Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
[linux-2.6-microblaze.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88         if (in_compat_syscall()) {
89                 struct compat_sock_fprog f32;
90
91                 if (len != sizeof(f32))
92                         return -EINVAL;
93                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
94                         return -EFAULT;
95                 memset(dst, 0, sizeof(*dst));
96                 dst->len = f32.len;
97                 dst->filter = compat_ptr(f32.filter);
98         } else {
99                 if (len != sizeof(*dst))
100                         return -EINVAL;
101                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
102                         return -EFAULT;
103         }
104
105         return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108
109 /**
110  *      sk_filter_trim_cap - run a packet through a socket filter
111  *      @sk: sock associated with &sk_buff
112  *      @skb: buffer to filter
113  *      @cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124         int err;
125         struct sk_filter *filter;
126
127         /*
128          * If the skb was allocated from pfmemalloc reserves, only
129          * allow SOCK_MEMALLOC sockets to use it as this socket is
130          * helping free memory
131          */
132         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134                 return -ENOMEM;
135         }
136         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137         if (err)
138                 return err;
139
140         err = security_sock_rcv_skb(sk, skb);
141         if (err)
142                 return err;
143
144         rcu_read_lock();
145         filter = rcu_dereference(sk->sk_filter);
146         if (filter) {
147                 struct sock *save_sk = skb->sk;
148                 unsigned int pkt_len;
149
150                 skb->sk = sk;
151                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152                 skb->sk = save_sk;
153                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154         }
155         rcu_read_unlock();
156
157         return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163         return skb_get_poff(skb);
164 }
165
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168         struct nlattr *nla;
169
170         if (skb_is_nonlinear(skb))
171                 return 0;
172
173         if (skb->len < sizeof(struct nlattr))
174                 return 0;
175
176         if (a > skb->len - sizeof(struct nlattr))
177                 return 0;
178
179         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180         if (nla)
181                 return (void *) nla - (void *) skb->data;
182
183         return 0;
184 }
185
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188         struct nlattr *nla;
189
190         if (skb_is_nonlinear(skb))
191                 return 0;
192
193         if (skb->len < sizeof(struct nlattr))
194                 return 0;
195
196         if (a > skb->len - sizeof(struct nlattr))
197                 return 0;
198
199         nla = (struct nlattr *) &skb->data[a];
200         if (nla->nla_len > skb->len - a)
201                 return 0;
202
203         nla = nla_find_nested(nla, x);
204         if (nla)
205                 return (void *) nla - (void *) skb->data;
206
207         return 0;
208 }
209
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211            data, int, headlen, int, offset)
212 {
213         u8 tmp, *ptr;
214         const int len = sizeof(tmp);
215
216         if (offset >= 0) {
217                 if (headlen - offset >= len)
218                         return *(u8 *)(data + offset);
219                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220                         return tmp;
221         } else {
222                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223                 if (likely(ptr))
224                         return *(u8 *)ptr;
225         }
226
227         return -EFAULT;
228 }
229
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231            int, offset)
232 {
233         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234                                          offset);
235 }
236
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238            data, int, headlen, int, offset)
239 {
240         u16 tmp, *ptr;
241         const int len = sizeof(tmp);
242
243         if (offset >= 0) {
244                 if (headlen - offset >= len)
245                         return get_unaligned_be16(data + offset);
246                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247                         return be16_to_cpu(tmp);
248         } else {
249                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250                 if (likely(ptr))
251                         return get_unaligned_be16(ptr);
252         }
253
254         return -EFAULT;
255 }
256
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258            int, offset)
259 {
260         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261                                           offset);
262 }
263
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265            data, int, headlen, int, offset)
266 {
267         u32 tmp, *ptr;
268         const int len = sizeof(tmp);
269
270         if (likely(offset >= 0)) {
271                 if (headlen - offset >= len)
272                         return get_unaligned_be32(data + offset);
273                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274                         return be32_to_cpu(tmp);
275         } else {
276                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277                 if (likely(ptr))
278                         return get_unaligned_be32(ptr);
279         }
280
281         return -EFAULT;
282 }
283
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285            int, offset)
286 {
287         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288                                           offset);
289 }
290
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292                               struct bpf_insn *insn_buf)
293 {
294         struct bpf_insn *insn = insn_buf;
295
296         switch (skb_field) {
297         case SKF_AD_MARK:
298                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299
300                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301                                       offsetof(struct sk_buff, mark));
302                 break;
303
304         case SKF_AD_PKTTYPE:
305                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310                 break;
311
312         case SKF_AD_QUEUE:
313                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314
315                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316                                       offsetof(struct sk_buff, queue_mapping));
317                 break;
318
319         case SKF_AD_VLAN_TAG:
320                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321
322                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324                                       offsetof(struct sk_buff, vlan_tci));
325                 break;
326         case SKF_AD_VLAN_TAG_PRESENT:
327                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328                 if (PKT_VLAN_PRESENT_BIT)
329                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330                 if (PKT_VLAN_PRESENT_BIT < 7)
331                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332                 break;
333         }
334
335         return insn - insn_buf;
336 }
337
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339                                    struct bpf_insn **insnp)
340 {
341         struct bpf_insn *insn = *insnp;
342         u32 cnt;
343
344         switch (fp->k) {
345         case SKF_AD_OFF + SKF_AD_PROTOCOL:
346                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347
348                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
349                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350                                       offsetof(struct sk_buff, protocol));
351                 /* A = ntohs(A) [emitting a nop or swap16] */
352                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353                 break;
354
355         case SKF_AD_OFF + SKF_AD_PKTTYPE:
356                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357                 insn += cnt - 1;
358                 break;
359
360         case SKF_AD_OFF + SKF_AD_IFINDEX:
361         case SKF_AD_OFF + SKF_AD_HATYPE:
362                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364
365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366                                       BPF_REG_TMP, BPF_REG_CTX,
367                                       offsetof(struct sk_buff, dev));
368                 /* if (tmp != 0) goto pc + 1 */
369                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370                 *insn++ = BPF_EXIT_INSN();
371                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373                                             offsetof(struct net_device, ifindex));
374                 else
375                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376                                             offsetof(struct net_device, type));
377                 break;
378
379         case SKF_AD_OFF + SKF_AD_MARK:
380                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381                 insn += cnt - 1;
382                 break;
383
384         case SKF_AD_OFF + SKF_AD_RXHASH:
385                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386
387                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388                                     offsetof(struct sk_buff, hash));
389                 break;
390
391         case SKF_AD_OFF + SKF_AD_QUEUE:
392                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393                 insn += cnt - 1;
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398                                          BPF_REG_A, BPF_REG_CTX, insn);
399                 insn += cnt - 1;
400                 break;
401
402         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404                                          BPF_REG_A, BPF_REG_CTX, insn);
405                 insn += cnt - 1;
406                 break;
407
408         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410
411                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413                                       offsetof(struct sk_buff, vlan_proto));
414                 /* A = ntohs(A) [emitting a nop or swap16] */
415                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416                 break;
417
418         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419         case SKF_AD_OFF + SKF_AD_NLATTR:
420         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421         case SKF_AD_OFF + SKF_AD_CPU:
422         case SKF_AD_OFF + SKF_AD_RANDOM:
423                 /* arg1 = CTX */
424                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425                 /* arg2 = A */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427                 /* arg3 = X */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
430                 switch (fp->k) {
431                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433                         break;
434                 case SKF_AD_OFF + SKF_AD_NLATTR:
435                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436                         break;
437                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439                         break;
440                 case SKF_AD_OFF + SKF_AD_CPU:
441                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442                         break;
443                 case SKF_AD_OFF + SKF_AD_RANDOM:
444                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445                         bpf_user_rnd_init_once();
446                         break;
447                 }
448                 break;
449
450         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451                 /* A ^= X */
452                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453                 break;
454
455         default:
456                 /* This is just a dummy call to avoid letting the compiler
457                  * evict __bpf_call_base() as an optimization. Placed here
458                  * where no-one bothers.
459                  */
460                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461                 return false;
462         }
463
464         *insnp = insn;
465         return true;
466 }
467
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472         bool endian = BPF_SIZE(fp->code) == BPF_H ||
473                       BPF_SIZE(fp->code) == BPF_W;
474         bool indirect = BPF_MODE(fp->code) == BPF_IND;
475         const int ip_align = NET_IP_ALIGN;
476         struct bpf_insn *insn = *insnp;
477         int offset = fp->k;
478
479         if (!indirect &&
480             ((unaligned_ok && offset >= 0) ||
481              (!unaligned_ok && offset >= 0 &&
482               offset + ip_align >= 0 &&
483               offset + ip_align % size == 0))) {
484                 bool ldx_off_ok = offset <= S16_MAX;
485
486                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487                 if (offset)
488                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490                                       size, 2 + endian + (!ldx_off_ok * 2));
491                 if (ldx_off_ok) {
492                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493                                               BPF_REG_D, offset);
494                 } else {
495                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498                                               BPF_REG_TMP, 0);
499                 }
500                 if (endian)
501                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502                 *insn++ = BPF_JMP_A(8);
503         }
504
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508         if (!indirect) {
509                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510         } else {
511                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512                 if (fp->k)
513                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514         }
515
516         switch (BPF_SIZE(fp->code)) {
517         case BPF_B:
518                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519                 break;
520         case BPF_H:
521                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522                 break;
523         case BPF_W:
524                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525                 break;
526         default:
527                 return false;
528         }
529
530         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532         *insn   = BPF_EXIT_INSN();
533
534         *insnp = insn;
535         return true;
536 }
537
538 /**
539  *      bpf_convert_filter - convert filter program
540  *      @prog: the user passed filter program
541  *      @len: the length of the user passed filter program
542  *      @new_prog: allocated 'struct bpf_prog' or NULL
543  *      @new_len: pointer to store length of converted program
544  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558                               struct bpf_prog *new_prog, int *new_len,
559                               bool *seen_ld_abs)
560 {
561         int new_flen = 0, pass = 0, target, i, stack_off;
562         struct bpf_insn *new_insn, *first_insn = NULL;
563         struct sock_filter *fp;
564         int *addrs = NULL;
565         u8 bpf_src;
566
567         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569
570         if (len <= 0 || len > BPF_MAXINSNS)
571                 return -EINVAL;
572
573         if (new_prog) {
574                 first_insn = new_prog->insnsi;
575                 addrs = kcalloc(len, sizeof(*addrs),
576                                 GFP_KERNEL | __GFP_NOWARN);
577                 if (!addrs)
578                         return -ENOMEM;
579         }
580
581 do_pass:
582         new_insn = first_insn;
583         fp = prog;
584
585         /* Classic BPF related prologue emission. */
586         if (new_prog) {
587                 /* Classic BPF expects A and X to be reset first. These need
588                  * to be guaranteed to be the first two instructions.
589                  */
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592
593                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
594                  * In eBPF case it's done by the compiler, here we need to
595                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596                  */
597                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598                 if (*seen_ld_abs) {
599                         /* For packet access in classic BPF, cache skb->data
600                          * in callee-saved BPF R8 and skb->len - skb->data_len
601                          * (headlen) in BPF R9. Since classic BPF is read-only
602                          * on CTX, we only need to cache it once.
603                          */
604                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605                                                   BPF_REG_D, BPF_REG_CTX,
606                                                   offsetof(struct sk_buff, data));
607                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, len));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, data_len));
611                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612                 }
613         } else {
614                 new_insn += 3;
615         }
616
617         for (i = 0; i < len; fp++, i++) {
618                 struct bpf_insn tmp_insns[32] = { };
619                 struct bpf_insn *insn = tmp_insns;
620
621                 if (addrs)
622                         addrs[i] = new_insn - first_insn;
623
624                 switch (fp->code) {
625                 /* All arithmetic insns and skb loads map as-is. */
626                 case BPF_ALU | BPF_ADD | BPF_X:
627                 case BPF_ALU | BPF_ADD | BPF_K:
628                 case BPF_ALU | BPF_SUB | BPF_X:
629                 case BPF_ALU | BPF_SUB | BPF_K:
630                 case BPF_ALU | BPF_AND | BPF_X:
631                 case BPF_ALU | BPF_AND | BPF_K:
632                 case BPF_ALU | BPF_OR | BPF_X:
633                 case BPF_ALU | BPF_OR | BPF_K:
634                 case BPF_ALU | BPF_LSH | BPF_X:
635                 case BPF_ALU | BPF_LSH | BPF_K:
636                 case BPF_ALU | BPF_RSH | BPF_X:
637                 case BPF_ALU | BPF_RSH | BPF_K:
638                 case BPF_ALU | BPF_XOR | BPF_X:
639                 case BPF_ALU | BPF_XOR | BPF_K:
640                 case BPF_ALU | BPF_MUL | BPF_X:
641                 case BPF_ALU | BPF_MUL | BPF_K:
642                 case BPF_ALU | BPF_DIV | BPF_X:
643                 case BPF_ALU | BPF_DIV | BPF_K:
644                 case BPF_ALU | BPF_MOD | BPF_X:
645                 case BPF_ALU | BPF_MOD | BPF_K:
646                 case BPF_ALU | BPF_NEG:
647                 case BPF_LD | BPF_ABS | BPF_W:
648                 case BPF_LD | BPF_ABS | BPF_H:
649                 case BPF_LD | BPF_ABS | BPF_B:
650                 case BPF_LD | BPF_IND | BPF_W:
651                 case BPF_LD | BPF_IND | BPF_H:
652                 case BPF_LD | BPF_IND | BPF_B:
653                         /* Check for overloaded BPF extension and
654                          * directly convert it if found, otherwise
655                          * just move on with mapping.
656                          */
657                         if (BPF_CLASS(fp->code) == BPF_LD &&
658                             BPF_MODE(fp->code) == BPF_ABS &&
659                             convert_bpf_extensions(fp, &insn))
660                                 break;
661                         if (BPF_CLASS(fp->code) == BPF_LD &&
662                             convert_bpf_ld_abs(fp, &insn)) {
663                                 *seen_ld_abs = true;
664                                 break;
665                         }
666
667                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670                                 /* Error with exception code on div/mod by 0.
671                                  * For cBPF programs, this was always return 0.
672                                  */
673                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675                                 *insn++ = BPF_EXIT_INSN();
676                         }
677
678                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679                         break;
680
681                 /* Jump transformation cannot use BPF block macros
682                  * everywhere as offset calculation and target updates
683                  * require a bit more work than the rest, i.e. jump
684                  * opcodes map as-is, but offsets need adjustment.
685                  */
686
687 #define BPF_EMIT_JMP                                                    \
688         do {                                                            \
689                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
690                 s32 off;                                                \
691                                                                         \
692                 if (target >= len || target < 0)                        \
693                         goto err;                                       \
694                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
695                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
696                 off -= insn - tmp_insns;                                \
697                 /* Reject anything not fitting into insn->off. */       \
698                 if (off < off_min || off > off_max)                     \
699                         goto err;                                       \
700                 insn->off = off;                                        \
701         } while (0)
702
703                 case BPF_JMP | BPF_JA:
704                         target = i + fp->k + 1;
705                         insn->code = fp->code;
706                         BPF_EMIT_JMP;
707                         break;
708
709                 case BPF_JMP | BPF_JEQ | BPF_K:
710                 case BPF_JMP | BPF_JEQ | BPF_X:
711                 case BPF_JMP | BPF_JSET | BPF_K:
712                 case BPF_JMP | BPF_JSET | BPF_X:
713                 case BPF_JMP | BPF_JGT | BPF_K:
714                 case BPF_JMP | BPF_JGT | BPF_X:
715                 case BPF_JMP | BPF_JGE | BPF_K:
716                 case BPF_JMP | BPF_JGE | BPF_X:
717                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718                                 /* BPF immediates are signed, zero extend
719                                  * immediate into tmp register and use it
720                                  * in compare insn.
