->start = ktime_get_real_ns();
909 }
910
911 /* caller must hold locks to prevent concurrent changes */
912 static int __nf_ct_resolve_clash(struct sk_buff *skb,
913                                  struct nf_conntrack_tuple_hash *h)
914 {
915         /* This is the conntrack entry already in hashes that won race. */
916         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
917         enum ip_conntrack_info ctinfo;
918         struct nf_conn *loser_ct;
919
920         loser_ct = nf_ct_get(skb, &ctinfo);
921
922         if (nf_ct_is_dying(ct))
923                 return NF_DROP;
924
925         if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
926             nf_ct_match(ct, loser_ct)) {
927                 struct net *net = nf_ct_net(ct);
928
929                 nf_conntrack_get(&ct->ct_general);
930
931                 nf_ct_acct_merge(ct, ctinfo, loser_ct);
932                 nf_ct_add_to_dying_list(loser_ct);
933                 nf_conntrack_put(&loser_ct->ct_general);
934                 nf_ct_set(skb, ct, ctinfo);
935
936                 NF_CT_STAT_INC(net, clash_resolve);
937                 return NF_ACCEPT;
938         }
939
940         return NF_DROP;
941 }
942
943 /**
944  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
945  *
946  * @skb: skb that causes the collision
947  * @repl_idx: hash slot for reply direction
948  *
949  * Called when origin or reply direction had a clash.
950  * The skb can be handled without packet drop provided the reply direction
951  * is unique or there the existing entry has the identical tuple in both
952  * directions.
953  *
954  * Caller must hold conntrack table locks to prevent concurrent updates.
955  *
956  * Returns NF_DROP if the clash could not be handled.
957  */
958 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
959 {
960         struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
961         const struct nf_conntrack_zone *zone;
962         struct nf_conntrack_tuple_hash *h;
963         struct hlist_nulls_node *n;
964         struct net *net;
965
966         zone = nf_ct_zone(loser_ct);
967         net = nf_ct_net(loser_ct);
968
969         /* Reply direction must never result in a clash, unless both origin
970          * and reply tuples are identical.
971          */
972         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
973                 if (nf_ct_key_equal(h,
974                                     &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
975                                     zone, net))
976                         return __nf_ct_resolve_clash(skb, h);
977         }
978
979         /* We want the clashing entry to go away real soon: 1 second timeout. */
980         loser_ct->timeout = nfct_time_stamp + HZ;
981
982         /* IPS_NAT_CLASH removes the entry automatically on the first
983          * reply.  Also prevents UDP tracker from moving the entry to
984          * ASSURED state, i.e. the entry can always be evicted under
985          * pressure.
986          */
987         loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
988
989         __nf_conntrack_insert_prepare(loser_ct);
990
991         /* fake add for ORIGINAL dir: we want lookups to only find the entry
992          * already in the table.  This also hides the clashing entry from
993          * ctnetlink iteration, i.e. conntrack -L won't show them.
994          */
995         hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
996
997         hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
998                                  &nf_conntrack_hash[repl_idx]);
999
1000         NF_CT_STAT_INC(net, clash_resolve);
1001         return NF_ACCEPT;
1002 }
1003
1004 /**
1005  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1006  *
1007  * @skb: skb that causes the clash
1008  * @h: tuplehash of the clashing entry already in table
1009  * @reply_hash: hash slot for reply direction
1010  *
1011  * A conntrack entry can be inserted to the connection tracking table
1012  * if there is no existing entry with an identical tuple.
1013  *
1014  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1015  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1016  * will find the already-existing entry.
1017  *
1018  * The major problem with such packet drop is the extra delay added by
1019  * the packet loss -- it will take some time for a retransmit to occur
1020  * (or the sender to time out when waiting for a reply).
1021  *
1022  * This function attempts to handle the situation without packet drop.
1023  *
1024  * If @skb has no NAT transformation or if the colliding entries are
1025  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1026  * and @skb is associated with the conntrack entry already in the table.
1027  *
1028  * Failing that, the new, unconfirmed conntrack is still added to the table
1029  * provided that the collision only occurs in the ORIGINAL direction.
1030  * The new entry will be added only in the non-clashing REPLY direction,
1031  * so packets in the ORIGINAL direction will continue to match the existing
1032  * entry.  The new entry will also have a fixed timeout so it expires --
1033  * due to the collision, it will only see reply traffic.
1034  *
1035  * Returns NF_DROP if the clash could not be resolved.
1036  */
1037 static __cold noinline int
1038 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1039                     u32 reply_hash)
1040 {
1041         /* This is the conntrack entry already in hashes that won race. */
1042         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1043         const struct nf_conntrack_l4proto *l4proto;
1044         enum ip_conntrack_info ctinfo;
1045         struct nf_conn *loser_ct;
1046         struct net *net;
1047         int ret;
1048
1049         loser_ct = nf_ct_get(skb, &ctinfo);
1050         net = nf_ct_net(loser_ct);
1051
1052         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1053         if (!l4proto->allow_clash)
1054                 goto drop;
1055
1056         ret = __nf_ct_resolve_clash(skb, h);
1057         if (ret == NF_ACCEPT)
1058                 return ret;
1059
1060         ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1061         if (ret == NF_ACCEPT)
1062                 return ret;
1063
1064 drop:
1065         nf_ct_add_to_dying_list(loser_ct);
1066         NF_CT_STAT_INC(net, drop);
1067         NF_CT_STAT_INC(net, insert_failed);
1068         return NF_DROP;
1069 }
1070
1071 /* Confirm a connection given skb; places it in hash table */
1072 int
1073 __nf_conntrack_confirm(struct sk_buff *skb)
1074 {
1075         const struct nf_conntrack_zone *zone;
1076         unsigned int hash, reply_hash;
1077         struct nf_conntrack_tuple_hash *h;
1078         struct nf_conn *ct;
1079         struct nf_conn_help *help;
1080         struct hlist_nulls_node *n;
1081         enum ip_conntrack_info ctinfo;
1082         struct net *net;
1083         unsigned int sequence;
1084         int ret = NF_DROP;
1085
1086         ct = nf_ct_get(skb, &ctinfo);
1087         net = nf_ct_net(ct);
1088
1089         /* ipt_REJECT uses nf_conntrack_attach to attach related
1090            ICMP/TCP RST packets in other direction.  Actual packet
1091            which created connection will be IP_CT_NEW or for an
1092            expected connection, IP_CT_RELATED. */
1093         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1094                 return NF_ACCEPT;
1095
1096         zone = nf_ct_zone(ct);
1097         local_bh_disable();
1098
1099         do {
1100                 sequence = read_seqcount_begin(&nf_conntrack_generation);
1101                 /* reuse the hash saved before */
1102                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1103                 hash = scale_hash(hash);
1104                 reply_hash = hash_conntrack(net,
1105                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1106
1107         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1108
1109         /* We're not in hash table, and we refuse to set up related
1110          * connections for unconfirmed conns.  But packet copies and
1111          * REJECT will give spurious warnings here.
1112          */
1113
1114         /* Another skb with the same unconfirmed conntrack may
1115          * win the race. This may happen for bridge(br_flood)
1116          * or broadcast/multicast packets do skb_clone with
1117          * unconfirmed conntrack.
