Merge tag 'usb-serial-5.15-rc1-2' of https://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216
1217         /* same check as in sock_kmalloc() */
1218         if (filter_size <= sysctl_optmem_max &&
1219             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220                 atomic_add(filter_size, &sk->sk_omem_alloc);
1221                 return true;
1222         }
1223         return false;
1224 }
1225
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228         if (!refcount_inc_not_zero(&fp->refcnt))
1229                 return false;
1230
1231         if (!__sk_filter_charge(sk, fp)) {
1232                 sk_filter_release(fp);
1233                 return false;
1234         }
1235         return true;
1236 }
1237
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240         struct sock_filter *old_prog;
1241         struct bpf_prog *old_fp;
1242         int err, new_len, old_len = fp->len;
1243         bool seen_ld_abs = false;
1244
1245         /* We are free to overwrite insns et al right here as it
1246          * won't be used at this point in time anymore internally
1247          * after the migration to the internal BPF instruction
1248          * representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the
1340          * internal BPF translation for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > 0xffff))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > 0xffff))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb->tstamp = 0;
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb->tstamp = 0;
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 skb = skb_expand_head(skb, hh_len);
2184                 if (!skb)
2185                         return -ENOMEM;
2186         }
2187
2188         rcu_read_lock_bh();
2189         if (!nh) {
2190                 dst = skb_dst(skb);
2191                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192                                       &ipv6_hdr(skb)->daddr);
2193         } else {
2194                 nexthop = &nh->ipv6_nh;
2195         }
2196         neigh = ip_neigh_gw6(dev, nexthop);
2197         if (likely(!IS_ERR(neigh))) {
2198                 int ret;
2199
2200                 sock_confirm_neigh(skb, neigh);
2201                 dev_xmit_recursion_inc();
2202                 ret = neigh_output(neigh, skb, false);
2203                 dev_xmit_recursion_dec();
2204                 rcu_read_unlock_bh();
2205                 return ret;
2206         }
2207         rcu_read_unlock_bh();
2208         if (dst)
2209                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211         kfree_skb(skb);
2212         return -ENETDOWN;
2213 }
2214
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216                                    struct bpf_nh_params *nh)
2217 {
2218         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219         struct net *net = dev_net(dev);
2220         int err, ret = NET_XMIT_DROP;
2221
2222         if (!nh) {
2223                 struct dst_entry *dst;
2224                 struct flowi6 fl6 = {
2225                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2226                         .flowi6_mark  = skb->mark,
2227                         .flowlabel    = ip6_flowinfo(ip6h),
2228                         .flowi6_oif   = dev->ifindex,
2229                         .flowi6_proto = ip6h->nexthdr,
2230                         .daddr        = ip6h->daddr,
2231                         .saddr        = ip6h->saddr,
2232                 };
2233
2234                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235                 if (IS_ERR(dst))
2236                         goto out_drop;
2237
2238                 skb_dst_set(skb, dst);
2239         } else if (nh->nh_family != AF_INET6) {
2240                 goto out_drop;
2241         }
2242
2243         err = bpf_out_neigh_v6(net, skb, dev, nh);
2244         if (unlikely(net_xmit_eval(err)))
2245                 dev->stats.tx_errors++;
2246         else
2247                 ret = NET_XMIT_SUCCESS;
2248         goto out_xmit;
2249 out_drop:
2250         dev->stats.tx_errors++;
2251         kfree_skb(skb);
2252 out_xmit:
2253         return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257                                    struct bpf_nh_params *nh)
2258 {
2259         kfree_skb(skb);
2260         return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266                             struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb->tstamp = 0;
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 skb = skb_expand_head(skb, hh_len);
2282                 if (!skb)
2283                         return -ENOMEM;
2284         }
2285
2286         rcu_read_lock_bh();
2287         if (!nh) {
2288                 struct dst_entry *dst = skb_dst(skb);
2289                 struct rtable *rt = container_of(dst, struct rtable, dst);
2290
2291                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292         } else if (nh->nh_family == AF_INET6) {
2293                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294                 is_v6gw = true;
2295         } else if (nh->nh_family == AF_INET) {
2296                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297         } else {
2298                 rcu_read_unlock_bh();
2299                 goto out_drop;
2300         }
2301
2302         if (likely(!IS_ERR(neigh))) {
2303                 int ret;
2304
2305                 sock_confirm_neigh(skb, neigh);
2306                 dev_xmit_recursion_inc();
2307                 ret = neigh_output(neigh, skb, is_v6gw);
2308                 dev_xmit_recursion_dec();
2309                 rcu_read_unlock_bh();
2310                 return ret;
2311         }
2312         rcu_read_unlock_bh();
2313 out_drop:
2314         kfree_skb(skb);
2315         return -ENETDOWN;
2316 }
2317
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319                                    struct bpf_nh_params *nh)
2320 {
2321         const struct iphdr *ip4h = ip_hdr(skb);
2322         struct net *net = dev_net(dev);
2323         int err, ret = NET_XMIT_DROP;
2324
2325         if (!nh) {
2326                 struct flowi4 fl4 = {
2327                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2328                         .flowi4_mark  = skb->mark,
2329                         .flowi4_tos   = RT_TOS(ip4h->tos),
2330                         .flowi4_oif   = dev->ifindex,
2331                         .flowi4_proto = ip4h->protocol,
2332                         .daddr        = ip4h->daddr,
2333                         .saddr        = ip4h->saddr,
2334                 };
2335                 struct rtable *rt;
2336
2337                 rt = ip_route_output_flow(net, &fl4, NULL);
2338                 if (IS_ERR(rt))
2339                         goto out_drop;
2340                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341                         ip_rt_put(rt);
2342                         goto out_drop;
2343                 }
2344
2345                 skb_dst_set(skb, &rt->dst);
2346         }
2347
2348         err = bpf_out_neigh_v4(net, skb, dev, nh);
2349         if (unlikely(net_xmit_eval(err)))
2350                 dev->stats.tx_errors++;
2351         else
2352                 ret = NET_XMIT_SUCCESS;
2353         goto out_xmit;
2354 out_drop:
2355         dev->stats.tx_errors++;
2356         kfree_skb(skb);
2357 out_xmit:
2358         return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362                                    struct bpf_nh_params *nh)
2363 {
2364         kfree_skb(skb);
2365         return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370                                 struct bpf_nh_params *nh)
2371 {
2372         struct ethhdr *ethh = eth_hdr(skb);
2373
2374         if (unlikely(skb->mac_header >= skb->network_header))
2375                 goto out;
2376         bpf_push_mac_rcsum(skb);
2377         if (is_multicast_ether_addr(ethh->h_dest))
2378                 goto out;
2379
2380         skb_pull(skb, sizeof(*ethh));
2381         skb_unset_mac_header(skb);
2382         skb_reset_network_header(skb);
2383
2384         if (skb->protocol == htons(ETH_P_IP))
2385                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2386         else if (skb->protocol == htons(ETH_P_IPV6))
2387                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389         kfree_skb(skb);
2390         return -ENOTSUPP;
2391 }
2392
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395         BPF_F_NEIGH     = (1ULL << 1),
2396         BPF_F_PEER      = (1ULL << 2),
2397         BPF_F_NEXTHOP   = (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403         struct net_device *dev;
2404         struct sk_buff *clone;
2405         int ret;
2406
2407         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408                 return -EINVAL;
2409
2410         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411         if (unlikely(!dev))
2412                 return -EINVAL;
2413
2414         clone = skb_clone(skb, GFP_ATOMIC);
2415         if (unlikely(!clone))
2416                 return -ENOMEM;
2417
2418         /* For direct write, we need to keep the invariant that the skbs
2419          * we're dealing with need to be uncloned. Should uncloning fail
2420          * here, we need to free the just generated clone to unclone once
2421          * again.
2422          */
2423         ret = bpf_try_make_head_writable(skb);
2424         if (unlikely(ret)) {
2425                 kfree_skb(clone);
2426                 return -ENOMEM;
2427         }
2428
2429         return __bpf_redirect(clone, dev, flags);
2430 }
2431
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433         .func           = bpf_clone_redirect,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439 };
2440
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447         struct net *net = dev_net(skb->dev);
2448         struct net_device *dev;
2449         u32 flags = ri->flags;
2450
2451         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452         ri->tgt_index = 0;
2453         ri->flags = 0;
2454         if (unlikely(!dev))
2455                 goto out_drop;
2456         if (flags & BPF_F_PEER) {
2457                 const struct net_device_ops *ops = dev->netdev_ops;
2458
2459                 if (unlikely(!ops->ndo_get_peer_dev ||
2460                              !skb_at_tc_ingress(skb)))
2461                         goto out_drop;
2462                 dev = ops->ndo_get_peer_dev(dev);
2463                 if (unlikely(!dev ||
2464                              !(dev->flags & IFF_UP) ||
2465                              net_eq(net, dev_net(dev))))
2466                         goto out_drop;
2467                 skb->dev = dev;
2468                 return -EAGAIN;
2469         }
2470         return flags & BPF_F_NEIGH ?
2471                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472                                     &ri->nh : NULL) :
2473                __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475         kfree_skb(skb);
2476         return -EINVAL;
2477 }
2478
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482
2483         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484                 return TC_ACT_SHOT;
2485
2486         ri->flags = flags;
2487         ri->tgt_index = ifindex;
2488
2489         return TC_ACT_REDIRECT;
2490 }
2491
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493         .func           = bpf_redirect,
2494         .gpl_only       = false,
2495         .ret_type       = RET_INTEGER,
2496         .arg1_type      = ARG_ANYTHING,
2497         .arg2_type      = ARG_ANYTHING,
2498 };
2499
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503
2504         if (unlikely(flags))
2505                 return TC_ACT_SHOT;
2506
2507         ri->flags = BPF_F_PEER;
2508         ri->tgt_index = ifindex;
2509
2510         return TC_ACT_REDIRECT;
2511 }
2512
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514         .func           = bpf_redirect_peer,
2515         .gpl_only       = false,
2516         .ret_type       = RET_INTEGER,
2517         .arg1_type      = ARG_ANYTHING,
2518         .arg2_type      = ARG_ANYTHING,
2519 };
2520
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522            int, plen, u64, flags)
2523 {
2524         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525
2526         if (unlikely((plen && plen < sizeof(*params)) || flags))
2527                 return TC_ACT_SHOT;
2528
2529         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530         ri->tgt_index = ifindex;
2531
2532         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533         if (plen)
2534                 memcpy(&ri->nh, params, sizeof(ri->nh));
2535
2536         return TC_ACT_REDIRECT;
2537 }
2538
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540         .func           = bpf_redirect_neigh,
2541         .gpl_only       = false,
2542         .ret_type       = RET_INTEGER,
2543         .arg1_type      = ARG_ANYTHING,
2544         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546         .arg4_type      = ARG_ANYTHING,
2547 };
2548
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551         msg->apply_bytes = bytes;
2552         return 0;
2553 }
2554
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556         .func           = bpf_msg_apply_bytes,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_PTR_TO_CTX,
2560         .arg2_type      = ARG_ANYTHING,
2561 };
2562
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565         msg->cork_bytes = bytes;
2566         return 0;
2567 }
2568
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570         .func           = bpf_msg_cork_bytes,
2571         .gpl_only       = false,
2572         .ret_type       = RET_INTEGER,
2573         .arg1_type      = ARG_PTR_TO_CTX,
2574         .arg2_type      = ARG_ANYTHING,
2575 };
2576
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578            u32, end, u64, flags)
2579 {
2580         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582         struct scatterlist *sge;
2583         u8 *raw, *to, *from;
2584         struct page *page;
2585
2586         if (unlikely(flags || end <= start))
2587                 return -EINVAL;
2588
2589         /* First find the starting scatterlist element */
2590         i = msg->sg.start;
2591         do {
2592                 offset += len;
2593                 len = sk_msg_elem(msg, i)->length;
2594                 if (start < offset + len)
2595                         break;
2596                 sk_msg_iter_var_next(i);
2597         } while (i != msg->sg.end);
2598
2599         if (unlikely(start >= offset + len))
2600                 return -EINVAL;
2601
2602         first_sge = i;
2603         /* The start may point into the sg element so we need to also
2604          * account for the headroom.
2605          */
2606         bytes_sg_total = start - offset + bytes;
2607         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2608                 goto out;
2609
2610         /* At this point we need to linearize multiple scatterlist
2611          * elements or a single shared page. Either way we need to
2612          * copy into a linear buffer exclusively owned by BPF. Then
2613          * place the buffer in the scatterlist and fixup the original
2614          * entries by removing the entries now in the linear buffer
2615          * and shifting the remaining entries. For now we do not try
2616          * to copy partial entries to avoid complexity of running out
2617          * of sg_entry slots. The downside is reading a single byte
2618          * will copy the entire sg entry.
2619          */
2620         do {
2621                 copy += sk_msg_elem(msg, i)->length;
2622                 sk_msg_iter_var_next(i);
2623                 if (bytes_sg_total <= copy)
2624                         break;
2625         } while (i != msg->sg.end);
2626         last_sge = i;
2627
2628         if (unlikely(bytes_sg_total > copy))
2629                 return -EINVAL;
2630
2631         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632                            get_order(copy));
2633         if (unlikely(!page))
2634                 return -ENOMEM;
2635
2636         raw = page_address(page);
2637         i = first_sge;
2638         do {
2639                 sge = sk_msg_elem(msg, i);
2640                 from = sg_virt(sge);
2641                 len = sge->length;
2642                 to = raw + poffset;
2643
2644                 memcpy(to, from, len);
2645                 poffset += len;
2646                 sge->length = 0;
2647                 put_page(sg_page(sge));
2648
2649                 sk_msg_iter_var_next(i);
2650         } while (i != last_sge);
2651
2652         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653
2654         /* To repair sg ring we need to shift entries. If we only
2655          * had a single entry though we can just replace it and
2656          * be done. Otherwise walk the ring and shift the entries.
2657          */
2658         WARN_ON_ONCE(last_sge == first_sge);
2659         shift = last_sge > first_sge ?
2660                 last_sge - first_sge - 1 :
2661                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662         if (!shift)
2663                 goto out;
2664
2665         i = first_sge;
2666         sk_msg_iter_var_next(i);
2667         do {
2668                 u32 move_from;
2669
2670                 if (i + shift >= NR_MSG_FRAG_IDS)
2671                         move_from = i + shift - NR_MSG_FRAG_IDS;
2672                 else
2673                         move_from = i + shift;
2674                 if (move_from == msg->sg.end)
2675                         break;
2676
2677                 msg->sg.data[i] = msg->sg.data[move_from];
2678                 msg->sg.data[move_from].length = 0;
2679                 msg->sg.data[move_from].page_link = 0;
2680                 msg->sg.data[move_from].offset = 0;
2681                 sk_msg_iter_var_next(i);
2682         } while (1);
2683
2684         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686                       msg->sg.end - shift;
2687 out:
2688         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689         msg->data_end = msg->data + bytes;
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694         .func           = bpf_msg_pull_data,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698         .arg2_type      = ARG_ANYTHING,
2699         .arg3_type      = ARG_ANYTHING,
2700         .arg4_type      = ARG_ANYTHING,
2701 };
2702
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704            u32, len, u64, flags)
2705 {
2706         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708         u8 *raw, *to, *from;
2709         struct page *page;
2710
2711         if (unlikely(flags))
2712                 return -EINVAL;
2713
2714         /* First find the starting scatterlist element */
2715         i = msg->sg.start;
2716         do {
2717                 offset += l;
2718                 l = sk_msg_elem(msg, i)->length;
2719
2720                 if (start < offset + l)
2721                         break;
2722                 sk_msg_iter_var_next(i);
2723         } while (i != msg->sg.end);
2724
2725         if (start >= offset + l)
2726                 return -EINVAL;
2727
2728         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2729
2730         /* If no space available will fallback to copy, we need at
2731          * least one scatterlist elem available to push data into
2732          * when start aligns to the beginning of an element or two
2733          * when it falls inside an element. We handle the start equals
2734          * offset case because its the common case for inserting a
2735          * header.
2736          */
2737         if (!space || (space == 1 && start != offset))
2738                 copy = msg->sg.data[i].length;
2739
2740         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2741                            get_order(copy + len));
2742         if (unlikely(!page))
2743                 return -ENOMEM;
2744
2745         if (copy) {
2746                 int front, back;
2747
2748                 raw = page_address(page);
2749
2750                 psge = sk_msg_elem(msg, i);
2751                 front = start - offset;
2752                 back = psge->length - front;
2753                 from = sg_virt(psge);
2754
2755                 if (front)
2756                         memcpy(raw, from, front);
2757
2758                 if (back) {
2759                         from += front;
2760                         to = raw + front + len;
2761
2762                         memcpy(to, from, back);
2763                 }
2764
2765                 put_page(sg_page(psge));
2766         } else if (start - offset) {
2767                 psge = sk_msg_elem(msg, i);
2768                 rsge = sk_msg_elem_cpy(msg, i);
2769
2770                 psge->length = start - offset;
2771                 rsge.length -= psge->length;
2772                 rsge.offset += start;
2773
2774                 sk_msg_iter_var_next(i);
2775                 sg_unmark_end(psge);
2776                 sg_unmark_end(&rsge);
2777                 sk_msg_iter_next(msg, end);
2778         }
2779
2780         /* Slot(s) to place newly allocated data */
2781         new = i;
2782
2783         /* Shift one or two slots as needed */
2784         if (!copy) {
2785                 sge = sk_msg_elem_cpy(msg, i);
2786
2787                 sk_msg_iter_var_next(i);
2788                 sg_unmark_end(&sge);
2789                 sk_msg_iter_next(msg, end);
2790
2791                 nsge = sk_msg_elem_cpy(msg, i);
2792                 if (rsge.length) {
2793                         sk_msg_iter_var_next(i);
2794                         nnsge = sk_msg_elem_cpy(msg, i);
2795                 }
2796
2797                 while (i != msg->sg.end) {
2798                         msg->sg.data[i] = sge;
2799                         sge = nsge;
2800                         sk_msg_iter_var_next(i);
2801                         if (rsge.length) {
2802                                 nsge = nnsge;
2803                                 nnsge = sk_msg_elem_cpy(msg, i);
2804                         } else {
2805                                 nsge = sk_msg_elem_cpy(msg, i);
2806                         }
2807                 }
2808         }
2809
2810         /* Place newly allocated data buffer */
2811         sk_mem_charge(msg->sk, len);
2812         msg->sg.size += len;
2813         __clear_bit(new, &msg->sg.copy);
2814         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2815         if (rsge.length) {
2816                 get_page(sg_page(&rsge));
2817                 sk_msg_iter_var_next(new);
2818                 msg->sg.data[new] = rsge;
2819         }
2820
2821         sk_msg_compute_data_pointers(msg);
2822         return 0;
2823 }
2824
2825 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2826         .func           = bpf_msg_push_data,
2827         .gpl_only       = false,
2828         .ret_type       = RET_INTEGER,
2829         .arg1_type      = ARG_PTR_TO_CTX,
2830         .arg2_type      = ARG_ANYTHING,
2831         .arg3_type      = ARG_ANYTHING,
2832         .arg4_type      = ARG_ANYTHING,
2833 };
2834
2835 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2836 {
2837         int prev;
2838
2839         do {
2840                 prev = i;
2841                 sk_msg_iter_var_next(i);
2842                 msg->sg.data[prev] = msg->sg.data[i];
2843         } while (i != msg->sg.end);
2844
2845         sk_msg_iter_prev(msg, end);
2846 }
2847
2848 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2849 {
2850         struct scatterlist tmp, sge;
2851
2852         sk_msg_iter_next(msg, end);
2853         sge = sk_msg_elem_cpy(msg, i);
2854         sk_msg_iter_var_next(i);
2855         tmp = sk_msg_elem_cpy(msg, i);
2856
2857         while (i != msg->sg.end) {
2858                 msg->sg.data[i] = sge;
2859                 sk_msg_iter_var_next(i);
2860                 sge = tmp;
2861                 tmp = sk_msg_elem_cpy(msg, i);
2862         }
2863 }
2864
2865 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2866            u32, len, u64, flags)
2867 {
2868         u32 i = 0, l = 0, space, offset = 0;
2869         u64 last = start + len;
2870         int pop;
2871
2872         if (unlikely(flags))
2873                 return -EINVAL;
2874
2875         /* First find the starting scatterlist element */
2876         i = msg->sg.start;
2877         do {
2878                 offset += l;
2879                 l = sk_msg_elem(msg, i)->length;
2880
2881                 if (start < offset + l)
2882                         break;
2883                 sk_msg_iter_var_next(i);
2884         } while (i != msg->sg.end);
2885
2886         /* Bounds checks: start and pop must be inside message */
2887         if (start >= offset + l || last >= msg->sg.size)
2888                 return -EINVAL;
2889
2890         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2891
2892         pop = len;
2893         /* --------------| offset
2894          * -| start      |-------- len -------|
2895          *
2896          *  |----- a ----|-------- pop -------|----- b ----|
2897          *  |______________________________________________| length
2898          *
2899          *
2900          * a:   region at front of scatter element to save
2901          * b:   region at back of scatter element to save when length > A + pop
2902          * pop: region to pop from element, same as input 'pop' here will be
2903          *      decremented below per iteration.
2904          *
2905          * Two top-level cases to handle when start != offset, first B is non
2906          * zero and second B is zero corresponding to when a pop includes more
2907          * than one element.
2908          *
2909          * Then if B is non-zero AND there is no space allocate space and
2910          * compact A, B regions into page. If there is space shift ring to
2911          * the rigth free'ing the next element in ring to place B, leaving
2912          * A untouched except to reduce length.
2913          */
2914         if (start != offset) {
2915                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2916                 int a = start;
2917                 int b = sge->length - pop - a;
2918
2919                 sk_msg_iter_var_next(i);
2920
2921                 if (pop < sge->length - a) {
2922                         if (space) {
2923                                 sge->length = a;
2924                                 sk_msg_shift_right(msg, i);
2925                                 nsge = sk_msg_elem(msg, i);
2926                                 get_page(sg_page(sge));
2927                                 sg_set_page(nsge,
2928                                             sg_page(sge),
2929                                             b, sge->offset + pop + a);
2930                         } else {
2931                                 struct page *page, *orig;
2932                                 u8 *to, *from;
2933
2934                                 page = alloc_pages(__GFP_NOWARN |
2935                                                    __GFP_COMP   | GFP_ATOMIC,
2936                                                    get_order(a + b));
2937                                 if (unlikely(!page))
2938                                         return -ENOMEM;
2939
2940                                 sge->length = a;
2941                                 orig = sg_page(sge);
2942                                 from = sg_virt(sge);
2943                                 to = page_address(page);
2944                                 memcpy(to, from, a);
2945                                 memcpy(to + a, from + a + pop, b);
2946                                 sg_set_page(sge, page, a + b, 0);
2947                                 put_page(orig);
2948                         }
2949                         pop = 0;
2950                 } else if (pop >= sge->length - a) {
2951                         pop -= (sge->length - a);
2952                         sge->length = a;
2953                 }
2954         }
2955
2956         /* From above the current layout _must_ be as follows,
2957          *
2958          * -| offset
2959          * -| start
2960          *
2961          *  |---- pop ---|---------------- b ------------|
2962          *  |____________________________________________| length
2963          *
2964          * Offset and start of the current msg elem are equal because in the
2965          * previous case we handled offset != start and either consumed the
2966          * entire element and advanced to the next element OR pop == 0.
2967          *
2968          * Two cases to handle here are first pop is less than the length
2969          * leaving some remainder b above. Simply adjust the element's layout
2970          * in this case. Or pop >= length of the element so that b = 0. In this
2971          * case advance to next element decrementing pop.
2972          */
2973         while (pop) {
2974                 struct scatterlist *sge = sk_msg_elem(msg, i);
2975
2976                 if (pop < sge->length) {
2977                         sge->length -= pop;
2978                         sge->offset += pop;
2979                         pop = 0;
2980                 } else {
2981                         pop -= sge->length;
2982                         sk_msg_shift_left(msg, i);
2983                 }
2984                 sk_msg_iter_var_next(i);
2985         }
2986
2987         sk_mem_uncharge(msg->sk, len - pop);
2988         msg->sg.size -= (len - pop);
2989         sk_msg_compute_data_pointers(msg);
2990         return 0;
2991 }
2992
2993 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2994         .func           = bpf_msg_pop_data,
2995         .gpl_only       = false,
2996         .ret_type       = RET_INTEGER,
2997         .arg1_type      = ARG_PTR_TO_CTX,
2998         .arg2_type      = ARG_ANYTHING,
2999         .arg3_type      = ARG_ANYTHING,
3000         .arg4_type      = ARG_ANYTHING,
3001 };
3002
3003 #ifdef CONFIG_CGROUP_NET_CLASSID
3004 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3005 {
3006         return __task_get_classid(current);
3007 }
3008
3009 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3010         .func           = bpf_get_cgroup_classid_curr,
3011         .gpl_only       = false,
3012         .ret_type       = RET_INTEGER,
3013 };
3014
3015 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3016 {
3017         struct sock *sk = skb_to_full_sk(skb);
3018
3019         if (!sk || !sk_fullsock(sk))
3020                 return 0;
3021
3022         return sock_cgroup_classid(&sk->sk_cgrp_data);
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3026         .func           = bpf_skb_cgroup_classid,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030 };
3031 #endif
3032
3033 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3034 {
3035         return task_get_classid(skb);
3036 }
3037
3038 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3039         .func           = bpf_get_cgroup_classid,
3040         .gpl_only       = false,
3041         .ret_type       = RET_INTEGER,
3042         .arg1_type      = ARG_PTR_TO_CTX,
3043 };
3044
3045 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3046 {
3047         return dst_tclassid(skb);
3048 }
3049
3050 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3051         .func           = bpf_get_route_realm,
3052         .gpl_only       = false,
3053         .ret_type       = RET_INTEGER,
3054         .arg1_type      = ARG_PTR_TO_CTX,
3055 };
3056
3057 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3058 {
3059         /* If skb_clear_hash() was called due to mangling, we can
3060          * trigger SW recalculation here. Later access to hash
3061          * can then use the inline skb->hash via context directly
3062          * instead of calling this helper again.
3063          */
3064         return skb_get_hash(skb);
3065 }
3066
3067 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3068         .func           = bpf_get_hash_recalc,
3069         .gpl_only       = false,
3070         .ret_type       = RET_INTEGER,
3071         .arg1_type      = ARG_PTR_TO_CTX,
3072 };
3073
3074 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3075 {
3076         /* After all direct packet write, this can be used once for
3077          * triggering a lazy recalc on next skb_get_hash() invocation.
3078          */
3079         skb_clear_hash(skb);
3080         return 0;
3081 }
3082
3083 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3084         .func           = bpf_set_hash_invalid,
3085         .gpl_only       = false,
3086         .ret_type       = RET_INTEGER,
3087         .arg1_type      = ARG_PTR_TO_CTX,
3088 };
3089
3090 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3091 {
3092         /* Set user specified hash as L4(+), so that it gets returned
3093          * on skb_get_hash() call unless BPF prog later on triggers a
3094          * skb_clear_hash().
3095          */
3096         __skb_set_sw_hash(skb, hash, true);
3097         return 0;
3098 }
3099
3100 static const struct bpf_func_proto bpf_set_hash_proto = {
3101         .func           = bpf_set_hash,
3102         .gpl_only       = false,
3103         .ret_type       = RET_INTEGER,
3104         .arg1_type      = ARG_PTR_TO_CTX,
3105         .arg2_type      = ARG_ANYTHING,
3106 };
3107
3108 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3109            u16, vlan_tci)
3110 {
3111         int ret;
3112
3113         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3114                      vlan_proto != htons(ETH_P_8021AD)))
3115                 vlan_proto = htons(ETH_P_8021Q);
3116
3117         bpf_push_mac_rcsum(skb);
3118         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3119         bpf_pull_mac_rcsum(skb);
3120
3121         bpf_compute_data_pointers(skb);
3122         return ret;
3123 }
3124
3125 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3126         .func           = bpf_skb_vlan_push,
3127         .gpl_only       = false,
3128         .ret_type       = RET_INTEGER,
3129         .arg1_type      = ARG_PTR_TO_CTX,
3130         .arg2_type      = ARG_ANYTHING,
3131         .arg3_type      = ARG_ANYTHING,
3132 };
3133
3134 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3135 {
3136         int ret;
3137
3138         bpf_push_mac_rcsum(skb);
3139         ret = skb_vlan_pop(skb);
3140         bpf_pull_mac_rcsum(skb);
3141
3142         bpf_compute_data_pointers(skb);
3143         return ret;
3144 }
3145
3146 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3147         .func           = bpf_skb_vlan_pop,
3148         .gpl_only       = false,
3149         .ret_type       = RET_INTEGER,
3150         .arg1_type      = ARG_PTR_TO_CTX,
3151 };
3152
3153 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3154 {
3155         /* Caller already did skb_cow() with len as headroom,
3156          * so no need to do it here.
3157          */
3158         skb_push(skb, len);
3159         memmove(skb->data, skb->data + len, off);
3160         memset(skb->data + off, 0, len);
3161
3162         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3163          * needed here as it does not change the skb->csum
3164          * result for checksum complete when summing over
3165          * zeroed blocks.
3166          */
3167         return 0;
3168 }
3169
3170 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3171 {
3172         /* skb_ensure_writable() is not needed here, as we're
3173          * already working on an uncloned skb.
3174          */
3175         if (unlikely(!pskb_may_pull(skb, off + len)))
3176                 return -ENOMEM;
3177
3178         skb_postpull_rcsum(skb, skb->data + off, len);
3179         memmove(skb->data + len, skb->data, off);
3180         __skb_pull(skb, len);
3181
3182         return 0;
3183 }
3184
3185 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187         bool trans_same = skb->transport_header == skb->network_header;
3188         int ret;
3189
3190         /* There's no need for __skb_push()/__skb_pull() pair to
3191          * get to the start of the mac header as we're guaranteed
3192          * to always start from here under eBPF.
3193          */
3194         ret = bpf_skb_generic_push(skb, off, len);
3195         if (likely(!ret)) {
3196                 skb->mac_header -= len;
3197                 skb->network_header -= len;
3198                 if (trans_same)
3199                         skb->transport_header = skb->network_header;
3200         }
3201
3202         return ret;
3203 }
3204
3205 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3206 {
3207         bool trans_same = skb->transport_header == skb->network_header;
3208         int ret;
3209
3210         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3211         ret = bpf_skb_generic_pop(skb, off, len);
3212         if (likely(!ret)) {
3213                 skb->mac_header += len;
3214                 skb->network_header += len;
3215                 if (trans_same)
3216                         skb->transport_header = skb->network_header;
3217         }
3218
3219         return ret;
3220 }
3221
3222 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3223 {
3224         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3225         u32 off = skb_mac_header_len(skb);
3226         int ret;
3227
3228         ret = skb_cow(skb, len_diff);
3229         if (unlikely(ret < 0))
3230                 return ret;
3231
3232         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3233         if (unlikely(ret < 0))
3234                 return ret;
3235
3236         if (skb_is_gso(skb)) {
3237                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3238
3239                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3240                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3241                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3242                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3243                 }
3244         }
3245
3246         skb->protocol = htons(ETH_P_IPV6);
3247         skb_clear_hash(skb);
3248
3249         return 0;
3250 }
3251
3252 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3253 {
3254         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255         u32 off = skb_mac_header_len(skb);
3256         int ret;
3257
3258         ret = skb_unclone(skb, GFP_ATOMIC);
3259         if (unlikely(ret < 0))
3260                 return ret;
3261
3262         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3263         if (unlikely(ret < 0))
3264                 return ret;
3265
3266         if (skb_is_gso(skb)) {
3267                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3268
3269                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3270                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3271                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3272                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3273                 }
3274         }
3275
3276         skb->protocol = htons(ETH_P_IP);
3277         skb_clear_hash(skb);
3278
3279         return 0;
3280 }
3281
3282 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3283 {
3284         __be16 from_proto = skb->protocol;
3285
3286         if (from_proto == htons(ETH_P_IP) &&
3287               to_proto == htons(ETH_P_IPV6))
3288                 return bpf_skb_proto_4_to_6(skb);
3289
3290         if (from_proto == htons(ETH_P_IPV6) &&
3291               to_proto == htons(ETH_P_IP))
3292                 return bpf_skb_proto_6_to_4(skb);
3293
3294         return -ENOTSUPP;
3295 }
3296
3297 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3298            u64, flags)
3299 {
3300         int ret;
3301
3302         if (unlikely(flags))
3303                 return -EINVAL;
3304
3305         /* General idea is that this helper does the basic groundwork
3306          * needed for changing the protocol, and eBPF program fills the
3307          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3308          * and other helpers, rather than passing a raw buffer here.
3309          *
3310          * The rationale is to keep this minimal and without a need to
3311          * deal with raw packet data. F.e. even if we would pass buffers
3312          * here, the program still needs to call the bpf_lX_csum_replace()
3313          * helpers anyway. Plus, this way we keep also separation of
3314          * concerns, since f.e. bpf_skb_store_bytes() should only take
3315          * care of stores.