721                                  */
722                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723
724                                 insn->dst_reg = BPF_REG_A;
725                                 insn->src_reg = BPF_REG_TMP;
726                                 bpf_src = BPF_X;
727                         } else {
728                                 insn->dst_reg = BPF_REG_A;
729                                 insn->imm = fp->k;
730                                 bpf_src = BPF_SRC(fp->code);
731                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732                         }
733
734                         /* Common case where 'jump_false' is next insn. */
735                         if (fp->jf == 0) {
736                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737                                 target = i + fp->jt + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741
742                         /* Convert some jumps when 'jump_true' is next insn. */
743                         if (fp->jt == 0) {
744                                 switch (BPF_OP(fp->code)) {
745                                 case BPF_JEQ:
746                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
747                                         break;
748                                 case BPF_JGT:
749                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
750                                         break;
751                                 case BPF_JGE:
752                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
753                                         break;
754                                 default:
755                                         goto jmp_rest;
756                                 }
757
758                                 target = i + fp->jf + 1;
759                                 BPF_EMIT_JMP;
760                                 break;
761                         }
762 jmp_rest:
763                         /* Other jumps are mapped into two insns: Jxx and JA. */
764                         target = i + fp->jt + 1;
765                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766                         BPF_EMIT_JMP;
767                         insn++;
768
769                         insn->code = BPF_JMP | BPF_JA;
770                         target = i + fp->jf + 1;
771                         BPF_EMIT_JMP;
772                         break;
773
774                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775                 case BPF_LDX | BPF_MSH | BPF_B: {
776                         struct sock_filter tmp = {
777                                 .code   = BPF_LD | BPF_ABS | BPF_B,
778                                 .k      = fp->k,
779                         };
780
781                         *seen_ld_abs = true;
782
783                         /* X = A */
784                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
786                         convert_bpf_ld_abs(&tmp, &insn);
787                         insn++;
788                         /* A &= 0xf */
789                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790                         /* A <<= 2 */
791                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792                         /* tmp = X */
793                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794                         /* X = A */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796                         /* A = tmp */
797                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798                         break;
799                 }
800                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
801                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802                  */
803                 case BPF_RET | BPF_A:
804                 case BPF_RET | BPF_K:
805                         if (BPF_RVAL(fp->code) == BPF_K)
806                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807                                                         0, fp->k);
808                         *insn = BPF_EXIT_INSN();
809                         break;
810
811                 /* Store to stack. */
812                 case BPF_ST:
813                 case BPF_STX:
814                         stack_off = fp->k * 4  + 4;
815                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
817                                             -stack_off);
818                         /* check_load_and_stores() verifies that classic BPF can
819                          * load from stack only after write, so tracking
820                          * stack_depth for ST|STX insns is enough
821                          */
822                         if (new_prog && new_prog->aux->stack_depth < stack_off)
823                                 new_prog->aux->stack_depth = stack_off;
824                         break;
825
826                 /* Load from stack. */
827                 case BPF_LD | BPF_MEM:
828                 case BPF_LDX | BPF_MEM:
829                         stack_off = fp->k * 4  + 4;
830                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832                                             -stack_off);
833                         break;
834
835                 /* A = K or X = K */
836                 case BPF_LD | BPF_IMM:
837                 case BPF_LDX | BPF_IMM:
838                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839                                               BPF_REG_A : BPF_REG_X, fp->k);
840                         break;
841
842                 /* X = A */
843                 case BPF_MISC | BPF_TAX:
844                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845                         break;
846
847                 /* A = X */
848                 case BPF_MISC | BPF_TXA:
849                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850                         break;
851
852                 /* A = skb->len or X = skb->len */
853                 case BPF_LD | BPF_W | BPF_LEN:
854                 case BPF_LDX | BPF_W | BPF_LEN:
855                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857                                             offsetof(struct sk_buff, len));
858                         break;
859
860                 /* Access seccomp_data fields. */
861                 case BPF_LDX | BPF_ABS | BPF_W:
862                         /* A = *(u32 *) (ctx + K) */
863                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864                         break;
865
866                 /* Unknown instruction. */
867                 default:
868                         goto err;
869                 }
870
871                 insn++;
872                 if (new_prog)
873                         memcpy(new_insn, tmp_insns,
874                                sizeof(*insn) * (insn - tmp_insns));
875                 new_insn += insn - tmp_insns;
876         }
877
878         if (!new_prog) {
879                 /* Only calculating new length. */
880                 *new_len = new_insn - first_insn;
881                 if (*seen_ld_abs)
882                         *new_len += 4; /* Prologue bits. */
883                 return 0;
884         }
885
886         pass++;
887         if (new_flen != new_insn - first_insn) {
888                 new_flen = new_insn - first_insn;
889                 if (pass > 2)
890                         goto err;
891                 goto do_pass;
892         }
893
894         kfree(addrs);
895         BUG_ON(*new_len != new_flen);
896         return 0;
897 err:
898         kfree(addrs);
899         return -EINVAL;
900 }
901
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912         int pc, ret = 0;
913
914         BUILD_BUG_ON(BPF_MEMWORDS > 16);
915
916         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917         if (!masks)
918                 return -ENOMEM;
919
920         memset(masks, 0xff, flen * sizeof(*masks));
921
922         for (pc = 0; pc < flen; pc++) {
923                 memvalid &= masks[pc];
924
925                 switch (filter[pc].code) {
926                 case BPF_ST:
927                 case BPF_STX:
928                         memvalid |= (1 << filter[pc].k);
929                         break;
930                 case BPF_LD | BPF_MEM:
931                 case BPF_LDX | BPF_MEM:
932                         if (!(memvalid & (1 << filter[pc].k))) {
933                                 ret = -EINVAL;
934                                 goto error;
935                         }
936                         break;
937                 case BPF_JMP | BPF_JA:
938                         /* A jump must set masks on target */
939                         masks[pc + 1 + filter[pc].k] &= memvalid;
940                         memvalid = ~0;
941                         break;
942                 case BPF_JMP | BPF_JEQ | BPF_K:
943                 case BPF_JMP | BPF_JEQ | BPF_X:
944                 case BPF_JMP | BPF_JGE | BPF_K:
945                 case BPF_JMP | BPF_JGE | BPF_X:
946                 case BPF_JMP | BPF_JGT | BPF_K:
947                 case BPF_JMP | BPF_JGT | BPF_X:
948                 case BPF_JMP | BPF_JSET | BPF_K:
949                 case BPF_JMP | BPF_JSET | BPF_X:
950                         /* A jump must set masks on targets */
951                         masks[pc + 1 + filter[pc].jt] &= memvalid;
952                         masks[pc + 1 + filter[pc].jf] &= memvalid;
953                         memvalid = ~0;
954                         break;
955                 }
956         }
957 error:
958         kfree(masks);
959         return ret;
960 }
961
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964         static const bool codes[] = {
965                 /* 32 bit ALU operations */
966                 [BPF_ALU | BPF_ADD | BPF_K] = true,
967                 [BPF_ALU | BPF_ADD | BPF_X] = true,
968                 [BPF_ALU | BPF_SUB | BPF_K] = true,
969                 [BPF_ALU | BPF_SUB | BPF_X] = true,
970                 [BPF_ALU | BPF_MUL | BPF_K] = true,
971                 [BPF_ALU | BPF_MUL | BPF_X] = true,
972                 [BPF_ALU | BPF_DIV | BPF_K] = true,
973                 [BPF_ALU | BPF_DIV | BPF_X] = true,
974                 [BPF_ALU | BPF_MOD | BPF_K] = true,
975                 [BPF_ALU | BPF_MOD | BPF_X] = true,
976                 [BPF_ALU | BPF_AND | BPF_K] = true,
977                 [BPF_ALU | BPF_AND | BPF_X] = true,
978                 [BPF_ALU | BPF_OR | BPF_K] = true,
979                 [BPF_ALU | BPF_OR | BPF_X] = true,
980                 [BPF_ALU | BPF_XOR | BPF_K] = true,
981                 [BPF_ALU | BPF_XOR | BPF_X] = true,
982                 [BPF_ALU | BPF_LSH | BPF_K] = true,
983                 [BPF_ALU | BPF_LSH | BPF_X] = true,
984                 [BPF_ALU | BPF_RSH | BPF_K] = true,
985                 [BPF_ALU | BPF_RSH | BPF_X] = true,
986                 [BPF_ALU | BPF_NEG] = true,
987                 /* Load instructions */
988                 [BPF_LD | BPF_W | BPF_ABS] = true,
989                 [BPF_LD | BPF_H | BPF_ABS] = true,
990                 [BPF_LD | BPF_B | BPF_ABS] = true,
991                 [BPF_LD | BPF_W | BPF_LEN] = true,
992                 [BPF_LD | BPF_W | BPF_IND] = true,
993                 [BPF_LD | BPF_H | BPF_IND] = true,
994                 [BPF_LD | BPF_B | BPF_IND] = true,
995                 [BPF_LD | BPF_IMM] = true,
996                 [BPF_LD | BPF_MEM] = true,
997                 [BPF_LDX | BPF_W | BPF_LEN] = true,
998                 [BPF_LDX | BPF_B | BPF_MSH] = true,
999                 [BPF_LDX | BPF_IMM] = true,
1000                 [BPF_LDX | BPF_MEM] = true,
1001                 /* Store instructions */
1002                 [BPF_ST] = true,
1003                 [BPF_STX] = true,
1004                 /* Misc instructions */
1005                 [BPF_MISC | BPF_TAX] = true,
1006                 [BPF_MISC | BPF_TXA] = true,
1007                 /* Return instructions */
1008                 [BPF_RET | BPF_K] = true,
1009                 [BPF_RET | BPF_A] = true,
1010                 /* Jump instructions */
1011                 [BPF_JMP | BPF_JA] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1013                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1015                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1019                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1020         };
1021
1022         if (code_to_probe >= ARRAY_SIZE(codes))
1023                 return false;
1024
1025         return codes[code_to_probe];
1026 }
1027
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029                                 unsigned int flen)
1030 {
1031         if (filter == NULL)
1032                 return false;
1033         if (flen == 0 || flen > BPF_MAXINSNS)
1034                 return false;
1035
1036         return true;
1037 }
1038
1039 /**
1040  *      bpf_check_classic - verify socket filter code
1041  *      @filter: filter to verify
1042  *      @flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054                              unsigned int flen)
1055 {
1056         bool anc_found;
1057         int pc;
1058
1059         /* Check the filter code now */
1060         for (pc = 0; pc < flen; pc++) {
1061                 const struct sock_filter *ftest = &filter[pc];
1062
1063                 /* May we actually operate on this code? */
1064                 if (!chk_code_allowed(ftest->code))
1065                         return -EINVAL;
1066
1067                 /* Some instructions need special checks */
1068                 switch (ftest->code) {
1069                 case BPF_ALU | BPF_DIV | BPF_K:
1070                 case BPF_ALU | BPF_MOD | BPF_K:
1071                         /* Check for division by zero */
1072                         if (ftest->k == 0)
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_ALU | BPF_LSH | BPF_K:
1076                 case BPF_ALU | BPF_RSH | BPF_K:
1077                         if (ftest->k >= 32)
1078                                 return -EINVAL;
1079                         break;
1080                 case BPF_LD | BPF_MEM:
1081                 case BPF_LDX | BPF_MEM:
1082                 case BPF_ST:
1083                 case BPF_STX:
1084                         /* Check for invalid memory addresses */
1085                         if (ftest->k >= BPF_MEMWORDS)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_JMP | BPF_JA:
1089                         /* Note, the large ftest->k might cause loops.
1090                          * Compare this with conditional jumps below,
1091                          * where offsets are limited. --ANK (981016)
1092                          */
1093                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1094                                 return -EINVAL;
1095                         break;
1096                 case BPF_JMP | BPF_JEQ | BPF_K:
1097                 case BPF_JMP | BPF_JEQ | BPF_X:
1098                 case BPF_JMP | BPF_JGE | BPF_K:
1099                 case BPF_JMP | BPF_JGE | BPF_X:
1100                 case BPF_JMP | BPF_JGT | BPF_K:
1101                 case BPF_JMP | BPF_JGT | BPF_X:
1102                 case BPF_JMP | BPF_JSET | BPF_K:
1103                 case BPF_JMP | BPF_JSET | BPF_X:
1104                         /* Both conditionals must be safe */
1105                         if (pc + ftest->jt + 1 >= flen ||
1106                             pc + ftest->jf + 1 >= flen)
1107                                 return -EINVAL;
1108                         break;
1109                 case BPF_LD | BPF_W | BPF_ABS:
1110                 case BPF_LD | BPF_H | BPF_ABS:
1111                 case BPF_LD | BPF_B | BPF_ABS:
1112                         anc_found = false;
1113                         if (bpf_anc_helper(ftest) & BPF_ANC)
1114                                 anc_found = true;
1115                         /* Ancillary operation unknown or unsupported */
1116                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117                                 return -EINVAL;
1118                 }
1119         }
1120
1121         /* Last instruction must be a RET code */
1122         switch (filter[flen - 1].code) {
1123         case BPF_RET | BPF_K:
1124         case BPF_RET | BPF_A:
1125                 return check_load_and_stores(filter, flen);
1126         }
1127
1128         return -EINVAL;
1129 }
1130
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132                                       const struct sock_fprog *fprog)
1133 {
1134         unsigned int fsize = bpf_classic_proglen(fprog);
1135         struct sock_fprog_kern *fkprog;
1136
1137         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138         if (!fp->orig_prog)
1139                 return -ENOMEM;
1140
1141         fkprog = fp->orig_prog;
1142         fkprog->len = fprog->len;
1143
1144         fkprog->filter = kmemdup(fp->insns, fsize,
1145                                  GFP_KERNEL | __GFP_NOWARN);
1146         if (!fkprog->filter) {
1147                 kfree(fp->orig_prog);
1148                 return -ENOMEM;
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156         struct sock_fprog_kern *fprog = fp->orig_prog;
1157
1158         if (fprog) {
1159                 kfree(fprog->filter);
1160                 kfree(fprog);
1161         }
1162 }
1163
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167                 bpf_prog_put(prog);
1168         } else {
1169                 bpf_release_orig_filter(prog);
1170                 bpf_prog_free(prog);
1171         }
1172 }
1173
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176         __bpf_prog_release(fp->prog);
1177         kfree(fp);
1178 }
1179
1180 /**
1181  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *      @rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187
1188         __sk_filter_release(fp);
1189 }
1190
1191 /**
1192  *      sk_filter_release - release a socket filter
1193  *      @fp: filter to remove
1194  *
1195  *      Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199         if (refcount_dec_and_test(&fp->refcnt))
1200                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205         u32 filter_size = bpf_prog_size(fp->prog->len);
1206
1207         atomic_sub(filter_size, &sk->sk_omem_alloc);
1208         sk_filter_release(fp);
1209 }
1210
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216         u32 filter_size = bpf_prog_size(fp->prog->len);
1217
1218         /* same check as in sock_kmalloc() */
1219         if (filter_size <= sysctl_optmem_max &&
1220             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1221                 atomic_add(filter_size, &sk->sk_omem_alloc);
1222                 return true;
1223         }
1224         return false;
1225 }
1226
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229         if (!refcount_inc_not_zero(&fp->refcnt))
1230                 return false;
1231
1232         if (!__sk_filter_charge(sk, fp)) {
1233                 sk_filter_release(fp);
1234                 return false;
1235         }
1236         return true;
1237 }
1238
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241         struct sock_filter *old_prog;
1242         struct bpf_prog *old_fp;
1243         int err, new_len, old_len = fp->len;
1244         bool seen_ld_abs = false;
1245
1246         /* We are free to overwrite insns et al right here as it won't be used at
1247          * this point in time anymore internally after the migration to the eBPF
1248          * instruction representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the eBPF translation
1340          * for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > INT_MAX))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > INT_MAX))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb_clear_tstamp(skb);
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb_clear_tstamp(skb);
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 skb = skb_expand_head(skb, hh_len);
2184                 if (!skb)
2185                         return -ENOMEM;
2186         }
2187
2188         rcu_read_lock_bh();
2189         if (!nh) {
2190                 dst = skb_dst(skb);
2191                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192                                       &ipv6_hdr(skb)->daddr);
2193         } else {
2194                 nexthop = &nh->ipv6_nh;
2195         }
2196         neigh = ip_neigh_gw6(dev, nexthop);
2197         if (likely(!IS_ERR(neigh))) {
2198                 int ret;
2199
2200                 sock_confirm_neigh(skb, neigh);
2201                 dev_xmit_recursion_inc();
2202                 ret = neigh_output(neigh, skb, false);
2203                 dev_xmit_recursion_dec();
2204                 rcu_read_unlock_bh();
2205                 return ret;
2206         }
2207         rcu_read_unlock_bh();
2208         if (dst)
2209                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211         kfree_skb(skb);
2212         return -ENETDOWN;
2213 }
2214
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216                                    struct bpf_nh_params *nh)
2217 {
2218         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219         struct net *net = dev_net(dev);
2220         int err, ret = NET_XMIT_DROP;
2221
2222         if (!nh) {
2223                 struct dst_entry *dst;
2224                 struct flowi6 fl6 = {
2225                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2226                         .flowi6_mark  = skb->mark,
2227                         .flowlabel    = ip6_flowinfo(ip6h),
2228                         .flowi6_oif   = dev->ifindex,
2229                         .flowi6_proto = ip6h->nexthdr,
2230                         .daddr        = ip6h->daddr,
2231                         .saddr        = ip6h->saddr,
2232                 };
2233
2234                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235                 if (IS_ERR(dst))
2236                         goto out_drop;
2237
2238                 skb_dst_set(skb, dst);
2239         } else if (nh->nh_family != AF_INET6) {
2240                 goto out_drop;
2241         }
2242
2243         err = bpf_out_neigh_v6(net, skb, dev, nh);
2244         if (unlikely(net_xmit_eval(err)))
2245                 dev->stats.tx_errors++;
2246         else
2247                 ret = NET_XMIT_SUCCESS;
2248         goto out_xmit;
2249 out_drop:
2250         dev->stats.tx_errors++;
2251         kfree_skb(skb);
2252 out_xmit:
2253         return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257                                    struct bpf_nh_params *nh)
2258 {
2259         kfree_skb(skb);
2260         return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266                             struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb_clear_tstamp(skb);
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 skb = skb_expand_head(skb, hh_len);
2282                 if (!skb)
2283                         return -ENOMEM;
2284         }
2285
2286         rcu_read_lock_bh();
2287         if (!nh) {
2288                 struct dst_entry *dst = skb_dst(skb);
2289                 struct rtable *rt = container_of(dst, struct rtable, dst);
2290
2291                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292         } else if (nh->nh_family == AF_INET6) {
2293                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294                 is_v6gw = true;
2295         } else if (nh->nh_family == AF_INET) {
2296                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297         } else {
2298                 rcu_read_unlock_bh();
2299                 goto out_drop;
2300         }
2301
2302         if (likely(!IS_ERR(neigh))) {
2303                 int ret;
2304
2305                 sock_confirm_neigh(skb, neigh);
2306                 dev_xmit_recursion_inc();
2307                 ret = neigh_output(neigh, skb, is_v6gw);
2308                 dev_xmit_recursion_dec();
2309                 rcu_read_unlock_bh();
2310                 return ret;
2311         }
2312         rcu_read_unlock_bh();
2313 out_drop:
2314         kfree_skb(skb);
2315         return -ENETDOWN;
2316 }
2317
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319                                    struct bpf_nh_params *nh)
2320 {
2321         const struct iphdr *ip4h = ip_hdr(skb);
2322         struct net *net = dev_net(dev);
2323         int err, ret = NET_XMIT_DROP;
2324
2325         if (!nh) {
2326                 struct flowi4 fl4 = {
2327                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2328                         .flowi4_mark  = skb->mark,
2329                         .flowi4_tos   = RT_TOS(ip4h->tos),
2330                         .flowi4_oif   = dev->ifindex,
2331                         .flowi4_proto = ip4h->protocol,
2332                         .daddr        = ip4h->daddr,
2333                         .saddr        = ip4h->saddr,
2334                 };
2335                 struct rtable *rt;
2336
2337                 rt = ip_route_output_flow(net, &fl4, NULL);
2338                 if (IS_ERR(rt))
2339                         goto out_drop;
2340                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341                         ip_rt_put(rt);
2342                         goto out_drop;
2343                 }
2344
2345                 skb_dst_set(skb, &rt->dst);
2346         }
2347
2348         err = bpf_out_neigh_v4(net, skb, dev, nh);
2349         if (unlikely(net_xmit_eval(err)))
2350                 dev->stats.tx_errors++;
2351         else
2352                 ret = NET_XMIT_SUCCESS;
2353         goto out_xmit;
2354 out_drop:
2355         dev->stats.tx_errors++;
2356         kfree_skb(skb);
2357 out_xmit:
2358         return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362                                    struct bpf_nh_params *nh)
2363 {
2364         kfree_skb(skb);
2365         return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370                                 struct bpf_nh_params *nh)
2371 {
2372         struct ethhdr *ethh = eth_hdr(skb);
2373
2374         if (unlikely(skb->mac_header >= skb->network_header))
2375                 goto out;
2376         bpf_push_mac_rcsum(skb);
2377         if (is_multicast_ether_addr(ethh->h_dest))
2378                 goto out;
2379
2380         skb_pull(skb, sizeof(*ethh));
2381         skb_unset_mac_header(skb);
2382         skb_reset_network_header(skb);
2383
2384         if (skb->protocol == htons(ETH_P_IP))
2385                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2386         else if (skb->protocol == htons(ETH_P_IPV6))
2387                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389         kfree_skb(skb);
2390         return -ENOTSUPP;
2391 }
2392
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395         BPF_F_NEIGH     = (1ULL << 1),
2396         BPF_F_PEER      = (1ULL << 2),
2397         BPF_F_NEXTHOP   = (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403         struct net_device *dev;
2404         struct sk_buff *clone;
2405         int ret;
2406
2407         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408                 return -EINVAL;
2409
2410         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411         if (unlikely(!dev))
2412                 return -EINVAL;
2413
2414         clone = skb_clone(skb, GFP_ATOMIC);
2415         if (unlikely(!clone))
2416                 return -ENOMEM;
2417
2418         /* For direct write, we need to keep the invariant that the skbs
2419          * we're dealing with need to be uncloned. Should uncloning fail
2420          * here, we need to free the just generated clone to unclone once
2421          * again.