1118          */
1119         if (unlikely(nf_ct_is_confirmed(ct))) {
1120                 WARN_ON_ONCE(1);
1121                 nf_conntrack_double_unlock(hash, reply_hash);
1122                 local_bh_enable();
1123                 return NF_DROP;
1124         }
1125
1126         pr_debug("Confirming conntrack %p\n", ct);
1127         /* We have to check the DYING flag after unlink to prevent
1128          * a race against nf_ct_get_next_corpse() possibly called from
1129          * user context, else we insert an already 'dead' hash, blocking
1130          * further use of that particular connection -JM.
1131          */
1132         nf_ct_del_from_dying_or_unconfirmed_list(ct);
1133
1134         if (unlikely(nf_ct_is_dying(ct))) {
1135                 nf_ct_add_to_dying_list(ct);
1136                 NF_CT_STAT_INC(net, insert_failed);
1137                 goto dying;
1138         }
1139
1140         /* See if there's one in the list already, including reverse:
1141            NAT could have grabbed it without realizing, since we're
1142            not in the hash.  If there is, we lost race. */
1143         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1144                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1145                                     zone, net))
1146                         goto out;
1147
1148         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1149                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1150                                     zone, net))
1151                         goto out;
1152
1153         /* Timer relative to confirmation time, not original
1154            setting time, otherwise we'd get timer wrap in
1155            weird delay cases. */
1156         ct->timeout += nfct_time_stamp;
1157
1158         __nf_conntrack_insert_prepare(ct);
1159
1160         /* Since the lookup is lockless, hash insertion must be done after
1161          * starting the timer and setting the CONFIRMED bit. The RCU barriers
1162          * guarantee that no other CPU can find the conntrack before the above
1163          * stores are visible.
1164          */
1165         __nf_conntrack_hash_insert(ct, hash, reply_hash);
1166         nf_conntrack_double_unlock(hash, reply_hash);
1167         local_bh_enable();
1168
1169         help = nfct_help(ct);
1170         if (help && help->helper)
1171                 nf_conntrack_event_cache(IPCT_HELPER, ct);
1172
1173         nf_conntrack_event_cache(master_ct(ct) ?
1174                                  IPCT_RELATED : IPCT_NEW, ct);
1175         return NF_ACCEPT;
1176
1177 out:
1178         ret = nf_ct_resolve_clash(skb, h, reply_hash);
1179 dying:
1180         nf_conntrack_double_unlock(hash, reply_hash);
1181         local_bh_enable();
1182         return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1185
1186 /* Returns true if a connection correspondings to the tuple (required
1187    for NAT). */
1188 int
1189 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1190                          const struct nf_conn *ignored_conntrack)
1191 {
1192         struct net *net = nf_ct_net(ignored_conntrack);
1193         const struct nf_conntrack_zone *zone;
1194         struct nf_conntrack_tuple_hash *h;
1195         struct hlist_nulls_head *ct_hash;
1196         unsigned int hash, hsize;
1197         struct hlist_nulls_node *n;
1198         struct nf_conn *ct;
1199
1200         zone = nf_ct_zone(ignored_conntrack);
1201
1202         rcu_read_lock();
1203  begin:
1204         nf_conntrack_get_ht(&ct_hash, &hsize);
1205         hash = __hash_conntrack(net, tuple, hsize);
1206
1207         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1208                 ct = nf_ct_tuplehash_to_ctrack(h);
1209
1210                 if (ct == ignored_conntrack)
1211                         continue;
1212
1213                 if (nf_ct_is_expired(ct)) {
1214                         nf_ct_gc_expired(ct);
1215                         continue;
1216                 }
1217
1218                 if (nf_ct_key_equal(h, tuple, zone, net)) {
1219                         /* Tuple is taken already, so caller will need to find
1220                          * a new source port to use.
1221                          *
1222                          * Only exception:
1223                          * If the *original tuples* are identical, then both
1224                          * conntracks refer to the same flow.
1225                          * This is a rare situation, it can occur e.g. when
1226                          * more than one UDP packet is sent from same socket
1227                          * in different threads.
1228                          *
1229                          * Let nf_ct_resolve_clash() deal with this later.
1230                          */
1231                         if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1232                                               &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1233                                 continue;
1234
1235                         NF_CT_STAT_INC_ATOMIC(net, found);
1236                         rcu_read_unlock();
1237                         return 1;
1238                 }
1239         }
1240
1241         if (get_nulls_value(n) != hash) {
1242                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1243                 goto begin;
1244         }
1245
1246         rcu_read_unlock();
1247
1248         return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1251
1252 #define NF_CT_EVICTION_RANGE    8
1253
1254 /* There's a small race here where we may free a just-assured
1255    connection.  Too bad: we're in trouble anyway. */
1256 static unsigned int early_drop_list(struct net *net,
1257                                     struct hlist_nulls_head *head)
1258 {
1259         struct nf_conntrack_tuple_hash *h;
1260         struct hlist_nulls_node *n;
1261         unsigned int drops = 0;
1262         struct nf_conn *tmp;
1263
1264         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1265                 tmp = nf_ct_tuplehash_to_ctrack(h);
1266
1267                 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1268                         continue;
1269
1270                 if (nf_ct_is_expired(tmp)) {
1271                         nf_ct_gc_expired(tmp);
1272                         continue;
1273                 }
1274
1275                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1276                     !net_eq(nf_ct_net(tmp), net) ||
1277                     nf_ct_is_dying(tmp))
1278                         continue;
1279
1280                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1281                         continue;
1282
1283                 /* kill only if still in same netns -- might have moved due to
1284                  * SLAB_TYPESAFE_BY_RCU rules.
1285                  *
1286                  * We steal the timer reference.  If that fails timer has
1287                  * already fired or someone else deleted it. Just drop ref
1288                  * and move to next entry.
