lib/genalloc: fix the overflow when size is too big
[linux-2.6-microblaze.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122         unsigned int seq;
123
124         do {
125                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127                 *low = net->ipv4.ip_local_ports.range[0];
128                 *high = net->ipv4.ip_local_ports.range[1];
129         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
133 static int inet_csk_bind_conflict(const struct sock *sk,
134                                   const struct inet_bind_bucket *tb,
135                                   bool relax, bool reuseport_ok)
136 {
137         struct sock *sk2;
138         bool reuse = sk->sk_reuse;
139         bool reuseport = !!sk->sk_reuseport;
140         kuid_t uid = sock_i_uid((struct sock *)sk);
141
142         /*
143          * Unlike other sk lookup places we do not check
144          * for sk_net here, since _all_ the socks listed
145          * in tb->owners list belong to the same net - the
146          * one this bucket belongs to.
147          */
148
149         sk_for_each_bound(sk2, &tb->owners) {
150                 if (sk != sk2 &&
151                     (!sk->sk_bound_dev_if ||
152                      !sk2->sk_bound_dev_if ||
153                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154                         if (reuse && sk2->sk_reuse &&
155                             sk2->sk_state != TCP_LISTEN) {
156                                 if ((!relax ||
157                                      (!reuseport_ok &&
158                                       reuseport && sk2->sk_reuseport &&
159                                       !rcu_access_pointer(sk->sk_reuseport_cb) &&
160                                       (sk2->sk_state == TCP_TIME_WAIT ||
161                                        uid_eq(uid, sock_i_uid(sk2))))) &&
162                                     inet_rcv_saddr_equal(sk, sk2, true))
163                                         break;
164                         } else if (!reuseport_ok ||
165                                    !reuseport || !sk2->sk_reuseport ||
166                                    rcu_access_pointer(sk->sk_reuseport_cb) ||
167                                    (sk2->sk_state != TCP_TIME_WAIT &&
168                                     !uid_eq(uid, sock_i_uid(sk2)))) {
169                                 if (inet_rcv_saddr_equal(sk, sk2, true))
170                                         break;
171                         }
172                 }
173         }
174         return sk2 != NULL;
175 }
176
177 /*
178  * Find an open port number for the socket.  Returns with the
179  * inet_bind_hashbucket lock held.
180  */
181 static struct inet_bind_hashbucket *
182 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
183 {
184         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
185         int port = 0;
186         struct inet_bind_hashbucket *head;
187         struct net *net = sock_net(sk);
188         bool relax = false;
189         int i, low, high, attempt_half;
190         struct inet_bind_bucket *tb;
191         u32 remaining, offset;
192         int l3mdev;
193
194         l3mdev = inet_sk_bound_l3mdev(sk);
195 ports_exhausted:
196         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
197 other_half_scan:
198         inet_get_local_port_range(net, &low, &high);
199         high++; /* [32768, 60999] -> [32768, 61000[ */
200         if (high - low < 4)
201                 attempt_half = 0;
202         if (attempt_half) {
203                 int half = low + (((high - low) >> 2) << 1);
204
205                 if (attempt_half == 1)
206                         high = half;
207                 else
208                         low = half;
209         }
210         remaining = high - low;
211         if (likely(remaining > 1))
212                 remaining &= ~1U;
213
214         offset = prandom_u32() % remaining;
215         /* __inet_hash_connect() favors ports having @low parity
216          * We do the opposite to not pollute connect() users.