3316          *
3317          * Currently, additional options and extension header space are
3318          * not supported, but flags register is reserved so we can adapt
3319          * that. For offloads, we mark packet as dodgy, so that headers
3320          * need to be verified first.
3321          */
3322         ret = bpf_skb_proto_xlat(skb, proto);
3323         bpf_compute_data_pointers(skb);
3324         return ret;
3325 }
3326
3327 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3328         .func           = bpf_skb_change_proto,
3329         .gpl_only       = false,
3330         .ret_type       = RET_INTEGER,
3331         .arg1_type      = ARG_PTR_TO_CTX,
3332         .arg2_type      = ARG_ANYTHING,
3333         .arg3_type      = ARG_ANYTHING,
3334 };
3335
3336 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3337 {
3338         /* We only allow a restricted subset to be changed for now. */
3339         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3340                      !skb_pkt_type_ok(pkt_type)))
3341                 return -EINVAL;
3342
3343         skb->pkt_type = pkt_type;
3344         return 0;
3345 }
3346
3347 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3348         .func           = bpf_skb_change_type,
3349         .gpl_only       = false,
3350         .ret_type       = RET_INTEGER,
3351         .arg1_type      = ARG_PTR_TO_CTX,
3352         .arg2_type      = ARG_ANYTHING,
3353 };
3354
3355 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3356 {
3357         switch (skb->protocol) {
3358         case htons(ETH_P_IP):
3359                 return sizeof(struct iphdr);
3360         case htons(ETH_P_IPV6):
3361                 return sizeof(struct ipv6hdr);
3362         default:
3363                 return ~0U;
3364         }
3365 }
3366
3367 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3368                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3369
3370 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3376                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3377
3378 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3379                             u64 flags)
3380 {
3381         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3382         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3383         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3384         unsigned int gso_type = SKB_GSO_DODGY;
3385         int ret;
3386
3387         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3388                 /* udp gso_size delineates datagrams, only allow if fixed */
3389                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3390                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3391                         return -ENOTSUPP;
3392         }
3393
3394         ret = skb_cow_head(skb, len_diff);
3395         if (unlikely(ret < 0))
3396                 return ret;
3397
3398         if (encap) {
3399                 if (skb->protocol != htons(ETH_P_IP) &&
3400                     skb->protocol != htons(ETH_P_IPV6))
3401                         return -ENOTSUPP;
3402
3403                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3404                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3405                         return -EINVAL;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3409                         return -EINVAL;
3410
3411                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3412                     inner_mac_len < ETH_HLEN)
3413                         return -EINVAL;
3414
3415                 if (skb->encapsulation)
3416                         return -EALREADY;
3417
3418                 mac_len = skb->network_header - skb->mac_header;
3419                 inner_net = skb->network_header;
3420                 if (inner_mac_len > len_diff)
3421                         return -EINVAL;
3422                 inner_trans = skb->transport_header;
3423         }
3424
3425         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3426         if (unlikely(ret < 0))
3427                 return ret;
3428
3429         if (encap) {
3430                 skb->inner_mac_header = inner_net - inner_mac_len;
3431                 skb->inner_network_header = inner_net;
3432                 skb->inner_transport_header = inner_trans;
3433
3434                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3435                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3436                 else
3437                         skb_set_inner_protocol(skb, skb->protocol);
3438
3439                 skb->encapsulation = 1;
3440                 skb_set_network_header(skb, mac_len);
3441
3442                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443                         gso_type |= SKB_GSO_UDP_TUNNEL;
3444                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3445                         gso_type |= SKB_GSO_GRE;
3446                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3447                         gso_type |= SKB_GSO_IPXIP6;
3448                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3449                         gso_type |= SKB_GSO_IPXIP4;
3450
3451                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3452                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3453                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3454                                         sizeof(struct ipv6hdr) :
3455                                         sizeof(struct iphdr);
3456
3457                         skb_set_transport_header(skb, mac_len + nh_len);
3458                 }
3459
3460                 /* Match skb->protocol to new outer l3 protocol */
3461                 if (skb->protocol == htons(ETH_P_IP) &&
3462                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463                         skb->protocol = htons(ETH_P_IPV6);
3464                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3465                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3466                         skb->protocol = htons(ETH_P_IP);
3467         }
3468
3469         if (skb_is_gso(skb)) {
3470                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3471
3472                 /* Due to header grow, MSS needs to be downgraded. */
3473                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3474                         skb_decrease_gso_size(shinfo, len_diff);
3475
3476                 /* Header must be checked, and gso_segs recomputed. */
3477                 shinfo->gso_type |= gso_type;
3478                 shinfo->gso_segs = 0;
3479         }
3480
3481         return 0;
3482 }
3483
3484 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3485                               u64 flags)
3486 {
3487         int ret;
3488
3489         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3490                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3491                 return -EINVAL;
3492
3493         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494                 /* udp gso_size delineates datagrams, only allow if fixed */
3495                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497                         return -ENOTSUPP;
3498         }
3499
3500         ret = skb_unclone(skb, GFP_ATOMIC);
3501         if (unlikely(ret < 0))
3502                 return ret;
3503
3504         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507
3508         if (skb_is_gso(skb)) {
3509                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3510
3511                 /* Due to header shrink, MSS can be upgraded. */
3512                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513                         skb_increase_gso_size(shinfo, len_diff);
3514
3515                 /* Header must be checked, and gso_segs recomputed. */
3516                 shinfo->gso_type |= SKB_GSO_DODGY;
3517                 shinfo->gso_segs = 0;
3518         }
3519
3520         return 0;
3521 }
3522
3523 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3524
3525 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3526            u32, mode, u64, flags)
3527 {
3528         u32 len_diff_abs = abs(len_diff);
3529         bool shrink = len_diff < 0;
3530         int ret = 0;
3531
3532         if (unlikely(flags || mode))
3533                 return -EINVAL;
3534         if (unlikely(len_diff_abs > 0xfffU))
3535                 return -EFAULT;
3536
3537         if (!shrink) {
3538                 ret = skb_cow(skb, len_diff);
3539                 if (unlikely(ret < 0))
3540                         return ret;
3541                 __skb_push(skb, len_diff_abs);
3542                 memset(skb->data, 0, len_diff_abs);
3543         } else {
3544                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3545                         return -ENOMEM;
3546                 __skb_pull(skb, len_diff_abs);
3547         }
3548         if (tls_sw_has_ctx_rx(skb->sk)) {
3549                 struct strp_msg *rxm = strp_msg(skb);
3550
3551                 rxm->full_len += len_diff;
3552         }
3553         return ret;
3554 }
3555
3556 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3557         .func           = sk_skb_adjust_room,
3558         .gpl_only       = false,
3559         .ret_type       = RET_INTEGER,
3560         .arg1_type      = ARG_PTR_TO_CTX,
3561         .arg2_type      = ARG_ANYTHING,
3562         .arg3_type      = ARG_ANYTHING,
3563         .arg4_type      = ARG_ANYTHING,
3564 };
3565
3566 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567            u32, mode, u64, flags)
3568 {
3569         u32 len_cur, len_diff_abs = abs(len_diff);
3570         u32 len_min = bpf_skb_net_base_len(skb);
3571         u32 len_max = BPF_SKB_MAX_LEN;
3572         __be16 proto = skb->protocol;
3573         bool shrink = len_diff < 0;
3574         u32 off;
3575         int ret;
3576
3577         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3578                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3579                 return -EINVAL;
3580         if (unlikely(len_diff_abs > 0xfffU))
3581                 return -EFAULT;
3582         if (unlikely(proto != htons(ETH_P_IP) &&
3583                      proto != htons(ETH_P_IPV6)))
3584                 return -ENOTSUPP;
3585
3586         off = skb_mac_header_len(skb);
3587         switch (mode) {
3588         case BPF_ADJ_ROOM_NET:
3589                 off += bpf_skb_net_base_len(skb);
3590                 break;
3591         case BPF_ADJ_ROOM_MAC:
3592                 break;
3593         default:
3594                 return -ENOTSUPP;
3595         }
3596
3597         len_cur = skb->len - skb_network_offset(skb);
3598         if ((shrink && (len_diff_abs >= len_cur ||
3599                         len_cur - len_diff_abs < len_min)) ||
3600             (!shrink && (skb->len + len_diff_abs > len_max &&
3601                          !skb_is_gso(skb))))
3602                 return -ENOTSUPP;
3603
3604         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3605                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3606         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3607                 __skb_reset_checksum_unnecessary(skb);
3608
3609         bpf_compute_data_pointers(skb);
3610         return ret;
3611 }
3612
3613 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3614         .func           = bpf_skb_adjust_room,
3615         .gpl_only       = false,
3616         .ret_type       = RET_INTEGER,
3617         .arg1_type      = ARG_PTR_TO_CTX,
3618         .arg2_type      = ARG_ANYTHING,
3619         .arg3_type      = ARG_ANYTHING,
3620         .arg4_type      = ARG_ANYTHING,
3621 };
3622
3623 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3624 {
3625         u32 min_len = skb_network_offset(skb);
3626
3627         if (skb_transport_header_was_set(skb))
3628                 min_len = skb_transport_offset(skb);
3629         if (skb->ip_summed == CHECKSUM_PARTIAL)
3630                 min_len = skb_checksum_start_offset(skb) +
3631                           skb->csum_offset + sizeof(__sum16);
3632         return min_len;
3633 }
3634
3635 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3636 {
3637         unsigned int old_len = skb->len;
3638         int ret;
3639
3640         ret = __skb_grow_rcsum(skb, new_len);
3641         if (!ret)
3642                 memset(skb->data + old_len, 0, new_len - old_len);
3643         return ret;
3644 }
3645
3646 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648         return __skb_trim_rcsum(skb, new_len);
3649 }
3650
3651 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3652                                         u64 flags)
3653 {
3654         u32 max_len = BPF_SKB_MAX_LEN;
3655         u32 min_len = __bpf_skb_min_len(skb);
3656         int ret;
3657
3658         if (unlikely(flags || new_len > max_len || new_len < min_len))
3659                 return -EINVAL;
3660         if (skb->encapsulation)
3661                 return -ENOTSUPP;
3662
3663         /* The basic idea of this helper is that it's performing the
3664          * needed work to either grow or trim an skb, and eBPF program
3665          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3666          * bpf_lX_csum_replace() and others rather than passing a raw
3667          * buffer here. This one is a slow path helper and intended
3668          * for replies with control messages.
3669          *
3670          * Like in bpf_skb_change_proto(), we want to keep this rather
3671          * minimal and without protocol specifics so that we are able
3672          * to separate concerns as in bpf_skb_store_bytes() should only
3673          * be the one responsible for writing buffers.
3674          *
3675          * It's really expected to be a slow path operation here for
3676          * control message replies, so we're implicitly linearizing,
3677          * uncloning and drop offloads from the skb by this.
3678          */
3679         ret = __bpf_try_make_writable(skb, skb->len);
3680         if (!ret) {
3681                 if (new_len > skb->len)
3682                         ret = bpf_skb_grow_rcsum(skb, new_len);
3683                 else if (new_len < skb->len)
3684                         ret = bpf_skb_trim_rcsum(skb, new_len);
3685                 if (!ret && skb_is_gso(skb))
3686                         skb_gso_reset(skb);
3687         }
3688         return ret;
3689 }
3690
3691 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3692            u64, flags)
3693 {
3694         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3695
3696         bpf_compute_data_pointers(skb);
3697         return ret;
3698 }
3699
3700 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3701         .func           = bpf_skb_change_tail,
3702         .gpl_only       = false,
3703         .ret_type       = RET_INTEGER,
3704         .arg1_type      = ARG_PTR_TO_CTX,
3705         .arg2_type      = ARG_ANYTHING,
3706         .arg3_type      = ARG_ANYTHING,
3707 };
3708
3709 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3710            u64, flags)
3711 {
3712         return __bpf_skb_change_tail(skb, new_len, flags);
3713 }
3714
3715 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3716         .func           = sk_skb_change_tail,
3717         .gpl_only       = false,
3718         .ret_type       = RET_INTEGER,
3719         .arg1_type      = ARG_PTR_TO_CTX,
3720         .arg2_type      = ARG_ANYTHING,
3721         .arg3_type      = ARG_ANYTHING,
3722 };
3723
3724 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3725                                         u64 flags)
3726 {
3727         u32 max_len = BPF_SKB_MAX_LEN;
3728         u32 new_len = skb->len + head_room;
3729         int ret;
3730
3731         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3732                      new_len < skb->len))
3733                 return -EINVAL;
3734
3735         ret = skb_cow(skb, head_room);
3736         if (likely(!ret)) {
3737                 /* Idea for this helper is that we currently only
3738                  * allow to expand on mac header. This means that
3739                  * skb->protocol network header, etc, stay as is.
3740                  * Compared to bpf_skb_change_tail(), we're more
3741                  * flexible due to not needing to linearize or
3742                  * reset GSO. Intention for this helper is to be
3743                  * used by an L3 skb that needs to push mac header
3744                  * for redirection into L2 device.
3745                  */
3746                 __skb_push(skb, head_room);
3747                 memset(skb->data, 0, head_room);
3748                 skb_reset_mac_header(skb);
3749                 skb_reset_mac_len(skb);
3750         }
3751
3752         return ret;
3753 }
3754
3755 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3756            u64, flags)
3757 {
3758         int ret = __bpf_skb_change_head(skb, head_room, flags);
3759
3760         bpf_compute_data_pointers(skb);
3761         return ret;
3762 }
3763
3764 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3765         .func           = bpf_skb_change_head,
3766         .gpl_only       = false,
3767         .ret_type       = RET_INTEGER,
3768         .arg1_type      = ARG_PTR_TO_CTX,
3769         .arg2_type      = ARG_ANYTHING,
3770         .arg3_type      = ARG_ANYTHING,
3771 };
3772
3773 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774            u64, flags)
3775 {
3776         return __bpf_skb_change_head(skb, head_room, flags);
3777 }
3778
3779 static const struct bpf_func_proto sk_skb_change_head_proto = {
3780         .func           = sk_skb_change_head,
3781         .gpl_only       = false,
3782         .ret_type       = RET_INTEGER,
3783         .arg1_type      = ARG_PTR_TO_CTX,
3784         .arg2_type      = ARG_ANYTHING,
3785         .arg3_type      = ARG_ANYTHING,
3786 };
3787 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3788 {
3789         return xdp_data_meta_unsupported(xdp) ? 0 :
3790                xdp->data - xdp->data_meta;
3791 }
3792
3793 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3794 {
3795         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3796         unsigned long metalen = xdp_get_metalen(xdp);
3797         void *data_start = xdp_frame_end + metalen;
3798         void *data = xdp->data + offset;
3799
3800         if (unlikely(data < data_start ||
3801                      data > xdp->data_end - ETH_HLEN))
3802                 return -EINVAL;
3803
3804         if (metalen)
3805                 memmove(xdp->data_meta + offset,
3806                         xdp->data_meta, metalen);
3807         xdp->data_meta += offset;
3808         xdp->data = data;
3809
3810         return 0;
3811 }
3812
3813 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3814         .func           = bpf_xdp_adjust_head,
3815         .gpl_only       = false,
3816         .ret_type       = RET_INTEGER,
3817         .arg1_type      = ARG_PTR_TO_CTX,
3818         .arg2_type      = ARG_ANYTHING,
3819 };
3820
3821 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3822 {
3823         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3824         void *data_end = xdp->data_end + offset;
3825
3826         /* Notice that xdp_data_hard_end have reserved some tailroom */
3827         if (unlikely(data_end > data_hard_end))
3828                 return -EINVAL;
3829
3830         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3831         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3832                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3833                 return -EINVAL;
3834         }
3835
3836         if (unlikely(data_end < xdp->data + ETH_HLEN))
3837                 return -EINVAL;
3838
3839         /* Clear memory area on grow, can contain uninit kernel memory */
3840         if (offset > 0)
3841                 memset(xdp->data_end, 0, offset);
3842
3843         xdp->data_end = data_end;
3844
3845         return 0;
3846 }
3847
3848 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3849         .func           = bpf_xdp_adjust_tail,
3850         .gpl_only       = false,
3851         .ret_type       = RET_INTEGER,
3852         .arg1_type      = ARG_PTR_TO_CTX,
3853         .arg2_type      = ARG_ANYTHING,
3854 };
3855
3856 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3857 {
3858         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859         void *meta = xdp->data_meta + offset;
3860         unsigned long metalen = xdp->data - meta;
3861
3862         if (xdp_data_meta_unsupported(xdp))
3863                 return -ENOTSUPP;
3864         if (unlikely(meta < xdp_frame_end ||
3865                      meta > xdp->data))
3866                 return -EINVAL;
3867         if (unlikely(xdp_metalen_invalid(metalen)))
3868                 return -EACCES;
3869
3870         xdp->data_meta = meta;
3871
3872         return 0;
3873 }
3874
3875 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3876         .func           = bpf_xdp_adjust_meta,
3877         .gpl_only       = false,
3878         .ret_type       = RET_INTEGER,
3879         .arg1_type      = ARG_PTR_TO_CTX,
3880         .arg2_type      = ARG_ANYTHING,
3881 };
3882
3883 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3884  * below:
3885  *
3886  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3887  *    of the redirect and store it (along with some other metadata) in a per-CPU
3888  *    struct bpf_redirect_info.
3889  *
3890  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3891  *    call xdp_do_redirect() which will use the information in struct
3892  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3893  *    bulk queue structure.
3894  *
3895  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3896  *    which will flush all the different bulk queues, thus completing the
3897  *    redirect.
3898  *
3899  * Pointers to the map entries will be kept around for this whole sequence of
3900  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3901  * the core code; instead, the RCU protection relies on everything happening
3902  * inside a single NAPI poll sequence, which means it's between a pair of calls
3903  * to local_bh_disable()/local_bh_enable().
3904  *
3905  * The map entries are marked as __rcu and the map code makes sure to
3906  * dereference those pointers with rcu_dereference_check() in a way that works
3907  * for both sections that to hold an rcu_read_lock() and sections that are
3908  * called from NAPI without a separate rcu_read_lock(). The code below does not
3909  * use RCU annotations, but relies on those in the map code.
3910  */
3911 void xdp_do_flush(void)
3912 {
3913         __dev_flush();
3914         __cpu_map_flush();
3915         __xsk_map_flush();
3916 }
3917 EXPORT_SYMBOL_GPL(xdp_do_flush);
3918
3919 void bpf_clear_redirect_map(struct bpf_map *map)
3920 {
3921         struct bpf_redirect_info *ri;
3922         int cpu;
3923
3924         for_each_possible_cpu(cpu) {
3925                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3926                 /* Avoid polluting remote cacheline due to writes if
3927                  * not needed. Once we pass this test, we need the
3928                  * cmpxchg() to make sure it hasn't been changed in
3929                  * the meantime by remote CPU.
3930                  */
3931                 if (unlikely(READ_ONCE(ri->map) == map))
3932                         cmpxchg(&ri->map, map, NULL);
3933         }
3934 }
3935
3936 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3937 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3938
3939 u32 xdp_master_redirect(struct xdp_buff *xdp)
3940 {
3941         struct net_device *master, *slave;
3942         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3943
3944         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3945         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3946         if (slave && slave != xdp->rxq->dev) {
3947                 /* The target device is different from the receiving device, so
3948                  * redirect it to the new device.
3949                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3950                  * drivers to unmap the packet from their rx ring.
3951                  */
3952                 ri->tgt_index = slave->ifindex;
3953                 ri->map_id = INT_MAX;
3954                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
3955                 return XDP_REDIRECT;
3956         }
3957         return XDP_TX;
3958 }
3959 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3960
3961 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3962                     struct bpf_prog *xdp_prog)
3963 {
3964         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3965         enum bpf_map_type map_type = ri->map_type;
3966         void *fwd = ri->tgt_value;
3967         u32 map_id = ri->map_id;
3968         struct bpf_map *map;
3969         int err;
3970
3971         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3972         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3973
3974         switch (map_type) {
3975         case BPF_MAP_TYPE_DEVMAP:
3976                 fallthrough;
3977         case BPF_MAP_TYPE_DEVMAP_HASH:
3978                 map = READ_ONCE(ri->map);
3979                 if (unlikely(map)) {
3980                         WRITE_ONCE(ri->map, NULL);
3981                         err = dev_map_enqueue_multi(xdp, dev, map,
3982                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3983                 } else {
3984                         err = dev_map_enqueue(fwd, xdp, dev);
3985                 }
3986                 break;
3987         case BPF_MAP_TYPE_CPUMAP:
3988                 err = cpu_map_enqueue(fwd, xdp, dev);
3989                 break;
3990         case BPF_MAP_TYPE_XSKMAP:
3991                 err = __xsk_map_redirect(fwd, xdp);
3992                 break;
3993         case BPF_MAP_TYPE_UNSPEC:
3994                 if (map_id == INT_MAX) {
3995                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3996                         if (unlikely(!fwd)) {
3997                                 err = -EINVAL;
3998                                 break;
3999                         }
4000                         err = dev_xdp_enqueue(fwd, xdp, dev);
4001                         break;
4002                 }
4003                 fallthrough;
4004         default:
4005                 err = -EBADRQC;
4006         }
4007
4008         if (unlikely(err))
4009                 goto err;
4010
4011         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4012         return 0;
4013 err:
4014         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4015         return err;
4016 }
4017 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4018
4019 static int xdp_do_generic_redirect_map(struct net_device *dev,
4020                                        struct sk_buff *skb,
4021                                        struct xdp_buff *xdp,
4022                                        struct bpf_prog *xdp_prog,
4023                                        void *fwd,
4024                                        enum bpf_map_type map_type, u32 map_id)
4025 {
4026         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027         struct bpf_map *map;
4028         int err;
4029
4030         switch (map_type) {
4031         case BPF_MAP_TYPE_DEVMAP:
4032                 fallthrough;
4033         case BPF_MAP_TYPE_DEVMAP_HASH:
4034                 map = READ_ONCE(ri->map);
4035                 if (unlikely(map)) {
4036                         WRITE_ONCE(ri->map, NULL);
4037                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4038                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4039                 } else {
4040                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4041                 }
4042                 if (unlikely(err))
4043                         goto err;
4044                 break;
4045         case BPF_MAP_TYPE_XSKMAP:
4046                 err = xsk_generic_rcv(fwd, xdp);
4047                 if (err)
4048                         goto err;
4049                 consume_skb(skb);
4050                 break;
4051         case BPF_MAP_TYPE_CPUMAP:
4052                 err = cpu_map_generic_redirect(fwd, skb);
4053                 if (unlikely(err))
4054                         goto err;
4055                 break;
4056         default:
4057                 err = -EBADRQC;
4058                 goto err;
4059         }
4060
4061         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4062         return 0;
4063 err:
4064         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4065         return err;
4066 }
4067
4068 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4069                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4070 {
4071         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4072         enum bpf_map_type map_type = ri->map_type;
4073         void *fwd = ri->tgt_value;
4074         u32 map_id = ri->map_id;
4075         int err;
4076
4077         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4078         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4079
4080         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4081                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4082                 if (unlikely(!fwd)) {
4083                         err = -EINVAL;
4084                         goto err;
4085                 }
4086
4087                 err = xdp_ok_fwd_dev(fwd, skb->len);
4088                 if (unlikely(err))
4089                         goto err;
4090
4091                 skb->dev = fwd;
4092                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4093                 generic_xdp_tx(skb, xdp_prog);
4094                 return 0;
4095         }
4096
4097         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4098 err:
4099         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4100         return err;
4101 }
4102
4103 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4104 {
4105         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4106
4107         if (unlikely(flags))
4108                 return XDP_ABORTED;
4109
4110         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4111          * by map_idr) is used for ifindex based XDP redirect.
4112          */
4113         ri->tgt_index = ifindex;
4114         ri->map_id = INT_MAX;
4115         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4116
4117         return XDP_REDIRECT;
4118 }
4119
4120 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4121         .func           = bpf_xdp_redirect,
4122         .gpl_only       = false,
4123         .ret_type       = RET_INTEGER,
4124         .arg1_type      = ARG_ANYTHING,
4125         .arg2_type      = ARG_ANYTHING,
4126 };
4127
4128 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4129            u64, flags)
4130 {
4131         return map->ops->map_redirect(map, ifindex, flags);
4132 }
4133
4134 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4135         .func           = bpf_xdp_redirect_map,
4136         .gpl_only       = false,
4137         .ret_type       = RET_INTEGER,
4138         .arg1_type      = ARG_CONST_MAP_PTR,
4139         .arg2_type      = ARG_ANYTHING,
4140         .arg3_type      = ARG_ANYTHING,
4141 };
4142
4143 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4144                                   unsigned long off, unsigned long len)
4145 {
4146         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4147
4148         if (unlikely(!ptr))
4149                 return len;
4150         if (ptr != dst_buff)
4151                 memcpy(dst_buff, ptr, len);
4152
4153         return 0;
4154 }
4155
4156 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4157            u64, flags, void *, meta, u64, meta_size)
4158 {
4159         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4160
4161         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4162                 return -EINVAL;
4163         if (unlikely(!skb || skb_size > skb->len))
4164                 return -EFAULT;
4165
4166         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4167                                 bpf_skb_copy);
4168 }
4169
4170 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4171         .func           = bpf_skb_event_output,
4172         .gpl_only       = true,
4173         .ret_type       = RET_INTEGER,
4174         .arg1_type      = ARG_PTR_TO_CTX,
4175         .arg2_type      = ARG_CONST_MAP_PTR,
4176         .arg3_type      = ARG_ANYTHING,
4177         .arg4_type      = ARG_PTR_TO_MEM,
4178         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4179 };
4180
4181 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4182
4183 const struct bpf_func_proto bpf_skb_output_proto = {
4184         .func           = bpf_skb_event_output,
4185         .gpl_only       = true,
4186         .ret_type       = RET_INTEGER,
4187         .arg1_type      = ARG_PTR_TO_BTF_ID,
4188         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4189         .arg2_type      = ARG_CONST_MAP_PTR,
4190         .arg3_type      = ARG_ANYTHING,
4191         .arg4_type      = ARG_PTR_TO_MEM,
4192         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4193 };
4194
4195 static unsigned short bpf_tunnel_key_af(u64 flags)
4196 {
4197         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4198 }
4199
4200 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4201            u32, size, u64, flags)
4202 {
4203         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4204         u8 compat[sizeof(struct bpf_tunnel_key)];
4205         void *to_orig = to;
4206         int err;
4207
4208         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4209                 err = -EINVAL;
4210                 goto err_clear;
4211         }
4212         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4213                 err = -EPROTO;
4214                 goto err_clear;
4215         }
4216         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4217                 err = -EINVAL;
4218                 switch (size) {
4219                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4220                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4221                         goto set_compat;
4222                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4223                         /* Fixup deprecated structure layouts here, so we have
4224                          * a common path later on.
4225                          */
4226                         if (ip_tunnel_info_af(info) != AF_INET)
4227                                 goto err_clear;
4228 set_compat:
4229                         to = (struct bpf_tunnel_key *)compat;
4230                         break;
4231                 default:
4232                         goto err_clear;
4233                 }
4234         }
4235
4236         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4237         to->tunnel_tos = info->key.tos;
4238         to->tunnel_ttl = info->key.ttl;
4239         to->tunnel_ext = 0;
4240
4241         if (flags & BPF_F_TUNINFO_IPV6) {
4242                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4243                        sizeof(to->remote_ipv6));
4244                 to->tunnel_label = be32_to_cpu(info->key.label);
4245         } else {
4246                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4247                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4248                 to->tunnel_label = 0;
4249         }
4250
4251         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4252                 memcpy(to_orig, to, size);
4253
4254         return 0;
4255 err_clear:
4256         memset(to_orig, 0, size);
4257         return err;
4258 }
4259
4260 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4261         .func           = bpf_skb_get_tunnel_key,
4262         .gpl_only       = false,
4263         .ret_type       = RET_INTEGER,
4264         .arg1_type      = ARG_PTR_TO_CTX,
4265         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4266         .arg3_type      = ARG_CONST_SIZE,
4267         .arg4_type      = ARG_ANYTHING,
4268 };
4269
4270 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4271 {
4272         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4273         int err;
4274
4275         if (unlikely(!info ||
4276                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4277                 err = -ENOENT;
4278                 goto err_clear;
4279         }
4280         if (unlikely(size < info->options_len)) {
4281                 err = -ENOMEM;
4282                 goto err_clear;
4283         }
4284
4285         ip_tunnel_info_opts_get(to, info);
4286         if (size > info->options_len)
4287                 memset(to + info->options_len, 0, size - info->options_len);
4288
4289         return info->options_len;
4290 err_clear:
4291         memset(to, 0, size);
4292         return err;
4293 }
4294
4295 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4296         .func           = bpf_skb_get_tunnel_opt,
4297         .gpl_only       = false,
4298         .ret_type       = RET_INTEGER,
4299         .arg1_type      = ARG_PTR_TO_CTX,
4300         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4301         .arg3_type      = ARG_CONST_SIZE,
4302 };
4303
4304 static struct metadata_dst __percpu *md_dst;
4305
4306 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4307            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4308 {
4309         struct metadata_dst *md = this_cpu_ptr(md_dst);
4310         u8 compat[sizeof(struct bpf_tunnel_key)];
4311         struct ip_tunnel_info *info;
4312
4313         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4314                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4315                 return -EINVAL;
4316         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4317                 switch (size) {
4318                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4319                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4320                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4321                         /* Fixup deprecated structure layouts here, so we have
4322                          * a common path later on.