1289                  */
1290                 if (net_eq(nf_ct_net(tmp), net) &&
1291                     nf_ct_is_confirmed(tmp) &&
1292                     nf_ct_delete(tmp, 0, 0))
1293                         drops++;
1294
1295                 nf_ct_put(tmp);
1296         }
1297
1298         return drops;
1299 }
1300
1301 static noinline int early_drop(struct net *net, unsigned int hash)
1302 {
1303         unsigned int i, bucket;
1304
1305         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1306                 struct hlist_nulls_head *ct_hash;
1307                 unsigned int hsize, drops;
1308
1309                 rcu_read_lock();
1310                 nf_conntrack_get_ht(&ct_hash, &hsize);
1311                 if (!i)
1312                         bucket = reciprocal_scale(hash, hsize);
1313                 else
1314                         bucket = (bucket + 1) % hsize;
1315
1316                 drops = early_drop_list(net, &ct_hash[bucket]);
1317                 rcu_read_unlock();
1318
1319                 if (drops) {
1320                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1321                         return true;
1322                 }
1323         }
1324
1325         return false;
1326 }
1327
1328 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1329 {
1330         return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1331 }
1332
1333 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1334 {
1335         const struct nf_conntrack_l4proto *l4proto;
1336
1337         if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1338                 return true;
1339
1340         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1341         if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1342                 return true;
1343
1344         return false;
1345 }
1346
1347 static void gc_worker(struct work_struct *work)
1348 {
1349         unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1350         unsigned int i, goal, buckets = 0, expired_count = 0;
1351         unsigned int nf_conntrack_max95 = 0;
1352         struct conntrack_gc_work *gc_work;
1353         unsigned int ratio, scanned = 0;
1354         unsigned long next_run;
1355
1356         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1357
1358         goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1359         i = gc_work->last_bucket;
1360         if (gc_work->early_drop)
1361                 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1362
1363         do {
1364                 struct nf_conntrack_tuple_hash *h;
1365                 struct hlist_nulls_head *ct_hash;
1366                 struct hlist_nulls_node *n;
1367                 unsigned int hashsz;
1368                 struct nf_conn *tmp;
1369
1370                 i++;
1371                 rcu_read_lock();
1372
1373                 nf_conntrack_get_ht(&ct_hash, &hashsz);
1374                 if (i >= hashsz)
1375                         i = 0;
1376
1377                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1378                         struct net *net;
1379
1380                         tmp = nf_ct_tuplehash_to_ctrack(h);
1381
1382                         scanned++;
1383                         if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1384                                 nf_ct_offload_timeout(tmp);
1385                                 continue;
1386                         }
1387
1388                         if (nf_ct_is_expired(tmp)) {
1389                                 nf_ct_gc_expired(tmp);
1390                                 expired_count++;
1391                                 continue;
1392                         }
1393
1394                         if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1395                                 continue;
1396
1397                         net = nf_ct_net(tmp);
1398                         if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1399                                 continue;
1400
1401                         /* need to take reference to avoid possible races */
1402                         if (!atomic_inc_not_zero(&tmp->ct_general.use))
1403                                 continue;
1404
1405                         if (gc_worker_skip_ct(tmp)) {
1406                                 nf_ct_put(tmp);
1407                                 continue;
1408                         }
1409
1410                         if (gc_worker_can_early_drop(tmp))
1411                                 nf_ct_kill(tmp);
1412
1413                         nf_ct_put(tmp);
1414                 }
1415
1416                 /* could check get_nulls_value() here and restart if ct
1417                  * was moved to another chain.  But given gc is best-effort
1418                  * we will just continue with next hash slot.
1419                  */
1420                 rcu_read_unlock();
1421                 cond_resched();
1422         } while (++buckets < goal);
1423
1424         if (gc_work->exiting)
1425                 return;
1426
1427         /*
1428          * Eviction will normally happen from the packet path, and not
1429          * from this gc worker.
1430          *
1431          * This worker is only here to reap expired entries when system went
1432          * idle after a busy period.
1433          *
1434          * The heuristics below are supposed to balance conflicting goals:
1435          *
1436          * 1. Minimize time until we notice a stale entry
1437          * 2. Maximize scan intervals to not waste cycles
1438          *
1439          * Normally, expire ratio will be close to 0.
1440          *
1441          * As soon as a sizeable fraction of the entries have expired
1442          * increase scan frequency.
1443          */
1444         ratio = scanned ? expired_count * 100 / scanned : 0;
1445         if (ratio > GC_EVICT_RATIO) {
1446                 gc_work->next_gc_run = min_interval;
1447         } else {
1448                 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1449
1450                 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1451
1452                 gc_work->next_gc_run += min_interval;
1453                 if (gc_work->next_gc_run > max)
1454                         gc_work->next_gc_run = max;
1455         }
1456
1457         next_run = gc_work->next_gc_run;
1458         gc_work->last_bucket = i;
1459         gc_work->early_drop = false;
1460         queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1461 }
1462
1463 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1464 {
1465         INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1466         gc_work->next_gc_run = HZ;
1467         gc_work->exiting = false;
1468 }
1469
1470 static struct nf_conn *
1471 __nf_conntrack_alloc(struct net *net,
1472                      const struct nf_conntrack_zone *zone,
1473                      const struct nf_conntrack_tuple *orig,
1474                      const struct nf_conntrack_tuple *repl,
1475                      gfp_t gfp, u32 hash)
1476 {
1477         struct nf_conn *ct;
1478
1479         /* We don't want any race condition at early drop stage */
1480         atomic_inc(&net->ct.count);
1481
1482         if (nf_conntrack_max &&
1483             unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1484                 if (!early_drop(net, hash)) {
1485                         if (!conntrack_gc_work.early_drop)
1486                                 conntrack_gc_work.early_drop = true;
1487                         atomic_dec(&net->ct.count);
1488                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1489                         return ERR_PTR(-ENOMEM);
1490                 }
1491         }
1492
1493         /*
1494          * Do not use kmem_cache_zalloc(), as this cache uses
1495          * SLAB_TYPESAFE_BY_RCU.
1496          */
1497         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1498         if (ct == NULL)
1499                 goto out;
1500
1501         spin_lock_init(&ct->lock);
1502         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1503         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1504         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1505         /* save hash for reusing when confirming */
1506         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1507         ct->status = 0;
1508         ct->timeout = 0;
1509         write_pnet(&ct->ct_net, net);
1510         memset(&ct->__nfct_init_offset, 0,
1511                offsetof(struct nf_conn, proto) -
1512                offsetof(struct nf_conn, __nfct_init_offset));
1513
1514         nf_ct_zone_add(ct, zone);
1515
1516         /* Because we use RCU lookups, we set ct_general.use to zero before
1517          * this is inserted in any list.