217          */
218         offset |= 1U;
219
220 other_parity_scan:
221         port = low + offset;
222         for (i = 0; i < remaining; i += 2, port += 2) {
223                 if (unlikely(port >= high))
224                         port -= remaining;
225                 if (inet_is_local_reserved_port(net, port))
226                         continue;
227                 head = &hinfo->bhash[inet_bhashfn(net, port,
228                                                   hinfo->bhash_size)];
229                 spin_lock_bh(&head->lock);
230                 inet_bind_bucket_for_each(tb, &head->chain)
231                         if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
232                             tb->port == port) {
233                                 if (!inet_csk_bind_conflict(sk, tb, relax, false))
234                                         goto success;
235                                 goto next_port;
236                         }
237                 tb = NULL;
238                 goto success;
239 next_port:
240                 spin_unlock_bh(&head->lock);
241                 cond_resched();
242         }
243
244         offset--;
245         if (!(offset & 1))
246                 goto other_parity_scan;
247
248         if (attempt_half == 1) {
249                 /* OK we now try the upper half of the range */
250                 attempt_half = 2;
251                 goto other_half_scan;
252         }
253
254         if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
255                 /* We still have a chance to connect to different destinations */
256                 relax = true;
257                 goto ports_exhausted;
258         }
259         return NULL;
260 success:
261         *port_ret = port;
262         *tb_ret = tb;
263         return head;
264 }
265
266 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
267                                      struct sock *sk)
268 {
269         kuid_t uid = sock_i_uid(sk);
270
271         if (tb->fastreuseport <= 0)
272                 return 0;
273         if (!sk->sk_reuseport)
274                 return 0;
275         if (rcu_access_pointer(sk->sk_reuseport_cb))
276                 return 0;
277         if (!uid_eq(tb->fastuid, uid))
278                 return 0;
279         /* We only need to check the rcv_saddr if this tb was once marked
280          * without fastreuseport and then was reset, as we can only know that
281          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
282          * owners list.
283          */
284         if (tb->fastreuseport == FASTREUSEPORT_ANY)
285                 return 1;
286 #if IS_ENABLED(CONFIG_IPV6)
287         if (tb->fast_sk_family == AF_INET6)
288                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
289                                             inet6_rcv_saddr(sk),
290                                             tb->fast_rcv_saddr,
291                                             sk->sk_rcv_saddr,
292                                             tb->fast_ipv6_only,
293                                             ipv6_only_sock(sk), true, false);
294 #endif
295         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
296                                     ipv6_only_sock(sk), true, false);
297 }
298
299 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
300                                struct sock *sk)
301 {
302         kuid_t uid = sock_i_uid(sk);
303         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
304
305         if (hlist_empty(&tb->owners)) {
306                 tb->fastreuse = reuse;
307                 if (sk->sk_reuseport) {
308                         tb->fastreuseport = FASTREUSEPORT_ANY;
309                         tb->fastuid = uid;
310                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
311                         tb->fast_ipv6_only = ipv6_only_sock(sk);
312                         tb->fast_sk_family = sk->sk_family;
313 #if IS_ENABLED(CONFIG_IPV6)
314                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
315 #endif
316                 } else {
317                         tb->fastreuseport = 0;
318                 }
319         } else {
320                 if (!reuse)
321                         tb->fastreuse = 0;
322                 if (sk->sk_reuseport) {
323                         /* We didn't match or we don't have fastreuseport set on
324                          * the tb, but we have sk_reuseport set on this socket
325                          * and we know that there are no bind conflicts with
326                          * this socket in this tb, so reset our tb's reuseport
327                          * settings so that any subsequent sockets that match
328                          * our current socket will be put on the fast path.
329                          *
330                          * If we reset we need to set FASTREUSEPORT_STRICT so we
331                          * do extra checking for all subsequent sk_reuseport
332                          * socks.
333                          */
334                         if (!sk_reuseport_match(tb, sk)) {
335                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
336                                 tb->fastuid = uid;
337                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
338                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
339                                 tb->fast_sk_family = sk->sk_family;
340 #if IS_ENABLED(CONFIG_IPV6)
341                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
342 #endif
343                         }
344                 } else {
345                         tb->fastreuseport = 0;
346                 }
347         }
348 }
349
350 /* Obtain a reference to a local port for the given sock,
351  * if snum is zero it means select any available local port.