4323                          */
4324                         memcpy(compat, from, size);
4325                         memset(compat + size, 0, sizeof(compat) - size);
4326                         from = (const struct bpf_tunnel_key *) compat;
4327                         break;
4328                 default:
4329                         return -EINVAL;
4330                 }
4331         }
4332         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4333                      from->tunnel_ext))
4334                 return -EINVAL;
4335
4336         skb_dst_drop(skb);
4337         dst_hold((struct dst_entry *) md);
4338         skb_dst_set(skb, (struct dst_entry *) md);
4339
4340         info = &md->u.tun_info;
4341         memset(info, 0, sizeof(*info));
4342         info->mode = IP_TUNNEL_INFO_TX;
4343
4344         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4345         if (flags & BPF_F_DONT_FRAGMENT)
4346                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4347         if (flags & BPF_F_ZERO_CSUM_TX)
4348                 info->key.tun_flags &= ~TUNNEL_CSUM;
4349         if (flags & BPF_F_SEQ_NUMBER)
4350                 info->key.tun_flags |= TUNNEL_SEQ;
4351
4352         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4353         info->key.tos = from->tunnel_tos;
4354         info->key.ttl = from->tunnel_ttl;
4355
4356         if (flags & BPF_F_TUNINFO_IPV6) {
4357                 info->mode |= IP_TUNNEL_INFO_IPV6;
4358                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4359                        sizeof(from->remote_ipv6));
4360                 info->key.label = cpu_to_be32(from->tunnel_label) &
4361                                   IPV6_FLOWLABEL_MASK;
4362         } else {
4363                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4364         }
4365
4366         return 0;
4367 }
4368
4369 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4370         .func           = bpf_skb_set_tunnel_key,
4371         .gpl_only       = false,
4372         .ret_type       = RET_INTEGER,
4373         .arg1_type      = ARG_PTR_TO_CTX,
4374         .arg2_type      = ARG_PTR_TO_MEM,
4375         .arg3_type      = ARG_CONST_SIZE,
4376         .arg4_type      = ARG_ANYTHING,
4377 };
4378
4379 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4380            const u8 *, from, u32, size)
4381 {
4382         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4383         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4384
4385         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4386                 return -EINVAL;
4387         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4388                 return -ENOMEM;
4389
4390         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4391
4392         return 0;
4393 }
4394
4395 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4396         .func           = bpf_skb_set_tunnel_opt,
4397         .gpl_only       = false,
4398         .ret_type       = RET_INTEGER,
4399         .arg1_type      = ARG_PTR_TO_CTX,
4400         .arg2_type      = ARG_PTR_TO_MEM,
4401         .arg3_type      = ARG_CONST_SIZE,
4402 };
4403
4404 static const struct bpf_func_proto *
4405 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4406 {
4407         if (!md_dst) {
4408                 struct metadata_dst __percpu *tmp;
4409
4410                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4411                                                 METADATA_IP_TUNNEL,
4412                                                 GFP_KERNEL);
4413                 if (!tmp)
4414                         return NULL;
4415                 if (cmpxchg(&md_dst, NULL, tmp))
4416                         metadata_dst_free_percpu(tmp);
4417         }
4418
4419         switch (which) {
4420         case BPF_FUNC_skb_set_tunnel_key:
4421                 return &bpf_skb_set_tunnel_key_proto;
4422         case BPF_FUNC_skb_set_tunnel_opt:
4423                 return &bpf_skb_set_tunnel_opt_proto;
4424         default:
4425                 return NULL;
4426         }
4427 }
4428
4429 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4430            u32, idx)
4431 {
4432         struct bpf_array *array = container_of(map, struct bpf_array, map);
4433         struct cgroup *cgrp;
4434         struct sock *sk;
4435
4436         sk = skb_to_full_sk(skb);
4437         if (!sk || !sk_fullsock(sk))
4438                 return -ENOENT;
4439         if (unlikely(idx >= array->map.max_entries))
4440                 return -E2BIG;
4441
4442         cgrp = READ_ONCE(array->ptrs[idx]);
4443         if (unlikely(!cgrp))
4444                 return -EAGAIN;
4445
4446         return sk_under_cgroup_hierarchy(sk, cgrp);
4447 }
4448
4449 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4450         .func           = bpf_skb_under_cgroup,
4451         .gpl_only       = false,
4452         .ret_type       = RET_INTEGER,
4453         .arg1_type      = ARG_PTR_TO_CTX,
4454         .arg2_type      = ARG_CONST_MAP_PTR,
4455         .arg3_type      = ARG_ANYTHING,
4456 };
4457
4458 #ifdef CONFIG_SOCK_CGROUP_DATA
4459 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4460 {
4461         struct cgroup *cgrp;
4462
4463         sk = sk_to_full_sk(sk);
4464         if (!sk || !sk_fullsock(sk))
4465                 return 0;
4466
4467         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4468         return cgroup_id(cgrp);
4469 }
4470
4471 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4472 {
4473         return __bpf_sk_cgroup_id(skb->sk);
4474 }
4475
4476 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4477         .func           = bpf_skb_cgroup_id,
4478         .gpl_only       = false,
4479         .ret_type       = RET_INTEGER,
4480         .arg1_type      = ARG_PTR_TO_CTX,
4481 };
4482
4483 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4484                                               int ancestor_level)
4485 {
4486         struct cgroup *ancestor;
4487         struct cgroup *cgrp;
4488
4489         sk = sk_to_full_sk(sk);
4490         if (!sk || !sk_fullsock(sk))
4491                 return 0;
4492
4493         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4494         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4495         if (!ancestor)
4496                 return 0;
4497
4498         return cgroup_id(ancestor);
4499 }
4500
4501 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4502            ancestor_level)
4503 {
4504         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4505 }
4506
4507 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4508         .func           = bpf_skb_ancestor_cgroup_id,
4509         .gpl_only       = false,
4510         .ret_type       = RET_INTEGER,
4511         .arg1_type      = ARG_PTR_TO_CTX,
4512         .arg2_type      = ARG_ANYTHING,
4513 };
4514
4515 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4516 {
4517         return __bpf_sk_cgroup_id(sk);
4518 }
4519
4520 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4521         .func           = bpf_sk_cgroup_id,
4522         .gpl_only       = false,
4523         .ret_type       = RET_INTEGER,
4524         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4525 };
4526
4527 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4528 {
4529         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4530 }
4531
4532 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4533         .func           = bpf_sk_ancestor_cgroup_id,
4534         .gpl_only       = false,
4535         .ret_type       = RET_INTEGER,
4536         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4537         .arg2_type      = ARG_ANYTHING,
4538 };
4539 #endif
4540
4541 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4542                                   unsigned long off, unsigned long len)
4543 {
4544         memcpy(dst_buff, src_buff + off, len);
4545         return 0;
4546 }
4547
4548 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4549            u64, flags, void *, meta, u64, meta_size)
4550 {
4551         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4552
4553         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4554                 return -EINVAL;
4555         if (unlikely(!xdp ||
4556                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4557                 return -EFAULT;
4558
4559         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4560                                 xdp_size, bpf_xdp_copy);
4561 }
4562
4563 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4564         .func           = bpf_xdp_event_output,
4565         .gpl_only       = true,
4566         .ret_type       = RET_INTEGER,
4567         .arg1_type      = ARG_PTR_TO_CTX,
4568         .arg2_type      = ARG_CONST_MAP_PTR,
4569         .arg3_type      = ARG_ANYTHING,
4570         .arg4_type      = ARG_PTR_TO_MEM,
4571         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4572 };
4573
4574 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4575
4576 const struct bpf_func_proto bpf_xdp_output_proto = {
4577         .func           = bpf_xdp_event_output,
4578         .gpl_only       = true,
4579         .ret_type       = RET_INTEGER,
4580         .arg1_type      = ARG_PTR_TO_BTF_ID,
4581         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4582         .arg2_type      = ARG_CONST_MAP_PTR,
4583         .arg3_type      = ARG_ANYTHING,
4584         .arg4_type      = ARG_PTR_TO_MEM,
4585         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4586 };
4587
4588 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4589 {
4590         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4591 }
4592
4593 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4594         .func           = bpf_get_socket_cookie,
4595         .gpl_only       = false,
4596         .ret_type       = RET_INTEGER,
4597         .arg1_type      = ARG_PTR_TO_CTX,
4598 };
4599
4600 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4601 {
4602         return __sock_gen_cookie(ctx->sk);
4603 }
4604
4605 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4606         .func           = bpf_get_socket_cookie_sock_addr,
4607         .gpl_only       = false,
4608         .ret_type       = RET_INTEGER,
4609         .arg1_type      = ARG_PTR_TO_CTX,
4610 };
4611
4612 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4613 {
4614         return __sock_gen_cookie(ctx);
4615 }
4616
4617 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4618         .func           = bpf_get_socket_cookie_sock,
4619         .gpl_only       = false,
4620         .ret_type       = RET_INTEGER,
4621         .arg1_type      = ARG_PTR_TO_CTX,
4622 };
4623
4624 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4625 {
4626         return sk ? sock_gen_cookie(sk) : 0;
4627 }
4628
4629 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4630         .func           = bpf_get_socket_ptr_cookie,
4631         .gpl_only       = false,
4632         .ret_type       = RET_INTEGER,
4633         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4634 };
4635
4636 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4637 {
4638         return __sock_gen_cookie(ctx->sk);
4639 }
4640
4641 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4642         .func           = bpf_get_socket_cookie_sock_ops,
4643         .gpl_only       = false,
4644         .ret_type       = RET_INTEGER,
4645         .arg1_type      = ARG_PTR_TO_CTX,
4646 };
4647
4648 static u64 __bpf_get_netns_cookie(struct sock *sk)
4649 {
4650         const struct net *net = sk ? sock_net(sk) : &init_net;
4651
4652         return net->net_cookie;
4653 }
4654
4655 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656 {
4657         return __bpf_get_netns_cookie(ctx);
4658 }
4659
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661         .func           = bpf_get_netns_cookie_sock,
4662         .gpl_only       = false,
4663         .ret_type       = RET_INTEGER,
4664         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666
4667 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668 {
4669         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670 }
4671
4672 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673         .func           = bpf_get_netns_cookie_sock_addr,
4674         .gpl_only       = false,
4675         .ret_type       = RET_INTEGER,
4676         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4677 };
4678
4679 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4680 {
4681         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4682 }
4683
4684 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4685         .func           = bpf_get_netns_cookie_sock_ops,
4686         .gpl_only       = false,
4687         .ret_type       = RET_INTEGER,
4688         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4689 };
4690
4691 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4692 {
4693         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4694 }
4695
4696 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4697         .func           = bpf_get_netns_cookie_sk_msg,
4698         .gpl_only       = false,
4699         .ret_type       = RET_INTEGER,
4700         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4701 };
4702
4703 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4704 {
4705         struct sock *sk = sk_to_full_sk(skb->sk);
4706         kuid_t kuid;
4707
4708         if (!sk || !sk_fullsock(sk))
4709                 return overflowuid;
4710         kuid = sock_net_uid(sock_net(sk), sk);
4711         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4712 }
4713
4714 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4715         .func           = bpf_get_socket_uid,
4716         .gpl_only       = false,
4717         .ret_type       = RET_INTEGER,
4718         .arg1_type      = ARG_PTR_TO_CTX,
4719 };
4720
4721 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4722                            char *optval, int optlen)
4723 {
4724         char devname[IFNAMSIZ];
4725         int val, valbool;
4726         struct net *net;
4727         int ifindex;
4728         int ret = 0;
4729
4730         if (!sk_fullsock(sk))
4731                 return -EINVAL;
4732
4733         sock_owned_by_me(sk);
4734
4735         if (level == SOL_SOCKET) {
4736                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4737                         return -EINVAL;
4738                 val = *((int *)optval);
4739                 valbool = val ? 1 : 0;
4740
4741                 /* Only some socketops are supported */
4742                 switch (optname) {
4743                 case SO_RCVBUF:
4744                         val = min_t(u32, val, sysctl_rmem_max);
4745                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4746                         WRITE_ONCE(sk->sk_rcvbuf,
4747                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4748                         break;
4749                 case SO_SNDBUF:
4750                         val = min_t(u32, val, sysctl_wmem_max);
4751                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4752                         WRITE_ONCE(sk->sk_sndbuf,
4753                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4754                         break;
4755                 case SO_MAX_PACING_RATE: /* 32bit version */
4756                         if (val != ~0U)
4757                                 cmpxchg(&sk->sk_pacing_status,
4758                                         SK_PACING_NONE,
4759                                         SK_PACING_NEEDED);
4760                         sk->sk_max_pacing_rate = (val == ~0U) ?
4761                                                  ~0UL : (unsigned int)val;
4762                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4763                                                  sk->sk_max_pacing_rate);
4764                         break;
4765                 case SO_PRIORITY:
4766                         sk->sk_priority = val;
4767                         break;
4768                 case SO_RCVLOWAT:
4769                         if (val < 0)
4770                                 val = INT_MAX;
4771                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4772                         break;
4773                 case SO_MARK:
4774                         if (sk->sk_mark != val) {
4775                                 sk->sk_mark = val;
4776                                 sk_dst_reset(sk);
4777                         }
4778                         break;
4779                 case SO_BINDTODEVICE:
4780                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4781                         strncpy(devname, optval, optlen);
4782                         devname[optlen] = 0;
4783
4784                         ifindex = 0;
4785                         if (devname[0] != '\0') {
4786                                 struct net_device *dev;
4787
4788                                 ret = -ENODEV;
4789
4790                                 net = sock_net(sk);
4791                                 dev = dev_get_by_name(net, devname);
4792                                 if (!dev)
4793                                         break;
4794                                 ifindex = dev->ifindex;
4795                                 dev_put(dev);
4796                         }
4797                         fallthrough;
4798                 case SO_BINDTOIFINDEX:
4799                         if (optname == SO_BINDTOIFINDEX)
4800                                 ifindex = val;
4801                         ret = sock_bindtoindex(sk, ifindex, false);
4802                         break;
4803                 case SO_KEEPALIVE:
4804                         if (sk->sk_prot->keepalive)
4805                                 sk->sk_prot->keepalive(sk, valbool);
4806                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4807                         break;
4808                 case SO_REUSEPORT:
4809                         sk->sk_reuseport = valbool;
4810                         break;
4811                 default:
4812                         ret = -EINVAL;
4813                 }
4814 #ifdef CONFIG_INET
4815         } else if (level == SOL_IP) {
4816                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4817                         return -EINVAL;
4818
4819                 val = *((int *)optval);
4820                 /* Only some options are supported */
4821                 switch (optname) {
4822                 case IP_TOS:
4823                         if (val < -1 || val > 0xff) {
4824                                 ret = -EINVAL;
4825                         } else {
4826                                 struct inet_sock *inet = inet_sk(sk);
4827
4828                                 if (val == -1)
4829                                         val = 0;
4830                                 inet->tos = val;
4831                         }
4832                         break;
4833                 default:
4834                         ret = -EINVAL;
4835                 }
4836 #if IS_ENABLED(CONFIG_IPV6)
4837         } else if (level == SOL_IPV6) {
4838                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4839                         return -EINVAL;
4840
4841                 val = *((int *)optval);
4842                 /* Only some options are supported */
4843                 switch (optname) {
4844                 case IPV6_TCLASS:
4845                         if (val < -1 || val > 0xff) {
4846                                 ret = -EINVAL;
4847                         } else {
4848                                 struct ipv6_pinfo *np = inet6_sk(sk);
4849
4850                                 if (val == -1)
4851                                         val = 0;
4852                                 np->tclass = val;
4853                         }
4854                         break;
4855                 default:
4856                         ret = -EINVAL;
4857                 }
4858 #endif
4859         } else if (level == SOL_TCP &&
4860                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4861                 if (optname == TCP_CONGESTION) {
4862                         char name[TCP_CA_NAME_MAX];
4863
4864                         strncpy(name, optval, min_t(long, optlen,
4865                                                     TCP_CA_NAME_MAX-1));
4866                         name[TCP_CA_NAME_MAX-1] = 0;
4867                         ret = tcp_set_congestion_control(sk, name, false, true);
4868                 } else {
4869                         struct inet_connection_sock *icsk = inet_csk(sk);
4870                         struct tcp_sock *tp = tcp_sk(sk);
4871                         unsigned long timeout;
4872
4873                         if (optlen != sizeof(int))
4874                                 return -EINVAL;
4875
4876                         val = *((int *)optval);
4877                         /* Only some options are supported */
4878                         switch (optname) {
4879                         case TCP_BPF_IW:
4880                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4881                                         ret = -EINVAL;
4882                                 else
4883                                         tp->snd_cwnd = val;
4884                                 break;
4885                         case TCP_BPF_SNDCWND_CLAMP:
4886                                 if (val <= 0) {
4887                                         ret = -EINVAL;
4888                                 } else {
4889                                         tp->snd_cwnd_clamp = val;
4890                                         tp->snd_ssthresh = val;
4891                                 }
4892                                 break;
4893                         case TCP_BPF_DELACK_MAX:
4894                                 timeout = usecs_to_jiffies(val);
4895                                 if (timeout > TCP_DELACK_MAX ||
4896                                     timeout < TCP_TIMEOUT_MIN)
4897                                         return -EINVAL;
4898                                 inet_csk(sk)->icsk_delack_max = timeout;
4899                                 break;
4900                         case TCP_BPF_RTO_MIN:
4901                                 timeout = usecs_to_jiffies(val);
4902                                 if (timeout > TCP_RTO_MIN ||
4903                                     timeout < TCP_TIMEOUT_MIN)
4904                                         return -EINVAL;
4905                                 inet_csk(sk)->icsk_rto_min = timeout;
4906                                 break;
4907                         case TCP_SAVE_SYN:
4908                                 if (val < 0 || val > 1)
4909                                         ret = -EINVAL;
4910                                 else
4911                                         tp->save_syn = val;
4912                                 break;
4913                         case TCP_KEEPIDLE:
4914                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4915                                 break;
4916                         case TCP_KEEPINTVL:
4917                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4918                                         ret = -EINVAL;
4919                                 else
4920                                         tp->keepalive_intvl = val * HZ;
4921                                 break;
4922                         case TCP_KEEPCNT:
4923                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4924                                         ret = -EINVAL;
4925                                 else
4926                                         tp->keepalive_probes = val;
4927                                 break;
4928                         case TCP_SYNCNT:
4929                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4930                                         ret = -EINVAL;
4931                                 else
4932                                         icsk->icsk_syn_retries = val;
4933                                 break;
4934                         case TCP_USER_TIMEOUT:
4935                                 if (val < 0)
4936                                         ret = -EINVAL;
4937                                 else
4938                                         icsk->icsk_user_timeout = val;
4939                                 break;
4940                         case TCP_NOTSENT_LOWAT:
4941                                 tp->notsent_lowat = val;
4942                                 sk->sk_write_space(sk);
4943                                 break;
4944                         case TCP_WINDOW_CLAMP:
4945                                 ret = tcp_set_window_clamp(sk, val);
4946                                 break;
4947                         default:
4948                                 ret = -EINVAL;
4949                         }
4950                 }
4951 #endif
4952         } else {
4953                 ret = -EINVAL;
4954         }
4955         return ret;
4956 }
4957
4958 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4959                            char *optval, int optlen)
4960 {
4961         if (!sk_fullsock(sk))
4962                 goto err_clear;
4963
4964         sock_owned_by_me(sk);
4965
4966         if (level == SOL_SOCKET) {
4967                 if (optlen != sizeof(int))
4968                         goto err_clear;
4969
4970                 switch (optname) {
4971                 case SO_MARK:
4972                         *((int *)optval) = sk->sk_mark;
4973                         break;
4974                 case SO_PRIORITY:
4975                         *((int *)optval) = sk->sk_priority;
4976                         break;
4977                 case SO_BINDTOIFINDEX:
4978                         *((int *)optval) = sk->sk_bound_dev_if;
4979                         break;
4980                 case SO_REUSEPORT:
4981                         *((int *)optval) = sk->sk_reuseport;
4982                         break;
4983                 default:
4984                         goto err_clear;
4985                 }
4986 #ifdef CONFIG_INET
4987         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4988                 struct inet_connection_sock *icsk;
4989                 struct tcp_sock *tp;
4990
4991                 switch (optname) {
4992                 case TCP_CONGESTION:
4993                         icsk = inet_csk(sk);
4994
4995                         if (!icsk->icsk_ca_ops || optlen <= 1)
4996                                 goto err_clear;
4997                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4998                         optval[optlen - 1] = 0;
4999                         break;
5000                 case TCP_SAVED_SYN:
5001                         tp = tcp_sk(sk);
5002
5003                         if (optlen <= 0 || !tp->saved_syn ||
5004                             optlen > tcp_saved_syn_len(tp->saved_syn))
5005                                 goto err_clear;
5006                         memcpy(optval, tp->saved_syn->data, optlen);
5007                         break;
5008                 default:
5009                         goto err_clear;
5010                 }
5011         } else if (level == SOL_IP) {
5012                 struct inet_sock *inet = inet_sk(sk);
5013
5014                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5015                         goto err_clear;
5016
5017                 /* Only some options are supported */
5018                 switch (optname) {
5019                 case IP_TOS:
5020                         *((int *)optval) = (int)inet->tos;
5021                         break;
5022                 default:
5023                         goto err_clear;
5024                 }
5025 #if IS_ENABLED(CONFIG_IPV6)
5026         } else if (level == SOL_IPV6) {
5027                 struct ipv6_pinfo *np = inet6_sk(sk);
5028
5029                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5030                         goto err_clear;
5031
5032                 /* Only some options are supported */
5033                 switch (optname) {
5034                 case IPV6_TCLASS:
5035                         *((int *)optval) = (int)np->tclass;
5036                         break;
5037                 default:
5038                         goto err_clear;
5039                 }
5040 #endif
5041 #endif
5042         } else {
5043                 goto err_clear;
5044         }
5045         return 0;
5046 err_clear:
5047         memset(optval, 0, optlen);
5048         return -EINVAL;
5049 }
5050
5051 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5052            int, optname, char *, optval, int, optlen)
5053 {
5054         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5055                 if (optlen >= sizeof("cdg") - 1 &&
5056                     !strncmp("cdg", optval, optlen))
5057                         return -ENOTSUPP;
5058         }
5059
5060         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5061 }
5062
5063 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5064         .func           = bpf_sk_setsockopt,
5065         .gpl_only       = false,
5066         .ret_type       = RET_INTEGER,
5067         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5068         .arg2_type      = ARG_ANYTHING,
5069         .arg3_type      = ARG_ANYTHING,
5070         .arg4_type      = ARG_PTR_TO_MEM,
5071         .arg5_type      = ARG_CONST_SIZE,
5072 };
5073
5074 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5075            int, optname, char *, optval, int, optlen)
5076 {
5077         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5078 }
5079
5080 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5081         .func           = bpf_sk_getsockopt,
5082         .gpl_only       = false,
5083         .ret_type       = RET_INTEGER,
5084         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5085         .arg2_type      = ARG_ANYTHING,
5086         .arg3_type      = ARG_ANYTHING,
5087         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5088         .arg5_type      = ARG_CONST_SIZE,
5089 };
5090
5091 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5092            int, level, int, optname, char *, optval, int, optlen)
5093 {
5094         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5095 }
5096
5097 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5098         .func           = bpf_sock_addr_setsockopt,
5099         .gpl_only       = false,
5100         .ret_type       = RET_INTEGER,
5101         .arg1_type      = ARG_PTR_TO_CTX,
5102         .arg2_type      = ARG_ANYTHING,
5103         .arg3_type      = ARG_ANYTHING,
5104         .arg4_type      = ARG_PTR_TO_MEM,
5105         .arg5_type      = ARG_CONST_SIZE,
5106 };
5107
5108 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5109            int, level, int, optname, char *, optval, int, optlen)
5110 {
5111         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5112 }
5113
5114 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5115         .func           = bpf_sock_addr_getsockopt,
5116         .gpl_only       = false,
5117         .ret_type       = RET_INTEGER,
5118         .arg1_type      = ARG_PTR_TO_CTX,
5119         .arg2_type      = ARG_ANYTHING,
5120         .arg3_type      = ARG_ANYTHING,
5121         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5122         .arg5_type      = ARG_CONST_SIZE,
5123 };
5124
5125 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5126            int, level, int, optname, char *, optval, int, optlen)
5127 {
5128         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5129 }
5130
5131 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5132         .func           = bpf_sock_ops_setsockopt,
5133         .gpl_only       = false,
5134         .ret_type       = RET_INTEGER,
5135         .arg1_type      = ARG_PTR_TO_CTX,
5136         .arg2_type      = ARG_ANYTHING,
5137         .arg3_type      = ARG_ANYTHING,
5138         .arg4_type      = ARG_PTR_TO_MEM,
5139         .arg5_type      = ARG_CONST_SIZE,
5140 };
5141
5142 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5143                                 int optname, const u8 **start)
5144 {
5145         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5146         const u8 *hdr_start;
5147         int ret;
5148
5149         if (syn_skb) {
5150                 /* sk is a request_sock here */
5151
5152                 if (optname == TCP_BPF_SYN) {
5153                         hdr_start = syn_skb->data;
5154                         ret = tcp_hdrlen(syn_skb);
5155                 } else if (optname == TCP_BPF_SYN_IP) {
5156                         hdr_start = skb_network_header(syn_skb);
5157                         ret = skb_network_header_len(syn_skb) +
5158                                 tcp_hdrlen(syn_skb);
5159                 } else {
5160                         /* optname == TCP_BPF_SYN_MAC */
5161                         hdr_start = skb_mac_header(syn_skb);
5162                         ret = skb_mac_header_len(syn_skb) +
5163                                 skb_network_header_len(syn_skb) +
5164                                 tcp_hdrlen(syn_skb);
5165                 }
5166         } else {
5167                 struct sock *sk = bpf_sock->sk;
5168                 struct saved_syn *saved_syn;
5169
5170                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5171                         /* synack retransmit. bpf_sock->syn_skb will
5172                          * not be available.  It has to resort to
5173                          * saved_syn (if it is saved).
5174                          */
5175                         saved_syn = inet_reqsk(sk)->saved_syn;
5176                 else
5177                         saved_syn = tcp_sk(sk)->saved_syn;
5178
5179                 if (!saved_syn)
5180                         return -ENOENT;
5181
5182                 if (optname == TCP_BPF_SYN) {
5183                         hdr_start = saved_syn->data +
5184                                 saved_syn->mac_hdrlen +
5185                                 saved_syn->network_hdrlen;
5186                         ret = saved_syn->tcp_hdrlen;
5187                 } else if (optname == TCP_BPF_SYN_IP) {
5188                         hdr_start = saved_syn->data +
5189                                 saved_syn->mac_hdrlen;
5190                         ret = saved_syn->network_hdrlen +
5191                                 saved_syn->tcp_hdrlen;
5192                 } else {
5193                         /* optname == TCP_BPF_SYN_MAC */
5194
5195                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5196                         if (!saved_syn->mac_hdrlen)
5197                                 return -ENOENT;
5198
5199                         hdr_start = saved_syn->data;
5200                         ret = saved_syn->mac_hdrlen +
5201                                 saved_syn->network_hdrlen +
5202                                 saved_syn->tcp_hdrlen;
5203                 }
5204         }
5205
5206         *start = hdr_start;
5207         return ret;
5208 }
5209
5210 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5211            int, level, int, optname, char *, optval, int, optlen)
5212 {
5213         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5214             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5215                 int ret, copy_len = 0;
5216                 const u8 *start;
5217
5218                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5219                 if (ret > 0) {
5220                         copy_len = ret;
5221                         if (optlen < copy_len) {
5222                                 copy_len = optlen;
5223                                 ret = -ENOSPC;
5224                         }
5225
5226                         memcpy(optval, start, copy_len);
5227                 }
5228
5229                 /* Zero out unused buffer at the end */
5230                 memset(optval + copy_len, 0, optlen - copy_len);
5231
5232                 return ret;
5233         }
5234
5235         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5236 }
5237
5238 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5239         .func           = bpf_sock_ops_getsockopt,
5240         .gpl_only       = false,
5241         .ret_type       = RET_INTEGER,
5242         .arg1_type      = ARG_PTR_TO_CTX,
5243         .arg2_type      = ARG_ANYTHING,
5244         .arg3_type      = ARG_ANYTHING,
5245         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5246         .arg5_type      = ARG_CONST_SIZE,
5247 };
5248
5249 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5250            int, argval)
5251 {
5252         struct sock *sk = bpf_sock->sk;
5253         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5254
5255         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5256                 return -EINVAL;
5257
5258         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5259
5260         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5261 }
5262
5263 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5264         .func           = bpf_sock_ops_cb_flags_set,
5265         .gpl_only       = false,
5266         .ret_type       = RET_INTEGER,
5267         .arg1_type      = ARG_PTR_TO_CTX,
5268         .arg2_type      = ARG_ANYTHING,
5269 };
5270
5271 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5272 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5273
5274 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5275            int, addr_len)
5276 {
5277 #ifdef CONFIG_INET
5278         struct sock *sk = ctx->sk;
5279         u32 flags = BIND_FROM_BPF;
5280         int err;
5281
5282         err = -EINVAL;
5283         if (addr_len < offsetofend(struct sockaddr, sa_family))
5284                 return err;
5285         if (addr->sa_family == AF_INET) {
5286                 if (addr_len < sizeof(struct sockaddr_in))
5287                         return err;
5288                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5289                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5290                 return __inet_bind(sk, addr, addr_len, flags);
5291 #if IS_ENABLED(CONFIG_IPV6)
5292         } else if (addr->sa_family == AF_INET6) {
5293                 if (addr_len < SIN6_LEN_RFC2133)
5294                         return err;
5295                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5296                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5297                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5298                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5299                  */
5300                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5301 #endif /* CONFIG_IPV6 */
5302         }
5303 #endif /* CONFIG_INET */
5304
5305         return -EAFNOSUPPORT;
5306 }
5307
5308 static const struct bpf_func_proto bpf_bind_proto = {
5309         .func           = bpf_bind,
5310         .gpl_only       = false,
5311         .ret_type       = RET_INTEGER,
5312         .arg1_type      = ARG_PTR_TO_CTX,
5313         .arg2_type      = ARG_PTR_TO_MEM,
5314         .arg3_type      = ARG_CONST_SIZE,
5315 };
5316
5317 #ifdef CONFIG_XFRM
5318 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5319            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5320 {
5321         const struct sec_path *sp = skb_sec_path(skb);
5322         const struct xfrm_state *x;
5323
5324         if (!sp || unlikely(index >= sp->len || flags))
5325                 goto err_clear;
5326
5327         x = sp->xvec[index];
5328
5329         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5330                 goto err_clear;
5331
5332         to->reqid = x->props.reqid;
5333         to->spi = x->id.spi;
5334         to->family = x->props.family;
5335         to->ext = 0;
5336
5337         if (to->family == AF_INET6) {
5338                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5339                        sizeof(to->remote_ipv6));
5340         } else {
5341                 to->remote_ipv4 = x->props.saddr.a4;
5342                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5343         }
5344
5345         return 0;
5346 err_clear:
5347         memset(to, 0, size);
5348         return -EINVAL;
5349 }
5350
5351 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5352         .func           = bpf_skb_get_xfrm_state,
5353         .gpl_only       = false,
5354         .ret_type       = RET_INTEGER,
5355         .arg1_type      = ARG_PTR_TO_CTX,
5356         .arg2_type      = ARG_ANYTHING,
5357         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5358         .arg4_type      = ARG_CONST_SIZE,
5359         .arg5_type      = ARG_ANYTHING,
5360 };
5361 #endif
5362
5363 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5364 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5365                                   const struct neighbour *neigh,
5366                                   const struct net_device *dev, u32 mtu)
5367 {
5368         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5369         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5370         params->h_vlan_TCI = 0;
5371         params->h_vlan_proto = 0;
5372         if (mtu)
5373                 params->mtu_result = mtu; /* union with tot_len */
5374
5375         return 0;
5376 }
5377 #endif
5378
5379 #if IS_ENABLED(CONFIG_INET)
5380 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5381                                u32 flags, bool check_mtu)
5382 {
5383         struct fib_nh_common *nhc;
5384         struct in_device *in_dev;
5385         struct neighbour *neigh;
5386         struct net_device *dev;
5387         struct fib_result res;
5388         struct flowi4 fl4;
5389         u32 mtu = 0;
5390         int err;
5391
5392         dev = dev_get_by_index_rcu(net, params->ifindex);
5393         if (unlikely(!dev))
5394                 return -ENODEV;
5395
5396         /* verify forwarding is enabled on this interface */
5397         in_dev = __in_dev_get_rcu(dev);
5398         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5399                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5400
5401         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5402                 fl4.flowi4_iif = 1;
5403                 fl4.flowi4_oif = params->ifindex;
5404         } else {
5405                 fl4.flowi4_iif = params->ifindex;
5406                 fl4.flowi4_oif = 0;
5407         }
5408         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5409         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5410         fl4.flowi4_flags = 0;
5411
5412         fl4.flowi4_proto = params->l4_protocol;
5413         fl4.daddr = params->ipv4_dst;
5414         fl4.saddr = params->ipv4_src;
5415         fl4.fl4_sport = params->sport;
5416         fl4.fl4_dport = params->dport;
5417         fl4.flowi4_multipath_hash = 0;
5418
5419         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5420                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5421                 struct fib_table *tb;
5422
5423                 tb = fib_get_table(net, tbid);
5424                 if (unlikely(!tb))
5425                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5426
5427                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5428         } else {
5429                 fl4.flowi4_mark = 0;
5430                 fl4.flowi4_secid = 0;
5431                 fl4.flowi4_tun_key.tun_id = 0;
5432                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5433
5434                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5435         }
5436
5437         if (err) {
5438                 /* map fib lookup errors to RTN_ type */
5439                 if (err == -EINVAL)
5440                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5441                 if (err == -EHOSTUNREACH)
5442                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5443                 if (err == -EACCES)
5444                         return BPF_FIB_LKUP_RET_PROHIBIT;
5445
5446                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5447         }
5448
5449         if (res.type != RTN_UNICAST)
5450                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5451
5452         if (fib_info_num_path(res.fi) > 1)
5453                 fib_select_path(net, &res, &fl4, NULL);
5454
5455         if (check_mtu) {
5456                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5457                 if (params->tot_len > mtu) {
5458                         params->mtu_result = mtu; /* union with tot_len */
5459                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5460                 }
5461         }
5462
5463         nhc = res.nhc;
5464
5465         /* do not handle lwt encaps right now */
5466         if (nhc->nhc_lwtstate)
5467                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5468
5469         dev = nhc->nhc_dev;
5470
5471         params->rt_metric = res.fi->fib_priority;
5472         params->ifindex = dev->ifindex;
5473
5474         /* xdp and cls_bpf programs are run in RCU-bh so
5475          * rcu_read_lock_bh is not needed here
5476          */
5477         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5478                 if (nhc->nhc_gw_family)
5479                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5480
5481                 neigh = __ipv4_neigh_lookup_noref(dev,
5482                                                  (__force u32)params->ipv4_dst);
5483         } else {
5484                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5485
5486                 params->family = AF_INET6;
5487                 *dst = nhc->nhc_gw.ipv6;
5488                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5489         }
5490
5491         if (!neigh)
5492                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5493
5494         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5495 }
5496 #endif
5497
5498 #if IS_ENABLED(CONFIG_IPV6)
5499 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5500                                u32 flags, bool check_mtu)
5501 {
5502         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5503         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5504         struct fib6_result res = {};
5505         struct neighbour *neigh;
5506         struct net_device *dev;
5507         struct inet6_dev *idev;
5508         struct flowi6 fl6;
5509         int strict = 0;
5510         int oif, err;
5511         u32 mtu = 0;
5512
5513         /* link local addresses are never forwarded */
5514         if (rt6_need_strict(dst) || rt6_need_strict(src))
5515                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5516
5517         dev = dev_get_by_index_rcu(net, params->ifindex);
5518         if (unlikely(!dev))
5519                 return -ENODEV;
5520
5521         idev = __in6_dev_get_safely(dev);
5522         if (unlikely(!idev || !idev->cnf.forwarding))
5523                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5524
5525         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5526                 fl6.flowi6_iif = 1;
5527                 oif = fl6.flowi6_oif = params->ifindex;
5528         } else {
5529                 oif = fl6.flowi6_iif = params->ifindex;
5530                 fl6.flowi6_oif = 0;
5531                 strict = RT6_LOOKUP_F_HAS_SADDR;
5532         }
5533         fl6.flowlabel = params->flowinfo;
5534         fl6.flowi6_scope = 0;
5535         fl6.flowi6_flags = 0;
5536         fl6.mp_hash = 0;
5537
5538         fl6.flowi6_proto = params->l4_protocol;
5539         fl6.daddr = *dst;
5540         fl6.saddr = *src;
5541         fl6.fl6_sport = params->sport;
5542         fl6.fl6_dport = params->dport;
5543
5544         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5545                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5546                 struct fib6_table *tb;
5547
5548                 tb = ipv6_stub->fib6_get_table(net, tbid);
5549                 if (unlikely(!tb))
5550                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5551
5552                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5553                                                    strict);
5554         } else {
5555                 fl6.flowi6_mark = 0;
5556                 fl6.flowi6_secid = 0;
5557                 fl6.flowi6_tun_key.tun_id = 0;
5558                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5559
5560                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5561         }
5562
5563         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5564                      res.f6i == net->ipv6.fib6_null_entry))
5565                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5566
5567         switch (res.fib6_type) {
5568         /* only unicast is forwarded */
5569         case RTN_UNICAST:
5570                 break;
5571         case RTN_BLACKHOLE:
5572                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5573         case RTN_UNREACHABLE:
5574                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5575         case RTN_PROHIBIT:
5576                 return BPF_FIB_LKUP_RET_PROHIBIT;
5577         default:
5578                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5579         }
5580
5581         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5582                                     fl6.flowi6_oif != 0, NULL, strict);
5583
5584         if (check_mtu) {
5585                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5586                 if (params->tot_len > mtu) {
5587                         params->mtu_result = mtu; /* union with tot_len */
5588                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5589                 }
5590         }
5591
5592         if (res.nh->fib_nh_lws)
5593                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5594
5595         if (res.nh->fib_nh_gw_family)
5596                 *dst = res.nh->fib_nh_gw6;
5597
5598         dev = res.nh->fib_nh_dev;
5599         params->rt_metric = res.f6i->fib6_metric;
5600         params->ifindex = dev->ifindex;
5601
5602         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5603          * not needed here.