1518          */
1519         atomic_set(&ct->ct_general.use, 0);
1520         return ct;
1521 out:
1522         atomic_dec(&net->ct.count);
1523         return ERR_PTR(-ENOMEM);
1524 }
1525
1526 struct nf_conn *nf_conntrack_alloc(struct net *net,
1527                                    const struct nf_conntrack_zone *zone,
1528                                    const struct nf_conntrack_tuple *orig,
1529                                    const struct nf_conntrack_tuple *repl,
1530                                    gfp_t gfp)
1531 {
1532         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1533 }
1534 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1535
1536 void nf_conntrack_free(struct nf_conn *ct)
1537 {
1538         struct net *net = nf_ct_net(ct);
1539
1540         /* A freed object has refcnt == 0, that's
1541          * the golden rule for SLAB_TYPESAFE_BY_RCU
1542          */
1543         WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1544
1545         nf_ct_ext_destroy(ct);
1546         kmem_cache_free(nf_conntrack_cachep, ct);
1547         smp_mb__before_atomic();
1548         atomic_dec(&net->ct.count);
1549 }
1550 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1551
1552
1553 /* Allocate a new conntrack: we return -ENOMEM if classification
1554    failed due to stress.  Otherwise it really is unclassifiable. */
1555 static noinline struct nf_conntrack_tuple_hash *
1556 init_conntrack(struct net *net, struct nf_conn *tmpl,
1557                const struct nf_conntrack_tuple *tuple,
1558                struct sk_buff *skb,
1559                unsigned int dataoff, u32 hash)
1560 {
1561         struct nf_conn *ct;
1562         struct nf_conn_help *help;
1563         struct nf_conntrack_tuple repl_tuple;
1564         struct nf_conntrack_ecache *ecache;
1565         struct nf_conntrack_expect *exp = NULL;
1566         const struct nf_conntrack_zone *zone;
1567         struct nf_conn_timeout *timeout_ext;
1568         struct nf_conntrack_zone tmp;
1569
1570         if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1571                 pr_debug("Can't invert tuple.\n");
1572                 return NULL;
1573         }
1574
1575         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1576         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1577                                   hash);
1578         if (IS_ERR(ct))
1579                 return (struct nf_conntrack_tuple_hash *)ct;
1580
1581         if (!nf_ct_add_synproxy(ct, tmpl)) {
1582                 nf_conntrack_free(ct);
1583                 return ERR_PTR(-ENOMEM);
1584         }
1585
1586         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1587
1588         if (timeout_ext)
1589                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1590                                       GFP_ATOMIC);
1591
1592         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1593         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1594         nf_ct_labels_ext_add(ct);
1595
1596         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1597         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1598                                  ecache ? ecache->expmask : 0,
1599                              GFP_ATOMIC);
1600
1601         local_bh_disable();
1602         if (net->ct.expect_count) {
1603                 spin_lock(&nf_conntrack_expect_lock);
1604                 exp = nf_ct_find_expectation(net, zone, tuple);
1605                 if (exp) {
1606                         pr_debug("expectation arrives ct=%p exp=%p\n",
1607                                  ct, exp);
1608                         /* Welcome, Mr. Bond.  We've been expecting you... */
1609                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1610                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1611                         ct->master = exp->master;
1612                         if (exp->helper) {
1613                                 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1614                                 if (help)
1615                                         rcu_assign_pointer(help->helper, exp->helper);
1616                         }
1617
1618 #ifdef CONFIG_NF_CONNTRACK_MARK
1619                         ct->mark = exp->master->mark;
1620 #endif
1621 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1622                         ct->secmark = exp->master->secmark;
1623 #endif
1624                         NF_CT_STAT_INC(net, expect_new);
1625                 }
1626                 spin_unlock(&nf_conntrack_expect_lock);
1627         }
1628         if (!exp)
1629                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1630
1631         /* Now it is inserted into the unconfirmed list, bump refcount */
1632         nf_conntrack_get(&ct->ct_general);
1633         nf_ct_add_to_unconfirmed_list(ct);
1634
1635         local_bh_enable();
1636
1637         if (exp) {
1638                 if (exp->expectfn)
1639                         exp->expectfn(ct, exp);
1640                 nf_ct_expect_put(exp);
1641         }
1642
1643         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1644 }
1645
1646 /* On success, returns 0, sets skb->_nfct | ctinfo */
1647 static int
1648 resolve_normal_ct(struct nf_conn *tmpl,
1649                   struct sk_buff *skb,
1650                   unsigned int dataoff,
1651                   u_int8_t protonum,
1652                   const struct nf_hook_state *state)
1653 {
1654         const struct nf_conntrack_zone *zone;
1655         struct nf_conntrack_tuple tuple;
1656         struct nf_conntrack_tuple_hash *h;
1657         enum ip_conntrack_info ctinfo;
1658         struct nf_conntrack_zone tmp;
1659         struct nf_conn *ct;
1660         u32 hash;
1661
1662         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1663                              dataoff, state->pf, protonum, state->net,
1664                              &tuple)) {
1665                 pr_debug("Can't get tuple\n");
1666                 return 0;
1667         }
1668
1669         /* look for tuple match */
1670         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1671         hash = hash_conntrack_raw(&tuple, state->net);
1672         h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1673         if (!h) {
1674                 h = init_conntrack(state->net, tmpl, &tuple,
1675                                    skb, dataoff, hash);
1676                 if (!h)
1677                         return 0;
1678                 if (IS_ERR(h))
1679                         return PTR_ERR(h);
1680         }
1681         ct = nf_ct_tuplehash_to_ctrack(h);
1682
1683         /* It exists; we have (non-exclusive) reference. */
1684         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1685                 ctinfo = IP_CT_ESTABLISHED_REPLY;
1686         } else {
1687                 /* Once we've had two way comms, always ESTABLISHED. */
1688                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1689                         pr_debug("normal packet for %p\n", ct);
1690                         ctinfo = IP_CT_ESTABLISHED;
1691                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1692                         pr_debug("related packet for %p\n", ct);
1693                         ctinfo = IP_CT_RELATED;
1694                 } else {
1695                         pr_debug("new packet for %p\n", ct);
1696                         ctinfo = IP_CT_NEW;
1697                 }
1698         }
1699         nf_ct_set(skb, ct, ctinfo);
1700         return 0;
1701 }
1702
1703 /*
1704  * icmp packets need special treatment to handle error messages that are
1705  * related to a connection.
1706  *
1707  * Callers need to check if skb has a conntrack assigned when this
1708  * helper returns; in such case skb belongs to an already known connection.
1709  */
1710 static unsigned int __cold
1711 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1712                          struct sk_buff *skb,
1713                          unsigned int dataoff,
1714                          u8 protonum,
1715                          const struct nf_hook_state *state)
1716 {
1717         int ret;
1718
1719         if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1720                 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1721 #if IS_ENABLED(CONFIG_IPV6)
1722         else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1723                 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1724 #endif
1725         else
1726                 return NF_ACCEPT;
1727
1728         if (ret <= 0)
1729                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1730
1731         return ret;
1732 }
1733
1734 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1735                           enum ip_conntrack_info ctinfo)
1736 {
1737         const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1738
1739         if (!timeout)
1740                 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1741
1742         nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1743         return NF_ACCEPT;
1744 }
1745
1746 /* Returns verdict for packet, or -1 for invalid. */
1747 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1748                                       struct sk_buff *skb,
1749                                       unsigned int dataoff,
1750                                       enum ip_conntrack_info ctinfo,
1751                                       const struct nf_hook_state *state)
1752 {
1753         switch (nf_ct_protonum(ct)) {
1754         case IPPROTO_TCP:
1755                 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1756                                                ctinfo, state);
1757         case IPPROTO_UDP:
1758                 return nf_conntrack_udp_packet(ct, skb, dataoff,
1759                                                ctinfo, state);
1760         case IPPROTO_ICMP:
1761                 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1762 #if IS_ENABLED(CONFIG_IPV6)
1763         case IPPROTO_ICMPV6:
1764                 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1765 #endif
1766 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1767         case IPPROTO_UDPLITE:
1768                 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1769                                                    ctinfo, state);
1770 #endif
1771 #ifdef CONFIG_NF_CT_PROTO_SCTP
1772         case IPPROTO_SCTP:
1773                 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1774                                                 ctinfo, state);
1775 #endif