352  * We try to allocate an odd port (and leave even ports for connect())
353  */
354 int inet_csk_get_port(struct sock *sk, unsigned short snum)
355 {
356         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
357         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
358         int ret = 1, port = snum;
359         struct inet_bind_hashbucket *head;
360         struct net *net = sock_net(sk);
361         struct inet_bind_bucket *tb = NULL;
362         int l3mdev;
363
364         l3mdev = inet_sk_bound_l3mdev(sk);
365
366         if (!port) {
367                 head = inet_csk_find_open_port(sk, &tb, &port);
368                 if (!head)
369                         return ret;
370                 if (!tb)
371                         goto tb_not_found;
372                 goto success;
373         }
374         head = &hinfo->bhash[inet_bhashfn(net, port,
375                                           hinfo->bhash_size)];
376         spin_lock_bh(&head->lock);
377         inet_bind_bucket_for_each(tb, &head->chain)
378                 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
379                     tb->port == port)
380                         goto tb_found;
381 tb_not_found:
382         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
383                                      net, head, port, l3mdev);
384         if (!tb)
385                 goto fail_unlock;
386 tb_found:
387         if (!hlist_empty(&tb->owners)) {
388                 if (sk->sk_reuse == SK_FORCE_REUSE)
389                         goto success;
390
391                 if ((tb->fastreuse > 0 && reuse) ||
392                     sk_reuseport_match(tb, sk))
393                         goto success;
394                 if (inet_csk_bind_conflict(sk, tb, true, true))
395                         goto fail_unlock;
396         }
397 success:
398         inet_csk_update_fastreuse(tb, sk);
399
400         if (!inet_csk(sk)->icsk_bind_hash)
401                 inet_bind_hash(sk, tb, port);
402         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
403         ret = 0;
404
405 fail_unlock:
406         spin_unlock_bh(&head->lock);
407         return ret;
408 }
409 EXPORT_SYMBOL_GPL(inet_csk_get_port);
410
411 /*
412  * Wait for an incoming connection, avoid race conditions. This must be called
413  * with the socket locked.
414  */
415 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
416 {
417         struct inet_connection_sock *icsk = inet_csk(sk);
418         DEFINE_WAIT(wait);
419         int err;
420
421         /*
422          * True wake-one mechanism for incoming connections: only
423          * one process gets woken up, not the 'whole herd'.
424          * Since we do not 'race & poll' for established sockets
425          * anymore, the common case will execute the loop only once.
426          *
427          * Subtle issue: "add_wait_queue_exclusive()" will be added
428          * after any current non-exclusive waiters, and we know that
429          * it will always _stay_ after any new non-exclusive waiters
430          * because all non-exclusive waiters are added at the
431          * beginning of the wait-queue. As such, it's ok to "drop"
432          * our exclusiveness temporarily when we get woken up without
433          * having to remove and re-insert us on the wait queue.
434          */
435         for (;;) {
436                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
437                                           TASK_INTERRUPTIBLE);
438                 release_sock(sk);
439                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
440                         timeo = schedule_timeout(timeo);
441                 sched_annotate_sleep();
442                 lock_sock(sk);
443                 err = 0;
444                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
445                         break;
446                 err = -EINVAL;
447                 if (sk->sk_state != TCP_LISTEN)
448                         break;
449                 err = sock_intr_errno(timeo);
450                 if (signal_pending(current))
451                         break;
452                 err = -EAGAIN;
453                 if (!timeo)
454                         break;
455         }
456         finish_wait(sk_sleep(sk), &wait);
457         return err;
458 }
459
460 /*
461  * This will accept the next outstanding connection.
462  */
463 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
464 {
465         struct inet_connection_sock *icsk = inet_csk(sk);
466         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
467         struct request_sock *req;
468         struct sock *newsk;
469         int error;
470
471         lock_sock(sk);
472
473         /* We need to make sure that this socket is listening,
474          * and that it has something pending.