5604          */
5605         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5606         if (!neigh)
5607                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5608
5609         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5610 }
5611 #endif
5612
5613 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5614            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5615 {
5616         if (plen < sizeof(*params))
5617                 return -EINVAL;
5618
5619         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5620                 return -EINVAL;
5621
5622         switch (params->family) {
5623 #if IS_ENABLED(CONFIG_INET)
5624         case AF_INET:
5625                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5626                                            flags, true);
5627 #endif
5628 #if IS_ENABLED(CONFIG_IPV6)
5629         case AF_INET6:
5630                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5631                                            flags, true);
5632 #endif
5633         }
5634         return -EAFNOSUPPORT;
5635 }
5636
5637 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5638         .func           = bpf_xdp_fib_lookup,
5639         .gpl_only       = true,
5640         .ret_type       = RET_INTEGER,
5641         .arg1_type      = ARG_PTR_TO_CTX,
5642         .arg2_type      = ARG_PTR_TO_MEM,
5643         .arg3_type      = ARG_CONST_SIZE,
5644         .arg4_type      = ARG_ANYTHING,
5645 };
5646
5647 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5648            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5649 {
5650         struct net *net = dev_net(skb->dev);
5651         int rc = -EAFNOSUPPORT;
5652         bool check_mtu = false;
5653
5654         if (plen < sizeof(*params))
5655                 return -EINVAL;
5656
5657         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5658                 return -EINVAL;
5659
5660         if (params->tot_len)
5661                 check_mtu = true;
5662
5663         switch (params->family) {
5664 #if IS_ENABLED(CONFIG_INET)
5665         case AF_INET:
5666                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5667                 break;
5668 #endif
5669 #if IS_ENABLED(CONFIG_IPV6)
5670         case AF_INET6:
5671                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5672                 break;
5673 #endif
5674         }
5675
5676         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5677                 struct net_device *dev;
5678
5679                 /* When tot_len isn't provided by user, check skb
5680                  * against MTU of FIB lookup resulting net_device
5681                  */
5682                 dev = dev_get_by_index_rcu(net, params->ifindex);
5683                 if (!is_skb_forwardable(dev, skb))
5684                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5685
5686                 params->mtu_result = dev->mtu; /* union with tot_len */
5687         }
5688
5689         return rc;
5690 }
5691
5692 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5693         .func           = bpf_skb_fib_lookup,
5694         .gpl_only       = true,
5695         .ret_type       = RET_INTEGER,
5696         .arg1_type      = ARG_PTR_TO_CTX,
5697         .arg2_type      = ARG_PTR_TO_MEM,
5698         .arg3_type      = ARG_CONST_SIZE,
5699         .arg4_type      = ARG_ANYTHING,
5700 };
5701
5702 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5703                                             u32 ifindex)
5704 {
5705         struct net *netns = dev_net(dev_curr);
5706
5707         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5708         if (ifindex == 0)
5709                 return dev_curr;
5710
5711         return dev_get_by_index_rcu(netns, ifindex);
5712 }
5713
5714 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5715            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5716 {
5717         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5718         struct net_device *dev = skb->dev;
5719         int skb_len, dev_len;
5720         int mtu;
5721
5722         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5723                 return -EINVAL;
5724
5725         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5726                 return -EINVAL;
5727
5728         dev = __dev_via_ifindex(dev, ifindex);
5729         if (unlikely(!dev))
5730                 return -ENODEV;
5731
5732         mtu = READ_ONCE(dev->mtu);
5733
5734         dev_len = mtu + dev->hard_header_len;
5735
5736         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5737         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5738
5739         skb_len += len_diff; /* minus result pass check */
5740         if (skb_len <= dev_len) {
5741                 ret = BPF_MTU_CHK_RET_SUCCESS;
5742                 goto out;
5743         }
5744         /* At this point, skb->len exceed MTU, but as it include length of all
5745          * segments, it can still be below MTU.  The SKB can possibly get
5746          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5747          * must choose if segs are to be MTU checked.
5748          */
5749         if (skb_is_gso(skb)) {
5750                 ret = BPF_MTU_CHK_RET_SUCCESS;
5751
5752                 if (flags & BPF_MTU_CHK_SEGS &&
5753                     !skb_gso_validate_network_len(skb, mtu))
5754                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5755         }
5756 out:
5757         /* BPF verifier guarantees valid pointer */
5758         *mtu_len = mtu;
5759
5760         return ret;
5761 }
5762
5763 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5764            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5765 {
5766         struct net_device *dev = xdp->rxq->dev;
5767         int xdp_len = xdp->data_end - xdp->data;
5768         int ret = BPF_MTU_CHK_RET_SUCCESS;
5769         int mtu, dev_len;
5770
5771         /* XDP variant doesn't support multi-buffer segment check (yet) */
5772         if (unlikely(flags))
5773                 return -EINVAL;
5774
5775         dev = __dev_via_ifindex(dev, ifindex);
5776         if (unlikely(!dev))
5777                 return -ENODEV;
5778
5779         mtu = READ_ONCE(dev->mtu);
5780
5781         /* Add L2-header as dev MTU is L3 size */
5782         dev_len = mtu + dev->hard_header_len;
5783
5784         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5785         if (*mtu_len)
5786                 xdp_len = *mtu_len + dev->hard_header_len;
5787
5788         xdp_len += len_diff; /* minus result pass check */
5789         if (xdp_len > dev_len)
5790                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5791
5792         /* BPF verifier guarantees valid pointer */
5793         *mtu_len = mtu;
5794
5795         return ret;
5796 }
5797
5798 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5799         .func           = bpf_skb_check_mtu,
5800         .gpl_only       = true,
5801         .ret_type       = RET_INTEGER,
5802         .arg1_type      = ARG_PTR_TO_CTX,
5803         .arg2_type      = ARG_ANYTHING,
5804         .arg3_type      = ARG_PTR_TO_INT,
5805         .arg4_type      = ARG_ANYTHING,
5806         .arg5_type      = ARG_ANYTHING,
5807 };
5808
5809 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5810         .func           = bpf_xdp_check_mtu,
5811         .gpl_only       = true,
5812         .ret_type       = RET_INTEGER,
5813         .arg1_type      = ARG_PTR_TO_CTX,
5814         .arg2_type      = ARG_ANYTHING,
5815         .arg3_type      = ARG_PTR_TO_INT,
5816         .arg4_type      = ARG_ANYTHING,
5817         .arg5_type      = ARG_ANYTHING,
5818 };
5819
5820 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5821 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5822 {
5823         int err;
5824         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5825
5826         if (!seg6_validate_srh(srh, len, false))
5827                 return -EINVAL;
5828
5829         switch (type) {
5830         case BPF_LWT_ENCAP_SEG6_INLINE:
5831                 if (skb->protocol != htons(ETH_P_IPV6))
5832                         return -EBADMSG;
5833
5834                 err = seg6_do_srh_inline(skb, srh);
5835                 break;
5836         case BPF_LWT_ENCAP_SEG6:
5837                 skb_reset_inner_headers(skb);
5838                 skb->encapsulation = 1;
5839                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5840                 break;
5841         default:
5842                 return -EINVAL;
5843         }
5844
5845         bpf_compute_data_pointers(skb);
5846         if (err)
5847                 return err;
5848
5849         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5850         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5851
5852         return seg6_lookup_nexthop(skb, NULL, 0);
5853 }
5854 #endif /* CONFIG_IPV6_SEG6_BPF */
5855
5856 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5857 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5858                              bool ingress)
5859 {
5860         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5861 }
5862 #endif
5863
5864 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5865            u32, len)
5866 {
5867         switch (type) {
5868 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5869         case BPF_LWT_ENCAP_SEG6:
5870         case BPF_LWT_ENCAP_SEG6_INLINE:
5871                 return bpf_push_seg6_encap(skb, type, hdr, len);
5872 #endif
5873 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5874         case BPF_LWT_ENCAP_IP:
5875                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5876 #endif
5877         default:
5878                 return -EINVAL;
5879         }
5880 }
5881
5882 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5883            void *, hdr, u32, len)
5884 {
5885         switch (type) {
5886 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5887         case BPF_LWT_ENCAP_IP:
5888                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5889 #endif
5890         default:
5891                 return -EINVAL;
5892         }
5893 }
5894
5895 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5896         .func           = bpf_lwt_in_push_encap,
5897         .gpl_only       = false,
5898         .ret_type       = RET_INTEGER,
5899         .arg1_type      = ARG_PTR_TO_CTX,
5900         .arg2_type      = ARG_ANYTHING,
5901         .arg3_type      = ARG_PTR_TO_MEM,
5902         .arg4_type      = ARG_CONST_SIZE
5903 };
5904
5905 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5906         .func           = bpf_lwt_xmit_push_encap,
5907         .gpl_only       = false,
5908         .ret_type       = RET_INTEGER,
5909         .arg1_type      = ARG_PTR_TO_CTX,
5910         .arg2_type      = ARG_ANYTHING,
5911         .arg3_type      = ARG_PTR_TO_MEM,
5912         .arg4_type      = ARG_CONST_SIZE
5913 };
5914
5915 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5916 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5917            const void *, from, u32, len)
5918 {
5919         struct seg6_bpf_srh_state *srh_state =
5920                 this_cpu_ptr(&seg6_bpf_srh_states);
5921         struct ipv6_sr_hdr *srh = srh_state->srh;
5922         void *srh_tlvs, *srh_end, *ptr;
5923         int srhoff = 0;
5924
5925         if (srh == NULL)
5926                 return -EINVAL;
5927
5928         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5929         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5930
5931         ptr = skb->data + offset;
5932         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5933                 srh_state->valid = false;
5934         else if (ptr < (void *)&srh->flags ||
5935                  ptr + len > (void *)&srh->segments)
5936                 return -EFAULT;
5937
5938         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5939                 return -EFAULT;
5940         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5941                 return -EINVAL;
5942         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5943
5944         memcpy(skb->data + offset, from, len);
5945         return 0;
5946 }
5947
5948 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5949         .func           = bpf_lwt_seg6_store_bytes,
5950         .gpl_only       = false,
5951         .ret_type       = RET_INTEGER,
5952         .arg1_type      = ARG_PTR_TO_CTX,
5953         .arg2_type      = ARG_ANYTHING,
5954         .arg3_type      = ARG_PTR_TO_MEM,
5955         .arg4_type      = ARG_CONST_SIZE
5956 };
5957
5958 static void bpf_update_srh_state(struct sk_buff *skb)
5959 {
5960         struct seg6_bpf_srh_state *srh_state =
5961                 this_cpu_ptr(&seg6_bpf_srh_states);
5962         int srhoff = 0;
5963
5964         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5965                 srh_state->srh = NULL;
5966         } else {
5967                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5968                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5969                 srh_state->valid = true;
5970         }
5971 }
5972
5973 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5974            u32, action, void *, param, u32, param_len)
5975 {
5976         struct seg6_bpf_srh_state *srh_state =
5977                 this_cpu_ptr(&seg6_bpf_srh_states);
5978         int hdroff = 0;
5979         int err;
5980
5981         switch (action) {
5982         case SEG6_LOCAL_ACTION_END_X:
5983                 if (!seg6_bpf_has_valid_srh(skb))
5984                         return -EBADMSG;
5985                 if (param_len != sizeof(struct in6_addr))
5986                         return -EINVAL;
5987                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5988         case SEG6_LOCAL_ACTION_END_T:
5989                 if (!seg6_bpf_has_valid_srh(skb))
5990                         return -EBADMSG;
5991                 if (param_len != sizeof(int))
5992                         return -EINVAL;
5993                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5994         case SEG6_LOCAL_ACTION_END_DT6:
5995                 if (!seg6_bpf_has_valid_srh(skb))
5996                         return -EBADMSG;
5997                 if (param_len != sizeof(int))
5998                         return -EINVAL;
5999
6000                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6001                         return -EBADMSG;
6002                 if (!pskb_pull(skb, hdroff))
6003                         return -EBADMSG;
6004
6005                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6006                 skb_reset_network_header(skb);
6007                 skb_reset_transport_header(skb);
6008                 skb->encapsulation = 0;
6009
6010                 bpf_compute_data_pointers(skb);
6011                 bpf_update_srh_state(skb);
6012                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6013         case SEG6_LOCAL_ACTION_END_B6:
6014                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6015                         return -EBADMSG;
6016                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6017                                           param, param_len);
6018                 if (!err)
6019                         bpf_update_srh_state(skb);
6020
6021                 return err;
6022         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6023                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6024                         return -EBADMSG;
6025                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6026                                           param, param_len);
6027                 if (!err)
6028                         bpf_update_srh_state(skb);
6029
6030                 return err;
6031         default:
6032                 return -EINVAL;
6033         }
6034 }
6035
6036 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6037         .func           = bpf_lwt_seg6_action,
6038         .gpl_only       = false,
6039         .ret_type       = RET_INTEGER,
6040         .arg1_type      = ARG_PTR_TO_CTX,
6041         .arg2_type      = ARG_ANYTHING,
6042         .arg3_type      = ARG_PTR_TO_MEM,
6043         .arg4_type      = ARG_CONST_SIZE
6044 };
6045
6046 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6047            s32, len)
6048 {
6049         struct seg6_bpf_srh_state *srh_state =
6050                 this_cpu_ptr(&seg6_bpf_srh_states);
6051         struct ipv6_sr_hdr *srh = srh_state->srh;
6052         void *srh_end, *srh_tlvs, *ptr;
6053         struct ipv6hdr *hdr;
6054         int srhoff = 0;
6055         int ret;
6056
6057         if (unlikely(srh == NULL))
6058                 return -EINVAL;
6059
6060         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6061                         ((srh->first_segment + 1) << 4));
6062         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6063                         srh_state->hdrlen);
6064         ptr = skb->data + offset;
6065
6066         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6067                 return -EFAULT;
6068         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6069                 return -EFAULT;
6070
6071         if (len > 0) {
6072                 ret = skb_cow_head(skb, len);
6073                 if (unlikely(ret < 0))
6074                         return ret;
6075
6076                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6077         } else {
6078                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6079         }
6080
6081         bpf_compute_data_pointers(skb);
6082         if (unlikely(ret < 0))
6083                 return ret;
6084
6085         hdr = (struct ipv6hdr *)skb->data;
6086         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6087
6088         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6089                 return -EINVAL;
6090         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6091         srh_state->hdrlen += len;
6092         srh_state->valid = false;
6093         return 0;
6094 }
6095
6096 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6097         .func           = bpf_lwt_seg6_adjust_srh,
6098         .gpl_only       = false,
6099         .ret_type       = RET_INTEGER,
6100         .arg1_type      = ARG_PTR_TO_CTX,
6101         .arg2_type      = ARG_ANYTHING,
6102         .arg3_type      = ARG_ANYTHING,
6103 };
6104 #endif /* CONFIG_IPV6_SEG6_BPF */
6105
6106 #ifdef CONFIG_INET
6107 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6108                               int dif, int sdif, u8 family, u8 proto)
6109 {
6110         bool refcounted = false;
6111         struct sock *sk = NULL;
6112
6113         if (family == AF_INET) {
6114                 __be32 src4 = tuple->ipv4.saddr;
6115                 __be32 dst4 = tuple->ipv4.daddr;
6116
6117                 if (proto == IPPROTO_TCP)
6118                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6119                                            src4, tuple->ipv4.sport,
6120                                            dst4, tuple->ipv4.dport,
6121                                            dif, sdif, &refcounted);
6122                 else
6123                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6124                                                dst4, tuple->ipv4.dport,
6125                                                dif, sdif, &udp_table, NULL);
6126 #if IS_ENABLED(CONFIG_IPV6)
6127         } else {
6128                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6129                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6130
6131                 if (proto == IPPROTO_TCP)
6132                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6133                                             src6, tuple->ipv6.sport,
6134                                             dst6, ntohs(tuple->ipv6.dport),
6135                                             dif, sdif, &refcounted);
6136                 else if (likely(ipv6_bpf_stub))
6137                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6138                                                             src6, tuple->ipv6.sport,
6139                                                             dst6, tuple->ipv6.dport,
6140                                                             dif, sdif,
6141                                                             &udp_table, NULL);
6142 #endif
6143         }
6144
6145         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6146                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6147                 sk = NULL;
6148         }
6149         return sk;
6150 }
6151
6152 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6153  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6154  * Returns the socket as an 'unsigned long' to simplify the casting in the
6155  * callers to satisfy BPF_CALL declarations.
6156  */
6157 static struct sock *
6158 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6159                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6160                  u64 flags)
6161 {
6162         struct sock *sk = NULL;
6163         u8 family = AF_UNSPEC;
6164         struct net *net;
6165         int sdif;
6166
6167         if (len == sizeof(tuple->ipv4))
6168                 family = AF_INET;
6169         else if (len == sizeof(tuple->ipv6))
6170                 family = AF_INET6;
6171         else
6172                 return NULL;
6173
6174         if (unlikely(family == AF_UNSPEC || flags ||
6175                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6176                 goto out;
6177
6178         if (family == AF_INET)
6179                 sdif = inet_sdif(skb);
6180         else
6181                 sdif = inet6_sdif(skb);
6182
6183         if ((s32)netns_id < 0) {
6184                 net = caller_net;
6185                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6186         } else {
6187                 net = get_net_ns_by_id(caller_net, netns_id);
6188                 if (unlikely(!net))
6189                         goto out;
6190                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6191                 put_net(net);
6192         }
6193
6194 out:
6195         return sk;
6196 }
6197
6198 static struct sock *
6199 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6200                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6201                 u64 flags)
6202 {
6203         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6204                                            ifindex, proto, netns_id, flags);
6205
6206         if (sk) {
6207                 sk = sk_to_full_sk(sk);
6208                 if (!sk_fullsock(sk)) {
6209                         sock_gen_put(sk);
6210                         return NULL;
6211                 }
6212         }
6213
6214         return sk;
6215 }
6216
6217 static struct sock *
6218 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6219                u8 proto, u64 netns_id, u64 flags)
6220 {
6221         struct net *caller_net;
6222         int ifindex;
6223
6224         if (skb->dev) {
6225                 caller_net = dev_net(skb->dev);
6226                 ifindex = skb->dev->ifindex;
6227         } else {
6228                 caller_net = sock_net(skb->sk);
6229                 ifindex = 0;
6230         }
6231
6232         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6233                                 netns_id, flags);
6234 }
6235
6236 static struct sock *
6237 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6238               u8 proto, u64 netns_id, u64 flags)
6239 {
6240         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6241                                          flags);
6242
6243         if (sk) {
6244                 sk = sk_to_full_sk(sk);
6245                 if (!sk_fullsock(sk)) {
6246                         sock_gen_put(sk);
6247                         return NULL;
6248                 }
6249         }
6250
6251         return sk;
6252 }
6253
6254 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6255            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6256 {
6257         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6258                                              netns_id, flags);
6259 }
6260
6261 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6262         .func           = bpf_skc_lookup_tcp,
6263         .gpl_only       = false,
6264         .pkt_access     = true,
6265         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6266         .arg1_type      = ARG_PTR_TO_CTX,
6267         .arg2_type      = ARG_PTR_TO_MEM,
6268         .arg3_type      = ARG_CONST_SIZE,
6269         .arg4_type      = ARG_ANYTHING,
6270         .arg5_type      = ARG_ANYTHING,
6271 };
6272
6273 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6274            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6275 {
6276         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6277                                             netns_id, flags);
6278 }
6279
6280 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6281         .func           = bpf_sk_lookup_tcp,
6282         .gpl_only       = false,
6283         .pkt_access     = true,
6284         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6285         .arg1_type      = ARG_PTR_TO_CTX,
6286         .arg2_type      = ARG_PTR_TO_MEM,
6287         .arg3_type      = ARG_CONST_SIZE,
6288         .arg4_type      = ARG_ANYTHING,
6289         .arg5_type      = ARG_ANYTHING,
6290 };
6291
6292 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6293            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6294 {
6295         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6296                                             netns_id, flags);
6297 }
6298
6299 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6300         .func           = bpf_sk_lookup_udp,
6301         .gpl_only       = false,
6302         .pkt_access     = true,
6303         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6304         .arg1_type      = ARG_PTR_TO_CTX,
6305         .arg2_type      = ARG_PTR_TO_MEM,
6306         .arg3_type      = ARG_CONST_SIZE,
6307         .arg4_type      = ARG_ANYTHING,
6308         .arg5_type      = ARG_ANYTHING,
6309 };
6310
6311 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6312 {
6313         if (sk && sk_is_refcounted(sk))
6314                 sock_gen_put(sk);
6315         return 0;
6316 }
6317
6318 static const struct bpf_func_proto bpf_sk_release_proto = {
6319         .func           = bpf_sk_release,
6320         .gpl_only       = false,
6321         .ret_type       = RET_INTEGER,
6322         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6323 };
6324
6325 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6326            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6327 {
6328         struct net *caller_net = dev_net(ctx->rxq->dev);
6329         int ifindex = ctx->rxq->dev->ifindex;
6330
6331         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6332                                               ifindex, IPPROTO_UDP, netns_id,
6333                                               flags);
6334 }
6335
6336 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6337         .func           = bpf_xdp_sk_lookup_udp,
6338         .gpl_only       = false,
6339         .pkt_access     = true,
6340         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6341         .arg1_type      = ARG_PTR_TO_CTX,
6342         .arg2_type      = ARG_PTR_TO_MEM,
6343         .arg3_type      = ARG_CONST_SIZE,
6344         .arg4_type      = ARG_ANYTHING,
6345         .arg5_type      = ARG_ANYTHING,
6346 };
6347
6348 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6349            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6350 {
6351         struct net *caller_net = dev_net(ctx->rxq->dev);
6352         int ifindex = ctx->rxq->dev->ifindex;
6353
6354         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6355                                                ifindex, IPPROTO_TCP, netns_id,
6356                                                flags);
6357 }
6358
6359 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6360         .func           = bpf_xdp_skc_lookup_tcp,
6361         .gpl_only       = false,
6362         .pkt_access     = true,
6363         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6364         .arg1_type      = ARG_PTR_TO_CTX,
6365         .arg2_type      = ARG_PTR_TO_MEM,
6366         .arg3_type      = ARG_CONST_SIZE,
6367         .arg4_type      = ARG_ANYTHING,
6368         .arg5_type      = ARG_ANYTHING,
6369 };
6370
6371 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6372            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6373 {
6374         struct net *caller_net = dev_net(ctx->rxq->dev);
6375         int ifindex = ctx->rxq->dev->ifindex;
6376
6377         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6378                                               ifindex, IPPROTO_TCP, netns_id,
6379                                               flags);
6380 }
6381
6382 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6383         .func           = bpf_xdp_sk_lookup_tcp,
6384         .gpl_only       = false,
6385         .pkt_access     = true,
6386         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6387         .arg1_type      = ARG_PTR_TO_CTX,
6388         .arg2_type      = ARG_PTR_TO_MEM,
6389         .arg3_type      = ARG_CONST_SIZE,
6390         .arg4_type      = ARG_ANYTHING,
6391         .arg5_type      = ARG_ANYTHING,
6392 };
6393
6394 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6395            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6396 {
6397         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6398                                                sock_net(ctx->sk), 0,
6399                                                IPPROTO_TCP, netns_id, flags);
6400 }
6401
6402 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6403         .func           = bpf_sock_addr_skc_lookup_tcp,
6404         .gpl_only       = false,
6405         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6406         .arg1_type      = ARG_PTR_TO_CTX,
6407         .arg2_type      = ARG_PTR_TO_MEM,
6408         .arg3_type      = ARG_CONST_SIZE,
6409         .arg4_type      = ARG_ANYTHING,
6410         .arg5_type      = ARG_ANYTHING,
6411 };
6412
6413 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6414            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6415 {
6416         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6417                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6418                                               netns_id, flags);
6419 }
6420
6421 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6422         .func           = bpf_sock_addr_sk_lookup_tcp,
6423         .gpl_only       = false,
6424         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6425         .arg1_type      = ARG_PTR_TO_CTX,
6426         .arg2_type      = ARG_PTR_TO_MEM,
6427         .arg3_type      = ARG_CONST_SIZE,
6428         .arg4_type      = ARG_ANYTHING,
6429         .arg5_type      = ARG_ANYTHING,
6430 };
6431
6432 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6433            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6434 {
6435         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6436                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6437                                               netns_id, flags);
6438 }
6439
6440 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6441         .func           = bpf_sock_addr_sk_lookup_udp,
6442         .gpl_only       = false,
6443         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6444         .arg1_type      = ARG_PTR_TO_CTX,
6445         .arg2_type      = ARG_PTR_TO_MEM,
6446         .arg3_type      = ARG_CONST_SIZE,
6447         .arg4_type      = ARG_ANYTHING,
6448         .arg5_type      = ARG_ANYTHING,
6449 };
6450
6451 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6452                                   struct bpf_insn_access_aux *info)
6453 {
6454         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6455                                           icsk_retransmits))
6456                 return false;
6457
6458         if (off % size != 0)
6459                 return false;
6460
6461         switch (off) {
6462         case offsetof(struct bpf_tcp_sock, bytes_received):
6463         case offsetof(struct bpf_tcp_sock, bytes_acked):
6464                 return size == sizeof(__u64);
6465         default:
6466                 return size == sizeof(__u32);
6467         }
6468 }
6469
6470 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6471                                     const struct bpf_insn *si,
6472                                     struct bpf_insn *insn_buf,
6473                                     struct bpf_prog *prog, u32 *target_size)
6474 {
6475         struct bpf_insn *insn = insn_buf;
6476
6477 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6478         do {                                                            \
6479                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6480                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6481                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6482                                       si->dst_reg, si->src_reg,         \
6483                                       offsetof(struct tcp_sock, FIELD)); \
6484         } while (0)
6485
6486 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6487         do {                                                            \
6488                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6489                                           FIELD) >                      \
6490                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6491                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6492                                         struct inet_connection_sock,    \
6493                                         FIELD),                         \
6494                                       si->dst_reg, si->src_reg,         \
6495                                       offsetof(                         \
6496                                         struct inet_connection_sock,    \
6497                                         FIELD));                        \
6498         } while (0)
6499
6500         if (insn > insn_buf)
6501                 return insn - insn_buf;
6502
6503         switch (si->off) {
6504         case offsetof(struct bpf_tcp_sock, rtt_min):
6505                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6506                              sizeof(struct minmax));
6507                 BUILD_BUG_ON(sizeof(struct minmax) <
6508                              sizeof(struct minmax_sample));
6509
6510                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6511                                       offsetof(struct tcp_sock, rtt_min) +
6512                                       offsetof(struct minmax_sample, v));
6513                 break;
6514         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6515                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6516                 break;
6517         case offsetof(struct bpf_tcp_sock, srtt_us):
6518                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6519                 break;
6520         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6521                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6522                 break;
6523         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6524                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6525                 break;
6526         case offsetof(struct bpf_tcp_sock, snd_nxt):
6527                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6528                 break;
6529         case offsetof(struct bpf_tcp_sock, snd_una):
6530                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6531                 break;
6532         case offsetof(struct bpf_tcp_sock, mss_cache):
6533                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6534                 break;
6535         case offsetof(struct bpf_tcp_sock, ecn_flags):
6536                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6537                 break;
6538         case offsetof(struct bpf_tcp_sock, rate_delivered):
6539                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6540                 break;
6541         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6542                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6543                 break;
6544         case offsetof(struct bpf_tcp_sock, packets_out):
6545                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6546                 break;
6547         case offsetof(struct bpf_tcp_sock, retrans_out):
6548                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6549                 break;
6550         case offsetof(struct bpf_tcp_sock, total_retrans):
6551                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6552                 break;
6553         case offsetof(struct bpf_tcp_sock, segs_in):
6554                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6555                 break;
6556         case offsetof(struct bpf_tcp_sock, data_segs_in):
6557                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6558                 break;
6559         case offsetof(struct bpf_tcp_sock, segs_out):
6560                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6561                 break;
6562         case offsetof(struct bpf_tcp_sock, data_segs_out):
6563                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6564                 break;
6565         case offsetof(struct bpf_tcp_sock, lost_out):
6566                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6567                 break;
6568         case offsetof(struct bpf_tcp_sock, sacked_out):
6569                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6570                 break;
6571         case offsetof(struct bpf_tcp_sock, bytes_received):
6572                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6573                 break;
6574         case offsetof(struct bpf_tcp_sock, bytes_acked):
6575                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6576                 break;
6577         case offsetof(struct bpf_tcp_sock, dsack_dups):
6578                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6579                 break;
6580         case offsetof(struct bpf_tcp_sock, delivered):
6581                 BPF_TCP_SOCK_GET_COMMON(delivered);
6582                 break;
6583         case offsetof(struct bpf_tcp_sock, delivered_ce):
6584                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6585                 break;
6586         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6587                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6588                 break;
6589         }
6590
6591         return insn - insn_buf;
6592 }
6593
6594 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6595 {
6596         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6597                 return (unsigned long)sk;
6598
6599         return (unsigned long)NULL;
6600 }
6601
6602 const struct bpf_func_proto bpf_tcp_sock_proto = {
6603         .func           = bpf_tcp_sock,
6604         .gpl_only       = false,
6605         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6606         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6607 };
6608
6609 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6610 {
6611         sk = sk_to_full_sk(sk);
6612
6613         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6614                 return (unsigned long)sk;
6615
6616         return (unsigned long)NULL;
6617 }
6618
6619 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6620         .func           = bpf_get_listener_sock,
6621         .gpl_only       = false,
6622         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6623         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6624 };
6625
6626 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6627 {
6628         unsigned int iphdr_len;
6629
6630         switch (skb_protocol(skb, true)) {
6631         case cpu_to_be16(ETH_P_IP):
6632                 iphdr_len = sizeof(struct iphdr);
6633                 break;
6634         case cpu_to_be16(ETH_P_IPV6):
6635                 iphdr_len = sizeof(struct ipv6hdr);
6636                 break;
6637         default:
6638                 return 0;
6639         }
6640
6641         if (skb_headlen(skb) < iphdr_len)
6642                 return 0;
6643
6644         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6645                 return 0;
6646
6647         return INET_ECN_set_ce(skb);
6648 }
6649
6650 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6651                                   struct bpf_insn_access_aux *info)
6652 {
6653         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6654                 return false;
6655
6656         if (off % size != 0)
6657                 return false;
6658
6659         switch (off) {
6660         default:
6661                 return size == sizeof(__u32);
6662         }
6663 }
6664
6665 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6666                                     const struct bpf_insn *si,
6667                                     struct bpf_insn *insn_buf,
6668                                     struct bpf_prog *prog, u32 *target_size)
6669 {
6670         struct bpf_insn *insn = insn_buf;
6671
6672 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6673         do {                                                            \
6674                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6675                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6676                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6677                                       si->dst_reg, si->src_reg,         \
6678                                       offsetof(struct xdp_sock, FIELD)); \
6679         } while (0)
6680
6681         switch (si->off) {
6682         case offsetof(struct bpf_xdp_sock, queue_id):
6683                 BPF_XDP_SOCK_GET(queue_id);
6684                 break;
6685         }
6686
6687         return insn - insn_buf;
6688 }
6689
6690 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6691         .func           = bpf_skb_ecn_set_ce,
6692         .gpl_only       = false,
6693         .ret_type       = RET_INTEGER,
6694         .arg1_type      = ARG_PTR_TO_CTX,
6695 };
6696
6697 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6698            struct tcphdr *, th, u32, th_len)
6699 {
6700 #ifdef CONFIG_SYN_COOKIES
6701         u32 cookie;
6702         int ret;
6703
6704         if (unlikely(!sk || th_len < sizeof(*th)))
6705                 return -EINVAL;
6706
6707         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6708         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6709                 return -EINVAL;
6710
6711         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6712                 return -EINVAL;
6713
6714         if (!th->ack || th->rst || th->syn)
6715                 return -ENOENT;
6716
6717         if (tcp_synq_no_recent_overflow(sk))
6718                 return -ENOENT;
6719
6720         cookie = ntohl(th->ack_seq) - 1;
6721
6722         switch (sk->sk_family) {
6723         case AF_INET:
6724                 if (unlikely(iph_len < sizeof(struct iphdr)))
6725                         return -EINVAL;
6726
6727                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6728                 break;
6729
6730 #if IS_BUILTIN(CONFIG_IPV6)
6731         case AF_INET6:
6732                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6733                         return -EINVAL;
6734
6735                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6736                 break;
6737 #endif /* CONFIG_IPV6 */
6738
6739         default:
6740                 return -EPROTONOSUPPORT;
6741         }
6742
6743         if (ret > 0)
6744                 return 0;
6745
6746         return -ENOENT;
6747 #else
6748         return -ENOTSUPP;
6749 #endif
6750 }
6751
6752 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6753         .func           = bpf_tcp_check_syncookie,
6754         .gpl_only       = true,
6755         .pkt_access     = true,
6756         .ret_type       = RET_INTEGER,
6757         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6758         .arg2_type      = ARG_PTR_TO_MEM,
6759         .arg3_type      = ARG_CONST_SIZE,
6760         .arg4_type      = ARG_PTR_TO_MEM,
6761         .arg5_type      = ARG_CONST_SIZE,
6762 };
6763
6764 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6765            struct tcphdr *, th, u32, th_len)
6766 {
6767 #ifdef CONFIG_SYN_COOKIES
6768         u32 cookie;
6769         u16 mss;
6770
6771         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6772                 return -EINVAL;
6773
6774         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6775                 return -EINVAL;
6776
6777         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6778                 return -ENOENT;
6779
6780         if (!th->syn || th->ack || th->fin || th->rst)
6781                 return -EINVAL;
6782
6783         if (unlikely(iph_len < sizeof(struct iphdr)))
6784                 return -EINVAL;
6785
6786         /* Both struct iphdr and struct ipv6hdr have the version field at the
6787          * same offset so we can cast to the shorter header (struct iphdr).