2422          */
2423         ret = bpf_try_make_head_writable(skb);
2424         if (unlikely(ret)) {
2425                 kfree_skb(clone);
2426                 return -ENOMEM;
2427         }
2428
2429         return __bpf_redirect(clone, dev, flags);
2430 }
2431
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433         .func           = bpf_clone_redirect,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439 };
2440
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447         struct net *net = dev_net(skb->dev);
2448         struct net_device *dev;
2449         u32 flags = ri->flags;
2450
2451         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452         ri->tgt_index = 0;
2453         ri->flags = 0;
2454         if (unlikely(!dev))
2455                 goto out_drop;
2456         if (flags & BPF_F_PEER) {
2457                 const struct net_device_ops *ops = dev->netdev_ops;
2458
2459                 if (unlikely(!ops->ndo_get_peer_dev ||
2460                              !skb_at_tc_ingress(skb)))
2461                         goto out_drop;
2462                 dev = ops->ndo_get_peer_dev(dev);
2463                 if (unlikely(!dev ||
2464                              !(dev->flags & IFF_UP) ||
2465                              net_eq(net, dev_net(dev))))
2466                         goto out_drop;
2467                 skb->dev = dev;
2468                 return -EAGAIN;
2469         }
2470         return flags & BPF_F_NEIGH ?
2471                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472                                     &ri->nh : NULL) :
2473                __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475         kfree_skb(skb);
2476         return -EINVAL;
2477 }
2478
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482
2483         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484                 return TC_ACT_SHOT;
2485
2486         ri->flags = flags;
2487         ri->tgt_index = ifindex;
2488
2489         return TC_ACT_REDIRECT;
2490 }
2491
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493         .func           = bpf_redirect,
2494         .gpl_only       = false,
2495         .ret_type       = RET_INTEGER,
2496         .arg1_type      = ARG_ANYTHING,
2497         .arg2_type      = ARG_ANYTHING,
2498 };
2499
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503
2504         if (unlikely(flags))
2505                 return TC_ACT_SHOT;
2506
2507         ri->flags = BPF_F_PEER;
2508         ri->tgt_index = ifindex;
2509
2510         return TC_ACT_REDIRECT;
2511 }
2512
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514         .func           = bpf_redirect_peer,
2515         .gpl_only       = false,
2516         .ret_type       = RET_INTEGER,
2517         .arg1_type      = ARG_ANYTHING,
2518         .arg2_type      = ARG_ANYTHING,
2519 };
2520
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522            int, plen, u64, flags)
2523 {
2524         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525
2526         if (unlikely((plen && plen < sizeof(*params)) || flags))
2527                 return TC_ACT_SHOT;
2528
2529         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530         ri->tgt_index = ifindex;
2531
2532         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533         if (plen)
2534                 memcpy(&ri->nh, params, sizeof(ri->nh));
2535
2536         return TC_ACT_REDIRECT;
2537 }
2538
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540         .func           = bpf_redirect_neigh,
2541         .gpl_only       = false,
2542         .ret_type       = RET_INTEGER,
2543         .arg1_type      = ARG_ANYTHING,
2544         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546         .arg4_type      = ARG_ANYTHING,
2547 };
2548
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551         msg->apply_bytes = bytes;
2552         return 0;
2553 }
2554
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556         .func           = bpf_msg_apply_bytes,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_PTR_TO_CTX,
2560         .arg2_type      = ARG_ANYTHING,
2561 };
2562
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565         msg->cork_bytes = bytes;
2566         return 0;
2567 }
2568
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570         .func           = bpf_msg_cork_bytes,
2571         .gpl_only       = false,
2572         .ret_type       = RET_INTEGER,
2573         .arg1_type      = ARG_PTR_TO_CTX,
2574         .arg2_type      = ARG_ANYTHING,
2575 };
2576
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578            u32, end, u64, flags)
2579 {
2580         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582         struct scatterlist *sge;
2583         u8 *raw, *to, *from;
2584         struct page *page;
2585
2586         if (unlikely(flags || end <= start))
2587                 return -EINVAL;
2588
2589         /* First find the starting scatterlist element */
2590         i = msg->sg.start;
2591         do {
2592                 offset += len;
2593                 len = sk_msg_elem(msg, i)->length;
2594                 if (start < offset + len)
2595                         break;
2596                 sk_msg_iter_var_next(i);
2597         } while (i != msg->sg.end);
2598
2599         if (unlikely(start >= offset + len))
2600                 return -EINVAL;
2601
2602         first_sge = i;
2603         /* The start may point into the sg element so we need to also
2604          * account for the headroom.
2605          */
2606         bytes_sg_total = start - offset + bytes;
2607         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2608                 goto out;
2609
2610         /* At this point we need to linearize multiple scatterlist
2611          * elements or a single shared page. Either way we need to
2612          * copy into a linear buffer exclusively owned by BPF. Then
2613          * place the buffer in the scatterlist and fixup the original
2614          * entries by removing the entries now in the linear buffer
2615          * and shifting the remaining entries. For now we do not try
2616          * to copy partial entries to avoid complexity of running out
2617          * of sg_entry slots. The downside is reading a single byte
2618          * will copy the entire sg entry.
2619          */
2620         do {
2621                 copy += sk_msg_elem(msg, i)->length;
2622                 sk_msg_iter_var_next(i);
2623                 if (bytes_sg_total <= copy)
2624                         break;
2625         } while (i != msg->sg.end);
2626         last_sge = i;
2627
2628         if (unlikely(bytes_sg_total > copy))
2629                 return -EINVAL;
2630
2631         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632                            get_order(copy));
2633         if (unlikely(!page))
2634                 return -ENOMEM;
2635
2636         raw = page_address(page);
2637         i = first_sge;
2638         do {
2639                 sge = sk_msg_elem(msg, i);
2640                 from = sg_virt(sge);
2641                 len = sge->length;
2642                 to = raw + poffset;
2643
2644                 memcpy(to, from, len);
2645                 poffset += len;
2646                 sge->length = 0;
2647                 put_page(sg_page(sge));
2648
2649                 sk_msg_iter_var_next(i);
2650         } while (i != last_sge);
2651
2652         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653
2654         /* To repair sg ring we need to shift entries. If we only
2655          * had a single entry though we can just replace it and
2656          * be done. Otherwise walk the ring and shift the entries.
2657          */
2658         WARN_ON_ONCE(last_sge == first_sge);
2659         shift = last_sge > first_sge ?
2660                 last_sge - first_sge - 1 :
2661                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662         if (!shift)
2663                 goto out;
2664
2665         i = first_sge;
2666         sk_msg_iter_var_next(i);
2667         do {
2668                 u32 move_from;
2669
2670                 if (i + shift >= NR_MSG_FRAG_IDS)
2671                         move_from = i + shift - NR_MSG_FRAG_IDS;
2672                 else
2673                         move_from = i + shift;
2674                 if (move_from == msg->sg.end)
2675                         break;
2676
2677                 msg->sg.data[i] = msg->sg.data[move_from];
2678                 msg->sg.data[move_from].length = 0;
2679                 msg->sg.data[move_from].page_link = 0;
2680                 msg->sg.data[move_from].offset = 0;
2681                 sk_msg_iter_var_next(i);
2682         } while (1);
2683
2684         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686                       msg->sg.end - shift;
2687 out:
2688         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689         msg->data_end = msg->data + bytes;
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694         .func           = bpf_msg_pull_data,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698         .arg2_type      = ARG_ANYTHING,
2699         .arg3_type      = ARG_ANYTHING,
2700         .arg4_type      = ARG_ANYTHING,
2701 };
2702
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704            u32, len, u64, flags)
2705 {
2706         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708         u8 *raw, *to, *from;
2709         struct page *page;
2710
2711         if (unlikely(flags))
2712                 return -EINVAL;
2713
2714         if (unlikely(len == 0))
2715                 return 0;
2716
2717         /* First find the starting scatterlist element */
2718         i = msg->sg.start;
2719         do {
2720                 offset += l;
2721                 l = sk_msg_elem(msg, i)->length;
2722
2723                 if (start < offset + l)
2724                         break;
2725                 sk_msg_iter_var_next(i);
2726         } while (i != msg->sg.end);
2727
2728         if (start >= offset + l)
2729                 return -EINVAL;
2730
2731         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2732
2733         /* If no space available will fallback to copy, we need at
2734          * least one scatterlist elem available to push data into
2735          * when start aligns to the beginning of an element or two
2736          * when it falls inside an element. We handle the start equals
2737          * offset case because its the common case for inserting a
2738          * header.
2739          */
2740         if (!space || (space == 1 && start != offset))
2741                 copy = msg->sg.data[i].length;
2742
2743         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2744                            get_order(copy + len));
2745         if (unlikely(!page))
2746                 return -ENOMEM;
2747
2748         if (copy) {
2749                 int front, back;
2750
2751                 raw = page_address(page);
2752
2753                 psge = sk_msg_elem(msg, i);
2754                 front = start - offset;
2755                 back = psge->length - front;
2756                 from = sg_virt(psge);
2757
2758                 if (front)
2759                         memcpy(raw, from, front);
2760
2761                 if (back) {
2762                         from += front;
2763                         to = raw + front + len;
2764
2765                         memcpy(to, from, back);
2766                 }
2767
2768                 put_page(sg_page(psge));
2769         } else if (start - offset) {
2770                 psge = sk_msg_elem(msg, i);
2771                 rsge = sk_msg_elem_cpy(msg, i);
2772
2773                 psge->length = start - offset;
2774                 rsge.length -= psge->length;
2775                 rsge.offset += start;
2776
2777                 sk_msg_iter_var_next(i);
2778                 sg_unmark_end(psge);
2779                 sg_unmark_end(&rsge);
2780                 sk_msg_iter_next(msg, end);
2781         }
2782
2783         /* Slot(s) to place newly allocated data */
2784         new = i;
2785
2786         /* Shift one or two slots as needed */
2787         if (!copy) {
2788                 sge = sk_msg_elem_cpy(msg, i);
2789
2790                 sk_msg_iter_var_next(i);
2791                 sg_unmark_end(&sge);
2792                 sk_msg_iter_next(msg, end);
2793
2794                 nsge = sk_msg_elem_cpy(msg, i);
2795                 if (rsge.length) {
2796                         sk_msg_iter_var_next(i);
2797                         nnsge = sk_msg_elem_cpy(msg, i);
2798                 }
2799
2800                 while (i != msg->sg.end) {
2801                         msg->sg.data[i] = sge;
2802                         sge = nsge;
2803                         sk_msg_iter_var_next(i);
2804                         if (rsge.length) {
2805                                 nsge = nnsge;
2806                                 nnsge = sk_msg_elem_cpy(msg, i);
2807                         } else {
2808                                 nsge = sk_msg_elem_cpy(msg, i);
2809                         }
2810                 }
2811         }
2812
2813         /* Place newly allocated data buffer */
2814         sk_mem_charge(msg->sk, len);
2815         msg->sg.size += len;
2816         __clear_bit(new, msg->sg.copy);
2817         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2818         if (rsge.length) {
2819                 get_page(sg_page(&rsge));
2820                 sk_msg_iter_var_next(new);
2821                 msg->sg.data[new] = rsge;
2822         }
2823
2824         sk_msg_compute_data_pointers(msg);
2825         return 0;
2826 }
2827
2828 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2829         .func           = bpf_msg_push_data,
2830         .gpl_only       = false,
2831         .ret_type       = RET_INTEGER,
2832         .arg1_type      = ARG_PTR_TO_CTX,
2833         .arg2_type      = ARG_ANYTHING,
2834         .arg3_type      = ARG_ANYTHING,
2835         .arg4_type      = ARG_ANYTHING,
2836 };
2837
2838 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2839 {
2840         int prev;
2841
2842         do {
2843                 prev = i;
2844                 sk_msg_iter_var_next(i);
2845                 msg->sg.data[prev] = msg->sg.data[i];
2846         } while (i != msg->sg.end);
2847
2848         sk_msg_iter_prev(msg, end);
2849 }
2850
2851 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2852 {
2853         struct scatterlist tmp, sge;
2854
2855         sk_msg_iter_next(msg, end);
2856         sge = sk_msg_elem_cpy(msg, i);
2857         sk_msg_iter_var_next(i);
2858         tmp = sk_msg_elem_cpy(msg, i);
2859
2860         while (i != msg->sg.end) {
2861                 msg->sg.data[i] = sge;
2862                 sk_msg_iter_var_next(i);
2863                 sge = tmp;
2864                 tmp = sk_msg_elem_cpy(msg, i);
2865         }
2866 }
2867
2868 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2869            u32, len, u64, flags)
2870 {
2871         u32 i = 0, l = 0, space, offset = 0;
2872         u64 last = start + len;
2873         int pop;
2874
2875         if (unlikely(flags))
2876                 return -EINVAL;
2877
2878         /* First find the starting scatterlist element */
2879         i = msg->sg.start;
2880         do {
2881                 offset += l;
2882                 l = sk_msg_elem(msg, i)->length;
2883
2884                 if (start < offset + l)
2885                         break;
2886                 sk_msg_iter_var_next(i);
2887         } while (i != msg->sg.end);
2888
2889         /* Bounds checks: start and pop must be inside message */
2890         if (start >= offset + l || last >= msg->sg.size)
2891                 return -EINVAL;
2892
2893         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2894
2895         pop = len;
2896         /* --------------| offset
2897          * -| start      |-------- len -------|
2898          *
2899          *  |----- a ----|-------- pop -------|----- b ----|
2900          *  |______________________________________________| length
2901          *
2902          *
2903          * a:   region at front of scatter element to save
2904          * b:   region at back of scatter element to save when length > A + pop
2905          * pop: region to pop from element, same as input 'pop' here will be
2906          *      decremented below per iteration.
2907          *
2908          * Two top-level cases to handle when start != offset, first B is non
2909          * zero and second B is zero corresponding to when a pop includes more
2910          * than one element.
2911          *
2912          * Then if B is non-zero AND there is no space allocate space and
2913          * compact A, B regions into page. If there is space shift ring to
2914          * the rigth free'ing the next element in ring to place B, leaving
2915          * A untouched except to reduce length.
2916          */
2917         if (start != offset) {
2918                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2919                 int a = start;
2920                 int b = sge->length - pop - a;
2921
2922                 sk_msg_iter_var_next(i);
2923
2924                 if (pop < sge->length - a) {
2925                         if (space) {
2926                                 sge->length = a;
2927                                 sk_msg_shift_right(msg, i);
2928                                 nsge = sk_msg_elem(msg, i);
2929                                 get_page(sg_page(sge));
2930                                 sg_set_page(nsge,
2931                                             sg_page(sge),
2932                                             b, sge->offset + pop + a);
2933                         } else {
2934                                 struct page *page, *orig;
2935                                 u8 *to, *from;
2936
2937                                 page = alloc_pages(__GFP_NOWARN |
2938                                                    __GFP_COMP   | GFP_ATOMIC,
2939                                                    get_order(a + b));
2940                                 if (unlikely(!page))
2941                                         return -ENOMEM;
2942
2943                                 sge->length = a;
2944                                 orig = sg_page(sge);
2945                                 from = sg_virt(sge);
2946                                 to = page_address(page);
2947                                 memcpy(to, from, a);
2948                                 memcpy(to + a, from + a + pop, b);
2949                                 sg_set_page(sge, page, a + b, 0);
2950                                 put_page(orig);
2951                         }
2952                         pop = 0;
2953                 } else if (pop >= sge->length - a) {
2954                         pop -= (sge->length - a);
2955                         sge->length = a;
2956                 }
2957         }
2958
2959         /* From above the current layout _must_ be as follows,
2960          *
2961          * -| offset
2962          * -| start
2963          *
2964          *  |---- pop ---|---------------- b ------------|
2965          *  |____________________________________________| length
2966          *
2967          * Offset and start of the current msg elem are equal because in the
2968          * previous case we handled offset != start and either consumed the
2969          * entire element and advanced to the next element OR pop == 0.