475          */
476         error = -EINVAL;
477         if (sk->sk_state != TCP_LISTEN)
478                 goto out_err;
479
480         /* Find already established connection */
481         if (reqsk_queue_empty(queue)) {
482                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
483
484                 /* If this is a non blocking socket don't sleep */
485                 error = -EAGAIN;
486                 if (!timeo)
487                         goto out_err;
488
489                 error = inet_csk_wait_for_connect(sk, timeo);
490                 if (error)
491                         goto out_err;
492         }
493         req = reqsk_queue_remove(queue, sk);
494         newsk = req->sk;
495
496         if (sk->sk_protocol == IPPROTO_TCP &&
497             tcp_rsk(req)->tfo_listener) {
498                 spin_lock_bh(&queue->fastopenq.lock);
499                 if (tcp_rsk(req)->tfo_listener) {
500                         /* We are still waiting for the final ACK from 3WHS
501                          * so can't free req now. Instead, we set req->sk to
502                          * NULL to signify that the child socket is taken
503                          * so reqsk_fastopen_remove() will free the req
504                          * when 3WHS finishes (or is aborted).
505                          */
506                         req->sk = NULL;
507                         req = NULL;
508                 }
509                 spin_unlock_bh(&queue->fastopenq.lock);
510         }
511
512 out:
513         release_sock(sk);
514         if (newsk && mem_cgroup_sockets_enabled) {
515                 int amt;
516
517                 /* atomically get the memory usage, set and charge the
518                  * newsk->sk_memcg.
519                  */
520                 lock_sock(newsk);
521
522                 /* The socket has not been accepted yet, no need to look at
523                  * newsk->sk_wmem_queued.
524                  */
525                 amt = sk_mem_pages(newsk->sk_forward_alloc +
526                                    atomic_read(&newsk->sk_rmem_alloc));
527                 mem_cgroup_sk_alloc(newsk);
528                 if (newsk->sk_memcg && amt)
529                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
530
531                 release_sock(newsk);
532         }
533         if (req)
534                 reqsk_put(req);
535         return newsk;
536 out_err:
537         newsk = NULL;
538         req = NULL;
539         *err = error;
540         goto out;
541 }
542 EXPORT_SYMBOL(inet_csk_accept);
543
544 /*
545  * Using different timers for retransmit, delayed acks and probes
546  * We may wish use just one timer maintaining a list of expire jiffies
547  * to optimize.
548  */
549 void inet_csk_init_xmit_timers(struct sock *sk,
550                                void (*retransmit_handler)(struct timer_list *t),
551                                void (*delack_handler)(struct timer_list *t),
552                                void (*keepalive_handler)(struct timer_list *t))
553 {
554         struct inet_connection_sock *icsk = inet_csk(sk);
555
556         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
557         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
558         timer_setup(&sk->sk_timer, keepalive_handler, 0);
559         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
560 }
561 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
562
563 void inet_csk_clear_xmit_timers(struct sock *sk)
564 {
565         struct inet_connection_sock *icsk = inet_csk(sk);
566
567         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
568
569         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
570         sk_stop_timer(sk, &icsk->icsk_delack_timer);
571         sk_stop_timer(sk, &sk->sk_timer);
572 }
573 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
574
575 void inet_csk_delete_keepalive_timer(struct sock *sk)
576 {
577         sk_stop_timer(sk, &sk->sk_timer);
578 }
579 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
580
581 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
582 {
583         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
584 }
585 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
586
587 struct dst_entry *inet_csk_route_req(const struct sock *sk,
588                                      struct flowi4 *fl4,
589                                      const struct request_sock *req)
590 {
591         const struct inet_request_sock *ireq = inet_rsk(req);
592         struct net *net = read_pnet(&ireq->ireq_net);
593         struct ip_options_rcu *opt;
594         struct rtable *rt;
595
596         rcu_read_lock();
597         opt = rcu_dereference(ireq->ireq_opt);
598
599         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
600                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
601                            sk->sk_protocol, inet_sk_flowi_flags(sk),
602                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
603                            ireq->ir_loc_addr, ireq->ir_rmt_port,
604                            htons(ireq->ir_num), sk->sk_uid);
605         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
606         rt = ip_route_output_flow(net, fl4, sk);
607         if (IS_ERR(rt))