6788          */
6789         switch (((struct iphdr *)iph)->version) {
6790         case 4:
6791                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6792                         return -EINVAL;
6793
6794                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6795                 break;
6796
6797 #if IS_BUILTIN(CONFIG_IPV6)
6798         case 6:
6799                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6800                         return -EINVAL;
6801
6802                 if (sk->sk_family != AF_INET6)
6803                         return -EINVAL;
6804
6805                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6806                 break;
6807 #endif /* CONFIG_IPV6 */
6808
6809         default:
6810                 return -EPROTONOSUPPORT;
6811         }
6812         if (mss == 0)
6813                 return -ENOENT;
6814
6815         return cookie | ((u64)mss << 32);
6816 #else
6817         return -EOPNOTSUPP;
6818 #endif /* CONFIG_SYN_COOKIES */
6819 }
6820
6821 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6822         .func           = bpf_tcp_gen_syncookie,
6823         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6824         .pkt_access     = true,
6825         .ret_type       = RET_INTEGER,
6826         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6827         .arg2_type      = ARG_PTR_TO_MEM,
6828         .arg3_type      = ARG_CONST_SIZE,
6829         .arg4_type      = ARG_PTR_TO_MEM,
6830         .arg5_type      = ARG_CONST_SIZE,
6831 };
6832
6833 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6834 {
6835         if (!sk || flags != 0)
6836                 return -EINVAL;
6837         if (!skb_at_tc_ingress(skb))
6838                 return -EOPNOTSUPP;
6839         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6840                 return -ENETUNREACH;
6841         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6842                 return -ESOCKTNOSUPPORT;
6843         if (sk_is_refcounted(sk) &&
6844             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6845                 return -ENOENT;
6846
6847         skb_orphan(skb);
6848         skb->sk = sk;
6849         skb->destructor = sock_pfree;
6850
6851         return 0;
6852 }
6853
6854 static const struct bpf_func_proto bpf_sk_assign_proto = {
6855         .func           = bpf_sk_assign,
6856         .gpl_only       = false,
6857         .ret_type       = RET_INTEGER,
6858         .arg1_type      = ARG_PTR_TO_CTX,
6859         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6860         .arg3_type      = ARG_ANYTHING,
6861 };
6862
6863 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6864                                     u8 search_kind, const u8 *magic,
6865                                     u8 magic_len, bool *eol)
6866 {
6867         u8 kind, kind_len;
6868
6869         *eol = false;
6870
6871         while (op < opend) {
6872                 kind = op[0];
6873
6874                 if (kind == TCPOPT_EOL) {
6875                         *eol = true;
6876                         return ERR_PTR(-ENOMSG);
6877                 } else if (kind == TCPOPT_NOP) {
6878                         op++;
6879                         continue;
6880                 }
6881
6882                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6883                         /* Something is wrong in the received header.
6884                          * Follow the TCP stack's tcp_parse_options()
6885                          * and just bail here.
6886                          */
6887                         return ERR_PTR(-EFAULT);
6888
6889                 kind_len = op[1];
6890                 if (search_kind == kind) {
6891                         if (!magic_len)
6892                                 return op;
6893
6894                         if (magic_len > kind_len - 2)
6895                                 return ERR_PTR(-ENOMSG);
6896
6897                         if (!memcmp(&op[2], magic, magic_len))
6898                                 return op;
6899                 }
6900
6901                 op += kind_len;
6902         }
6903
6904         return ERR_PTR(-ENOMSG);
6905 }
6906
6907 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6908            void *, search_res, u32, len, u64, flags)
6909 {
6910         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6911         const u8 *op, *opend, *magic, *search = search_res;
6912         u8 search_kind, search_len, copy_len, magic_len;
6913         int ret;
6914
6915         /* 2 byte is the minimal option len except TCPOPT_NOP and
6916          * TCPOPT_EOL which are useless for the bpf prog to learn
6917          * and this helper disallow loading them also.
6918          */
6919         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6920                 return -EINVAL;
6921
6922         search_kind = search[0];
6923         search_len = search[1];
6924
6925         if (search_len > len || search_kind == TCPOPT_NOP ||
6926             search_kind == TCPOPT_EOL)
6927                 return -EINVAL;
6928
6929         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6930                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6931                 if (search_len != 4 && search_len != 6)
6932                         return -EINVAL;
6933                 magic = &search[2];
6934                 magic_len = search_len - 2;
6935         } else {
6936                 if (search_len)
6937                         return -EINVAL;
6938                 magic = NULL;
6939                 magic_len = 0;
6940         }
6941
6942         if (load_syn) {
6943                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6944                 if (ret < 0)
6945                         return ret;
6946
6947                 opend = op + ret;
6948                 op += sizeof(struct tcphdr);
6949         } else {
6950                 if (!bpf_sock->skb ||
6951                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6952                         /* This bpf_sock->op cannot call this helper */
6953                         return -EPERM;
6954
6955                 opend = bpf_sock->skb_data_end;
6956                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6957         }
6958
6959         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6960                                 &eol);
6961         if (IS_ERR(op))
6962                 return PTR_ERR(op);
6963
6964         copy_len = op[1];
6965         ret = copy_len;
6966         if (copy_len > len) {
6967                 ret = -ENOSPC;
6968                 copy_len = len;
6969         }
6970
6971         memcpy(search_res, op, copy_len);
6972         return ret;
6973 }
6974
6975 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6976         .func           = bpf_sock_ops_load_hdr_opt,
6977         .gpl_only       = false,
6978         .ret_type       = RET_INTEGER,
6979         .arg1_type      = ARG_PTR_TO_CTX,
6980         .arg2_type      = ARG_PTR_TO_MEM,
6981         .arg3_type      = ARG_CONST_SIZE,
6982         .arg4_type      = ARG_ANYTHING,
6983 };
6984
6985 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6986            const void *, from, u32, len, u64, flags)
6987 {
6988         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6989         const u8 *op, *new_op, *magic = NULL;
6990         struct sk_buff *skb;
6991         bool eol;
6992
6993         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6994                 return -EPERM;
6995
6996         if (len < 2 || flags)
6997                 return -EINVAL;
6998
6999         new_op = from;
7000         new_kind = new_op[0];
7001         new_kind_len = new_op[1];
7002
7003         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7004             new_kind == TCPOPT_EOL)
7005                 return -EINVAL;
7006
7007         if (new_kind_len > bpf_sock->remaining_opt_len)
7008                 return -ENOSPC;
7009
7010         /* 253 is another experimental kind */
7011         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7012                 if (new_kind_len < 4)
7013                         return -EINVAL;
7014                 /* Match for the 2 byte magic also.
7015                  * RFC 6994: the magic could be 2 or 4 bytes.
7016                  * Hence, matching by 2 byte only is on the
7017                  * conservative side but it is the right
7018                  * thing to do for the 'search-for-duplication'
7019                  * purpose.
7020                  */
7021                 magic = &new_op[2];
7022                 magic_len = 2;
7023         }
7024
7025         /* Check for duplication */
7026         skb = bpf_sock->skb;
7027         op = skb->data + sizeof(struct tcphdr);
7028         opend = bpf_sock->skb_data_end;
7029
7030         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7031                                 &eol);
7032         if (!IS_ERR(op))
7033                 return -EEXIST;
7034
7035         if (PTR_ERR(op) != -ENOMSG)
7036                 return PTR_ERR(op);
7037
7038         if (eol)
7039                 /* The option has been ended.  Treat it as no more
7040                  * header option can be written.
7041                  */
7042                 return -ENOSPC;
7043
7044         /* No duplication found.  Store the header option. */
7045         memcpy(opend, from, new_kind_len);
7046
7047         bpf_sock->remaining_opt_len -= new_kind_len;
7048         bpf_sock->skb_data_end += new_kind_len;
7049
7050         return 0;
7051 }
7052
7053 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7054         .func           = bpf_sock_ops_store_hdr_opt,
7055         .gpl_only       = false,
7056         .ret_type       = RET_INTEGER,
7057         .arg1_type      = ARG_PTR_TO_CTX,
7058         .arg2_type      = ARG_PTR_TO_MEM,
7059         .arg3_type      = ARG_CONST_SIZE,
7060         .arg4_type      = ARG_ANYTHING,
7061 };
7062
7063 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7064            u32, len, u64, flags)
7065 {
7066         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7067                 return -EPERM;
7068
7069         if (flags || len < 2)
7070                 return -EINVAL;
7071
7072         if (len > bpf_sock->remaining_opt_len)
7073                 return -ENOSPC;
7074
7075         bpf_sock->remaining_opt_len -= len;
7076
7077         return 0;
7078 }
7079
7080 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7081         .func           = bpf_sock_ops_reserve_hdr_opt,
7082         .gpl_only       = false,
7083         .ret_type       = RET_INTEGER,
7084         .arg1_type      = ARG_PTR_TO_CTX,
7085         .arg2_type      = ARG_ANYTHING,
7086         .arg3_type      = ARG_ANYTHING,
7087 };
7088
7089 #endif /* CONFIG_INET */
7090
7091 bool bpf_helper_changes_pkt_data(void *func)
7092 {
7093         if (func == bpf_skb_vlan_push ||
7094             func == bpf_skb_vlan_pop ||
7095             func == bpf_skb_store_bytes ||
7096             func == bpf_skb_change_proto ||
7097             func == bpf_skb_change_head ||
7098             func == sk_skb_change_head ||
7099             func == bpf_skb_change_tail ||
7100             func == sk_skb_change_tail ||
7101             func == bpf_skb_adjust_room ||
7102             func == sk_skb_adjust_room ||
7103             func == bpf_skb_pull_data ||
7104             func == sk_skb_pull_data ||
7105             func == bpf_clone_redirect ||
7106             func == bpf_l3_csum_replace ||
7107             func == bpf_l4_csum_replace ||
7108             func == bpf_xdp_adjust_head ||
7109             func == bpf_xdp_adjust_meta ||
7110             func == bpf_msg_pull_data ||
7111             func == bpf_msg_push_data ||
7112             func == bpf_msg_pop_data ||
7113             func == bpf_xdp_adjust_tail ||
7114 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7115             func == bpf_lwt_seg6_store_bytes ||
7116             func == bpf_lwt_seg6_adjust_srh ||
7117             func == bpf_lwt_seg6_action ||
7118 #endif
7119 #ifdef CONFIG_INET
7120             func == bpf_sock_ops_store_hdr_opt ||
7121 #endif
7122             func == bpf_lwt_in_push_encap ||
7123             func == bpf_lwt_xmit_push_encap)
7124                 return true;
7125
7126         return false;
7127 }
7128
7129 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7130 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7131
7132 static const struct bpf_func_proto *
7133 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7134 {
7135         switch (func_id) {
7136         /* inet and inet6 sockets are created in a process
7137          * context so there is always a valid uid/gid
7138          */
7139         case BPF_FUNC_get_current_uid_gid:
7140                 return &bpf_get_current_uid_gid_proto;
7141         case BPF_FUNC_get_local_storage:
7142                 return &bpf_get_local_storage_proto;
7143         case BPF_FUNC_get_socket_cookie:
7144                 return &bpf_get_socket_cookie_sock_proto;
7145         case BPF_FUNC_get_netns_cookie:
7146                 return &bpf_get_netns_cookie_sock_proto;
7147         case BPF_FUNC_perf_event_output:
7148                 return &bpf_event_output_data_proto;
7149         case BPF_FUNC_get_current_pid_tgid:
7150                 return &bpf_get_current_pid_tgid_proto;
7151         case BPF_FUNC_get_current_comm:
7152                 return &bpf_get_current_comm_proto;
7153 #ifdef CONFIG_CGROUPS
7154         case BPF_FUNC_get_current_cgroup_id:
7155                 return &bpf_get_current_cgroup_id_proto;
7156         case BPF_FUNC_get_current_ancestor_cgroup_id:
7157                 return &bpf_get_current_ancestor_cgroup_id_proto;
7158 #endif
7159 #ifdef CONFIG_CGROUP_NET_CLASSID
7160         case BPF_FUNC_get_cgroup_classid:
7161                 return &bpf_get_cgroup_classid_curr_proto;
7162 #endif
7163         case BPF_FUNC_sk_storage_get:
7164                 return &bpf_sk_storage_get_cg_sock_proto;
7165         default:
7166                 return bpf_base_func_proto(func_id);
7167         }
7168 }
7169
7170 static const struct bpf_func_proto *
7171 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7172 {
7173         switch (func_id) {
7174         /* inet and inet6 sockets are created in a process
7175          * context so there is always a valid uid/gid
7176          */
7177         case BPF_FUNC_get_current_uid_gid:
7178                 return &bpf_get_current_uid_gid_proto;
7179         case BPF_FUNC_bind:
7180                 switch (prog->expected_attach_type) {
7181                 case BPF_CGROUP_INET4_CONNECT:
7182                 case BPF_CGROUP_INET6_CONNECT:
7183                         return &bpf_bind_proto;
7184                 default:
7185                         return NULL;
7186                 }
7187         case BPF_FUNC_get_socket_cookie:
7188                 return &bpf_get_socket_cookie_sock_addr_proto;
7189         case BPF_FUNC_get_netns_cookie:
7190                 return &bpf_get_netns_cookie_sock_addr_proto;
7191         case BPF_FUNC_get_local_storage:
7192                 return &bpf_get_local_storage_proto;
7193         case BPF_FUNC_perf_event_output:
7194                 return &bpf_event_output_data_proto;
7195         case BPF_FUNC_get_current_pid_tgid:
7196                 return &bpf_get_current_pid_tgid_proto;
7197         case BPF_FUNC_get_current_comm:
7198                 return &bpf_get_current_comm_proto;
7199 #ifdef CONFIG_CGROUPS
7200         case BPF_FUNC_get_current_cgroup_id:
7201                 return &bpf_get_current_cgroup_id_proto;
7202         case BPF_FUNC_get_current_ancestor_cgroup_id:
7203                 return &bpf_get_current_ancestor_cgroup_id_proto;
7204 #endif
7205 #ifdef CONFIG_CGROUP_NET_CLASSID
7206         case BPF_FUNC_get_cgroup_classid:
7207                 return &bpf_get_cgroup_classid_curr_proto;
7208 #endif
7209 #ifdef CONFIG_INET
7210         case BPF_FUNC_sk_lookup_tcp:
7211                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7212         case BPF_FUNC_sk_lookup_udp:
7213                 return &bpf_sock_addr_sk_lookup_udp_proto;
7214         case BPF_FUNC_sk_release:
7215                 return &bpf_sk_release_proto;
7216         case BPF_FUNC_skc_lookup_tcp:
7217                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7218 #endif /* CONFIG_INET */
7219         case BPF_FUNC_sk_storage_get:
7220                 return &bpf_sk_storage_get_proto;
7221         case BPF_FUNC_sk_storage_delete:
7222                 return &bpf_sk_storage_delete_proto;
7223         case BPF_FUNC_setsockopt:
7224                 switch (prog->expected_attach_type) {
7225                 case BPF_CGROUP_INET4_BIND:
7226                 case BPF_CGROUP_INET6_BIND:
7227                 case BPF_CGROUP_INET4_CONNECT:
7228                 case BPF_CGROUP_INET6_CONNECT:
7229                 case BPF_CGROUP_UDP4_RECVMSG:
7230                 case BPF_CGROUP_UDP6_RECVMSG:
7231                 case BPF_CGROUP_UDP4_SENDMSG:
7232                 case BPF_CGROUP_UDP6_SENDMSG:
7233                 case BPF_CGROUP_INET4_GETPEERNAME:
7234                 case BPF_CGROUP_INET6_GETPEERNAME:
7235                 case BPF_CGROUP_INET4_GETSOCKNAME:
7236                 case BPF_CGROUP_INET6_GETSOCKNAME:
7237                         return &bpf_sock_addr_setsockopt_proto;
7238                 default:
7239                         return NULL;
7240                 }
7241         case BPF_FUNC_getsockopt:
7242                 switch (prog->expected_attach_type) {
7243                 case BPF_CGROUP_INET4_BIND:
7244                 case BPF_CGROUP_INET6_BIND:
7245                 case BPF_CGROUP_INET4_CONNECT:
7246                 case BPF_CGROUP_INET6_CONNECT:
7247                 case BPF_CGROUP_UDP4_RECVMSG:
7248                 case BPF_CGROUP_UDP6_RECVMSG:
7249                 case BPF_CGROUP_UDP4_SENDMSG:
7250                 case BPF_CGROUP_UDP6_SENDMSG:
7251                 case BPF_CGROUP_INET4_GETPEERNAME:
7252                 case BPF_CGROUP_INET6_GETPEERNAME:
7253                 case BPF_CGROUP_INET4_GETSOCKNAME:
7254                 case BPF_CGROUP_INET6_GETSOCKNAME:
7255                         return &bpf_sock_addr_getsockopt_proto;
7256                 default:
7257                         return NULL;
7258                 }
7259         default:
7260                 return bpf_sk_base_func_proto(func_id);
7261         }
7262 }
7263
7264 static const struct bpf_func_proto *
7265 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7266 {
7267         switch (func_id) {
7268         case BPF_FUNC_skb_load_bytes:
7269                 return &bpf_skb_load_bytes_proto;
7270         case BPF_FUNC_skb_load_bytes_relative:
7271                 return &bpf_skb_load_bytes_relative_proto;
7272         case BPF_FUNC_get_socket_cookie:
7273                 return &bpf_get_socket_cookie_proto;
7274         case BPF_FUNC_get_socket_uid:
7275                 return &bpf_get_socket_uid_proto;
7276         case BPF_FUNC_perf_event_output:
7277                 return &bpf_skb_event_output_proto;
7278         default:
7279                 return bpf_sk_base_func_proto(func_id);
7280         }
7281 }
7282
7283 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7284 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7285
7286 static const struct bpf_func_proto *
7287 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7288 {
7289         switch (func_id) {
7290         case BPF_FUNC_get_local_storage:
7291                 return &bpf_get_local_storage_proto;
7292         case BPF_FUNC_sk_fullsock:
7293                 return &bpf_sk_fullsock_proto;
7294         case BPF_FUNC_sk_storage_get:
7295                 return &bpf_sk_storage_get_proto;
7296         case BPF_FUNC_sk_storage_delete:
7297                 return &bpf_sk_storage_delete_proto;
7298         case BPF_FUNC_perf_event_output:
7299                 return &bpf_skb_event_output_proto;
7300 #ifdef CONFIG_SOCK_CGROUP_DATA
7301         case BPF_FUNC_skb_cgroup_id:
7302                 return &bpf_skb_cgroup_id_proto;
7303         case BPF_FUNC_skb_ancestor_cgroup_id:
7304                 return &bpf_skb_ancestor_cgroup_id_proto;
7305         case BPF_FUNC_sk_cgroup_id:
7306                 return &bpf_sk_cgroup_id_proto;
7307         case BPF_FUNC_sk_ancestor_cgroup_id:
7308                 return &bpf_sk_ancestor_cgroup_id_proto;
7309 #endif
7310 #ifdef CONFIG_INET
7311         case BPF_FUNC_sk_lookup_tcp:
7312                 return &bpf_sk_lookup_tcp_proto;
7313         case BPF_FUNC_sk_lookup_udp:
7314                 return &bpf_sk_lookup_udp_proto;
7315         case BPF_FUNC_sk_release:
7316                 return &bpf_sk_release_proto;
7317         case BPF_FUNC_skc_lookup_tcp:
7318                 return &bpf_skc_lookup_tcp_proto;
7319         case BPF_FUNC_tcp_sock:
7320                 return &bpf_tcp_sock_proto;
7321         case BPF_FUNC_get_listener_sock:
7322                 return &bpf_get_listener_sock_proto;
7323         case BPF_FUNC_skb_ecn_set_ce:
7324                 return &bpf_skb_ecn_set_ce_proto;
7325 #endif
7326         default:
7327                 return sk_filter_func_proto(func_id, prog);
7328         }
7329 }
7330
7331 static const struct bpf_func_proto *
7332 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7333 {
7334         switch (func_id) {
7335         case BPF_FUNC_skb_store_bytes:
7336                 return &bpf_skb_store_bytes_proto;
7337         case BPF_FUNC_skb_load_bytes:
7338                 return &bpf_skb_load_bytes_proto;
7339         case BPF_FUNC_skb_load_bytes_relative:
7340                 return &bpf_skb_load_bytes_relative_proto;
7341         case BPF_FUNC_skb_pull_data:
7342                 return &bpf_skb_pull_data_proto;
7343         case BPF_FUNC_csum_diff:
7344                 return &bpf_csum_diff_proto;
7345         case BPF_FUNC_csum_update:
7346                 return &bpf_csum_update_proto;
7347         case BPF_FUNC_csum_level:
7348                 return &bpf_csum_level_proto;
7349         case BPF_FUNC_l3_csum_replace:
7350                 return &bpf_l3_csum_replace_proto;
7351         case BPF_FUNC_l4_csum_replace:
7352                 return &bpf_l4_csum_replace_proto;
7353         case BPF_FUNC_clone_redirect:
7354                 return &bpf_clone_redirect_proto;
7355         case BPF_FUNC_get_cgroup_classid:
7356                 return &bpf_get_cgroup_classid_proto;
7357         case BPF_FUNC_skb_vlan_push:
7358                 return &bpf_skb_vlan_push_proto;
7359         case BPF_FUNC_skb_vlan_pop:
7360                 return &bpf_skb_vlan_pop_proto;
7361         case BPF_FUNC_skb_change_proto:
7362                 return &bpf_skb_change_proto_proto;
7363         case BPF_FUNC_skb_change_type:
7364                 return &bpf_skb_change_type_proto;
7365         case BPF_FUNC_skb_adjust_room:
7366                 return &bpf_skb_adjust_room_proto;
7367         case BPF_FUNC_skb_change_tail:
7368                 return &bpf_skb_change_tail_proto;
7369         case BPF_FUNC_skb_change_head:
7370                 return &bpf_skb_change_head_proto;
7371         case BPF_FUNC_skb_get_tunnel_key:
7372                 return &bpf_skb_get_tunnel_key_proto;
7373         case BPF_FUNC_skb_set_tunnel_key:
7374                 return bpf_get_skb_set_tunnel_proto(func_id);
7375         case BPF_FUNC_skb_get_tunnel_opt:
7376                 return &bpf_skb_get_tunnel_opt_proto;
7377         case BPF_FUNC_skb_set_tunnel_opt:
7378                 return bpf_get_skb_set_tunnel_proto(func_id);
7379         case BPF_FUNC_redirect:
7380                 return &bpf_redirect_proto;
7381         case BPF_FUNC_redirect_neigh:
7382                 return &bpf_redirect_neigh_proto;
7383         case BPF_FUNC_redirect_peer:
7384                 return &bpf_redirect_peer_proto;
7385         case BPF_FUNC_get_route_realm:
7386                 return &bpf_get_route_realm_proto;
7387         case BPF_FUNC_get_hash_recalc:
7388                 return &bpf_get_hash_recalc_proto;
7389         case BPF_FUNC_set_hash_invalid:
7390                 return &bpf_set_hash_invalid_proto;
7391         case BPF_FUNC_set_hash:
7392                 return &bpf_set_hash_proto;
7393         case BPF_FUNC_perf_event_output:
7394                 return &bpf_skb_event_output_proto;
7395         case BPF_FUNC_get_smp_processor_id:
7396                 return &bpf_get_smp_processor_id_proto;
7397         case BPF_FUNC_skb_under_cgroup:
7398                 return &bpf_skb_under_cgroup_proto;
7399         case BPF_FUNC_get_socket_cookie:
7400                 return &bpf_get_socket_cookie_proto;
7401         case BPF_FUNC_get_socket_uid:
7402                 return &bpf_get_socket_uid_proto;
7403         case BPF_FUNC_fib_lookup:
7404                 return &bpf_skb_fib_lookup_proto;
7405         case BPF_FUNC_check_mtu:
7406                 return &bpf_skb_check_mtu_proto;
7407         case BPF_FUNC_sk_fullsock:
7408                 return &bpf_sk_fullsock_proto;
7409         case BPF_FUNC_sk_storage_get:
7410                 return &bpf_sk_storage_get_proto;
7411         case BPF_FUNC_sk_storage_delete:
7412                 return &bpf_sk_storage_delete_proto;
7413 #ifdef CONFIG_XFRM
7414         case BPF_FUNC_skb_get_xfrm_state:
7415                 return &bpf_skb_get_xfrm_state_proto;
7416 #endif
7417 #ifdef CONFIG_CGROUP_NET_CLASSID
7418         case BPF_FUNC_skb_cgroup_classid:
7419                 return &bpf_skb_cgroup_classid_proto;
7420 #endif
7421 #ifdef CONFIG_SOCK_CGROUP_DATA
7422         case BPF_FUNC_skb_cgroup_id:
7423                 return &bpf_skb_cgroup_id_proto;
7424         case BPF_FUNC_skb_ancestor_cgroup_id:
7425                 return &bpf_skb_ancestor_cgroup_id_proto;
7426 #endif
7427 #ifdef CONFIG_INET
7428         case BPF_FUNC_sk_lookup_tcp:
7429                 return &bpf_sk_lookup_tcp_proto;
7430         case BPF_FUNC_sk_lookup_udp:
7431                 return &bpf_sk_lookup_udp_proto;
7432         case BPF_FUNC_sk_release:
7433                 return &bpf_sk_release_proto;
7434         case BPF_FUNC_tcp_sock:
7435                 return &bpf_tcp_sock_proto;
7436         case BPF_FUNC_get_listener_sock:
7437                 return &bpf_get_listener_sock_proto;
7438         case BPF_FUNC_skc_lookup_tcp:
7439                 return &bpf_skc_lookup_tcp_proto;
7440         case BPF_FUNC_tcp_check_syncookie:
7441                 return &bpf_tcp_check_syncookie_proto;
7442         case BPF_FUNC_skb_ecn_set_ce:
7443                 return &bpf_skb_ecn_set_ce_proto;
7444         case BPF_FUNC_tcp_gen_syncookie:
7445                 return &bpf_tcp_gen_syncookie_proto;
7446         case BPF_FUNC_sk_assign:
7447                 return &bpf_sk_assign_proto;
7448 #endif
7449         default:
7450                 return bpf_sk_base_func_proto(func_id);
7451         }
7452 }
7453
7454 static const struct bpf_func_proto *
7455 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7456 {
7457         switch (func_id) {
7458         case BPF_FUNC_perf_event_output:
7459                 return &bpf_xdp_event_output_proto;
7460         case BPF_FUNC_get_smp_processor_id:
7461                 return &bpf_get_smp_processor_id_proto;
7462         case BPF_FUNC_csum_diff:
7463                 return &bpf_csum_diff_proto;
7464         case BPF_FUNC_xdp_adjust_head:
7465                 return &bpf_xdp_adjust_head_proto;
7466         case BPF_FUNC_xdp_adjust_meta:
7467                 return &bpf_xdp_adjust_meta_proto;
7468         case BPF_FUNC_redirect:
7469                 return &bpf_xdp_redirect_proto;
7470         case BPF_FUNC_redirect_map:
7471                 return &bpf_xdp_redirect_map_proto;
7472         case BPF_FUNC_xdp_adjust_tail:
7473                 return &bpf_xdp_adjust_tail_proto;
7474         case BPF_FUNC_fib_lookup:
7475                 return &bpf_xdp_fib_lookup_proto;
7476         case BPF_FUNC_check_mtu:
7477                 return &bpf_xdp_check_mtu_proto;
7478 #ifdef CONFIG_INET
7479         case BPF_FUNC_sk_lookup_udp:
7480                 return &bpf_xdp_sk_lookup_udp_proto;
7481         case BPF_FUNC_sk_lookup_tcp:
7482                 return &bpf_xdp_sk_lookup_tcp_proto;
7483         case BPF_FUNC_sk_release:
7484                 return &bpf_sk_release_proto;
7485         case BPF_FUNC_skc_lookup_tcp:
7486                 return &bpf_xdp_skc_lookup_tcp_proto;
7487         case BPF_FUNC_tcp_check_syncookie:
7488                 return &bpf_tcp_check_syncookie_proto;
7489         case BPF_FUNC_tcp_gen_syncookie:
7490                 return &bpf_tcp_gen_syncookie_proto;
7491 #endif
7492         default:
7493                 return bpf_sk_base_func_proto(func_id);
7494         }
7495 }
7496
7497 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7498 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7499
7500 static const struct bpf_func_proto *
7501 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7502 {
7503         switch (func_id) {
7504         case BPF_FUNC_setsockopt:
7505                 return &bpf_sock_ops_setsockopt_proto;
7506         case BPF_FUNC_getsockopt:
7507                 return &bpf_sock_ops_getsockopt_proto;
7508         case BPF_FUNC_sock_ops_cb_flags_set:
7509                 return &bpf_sock_ops_cb_flags_set_proto;
7510         case BPF_FUNC_sock_map_update:
7511                 return &bpf_sock_map_update_proto;
7512         case BPF_FUNC_sock_hash_update:
7513                 return &bpf_sock_hash_update_proto;
7514         case BPF_FUNC_get_socket_cookie:
7515                 return &bpf_get_socket_cookie_sock_ops_proto;
7516         case BPF_FUNC_get_local_storage:
7517                 return &bpf_get_local_storage_proto;
7518         case BPF_FUNC_perf_event_output:
7519                 return &bpf_event_output_data_proto;
7520         case BPF_FUNC_sk_storage_get:
7521                 return &bpf_sk_storage_get_proto;
7522         case BPF_FUNC_sk_storage_delete:
7523                 return &bpf_sk_storage_delete_proto;
7524         case BPF_FUNC_get_netns_cookie:
7525                 return &bpf_get_netns_cookie_sock_ops_proto;
7526 #ifdef CONFIG_INET
7527         case BPF_FUNC_load_hdr_opt:
7528                 return &bpf_sock_ops_load_hdr_opt_proto;
7529         case BPF_FUNC_store_hdr_opt:
7530                 return &bpf_sock_ops_store_hdr_opt_proto;
7531         case BPF_FUNC_reserve_hdr_opt:
7532                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7533         case BPF_FUNC_tcp_sock:
7534                 return &bpf_tcp_sock_proto;
7535 #endif /* CONFIG_INET */
7536         default:
7537                 return bpf_sk_base_func_proto(func_id);
7538         }
7539 }
7540
7541 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7542 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7543
7544 static const struct bpf_func_proto *
7545 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7546 {
7547         switch (func_id) {
7548         case BPF_FUNC_msg_redirect_map:
7549                 return &bpf_msg_redirect_map_proto;
7550         case BPF_FUNC_msg_redirect_hash:
7551                 return &bpf_msg_redirect_hash_proto;
7552         case BPF_FUNC_msg_apply_bytes:
7553                 return &bpf_msg_apply_bytes_proto;
7554         case BPF_FUNC_msg_cork_bytes:
7555                 return &bpf_msg_cork_bytes_proto;
7556         case BPF_FUNC_msg_pull_data:
7557                 return &bpf_msg_pull_data_proto;
7558         case BPF_FUNC_msg_push_data:
7559                 return &bpf_msg_push_data_proto;
7560         case BPF_FUNC_msg_pop_data:
7561                 return &bpf_msg_pop_data_proto;
7562         case BPF_FUNC_perf_event_output:
7563                 return &bpf_event_output_data_proto;
7564         case BPF_FUNC_get_current_uid_gid:
7565                 return &bpf_get_current_uid_gid_proto;
7566         case BPF_FUNC_get_current_pid_tgid:
7567                 return &bpf_get_current_pid_tgid_proto;
7568         case BPF_FUNC_sk_storage_get:
7569                 return &bpf_sk_storage_get_proto;
7570         case BPF_FUNC_sk_storage_delete:
7571                 return &bpf_sk_storage_delete_proto;
7572         case BPF_FUNC_get_netns_cookie:
7573                 return &bpf_get_netns_cookie_sk_msg_proto;
7574 #ifdef CONFIG_CGROUPS
7575         case BPF_FUNC_get_current_cgroup_id:
7576                 return &bpf_get_current_cgroup_id_proto;
7577         case BPF_FUNC_get_current_ancestor_cgroup_id:
7578                 return &bpf_get_current_ancestor_cgroup_id_proto;
7579 #endif
7580 #ifdef CONFIG_CGROUP_NET_CLASSID
7581         case BPF_FUNC_get_cgroup_classid:
7582                 return &bpf_get_cgroup_classid_curr_proto;
7583 #endif
7584         default:
7585                 return bpf_sk_base_func_proto(func_id);
7586         }
7587 }
7588
7589 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7590 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7591
7592 static const struct bpf_func_proto *
7593 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7594 {
7595         switch (func_id) {
7596         case BPF_FUNC_skb_store_bytes:
7597                 return &bpf_skb_store_bytes_proto;
7598         case BPF_FUNC_skb_load_bytes:
7599                 return &bpf_skb_load_bytes_proto;
7600         case BPF_FUNC_skb_pull_data:
7601                 return &sk_skb_pull_data_proto;
7602         case BPF_FUNC_skb_change_tail:
7603                 return &sk_skb_change_tail_proto;
7604         case BPF_FUNC_skb_change_head:
7605                 return &sk_skb_change_head_proto;
7606         case BPF_FUNC_skb_adjust_room:
7607                 return &sk_skb_adjust_room_proto;
7608         case BPF_FUNC_get_socket_cookie:
7609                 return &bpf_get_socket_cookie_proto;
7610         case BPF_FUNC_get_socket_uid:
7611                 return &bpf_get_socket_uid_proto;
7612         case BPF_FUNC_sk_redirect_map:
7613                 return &bpf_sk_redirect_map_proto;
7614         case BPF_FUNC_sk_redirect_hash:
7615                 return &bpf_sk_redirect_hash_proto;
7616         case BPF_FUNC_perf_event_output:
7617                 return &bpf_skb_event_output_proto;
7618 #ifdef CONFIG_INET
7619         case BPF_FUNC_sk_lookup_tcp:
7620                 return &bpf_sk_lookup_tcp_proto;
7621         case BPF_FUNC_sk_lookup_udp:
7622                 return &bpf_sk_lookup_udp_proto;
7623         case BPF_FUNC_sk_release:
7624                 return &bpf_sk_release_proto;
7625         case BPF_FUNC_skc_lookup_tcp:
7626                 return &bpf_skc_lookup_tcp_proto;
7627 #endif
7628         default:
7629                 return bpf_sk_base_func_proto(func_id);
7630         }
7631 }
7632
7633 static const struct bpf_func_proto *
7634 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7635 {
7636         switch (func_id) {
7637         case BPF_FUNC_skb_load_bytes:
7638                 return &bpf_flow_dissector_load_bytes_proto;
7639         default:
7640                 return bpf_sk_base_func_proto(func_id);
7641         }
7642 }
7643
7644 static const struct bpf_func_proto *
7645 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7646 {
7647         switch (func_id) {
7648         case BPF_FUNC_skb_load_bytes:
7649                 return &bpf_skb_load_bytes_proto;
7650         case BPF_FUNC_skb_pull_data:
7651                 return &bpf_skb_pull_data_proto;
7652         case BPF_FUNC_csum_diff:
7653                 return &bpf_csum_diff_proto;
7654         case BPF_FUNC_get_cgroup_classid:
7655                 return &bpf_get_cgroup_classid_proto;
7656         case BPF_FUNC_get_route_realm:
7657                 return &bpf_get_route_realm_proto;
7658         case BPF_FUNC_get_hash_recalc:
7659                 return &bpf_get_hash_recalc_proto;
7660         case BPF_FUNC_perf_event_output:
7661                 return &bpf_skb_event_output_proto;
7662         case BPF_FUNC_get_smp_processor_id:
7663                 return &bpf_get_smp_processor_id_proto;
7664         case BPF_FUNC_skb_under_cgroup:
7665                 return &bpf_skb_under_cgroup_proto;
7666         default:
7667                 return bpf_sk_base_func_proto(func_id);
7668         }
7669 }
7670
7671 static const struct bpf_func_proto *
7672 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7673 {
7674         switch (func_id) {
7675         case BPF_FUNC_lwt_push_encap:
7676                 return &bpf_lwt_in_push_encap_proto;
7677         default:
7678                 return lwt_out_func_proto(func_id, prog);
7679         }
7680 }
7681
7682 static const struct bpf_func_proto *
7683 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7684 {
7685         switch (func_id) {
7686         case BPF_FUNC_skb_get_tunnel_key:
7687                 return &bpf_skb_get_tunnel_key_proto;
7688         case BPF_FUNC_skb_set_tunnel_key:
7689                 return bpf_get_skb_set_tunnel_proto(func_id);
7690         case BPF_FUNC_skb_get_tunnel_opt:
7691                 return &bpf_skb_get_tunnel_opt_proto;
7692         case BPF_FUNC_skb_set_tunnel_opt:
7693                 return bpf_get_skb_set_tunnel_proto(func_id);
7694         case BPF_FUNC_redirect:
7695                 return &bpf_redirect_proto;
7696         case BPF_FUNC_clone_redirect:
7697                 return &bpf_clone_redirect_proto;
7698         case BPF_FUNC_skb_change_tail:
7699                 return &bpf_skb_change_tail_proto;
7700         case BPF_FUNC_skb_change_head:
7701                 return &bpf_skb_change_head_proto;
7702         case BPF_FUNC_skb_store_bytes:
7703                 return &bpf_skb_store_bytes_proto;
7704         case BPF_FUNC_csum_update:
7705                 return &bpf_csum_update_proto;
7706         case BPF_FUNC_csum_level:
7707                 return &bpf_csum_level_proto;
7708         case BPF_FUNC_l3_csum_replace:
7709                 return &bpf_l3_csum_replace_proto;
7710         case BPF_FUNC_l4_csum_replace:
7711                 return &bpf_l4_csum_replace_proto;
7712         case BPF_FUNC_set_hash_invalid:
7713                 return &bpf_set_hash_invalid_proto;
7714         case BPF_FUNC_lwt_push_encap:
7715                 return &bpf_lwt_xmit_push_encap_proto;
7716         default:
7717                 return lwt_out_func_proto(func_id, prog);
7718         }
7719 }
7720
7721 static const struct bpf_func_proto *
7722 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7723 {
7724         switch (func_id) {
7725 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7726         case BPF_FUNC_lwt_seg6_store_bytes:
7727                 return &bpf_lwt_seg6_store_bytes_proto;
7728         case BPF_FUNC_lwt_seg6_action:
7729                 return &bpf_lwt_seg6_action_proto;
7730         case BPF_FUNC_lwt_seg6_adjust_srh:
7731                 return &bpf_lwt_seg6_adjust_srh_proto;
7732 #endif
7733         default:
7734                 return lwt_out_func_proto(func_id, prog);
7735         }
7736 }
7737
7738 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7739                                     const struct bpf_prog *prog,