1776 #ifdef CONFIG_NF_CT_PROTO_DCCP
1777         case IPPROTO_DCCP:
1778                 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1779                                                 ctinfo, state);
1780 #endif
1781 #ifdef CONFIG_NF_CT_PROTO_GRE
1782         case IPPROTO_GRE:
1783                 return nf_conntrack_gre_packet(ct, skb, dataoff,
1784                                                ctinfo, state);
1785 #endif
1786         }
1787
1788         return generic_packet(ct, skb, ctinfo);
1789 }
1790
1791 unsigned int
1792 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1793 {
1794         enum ip_conntrack_info ctinfo;
1795         struct nf_conn *ct, *tmpl;
1796         u_int8_t protonum;
1797         int dataoff, ret;
1798
1799         tmpl = nf_ct_get(skb, &ctinfo);
1800         if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1801                 /* Previously seen (loopback or untracked)?  Ignore. */
1802                 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1803                      ctinfo == IP_CT_UNTRACKED)
1804                         return NF_ACCEPT;
1805                 skb->_nfct = 0;
1806         }
1807
1808         /* rcu_read_lock()ed by nf_hook_thresh */
1809         dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1810         if (dataoff <= 0) {
1811                 pr_debug("not prepared to track yet or error occurred\n");
1812                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1813                 ret = NF_ACCEPT;
1814                 goto out;
1815         }
1816
1817         if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1818                 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1819                                                protonum, state);
1820                 if (ret <= 0) {
1821                         ret = -ret;
1822                         goto out;
1823                 }
1824                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1825                 if (skb->_nfct)
1826                         goto out;
1827         }
1828 repeat:
1829         ret = resolve_normal_ct(tmpl, skb, dataoff,
1830                                 protonum, state);
1831         if (ret < 0) {
1832                 /* Too stressed to deal. */
1833                 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1834                 ret = NF_DROP;
1835                 goto out;
1836         }
1837
1838         ct = nf_ct_get(skb, &ctinfo);
1839         if (!ct) {
1840                 /* Not valid part of a connection */
1841                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1842                 ret = NF_ACCEPT;
1843                 goto out;
1844         }
1845
1846         ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1847         if (ret <= 0) {
1848                 /* Invalid: inverse of the return code tells
1849                  * the netfilter core what to do */
1850                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1851                 nf_conntrack_put(&ct->ct_general);
1852                 skb->_nfct = 0;
1853                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1854                 if (ret == -NF_DROP)
1855                         NF_CT_STAT_INC_ATOMIC(state->net, drop);
1856                 /* Special case: TCP tracker reports an attempt to reopen a
1857                  * closed/aborted connection. We have to go back and create a
1858                  * fresh conntrack.
1859                  */
1860                 if (ret == -NF_REPEAT)
1861                         goto repeat;
1862                 ret = -ret;
1863                 goto out;
1864         }
1865
1866         if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1867             !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1868                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1869 out:
1870         if (tmpl)
1871                 nf_ct_put(tmpl);
1872
1873         return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1876
1877 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1878    implicitly racy: see __nf_conntrack_confirm */
1879 void nf_conntrack_alter_reply(struct nf_conn *ct,
1880                               const struct nf_conntrack_tuple *newreply)
1881 {
1882         struct nf_conn_help *help = nfct_help(ct);
1883
1884         /* Should be unconfirmed, so not in hash table yet */
1885         WARN_ON(nf_ct_is_confirmed(ct));
1886
1887         pr_debug("Altering reply tuple of %p to ", ct);
1888         nf_ct_dump_tuple(newreply);
1889
1890         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1891         if (ct->master || (help && !hlist_empty(&help->expectations)))
1892                 return;
1893
1894         rcu_read_lock();
1895         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1896         rcu_read_unlock();
1897 }
1898 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1899
1900 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1901 void __nf_ct_refresh_acct(struct nf_conn *ct,
1902                           enum ip_conntrack_info ctinfo,
1903                           const struct sk_buff *skb,
1904                           u32 extra_jiffies,
1905                           bool do_acct)
1906 {
1907         /* Only update if this is not a fixed timeout */
1908         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1909                 goto acct;
1910
1911         /* If not in hash table, timer will not be active yet */
1912         if (nf_ct_is_confirmed(ct))
1913                 extra_jiffies += nfct_time_stamp;
1914
1915         if (READ_ONCE(ct->timeout) != extra_jiffies)
1916                 WRITE_ONCE(ct->timeout, extra_jiffies);
1917 acct:
1918         if (do_acct)
1919                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1920 }
1921 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1922
1923 bool nf_ct_kill_acct(struct nf_conn *ct,
1924                      enum ip_conntrack_info ctinfo,
1925                      const struct sk_buff *skb)
1926 {
1927         nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1928
1929         return nf_ct_delete(ct, 0, 0);
1930 }
1931 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1932
1933 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1934
1935 #include <linux/netfilter/nfnetlink.h>
1936 #include <linux/netfilter/nfnetlink_conntrack.h>
1937 #include <linux/mutex.h>
1938
1939 /* Generic function for tcp/udp/sctp/dccp and alike. */
1940 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1941                                const struct nf_conntrack_tuple *tuple)
1942 {
1943         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1944             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1945                 goto nla_put_failure;
1946         return 0;
1947
1948 nla_put_failure:
1949         return -1;
1950 }
1951 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1952
1953 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1954         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1955         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1956 };
1957 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1958
1959 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1960                                struct nf_conntrack_tuple *t,
1961                                u_int32_t flags)
1962 {
1963         if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1964                 if (!tb[CTA_PROTO_SRC_PORT])
1965                         return -EINVAL;
1966
1967                 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1968         }
1969
1970         if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1971                 if (!tb[CTA_PROTO_DST_PORT])
1972                         return -EINVAL;
1973
1974                 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1975         }
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1980
1981 unsigned int nf_ct_port_nlattr_tuple_size(void)
1982 {
1983         static unsigned int size __read_mostly;
1984
1985         if (!size)
1986                 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1987
1988         return size;
1989 }
1990 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1991 #endif
1992
1993 /* Used by ipt_REJECT and ip6t_REJECT. */
1994 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1995 {
1996         struct nf_conn *ct;
1997         enum ip_conntrack_info ctinfo;
1998
1999         /* This ICMP is in reverse direction to the packet which caused it */
2000         ct = nf_ct_get(skb, &ctinfo);
2001         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2002                 ctinfo = IP_CT_RELATED_REPLY;
2003         else
2004                 ctinfo = IP_CT_RELATED;
2005
2006         /* Attach to new skbuff, and increment count */
2007         nf_ct_set(nskb, ct, ctinfo);
2008         nf_conntrack_get(skb_nfct(nskb));
2009 }
2010
2011 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2012                                  struct nf_conn *ct,
2013                                  enum ip_conntrack_info ctinfo)
2014 {
2015         struct nf_conntrack_tuple_hash *h;
2016         struct nf_conntrack_tuple tuple;
2017         struct nf_nat_hook *nat_hook;
2018         unsigned int status;
2019         int dataoff;
2020         u16 l3num;
2021         u8 l4num;
2022
2023         l3num = nf_ct_l3num(ct);
2024
2025         dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2026         if (dataoff <= 0)
2027                 return -1;
2028
2029         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2030                              l4num, net, &tuple))
2031                 return -1;
2032
2033         if (ct->status & IPS_SRC_NAT) {
2034                 memcpy(tuple.src.u3.all,
2035                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2036                        sizeof(tuple.src.u3.all));
2037                 tuple.src.u.all =
2038                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2039         }
2040
2041         if (ct->status & IPS_DST_NAT) {
2042                 memcpy(tuple.dst.u3.all,
2043                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2044                        sizeof(tuple.dst.u3.all));
2045                 tuple.dst.u.all =
2046                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2047         }
2048
2049         h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2050         if (!h)
2051                 return 0;
2052
2053         /* Store status bits of the conntrack that is clashing to re-do NAT
2054          * mangling according to what it has been done already to this packet.