2970          *
2971          * Two cases to handle here are first pop is less than the length
2972          * leaving some remainder b above. Simply adjust the element's layout
2973          * in this case. Or pop >= length of the element so that b = 0. In this
2974          * case advance to next element decrementing pop.
2975          */
2976         while (pop) {
2977                 struct scatterlist *sge = sk_msg_elem(msg, i);
2978
2979                 if (pop < sge->length) {
2980                         sge->length -= pop;
2981                         sge->offset += pop;
2982                         pop = 0;
2983                 } else {
2984                         pop -= sge->length;
2985                         sk_msg_shift_left(msg, i);
2986                 }
2987                 sk_msg_iter_var_next(i);
2988         }
2989
2990         sk_mem_uncharge(msg->sk, len - pop);
2991         msg->sg.size -= (len - pop);
2992         sk_msg_compute_data_pointers(msg);
2993         return 0;
2994 }
2995
2996 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2997         .func           = bpf_msg_pop_data,
2998         .gpl_only       = false,
2999         .ret_type       = RET_INTEGER,
3000         .arg1_type      = ARG_PTR_TO_CTX,
3001         .arg2_type      = ARG_ANYTHING,
3002         .arg3_type      = ARG_ANYTHING,
3003         .arg4_type      = ARG_ANYTHING,
3004 };
3005
3006 #ifdef CONFIG_CGROUP_NET_CLASSID
3007 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3008 {
3009         return __task_get_classid(current);
3010 }
3011
3012 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3013         .func           = bpf_get_cgroup_classid_curr,
3014         .gpl_only       = false,
3015         .ret_type       = RET_INTEGER,
3016 };
3017
3018 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3019 {
3020         struct sock *sk = skb_to_full_sk(skb);
3021
3022         if (!sk || !sk_fullsock(sk))
3023                 return 0;
3024
3025         return sock_cgroup_classid(&sk->sk_cgrp_data);
3026 }
3027
3028 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3029         .func           = bpf_skb_cgroup_classid,
3030         .gpl_only       = false,
3031         .ret_type       = RET_INTEGER,
3032         .arg1_type      = ARG_PTR_TO_CTX,
3033 };
3034 #endif
3035
3036 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3037 {
3038         return task_get_classid(skb);
3039 }
3040
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3042         .func           = bpf_get_cgroup_classid,
3043         .gpl_only       = false,
3044         .ret_type       = RET_INTEGER,
3045         .arg1_type      = ARG_PTR_TO_CTX,
3046 };
3047
3048 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3049 {
3050         return dst_tclassid(skb);
3051 }
3052
3053 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3054         .func           = bpf_get_route_realm,
3055         .gpl_only       = false,
3056         .ret_type       = RET_INTEGER,
3057         .arg1_type      = ARG_PTR_TO_CTX,
3058 };
3059
3060 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3061 {
3062         /* If skb_clear_hash() was called due to mangling, we can
3063          * trigger SW recalculation here. Later access to hash
3064          * can then use the inline skb->hash via context directly
3065          * instead of calling this helper again.
3066          */
3067         return skb_get_hash(skb);
3068 }
3069
3070 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3071         .func           = bpf_get_hash_recalc,
3072         .gpl_only       = false,
3073         .ret_type       = RET_INTEGER,
3074         .arg1_type      = ARG_PTR_TO_CTX,
3075 };
3076
3077 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3078 {
3079         /* After all direct packet write, this can be used once for
3080          * triggering a lazy recalc on next skb_get_hash() invocation.
3081          */
3082         skb_clear_hash(skb);
3083         return 0;
3084 }
3085
3086 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3087         .func           = bpf_set_hash_invalid,
3088         .gpl_only       = false,
3089         .ret_type       = RET_INTEGER,
3090         .arg1_type      = ARG_PTR_TO_CTX,
3091 };
3092
3093 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3094 {
3095         /* Set user specified hash as L4(+), so that it gets returned
3096          * on skb_get_hash() call unless BPF prog later on triggers a
3097          * skb_clear_hash().
3098          */
3099         __skb_set_sw_hash(skb, hash, true);
3100         return 0;
3101 }
3102
3103 static const struct bpf_func_proto bpf_set_hash_proto = {
3104         .func           = bpf_set_hash,
3105         .gpl_only       = false,
3106         .ret_type       = RET_INTEGER,
3107         .arg1_type      = ARG_PTR_TO_CTX,
3108         .arg2_type      = ARG_ANYTHING,
3109 };
3110
3111 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3112            u16, vlan_tci)
3113 {
3114         int ret;
3115
3116         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3117                      vlan_proto != htons(ETH_P_8021AD)))
3118                 vlan_proto = htons(ETH_P_8021Q);
3119
3120         bpf_push_mac_rcsum(skb);
3121         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3122         bpf_pull_mac_rcsum(skb);
3123
3124         bpf_compute_data_pointers(skb);
3125         return ret;
3126 }
3127
3128 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3129         .func           = bpf_skb_vlan_push,
3130         .gpl_only       = false,
3131         .ret_type       = RET_INTEGER,
3132         .arg1_type      = ARG_PTR_TO_CTX,
3133         .arg2_type      = ARG_ANYTHING,
3134         .arg3_type      = ARG_ANYTHING,
3135 };
3136
3137 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3138 {
3139         int ret;
3140
3141         bpf_push_mac_rcsum(skb);
3142         ret = skb_vlan_pop(skb);
3143         bpf_pull_mac_rcsum(skb);
3144
3145         bpf_compute_data_pointers(skb);
3146         return ret;
3147 }
3148
3149 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3150         .func           = bpf_skb_vlan_pop,
3151         .gpl_only       = false,
3152         .ret_type       = RET_INTEGER,
3153         .arg1_type      = ARG_PTR_TO_CTX,
3154 };
3155
3156 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3157 {
3158         /* Caller already did skb_cow() with len as headroom,
3159          * so no need to do it here.
3160          */
3161         skb_push(skb, len);
3162         memmove(skb->data, skb->data + len, off);
3163         memset(skb->data + off, 0, len);
3164
3165         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3166          * needed here as it does not change the skb->csum
3167          * result for checksum complete when summing over
3168          * zeroed blocks.
3169          */
3170         return 0;
3171 }
3172
3173 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3174 {
3175         /* skb_ensure_writable() is not needed here, as we're
3176          * already working on an uncloned skb.
3177          */
3178         if (unlikely(!pskb_may_pull(skb, off + len)))
3179                 return -ENOMEM;
3180
3181         skb_postpull_rcsum(skb, skb->data + off, len);
3182         memmove(skb->data + len, skb->data, off);
3183         __skb_pull(skb, len);
3184
3185         return 0;
3186 }
3187
3188 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3189 {
3190         bool trans_same = skb->transport_header == skb->network_header;
3191         int ret;
3192
3193         /* There's no need for __skb_push()/__skb_pull() pair to
3194          * get to the start of the mac header as we're guaranteed
3195          * to always start from here under eBPF.
3196          */
3197         ret = bpf_skb_generic_push(skb, off, len);
3198         if (likely(!ret)) {
3199                 skb->mac_header -= len;
3200                 skb->network_header -= len;
3201                 if (trans_same)
3202                         skb->transport_header = skb->network_header;
3203         }
3204
3205         return ret;
3206 }
3207
3208 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210         bool trans_same = skb->transport_header == skb->network_header;
3211         int ret;
3212
3213         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3214         ret = bpf_skb_generic_pop(skb, off, len);
3215         if (likely(!ret)) {
3216                 skb->mac_header += len;
3217                 skb->network_header += len;
3218                 if (trans_same)
3219                         skb->transport_header = skb->network_header;
3220         }
3221
3222         return ret;
3223 }
3224
3225 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3226 {
3227         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3228         u32 off = skb_mac_header_len(skb);
3229         int ret;
3230
3231         ret = skb_cow(skb, len_diff);
3232         if (unlikely(ret < 0))
3233                 return ret;
3234
3235         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3236         if (unlikely(ret < 0))
3237                 return ret;
3238
3239         if (skb_is_gso(skb)) {
3240                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3241
3242                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3243                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3244                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3245                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3246                 }
3247         }
3248
3249         skb->protocol = htons(ETH_P_IPV6);
3250         skb_clear_hash(skb);
3251
3252         return 0;
3253 }
3254
3255 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3256 {
3257         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3258         u32 off = skb_mac_header_len(skb);
3259         int ret;
3260
3261         ret = skb_unclone(skb, GFP_ATOMIC);
3262         if (unlikely(ret < 0))
3263                 return ret;
3264
3265         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3266         if (unlikely(ret < 0))
3267                 return ret;
3268
3269         if (skb_is_gso(skb)) {
3270                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3271
3272                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3273                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3274                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3275                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3276                 }
3277         }
3278
3279         skb->protocol = htons(ETH_P_IP);
3280         skb_clear_hash(skb);
3281
3282         return 0;
3283 }
3284
3285 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3286 {
3287         __be16 from_proto = skb->protocol;
3288
3289         if (from_proto == htons(ETH_P_IP) &&
3290               to_proto == htons(ETH_P_IPV6))
3291                 return bpf_skb_proto_4_to_6(skb);
3292
3293         if (from_proto == htons(ETH_P_IPV6) &&
3294               to_proto == htons(ETH_P_IP))
3295                 return bpf_skb_proto_6_to_4(skb);
3296
3297         return -ENOTSUPP;
3298 }
3299
3300 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3301            u64, flags)
3302 {
3303         int ret;
3304
3305         if (unlikely(flags))
3306                 return -EINVAL;
3307
3308         /* General idea is that this helper does the basic groundwork
3309          * needed for changing the protocol, and eBPF program fills the
3310          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3311          * and other helpers, rather than passing a raw buffer here.
3312          *
3313          * The rationale is to keep this minimal and without a need to
3314          * deal with raw packet data. F.e. even if we would pass buffers
3315          * here, the program still needs to call the bpf_lX_csum_replace()
3316          * helpers anyway. Plus, this way we keep also separation of
3317          * concerns, since f.e. bpf_skb_store_bytes() should only take
3318          * care of stores.
3319          *
3320          * Currently, additional options and extension header space are
3321          * not supported, but flags register is reserved so we can adapt
3322          * that. For offloads, we mark packet as dodgy, so that headers
3323          * need to be verified first.
3324          */
3325         ret = bpf_skb_proto_xlat(skb, proto);
3326         bpf_compute_data_pointers(skb);
3327         return ret;
3328 }
3329
3330 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3331         .func           = bpf_skb_change_proto,
3332         .gpl_only       = false,
3333         .ret_type       = RET_INTEGER,
3334         .arg1_type      = ARG_PTR_TO_CTX,
3335         .arg2_type      = ARG_ANYTHING,
3336         .arg3_type      = ARG_ANYTHING,
3337 };
3338
3339 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3340 {
3341         /* We only allow a restricted subset to be changed for now. */
3342         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3343                      !skb_pkt_type_ok(pkt_type)))
3344                 return -EINVAL;
3345
3346         skb->pkt_type = pkt_type;
3347         return 0;
3348 }
3349
3350 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3351         .func           = bpf_skb_change_type,
3352         .gpl_only       = false,
3353         .ret_type       = RET_INTEGER,
3354         .arg1_type      = ARG_PTR_TO_CTX,
3355         .arg2_type      = ARG_ANYTHING,
3356 };
3357
3358 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3359 {
3360         switch (skb->protocol) {
3361         case htons(ETH_P_IP):
3362                 return sizeof(struct iphdr);
3363         case htons(ETH_P_IPV6):
3364                 return sizeof(struct ipv6hdr);
3365         default:
3366                 return ~0U;
3367         }
3368 }
3369
3370 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3372
3373 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3376                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3378                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3379                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3380
3381 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3382                             u64 flags)
3383 {
3384         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3385         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3386         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3387         unsigned int gso_type = SKB_GSO_DODGY;
3388         int ret;
3389
3390         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3391                 /* udp gso_size delineates datagrams, only allow if fixed */
3392                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3393                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3394                         return -ENOTSUPP;
3395         }
3396
3397         ret = skb_cow_head(skb, len_diff);
3398         if (unlikely(ret < 0))
3399                 return ret;
3400
3401         if (encap) {
3402                 if (skb->protocol != htons(ETH_P_IP) &&
3403                     skb->protocol != htons(ETH_P_IPV6))
3404                         return -ENOTSUPP;
3405
3406                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3407                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3408                         return -EINVAL;
3409
3410                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3411                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3412                         return -EINVAL;
3413
3414                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3415                     inner_mac_len < ETH_HLEN)
3416                         return -EINVAL;
3417
3418                 if (skb->encapsulation)
3419                         return -EALREADY;
3420
3421                 mac_len = skb->network_header - skb->mac_header;
3422                 inner_net = skb->network_header;
3423                 if (inner_mac_len > len_diff)
3424                         return -EINVAL;
3425                 inner_trans = skb->transport_header;
3426         }
3427
3428         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3429         if (unlikely(ret < 0))
3430                 return ret;
3431
3432         if (encap) {
3433                 skb->inner_mac_header = inner_net - inner_mac_len;
3434                 skb->inner_network_header = inner_net;
3435                 skb->inner_transport_header = inner_trans;
3436
3437                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3438                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3439                 else
3440                         skb_set_inner_protocol(skb, skb->protocol);
3441
3442                 skb->encapsulation = 1;
3443                 skb_set_network_header(skb, mac_len);
3444
3445                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3446                         gso_type |= SKB_GSO_UDP_TUNNEL;
3447                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3448                         gso_type |= SKB_GSO_GRE;
3449                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3450                         gso_type |= SKB_GSO_IPXIP6;
3451                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3452                         gso_type |= SKB_GSO_IPXIP4;
3453
3454                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3455                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3456                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3457                                         sizeof(struct ipv6hdr) :
3458                                         sizeof(struct iphdr);
3459
3460                         skb_set_transport_header(skb, mac_len + nh_len);
3461                 }
3462
3463                 /* Match skb->protocol to new outer l3 protocol */
3464                 if (skb->protocol == htons(ETH_P_IP) &&
3465                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3466                         skb->protocol = htons(ETH_P_IPV6);
3467                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3468                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3469                         skb->protocol = htons(ETH_P_IP);
3470         }
3471
3472         if (skb_is_gso(skb)) {
3473                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3474
3475                 /* Due to header grow, MSS needs to be downgraded. */
3476                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3477                         skb_decrease_gso_size(shinfo, len_diff);
3478
3479                 /* Header must be checked, and gso_segs recomputed. */
3480                 shinfo->gso_type |= gso_type;
3481                 shinfo->gso_segs = 0;
3482         }
3483
3484         return 0;
3485 }
3486
3487 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3488                               u64 flags)
3489 {
3490         int ret;
3491
3492         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3493                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3494                 return -EINVAL;
3495
3496         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3497                 /* udp gso_size delineates datagrams, only allow if fixed */
3498                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3499                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3500                         return -ENOTSUPP;
3501         }
3502
3503         ret = skb_unclone(skb, GFP_ATOMIC);
3504         if (unlikely(ret < 0))
3505                 return ret;
3506
3507         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3508         if (unlikely(ret < 0))
3509                 return ret;
3510
3511         if (skb_is_gso(skb)) {
3512                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3513
3514                 /* Due to header shrink, MSS can be upgraded. */
3515                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3516                         skb_increase_gso_size(shinfo, len_diff);
3517
3518                 /* Header must be checked, and gso_segs recomputed. */
3519                 shinfo->gso_type |= SKB_GSO_DODGY;
3520                 shinfo->gso_segs = 0;
3521         }
3522
3523         return 0;
3524 }
3525
3526 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3527
3528 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3529            u32, mode, u64, flags)
3530 {
3531         u32 len_diff_abs = abs(len_diff);
3532         bool shrink = len_diff < 0;
3533         int ret = 0;
3534
3535         if (unlikely(flags || mode))
3536                 return -EINVAL;
3537         if (unlikely(len_diff_abs > 0xfffU))
3538                 return -EFAULT;
3539
3540         if (!shrink) {
3541                 ret = skb_cow(skb, len_diff);
3542                 if (unlikely(ret < 0))
3543                         return ret;
3544                 __skb_push(skb, len_diff_abs);
3545                 memset(skb->data, 0, len_diff_abs);
3546         } else {
3547                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3548                         return -ENOMEM;
3549                 __skb_pull(skb, len_diff_abs);
3550         }
3551         if (tls_sw_has_ctx_rx(skb->sk)) {
3552                 struct strp_msg *rxm = strp_msg(skb);
3553
3554                 rxm->full_len += len_diff;
3555         }
3556         return ret;
3557 }
3558
3559 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3560         .func           = sk_skb_adjust_room,
3561         .gpl_only       = false,
3562         .ret_type       = RET_INTEGER,
3563         .arg1_type      = ARG_PTR_TO_CTX,
3564         .arg2_type      = ARG_ANYTHING,
3565         .arg3_type      = ARG_ANYTHING,
3566         .arg4_type      = ARG_ANYTHING,
3567 };
3568
3569 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3570            u32, mode, u64, flags)
3571 {
3572         u32 len_cur, len_diff_abs = abs(len_diff);
3573         u32 len_min = bpf_skb_net_base_len(skb);
3574         u32 len_max = BPF_SKB_MAX_LEN;
3575         __be16 proto = skb->protocol;
3576         bool shrink = len_diff < 0;
3577         u32 off;
3578         int ret;
3579
3580         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3581                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3582                 return -EINVAL;
3583         if (unlikely(len_diff_abs > 0xfffU))
3584                 return -EFAULT;
3585         if (unlikely(proto != htons(ETH_P_IP) &&
3586                      proto != htons(ETH_P_IPV6)))
3587                 return -ENOTSUPP;
3588
3589         off = skb_mac_header_len(skb);
3590         switch (mode) {
3591         case BPF_ADJ_ROOM_NET:
3592                 off += bpf_skb_net_base_len(skb);
3593                 break;
3594         case BPF_ADJ_ROOM_MAC:
3595                 break;
3596         default:
3597                 return -ENOTSUPP;
3598         }
3599
3600         len_cur = skb->len - skb_network_offset(skb);
3601         if ((shrink && (len_diff_abs >= len_cur ||
3602                         len_cur - len_diff_abs < len_min)) ||
3603             (!shrink && (skb->len + len_diff_abs > len_max &&
3604                          !skb_is_gso(skb))))
3605                 return -ENOTSUPP;
3606
3607         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3608                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3609         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3610                 __skb_reset_checksum_unnecessary(skb);
3611
3612         bpf_compute_data_pointers(skb);
3613         return ret;
3614 }
3615
3616 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3617         .func           = bpf_skb_adjust_room,
3618         .gpl_only       = false,
3619         .ret_type       = RET_INTEGER,
3620         .arg1_type      = ARG_PTR_TO_CTX,
3621         .arg2_type      = ARG_ANYTHING,
3622         .arg3_type      = ARG_ANYTHING,
3623         .arg4_type      = ARG_ANYTHING,
3624 };
3625
3626 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3627 {
3628         u32 min_len = skb_network_offset(skb);
3629
3630         if (skb_transport_header_was_set(skb))
3631                 min_len = skb_transport_offset(skb);
3632         if (skb->ip_summed == CHECKSUM_PARTIAL)
3633                 min_len = skb_checksum_start_offset(skb) +
3634                           skb->csum_offset + sizeof(__sum16);
3635         return min_len;
3636 }
3637
3638 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3639 {
3640         unsigned int old_len = skb->len;
3641         int ret;
3642
3643         ret = __skb_grow_rcsum(skb, new_len);
3644         if (!ret)
3645                 memset(skb->data + old_len, 0, new_len - old_len);
3646         return ret;
3647 }
3648
3649 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3650 {
3651         return __skb_trim_rcsum(skb, new_len);
3652 }
3653
3654 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3655                                         u64 flags)
3656 {
3657         u32 max_len = BPF_SKB_MAX_LEN;
3658         u32 min_len = __bpf_skb_min_len(skb);
3659         int ret;
3660
3661         if (unlikely(flags || new_len > max_len || new_len < min_len))
3662                 return -EINVAL;
3663         if (skb->encapsulation)
3664                 return -ENOTSUPP;
3665
3666         /* The basic idea of this helper is that it's performing the
3667          * needed work to either grow or trim an skb, and eBPF program
3668          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3669          * bpf_lX_csum_replace() and others rather than passing a raw
3670          * buffer here. This one is a slow path helper and intended
3671          * for replies with control messages.