7740                                     struct bpf_insn_access_aux *info)
7741 {
7742         const int size_default = sizeof(__u32);
7743
7744         if (off < 0 || off >= sizeof(struct __sk_buff))
7745                 return false;
7746
7747         /* The verifier guarantees that size > 0. */
7748         if (off % size != 0)
7749                 return false;
7750
7751         switch (off) {
7752         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7753                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7754                         return false;
7755                 break;
7756         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7757         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7758         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7759         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7760         case bpf_ctx_range(struct __sk_buff, data):
7761         case bpf_ctx_range(struct __sk_buff, data_meta):
7762         case bpf_ctx_range(struct __sk_buff, data_end):
7763                 if (size != size_default)
7764                         return false;
7765                 break;
7766         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7767                 return false;
7768         case bpf_ctx_range(struct __sk_buff, tstamp):
7769                 if (size != sizeof(__u64))
7770                         return false;
7771                 break;
7772         case offsetof(struct __sk_buff, sk):
7773                 if (type == BPF_WRITE || size != sizeof(__u64))
7774                         return false;
7775                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7776                 break;
7777         default:
7778                 /* Only narrow read access allowed for now. */
7779                 if (type == BPF_WRITE) {
7780                         if (size != size_default)
7781                                 return false;
7782                 } else {
7783                         bpf_ctx_record_field_size(info, size_default);
7784                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7785                                 return false;
7786                 }
7787         }
7788
7789         return true;
7790 }
7791
7792 static bool sk_filter_is_valid_access(int off, int size,
7793                                       enum bpf_access_type type,
7794                                       const struct bpf_prog *prog,
7795                                       struct bpf_insn_access_aux *info)
7796 {
7797         switch (off) {
7798         case bpf_ctx_range(struct __sk_buff, tc_classid):
7799         case bpf_ctx_range(struct __sk_buff, data):
7800         case bpf_ctx_range(struct __sk_buff, data_meta):
7801         case bpf_ctx_range(struct __sk_buff, data_end):
7802         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7803         case bpf_ctx_range(struct __sk_buff, tstamp):
7804         case bpf_ctx_range(struct __sk_buff, wire_len):
7805                 return false;
7806         }
7807
7808         if (type == BPF_WRITE) {
7809                 switch (off) {
7810                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7811                         break;
7812                 default:
7813                         return false;
7814                 }
7815         }
7816
7817         return bpf_skb_is_valid_access(off, size, type, prog, info);
7818 }
7819
7820 static bool cg_skb_is_valid_access(int off, int size,
7821                                    enum bpf_access_type type,
7822                                    const struct bpf_prog *prog,
7823                                    struct bpf_insn_access_aux *info)
7824 {
7825         switch (off) {
7826         case bpf_ctx_range(struct __sk_buff, tc_classid):
7827         case bpf_ctx_range(struct __sk_buff, data_meta):
7828         case bpf_ctx_range(struct __sk_buff, wire_len):
7829                 return false;
7830         case bpf_ctx_range(struct __sk_buff, data):
7831         case bpf_ctx_range(struct __sk_buff, data_end):
7832                 if (!bpf_capable())
7833                         return false;
7834                 break;
7835         }
7836
7837         if (type == BPF_WRITE) {
7838                 switch (off) {
7839                 case bpf_ctx_range(struct __sk_buff, mark):
7840                 case bpf_ctx_range(struct __sk_buff, priority):
7841                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7842                         break;
7843                 case bpf_ctx_range(struct __sk_buff, tstamp):
7844                         if (!bpf_capable())
7845                                 return false;
7846                         break;
7847                 default:
7848                         return false;
7849                 }
7850         }
7851
7852         switch (off) {
7853         case bpf_ctx_range(struct __sk_buff, data):
7854                 info->reg_type = PTR_TO_PACKET;
7855                 break;
7856         case bpf_ctx_range(struct __sk_buff, data_end):
7857                 info->reg_type = PTR_TO_PACKET_END;
7858                 break;
7859         }
7860
7861         return bpf_skb_is_valid_access(off, size, type, prog, info);
7862 }
7863
7864 static bool lwt_is_valid_access(int off, int size,
7865                                 enum bpf_access_type type,
7866                                 const struct bpf_prog *prog,
7867                                 struct bpf_insn_access_aux *info)
7868 {
7869         switch (off) {
7870         case bpf_ctx_range(struct __sk_buff, tc_classid):
7871         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7872         case bpf_ctx_range(struct __sk_buff, data_meta):
7873         case bpf_ctx_range(struct __sk_buff, tstamp):
7874         case bpf_ctx_range(struct __sk_buff, wire_len):
7875                 return false;
7876         }
7877
7878         if (type == BPF_WRITE) {
7879                 switch (off) {
7880                 case bpf_ctx_range(struct __sk_buff, mark):
7881                 case bpf_ctx_range(struct __sk_buff, priority):
7882                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7883                         break;
7884                 default:
7885                         return false;
7886                 }
7887         }
7888
7889         switch (off) {
7890         case bpf_ctx_range(struct __sk_buff, data):
7891                 info->reg_type = PTR_TO_PACKET;
7892                 break;
7893         case bpf_ctx_range(struct __sk_buff, data_end):
7894                 info->reg_type = PTR_TO_PACKET_END;
7895                 break;
7896         }
7897
7898         return bpf_skb_is_valid_access(off, size, type, prog, info);
7899 }
7900
7901 /* Attach type specific accesses */
7902 static bool __sock_filter_check_attach_type(int off,
7903                                             enum bpf_access_type access_type,
7904                                             enum bpf_attach_type attach_type)
7905 {
7906         switch (off) {
7907         case offsetof(struct bpf_sock, bound_dev_if):
7908         case offsetof(struct bpf_sock, mark):
7909         case offsetof(struct bpf_sock, priority):
7910                 switch (attach_type) {
7911                 case BPF_CGROUP_INET_SOCK_CREATE:
7912                 case BPF_CGROUP_INET_SOCK_RELEASE:
7913                         goto full_access;
7914                 default:
7915                         return false;
7916                 }
7917         case bpf_ctx_range(struct bpf_sock, src_ip4):
7918                 switch (attach_type) {
7919                 case BPF_CGROUP_INET4_POST_BIND:
7920                         goto read_only;
7921                 default:
7922                         return false;
7923                 }
7924         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7925                 switch (attach_type) {
7926                 case BPF_CGROUP_INET6_POST_BIND:
7927                         goto read_only;
7928                 default:
7929                         return false;
7930                 }
7931         case bpf_ctx_range(struct bpf_sock, src_port):
7932                 switch (attach_type) {
7933                 case BPF_CGROUP_INET4_POST_BIND:
7934                 case BPF_CGROUP_INET6_POST_BIND:
7935                         goto read_only;
7936                 default:
7937                         return false;
7938                 }
7939         }
7940 read_only:
7941         return access_type == BPF_READ;
7942 full_access:
7943         return true;
7944 }
7945
7946 bool bpf_sock_common_is_valid_access(int off, int size,
7947                                      enum bpf_access_type type,
7948                                      struct bpf_insn_access_aux *info)
7949 {
7950         switch (off) {
7951         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7952                 return false;
7953         default:
7954                 return bpf_sock_is_valid_access(off, size, type, info);
7955         }
7956 }
7957
7958 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7959                               struct bpf_insn_access_aux *info)
7960 {
7961         const int size_default = sizeof(__u32);
7962
7963         if (off < 0 || off >= sizeof(struct bpf_sock))
7964                 return false;
7965         if (off % size != 0)
7966                 return false;
7967
7968         switch (off) {
7969         case offsetof(struct bpf_sock, state):
7970         case offsetof(struct bpf_sock, family):
7971         case offsetof(struct bpf_sock, type):
7972         case offsetof(struct bpf_sock, protocol):
7973         case offsetof(struct bpf_sock, dst_port):
7974         case offsetof(struct bpf_sock, src_port):
7975         case offsetof(struct bpf_sock, rx_queue_mapping):
7976         case bpf_ctx_range(struct bpf_sock, src_ip4):
7977         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7978         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7979         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7980                 bpf_ctx_record_field_size(info, size_default);
7981                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7982         }
7983
7984         return size == size_default;
7985 }
7986
7987 static bool sock_filter_is_valid_access(int off, int size,
7988                                         enum bpf_access_type type,
7989                                         const struct bpf_prog *prog,
7990                                         struct bpf_insn_access_aux *info)
7991 {
7992         if (!bpf_sock_is_valid_access(off, size, type, info))
7993                 return false;
7994         return __sock_filter_check_attach_type(off, type,
7995                                                prog->expected_attach_type);
7996 }
7997
7998 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7999                              const struct bpf_prog *prog)
8000 {
8001         /* Neither direct read nor direct write requires any preliminary
8002          * action.
8003          */
8004         return 0;
8005 }
8006
8007 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8008                                 const struct bpf_prog *prog, int drop_verdict)
8009 {
8010         struct bpf_insn *insn = insn_buf;
8011
8012         if (!direct_write)
8013                 return 0;
8014
8015         /* if (!skb->cloned)
8016          *       goto start;
8017          *
8018          * (Fast-path, otherwise approximation that we might be
8019          *  a clone, do the rest in helper.)
8020          */
8021         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8022         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8023         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8024
8025         /* ret = bpf_skb_pull_data(skb, 0); */
8026         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8027         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8028         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8029                                BPF_FUNC_skb_pull_data);
8030         /* if (!ret)
8031          *      goto restore;
8032          * return TC_ACT_SHOT;
8033          */
8034         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8035         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8036         *insn++ = BPF_EXIT_INSN();
8037
8038         /* restore: */
8039         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8040         /* start: */
8041         *insn++ = prog->insnsi[0];
8042
8043         return insn - insn_buf;
8044 }
8045
8046 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8047                           struct bpf_insn *insn_buf)
8048 {
8049         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8050         struct bpf_insn *insn = insn_buf;
8051
8052         if (!indirect) {
8053                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8054         } else {
8055                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8056                 if (orig->imm)
8057                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8058         }
8059         /* We're guaranteed here that CTX is in R6. */
8060         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8061
8062         switch (BPF_SIZE(orig->code)) {
8063         case BPF_B:
8064                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8065                 break;
8066         case BPF_H:
8067                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8068                 break;
8069         case BPF_W:
8070                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8071                 break;
8072         }
8073
8074         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8075         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8076         *insn++ = BPF_EXIT_INSN();
8077
8078         return insn - insn_buf;
8079 }
8080
8081 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8082                                const struct bpf_prog *prog)
8083 {
8084         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8085 }
8086
8087 static bool tc_cls_act_is_valid_access(int off, int size,
8088                                        enum bpf_access_type type,
8089                                        const struct bpf_prog *prog,
8090                                        struct bpf_insn_access_aux *info)
8091 {
8092         if (type == BPF_WRITE) {
8093                 switch (off) {
8094                 case bpf_ctx_range(struct __sk_buff, mark):
8095                 case bpf_ctx_range(struct __sk_buff, tc_index):
8096                 case bpf_ctx_range(struct __sk_buff, priority):
8097                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8098                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8099                 case bpf_ctx_range(struct __sk_buff, tstamp):
8100                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8101                         break;
8102                 default:
8103                         return false;
8104                 }
8105         }
8106
8107         switch (off) {
8108         case bpf_ctx_range(struct __sk_buff, data):
8109                 info->reg_type = PTR_TO_PACKET;
8110                 break;
8111         case bpf_ctx_range(struct __sk_buff, data_meta):
8112                 info->reg_type = PTR_TO_PACKET_META;
8113                 break;
8114         case bpf_ctx_range(struct __sk_buff, data_end):
8115                 info->reg_type = PTR_TO_PACKET_END;
8116                 break;
8117         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8118                 return false;
8119         }
8120
8121         return bpf_skb_is_valid_access(off, size, type, prog, info);
8122 }
8123
8124 static bool __is_valid_xdp_access(int off, int size)
8125 {
8126         if (off < 0 || off >= sizeof(struct xdp_md))
8127                 return false;
8128         if (off % size != 0)
8129                 return false;
8130         if (size != sizeof(__u32))
8131                 return false;
8132
8133         return true;
8134 }
8135
8136 static bool xdp_is_valid_access(int off, int size,
8137                                 enum bpf_access_type type,
8138                                 const struct bpf_prog *prog,
8139                                 struct bpf_insn_access_aux *info)
8140 {
8141         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8142                 switch (off) {
8143                 case offsetof(struct xdp_md, egress_ifindex):
8144                         return false;
8145                 }
8146         }
8147
8148         if (type == BPF_WRITE) {
8149                 if (bpf_prog_is_dev_bound(prog->aux)) {
8150                         switch (off) {
8151                         case offsetof(struct xdp_md, rx_queue_index):
8152                                 return __is_valid_xdp_access(off, size);
8153                         }
8154                 }
8155                 return false;
8156         }
8157
8158         switch (off) {
8159         case offsetof(struct xdp_md, data):
8160                 info->reg_type = PTR_TO_PACKET;
8161                 break;
8162         case offsetof(struct xdp_md, data_meta):
8163                 info->reg_type = PTR_TO_PACKET_META;
8164                 break;
8165         case offsetof(struct xdp_md, data_end):
8166                 info->reg_type = PTR_TO_PACKET_END;
8167                 break;
8168         }
8169
8170         return __is_valid_xdp_access(off, size);
8171 }
8172
8173 void bpf_warn_invalid_xdp_action(u32 act)
8174 {
8175         const u32 act_max = XDP_REDIRECT;
8176
8177         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8178                   act > act_max ? "Illegal" : "Driver unsupported",
8179                   act);
8180 }
8181 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8182
8183 static bool sock_addr_is_valid_access(int off, int size,
8184                                       enum bpf_access_type type,
8185                                       const struct bpf_prog *prog,
8186                                       struct bpf_insn_access_aux *info)
8187 {
8188         const int size_default = sizeof(__u32);
8189
8190         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8191                 return false;
8192         if (off % size != 0)
8193                 return false;
8194
8195         /* Disallow access to IPv6 fields from IPv4 contex and vise
8196          * versa.
8197          */
8198         switch (off) {
8199         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8200                 switch (prog->expected_attach_type) {
8201                 case BPF_CGROUP_INET4_BIND:
8202                 case BPF_CGROUP_INET4_CONNECT:
8203                 case BPF_CGROUP_INET4_GETPEERNAME:
8204                 case BPF_CGROUP_INET4_GETSOCKNAME:
8205                 case BPF_CGROUP_UDP4_SENDMSG:
8206                 case BPF_CGROUP_UDP4_RECVMSG:
8207                         break;
8208                 default:
8209                         return false;
8210                 }
8211                 break;
8212         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8213                 switch (prog->expected_attach_type) {
8214                 case BPF_CGROUP_INET6_BIND:
8215                 case BPF_CGROUP_INET6_CONNECT:
8216                 case BPF_CGROUP_INET6_GETPEERNAME:
8217                 case BPF_CGROUP_INET6_GETSOCKNAME:
8218                 case BPF_CGROUP_UDP6_SENDMSG:
8219                 case BPF_CGROUP_UDP6_RECVMSG:
8220                         break;
8221                 default:
8222                         return false;
8223                 }
8224                 break;
8225         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8226                 switch (prog->expected_attach_type) {
8227                 case BPF_CGROUP_UDP4_SENDMSG:
8228                         break;
8229                 default:
8230                         return false;
8231                 }
8232                 break;
8233         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8234                                 msg_src_ip6[3]):
8235                 switch (prog->expected_attach_type) {
8236                 case BPF_CGROUP_UDP6_SENDMSG:
8237                         break;
8238                 default:
8239                         return false;
8240                 }
8241                 break;
8242         }
8243
8244         switch (off) {
8245         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8246         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8247         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8248         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8249                                 msg_src_ip6[3]):
8250         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8251                 if (type == BPF_READ) {
8252                         bpf_ctx_record_field_size(info, size_default);
8253
8254                         if (bpf_ctx_wide_access_ok(off, size,
8255                                                    struct bpf_sock_addr,
8256                                                    user_ip6))
8257                                 return true;
8258
8259                         if (bpf_ctx_wide_access_ok(off, size,
8260                                                    struct bpf_sock_addr,
8261                                                    msg_src_ip6))
8262                                 return true;
8263
8264                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8265                                 return false;
8266                 } else {
8267                         if (bpf_ctx_wide_access_ok(off, size,
8268                                                    struct bpf_sock_addr,
8269                                                    user_ip6))
8270                                 return true;
8271
8272                         if (bpf_ctx_wide_access_ok(off, size,
8273                                                    struct bpf_sock_addr,
8274                                                    msg_src_ip6))
8275                                 return true;
8276
8277                         if (size != size_default)
8278                                 return false;
8279                 }
8280                 break;
8281         case offsetof(struct bpf_sock_addr, sk):
8282                 if (type != BPF_READ)
8283                         return false;
8284                 if (size != sizeof(__u64))
8285                         return false;
8286                 info->reg_type = PTR_TO_SOCKET;
8287                 break;
8288         default:
8289                 if (type == BPF_READ) {
8290                         if (size != size_default)
8291                                 return false;
8292                 } else {
8293                         return false;
8294                 }
8295         }
8296
8297         return true;
8298 }
8299
8300 static bool sock_ops_is_valid_access(int off, int size,
8301                                      enum bpf_access_type type,
8302                                      const struct bpf_prog *prog,
8303                                      struct bpf_insn_access_aux *info)
8304 {
8305         const int size_default = sizeof(__u32);
8306
8307         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8308                 return false;
8309
8310         /* The verifier guarantees that size > 0. */
8311         if (off % size != 0)
8312                 return false;
8313
8314         if (type == BPF_WRITE) {
8315                 switch (off) {
8316                 case offsetof(struct bpf_sock_ops, reply):
8317                 case offsetof(struct bpf_sock_ops, sk_txhash):
8318                         if (size != size_default)
8319                                 return false;
8320                         break;
8321                 default:
8322                         return false;
8323                 }
8324         } else {
8325                 switch (off) {
8326                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8327                                         bytes_acked):
8328                         if (size != sizeof(__u64))
8329                                 return false;
8330                         break;
8331                 case offsetof(struct bpf_sock_ops, sk):
8332                         if (size != sizeof(__u64))
8333                                 return false;
8334                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8335                         break;
8336                 case offsetof(struct bpf_sock_ops, skb_data):
8337                         if (size != sizeof(__u64))
8338                                 return false;
8339                         info->reg_type = PTR_TO_PACKET;
8340                         break;
8341                 case offsetof(struct bpf_sock_ops, skb_data_end):
8342                         if (size != sizeof(__u64))
8343                                 return false;
8344                         info->reg_type = PTR_TO_PACKET_END;
8345                         break;
8346                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8347                         bpf_ctx_record_field_size(info, size_default);
8348                         return bpf_ctx_narrow_access_ok(off, size,
8349                                                         size_default);
8350                 default:
8351                         if (size != size_default)
8352                                 return false;
8353                         break;
8354                 }
8355         }
8356
8357         return true;
8358 }
8359
8360 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8361                            const struct bpf_prog *prog)
8362 {
8363         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8364 }
8365
8366 static bool sk_skb_is_valid_access(int off, int size,
8367                                    enum bpf_access_type type,
8368                                    const struct bpf_prog *prog,
8369                                    struct bpf_insn_access_aux *info)
8370 {
8371         switch (off) {
8372         case bpf_ctx_range(struct __sk_buff, tc_classid):
8373         case bpf_ctx_range(struct __sk_buff, data_meta):
8374         case bpf_ctx_range(struct __sk_buff, tstamp):
8375         case bpf_ctx_range(struct __sk_buff, wire_len):
8376                 return false;
8377         }
8378
8379         if (type == BPF_WRITE) {
8380                 switch (off) {
8381                 case bpf_ctx_range(struct __sk_buff, tc_index):
8382                 case bpf_ctx_range(struct __sk_buff, priority):
8383                         break;
8384                 default:
8385                         return false;
8386                 }
8387         }
8388
8389         switch (off) {
8390         case bpf_ctx_range(struct __sk_buff, mark):
8391                 return false;
8392         case bpf_ctx_range(struct __sk_buff, data):
8393                 info->reg_type = PTR_TO_PACKET;
8394                 break;
8395         case bpf_ctx_range(struct __sk_buff, data_end):
8396                 info->reg_type = PTR_TO_PACKET_END;
8397                 break;
8398         }
8399
8400         return bpf_skb_is_valid_access(off, size, type, prog, info);
8401 }
8402
8403 static bool sk_msg_is_valid_access(int off, int size,
8404                                    enum bpf_access_type type,
8405                                    const struct bpf_prog *prog,
8406                                    struct bpf_insn_access_aux *info)
8407 {
8408         if (type == BPF_WRITE)
8409                 return false;
8410
8411         if (off % size != 0)
8412                 return false;
8413
8414         switch (off) {
8415         case offsetof(struct sk_msg_md, data):
8416                 info->reg_type = PTR_TO_PACKET;
8417                 if (size != sizeof(__u64))
8418                         return false;
8419                 break;
8420         case offsetof(struct sk_msg_md, data_end):
8421                 info->reg_type = PTR_TO_PACKET_END;
8422                 if (size != sizeof(__u64))
8423                         return false;
8424                 break;
8425         case offsetof(struct sk_msg_md, sk):
8426                 if (size != sizeof(__u64))
8427                         return false;
8428                 info->reg_type = PTR_TO_SOCKET;
8429                 break;
8430         case bpf_ctx_range(struct sk_msg_md, family):
8431         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8432         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8433         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8434         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8435         case bpf_ctx_range(struct sk_msg_md, remote_port):
8436         case bpf_ctx_range(struct sk_msg_md, local_port):
8437         case bpf_ctx_range(struct sk_msg_md, size):
8438                 if (size != sizeof(__u32))
8439                         return false;
8440                 break;
8441         default:
8442                 return false;
8443         }
8444         return true;
8445 }
8446
8447 static bool flow_dissector_is_valid_access(int off, int size,
8448                                            enum bpf_access_type type,
8449                                            const struct bpf_prog *prog,
8450                                            struct bpf_insn_access_aux *info)
8451 {
8452         const int size_default = sizeof(__u32);
8453
8454         if (off < 0 || off >= sizeof(struct __sk_buff))
8455                 return false;
8456
8457         if (type == BPF_WRITE)
8458                 return false;
8459
8460         switch (off) {
8461         case bpf_ctx_range(struct __sk_buff, data):
8462                 if (size != size_default)
8463                         return false;
8464                 info->reg_type = PTR_TO_PACKET;
8465                 return true;
8466         case bpf_ctx_range(struct __sk_buff, data_end):
8467                 if (size != size_default)
8468                         return false;
8469                 info->reg_type = PTR_TO_PACKET_END;
8470                 return true;
8471         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8472                 if (size != sizeof(__u64))
8473                         return false;
8474                 info->reg_type = PTR_TO_FLOW_KEYS;
8475                 return true;
8476         default:
8477                 return false;
8478         }
8479 }
8480
8481 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8482                                              const struct bpf_insn *si,
8483                                              struct bpf_insn *insn_buf,
8484                                              struct bpf_prog *prog,
8485                                              u32 *target_size)
8486
8487 {
8488         struct bpf_insn *insn = insn_buf;
8489
8490         switch (si->off) {
8491         case offsetof(struct __sk_buff, data):
8492                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8493                                       si->dst_reg, si->src_reg,
8494                                       offsetof(struct bpf_flow_dissector, data));
8495                 break;
8496
8497         case offsetof(struct __sk_buff, data_end):
8498                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8499                                       si->dst_reg, si->src_reg,
8500                                       offsetof(struct bpf_flow_dissector, data_end));
8501                 break;
8502
8503         case offsetof(struct __sk_buff, flow_keys):
8504                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8505                                       si->dst_reg, si->src_reg,
8506                                       offsetof(struct bpf_flow_dissector, flow_keys));
8507                 break;
8508         }
8509
8510         return insn - insn_buf;
8511 }
8512
8513 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8514                                                   struct bpf_insn *insn)
8515 {
8516         /* si->dst_reg = skb_shinfo(SKB); */
8517 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8518         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8519                               BPF_REG_AX, si->src_reg,
8520                               offsetof(struct sk_buff, end));
8521         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8522                               si->dst_reg, si->src_reg,
8523                               offsetof(struct sk_buff, head));
8524         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8525 #else
8526         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8527                               si->dst_reg, si->src_reg,
8528                               offsetof(struct sk_buff, end));
8529 #endif
8530
8531         return insn;
8532 }
8533
8534 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8535                                   const struct bpf_insn *si,
8536                                   struct bpf_insn *insn_buf,
8537                                   struct bpf_prog *prog, u32 *target_size)
8538 {
8539         struct bpf_insn *insn = insn_buf;
8540         int off;
8541
8542         switch (si->off) {
8543         case offsetof(struct __sk_buff, len):
8544                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8545                                       bpf_target_off(struct sk_buff, len, 4,
8546                                                      target_size));
8547                 break;
8548
8549         case offsetof(struct __sk_buff, protocol):
8550                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8551                                       bpf_target_off(struct sk_buff, protocol, 2,
8552                                                      target_size));
8553                 break;
8554
8555         case offsetof(struct __sk_buff, vlan_proto):
8556                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8557                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8558                                                      target_size));
8559                 break;
8560
8561         case offsetof(struct __sk_buff, priority):
8562                 if (type == BPF_WRITE)
8563                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8564                                               bpf_target_off(struct sk_buff, priority, 4,
8565                                                              target_size));
8566                 else
8567                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8568                                               bpf_target_off(struct sk_buff, priority, 4,
8569                                                              target_size));
8570                 break;
8571
8572         case offsetof(struct __sk_buff, ingress_ifindex):
8573                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8574                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8575                                                      target_size));
8576                 break;
8577
8578         case offsetof(struct __sk_buff, ifindex):
8579                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8580                                       si->dst_reg, si->src_reg,
8581                                       offsetof(struct sk_buff, dev));
8582                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8583                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8584                                       bpf_target_off(struct net_device, ifindex, 4,
8585                                                      target_size));
8586                 break;
8587
8588         case offsetof(struct __sk_buff, hash):
8589                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8590                                       bpf_target_off(struct sk_buff, hash, 4,
8591                                                      target_size));
8592                 break;
8593
8594         case offsetof(struct __sk_buff, mark):
8595                 if (type == BPF_WRITE)
8596                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8597                                               bpf_target_off(struct sk_buff, mark, 4,
8598                                                              target_size));
8599                 else
8600                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8601                                               bpf_target_off(struct sk_buff, mark, 4,
8602                                                              target_size));
8603                 break;
8604
8605         case offsetof(struct __sk_buff, pkt_type):
8606                 *target_size = 1;
8607                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8608                                       PKT_TYPE_OFFSET());
8609                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8610 #ifdef __BIG_ENDIAN_BITFIELD
8611                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8612 #endif
8613                 break;
8614
8615         case offsetof(struct __sk_buff, queue_mapping):
8616                 if (type == BPF_WRITE) {
8617                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8618                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8619                                               bpf_target_off(struct sk_buff,
8620                                                              queue_mapping,
8621                                                              2, target_size));
8622                 } else {
8623                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8624                                               bpf_target_off(struct sk_buff,
8625                                                              queue_mapping,
8626                                                              2, target_size));
8627                 }
8628                 break;
8629
8630         case offsetof(struct __sk_buff, vlan_present):
8631                 *target_size = 1;
8632                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8633                                       PKT_VLAN_PRESENT_OFFSET());
8634                 if (PKT_VLAN_PRESENT_BIT)
8635                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8636                 if (PKT_VLAN_PRESENT_BIT < 7)
8637                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8638                 break;
8639
8640         case offsetof(struct __sk_buff, vlan_tci):
8641                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8642                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8643                                                      target_size));
8644                 break;
8645
8646         case offsetof(struct __sk_buff, cb[0]) ...