2055          */
2056         status = ct->status;
2057
2058         nf_ct_put(ct);
2059         ct = nf_ct_tuplehash_to_ctrack(h);
2060         nf_ct_set(skb, ct, ctinfo);
2061
2062         nat_hook = rcu_dereference(nf_nat_hook);
2063         if (!nat_hook)
2064                 return 0;
2065
2066         if (status & IPS_SRC_NAT &&
2067             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2068                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2069                 return -1;
2070
2071         if (status & IPS_DST_NAT &&
2072             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2073                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2074                 return -1;
2075
2076         return 0;
2077 }
2078
2079 /* This packet is coming from userspace via nf_queue, complete the packet
2080  * processing after the helper invocation in nf_confirm().
2081  */
2082 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2083                                enum ip_conntrack_info ctinfo)
2084 {
2085         const struct nf_conntrack_helper *helper;
2086         const struct nf_conn_help *help;
2087         int protoff;
2088
2089         help = nfct_help(ct);
2090         if (!help)
2091                 return 0;
2092
2093         helper = rcu_dereference(help->helper);
2094         if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2095                 return 0;
2096
2097         switch (nf_ct_l3num(ct)) {
2098         case NFPROTO_IPV4:
2099                 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2100                 break;
2101 #if IS_ENABLED(CONFIG_IPV6)
2102         case NFPROTO_IPV6: {
2103                 __be16 frag_off;
2104                 u8 pnum;
2105
2106                 pnum = ipv6_hdr(skb)->nexthdr;
2107                 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2108                                            &frag_off);
2109                 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2110                         return 0;
2111                 break;
2112         }
2113 #endif
2114         default:
2115                 return 0;
2116         }
2117
2118         if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2119             !nf_is_loopback_packet(skb)) {
2120                 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2121                         NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2122                         return -1;
2123                 }
2124         }
2125
2126         /* We've seen it coming out the other side: confirm it */
2127         return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2128 }
2129
2130 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2131 {
2132         enum ip_conntrack_info ctinfo;
2133         struct nf_conn *ct;
2134         int err;
2135
2136         ct = nf_ct_get(skb, &ctinfo);
2137         if (!ct)
2138                 return 0;
2139
2140         if (!nf_ct_is_confirmed(ct)) {
2141                 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2142                 if (err < 0)
2143                         return err;
2144
2145                 ct = nf_ct_get(skb, &ctinfo);
2146         }
2147
2148         return nf_confirm_cthelper(skb, ct, ctinfo);
2149 }
2150
2151 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2152                                        const struct sk_buff *skb)
2153 {
2154         const struct nf_conntrack_tuple *src_tuple;
2155         const struct nf_conntrack_tuple_hash *hash;
2156         struct nf_conntrack_tuple srctuple;
2157         enum ip_conntrack_info ctinfo;
2158         struct nf_conn *ct;
2159
2160         ct = nf_ct_get(skb, &ctinfo);
2161         if (ct) {
2162                 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2163                 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2164                 return true;
2165         }
2166
2167         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2168                                NFPROTO_IPV4, dev_net(skb->dev),
2169                                &srctuple))
2170                 return false;
2171
2172         hash = nf_conntrack_find_get(dev_net(skb->dev),
2173                                      &nf_ct_zone_dflt,
2174                                      &srctuple);
2175         if (!hash)
2176                 return false;
2177
2178         ct = nf_ct_tuplehash_to_ctrack(hash);
2179         src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2180         memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2181         nf_ct_put(ct);
2182
2183         return true;
2184 }
2185
2186 /* Bring out ya dead! */
2187 static struct nf_conn *
2188 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2189                 void *data, unsigned int *bucket)
2190 {
2191         struct nf_conntrack_tuple_hash *h;
2192         struct nf_conn *ct;
2193         struct hlist_nulls_node *n;
2194         spinlock_t *lockp;
2195
2196         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2197                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2198                 local_bh_disable();
2199                 nf_conntrack_lock(lockp);
2200                 if (*bucket < nf_conntrack_htable_size) {
2201                         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2202                                 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2203                                         continue;
2204                                 /* All nf_conn objects are added to hash table twice, one
2205                                  * for original direction tuple, once for the reply tuple.
2206                                  *
2207                                  * Exception: In the IPS_NAT_CLASH case, only the reply
2208                                  * tuple is added (the original tuple already existed for
2209                                  * a different object).
2210                                  *
2211                                  * We only need to call the iterator once for each
2212                                  * conntrack, so we just use the 'reply' direction
2213                                  * tuple while iterating.
2214                                  */
2215                                 ct = nf_ct_tuplehash_to_ctrack(h);
2216                                 if (iter(ct, data))
2217                                         goto found;
2218                         }
2219                 }
2220                 spin_unlock(lockp);
2221                 local_bh_enable();
2222                 cond_resched();
2223         }
2224
2225         return NULL;
2226 found:
2227         atomic_inc(&ct->ct_general.use);
2228         spin_unlock(lockp);
2229         local_bh_enable();
2230         return ct;
2231 }
2232
2233 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2234                                   void *data, u32 portid, int report)
2235 {
2236         unsigned int bucket = 0, sequence;
2237         struct nf_conn *ct;
2238
2239         might_sleep();
2240
2241         for (;;) {
2242                 sequence = read_seqcount_begin(&nf_conntrack_generation);
2243
2244                 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2245                         /* Time to push up daises... */
2246
2247                         nf_ct_delete(ct, portid, report);
2248                         nf_ct_put(ct);
2249                         cond_resched();
2250                 }
2251
2252                 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2253                         break;
2254                 bucket = 0;
2255         }
2256 }
2257
2258 struct iter_data {
2259         int (*iter)(struct nf_conn *i, void *data);
2260         void *data;
2261         struct net *net;
2262 };
2263
2264 static int iter_net_only(struct nf_conn *i, void *data)
2265 {
2266         struct iter_data *d = data;
2267
2268         if (!net_eq(d->net, nf_ct_net(i)))
2269                 return 0;
2270
2271         return d->iter(i, d->data);
2272 }
2273
2274 static void
2275 __nf_ct_unconfirmed_destroy(struct net *net)
2276 {
2277         int cpu;
2278
2279         for_each_possible_cpu(cpu) {
2280                 struct nf_conntrack_tuple_hash *h;
2281                 struct hlist_nulls_node *n;
2282                 struct ct_pcpu *pcpu;
2283
2284                 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2285
2286                 spin_lock_bh(&pcpu->lock);
2287                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2288                         struct nf_conn *ct;
2289
2290                         ct = nf_ct_tuplehash_to_ctrack(h);
2291
2292                         /* we cannot call iter() on unconfirmed list, the
2293                          * owning cpu can reallocate ct->ext at any time.