3672          *
3673          * Like in bpf_skb_change_proto(), we want to keep this rather
3674          * minimal and without protocol specifics so that we are able
3675          * to separate concerns as in bpf_skb_store_bytes() should only
3676          * be the one responsible for writing buffers.
3677          *
3678          * It's really expected to be a slow path operation here for
3679          * control message replies, so we're implicitly linearizing,
3680          * uncloning and drop offloads from the skb by this.
3681          */
3682         ret = __bpf_try_make_writable(skb, skb->len);
3683         if (!ret) {
3684                 if (new_len > skb->len)
3685                         ret = bpf_skb_grow_rcsum(skb, new_len);
3686                 else if (new_len < skb->len)
3687                         ret = bpf_skb_trim_rcsum(skb, new_len);
3688                 if (!ret && skb_is_gso(skb))
3689                         skb_gso_reset(skb);
3690         }
3691         return ret;
3692 }
3693
3694 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3695            u64, flags)
3696 {
3697         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3698
3699         bpf_compute_data_pointers(skb);
3700         return ret;
3701 }
3702
3703 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3704         .func           = bpf_skb_change_tail,
3705         .gpl_only       = false,
3706         .ret_type       = RET_INTEGER,
3707         .arg1_type      = ARG_PTR_TO_CTX,
3708         .arg2_type      = ARG_ANYTHING,
3709         .arg3_type      = ARG_ANYTHING,
3710 };
3711
3712 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3713            u64, flags)
3714 {
3715         return __bpf_skb_change_tail(skb, new_len, flags);
3716 }
3717
3718 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3719         .func           = sk_skb_change_tail,
3720         .gpl_only       = false,
3721         .ret_type       = RET_INTEGER,
3722         .arg1_type      = ARG_PTR_TO_CTX,
3723         .arg2_type      = ARG_ANYTHING,
3724         .arg3_type      = ARG_ANYTHING,
3725 };
3726
3727 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3728                                         u64 flags)
3729 {
3730         u32 max_len = BPF_SKB_MAX_LEN;
3731         u32 new_len = skb->len + head_room;
3732         int ret;
3733
3734         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3735                      new_len < skb->len))
3736                 return -EINVAL;
3737
3738         ret = skb_cow(skb, head_room);
3739         if (likely(!ret)) {
3740                 /* Idea for this helper is that we currently only
3741                  * allow to expand on mac header. This means that
3742                  * skb->protocol network header, etc, stay as is.
3743                  * Compared to bpf_skb_change_tail(), we're more
3744                  * flexible due to not needing to linearize or
3745                  * reset GSO. Intention for this helper is to be
3746                  * used by an L3 skb that needs to push mac header
3747                  * for redirection into L2 device.
3748                  */
3749                 __skb_push(skb, head_room);
3750                 memset(skb->data, 0, head_room);
3751                 skb_reset_mac_header(skb);
3752                 skb_reset_mac_len(skb);
3753         }
3754
3755         return ret;
3756 }
3757
3758 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3759            u64, flags)
3760 {
3761         int ret = __bpf_skb_change_head(skb, head_room, flags);
3762
3763         bpf_compute_data_pointers(skb);
3764         return ret;
3765 }
3766
3767 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3768         .func           = bpf_skb_change_head,
3769         .gpl_only       = false,
3770         .ret_type       = RET_INTEGER,
3771         .arg1_type      = ARG_PTR_TO_CTX,
3772         .arg2_type      = ARG_ANYTHING,
3773         .arg3_type      = ARG_ANYTHING,
3774 };
3775
3776 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3777            u64, flags)
3778 {
3779         return __bpf_skb_change_head(skb, head_room, flags);
3780 }
3781
3782 static const struct bpf_func_proto sk_skb_change_head_proto = {
3783         .func           = sk_skb_change_head,
3784         .gpl_only       = false,
3785         .ret_type       = RET_INTEGER,
3786         .arg1_type      = ARG_PTR_TO_CTX,
3787         .arg2_type      = ARG_ANYTHING,
3788         .arg3_type      = ARG_ANYTHING,
3789 };
3790
3791 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3792 {
3793         return xdp_get_buff_len(xdp);
3794 }
3795
3796 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3797         .func           = bpf_xdp_get_buff_len,
3798         .gpl_only       = false,
3799         .ret_type       = RET_INTEGER,
3800         .arg1_type      = ARG_PTR_TO_CTX,
3801 };
3802
3803 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3804
3805 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3806         .func           = bpf_xdp_get_buff_len,
3807         .gpl_only       = false,
3808         .arg1_type      = ARG_PTR_TO_BTF_ID,
3809         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3810 };
3811
3812 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3813 {
3814         return xdp_data_meta_unsupported(xdp) ? 0 :
3815                xdp->data - xdp->data_meta;
3816 }
3817
3818 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3819 {
3820         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3821         unsigned long metalen = xdp_get_metalen(xdp);
3822         void *data_start = xdp_frame_end + metalen;
3823         void *data = xdp->data + offset;
3824
3825         if (unlikely(data < data_start ||
3826                      data > xdp->data_end - ETH_HLEN))
3827                 return -EINVAL;
3828
3829         if (metalen)
3830                 memmove(xdp->data_meta + offset,
3831                         xdp->data_meta, metalen);
3832         xdp->data_meta += offset;
3833         xdp->data = data;
3834
3835         return 0;
3836 }
3837
3838 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3839         .func           = bpf_xdp_adjust_head,
3840         .gpl_only       = false,
3841         .ret_type       = RET_INTEGER,
3842         .arg1_type      = ARG_PTR_TO_CTX,
3843         .arg2_type      = ARG_ANYTHING,
3844 };
3845
3846 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3847                              void *buf, unsigned long len, bool flush)
3848 {
3849         unsigned long ptr_len, ptr_off = 0;
3850         skb_frag_t *next_frag, *end_frag;
3851         struct skb_shared_info *sinfo;
3852         void *src, *dst;
3853         u8 *ptr_buf;
3854
3855         if (likely(xdp->data_end - xdp->data >= off + len)) {
3856                 src = flush ? buf : xdp->data + off;
3857                 dst = flush ? xdp->data + off : buf;
3858                 memcpy(dst, src, len);
3859                 return;
3860         }
3861
3862         sinfo = xdp_get_shared_info_from_buff(xdp);
3863         end_frag = &sinfo->frags[sinfo->nr_frags];
3864         next_frag = &sinfo->frags[0];
3865
3866         ptr_len = xdp->data_end - xdp->data;
3867         ptr_buf = xdp->data;
3868
3869         while (true) {
3870                 if (off < ptr_off + ptr_len) {
3871                         unsigned long copy_off = off - ptr_off;
3872                         unsigned long copy_len = min(len, ptr_len - copy_off);
3873
3874                         src = flush ? buf : ptr_buf + copy_off;
3875                         dst = flush ? ptr_buf + copy_off : buf;
3876                         memcpy(dst, src, copy_len);
3877
3878                         off += copy_len;
3879                         len -= copy_len;
3880                         buf += copy_len;
3881                 }
3882
3883                 if (!len || next_frag == end_frag)
3884                         break;
3885
3886                 ptr_off += ptr_len;
3887                 ptr_buf = skb_frag_address(next_frag);
3888                 ptr_len = skb_frag_size(next_frag);
3889                 next_frag++;
3890         }
3891 }
3892
3893 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3894 {
3895         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3896         u32 size = xdp->data_end - xdp->data;
3897         void *addr = xdp->data;
3898         int i;
3899
3900         if (unlikely(offset > 0xffff || len > 0xffff))
3901                 return ERR_PTR(-EFAULT);
3902
3903         if (offset + len > xdp_get_buff_len(xdp))
3904                 return ERR_PTR(-EINVAL);
3905
3906         if (offset < size) /* linear area */
3907                 goto out;
3908
3909         offset -= size;
3910         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3911                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3912
3913                 if  (offset < frag_size) {
3914                         addr = skb_frag_address(&sinfo->frags[i]);
3915                         size = frag_size;
3916                         break;
3917                 }
3918                 offset -= frag_size;
3919         }
3920 out:
3921         return offset + len < size ? addr + offset : NULL;
3922 }
3923
3924 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3925            void *, buf, u32, len)
3926 {
3927         void *ptr;
3928
3929         ptr = bpf_xdp_pointer(xdp, offset, len);
3930         if (IS_ERR(ptr))
3931                 return PTR_ERR(ptr);
3932
3933         if (!ptr)
3934                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3935         else
3936                 memcpy(buf, ptr, len);
3937
3938         return 0;
3939 }
3940
3941 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3942         .func           = bpf_xdp_load_bytes,
3943         .gpl_only       = false,
3944         .ret_type       = RET_INTEGER,
3945         .arg1_type      = ARG_PTR_TO_CTX,
3946         .arg2_type      = ARG_ANYTHING,
3947         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3948         .arg4_type      = ARG_CONST_SIZE,
3949 };
3950
3951 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3952            void *, buf, u32, len)
3953 {
3954         void *ptr;
3955
3956         ptr = bpf_xdp_pointer(xdp, offset, len);
3957         if (IS_ERR(ptr))
3958                 return PTR_ERR(ptr);
3959
3960         if (!ptr)
3961                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3962         else
3963                 memcpy(ptr, buf, len);
3964
3965         return 0;
3966 }
3967
3968 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3969         .func           = bpf_xdp_store_bytes,
3970         .gpl_only       = false,
3971         .ret_type       = RET_INTEGER,
3972         .arg1_type      = ARG_PTR_TO_CTX,
3973         .arg2_type      = ARG_ANYTHING,
3974         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3975         .arg4_type      = ARG_CONST_SIZE,
3976 };
3977
3978 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3979 {
3980         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3981         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3982         struct xdp_rxq_info *rxq = xdp->rxq;
3983         unsigned int tailroom;
3984
3985         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3986                 return -EOPNOTSUPP;
3987
3988         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3989         if (unlikely(offset > tailroom))
3990                 return -EINVAL;
3991
3992         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3993         skb_frag_size_add(frag, offset);
3994         sinfo->xdp_frags_size += offset;
3995
3996         return 0;
3997 }
3998
3999 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4000 {
4001         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4002         int i, n_frags_free = 0, len_free = 0;
4003
4004         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4005                 return -EINVAL;
4006
4007         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4008                 skb_frag_t *frag = &sinfo->frags[i];
4009                 int shrink = min_t(int, offset, skb_frag_size(frag));
4010
4011                 len_free += shrink;
4012                 offset -= shrink;
4013
4014                 if (skb_frag_size(frag) == shrink) {
4015                         struct page *page = skb_frag_page(frag);
4016
4017                         __xdp_return(page_address(page), &xdp->rxq->mem,
4018                                      false, NULL);
4019                         n_frags_free++;
4020                 } else {
4021                         skb_frag_size_sub(frag, shrink);
4022                         break;
4023                 }
4024         }
4025         sinfo->nr_frags -= n_frags_free;
4026         sinfo->xdp_frags_size -= len_free;
4027
4028         if (unlikely(!sinfo->nr_frags)) {
4029                 xdp_buff_clear_frags_flag(xdp);
4030                 xdp->data_end -= offset;
4031         }
4032
4033         return 0;
4034 }
4035
4036 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4037 {
4038         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4039         void *data_end = xdp->data_end + offset;
4040
4041         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4042                 if (offset < 0)
4043                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4044
4045                 return bpf_xdp_frags_increase_tail(xdp, offset);
4046         }
4047
4048         /* Notice that xdp_data_hard_end have reserved some tailroom */
4049         if (unlikely(data_end > data_hard_end))
4050                 return -EINVAL;
4051
4052         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4053         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4054                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4055                 return -EINVAL;
4056         }
4057
4058         if (unlikely(data_end < xdp->data + ETH_HLEN))
4059                 return -EINVAL;
4060
4061         /* Clear memory area on grow, can contain uninit kernel memory */
4062         if (offset > 0)
4063                 memset(xdp->data_end, 0, offset);
4064
4065         xdp->data_end = data_end;
4066
4067         return 0;
4068 }
4069
4070 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4071         .func           = bpf_xdp_adjust_tail,
4072         .gpl_only       = false,
4073         .ret_type       = RET_INTEGER,
4074         .arg1_type      = ARG_PTR_TO_CTX,
4075         .arg2_type      = ARG_ANYTHING,
4076 };
4077
4078 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4079 {
4080         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4081         void *meta = xdp->data_meta + offset;
4082         unsigned long metalen = xdp->data - meta;
4083
4084         if (xdp_data_meta_unsupported(xdp))
4085                 return -ENOTSUPP;
4086         if (unlikely(meta < xdp_frame_end ||
4087                      meta > xdp->data))
4088                 return -EINVAL;
4089         if (unlikely(xdp_metalen_invalid(metalen)))
4090                 return -EACCES;
4091
4092         xdp->data_meta = meta;
4093
4094         return 0;
4095 }
4096
4097 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4098         .func           = bpf_xdp_adjust_meta,
4099         .gpl_only       = false,
4100         .ret_type       = RET_INTEGER,
4101         .arg1_type      = ARG_PTR_TO_CTX,
4102         .arg2_type      = ARG_ANYTHING,
4103 };
4104
4105 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4106  * below:
4107  *
4108  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4109  *    of the redirect and store it (along with some other metadata) in a per-CPU
4110  *    struct bpf_redirect_info.
4111  *
4112  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4113  *    call xdp_do_redirect() which will use the information in struct
4114  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4115  *    bulk queue structure.
4116  *
4117  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4118  *    which will flush all the different bulk queues, thus completing the
4119  *    redirect.
4120  *
4121  * Pointers to the map entries will be kept around for this whole sequence of
4122  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4123  * the core code; instead, the RCU protection relies on everything happening
4124  * inside a single NAPI poll sequence, which means it's between a pair of calls
4125  * to local_bh_disable()/local_bh_enable().
4126  *
4127  * The map entries are marked as __rcu and the map code makes sure to
4128  * dereference those pointers with rcu_dereference_check() in a way that works
4129  * for both sections that to hold an rcu_read_lock() and sections that are
4130  * called from NAPI without a separate rcu_read_lock(). The code below does not
4131  * use RCU annotations, but relies on those in the map code.
4132  */
4133 void xdp_do_flush(void)
4134 {
4135         __dev_flush();
4136         __cpu_map_flush();
4137         __xsk_map_flush();
4138 }
4139 EXPORT_SYMBOL_GPL(xdp_do_flush);
4140
4141 void bpf_clear_redirect_map(struct bpf_map *map)
4142 {
4143         struct bpf_redirect_info *ri;
4144         int cpu;
4145
4146         for_each_possible_cpu(cpu) {
4147                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4148                 /* Avoid polluting remote cacheline due to writes if
4149                  * not needed. Once we pass this test, we need the
4150                  * cmpxchg() to make sure it hasn't been changed in
4151                  * the meantime by remote CPU.