8647              offsetofend(struct __sk_buff, cb[4]) - 1:
8648                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8649                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8650                               offsetof(struct qdisc_skb_cb, data)) %
8651                              sizeof(__u64));
8652
8653                 prog->cb_access = 1;
8654                 off  = si->off;
8655                 off -= offsetof(struct __sk_buff, cb[0]);
8656                 off += offsetof(struct sk_buff, cb);
8657                 off += offsetof(struct qdisc_skb_cb, data);
8658                 if (type == BPF_WRITE)
8659                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8660                                               si->src_reg, off);
8661                 else
8662                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8663                                               si->src_reg, off);
8664                 break;
8665
8666         case offsetof(struct __sk_buff, tc_classid):
8667                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8668
8669                 off  = si->off;
8670                 off -= offsetof(struct __sk_buff, tc_classid);
8671                 off += offsetof(struct sk_buff, cb);
8672                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8673                 *target_size = 2;
8674                 if (type == BPF_WRITE)
8675                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8676                                               si->src_reg, off);
8677                 else
8678                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8679                                               si->src_reg, off);
8680                 break;
8681
8682         case offsetof(struct __sk_buff, data):
8683                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8684                                       si->dst_reg, si->src_reg,
8685                                       offsetof(struct sk_buff, data));
8686                 break;
8687
8688         case offsetof(struct __sk_buff, data_meta):
8689                 off  = si->off;
8690                 off -= offsetof(struct __sk_buff, data_meta);
8691                 off += offsetof(struct sk_buff, cb);
8692                 off += offsetof(struct bpf_skb_data_end, data_meta);
8693                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8694                                       si->src_reg, off);
8695                 break;
8696
8697         case offsetof(struct __sk_buff, data_end):
8698                 off  = si->off;
8699                 off -= offsetof(struct __sk_buff, data_end);
8700                 off += offsetof(struct sk_buff, cb);
8701                 off += offsetof(struct bpf_skb_data_end, data_end);
8702                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8703                                       si->src_reg, off);
8704                 break;
8705
8706         case offsetof(struct __sk_buff, tc_index):
8707 #ifdef CONFIG_NET_SCHED
8708                 if (type == BPF_WRITE)
8709                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8710                                               bpf_target_off(struct sk_buff, tc_index, 2,
8711                                                              target_size));
8712                 else
8713                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8714                                               bpf_target_off(struct sk_buff, tc_index, 2,
8715                                                              target_size));
8716 #else
8717                 *target_size = 2;
8718                 if (type == BPF_WRITE)
8719                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8720                 else
8721                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8722 #endif
8723                 break;
8724
8725         case offsetof(struct __sk_buff, napi_id):
8726 #if defined(CONFIG_NET_RX_BUSY_POLL)
8727                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8728                                       bpf_target_off(struct sk_buff, napi_id, 4,
8729                                                      target_size));
8730                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8731                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8732 #else
8733                 *target_size = 4;
8734                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8735 #endif
8736                 break;
8737         case offsetof(struct __sk_buff, family):
8738                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8739
8740                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8741                                       si->dst_reg, si->src_reg,
8742                                       offsetof(struct sk_buff, sk));
8743                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8744                                       bpf_target_off(struct sock_common,
8745                                                      skc_family,
8746                                                      2, target_size));
8747                 break;
8748         case offsetof(struct __sk_buff, remote_ip4):
8749                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8750
8751                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8752                                       si->dst_reg, si->src_reg,
8753                                       offsetof(struct sk_buff, sk));
8754                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8755                                       bpf_target_off(struct sock_common,
8756                                                      skc_daddr,
8757                                                      4, target_size));
8758                 break;
8759         case offsetof(struct __sk_buff, local_ip4):
8760                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8761                                           skc_rcv_saddr) != 4);
8762
8763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8764                                       si->dst_reg, si->src_reg,
8765                                       offsetof(struct sk_buff, sk));
8766                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8767                                       bpf_target_off(struct sock_common,
8768                                                      skc_rcv_saddr,
8769                                                      4, target_size));
8770                 break;
8771         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8772              offsetof(struct __sk_buff, remote_ip6[3]):
8773 #if IS_ENABLED(CONFIG_IPV6)
8774                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8775                                           skc_v6_daddr.s6_addr32[0]) != 4);
8776
8777                 off = si->off;
8778                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8779
8780                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8781                                       si->dst_reg, si->src_reg,
8782                                       offsetof(struct sk_buff, sk));
8783                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8784                                       offsetof(struct sock_common,
8785                                                skc_v6_daddr.s6_addr32[0]) +
8786                                       off);
8787 #else
8788                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8789 #endif
8790                 break;
8791         case offsetof(struct __sk_buff, local_ip6[0]) ...
8792              offsetof(struct __sk_buff, local_ip6[3]):
8793 #if IS_ENABLED(CONFIG_IPV6)
8794                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8795                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8796
8797                 off = si->off;
8798                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8799
8800                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8801                                       si->dst_reg, si->src_reg,
8802                                       offsetof(struct sk_buff, sk));
8803                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8804                                       offsetof(struct sock_common,
8805                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8806                                       off);
8807 #else
8808                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8809 #endif
8810                 break;
8811
8812         case offsetof(struct __sk_buff, remote_port):
8813                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8814
8815                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8816                                       si->dst_reg, si->src_reg,
8817                                       offsetof(struct sk_buff, sk));
8818                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8819                                       bpf_target_off(struct sock_common,
8820                                                      skc_dport,
8821                                                      2, target_size));
8822 #ifndef __BIG_ENDIAN_BITFIELD
8823                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8824 #endif
8825                 break;
8826
8827         case offsetof(struct __sk_buff, local_port):
8828                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8829
8830                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8831                                       si->dst_reg, si->src_reg,
8832                                       offsetof(struct sk_buff, sk));
8833                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8834                                       bpf_target_off(struct sock_common,
8835                                                      skc_num, 2, target_size));
8836                 break;
8837
8838         case offsetof(struct __sk_buff, tstamp):
8839                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8840
8841                 if (type == BPF_WRITE)
8842                         *insn++ = BPF_STX_MEM(BPF_DW,
8843                                               si->dst_reg, si->src_reg,
8844                                               bpf_target_off(struct sk_buff,
8845                                                              tstamp, 8,
8846                                                              target_size));
8847                 else
8848                         *insn++ = BPF_LDX_MEM(BPF_DW,
8849                                               si->dst_reg, si->src_reg,
8850                                               bpf_target_off(struct sk_buff,
8851                                                              tstamp, 8,
8852                                                              target_size));
8853                 break;
8854
8855         case offsetof(struct __sk_buff, gso_segs):
8856                 insn = bpf_convert_shinfo_access(si, insn);
8857                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8858                                       si->dst_reg, si->dst_reg,
8859                                       bpf_target_off(struct skb_shared_info,
8860                                                      gso_segs, 2,
8861                                                      target_size));
8862                 break;
8863         case offsetof(struct __sk_buff, gso_size):
8864                 insn = bpf_convert_shinfo_access(si, insn);
8865                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8866                                       si->dst_reg, si->dst_reg,
8867                                       bpf_target_off(struct skb_shared_info,
8868                                                      gso_size, 2,
8869                                                      target_size));
8870                 break;
8871         case offsetof(struct __sk_buff, wire_len):
8872                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8873
8874                 off = si->off;
8875                 off -= offsetof(struct __sk_buff, wire_len);
8876                 off += offsetof(struct sk_buff, cb);
8877                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8878                 *target_size = 4;
8879                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8880                 break;
8881
8882         case offsetof(struct __sk_buff, sk):
8883                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8884                                       si->dst_reg, si->src_reg,
8885                                       offsetof(struct sk_buff, sk));
8886                 break;
8887         }
8888
8889         return insn - insn_buf;
8890 }
8891
8892 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8893                                 const struct bpf_insn *si,
8894                                 struct bpf_insn *insn_buf,
8895                                 struct bpf_prog *prog, u32 *target_size)
8896 {
8897         struct bpf_insn *insn = insn_buf;
8898         int off;
8899
8900         switch (si->off) {
8901         case offsetof(struct bpf_sock, bound_dev_if):
8902                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8903
8904                 if (type == BPF_WRITE)
8905                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8906                                         offsetof(struct sock, sk_bound_dev_if));
8907                 else
8908                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8909                                       offsetof(struct sock, sk_bound_dev_if));
8910                 break;
8911
8912         case offsetof(struct bpf_sock, mark):
8913                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8914
8915                 if (type == BPF_WRITE)
8916                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8917                                         offsetof(struct sock, sk_mark));
8918                 else
8919                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8920                                       offsetof(struct sock, sk_mark));
8921                 break;
8922
8923         case offsetof(struct bpf_sock, priority):
8924                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8925
8926                 if (type == BPF_WRITE)
8927                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8928                                         offsetof(struct sock, sk_priority));
8929                 else
8930                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8931                                       offsetof(struct sock, sk_priority));
8932                 break;
8933
8934         case offsetof(struct bpf_sock, family):
8935                 *insn++ = BPF_LDX_MEM(
8936                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8937                         si->dst_reg, si->src_reg,
8938                         bpf_target_off(struct sock_common,
8939                                        skc_family,
8940                                        sizeof_field(struct sock_common,
8941                                                     skc_family),
8942                                        target_size));
8943                 break;
8944
8945         case offsetof(struct bpf_sock, type):
8946                 *insn++ = BPF_LDX_MEM(
8947                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8948                         si->dst_reg, si->src_reg,
8949                         bpf_target_off(struct sock, sk_type,
8950                                        sizeof_field(struct sock, sk_type),
8951                                        target_size));
8952                 break;
8953
8954         case offsetof(struct bpf_sock, protocol):
8955                 *insn++ = BPF_LDX_MEM(
8956                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8957                         si->dst_reg, si->src_reg,
8958                         bpf_target_off(struct sock, sk_protocol,
8959                                        sizeof_field(struct sock, sk_protocol),
8960                                        target_size));
8961                 break;
8962
8963         case offsetof(struct bpf_sock, src_ip4):
8964                 *insn++ = BPF_LDX_MEM(
8965                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8966                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8967                                        sizeof_field(struct sock_common,
8968                                                     skc_rcv_saddr),
8969                                        target_size));
8970                 break;
8971
8972         case offsetof(struct bpf_sock, dst_ip4):
8973                 *insn++ = BPF_LDX_MEM(
8974                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8975                         bpf_target_off(struct sock_common, skc_daddr,
8976                                        sizeof_field(struct sock_common,
8977                                                     skc_daddr),
8978                                        target_size));
8979                 break;
8980
8981         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8982 #if IS_ENABLED(CONFIG_IPV6)
8983                 off = si->off;
8984                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8985                 *insn++ = BPF_LDX_MEM(
8986                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8987                         bpf_target_off(
8988                                 struct sock_common,
8989                                 skc_v6_rcv_saddr.s6_addr32[0],
8990                                 sizeof_field(struct sock_common,
8991                                              skc_v6_rcv_saddr.s6_addr32[0]),
8992                                 target_size) + off);
8993 #else
8994                 (void)off;
8995                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8996 #endif
8997                 break;
8998
8999         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9000 #if IS_ENABLED(CONFIG_IPV6)
9001                 off = si->off;
9002                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9003                 *insn++ = BPF_LDX_MEM(
9004                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9005                         bpf_target_off(struct sock_common,
9006                                        skc_v6_daddr.s6_addr32[0],
9007                                        sizeof_field(struct sock_common,
9008                                                     skc_v6_daddr.s6_addr32[0]),
9009                                        target_size) + off);
9010 #else
9011                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9012                 *target_size = 4;
9013 #endif
9014                 break;
9015
9016         case offsetof(struct bpf_sock, src_port):
9017                 *insn++ = BPF_LDX_MEM(
9018                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9019                         si->dst_reg, si->src_reg,
9020                         bpf_target_off(struct sock_common, skc_num,
9021                                        sizeof_field(struct sock_common,
9022                                                     skc_num),
9023                                        target_size));
9024                 break;
9025
9026         case offsetof(struct bpf_sock, dst_port):
9027                 *insn++ = BPF_LDX_MEM(
9028                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9029                         si->dst_reg, si->src_reg,
9030                         bpf_target_off(struct sock_common, skc_dport,
9031                                        sizeof_field(struct sock_common,
9032                                                     skc_dport),
9033                                        target_size));
9034                 break;
9035
9036         case offsetof(struct bpf_sock, state):
9037                 *insn++ = BPF_LDX_MEM(
9038                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9039                         si->dst_reg, si->src_reg,
9040                         bpf_target_off(struct sock_common, skc_state,
9041                                        sizeof_field(struct sock_common,
9042                                                     skc_state),
9043                                        target_size));
9044                 break;
9045         case offsetof(struct bpf_sock, rx_queue_mapping):
9046 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9047                 *insn++ = BPF_LDX_MEM(
9048                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9049                         si->dst_reg, si->src_reg,
9050                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9051                                        sizeof_field(struct sock,
9052                                                     sk_rx_queue_mapping),
9053                                        target_size));
9054                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9055                                       1);
9056                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9057 #else
9058                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9059                 *target_size = 2;
9060 #endif
9061                 break;
9062         }
9063
9064         return insn - insn_buf;
9065 }
9066
9067 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9068                                          const struct bpf_insn *si,
9069                                          struct bpf_insn *insn_buf,
9070                                          struct bpf_prog *prog, u32 *target_size)
9071 {
9072         struct bpf_insn *insn = insn_buf;
9073
9074         switch (si->off) {
9075         case offsetof(struct __sk_buff, ifindex):
9076                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9077                                       si->dst_reg, si->src_reg,
9078                                       offsetof(struct sk_buff, dev));
9079                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9080                                       bpf_target_off(struct net_device, ifindex, 4,
9081                                                      target_size));
9082                 break;
9083         default:
9084                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9085                                               target_size);
9086         }
9087
9088         return insn - insn_buf;
9089 }
9090
9091 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9092                                   const struct bpf_insn *si,
9093                                   struct bpf_insn *insn_buf,
9094                                   struct bpf_prog *prog, u32 *target_size)
9095 {
9096         struct bpf_insn *insn = insn_buf;
9097
9098         switch (si->off) {
9099         case offsetof(struct xdp_md, data):
9100                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9101                                       si->dst_reg, si->src_reg,
9102                                       offsetof(struct xdp_buff, data));
9103                 break;
9104         case offsetof(struct xdp_md, data_meta):
9105                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9106                                       si->dst_reg, si->src_reg,
9107                                       offsetof(struct xdp_buff, data_meta));
9108                 break;
9109         case offsetof(struct xdp_md, data_end):
9110                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9111                                       si->dst_reg, si->src_reg,
9112                                       offsetof(struct xdp_buff, data_end));
9113                 break;
9114         case offsetof(struct xdp_md, ingress_ifindex):
9115                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9116                                       si->dst_reg, si->src_reg,
9117                                       offsetof(struct xdp_buff, rxq));
9118                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9119                                       si->dst_reg, si->dst_reg,
9120                                       offsetof(struct xdp_rxq_info, dev));
9121                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9122                                       offsetof(struct net_device, ifindex));
9123                 break;
9124         case offsetof(struct xdp_md, rx_queue_index):
9125                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9126                                       si->dst_reg, si->src_reg,
9127                                       offsetof(struct xdp_buff, rxq));
9128                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9129                                       offsetof(struct xdp_rxq_info,
9130                                                queue_index));
9131                 break;
9132         case offsetof(struct xdp_md, egress_ifindex):
9133                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9134                                       si->dst_reg, si->src_reg,
9135                                       offsetof(struct xdp_buff, txq));
9136                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9137                                       si->dst_reg, si->dst_reg,
9138                                       offsetof(struct xdp_txq_info, dev));
9139                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9140                                       offsetof(struct net_device, ifindex));
9141                 break;
9142         }
9143
9144         return insn - insn_buf;
9145 }
9146
9147 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9148  * context Structure, F is Field in context structure that contains a pointer
9149  * to Nested Structure of type NS that has the field NF.
9150  *
9151  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9152  * sure that SIZE is not greater than actual size of S.F.NF.
9153  *
9154  * If offset OFF is provided, the load happens from that offset relative to
9155  * offset of NF.
9156  */
9157 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9158         do {                                                                   \
9159                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9160                                       si->src_reg, offsetof(S, F));            \
9161                 *insn++ = BPF_LDX_MEM(                                         \
9162                         SIZE, si->dst_reg, si->dst_reg,                        \
9163                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9164                                        target_size)                            \
9165                                 + OFF);                                        \
9166         } while (0)
9167
9168 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9169         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9170                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9171
9172 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9173  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9174  *
9175  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9176  * "register" since two registers available in convert_ctx_access are not
9177  * enough: we can't override neither SRC, since it contains value to store, nor
9178  * DST since it contains pointer to context that may be used by later
9179  * instructions. But we need a temporary place to save pointer to nested
9180  * structure whose field we want to store to.
9181  */
9182 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9183         do {                                                                   \
9184                 int tmp_reg = BPF_REG_9;                                       \
9185                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9186                         --tmp_reg;                                             \
9187                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9188                         --tmp_reg;                                             \
9189                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9190                                       offsetof(S, TF));                        \
9191                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9192                                       si->dst_reg, offsetof(S, F));            \
9193                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9194                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9195                                        target_size)                            \
9196                                 + OFF);                                        \
9197                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9198                                       offsetof(S, TF));                        \
9199         } while (0)
9200
9201 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9202                                                       TF)                      \
9203         do {                                                                   \
9204                 if (type == BPF_WRITE) {                                       \
9205                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9206                                                          OFF, TF);             \
9207                 } else {                                                       \
9208                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9209                                 S, NS, F, NF, SIZE, OFF);  \
9210                 }                                                              \
9211         } while (0)
9212
9213 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9214         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9215                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9216
9217 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9218                                         const struct bpf_insn *si,
9219                                         struct bpf_insn *insn_buf,
9220                                         struct bpf_prog *prog, u32 *target_size)
9221 {
9222         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9223         struct bpf_insn *insn = insn_buf;
9224
9225         switch (si->off) {
9226         case offsetof(struct bpf_sock_addr, user_family):
9227                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9228                                             struct sockaddr, uaddr, sa_family);
9229                 break;
9230
9231         case offsetof(struct bpf_sock_addr, user_ip4):
9232                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9233                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9234                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9235                 break;
9236
9237         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9238                 off = si->off;
9239                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9240                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9241                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9242                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9243                         tmp_reg);
9244                 break;
9245
9246         case offsetof(struct bpf_sock_addr, user_port):
9247                 /* To get port we need to know sa_family first and then treat
9248                  * sockaddr as either sockaddr_in or sockaddr_in6.
9249                  * Though we can simplify since port field has same offset and
9250                  * size in both structures.
9251                  * Here we check this invariant and use just one of the
9252                  * structures if it's true.
9253                  */
9254                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9255                              offsetof(struct sockaddr_in6, sin6_port));
9256                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9257                              sizeof_field(struct sockaddr_in6, sin6_port));
9258                 /* Account for sin6_port being smaller than user_port. */
9259                 port_size = min(port_size, BPF_LDST_BYTES(si));
9260                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9261                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9262                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9263                 break;
9264
9265         case offsetof(struct bpf_sock_addr, family):
9266                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9267                                             struct sock, sk, sk_family);
9268                 break;
9269
9270         case offsetof(struct bpf_sock_addr, type):
9271                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9272                                             struct sock, sk, sk_type);
9273                 break;
9274
9275         case offsetof(struct bpf_sock_addr, protocol):
9276                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9277                                             struct sock, sk, sk_protocol);
9278                 break;
9279
9280         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9281                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9282                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9283                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9284                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9285                 break;
9286
9287         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9288                                 msg_src_ip6[3]):
9289                 off = si->off;
9290                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9291                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9292                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9293                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9294                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9295                 break;
9296         case offsetof(struct bpf_sock_addr, sk):
9297                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9298                                       si->dst_reg, si->src_reg,
9299                                       offsetof(struct bpf_sock_addr_kern, sk));
9300                 break;
9301         }
9302
9303         return insn - insn_buf;
9304 }
9305
9306 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9307                                        const struct bpf_insn *si,
9308                                        struct bpf_insn *insn_buf,
9309                                        struct bpf_prog *prog,
9310                                        u32 *target_size)
9311 {
9312         struct bpf_insn *insn = insn_buf;
9313         int off;
9314
9315 /* Helper macro for adding read access to tcp_sock or sock fields. */
9316 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9317         do {                                                                  \
9318                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9319                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9320                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9321                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9322                         reg--;                                                \
9323                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9324                         reg--;                                                \
9325                 if (si->dst_reg == si->src_reg) {                             \
9326                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9327                                           offsetof(struct bpf_sock_ops_kern,  \
9328                                           temp));                             \
9329                         fullsock_reg = reg;                                   \
9330                         jmp += 2;                                             \
9331                 }                                                             \
9332                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9333                                                 struct bpf_sock_ops_kern,     \
9334                                                 is_fullsock),                 \
9335                                       fullsock_reg, si->src_reg,              \
9336                                       offsetof(struct bpf_sock_ops_kern,      \
9337                                                is_fullsock));                 \
9338                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9339                 if (si->dst_reg == si->src_reg)                               \
9340                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9341                                       offsetof(struct bpf_sock_ops_kern,      \
9342                                       temp));                                 \
9343                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9344                                                 struct bpf_sock_ops_kern, sk),\
9345                                       si->dst_reg, si->src_reg,               \
9346                                       offsetof(struct bpf_sock_ops_kern, sk));\
9347                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9348                                                        OBJ_FIELD),            \
9349                                       si->dst_reg, si->dst_reg,               \
9350                                       offsetof(OBJ, OBJ_FIELD));              \
9351                 if (si->dst_reg == si->src_reg) {                             \
9352                         *insn++ = BPF_JMP_A(1);                               \
9353                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9354                                       offsetof(struct bpf_sock_ops_kern,      \
9355                                       temp));                                 \
9356                 }                                                             \
9357         } while (0)
9358
9359 #define SOCK_OPS_GET_SK()                                                             \
9360         do {                                                                  \
9361                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9362                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9363                         reg--;                                                \
9364                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9365                         reg--;                                                \
9366                 if (si->dst_reg == si->src_reg) {                             \
9367                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9368                                           offsetof(struct bpf_sock_ops_kern,  \
9369                                           temp));                             \
9370                         fullsock_reg = reg;                                   \
9371                         jmp += 2;                                             \
9372                 }                                                             \
9373                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9374                                                 struct bpf_sock_ops_kern,     \
9375                                                 is_fullsock),                 \
9376                                       fullsock_reg, si->src_reg,              \
9377                                       offsetof(struct bpf_sock_ops_kern,      \
9378                                                is_fullsock));                 \
9379                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9380                 if (si->dst_reg == si->src_reg)                               \
9381                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9382                                       offsetof(struct bpf_sock_ops_kern,      \
9383                                       temp));                                 \
9384                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9385                                                 struct bpf_sock_ops_kern, sk),\
9386                                       si->dst_reg, si->src_reg,               \
9387                                       offsetof(struct bpf_sock_ops_kern, sk));\
9388                 if (si->dst_reg == si->src_reg) {                             \
9389                         *insn++ = BPF_JMP_A(1);                               \
9390                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9391                                       offsetof(struct bpf_sock_ops_kern,      \
9392                                       temp));                                 \
9393                 }                                                             \
9394         } while (0)
9395
9396 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9397                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9398
9399 /* Helper macro for adding write access to tcp_sock or sock fields.
9400  * The macro is called with two registers, dst_reg which contains a pointer
9401  * to ctx (context) and src_reg which contains the value that should be
9402  * stored. However, we need an additional register since we cannot overwrite
9403  * dst_reg because it may be used later in the program.
9404  * Instead we "borrow" one of the other register. We first save its value
9405  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9406  * it at the end of the macro.