2294                          */
2295                         set_bit(IPS_DYING_BIT, &ct->status);
2296                 }
2297                 spin_unlock_bh(&pcpu->lock);
2298                 cond_resched();
2299         }
2300 }
2301
2302 void nf_ct_unconfirmed_destroy(struct net *net)
2303 {
2304         might_sleep();
2305
2306         if (atomic_read(&net->ct.count) > 0) {
2307                 __nf_ct_unconfirmed_destroy(net);
2308                 nf_queue_nf_hook_drop(net);
2309                 synchronize_net();
2310         }
2311 }
2312 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2313
2314 void nf_ct_iterate_cleanup_net(struct net *net,
2315                                int (*iter)(struct nf_conn *i, void *data),
2316                                void *data, u32 portid, int report)
2317 {
2318         struct iter_data d;
2319
2320         might_sleep();
2321
2322         if (atomic_read(&net->ct.count) == 0)
2323                 return;
2324
2325         d.iter = iter;
2326         d.data = data;
2327         d.net = net;
2328
2329         nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2330 }
2331 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2332
2333 /**
2334  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2335  * @iter: callback to invoke for each conntrack
2336  * @data: data to pass to @iter
2337  *
2338  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2339  * unconfirmed list as dying (so they will not be inserted into
2340  * main table).
2341  *
2342  * Can only be called in module exit path.
2343  */
2344 void
2345 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2346 {
2347         struct net *net;
2348
2349         down_read(&net_rwsem);
2350         for_each_net(net) {
2351                 if (atomic_read(&net->ct.count) == 0)
2352                         continue;
2353                 __nf_ct_unconfirmed_destroy(net);
2354                 nf_queue_nf_hook_drop(net);
2355         }
2356         up_read(&net_rwsem);
2357
2358         /* Need to wait for netns cleanup worker to finish, if its
2359          * running -- it might have deleted a net namespace from
2360          * the global list, so our __nf_ct_unconfirmed_destroy() might
2361          * not have affected all namespaces.
2362          */
2363         net_ns_barrier();
2364
2365         /* a conntrack could have been unlinked from unconfirmed list
2366          * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2367          * This makes sure its inserted into conntrack table.
2368          */
2369         synchronize_net();
2370
2371         nf_ct_iterate_cleanup(iter, data, 0, 0);
2372 }
2373 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2374
2375 static int kill_all(struct nf_conn *i, void *data)
2376 {
2377         return net_eq(nf_ct_net(i), data);
2378 }
2379
2380 void nf_conntrack_cleanup_start(void)
2381 {
2382         conntrack_gc_work.exiting = true;
2383         RCU_INIT_POINTER(ip_ct_attach, NULL);
2384 }
2385
2386 void nf_conntrack_cleanup_end(void)
2387 {
2388         RCU_INIT_POINTER(nf_ct_hook, NULL);
2389         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2390         kvfree(nf_conntrack_hash);
2391
2392         nf_conntrack_proto_fini();
2393         nf_conntrack_seqadj_fini();
2394         nf_conntrack_labels_fini();
2395         nf_conntrack_helper_fini();
2396         nf_conntrack_timeout_fini();
2397         nf_conntrack_ecache_fini();
2398         nf_conntrack_tstamp_fini();
2399         nf_conntrack_acct_fini();
2400         nf_conntrack_expect_fini();
2401
2402         kmem_cache_destroy(nf_conntrack_cachep);
2403 }
2404
2405 /*
2406  * Mishearing the voices in his head, our hero wonders how he's
2407  * supposed to kill the mall.
2408  */
2409 void nf_conntrack_cleanup_net(struct net *net)
2410 {
2411         LIST_HEAD(single);
2412
2413         list_add(&net->exit_list, &single);
2414         nf_conntrack_cleanup_net_list(&single);
2415 }
2416
2417 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2418 {
2419         int busy;
2420         struct net *net;
2421
2422         /*
2423          * This makes sure all current packets have passed through
2424          *  netfilter framework.  Roll on, two-stage module
2425          *  delete...
2426          */
2427         synchronize_net();
2428 i_see_dead_people:
2429         busy = 0;
2430         list_for_each_entry(net, net_exit_list, exit_list) {
2431                 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2432                 if (atomic_read(&net->ct.count) != 0)
2433                         busy = 1;
2434         }
2435         if (busy) {
2436                 schedule();
2437                 goto i_see_dead_people;
2438         }
2439
2440         list_for_each_entry(net, net_exit_list, exit_list) {
2441                 nf_conntrack_proto_pernet_fini(net);
2442                 nf_conntrack_ecache_pernet_fini(net);
2443                 nf_conntrack_expect_pernet_fini(net);
2444                 free_percpu(net->ct.stat);
2445                 free_percpu(net->ct.pcpu_lists);
2446         }
2447 }
2448
2449 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2450 {
2451         struct hlist_nulls_head *hash;
2452         unsigned int nr_slots, i;
2453
2454         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2455                 return NULL;
2456
2457         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2458         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2459
2460         hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2461
2462         if (hash && nulls)
2463                 for (i = 0; i < nr_slots; i++)
2464                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
2465
2466         return hash;
2467 }
2468 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2469
2470 int nf_conntrack_hash_resize(unsigned int hashsize)
2471 {
2472         int i, bucket;
2473         unsigned int old_size;
2474         struct hlist_nulls_head *hash, *old_hash;
2475         struct nf_conntrack_tuple_hash *h;
2476         struct nf_conn *ct;
2477
2478         if (!hashsize)
2479                 return -EINVAL;
2480
2481         hash = nf_ct_alloc_hashtable(&hashsize, 1);
2482         if (!hash)
2483                 return -ENOMEM;
2484
2485         old_size = nf_conntrack_htable_size;
2486         if (old_size == hashsize) {
2487                 kvfree(hash);
2488                 return 0;
2489         }
2490
2491         local_bh_disable();
2492         nf_conntrack_all_lock();
2493         write_seqcount_begin(&nf_conntrack_generation);
2494
2495         /* Lookups in the old hash might happen in parallel, which means we
2496          * might get false negatives during connection lookup. New connections
2497          * created because of a false negative won't make it into the hash
2498          * though since that required taking the locks.