4152                  */
4153                 if (unlikely(READ_ONCE(ri->map) == map))
4154                         cmpxchg(&ri->map, map, NULL);
4155         }
4156 }
4157
4158 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4159 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4160
4161 u32 xdp_master_redirect(struct xdp_buff *xdp)
4162 {
4163         struct net_device *master, *slave;
4164         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4165
4166         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4167         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4168         if (slave && slave != xdp->rxq->dev) {
4169                 /* The target device is different from the receiving device, so
4170                  * redirect it to the new device.
4171                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4172                  * drivers to unmap the packet from their rx ring.
4173                  */
4174                 ri->tgt_index = slave->ifindex;
4175                 ri->map_id = INT_MAX;
4176                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4177                 return XDP_REDIRECT;
4178         }
4179         return XDP_TX;
4180 }
4181 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4182
4183 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4184                                         struct net_device *dev,
4185                                         struct xdp_buff *xdp,
4186                                         struct bpf_prog *xdp_prog)
4187 {
4188         enum bpf_map_type map_type = ri->map_type;
4189         void *fwd = ri->tgt_value;
4190         u32 map_id = ri->map_id;
4191         int err;
4192
4193         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4194         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4195
4196         err = __xsk_map_redirect(fwd, xdp);
4197         if (unlikely(err))
4198                 goto err;
4199
4200         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4201         return 0;
4202 err:
4203         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4204         return err;
4205 }
4206
4207 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4208                                                    struct net_device *dev,
4209                                                    struct xdp_frame *xdpf,
4210                                                    struct bpf_prog *xdp_prog)
4211 {
4212         enum bpf_map_type map_type = ri->map_type;
4213         void *fwd = ri->tgt_value;
4214         u32 map_id = ri->map_id;
4215         struct bpf_map *map;
4216         int err;
4217
4218         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4219         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4220
4221         if (unlikely(!xdpf)) {
4222                 err = -EOVERFLOW;
4223                 goto err;
4224         }
4225
4226         switch (map_type) {
4227         case BPF_MAP_TYPE_DEVMAP:
4228                 fallthrough;
4229         case BPF_MAP_TYPE_DEVMAP_HASH:
4230                 map = READ_ONCE(ri->map);
4231                 if (unlikely(map)) {
4232                         WRITE_ONCE(ri->map, NULL);
4233                         err = dev_map_enqueue_multi(xdpf, dev, map,
4234                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4235                 } else {
4236                         err = dev_map_enqueue(fwd, xdpf, dev);
4237                 }
4238                 break;
4239         case BPF_MAP_TYPE_CPUMAP:
4240                 err = cpu_map_enqueue(fwd, xdpf, dev);
4241                 break;
4242         case BPF_MAP_TYPE_UNSPEC:
4243                 if (map_id == INT_MAX) {
4244                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4245                         if (unlikely(!fwd)) {
4246                                 err = -EINVAL;
4247                                 break;
4248                         }
4249                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4250                         break;
4251                 }
4252                 fallthrough;
4253         default:
4254                 err = -EBADRQC;
4255         }
4256
4257         if (unlikely(err))
4258                 goto err;
4259
4260         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4261         return 0;
4262 err:
4263         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4264         return err;
4265 }
4266
4267 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4268                     struct bpf_prog *xdp_prog)
4269 {
4270         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4271         enum bpf_map_type map_type = ri->map_type;
4272
4273         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4274          * not all XDP capable drivers can map non-linear xdp_frame in
4275          * ndo_xdp_xmit.
4276          */
4277         if (unlikely(xdp_buff_has_frags(xdp) &&
4278                      map_type != BPF_MAP_TYPE_CPUMAP))
4279                 return -EOPNOTSUPP;
4280
4281         if (map_type == BPF_MAP_TYPE_XSKMAP)
4282                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4283
4284         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4285                                        xdp_prog);
4286 }
4287 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4288
4289 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4290                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4291 {
4292         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4293         enum bpf_map_type map_type = ri->map_type;
4294
4295         if (map_type == BPF_MAP_TYPE_XSKMAP)
4296                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4297
4298         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4299 }
4300 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4301
4302 static int xdp_do_generic_redirect_map(struct net_device *dev,
4303                                        struct sk_buff *skb,
4304                                        struct xdp_buff *xdp,
4305                                        struct bpf_prog *xdp_prog,
4306                                        void *fwd,
4307                                        enum bpf_map_type map_type, u32 map_id)
4308 {
4309         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4310         struct bpf_map *map;
4311         int err;
4312
4313         switch (map_type) {
4314         case BPF_MAP_TYPE_DEVMAP:
4315                 fallthrough;
4316         case BPF_MAP_TYPE_DEVMAP_HASH:
4317                 map = READ_ONCE(ri->map);
4318                 if (unlikely(map)) {
4319                         WRITE_ONCE(ri->map, NULL);
4320                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4321                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4322                 } else {
4323                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4324                 }
4325                 if (unlikely(err))
4326                         goto err;
4327                 break;
4328         case BPF_MAP_TYPE_XSKMAP:
4329                 err = xsk_generic_rcv(fwd, xdp);
4330                 if (err)
4331                         goto err;
4332                 consume_skb(skb);
4333                 break;
4334         case BPF_MAP_TYPE_CPUMAP:
4335                 err = cpu_map_generic_redirect(fwd, skb);
4336                 if (unlikely(err))
4337                         goto err;
4338                 break;
4339         default:
4340                 err = -EBADRQC;
4341                 goto err;
4342         }
4343
4344         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4345         return 0;
4346 err:
4347         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4348         return err;
4349 }
4350
4351 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4352                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4353 {
4354         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4355         enum bpf_map_type map_type = ri->map_type;
4356         void *fwd = ri->tgt_value;
4357         u32 map_id = ri->map_id;
4358         int err;
4359
4360         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4361         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4362
4363         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4364                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4365                 if (unlikely(!fwd)) {
4366                         err = -EINVAL;
4367                         goto err;
4368                 }
4369
4370                 err = xdp_ok_fwd_dev(fwd, skb->len);
4371                 if (unlikely(err))
4372                         goto err;
4373
4374                 skb->dev = fwd;
4375                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4376                 generic_xdp_tx(skb, xdp_prog);
4377                 return 0;
4378         }
4379
4380         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4381 err:
4382         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4383         return err;
4384 }
4385
4386 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4387 {
4388         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4389
4390         if (unlikely(flags))
4391                 return XDP_ABORTED;
4392
4393         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4394          * by map_idr) is used for ifindex based XDP redirect.
4395          */
4396         ri->tgt_index = ifindex;
4397         ri->map_id = INT_MAX;
4398         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4399
4400         return XDP_REDIRECT;
4401 }
4402
4403 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4404         .func           = bpf_xdp_redirect,
4405         .gpl_only       = false,
4406         .ret_type       = RET_INTEGER,
4407         .arg1_type      = ARG_ANYTHING,
4408         .arg2_type      = ARG_ANYTHING,
4409 };
4410
4411 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4412            u64, flags)
4413 {
4414         return map->ops->map_redirect(map, ifindex, flags);
4415 }
4416
4417 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4418         .func           = bpf_xdp_redirect_map,
4419         .gpl_only       = false,
4420         .ret_type       = RET_INTEGER,
4421         .arg1_type      = ARG_CONST_MAP_PTR,
4422         .arg2_type      = ARG_ANYTHING,
4423         .arg3_type      = ARG_ANYTHING,
4424 };
4425
4426 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4427                                   unsigned long off, unsigned long len)
4428 {
4429         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4430
4431         if (unlikely(!ptr))
4432                 return len;
4433         if (ptr != dst_buff)
4434                 memcpy(dst_buff, ptr, len);
4435
4436         return 0;
4437 }
4438
4439 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4440            u64, flags, void *, meta, u64, meta_size)
4441 {
4442         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4443
4444         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4445                 return -EINVAL;
4446         if (unlikely(!skb || skb_size > skb->len))
4447                 return -EFAULT;
4448
4449         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4450                                 bpf_skb_copy);
4451 }
4452
4453 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4454         .func           = bpf_skb_event_output,
4455         .gpl_only       = true,
4456         .ret_type       = RET_INTEGER,
4457         .arg1_type      = ARG_PTR_TO_CTX,
4458         .arg2_type      = ARG_CONST_MAP_PTR,
4459         .arg3_type      = ARG_ANYTHING,
4460         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4461         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4462 };
4463
4464 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4465
4466 const struct bpf_func_proto bpf_skb_output_proto = {
4467         .func           = bpf_skb_event_output,
4468         .gpl_only       = true,
4469         .ret_type       = RET_INTEGER,
4470         .arg1_type      = ARG_PTR_TO_BTF_ID,
4471         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4472         .arg2_type      = ARG_CONST_MAP_PTR,
4473         .arg3_type      = ARG_ANYTHING,
4474         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4475         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4476 };
4477
4478 static unsigned short bpf_tunnel_key_af(u64 flags)
4479 {
4480         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4481 }
4482
4483 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4484            u32, size, u64, flags)
4485 {
4486         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4487         u8 compat[sizeof(struct bpf_tunnel_key)];
4488         void *to_orig = to;
4489         int err;
4490
4491         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4492                 err = -EINVAL;
4493                 goto err_clear;
4494         }
4495         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4496                 err = -EPROTO;
4497                 goto err_clear;
4498         }
4499         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4500                 err = -EINVAL;
4501                 switch (size) {
4502                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4503                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4504                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4505                         goto set_compat;
4506                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4507                         /* Fixup deprecated structure layouts here, so we have
4508                          * a common path later on.
4509                          */
4510                         if (ip_tunnel_info_af(info) != AF_INET)
4511                                 goto err_clear;
4512 set_compat:
4513                         to = (struct bpf_tunnel_key *)compat;
4514                         break;
4515                 default:
4516                         goto err_clear;
4517                 }
4518         }
4519
4520         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4521         to->tunnel_tos = info->key.tos;
4522         to->tunnel_ttl = info->key.ttl;
4523         to->tunnel_ext = 0;
4524
4525         if (flags & BPF_F_TUNINFO_IPV6) {
4526                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4527                        sizeof(to->remote_ipv6));
4528                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4529                        sizeof(to->local_ipv6));
4530                 to->tunnel_label = be32_to_cpu(info->key.label);
4531         } else {
4532                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4533                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4534                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4535                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4536                 to->tunnel_label = 0;
4537         }
4538
4539         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4540                 memcpy(to_orig, to, size);
4541
4542         return 0;
4543 err_clear:
4544         memset(to_orig, 0, size);
4545         return err;
4546 }
4547
4548 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4549         .func           = bpf_skb_get_tunnel_key,
4550         .gpl_only       = false,
4551         .ret_type       = RET_INTEGER,
4552         .arg1_type      = ARG_PTR_TO_CTX,
4553         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4554         .arg3_type      = ARG_CONST_SIZE,
4555         .arg4_type      = ARG_ANYTHING,
4556 };
4557
4558 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4559 {
4560         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4561         int err;
4562
4563         if (unlikely(!info ||
4564                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4565                 err = -ENOENT;
4566                 goto err_clear;
4567         }
4568         if (unlikely(size < info->options_len)) {
4569                 err = -ENOMEM;
4570                 goto err_clear;
4571         }
4572
4573         ip_tunnel_info_opts_get(to, info);
4574         if (size > info->options_len)
4575                 memset(to + info->options_len, 0, size - info->options_len);
4576
4577         return info->options_len;
4578 err_clear:
4579         memset(to, 0, size);
4580         return err;
4581 }
4582
4583 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4584         .func           = bpf_skb_get_tunnel_opt,
4585         .gpl_only       = false,
4586         .ret_type       = RET_INTEGER,
4587         .arg1_type      = ARG_PTR_TO_CTX,
4588         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4589         .arg3_type      = ARG_CONST_SIZE,
4590 };
4591
4592 static struct metadata_dst __percpu *md_dst;
4593
4594 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4595            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4596 {
4597         struct metadata_dst *md = this_cpu_ptr(md_dst);
4598         u8 compat[sizeof(struct bpf_tunnel_key)];
4599         struct ip_tunnel_info *info;
4600
4601         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4602                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4603                 return -EINVAL;
4604         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4605                 switch (size) {
4606                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4607                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4608                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4609                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4610                         /* Fixup deprecated structure layouts here, so we have
4611                          * a common path later on.
4612                          */
4613                         memcpy(compat, from, size);
4614                         memset(compat + size, 0, sizeof(compat) - size);
4615                         from = (const struct bpf_tunnel_key *) compat;
4616                         break;
4617                 default:
4618                         return -EINVAL;
4619                 }
4620         }
4621         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4622                      from->tunnel_ext))
4623                 return -EINVAL;
4624
4625         skb_dst_drop(skb);
4626         dst_hold((struct dst_entry *) md);
4627         skb_dst_set(skb, (struct dst_entry *) md);
4628
4629         info = &md->u.tun_info;
4630         memset(info, 0, sizeof(*info));
4631         info->mode = IP_TUNNEL_INFO_TX;
4632
4633         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4634         if (flags & BPF_F_DONT_FRAGMENT)
4635                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4636         if (flags & BPF_F_ZERO_CSUM_TX)
4637                 info->key.tun_flags &= ~TUNNEL_CSUM;
4638         if (flags & BPF_F_SEQ_NUMBER)
4639                 info->key.tun_flags |= TUNNEL_SEQ;
4640
4641         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4642         info->key.tos = from->tunnel_tos;
4643         info->key.ttl = from->tunnel_ttl;
4644
4645         if (flags & BPF_F_TUNINFO_IPV6) {
4646                 info->mode |= IP_TUNNEL_INFO_IPV6;
4647                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4648                        sizeof(from->remote_ipv6));
4649                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4650                        sizeof(from->local_ipv6));
4651                 info->key.label = cpu_to_be32(from->tunnel_label) &
4652                                   IPV6_FLOWLABEL_MASK;
4653         } else {
4654                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4655                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4656         }
4657
4658         return 0;
4659 }
4660
4661 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4662         .func           = bpf_skb_set_tunnel_key,
4663         .gpl_only       = false,
4664         .ret_type       = RET_INTEGER,
4665         .arg1_type      = ARG_PTR_TO_CTX,
4666         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4667         .arg3_type      = ARG_CONST_SIZE,
4668         .arg4_type      = ARG_ANYTHING,
4669 };
4670
4671 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4672            const u8 *, from, u32, size)
4673 {
4674         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4675         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4676
4677         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4678                 return -EINVAL;
4679         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4680                 return -ENOMEM;
4681
4682         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4683
4684         return 0;
4685 }
4686
4687 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4688         .func           = bpf_skb_set_tunnel_opt,
4689         .gpl_only       = false,
4690         .ret_type       = RET_INTEGER,
4691         .arg1_type      = ARG_PTR_TO_CTX,
4692         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4693         .arg3_type      = ARG_CONST_SIZE,
4694 };
4695
4696 static const struct bpf_func_proto *
4697 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4698 {
4699         if (!md_dst) {
4700                 struct metadata_dst __percpu *tmp;
4701
4702                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4703                                                 METADATA_IP_TUNNEL,
4704                                                 GFP_KERNEL);
4705                 if (!tmp)
4706                         return NULL;
4707                 if (cmpxchg(&md_dst, NULL, tmp))
4708                         metadata_dst_free_percpu(tmp);
4709         }
4710
4711         switch (which) {
4712         case BPF_FUNC_skb_set_tunnel_key:
4713                 return &bpf_skb_set_tunnel_key_proto;
4714         case BPF_FUNC_skb_set_tunnel_opt:
4715                 return &bpf_skb_set_tunnel_opt_proto;
4716         default:
4717                 return NULL;
4718         }
4719 }
4720
4721 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4722            u32, idx)
4723 {
4724         struct bpf_array *array = container_of(map, struct bpf_array, map);
4725         struct cgroup *cgrp;
4726         struct sock *sk;
4727
4728         sk = skb_to_full_sk(skb);
4729         if (!sk || !sk_fullsock(sk))
4730                 return -ENOENT;
4731         if (unlikely(idx >= array->map.max_entries))
4732                 return -E2BIG;
4733
4734         cgrp = READ_ONCE(array->ptrs[idx]);
4735         if (unlikely(!cgrp))
4736                 return -EAGAIN;
4737
4738         return sk_under_cgroup_hierarchy(sk, cgrp);
4739 }
4740
4741 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4742         .func           = bpf_skb_under_cgroup,
4743         .gpl_only       = false,
4744         .ret_type       = RET_INTEGER,
4745         .arg1_type      = ARG_PTR_TO_CTX,
4746         .arg2_type      = ARG_CONST_MAP_PTR,
4747         .arg3_type      = ARG_ANYTHING,
4748 };
4749
4750 #ifdef CONFIG_SOCK_CGROUP_DATA
4751 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4752 {
4753         struct cgroup *cgrp;
4754
4755         sk = sk_to_full_sk(sk);
4756         if (!sk || !sk_fullsock(sk))
4757                 return 0;
4758
4759         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4760         return cgroup_id(cgrp);
4761 }
4762
4763 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4764 {
4765         return __bpf_sk_cgroup_id(skb->sk);
4766 }
4767
4768 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4769         .func           = bpf_skb_cgroup_id,
4770         .gpl_only       = false,
4771         .ret_type       = RET_INTEGER,
4772         .arg1_type      = ARG_PTR_TO_CTX,
4773 };
4774
4775 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4776                                               int ancestor_level)
4777 {
4778         struct cgroup *ancestor;
4779         struct cgroup *cgrp;
4780
4781         sk = sk_to_full_sk(sk);
4782         if (!sk || !sk_fullsock(sk))
4783                 return 0;
4784
4785         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4786         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4787         if (!ancestor)
4788                 return 0;
4789
4790         return cgroup_id(ancestor);
4791 }
4792
4793 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4794            ancestor_level)
4795 {
4796         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4797 }
4798
4799 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4800         .func           = bpf_skb_ancestor_cgroup_id,
4801         .gpl_only       = false,
4802         .ret_type       = RET_INTEGER,
4803         .arg1_type      = ARG_PTR_TO_CTX,
4804         .arg2_type      = ARG_ANYTHING,
4805 };
4806
4807 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4808 {
4809         return __bpf_sk_cgroup_id(sk);
4810 }
4811
4812 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4813         .func           = bpf_sk_cgroup_id,
4814         .gpl_only       = false,
4815         .ret_type       = RET_INTEGER,
4816         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4817 };
4818
4819 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4820 {
4821         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4822 }
4823
4824 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4825         .func           = bpf_sk_ancestor_cgroup_id,
4826         .gpl_only       = false,
4827         .ret_type       = RET_INTEGER,
4828         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4829         .arg2_type      = ARG_ANYTHING,
4830 };
4831 #endif
4832
4833 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4834                                   unsigned long off, unsigned long len)
4835 {
4836         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4837
4838         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4839         return 0;
4840 }
4841
4842 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4843            u64, flags, void *, meta, u64, meta_size)
4844 {
4845         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4846
4847         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4848                 return -EINVAL;
4849
4850         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4851                 return -EFAULT;
4852
4853         return bpf_event_output(map, flags, meta, meta_size, xdp,
4854                                 xdp_size, bpf_xdp_copy);
4855 }
4856
4857 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4858         .func           = bpf_xdp_event_output,
4859         .gpl_only       = true,
4860         .ret_type       = RET_INTEGER,
4861         .arg1_type      = ARG_PTR_TO_CTX,
4862         .arg2_type      = ARG_CONST_MAP_PTR,
4863         .arg3_type      = ARG_ANYTHING,
4864         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4865         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4866 };
4867
4868 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4869
4870 const struct bpf_func_proto bpf_xdp_output_proto = {
4871         .func           = bpf_xdp_event_output,