9407  */
9408 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9409         do {                                                                  \
9410                 int reg = BPF_REG_9;                                          \
9411                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9412                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9413                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9414                         reg--;                                                \
9415                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9416                         reg--;                                                \
9417                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9418                                       offsetof(struct bpf_sock_ops_kern,      \
9419                                                temp));                        \
9420                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9421                                                 struct bpf_sock_ops_kern,     \
9422                                                 is_fullsock),                 \
9423                                       reg, si->dst_reg,                       \
9424                                       offsetof(struct bpf_sock_ops_kern,      \
9425                                                is_fullsock));                 \
9426                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9427                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9428                                                 struct bpf_sock_ops_kern, sk),\
9429                                       reg, si->dst_reg,                       \
9430                                       offsetof(struct bpf_sock_ops_kern, sk));\
9431                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9432                                       reg, si->src_reg,                       \
9433                                       offsetof(OBJ, OBJ_FIELD));              \
9434                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9435                                       offsetof(struct bpf_sock_ops_kern,      \
9436                                                temp));                        \
9437         } while (0)
9438
9439 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9440         do {                                                                  \
9441                 if (TYPE == BPF_WRITE)                                        \
9442                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9443                 else                                                          \
9444                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9445         } while (0)
9446
9447         if (insn > insn_buf)
9448                 return insn - insn_buf;
9449
9450         switch (si->off) {
9451         case offsetof(struct bpf_sock_ops, op):
9452                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9453                                                        op),
9454                                       si->dst_reg, si->src_reg,
9455                                       offsetof(struct bpf_sock_ops_kern, op));
9456                 break;
9457
9458         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9459              offsetof(struct bpf_sock_ops, replylong[3]):
9460                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9461                              sizeof_field(struct bpf_sock_ops_kern, reply));
9462                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9463                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9464                 off = si->off;
9465                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9466                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9467                 if (type == BPF_WRITE)
9468                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9469                                               off);
9470                 else
9471                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9472                                               off);
9473                 break;
9474
9475         case offsetof(struct bpf_sock_ops, family):
9476                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9477
9478                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9479                                               struct bpf_sock_ops_kern, sk),
9480                                       si->dst_reg, si->src_reg,
9481                                       offsetof(struct bpf_sock_ops_kern, sk));
9482                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9483                                       offsetof(struct sock_common, skc_family));
9484                 break;
9485
9486         case offsetof(struct bpf_sock_ops, remote_ip4):
9487                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9488
9489                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9490                                                 struct bpf_sock_ops_kern, sk),
9491                                       si->dst_reg, si->src_reg,
9492                                       offsetof(struct bpf_sock_ops_kern, sk));
9493                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9494                                       offsetof(struct sock_common, skc_daddr));
9495                 break;
9496
9497         case offsetof(struct bpf_sock_ops, local_ip4):
9498                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9499                                           skc_rcv_saddr) != 4);
9500
9501                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9502                                               struct bpf_sock_ops_kern, sk),
9503                                       si->dst_reg, si->src_reg,
9504                                       offsetof(struct bpf_sock_ops_kern, sk));
9505                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9506                                       offsetof(struct sock_common,
9507                                                skc_rcv_saddr));
9508                 break;
9509
9510         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9511              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9512 #if IS_ENABLED(CONFIG_IPV6)
9513                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9514                                           skc_v6_daddr.s6_addr32[0]) != 4);
9515
9516                 off = si->off;
9517                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9518                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9519                                                 struct bpf_sock_ops_kern, sk),
9520                                       si->dst_reg, si->src_reg,
9521                                       offsetof(struct bpf_sock_ops_kern, sk));
9522                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9523                                       offsetof(struct sock_common,
9524                                                skc_v6_daddr.s6_addr32[0]) +
9525                                       off);
9526 #else
9527                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9528 #endif
9529                 break;
9530
9531         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9532              offsetof(struct bpf_sock_ops, local_ip6[3]):
9533 #if IS_ENABLED(CONFIG_IPV6)
9534                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9535                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9536
9537                 off = si->off;
9538                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9539                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9540                                                 struct bpf_sock_ops_kern, sk),
9541                                       si->dst_reg, si->src_reg,
9542                                       offsetof(struct bpf_sock_ops_kern, sk));
9543                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9544                                       offsetof(struct sock_common,
9545                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9546                                       off);
9547 #else
9548                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9549 #endif
9550                 break;
9551
9552         case offsetof(struct bpf_sock_ops, remote_port):
9553                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9554
9555                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9556                                                 struct bpf_sock_ops_kern, sk),
9557                                       si->dst_reg, si->src_reg,
9558                                       offsetof(struct bpf_sock_ops_kern, sk));
9559                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9560                                       offsetof(struct sock_common, skc_dport));
9561 #ifndef __BIG_ENDIAN_BITFIELD
9562                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9563 #endif
9564                 break;
9565
9566         case offsetof(struct bpf_sock_ops, local_port):
9567                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9568
9569                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9570                                                 struct bpf_sock_ops_kern, sk),
9571                                       si->dst_reg, si->src_reg,
9572                                       offsetof(struct bpf_sock_ops_kern, sk));
9573                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9574                                       offsetof(struct sock_common, skc_num));
9575                 break;
9576
9577         case offsetof(struct bpf_sock_ops, is_fullsock):
9578                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9579                                                 struct bpf_sock_ops_kern,
9580                                                 is_fullsock),
9581                                       si->dst_reg, si->src_reg,
9582                                       offsetof(struct bpf_sock_ops_kern,
9583                                                is_fullsock));
9584                 break;
9585
9586         case offsetof(struct bpf_sock_ops, state):
9587                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9588
9589                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9590                                                 struct bpf_sock_ops_kern, sk),
9591                                       si->dst_reg, si->src_reg,
9592                                       offsetof(struct bpf_sock_ops_kern, sk));
9593                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9594                                       offsetof(struct sock_common, skc_state));
9595                 break;
9596
9597         case offsetof(struct bpf_sock_ops, rtt_min):
9598                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9599                              sizeof(struct minmax));
9600                 BUILD_BUG_ON(sizeof(struct minmax) <
9601                              sizeof(struct minmax_sample));
9602
9603                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9604                                                 struct bpf_sock_ops_kern, sk),
9605                                       si->dst_reg, si->src_reg,
9606                                       offsetof(struct bpf_sock_ops_kern, sk));
9607                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9608                                       offsetof(struct tcp_sock, rtt_min) +
9609                                       sizeof_field(struct minmax_sample, t));
9610                 break;
9611
9612         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9613                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9614                                    struct tcp_sock);
9615                 break;
9616
9617         case offsetof(struct bpf_sock_ops, sk_txhash):
9618                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9619                                           struct sock, type);
9620                 break;
9621         case offsetof(struct bpf_sock_ops, snd_cwnd):
9622                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9623                 break;
9624         case offsetof(struct bpf_sock_ops, srtt_us):
9625                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9626                 break;
9627         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9628                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9629                 break;
9630         case offsetof(struct bpf_sock_ops, rcv_nxt):
9631                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9632                 break;
9633         case offsetof(struct bpf_sock_ops, snd_nxt):
9634                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9635                 break;
9636         case offsetof(struct bpf_sock_ops, snd_una):
9637                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9638                 break;
9639         case offsetof(struct bpf_sock_ops, mss_cache):
9640                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9641                 break;
9642         case offsetof(struct bpf_sock_ops, ecn_flags):
9643                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9644                 break;
9645         case offsetof(struct bpf_sock_ops, rate_delivered):
9646                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9647                 break;
9648         case offsetof(struct bpf_sock_ops, rate_interval_us):
9649                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9650                 break;
9651         case offsetof(struct bpf_sock_ops, packets_out):
9652                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9653                 break;
9654         case offsetof(struct bpf_sock_ops, retrans_out):
9655                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9656                 break;
9657         case offsetof(struct bpf_sock_ops, total_retrans):
9658                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9659                 break;
9660         case offsetof(struct bpf_sock_ops, segs_in):
9661                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9662                 break;
9663         case offsetof(struct bpf_sock_ops, data_segs_in):
9664                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9665                 break;
9666         case offsetof(struct bpf_sock_ops, segs_out):
9667                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9668                 break;
9669         case offsetof(struct bpf_sock_ops, data_segs_out):
9670                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9671                 break;
9672         case offsetof(struct bpf_sock_ops, lost_out):
9673                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9674                 break;
9675         case offsetof(struct bpf_sock_ops, sacked_out):
9676                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9677                 break;
9678         case offsetof(struct bpf_sock_ops, bytes_received):
9679                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9680                 break;
9681         case offsetof(struct bpf_sock_ops, bytes_acked):
9682                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9683                 break;
9684         case offsetof(struct bpf_sock_ops, sk):
9685                 SOCK_OPS_GET_SK();
9686                 break;
9687         case offsetof(struct bpf_sock_ops, skb_data_end):
9688                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9689                                                        skb_data_end),
9690                                       si->dst_reg, si->src_reg,
9691                                       offsetof(struct bpf_sock_ops_kern,
9692                                                skb_data_end));
9693                 break;
9694         case offsetof(struct bpf_sock_ops, skb_data):
9695                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9696                                                        skb),
9697                                       si->dst_reg, si->src_reg,
9698                                       offsetof(struct bpf_sock_ops_kern,
9699                                                skb));
9700                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9701                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9702                                       si->dst_reg, si->dst_reg,
9703                                       offsetof(struct sk_buff, data));
9704                 break;
9705         case offsetof(struct bpf_sock_ops, skb_len):
9706                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9707                                                        skb),
9708                                       si->dst_reg, si->src_reg,
9709                                       offsetof(struct bpf_sock_ops_kern,
9710                                                skb));
9711                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9712                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9713                                       si->dst_reg, si->dst_reg,
9714                                       offsetof(struct sk_buff, len));
9715                 break;
9716         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9717                 off = offsetof(struct sk_buff, cb);
9718                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9719                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9720                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9721                                                        skb),
9722                                       si->dst_reg, si->src_reg,
9723                                       offsetof(struct bpf_sock_ops_kern,
9724                                                skb));
9725                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9726                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9727                                                        tcp_flags),
9728                                       si->dst_reg, si->dst_reg, off);
9729                 break;
9730         }
9731         return insn - insn_buf;
9732 }
9733
9734 /* data_end = skb->data + skb_headlen() */
9735 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9736                                                     struct bpf_insn *insn)
9737 {
9738         /* si->dst_reg = skb->data */
9739         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9740                               si->dst_reg, si->src_reg,
9741                               offsetof(struct sk_buff, data));
9742         /* AX = skb->len */
9743         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9744                               BPF_REG_AX, si->src_reg,
9745                               offsetof(struct sk_buff, len));
9746         /* si->dst_reg = skb->data + skb->len */
9747         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9748         /* AX = skb->data_len */
9749         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9750                               BPF_REG_AX, si->src_reg,
9751                               offsetof(struct sk_buff, data_len));
9752         /* si->dst_reg = skb->data + skb->len - skb->data_len */
9753         *insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9754
9755         return insn;
9756 }
9757
9758 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9759                                      const struct bpf_insn *si,
9760                                      struct bpf_insn *insn_buf,
9761                                      struct bpf_prog *prog, u32 *target_size)
9762 {
9763         struct bpf_insn *insn = insn_buf;
9764
9765         switch (si->off) {
9766         case offsetof(struct __sk_buff, data_end):
9767                 insn = bpf_convert_data_end_access(si, insn);
9768                 break;
9769         default:
9770                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9771                                               target_size);
9772         }
9773
9774         return insn - insn_buf;
9775 }
9776
9777 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9778                                      const struct bpf_insn *si,
9779                                      struct bpf_insn *insn_buf,
9780                                      struct bpf_prog *prog, u32 *target_size)
9781 {
9782         struct bpf_insn *insn = insn_buf;
9783 #if IS_ENABLED(CONFIG_IPV6)
9784         int off;
9785 #endif
9786
9787         /* convert ctx uses the fact sg element is first in struct */
9788         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9789
9790         switch (si->off) {
9791         case offsetof(struct sk_msg_md, data):
9792                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9793                                       si->dst_reg, si->src_reg,
9794                                       offsetof(struct sk_msg, data));
9795                 break;
9796         case offsetof(struct sk_msg_md, data_end):
9797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9798                                       si->dst_reg, si->src_reg,
9799                                       offsetof(struct sk_msg, data_end));
9800                 break;
9801         case offsetof(struct sk_msg_md, family):
9802                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9803
9804                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9805                                               struct sk_msg, sk),
9806                                       si->dst_reg, si->src_reg,
9807                                       offsetof(struct sk_msg, sk));
9808                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9809                                       offsetof(struct sock_common, skc_family));
9810                 break;
9811
9812         case offsetof(struct sk_msg_md, remote_ip4):
9813                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9814
9815                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9816                                                 struct sk_msg, sk),
9817                                       si->dst_reg, si->src_reg,
9818                                       offsetof(struct sk_msg, sk));
9819                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9820                                       offsetof(struct sock_common, skc_daddr));
9821                 break;
9822
9823         case offsetof(struct sk_msg_md, local_ip4):
9824                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9825                                           skc_rcv_saddr) != 4);
9826
9827                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9828                                               struct sk_msg, sk),
9829                                       si->dst_reg, si->src_reg,
9830                                       offsetof(struct sk_msg, sk));
9831                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9832                                       offsetof(struct sock_common,
9833                                                skc_rcv_saddr));
9834                 break;
9835
9836         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9837              offsetof(struct sk_msg_md, remote_ip6[3]):
9838 #if IS_ENABLED(CONFIG_IPV6)
9839                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9840                                           skc_v6_daddr.s6_addr32[0]) != 4);
9841
9842                 off = si->off;
9843                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9844                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9845                                                 struct sk_msg, sk),
9846                                       si->dst_reg, si->src_reg,
9847                                       offsetof(struct sk_msg, sk));
9848                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9849                                       offsetof(struct sock_common,
9850                                                skc_v6_daddr.s6_addr32[0]) +
9851                                       off);
9852 #else
9853                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9854 #endif
9855                 break;
9856
9857         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9858              offsetof(struct sk_msg_md, local_ip6[3]):
9859 #if IS_ENABLED(CONFIG_IPV6)
9860                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9861                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9862
9863                 off = si->off;
9864                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9865                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9866                                                 struct sk_msg, sk),
9867                                       si->dst_reg, si->src_reg,
9868                                       offsetof(struct sk_msg, sk));
9869                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9870                                       offsetof(struct sock_common,
9871                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9872                                       off);
9873 #else
9874                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9875 #endif
9876                 break;
9877
9878         case offsetof(struct sk_msg_md, remote_port):
9879                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9880
9881                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9882                                                 struct sk_msg, sk),
9883                                       si->dst_reg, si->src_reg,
9884                                       offsetof(struct sk_msg, sk));
9885                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9886                                       offsetof(struct sock_common, skc_dport));
9887 #ifndef __BIG_ENDIAN_BITFIELD
9888                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9889 #endif
9890                 break;
9891
9892         case offsetof(struct sk_msg_md, local_port):
9893                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9894
9895                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9896                                                 struct sk_msg, sk),
9897                                       si->dst_reg, si->src_reg,
9898                                       offsetof(struct sk_msg, sk));
9899                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9900                                       offsetof(struct sock_common, skc_num));
9901                 break;
9902
9903         case offsetof(struct sk_msg_md, size):
9904                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9905                                       si->dst_reg, si->src_reg,
9906                                       offsetof(struct sk_msg_sg, size));
9907                 break;
9908
9909         case offsetof(struct sk_msg_md, sk):
9910                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9911                                       si->dst_reg, si->src_reg,
9912                                       offsetof(struct sk_msg, sk));
9913                 break;
9914         }
9915
9916         return insn - insn_buf;
9917 }
9918
9919 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9920         .get_func_proto         = sk_filter_func_proto,
9921         .is_valid_access        = sk_filter_is_valid_access,
9922         .convert_ctx_access     = bpf_convert_ctx_access,
9923         .gen_ld_abs             = bpf_gen_ld_abs,
9924 };
9925
9926 const struct bpf_prog_ops sk_filter_prog_ops = {
9927         .test_run               = bpf_prog_test_run_skb,
9928 };
9929
9930 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9931         .get_func_proto         = tc_cls_act_func_proto,
9932         .is_valid_access        = tc_cls_act_is_valid_access,
9933         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9934         .gen_prologue           = tc_cls_act_prologue,
9935         .gen_ld_abs             = bpf_gen_ld_abs,
9936         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
9937 };
9938
9939 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9940         .test_run               = bpf_prog_test_run_skb,
9941 };
9942
9943 const struct bpf_verifier_ops xdp_verifier_ops = {
9944         .get_func_proto         = xdp_func_proto,
9945         .is_valid_access        = xdp_is_valid_access,
9946         .convert_ctx_access     = xdp_convert_ctx_access,
9947         .gen_prologue           = bpf_noop_prologue,
9948 };
9949
9950 const struct bpf_prog_ops xdp_prog_ops = {
9951         .test_run               = bpf_prog_test_run_xdp,
9952 };
9953
9954 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9955         .get_func_proto         = cg_skb_func_proto,
9956         .is_valid_access        = cg_skb_is_valid_access,
9957         .convert_ctx_access     = bpf_convert_ctx_access,
9958 };
9959
9960 const struct bpf_prog_ops cg_skb_prog_ops = {
9961         .test_run               = bpf_prog_test_run_skb,
9962 };
9963
9964 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9965         .get_func_proto         = lwt_in_func_proto,
9966         .is_valid_access        = lwt_is_valid_access,
9967         .convert_ctx_access     = bpf_convert_ctx_access,
9968 };
9969
9970 const struct bpf_prog_ops lwt_in_prog_ops = {
9971         .test_run               = bpf_prog_test_run_skb,
9972 };
9973
9974 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9975         .get_func_proto         = lwt_out_func_proto,
9976         .is_valid_access        = lwt_is_valid_access,
9977         .convert_ctx_access     = bpf_convert_ctx_access,
9978 };
9979
9980 const struct bpf_prog_ops lwt_out_prog_ops = {
9981         .test_run               = bpf_prog_test_run_skb,
9982 };
9983
9984 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9985         .get_func_proto         = lwt_xmit_func_proto,
9986         .is_valid_access        = lwt_is_valid_access,
9987         .convert_ctx_access     = bpf_convert_ctx_access,
9988         .gen_prologue           = tc_cls_act_prologue,
9989 };
9990
9991 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9992         .test_run               = bpf_prog_test_run_skb,
9993 };
9994
9995 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9996         .get_func_proto         = lwt_seg6local_func_proto,
9997         .is_valid_access        = lwt_is_valid_access,
9998         .convert_ctx_access     = bpf_convert_ctx_access,
9999 };
10000
10001 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10002         .test_run               = bpf_prog_test_run_skb,
10003 };
10004
10005 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10006         .get_func_proto         = sock_filter_func_proto,
10007         .is_valid_access        = sock_filter_is_valid_access,
10008         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10009 };
10010
10011 const struct bpf_prog_ops cg_sock_prog_ops = {
10012 };
10013
10014 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10015         .get_func_proto         = sock_addr_func_proto,
10016         .is_valid_access        = sock_addr_is_valid_access,
10017         .convert_ctx_access     = sock_addr_convert_ctx_access,
10018 };
10019
10020 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10021 };
10022
10023 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10024         .get_func_proto         = sock_ops_func_proto,
10025         .is_valid_access        = sock_ops_is_valid_access,
10026         .convert_ctx_access     = sock_ops_convert_ctx_access,
10027 };
10028
10029 const struct bpf_prog_ops sock_ops_prog_ops = {
10030 };
10031
10032 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10033         .get_func_proto         = sk_skb_func_proto,
10034         .is_valid_access        = sk_skb_is_valid_access,
10035         .convert_ctx_access     = sk_skb_convert_ctx_access,
10036         .gen_prologue           = sk_skb_prologue,
10037 };
10038
10039 const struct bpf_prog_ops sk_skb_prog_ops = {
10040 };
10041
10042 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10043         .get_func_proto         = sk_msg_func_proto,
10044         .is_valid_access        = sk_msg_is_valid_access,
10045         .convert_ctx_access     = sk_msg_convert_ctx_access,
10046         .gen_prologue           = bpf_noop_prologue,
10047 };
10048
10049 const struct bpf_prog_ops sk_msg_prog_ops = {
10050 };
10051
10052 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10053         .get_func_proto         = flow_dissector_func_proto,
10054         .is_valid_access        = flow_dissector_is_valid_access,
10055         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10056 };
10057
10058 const struct bpf_prog_ops flow_dissector_prog_ops = {
10059         .test_run               = bpf_prog_test_run_flow_dissector,
10060 };
10061
10062 int sk_detach_filter(struct sock *sk)
10063 {
10064         int ret = -ENOENT;
10065         struct sk_filter *filter;
10066
10067         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10068                 return -EPERM;
10069
10070         filter = rcu_dereference_protected(sk->sk_filter,
10071                                            lockdep_sock_is_held(sk));
10072         if (filter) {
10073                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10074                 sk_filter_uncharge(sk, filter);
10075                 ret = 0;
10076         }
10077
10078         return ret;
10079 }
10080 EXPORT_SYMBOL_GPL(sk_detach_filter);
10081
10082 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10083                   unsigned int len)
10084 {
10085         struct sock_fprog_kern *fprog;
10086         struct sk_filter *filter;
10087         int ret = 0;
10088
10089         lock_sock(sk);
10090         filter = rcu_dereference_protected(sk->sk_filter,
10091                                            lockdep_sock_is_held(sk));
10092         if (!filter)
10093                 goto out;
10094
10095         /* We're copying the filter that has been originally attached,
10096          * so no conversion/decode needed anymore. eBPF programs that
10097          * have no original program cannot be dumped through this.
10098          */
10099         ret = -EACCES;
10100         fprog = filter->prog->orig_prog;
10101         if (!fprog)
10102                 goto out;
10103
10104         ret = fprog->len;
10105         if (!len)
10106                 /* User space only enquires number of filter blocks. */
10107                 goto out;
10108
10109         ret = -EINVAL;
10110         if (len < fprog->len)
10111                 goto out;
10112
10113         ret = -EFAULT;
10114         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10115                 goto out;
10116
10117         /* Instead of bytes, the API requests to return the number
10118          * of filter blocks.
10119          */
10120         ret = fprog->len;
10121 out:
10122         release_sock(sk);
10123         return ret;
10124 }
10125
10126 #ifdef CONFIG_INET
10127 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10128                                     struct sock_reuseport *reuse,
10129                                     struct sock *sk, struct sk_buff *skb,
10130                                     struct sock *migrating_sk,
10131                                     u32 hash)
10132 {
10133         reuse_kern->skb = skb;
10134         reuse_kern->sk = sk;
10135         reuse_kern->selected_sk = NULL;
10136         reuse_kern->migrating_sk = migrating_sk;
10137         reuse_kern->data_end = skb->data + skb_headlen(skb);
10138         reuse_kern->hash = hash;
10139         reuse_kern->reuseport_id = reuse->reuseport_id;
10140         reuse_kern->bind_inany = reuse->bind_inany;
10141 }
10142
10143 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10144                                   struct bpf_prog *prog, struct sk_buff *skb,
10145                                   struct sock *migrating_sk,
10146                                   u32 hash)
10147 {
10148         struct sk_reuseport_kern reuse_kern;
10149         enum sk_action action;
10150
10151         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10152         action = bpf_prog_run(prog, &reuse_kern);
10153
10154         if (action == SK_PASS)
10155                 return reuse_kern.selected_sk;
10156         else
10157                 return ERR_PTR(-ECONNREFUSED);
10158 }
10159
10160 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10161            struct bpf_map *, map, void *, key, u32, flags)
10162 {
10163         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10164         struct sock_reuseport *reuse;
10165         struct sock *selected_sk;
10166
10167         selected_sk = map->ops->map_lookup_elem(map, key);
10168         if (!selected_sk)
10169                 return -ENOENT;
10170
10171         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10172         if (!reuse) {
10173                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10174                 if (sk_is_refcounted(selected_sk))
10175                         sock_put(selected_sk);
10176
10177                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10178                  * The only (!reuse) case here is - the sk has already been
10179                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10180                  *
10181                  * Other maps (e.g. sock_map) do not provide this guarantee and
10182                  * the sk may never be in the reuseport group to begin with.
10183                  */
10184                 return is_sockarray ? -ENOENT : -EINVAL;
10185         }
10186
10187         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10188                 struct sock *sk = reuse_kern->sk;
10189
10190                 if (sk->sk_protocol != selected_sk->sk_protocol)
10191                         return -EPROTOTYPE;
10192                 else if (sk->sk_family != selected_sk->sk_family)
10193                         return -EAFNOSUPPORT;
10194
10195                 /* Catch all. Likely bound to a different sockaddr. */
10196                 return -EBADFD;
10197         }
10198
10199         reuse_kern->selected_sk = selected_sk;
10200
10201         return 0;
10202 }
10203
10204 static const struct bpf_func_proto sk_select_reuseport_proto = {
10205         .func           = sk_select_reuseport,
10206         .gpl_only       = false,
10207         .ret_type       = RET_INTEGER,
10208         .arg1_type      = ARG_PTR_TO_CTX,
10209         .arg2_type      = ARG_CONST_MAP_PTR,
10210         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10211         .arg4_type      = ARG_ANYTHING,
10212 };
10213
10214 BPF_CALL_4(sk_reuseport_load_bytes,
10215            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10216            void *, to, u32, len)
10217 {
10218         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10219 }
10220
10221 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10222         .func           = sk_reuseport_load_bytes,
10223         .gpl_only       = false,
10224         .ret_type       = RET_INTEGER,
10225         .arg1_type      = ARG_PTR_TO_CTX,
10226         .arg2_type      = ARG_ANYTHING,
10227         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10228         .arg4_type      = ARG_CONST_SIZE,
10229 };
10230
10231 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10232            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10233            void *, to, u32, len, u32, start_header)
10234 {
10235         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10236                                                len, start_header);
10237 }
10238
10239 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10240         .func           = sk_reuseport_load_bytes_relative,
10241         .gpl_only       = false,
10242         .ret_type       = RET_INTEGER,
10243         .arg1_type      = ARG_PTR_TO_CTX,
10244         .arg2_type      = ARG_ANYTHING,
10245         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10246         .arg4_type      = ARG_CONST_SIZE,
10247         .arg5_type      = ARG_ANYTHING,
10248 };
10249
10250 static const struct bpf_func_proto *
10251 sk_reuseport_func_proto(enum bpf_func_id func_id,
10252                         const struct bpf_prog *prog)
10253 {
10254         switch (func_id) {
10255         case BPF_FUNC_sk_select_reuseport:
10256                 return &sk_select_reuseport_proto;
10257         case BPF_FUNC_skb_load_bytes:
10258                 return &sk_reuseport_load_bytes_proto;
10259         case BPF_FUNC_skb_load_bytes_relative:
10260                 return &sk_reuseport_load_bytes_relative_proto;
10261         case BPF_FUNC_get_socket_cookie:
10262                 return &bpf_get_socket_ptr_cookie_proto;
10263         default:
10264                 return bpf_base_func_proto(func_id);
10265         }
10266 }
10267
10268 static bool
10269 sk_reuseport_is_valid_access(int off, int size,
10270                              enum bpf_access_type type,
10271                              const struct bpf_prog *prog,
10272                              struct bpf_insn_access_aux *info)
10273 {
10274         const u32 size_default = sizeof(__u32);
10275
10276         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10277             off % size || type != BPF_READ)
10278                 return false;
10279
10280         switch (off) {
10281         case offsetof(struct sk_reuseport_md, data):
10282                 info->reg_type = PTR_TO_PACKET;
10283                 return size == sizeof(__u64);
10284
10285         case offsetof(struct sk_reuseport_md, data_end):
10286                 info->reg_type = PTR_TO_PACKET_END;
10287                 return size == sizeof(__u64);
10288
10289         case offsetof(struct sk_reuseport_md, hash):
10290                 return size == size_default;
10291
10292         case offsetof(struct sk_reuseport_md, sk):
10293                 info->reg_type = PTR_TO_SOCKET;
10294                 return size == sizeof(__u64);
10295
10296         case offsetof(struct sk_reuseport_md, migrating_sk):
10297                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10298                 return size == sizeof(__u64);
10299
10300         /* Fields that allow narrowing */
10301         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10302                 if (size < sizeof_field(struct sk_buff, protocol))
10303                         return false;
10304                 fallthrough;
10305         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10306         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10307         case bpf_ctx_range(struct sk_reuseport_md, len):
10308                 bpf_ctx_record_field_size(info, size_default);
10309                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10310
10311         default:
10312                 return false;
10313         }
10314 }
10315
10316 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10317         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10318                               si->dst_reg, si->src_reg,                 \
10319                               bpf_target_off(struct sk_reuseport_kern, F, \
10320                                              sizeof_field(struct sk_reuseport_kern, F), \
10321                                              target_size));             \
10322         })
10323
10324 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10325         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10326                                     struct sk_buff,                     \
10327                                     skb,                                \
10328                                     SKB_FIELD)
10329
10330 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10331         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10332                                     struct sock,                        \
10333                                     sk,                                 \
10334                                     SK_FIELD)
10335
10336 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10337                                            const struct bpf_insn *si,
10338                                            struct bpf_insn *insn_buf,
10339                                            struct bpf_prog *prog,
10340                                            u32 *target_size)
10341 {
10342         struct bpf_insn *insn = insn_buf;
10343
10344         switch (si->off) {
10345         case offsetof(struct sk_reuseport_md, data):
10346                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10347                 break;
10348
10349         case offsetof(struct sk_reuseport_md, len):
10350                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10351                 break;
10352
10353         case offsetof(struct sk_reuseport_md, eth_protocol):
10354                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10355                 break;
10356
10357         case offsetof(struct sk_reuseport_md, ip_protocol):
10358                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10359                 break;
10360
10361         case offsetof(struct sk_reuseport_md, data_end):
10362                 SK_REUSEPORT_LOAD_FIELD(data_end);
10363                 break;
10364
10365         case offsetof(struct sk_reuseport_md, hash):
10366                 SK_REUSEPORT_LOAD_FIELD(hash);
10367                 break;
10368
10369         case offsetof(struct sk_reuseport_md, bind_inany):
10370                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10371                 break;
10372
10373         case offsetof(struct sk_reuseport_md, sk):
10374                 SK_REUSEPORT_LOAD_FIELD(sk);
10375                 break;
10376
10377         case offsetof(struct sk_reuseport_md, migrating_sk):
10378                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10379                 break;
10380         }
10381
10382         return insn - insn_buf;
10383 }
10384
10385 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10386         .get_func_proto         = sk_reuseport_func_proto,
10387         .is_valid_access        = sk_reuseport_is_valid_access,
10388         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10389 };
10390
10391 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10392 };
10393
10394 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10395 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10396
10397 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10398            struct sock *, sk, u64, flags)
10399 {
10400         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10401                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10402                 return -EINVAL;
10403         if (unlikely(sk && sk_is_refcounted(sk)))
10404                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10405         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10406                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10407
10408         /* Check if socket is suitable for packet L3/L4 protocol */
10409         if (sk && sk->sk_protocol != ctx->protocol)
10410                 return -EPROTOTYPE;
10411         if (sk && sk->sk_family != ctx->family &&
10412             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10413                 return -EAFNOSUPPORT;
10414
10415         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10416                 return -EEXIST;
10417
10418         /* Select socket as lookup result */
10419         ctx->selected_sk = sk;
10420         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10421         return 0;
10422 }
10423
10424 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10425         .func           = bpf_sk_lookup_assign,
10426         .gpl_only       = false,
10427         .ret_type       = RET_INTEGER,
10428         .arg1_type      = ARG_PTR_TO_CTX,
10429         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10430         .arg3_type      = ARG_ANYTHING,
10431 };
10432
10433 static const struct bpf_func_proto *
10434 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10435 {
10436         switch (func_id) {
10437         case BPF_FUNC_perf_event_output:
10438                 return &bpf_event_output_data_proto;
10439         case BPF_FUNC_sk_assign:
10440                 return &bpf_sk_lookup_assign_proto;
10441         case BPF_FUNC_sk_release:
10442                 return &bpf_sk_release_proto;
10443         default:
10444                 return bpf_sk_base_func_proto(func_id);
10445         }
10446 }
10447
10448 static bool sk_lookup_is_valid_access(int off, int size,
10449                                       enum bpf_access_type type,
10450                                       const struct bpf_prog *prog,
10451                                       struct bpf_insn_access_aux *info)
10452 {
10453         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10454                 return false;
10455         if (off % size != 0)
10456                 return false;
10457         if (type != BPF_READ)
10458                 return false;
10459
10460         switch (off) {
10461         case offsetof(struct bpf_sk_lookup, sk):
10462                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10463                 return size == sizeof(__u64);
10464
10465         case bpf_ctx_range(struct bpf_sk_lookup, family):
10466         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10467         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10468         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10469         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10470         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10471         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10472         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10473                 bpf_ctx_record_field_size(info, sizeof(__u32));
10474                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10475
10476         default:
10477                 return false;
10478         }
10479 }
10480
10481 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10482                                         const struct bpf_insn *si,
10483                                         struct bpf_insn *insn_buf,
10484                                         struct bpf_prog *prog,
10485                                         u32 *target_size)
10486 {
10487         struct bpf_insn *insn = insn_buf;
10488
10489         switch (si->off) {
10490         case offsetof(struct bpf_sk_lookup, sk):
10491                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10492                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10493                 break;
10494
10495         case offsetof(struct bpf_sk_lookup, family):
10496                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10497                                       bpf_target_off(struct bpf_sk_lookup_kern,
10498                                                      family, 2, target_size));
10499                 break;
10500
10501         case offsetof(struct bpf_sk_lookup, protocol):
10502                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10503                                       bpf_target_off(struct bpf_sk_lookup_kern,
10504                                                      protocol, 2, target_size));
10505                 break;
10506
10507         case offsetof(struct bpf_sk_lookup, remote_ip4):
10508                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10509                                       bpf_target_off(struct bpf_sk_lookup_kern,
10510                                                      v4.saddr, 4, target_size));
10511                 break;
10512
10513         case offsetof(struct bpf_sk_lookup, local_ip4):
10514                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10515                                       bpf_target_off(struct bpf_sk_lookup_kern,
10516                                                      v4.daddr, 4, target_size));
10517                 break;
10518
10519         case bpf_ctx_range_till(struct bpf_sk_lookup,
10520                                 remote_ip6[0], remote_ip6[3]): {
10521 #if IS_ENABLED(CONFIG_IPV6)
10522                 int off = si->off;
10523
10524                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10525                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10526                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10527                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10528                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10529                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10530 #else
10531                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10532 #endif
10533                 break;
10534         }
10535         case bpf_ctx_range_till(struct bpf_sk_lookup,
10536                                 local_ip6[0], local_ip6[3]): {
10537 #if IS_ENABLED(CONFIG_IPV6)
10538                 int off = si->off;
10539
10540                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10541                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10542                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10543                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10544                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10545                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10546 #else
10547                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10548 #endif
10549                 break;
10550         }
10551         case offsetof(struct bpf_sk_lookup, remote_port):
10552                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10553                                       bpf_target_off(struct bpf_sk_lookup_kern,
10554                                                      sport, 2, target_size));
10555                 break;
10556
10557         case offsetof(struct bpf_sk_lookup, local_port):
10558                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10559                                       bpf_target_off(struct bpf_sk_lookup_kern,
10560                                                      dport, 2, target_size));
10561                 break;
10562         }
10563
10564         return insn - insn_buf;
10565 }
10566
10567 const struct bpf_prog_ops sk_lookup_prog_ops = {
10568         .test_run = bpf_prog_test_run_sk_lookup,
10569 };
10570
10571 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10572         .get_func_proto         = sk_lookup_func_proto,
10573         .is_valid_access        = sk_lookup_is_valid_access,
10574         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10575 };
10576
10577 #endif /* CONFIG_INET */
10578
10579 DEFINE_BPF_DISPATCHER(xdp)
10580
10581 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10582 {
10583         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10584 }
10585
10586 #ifdef CONFIG_DEBUG_INFO_BTF
10587 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10588 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10589 BTF_SOCK_TYPE_xxx
10590 #undef BTF_SOCK_TYPE
10591 #else
10592 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10593 #endif
10594
10595 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10596 {
10597         /* tcp6_sock type is not generated in dwarf and hence btf,
10598          * trigger an explicit type generation here.
10599          */
10600         BTF_TYPE_EMIT(struct tcp6_sock);
10601         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10602             sk->sk_family == AF_INET6)
10603                 return (unsigned long)sk;
10604
10605         return (unsigned long)NULL;
10606 }
10607
10608 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10609         .func                   = bpf_skc_to_tcp6_sock,
10610         .gpl_only               = false,
10611         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10612         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10613         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10614 };
10615
10616 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10617 {
10618         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10619                 return (unsigned long)sk;
10620
10621         return (unsigned long)NULL;
10622 }
10623
10624 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10625         .func                   = bpf_skc_to_tcp_sock,
10626         .gpl_only               = false,
10627         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10628         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10629         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10630 };
10631
10632 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10633 {
10634         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10635          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10636          */
10637         BTF_TYPE_EMIT(struct inet_timewait_sock);
10638         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10639
10640 #ifdef CONFIG_INET
10641         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10642                 return (unsigned long)sk;
10643 #endif
10644
10645 #if IS_BUILTIN(CONFIG_IPV6)
10646         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10647                 return (unsigned long)sk;
10648 #endif
10649
10650         return (unsigned long)NULL;
10651 }
10652
10653 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10654         .func                   = bpf_skc_to_tcp_timewait_sock,
10655         .gpl_only               = false,
10656         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10657         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10658         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10659 };
10660
10661 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10662 {
10663 #ifdef CONFIG_INET
10664         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10665                 return (unsigned long)sk;
10666 #endif
10667
10668 #if IS_BUILTIN(CONFIG_IPV6)
10669         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10670                 return (unsigned long)sk;
10671 #endif
10672
10673         return (unsigned long)NULL;
10674 }
10675
10676 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10677         .func                   = bpf_skc_to_tcp_request_sock,
10678         .gpl_only               = false,
10679         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10680         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10681         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10682 };
10683
10684 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10685 {
10686         /* udp6_sock type is not generated in dwarf and hence btf,
10687          * trigger an explicit type generation here.
10688          */
10689         BTF_TYPE_EMIT(struct udp6_sock);
10690         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10691             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10692                 return (unsigned long)sk;
10693
10694         return (unsigned long)NULL;
10695 }
10696
10697 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10698         .func                   = bpf_skc_to_udp6_sock,
10699         .gpl_only               = false,
10700         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10701         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10702         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10703 };
10704
10705 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10706 {
10707         return (unsigned long)sock_from_file(file);
10708 }
10709
10710 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10711 BTF_ID(struct, socket)
10712 BTF_ID(struct, file)
10713
10714 const struct bpf_func_proto bpf_sock_from_file_proto = {
10715         .func           = bpf_sock_from_file,
10716         .gpl_only       = false,
10717         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10718         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10719         .arg1_type      = ARG_PTR_TO_BTF_ID,
10720         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10721 };
10722
10723 static const struct bpf_func_proto *
10724 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10725 {
10726         const struct bpf_func_proto *func;
10727
10728         switch (func_id) {
10729         case BPF_FUNC_skc_to_tcp6_sock:
10730                 func = &bpf_skc_to_tcp6_sock_proto;
10731                 break;
10732         case BPF_FUNC_skc_to_tcp_sock:
10733                 func = &bpf_skc_to_tcp_sock_proto;
10734                 break;
10735         case BPF_FUNC_skc_to_tcp_timewait_sock:
10736                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10737                 break;
10738         case BPF_FUNC_skc_to_tcp_request_sock:
10739                 func = &bpf_skc_to_tcp_request_sock_proto;
10740                 break;
10741         case BPF_FUNC_skc_to_udp6_sock:
10742                 func = &bpf_skc_to_udp6_sock_proto;
10743                 break;
10744         default:
10745                 return bpf_base_func_proto(func_id);
10746         }
10747
10748         if (!perfmon_capable())
10749                 return NULL;
10750
10751         return func;
10752 }