608                 goto no_route;
609         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
610                 goto route_err;
611         rcu_read_unlock();
612         return &rt->dst;
613
614 route_err:
615         ip_rt_put(rt);
616 no_route:
617         rcu_read_unlock();
618         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
619         return NULL;
620 }
621 EXPORT_SYMBOL_GPL(inet_csk_route_req);
622
623 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
624                                             struct sock *newsk,
625                                             const struct request_sock *req)
626 {
627         const struct inet_request_sock *ireq = inet_rsk(req);
628         struct net *net = read_pnet(&ireq->ireq_net);
629         struct inet_sock *newinet = inet_sk(newsk);
630         struct ip_options_rcu *opt;
631         struct flowi4 *fl4;
632         struct rtable *rt;
633
634         opt = rcu_dereference(ireq->ireq_opt);
635         fl4 = &newinet->cork.fl.u.ip4;
636
637         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
638                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
639                            sk->sk_protocol, inet_sk_flowi_flags(sk),
640                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
641                            ireq->ir_loc_addr, ireq->ir_rmt_port,
642                            htons(ireq->ir_num), sk->sk_uid);
643         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
644         rt = ip_route_output_flow(net, fl4, sk);
645         if (IS_ERR(rt))
646                 goto no_route;
647         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
648                 goto route_err;
649         return &rt->dst;
650
651 route_err:
652         ip_rt_put(rt);
653 no_route:
654         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
655         return NULL;
656 }
657 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
658
659 /* Decide when to expire the request and when to resend SYN-ACK */
660 static void syn_ack_recalc(struct request_sock *req,
661                            const int max_syn_ack_retries,
662                            const u8 rskq_defer_accept,
663                            int *expire, int *resend)
664 {
665         if (!rskq_defer_accept) {
666                 *expire = req->num_timeout >= max_syn_ack_retries;
667                 *resend = 1;
668                 return;
669         }
670         *expire = req->num_timeout >= max_syn_ack_retries &&
671                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
672         /* Do not resend while waiting for data after ACK,
673          * start to resend on end of deferring period to give
674          * last chance for data or ACK to create established socket.
675          */
676         *resend = !inet_rsk(req)->acked ||
677                   req->num_timeout >= rskq_defer_accept - 1;
678 }
679
680 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
681 {
682         int err = req->rsk_ops->rtx_syn_ack(parent, req);
683
684         if (!err)
685                 req->num_retrans++;
686         return err;
687 }
688 EXPORT_SYMBOL(inet_rtx_syn_ack);
689
690 /* return true if req was found in the ehash table */
691 static bool reqsk_queue_unlink(struct request_sock *req)
692 {
693         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
694         bool found = false;
695
696         if (sk_hashed(req_to_sk(req))) {
697                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
698
699                 spin_lock(lock);
700                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
701                 spin_unlock(lock);
702         }
703         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
704                 reqsk_put(req);
705         return found;
706 }
707
708 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
709 {
710         if (reqsk_queue_unlink(req)) {
711                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
712                 reqsk_put(req);
713         }
714 }
715 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
716
717 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
718 {
719         inet_csk_reqsk_queue_drop(sk, req);
720         reqsk_put(req);
721 }
722 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
723
724 static void reqsk_timer_handler(struct timer_list *t)
725 {
726         struct request_sock *req = from_timer(req, t, rsk_timer);
727         struct sock *sk_listener = req->rsk_listener;
728         struct net *net = sock_net(sk_listener);
729         struct inet_connection_sock *icsk = inet_csk(sk_listener);
730         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
731         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
732
733         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
734                 goto drop;
735
736         max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
737         /* Normally all the openreqs are young and become mature
738          * (i.e. converted to established socket) for first timeout.
739          * If synack was not acknowledged for 1 second, it means
740          * one of the following things: synack was lost, ack was lost,
741          * rtt is high or nobody planned to ack (i.e. synflood).