4872         .gpl_only       = true,
4873         .ret_type       = RET_INTEGER,
4874         .arg1_type      = ARG_PTR_TO_BTF_ID,
4875         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4876         .arg2_type      = ARG_CONST_MAP_PTR,
4877         .arg3_type      = ARG_ANYTHING,
4878         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4879         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4880 };
4881
4882 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4883 {
4884         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4885 }
4886
4887 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4888         .func           = bpf_get_socket_cookie,
4889         .gpl_only       = false,
4890         .ret_type       = RET_INTEGER,
4891         .arg1_type      = ARG_PTR_TO_CTX,
4892 };
4893
4894 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4895 {
4896         return __sock_gen_cookie(ctx->sk);
4897 }
4898
4899 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4900         .func           = bpf_get_socket_cookie_sock_addr,
4901         .gpl_only       = false,
4902         .ret_type       = RET_INTEGER,
4903         .arg1_type      = ARG_PTR_TO_CTX,
4904 };
4905
4906 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4907 {
4908         return __sock_gen_cookie(ctx);
4909 }
4910
4911 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4912         .func           = bpf_get_socket_cookie_sock,
4913         .gpl_only       = false,
4914         .ret_type       = RET_INTEGER,
4915         .arg1_type      = ARG_PTR_TO_CTX,
4916 };
4917
4918 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4919 {
4920         return sk ? sock_gen_cookie(sk) : 0;
4921 }
4922
4923 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4924         .func           = bpf_get_socket_ptr_cookie,
4925         .gpl_only       = false,
4926         .ret_type       = RET_INTEGER,
4927         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4928 };
4929
4930 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4931 {
4932         return __sock_gen_cookie(ctx->sk);
4933 }
4934
4935 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4936         .func           = bpf_get_socket_cookie_sock_ops,
4937         .gpl_only       = false,
4938         .ret_type       = RET_INTEGER,
4939         .arg1_type      = ARG_PTR_TO_CTX,
4940 };
4941
4942 static u64 __bpf_get_netns_cookie(struct sock *sk)
4943 {
4944         const struct net *net = sk ? sock_net(sk) : &init_net;
4945
4946         return net->net_cookie;
4947 }
4948
4949 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4950 {
4951         return __bpf_get_netns_cookie(ctx);
4952 }
4953
4954 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4955         .func           = bpf_get_netns_cookie_sock,
4956         .gpl_only       = false,
4957         .ret_type       = RET_INTEGER,
4958         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4959 };
4960
4961 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4962 {
4963         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4964 }
4965
4966 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4967         .func           = bpf_get_netns_cookie_sock_addr,
4968         .gpl_only       = false,
4969         .ret_type       = RET_INTEGER,
4970         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4971 };
4972
4973 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4974 {
4975         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4976 }
4977
4978 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4979         .func           = bpf_get_netns_cookie_sock_ops,
4980         .gpl_only       = false,
4981         .ret_type       = RET_INTEGER,
4982         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4983 };
4984
4985 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4986 {
4987         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4988 }
4989
4990 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4991         .func           = bpf_get_netns_cookie_sk_msg,
4992         .gpl_only       = false,
4993         .ret_type       = RET_INTEGER,
4994         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4995 };
4996
4997 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4998 {
4999         struct sock *sk = sk_to_full_sk(skb->sk);
5000         kuid_t kuid;
5001
5002         if (!sk || !sk_fullsock(sk))
5003                 return overflowuid;
5004         kuid = sock_net_uid(sock_net(sk), sk);
5005         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5006 }
5007
5008 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5009         .func           = bpf_get_socket_uid,
5010         .gpl_only       = false,
5011         .ret_type       = RET_INTEGER,
5012         .arg1_type      = ARG_PTR_TO_CTX,
5013 };
5014
5015 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5016                             char *optval, int optlen)
5017 {
5018         char devname[IFNAMSIZ];
5019         int val, valbool;
5020         struct net *net;
5021         int ifindex;
5022         int ret = 0;
5023
5024         if (!sk_fullsock(sk))
5025                 return -EINVAL;
5026
5027         if (level == SOL_SOCKET) {
5028                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5029                         return -EINVAL;
5030                 val = *((int *)optval);
5031                 valbool = val ? 1 : 0;
5032
5033                 /* Only some socketops are supported */
5034                 switch (optname) {
5035                 case SO_RCVBUF:
5036                         val = min_t(u32, val, sysctl_rmem_max);
5037                         val = min_t(int, val, INT_MAX / 2);
5038                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5039                         WRITE_ONCE(sk->sk_rcvbuf,
5040                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
5041                         break;
5042                 case SO_SNDBUF:
5043                         val = min_t(u32, val, sysctl_wmem_max);
5044                         val = min_t(int, val, INT_MAX / 2);
5045                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5046                         WRITE_ONCE(sk->sk_sndbuf,
5047                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
5048                         break;
5049                 case SO_MAX_PACING_RATE: /* 32bit version */
5050                         if (val != ~0U)
5051                                 cmpxchg(&sk->sk_pacing_status,
5052                                         SK_PACING_NONE,
5053                                         SK_PACING_NEEDED);
5054                         sk->sk_max_pacing_rate = (val == ~0U) ?
5055                                                  ~0UL : (unsigned int)val;
5056                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5057                                                  sk->sk_max_pacing_rate);
5058                         break;
5059                 case SO_PRIORITY:
5060                         sk->sk_priority = val;
5061                         break;
5062                 case SO_RCVLOWAT:
5063                         if (val < 0)
5064                                 val = INT_MAX;
5065                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5066                         break;
5067                 case SO_MARK:
5068                         if (sk->sk_mark != val) {
5069                                 sk->sk_mark = val;
5070                                 sk_dst_reset(sk);
5071                         }
5072                         break;
5073                 case SO_BINDTODEVICE:
5074                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
5075                         strncpy(devname, optval, optlen);
5076                         devname[optlen] = 0;
5077
5078                         ifindex = 0;
5079                         if (devname[0] != '\0') {
5080                                 struct net_device *dev;
5081
5082                                 ret = -ENODEV;
5083
5084                                 net = sock_net(sk);
5085                                 dev = dev_get_by_name(net, devname);
5086                                 if (!dev)
5087                                         break;
5088                                 ifindex = dev->ifindex;
5089                                 dev_put(dev);
5090                         }
5091                         fallthrough;
5092                 case SO_BINDTOIFINDEX:
5093                         if (optname == SO_BINDTOIFINDEX)
5094                                 ifindex = val;
5095                         ret = sock_bindtoindex(sk, ifindex, false);
5096                         break;
5097                 case SO_KEEPALIVE:
5098                         if (sk->sk_prot->keepalive)
5099                                 sk->sk_prot->keepalive(sk, valbool);
5100                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5101                         break;
5102                 case SO_REUSEPORT:
5103                         sk->sk_reuseport = valbool;
5104                         break;
5105                 case SO_TXREHASH:
5106                         if (val < -1 || val > 1) {
5107                                 ret = -EINVAL;
5108                                 break;
5109                         }
5110                         sk->sk_txrehash = (u8)val;
5111                         break;
5112                 default:
5113                         ret = -EINVAL;
5114                 }
5115 #ifdef CONFIG_INET
5116         } else if (level == SOL_IP) {
5117                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5118                         return -EINVAL;
5119
5120                 val = *((int *)optval);
5121                 /* Only some options are supported */
5122                 switch (optname) {
5123                 case IP_TOS:
5124                         if (val < -1 || val > 0xff) {
5125                                 ret = -EINVAL;
5126                         } else {
5127                                 struct inet_sock *inet = inet_sk(sk);
5128
5129                                 if (val == -1)
5130                                         val = 0;
5131                                 inet->tos = val;
5132                         }
5133                         break;
5134                 default:
5135                         ret = -EINVAL;
5136                 }
5137 #if IS_ENABLED(CONFIG_IPV6)
5138         } else if (level == SOL_IPV6) {
5139                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5140                         return -EINVAL;
5141
5142                 val = *((int *)optval);
5143                 /* Only some options are supported */
5144                 switch (optname) {
5145                 case IPV6_TCLASS:
5146                         if (val < -1 || val > 0xff) {
5147                                 ret = -EINVAL;
5148                         } else {
5149                                 struct ipv6_pinfo *np = inet6_sk(sk);
5150
5151                                 if (val == -1)
5152                                         val = 0;
5153                                 np->tclass = val;
5154                         }
5155                         break;
5156                 default:
5157                         ret = -EINVAL;
5158                 }
5159 #endif
5160         } else if (level == SOL_TCP &&
5161                    sk->sk_prot->setsockopt == tcp_setsockopt) {
5162                 if (optname == TCP_CONGESTION) {
5163                         char name[TCP_CA_NAME_MAX];
5164
5165                         strncpy(name, optval, min_t(long, optlen,
5166                                                     TCP_CA_NAME_MAX-1));
5167                         name[TCP_CA_NAME_MAX-1] = 0;
5168                         ret = tcp_set_congestion_control(sk, name, false, true);
5169                 } else {
5170                         struct inet_connection_sock *icsk = inet_csk(sk);
5171                         struct tcp_sock *tp = tcp_sk(sk);
5172                         unsigned long timeout;
5173
5174                         if (optlen != sizeof(int))
5175                                 return -EINVAL;
5176
5177                         val = *((int *)optval);
5178                         /* Only some options are supported */
5179                         switch (optname) {
5180                         case TCP_BPF_IW:
5181                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5182                                         ret = -EINVAL;
5183                                 else
5184                                         tcp_snd_cwnd_set(tp, val);
5185                                 break;
5186                         case TCP_BPF_SNDCWND_CLAMP:
5187                                 if (val <= 0) {
5188                                         ret = -EINVAL;
5189                                 } else {
5190                                         tp->snd_cwnd_clamp = val;
5191                                         tp->snd_ssthresh = val;
5192                                 }
5193                                 break;
5194                         case TCP_BPF_DELACK_MAX:
5195                                 timeout = usecs_to_jiffies(val);
5196                                 if (timeout > TCP_DELACK_MAX ||
5197                                     timeout < TCP_TIMEOUT_MIN)
5198                                         return -EINVAL;
5199                                 inet_csk(sk)->icsk_delack_max = timeout;
5200                                 break;
5201                         case TCP_BPF_RTO_MIN:
5202                                 timeout = usecs_to_jiffies(val);
5203                                 if (timeout > TCP_RTO_MIN ||
5204                                     timeout < TCP_TIMEOUT_MIN)
5205                                         return -EINVAL;
5206                                 inet_csk(sk)->icsk_rto_min = timeout;
5207                                 break;
5208                         case TCP_SAVE_SYN:
5209                                 if (val < 0 || val > 1)
5210                                         ret = -EINVAL;
5211                                 else
5212                                         tp->save_syn = val;
5213                                 break;
5214                         case TCP_KEEPIDLE:
5215                                 ret = tcp_sock_set_keepidle_locked(sk, val);
5216                                 break;
5217                         case TCP_KEEPINTVL:
5218                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
5219                                         ret = -EINVAL;
5220                                 else
5221                                         tp->keepalive_intvl = val * HZ;
5222                                 break;
5223                         case TCP_KEEPCNT:
5224                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
5225                                         ret = -EINVAL;
5226                                 else
5227                                         tp->keepalive_probes = val;
5228                                 break;
5229                         case TCP_SYNCNT:
5230                                 if (val < 1 || val > MAX_TCP_SYNCNT)
5231                                         ret = -EINVAL;
5232                                 else
5233                                         icsk->icsk_syn_retries = val;
5234                                 break;
5235                         case TCP_USER_TIMEOUT:
5236                                 if (val < 0)
5237                                         ret = -EINVAL;
5238                                 else
5239                                         icsk->icsk_user_timeout = val;
5240                                 break;
5241                         case TCP_NOTSENT_LOWAT:
5242                                 tp->notsent_lowat = val;
5243                                 sk->sk_write_space(sk);
5244                                 break;
5245                         case TCP_WINDOW_CLAMP:
5246                                 ret = tcp_set_window_clamp(sk, val);
5247                                 break;
5248                         default:
5249                                 ret = -EINVAL;
5250                         }
5251                 }
5252 #endif
5253         } else {
5254                 ret = -EINVAL;
5255         }
5256         return ret;
5257 }
5258
5259 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5260                            char *optval, int optlen)
5261 {
5262         if (sk_fullsock(sk))
5263                 sock_owned_by_me(sk);
5264         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5265 }
5266
5267 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5268                             char *optval, int optlen)
5269 {
5270         if (!sk_fullsock(sk))
5271                 goto err_clear;
5272
5273         if (level == SOL_SOCKET) {
5274                 if (optlen != sizeof(int))
5275                         goto err_clear;
5276
5277                 switch (optname) {
5278                 case SO_RCVBUF:
5279                         *((int *)optval) = sk->sk_rcvbuf;
5280                         break;
5281                 case SO_SNDBUF:
5282                         *((int *)optval) = sk->sk_sndbuf;
5283                         break;
5284                 case SO_MARK:
5285                         *((int *)optval) = sk->sk_mark;
5286                         break;
5287                 case SO_PRIORITY:
5288                         *((int *)optval) = sk->sk_priority;
5289                         break;
5290                 case SO_BINDTOIFINDEX:
5291                         *((int *)optval) = sk->sk_bound_dev_if;
5292                         break;
5293                 case SO_REUSEPORT:
5294                         *((int *)optval) = sk->sk_reuseport;
5295                         break;
5296                 case SO_TXREHASH:
5297                         *((int *)optval) = sk->sk_txrehash;
5298                         break;
5299                 default:
5300                         goto err_clear;
5301                 }
5302 #ifdef CONFIG_INET
5303         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5304                 struct inet_connection_sock *icsk;
5305                 struct tcp_sock *tp;
5306
5307                 switch (optname) {
5308                 case TCP_CONGESTION:
5309                         icsk = inet_csk(sk);
5310
5311                         if (!icsk->icsk_ca_ops || optlen <= 1)
5312                                 goto err_clear;
5313                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5314                         optval[optlen - 1] = 0;
5315                         break;
5316                 case TCP_SAVED_SYN:
5317                         tp = tcp_sk(sk);
5318
5319                         if (optlen <= 0 || !tp->saved_syn ||
5320                             optlen > tcp_saved_syn_len(tp->saved_syn))
5321                                 goto err_clear;
5322                         memcpy(optval, tp->saved_syn->data, optlen);
5323                         break;
5324                 default:
5325                         goto err_clear;
5326                 }
5327         } else if (level == SOL_IP) {
5328                 struct inet_sock *inet = inet_sk(sk);
5329
5330                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5331                         goto err_clear;
5332
5333                 /* Only some options are supported */
5334                 switch (optname) {
5335                 case IP_TOS:
5336                         *((int *)optval) = (int)inet->tos;
5337                         break;
5338                 default:
5339                         goto err_clear;
5340                 }
5341 #if IS_ENABLED(CONFIG_IPV6)
5342         } else if (level == SOL_IPV6) {
5343                 struct ipv6_pinfo *np = inet6_sk(sk);
5344
5345                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5346                         goto err_clear;
5347
5348                 /* Only some options are supported */
5349                 switch (optname) {
5350                 case IPV6_TCLASS:
5351                         *((int *)optval) = (int)np->tclass;
5352                         break;
5353                 default:
5354                         goto err_clear;
5355                 }
5356 #endif
5357 #endif
5358         } else {
5359                 goto err_clear;
5360         }
5361         return 0;
5362 err_clear:
5363         memset(optval, 0, optlen);
5364         return -EINVAL;
5365 }
5366
5367 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5368                            char *optval, int optlen)
5369 {
5370         if (sk_fullsock(sk))
5371                 sock_owned_by_me(sk);
5372         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5373 }
5374
5375 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5376            int, optname, char *, optval, int, optlen)
5377 {
5378         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5379                 if (optlen >= sizeof("cdg") - 1 &&
5380                     !strncmp("cdg", optval, optlen))
5381                         return -ENOTSUPP;
5382         }
5383
5384         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5385 }
5386
5387 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5388         .func           = bpf_sk_setsockopt,
5389         .gpl_only       = false,
5390         .ret_type       = RET_INTEGER,
5391         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5392         .arg2_type      = ARG_ANYTHING,
5393         .arg3_type      = ARG_ANYTHING,
5394         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5395         .arg5_type      = ARG_CONST_SIZE,
5396 };
5397
5398 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5399            int, optname, char *, optval, int, optlen)
5400 {
5401         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5402 }
5403
5404 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5405         .func           = bpf_sk_getsockopt,
5406         .gpl_only       = false,
5407         .ret_type       = RET_INTEGER,
5408         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5409         .arg2_type      = ARG_ANYTHING,
5410         .arg3_type      = ARG_ANYTHING,
5411         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5412         .arg5_type      = ARG_CONST_SIZE,
5413 };
5414
5415 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5416            int, optname, char *, optval, int, optlen)
5417 {
5418         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5419 }
5420
5421 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5422         .func           = bpf_unlocked_sk_setsockopt,
5423         .gpl_only       = false,
5424         .ret_type       = RET_INTEGER,
5425         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5426         .arg2_type      = ARG_ANYTHING,
5427         .arg3_type      = ARG_ANYTHING,
5428         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5429         .arg5_type      = ARG_CONST_SIZE,
5430 };
5431
5432 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5433            int, optname, char *, optval, int, optlen)
5434 {
5435         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5436 }
5437
5438 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5439         .func           = bpf_unlocked_sk_getsockopt,
5440         .gpl_only       = false,
5441         .ret_type       = RET_INTEGER,
5442         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5443         .arg2_type      = ARG_ANYTHING,
5444         .arg3_type      = ARG_ANYTHING,
5445         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5446         .arg5_type      = ARG_CONST_SIZE,
5447 };
5448
5449 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5450            int, level, int, optname, char *, optval, int, optlen)
5451 {
5452         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5453 }
5454
5455 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5456         .func           = bpf_sock_addr_setsockopt,
5457         .gpl_only       = false,
5458         .ret_type       = RET_INTEGER,
5459         .arg1_type      = ARG_PTR_TO_CTX,
5460         .arg2_type      = ARG_ANYTHING,
5461         .arg3_type      = ARG_ANYTHING,
5462         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5463         .arg5_type      = ARG_CONST_SIZE,
5464 };
5465
5466 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5467            int, level, int, optname, char *, optval, int, optlen)
5468 {
5469         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5470 }
5471
5472 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5473         .func           = bpf_sock_addr_getsockopt,
5474         .gpl_only       = false,
5475         .ret_type       = RET_INTEGER,
5476         .arg1_type      = ARG_PTR_TO_CTX,
5477         .arg2_type      = ARG_ANYTHING,
5478         .arg3_type      = ARG_ANYTHING,
5479         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5480         .arg5_type      = ARG_CONST_SIZE,
5481 };
5482
5483 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5484            int, level, int, optname, char *, optval, int, optlen)
5485 {
5486         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5487 }
5488
5489 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5490         .func           = bpf_sock_ops_setsockopt,
5491         .gpl_only       = false,
5492         .ret_type       = RET_INTEGER,
5493         .arg1_type      = ARG_PTR_TO_CTX,
5494         .arg2_type      = ARG_ANYTHING,
5495         .arg3_type      = ARG_ANYTHING,
5496         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5497         .arg5_type      = ARG_CONST_SIZE,
5498 };
5499
5500 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5501                                 int optname, const u8 **start)
5502 {
5503         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5504         const u8 *hdr_start;
5505         int ret;
5506
5507         if (syn_skb) {
5508                 /* sk is a request_sock here */
5509
5510                 if (optname == TCP_BPF_SYN) {
5511                         hdr_start = syn_skb->data;
5512                         ret = tcp_hdrlen(syn_skb);
5513                 } else if (optname == TCP_BPF_SYN_IP) {
5514                         hdr_start = skb_network_header(syn_skb);
5515                         ret = skb_network_header_len(syn_skb) +
5516                                 tcp_hdrlen(syn_skb);
5517                 } else {
5518                         /* optname == TCP_BPF_SYN_MAC */
5519                         hdr_start = skb_mac_header(syn_skb);
5520                         ret = skb_mac_header_len(syn_skb) +
5521                                 skb_network_header_len(syn_skb) +
5522                                 tcp_hdrlen(syn_skb);
5523                 }
5524         } else {
5525                 struct sock *sk = bpf_sock->sk;
5526                 struct saved_syn *saved_syn;
5527
5528                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5529                         /* synack retransmit. bpf_sock->syn_skb will
5530                          * not be available.  It has to resort to
5531                          * saved_syn (if it is saved).