2499          */
2500
2501         for (i = 0; i < nf_conntrack_htable_size; i++) {
2502                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2503                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2504                                               struct nf_conntrack_tuple_hash, hnnode);
2505                         ct = nf_ct_tuplehash_to_ctrack(h);
2506                         hlist_nulls_del_rcu(&h->hnnode);
2507                         bucket = __hash_conntrack(nf_ct_net(ct),
2508                                                   &h->tuple, hashsize);
2509                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2510                 }
2511         }
2512         old_size = nf_conntrack_htable_size;
2513         old_hash = nf_conntrack_hash;
2514
2515         nf_conntrack_hash = hash;
2516         nf_conntrack_htable_size = hashsize;
2517
2518         write_seqcount_end(&nf_conntrack_generation);
2519         nf_conntrack_all_unlock();
2520         local_bh_enable();
2521
2522         synchronize_net();
2523         kvfree(old_hash);
2524         return 0;
2525 }
2526
2527 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2528 {
2529         unsigned int hashsize;
2530         int rc;
2531
2532         if (current->nsproxy->net_ns != &init_net)
2533                 return -EOPNOTSUPP;
2534
2535         /* On boot, we can set this without any fancy locking. */
2536         if (!nf_conntrack_hash)
2537                 return param_set_uint(val, kp);
2538
2539         rc = kstrtouint(val, 0, &hashsize);
2540         if (rc)
2541                 return rc;
2542
2543         return nf_conntrack_hash_resize(hashsize);
2544 }
2545
2546 static __always_inline unsigned int total_extension_size(void)
2547 {
2548         /* remember to add new extensions below */
2549         BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2550
2551         return sizeof(struct nf_ct_ext) +
2552                sizeof(struct nf_conn_help)
2553 #if IS_ENABLED(CONFIG_NF_NAT)
2554                 + sizeof(struct nf_conn_nat)
2555 #endif
2556                 + sizeof(struct nf_conn_seqadj)
2557                 + sizeof(struct nf_conn_acct)
2558 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2559                 + sizeof(struct nf_conntrack_ecache)
2560 #endif
2561 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2562                 + sizeof(struct nf_conn_tstamp)
2563 #endif
2564 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2565                 + sizeof(struct nf_conn_timeout)
2566 #endif
2567 #ifdef CONFIG_NF_CONNTRACK_LABELS
2568                 + sizeof(struct nf_conn_labels)
2569 #endif
2570 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2571                 + sizeof(struct nf_conn_synproxy)
2572 #endif
2573         ;
2574 };
2575
2576 int nf_conntrack_init_start(void)
2577 {
2578         unsigned long nr_pages = totalram_pages();
2579         int max_factor = 8;
2580         int ret = -ENOMEM;
2581         int i;
2582
2583         /* struct nf_ct_ext uses u8 to store offsets/size */
2584         BUILD_BUG_ON(total_extension_size() > 255u);
2585
2586         seqcount_spinlock_init(&nf_conntrack_generation,
2587                                &nf_conntrack_locks_all_lock);
2588
2589         for (i = 0; i < CONNTRACK_LOCKS; i++)
2590                 spin_lock_init(&nf_conntrack_locks[i]);
2591
2592         if (!nf_conntrack_htable_size) {
2593                 /* Idea from tcp.c: use 1/16384 of memory.
2594                  * On i386: 32MB machine has 512 buckets.
2595                  * >= 1GB machines have 16384 buckets.
2596                  * >= 4GB machines have 65536 buckets.
2597                  */
2598                 nf_conntrack_htable_size
2599                         = (((nr_pages << PAGE_SHIFT) / 16384)
2600                            / sizeof(struct hlist_head));
2601                 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2602                         nf_conntrack_htable_size = 65536;
2603                 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2604                         nf_conntrack_htable_size = 16384;
2605                 if (nf_conntrack_htable_size < 32)
2606                         nf_conntrack_htable_size = 32;
2607
2608                 /* Use a max. factor of four by default to get the same max as
2609                  * with the old struct list_heads. When a table size is given
2610                  * we use the old value of 8 to avoid reducing the max.
2611                  * entries. */
2612                 max_factor = 4;
2613         }
2614
2615         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2616         if (!nf_conntrack_hash)
2617                 return -ENOMEM;
2618
2619         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2620
2621         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2622                                                 sizeof(struct nf_conn),
2623                                                 NFCT_INFOMASK + 1,
2624                                                 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2625         if (!nf_conntrack_cachep)
2626                 goto err_cachep;
2627
2628         ret = nf_conntrack_expect_init();
2629         if (ret < 0)
2630                 goto err_expect;
2631
2632         ret = nf_conntrack_acct_init();
2633         if (ret < 0)
2634                 goto err_acct;
2635
2636         ret = nf_conntrack_tstamp_init();
2637         if (ret < 0)
2638                 goto err_tstamp;
2639
2640         ret = nf_conntrack_ecache_init();
2641         if (ret < 0)
2642                 goto err_ecache;
2643
2644         ret = nf_conntrack_timeout_init();
2645         if (ret < 0)
2646                 goto err_timeout;
2647
2648         ret = nf_conntrack_helper_init();
2649         if (ret < 0)
2650                 goto err_helper;
2651
2652         ret = nf_conntrack_labels_init();
2653         if (ret < 0)
2654                 goto err_labels;
2655
2656         ret = nf_conntrack_seqadj_init();
2657         if (ret < 0)
2658                 goto err_seqadj;
2659
2660         ret = nf_conntrack_proto_init();
2661         if (ret < 0)
2662                 goto err_proto;
2663
2664         conntrack_gc_work_init(&conntrack_gc_work);
2665         queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2666
2667         return 0;
2668
2669 err_proto:
2670         nf_conntrack_seqadj_fini();
2671 err_seqadj:
2672         nf_conntrack_labels_fini();
2673 err_labels:
2674         nf_conntrack_helper_fini();
2675 err_helper:
2676         nf_conntrack_timeout_fini();
2677 err_timeout:
2678         nf_conntrack_ecache_fini();
2679 err_ecache:
2680         nf_conntrack_tstamp_fini();
2681 err_tstamp:
2682         nf_conntrack_acct_fini();
2683 err_acct:
2684         nf_conntrack_expect_fini();
2685 err_expect:
2686         kmem_cache_destroy(nf_conntrack_cachep);
2687 err_cachep:
2688         kvfree(nf_conntrack_hash);
2689         return ret;
2690 }
2691
2692 static struct nf_ct_hook nf_conntrack_hook = {
2693         .update         = nf_conntrack_update,
2694         .destroy        = destroy_conntrack,
2695         .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2696 };
2697
2698 void nf_conntrack_init_end(void)
2699 {
2700         /* For use by REJECT target */
2701         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2702         RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2703 }
2704
2705 /*
2706  * We need to use special "null" values, not used in hash table
2707  */
2708 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2709 #define DYING_NULLS_VAL         ((1<<30)+1)
2710
2711 int nf_conntrack_init_net(struct net *net)
2712 {
2713         int ret = -ENOMEM;
2714         int cpu;
2715
2716         BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2717         BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2718         atomic_set(&net->ct.count, 0);
2719
2720         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2721         if (!net->ct.pcpu_lists)
2722                 goto err_stat;
2723
2724         for_each_possible_cpu(cpu) {
2725                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2726
2727                 spin_lock_init(&pcpu->lock);
2728                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2729                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2730         }
2731
2732         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2733         if (!net->ct.stat)
2734                 goto err_pcpu_lists;
2735
2736         ret = nf_conntrack_expect_pernet_init(net);
2737         if (ret < 0)
2738                 goto err_expect;
2739
2740         nf_conntrack_acct_pernet_init(net);
2741         nf_conntrack_tstamp_pernet_init(net);
2742         nf_conntrack_ecache_pernet_init(net);
2743         nf_conntrack_helper_pernet_init(net);
2744         nf_conntrack_proto_pernet_init(net);
2745
2746         return 0;
2747
2748 err_expect:
2749         free_percpu(net->ct.stat);
2750 err_pcpu_lists:
2751         free_percpu(net->ct.pcpu_lists);
2752 err_stat:
2753         return ret;
2754 }