742          * When server is a bit loaded, queue is populated with old
743          * open requests, reducing effective size of queue.
744          * When server is well loaded, queue size reduces to zero
745          * after several minutes of work. It is not synflood,
746          * it is normal operation. The solution is pruning
747          * too old entries overriding normal timeout, when
748          * situation becomes dangerous.
749          *
750          * Essentially, we reserve half of room for young
751          * embrions; and abort old ones without pity, if old
752          * ones are about to clog our table.
753          */
754         qlen = reqsk_queue_len(queue);
755         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
756                 int young = reqsk_queue_len_young(queue) << 1;
757
758                 while (max_syn_ack_retries > 2) {
759                         if (qlen < young)
760                                 break;
761                         max_syn_ack_retries--;
762                         young <<= 1;
763                 }
764         }
765         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
766                        &expire, &resend);
767         req->rsk_ops->syn_ack_timeout(req);
768         if (!expire &&
769             (!resend ||
770              !inet_rtx_syn_ack(sk_listener, req) ||
771              inet_rsk(req)->acked)) {
772                 unsigned long timeo;
773
774                 if (req->num_timeout++ == 0)
775                         atomic_dec(&queue->young);
776                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
777                 mod_timer(&req->rsk_timer, jiffies + timeo);
778                 return;
779         }
780 drop:
781         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
782 }
783
784 static void reqsk_queue_hash_req(struct request_sock *req,
785                                  unsigned long timeout)
786 {
787         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
788         mod_timer(&req->rsk_timer, jiffies + timeout);
789
790         inet_ehash_insert(req_to_sk(req), NULL, NULL);
791         /* before letting lookups find us, make sure all req fields
792          * are committed to memory and refcnt initialized.
793          */
794         smp_wmb();
795         refcount_set(&req->rsk_refcnt, 2 + 1);
796 }
797
798 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
799                                    unsigned long timeout)
800 {
801         reqsk_queue_hash_req(req, timeout);
802         inet_csk_reqsk_queue_added(sk);
803 }
804 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
805
806 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
807                            const gfp_t priority)
808 {
809         struct inet_connection_sock *icsk = inet_csk(newsk);
810
811         if (!icsk->icsk_ulp_ops)
812                 return;
813
814         if (icsk->icsk_ulp_ops->clone)
815                 icsk->icsk_ulp_ops->clone(req, newsk, priority);
816 }
817
818 /**
819  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
820  *      @sk: the socket to clone
821  *      @req: request_sock
822  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
823  *
824  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
825  */
826 struct sock *inet_csk_clone_lock(const struct sock *sk,
827                                  const struct request_sock *req,
828                                  const gfp_t priority)
829 {
830         struct sock *newsk = sk_clone_lock(sk, priority);
831
832         if (newsk) {
833                 struct inet_connection_sock *newicsk = inet_csk(newsk);
834
835                 inet_sk_set_state(newsk, TCP_SYN_RECV);
836                 newicsk->icsk_bind_hash = NULL;
837
838                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
839                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
840                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
841
842                 /* listeners have SOCK_RCU_FREE, not the children */
843                 sock_reset_flag(newsk, SOCK_RCU_FREE);
844
845                 inet_sk(newsk)->mc_list = NULL;
846
847                 newsk->sk_mark = inet_rsk(req)->ir_mark;
848                 atomic64_set(&newsk->sk_cookie,
849                              atomic64_read(&inet_rsk(req)->ir_cookie));
850
851                 newicsk->icsk_retransmits = 0;
852                 newicsk->icsk_backoff     = 0;
853                 newicsk->icsk_probes_out  = 0;
854
855                 /* Deinitialize accept_queue to trap illegal accesses. */
856                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
857
858                 inet_clone_ulp(req, newsk, priority);
859
860                 security_inet_csk_clone(newsk, req);
861         }
862         return newsk;
863 }
864 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
865
866 /*
867  * At this point, there should be no process reference to this
868  * socket, and thus no user references at all.  Therefore we
869  * can assume the socket waitqueue is inactive and nobody will
870  * try to jump onto it.
871  */
872 void inet_csk_destroy_sock(struct sock *sk)
873 {
874         WARN_ON(sk->sk_state != TCP_CLOSE);
875         WARN_ON(!sock_flag(sk, SOCK_DEAD));
876
877         /* It cannot be in hash table! */
878         WARN_ON(!sk_unhashed(sk));
879
880         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
881         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
882
883         sk->sk_prot->destroy(sk);
884
885         sk_stream_kill_queues(sk);
886
887         xfrm_sk_free_policy(sk);
888
889         sk_refcnt_debug_release(sk);
890
891         percpu_counter_dec(sk->sk_prot->orphan_count);
892
893         sock_put(sk);
894 }
895 EXPORT_SYMBOL(inet_csk_destroy_sock);
896
897 /* This function allows to force a closure of a socket after the call to
898  * tcp/dccp_create_openreq_child().
899  */
900 void inet_csk_prepare_forced_close(struct sock *sk)
901         __releases(&sk->sk_lock.slock)
902 {
903         /* sk_clone_lock locked the socket and set refcnt to 2 */
904         bh_unlock_sock(sk);
905         sock_put(sk);
906         inet_csk_prepare_for_destroy_sock(sk);
907         inet_sk(sk)->inet_num = 0;
908 }
909 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
910
911 int inet_csk_listen_start(struct sock *sk, int backlog)
912 {
913         struct inet_connection_sock *icsk = inet_csk(sk);
914         struct inet_sock *inet = inet_sk(sk);
915         int err = -EADDRINUSE;
916
917         reqsk_queue_alloc(&icsk->icsk_accept_queue);
918
919         sk->sk_ack_backlog = 0;
920         inet_csk_delack_init(sk);
921
922         /* There is race window here: we announce ourselves listening,
923          * but this transition is still not validated by get_port().
924          * It is OK, because this socket enters to hash table only
925          * after validation is complete.
926          */
927         inet_sk_state_store(sk, TCP_LISTEN);
928         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
929                 inet->inet_sport = htons(inet->inet_num);
930
931                 sk_dst_reset(sk);
932                 err = sk->sk_prot->hash(sk);
933
934                 if (likely(!err))
935                         return 0;
936         }
937
938         inet_sk_set_state(sk, TCP_CLOSE);
939         return err;
940 }
941 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
942
943 static void inet_child_forget(struct sock *sk, struct request_sock *req,
944                               struct sock *child)
945 {
946         sk->sk_prot->disconnect(child, O_NONBLOCK);
947
948         sock_orphan(child);
949
950         percpu_counter_inc(sk->sk_prot->orphan_count);
951
952         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
953                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
954                 BUG_ON(sk != req->rsk_listener);
955
956                 /* Paranoid, to prevent race condition if
957                  * an inbound pkt destined for child is
958                  * blocked by sock lock in tcp_v4_rcv().
959                  * Also to satisfy an assertion in
960                  * tcp_v4_destroy_sock().
961                  */
962                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
963         }
964         inet_csk_destroy_sock(child);
965 }
966
967 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
968                                       struct request_sock *req,
969                                       struct sock *child)
970 {
971         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
972
973         spin_lock(&queue->rskq_lock);
974         if (unlikely(sk->sk_state != TCP_LISTEN)) {
975                 inet_child_forget(sk, req, child);
976                 child = NULL;
977         } else {
978                 req->sk = child;
979                 req->dl_next = NULL;
980                 if (queue->rskq_accept_head == NULL)
981                         WRITE_ONCE(queue->rskq_accept_head, req);
982                 else
983                         queue->rskq_accept_tail->dl_next = req;
984                 queue->rskq_accept_tail = req;
985                 sk_acceptq_added(sk);
986         }
987         spin_unlock(&queue->rskq_lock);
988         return child;
989 }
990 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
991
992 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
993                                          struct request_sock *req, bool own_req)
994 {
995         if (own_req) {
996                 inet_csk_reqsk_queue_drop(sk, req);
997                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
998                 if (inet_csk_reqsk_queue_add(sk, req, child))
999                         return child;
1000         }
1001         /* Too bad, another child took ownership of the request, undo. */
1002         bh_unlock_sock(child);
1003         sock_put(child);
1004         return NULL;
1005 }
1006 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1007
1008 /*
1009  *      This routine closes sockets which have been at least partially
1010  *      opened, but not yet accepted.
1011  */
1012 void inet_csk_listen_stop(struct sock *sk)
1013 {
1014         struct inet_connection_sock *icsk = inet_csk(sk);
1015         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1016         struct request_sock *next, *req;
1017
1018         /* Following specs, it would be better either to send FIN
1019          * (and enter FIN-WAIT-1, it is normal close)
1020          * or to send active reset (abort).
1021          * Certainly, it is pretty dangerous while synflood, but it is
1022          * bad justification for our negligence 8)
1023          * To be honest, we are not able to make either
1024          * of the variants now.                 --ANK
1025          */
1026         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1027                 struct sock *child = req->sk;
1028
1029                 local_bh_disable();
1030                 bh_lock_sock(child);
1031                 WARN_ON(sock_owned_by_user(child));
1032                 sock_hold(child);
1033
1034                 inet_child_forget(sk, req, child);
1035                 reqsk_put(req);
1036                 bh_unlock_sock(child);
1037                 local_bh_enable();
1038                 sock_put(child);
1039
1040                 cond_resched();
1041         }
1042         if (queue->fastopenq.rskq_rst_head) {
1043                 /* Free all the reqs queued in rskq_rst_head. */
1044                 spin_lock_bh(&queue->fastopenq.lock);
1045                 req = queue->fastopenq.rskq_rst_head;
1046                 queue->fastopenq.rskq_rst_head = NULL;
1047                 spin_unlock_bh(&queue->fastopenq.lock);
1048                 while (req != NULL) {
1049                         next = req->dl_next;
1050                         reqsk_put(req);
1051                         req = next;
1052                 }
1053         }
1054         WARN_ON_ONCE(sk->sk_ack_backlog);
1055 }
1056 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1057
1058 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1059 {
1060         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1061         const struct inet_sock *inet = inet_sk(sk);
1062
1063         sin->sin_family         = AF_INET;
1064         sin->sin_addr.s_addr    = inet->inet_daddr;
1065         sin->sin_port           = inet->inet_dport;
1066 }
1067 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1068
1069 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1070 {
1071         const struct inet_sock *inet = inet_sk(sk);
1072         const struct ip_options_rcu *inet_opt;
1073         __be32 daddr = inet->inet_daddr;
1074         struct flowi4 *fl4;
1075         struct rtable *rt;
1076
1077         rcu_read_lock();
1078         inet_opt = rcu_dereference(inet->inet_opt);
1079         if (inet_opt && inet_opt->opt.srr)
1080                 daddr = inet_opt->opt.faddr;
1081         fl4 = &fl->u.ip4;
1082         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1083                                    inet->inet_saddr, inet->inet_dport,
1084                                    inet->inet_sport, sk->sk_protocol,
1085                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1086         if (IS_ERR(rt))
1087                 rt = NULL;
1088         if (rt)
1089                 sk_setup_caps(sk, &rt->dst);
1090         rcu_read_unlock();
1091
1092         return &rt->dst;
1093 }
1094
1095 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1096 {
1097         struct dst_entry *dst = __sk_dst_check(sk, 0);
1098         struct inet_sock *inet = inet_sk(sk);
1099
1100         if (!dst) {
1101                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1102                 if (!dst)
1103                         goto out;
1104         }
1105         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1106
1107         dst = __sk_dst_check(sk, 0);
1108         if (!dst)
1109                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1110 out:
1111         return dst;
1112 }
1113 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);