5532                          */
5533                         saved_syn = inet_reqsk(sk)->saved_syn;
5534                 else
5535                         saved_syn = tcp_sk(sk)->saved_syn;
5536
5537                 if (!saved_syn)
5538                         return -ENOENT;
5539
5540                 if (optname == TCP_BPF_SYN) {
5541                         hdr_start = saved_syn->data +
5542                                 saved_syn->mac_hdrlen +
5543                                 saved_syn->network_hdrlen;
5544                         ret = saved_syn->tcp_hdrlen;
5545                 } else if (optname == TCP_BPF_SYN_IP) {
5546                         hdr_start = saved_syn->data +
5547                                 saved_syn->mac_hdrlen;
5548                         ret = saved_syn->network_hdrlen +
5549                                 saved_syn->tcp_hdrlen;
5550                 } else {
5551                         /* optname == TCP_BPF_SYN_MAC */
5552
5553                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5554                         if (!saved_syn->mac_hdrlen)
5555                                 return -ENOENT;
5556
5557                         hdr_start = saved_syn->data;
5558                         ret = saved_syn->mac_hdrlen +
5559                                 saved_syn->network_hdrlen +
5560                                 saved_syn->tcp_hdrlen;
5561                 }
5562         }
5563
5564         *start = hdr_start;
5565         return ret;
5566 }
5567
5568 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5569            int, level, int, optname, char *, optval, int, optlen)
5570 {
5571         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5572             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5573                 int ret, copy_len = 0;
5574                 const u8 *start;
5575
5576                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5577                 if (ret > 0) {
5578                         copy_len = ret;
5579                         if (optlen < copy_len) {
5580                                 copy_len = optlen;
5581                                 ret = -ENOSPC;
5582                         }
5583
5584                         memcpy(optval, start, copy_len);
5585                 }
5586
5587                 /* Zero out unused buffer at the end */
5588                 memset(optval + copy_len, 0, optlen - copy_len);
5589
5590                 return ret;
5591         }
5592
5593         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5594 }
5595
5596 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5597         .func           = bpf_sock_ops_getsockopt,
5598         .gpl_only       = false,
5599         .ret_type       = RET_INTEGER,
5600         .arg1_type      = ARG_PTR_TO_CTX,
5601         .arg2_type      = ARG_ANYTHING,
5602         .arg3_type      = ARG_ANYTHING,
5603         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5604         .arg5_type      = ARG_CONST_SIZE,
5605 };
5606
5607 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5608            int, argval)
5609 {
5610         struct sock *sk = bpf_sock->sk;
5611         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5612
5613         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5614                 return -EINVAL;
5615
5616         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5617
5618         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5619 }
5620
5621 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5622         .func           = bpf_sock_ops_cb_flags_set,
5623         .gpl_only       = false,
5624         .ret_type       = RET_INTEGER,
5625         .arg1_type      = ARG_PTR_TO_CTX,
5626         .arg2_type      = ARG_ANYTHING,
5627 };
5628
5629 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5630 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5631
5632 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5633            int, addr_len)
5634 {
5635 #ifdef CONFIG_INET
5636         struct sock *sk = ctx->sk;
5637         u32 flags = BIND_FROM_BPF;
5638         int err;
5639
5640         err = -EINVAL;
5641         if (addr_len < offsetofend(struct sockaddr, sa_family))
5642                 return err;
5643         if (addr->sa_family == AF_INET) {
5644                 if (addr_len < sizeof(struct sockaddr_in))
5645                         return err;
5646                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5647                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5648                 return __inet_bind(sk, addr, addr_len, flags);
5649 #if IS_ENABLED(CONFIG_IPV6)
5650         } else if (addr->sa_family == AF_INET6) {
5651                 if (addr_len < SIN6_LEN_RFC2133)
5652                         return err;
5653                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5654                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5655                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5656                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5657                  */
5658                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5659 #endif /* CONFIG_IPV6 */
5660         }
5661 #endif /* CONFIG_INET */
5662
5663         return -EAFNOSUPPORT;
5664 }
5665
5666 static const struct bpf_func_proto bpf_bind_proto = {
5667         .func           = bpf_bind,
5668         .gpl_only       = false,
5669         .ret_type       = RET_INTEGER,
5670         .arg1_type      = ARG_PTR_TO_CTX,
5671         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5672         .arg3_type      = ARG_CONST_SIZE,
5673 };
5674
5675 #ifdef CONFIG_XFRM
5676 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5677            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5678 {
5679         const struct sec_path *sp = skb_sec_path(skb);
5680         const struct xfrm_state *x;
5681
5682         if (!sp || unlikely(index >= sp->len || flags))
5683                 goto err_clear;
5684
5685         x = sp->xvec[index];
5686
5687         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5688                 goto err_clear;
5689
5690         to->reqid = x->props.reqid;
5691         to->spi = x->id.spi;
5692         to->family = x->props.family;
5693         to->ext = 0;
5694
5695         if (to->family == AF_INET6) {
5696                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5697                        sizeof(to->remote_ipv6));
5698         } else {
5699                 to->remote_ipv4 = x->props.saddr.a4;
5700                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5701         }
5702
5703         return 0;
5704 err_clear:
5705         memset(to, 0, size);
5706         return -EINVAL;
5707 }
5708
5709 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5710         .func           = bpf_skb_get_xfrm_state,
5711         .gpl_only       = false,
5712         .ret_type       = RET_INTEGER,
5713         .arg1_type      = ARG_PTR_TO_CTX,
5714         .arg2_type      = ARG_ANYTHING,
5715         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5716         .arg4_type      = ARG_CONST_SIZE,
5717         .arg5_type      = ARG_ANYTHING,
5718 };
5719 #endif
5720
5721 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5722 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5723                                   const struct neighbour *neigh,
5724                                   const struct net_device *dev, u32 mtu)
5725 {
5726         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5727         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5728         params->h_vlan_TCI = 0;
5729         params->h_vlan_proto = 0;
5730         if (mtu)
5731                 params->mtu_result = mtu; /* union with tot_len */
5732
5733         return 0;
5734 }
5735 #endif
5736
5737 #if IS_ENABLED(CONFIG_INET)
5738 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5739                                u32 flags, bool check_mtu)
5740 {
5741         struct fib_nh_common *nhc;
5742         struct in_device *in_dev;
5743         struct neighbour *neigh;
5744         struct net_device *dev;
5745         struct fib_result res;
5746         struct flowi4 fl4;
5747         u32 mtu = 0;
5748         int err;
5749
5750         dev = dev_get_by_index_rcu(net, params->ifindex);
5751         if (unlikely(!dev))
5752                 return -ENODEV;
5753
5754         /* verify forwarding is enabled on this interface */
5755         in_dev = __in_dev_get_rcu(dev);
5756         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5757                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5758
5759         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5760                 fl4.flowi4_iif = 1;
5761                 fl4.flowi4_oif = params->ifindex;
5762         } else {
5763                 fl4.flowi4_iif = params->ifindex;
5764                 fl4.flowi4_oif = 0;
5765         }
5766         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5767         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5768         fl4.flowi4_flags = 0;
5769
5770         fl4.flowi4_proto = params->l4_protocol;
5771         fl4.daddr = params->ipv4_dst;
5772         fl4.saddr = params->ipv4_src;
5773         fl4.fl4_sport = params->sport;
5774         fl4.fl4_dport = params->dport;
5775         fl4.flowi4_multipath_hash = 0;
5776
5777         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5778                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5779                 struct fib_table *tb;
5780
5781                 tb = fib_get_table(net, tbid);
5782                 if (unlikely(!tb))
5783                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5784
5785                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5786         } else {
5787                 fl4.flowi4_mark = 0;
5788                 fl4.flowi4_secid = 0;
5789                 fl4.flowi4_tun_key.tun_id = 0;
5790                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5791
5792                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5793         }
5794
5795         if (err) {
5796                 /* map fib lookup errors to RTN_ type */
5797                 if (err == -EINVAL)
5798                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5799                 if (err == -EHOSTUNREACH)
5800                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5801                 if (err == -EACCES)
5802                         return BPF_FIB_LKUP_RET_PROHIBIT;
5803
5804                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5805         }
5806
5807         if (res.type != RTN_UNICAST)
5808                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5809
5810         if (fib_info_num_path(res.fi) > 1)
5811                 fib_select_path(net, &res, &fl4, NULL);
5812
5813         if (check_mtu) {
5814                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5815                 if (params->tot_len > mtu) {
5816                         params->mtu_result = mtu; /* union with tot_len */
5817                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5818                 }
5819         }
5820
5821         nhc = res.nhc;
5822
5823         /* do not handle lwt encaps right now */
5824         if (nhc->nhc_lwtstate)
5825                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5826
5827         dev = nhc->nhc_dev;
5828
5829         params->rt_metric = res.fi->fib_priority;
5830         params->ifindex = dev->ifindex;
5831
5832         /* xdp and cls_bpf programs are run in RCU-bh so
5833          * rcu_read_lock_bh is not needed here
5834          */
5835         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5836                 if (nhc->nhc_gw_family)
5837                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5838
5839                 neigh = __ipv4_neigh_lookup_noref(dev,
5840                                                  (__force u32)params->ipv4_dst);
5841         } else {
5842                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5843
5844                 params->family = AF_INET6;
5845                 *dst = nhc->nhc_gw.ipv6;
5846                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5847         }
5848
5849         if (!neigh)
5850                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5851
5852         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5853 }
5854 #endif
5855
5856 #if IS_ENABLED(CONFIG_IPV6)
5857 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5858                                u32 flags, bool check_mtu)
5859 {
5860         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5861         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5862         struct fib6_result res = {};
5863         struct neighbour *neigh;
5864         struct net_device *dev;
5865         struct inet6_dev *idev;
5866         struct flowi6 fl6;
5867         int strict = 0;
5868         int oif, err;
5869         u32 mtu = 0;
5870
5871         /* link local addresses are never forwarded */
5872         if (rt6_need_strict(dst) || rt6_need_strict(src))
5873                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5874
5875         dev = dev_get_by_index_rcu(net, params->ifindex);
5876         if (unlikely(!dev))
5877                 return -ENODEV;
5878
5879         idev = __in6_dev_get_safely(dev);
5880         if (unlikely(!idev || !idev->cnf.forwarding))
5881                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5882
5883         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5884                 fl6.flowi6_iif = 1;
5885                 oif = fl6.flowi6_oif = params->ifindex;
5886         } else {
5887                 oif = fl6.flowi6_iif = params->ifindex;
5888                 fl6.flowi6_oif = 0;
5889                 strict = RT6_LOOKUP_F_HAS_SADDR;
5890         }
5891         fl6.flowlabel = params->flowinfo;
5892         fl6.flowi6_scope = 0;
5893         fl6.flowi6_flags = 0;
5894         fl6.mp_hash = 0;
5895
5896         fl6.flowi6_proto = params->l4_protocol;
5897         fl6.daddr = *dst;
5898         fl6.saddr = *src;
5899         fl6.fl6_sport = params->sport;
5900         fl6.fl6_dport = params->dport;
5901
5902         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5903                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5904                 struct fib6_table *tb;
5905
5906                 tb = ipv6_stub->fib6_get_table(net, tbid);
5907                 if (unlikely(!tb))
5908                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5909
5910                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5911                                                    strict);
5912         } else {
5913                 fl6.flowi6_mark = 0;
5914                 fl6.flowi6_secid = 0;
5915                 fl6.flowi6_tun_key.tun_id = 0;
5916                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5917
5918                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5919         }
5920
5921         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5922                      res.f6i == net->ipv6.fib6_null_entry))
5923                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5924
5925         switch (res.fib6_type) {
5926         /* only unicast is forwarded */
5927         case RTN_UNICAST:
5928                 break;
5929         case RTN_BLACKHOLE:
5930                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5931         case RTN_UNREACHABLE:
5932                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5933         case RTN_PROHIBIT:
5934                 return BPF_FIB_LKUP_RET_PROHIBIT;
5935         default:
5936                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5937         }
5938
5939         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5940                                     fl6.flowi6_oif != 0, NULL, strict);
5941
5942         if (check_mtu) {
5943                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5944                 if (params->tot_len > mtu) {
5945                         params->mtu_result = mtu; /* union with tot_len */
5946                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5947                 }
5948         }
5949
5950         if (res.nh->fib_nh_lws)
5951                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5952
5953         if (res.nh->fib_nh_gw_family)
5954                 *dst = res.nh->fib_nh_gw6;
5955
5956         dev = res.nh->fib_nh_dev;
5957         params->rt_metric = res.f6i->fib6_metric;
5958         params->ifindex = dev->ifindex;
5959
5960         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5961          * not needed here.
5962          */
5963         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5964         if (!neigh)
5965                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5966
5967         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5968 }
5969 #endif
5970
5971 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5972            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5973 {
5974         if (plen < sizeof(*params))
5975                 return -EINVAL;
5976
5977         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5978                 return -EINVAL;
5979
5980         switch (params->family) {
5981 #if IS_ENABLED(CONFIG_INET)
5982         case AF_INET:
5983                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5984                                            flags, true);
5985 #endif
5986 #if IS_ENABLED(CONFIG_IPV6)
5987         case AF_INET6:
5988                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5989                                            flags, true);
5990 #endif
5991         }
5992         return -EAFNOSUPPORT;
5993 }
5994
5995 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5996         .func           = bpf_xdp_fib_lookup,
5997         .gpl_only       = true,
5998         .ret_type       = RET_INTEGER,
5999         .arg1_type      = ARG_PTR_TO_CTX,
6000         .arg2_type      = ARG_PTR_TO_MEM,
6001         .arg3_type      = ARG_CONST_SIZE,
6002         .arg4_type      = ARG_ANYTHING,
6003 };
6004
6005 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6006            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6007 {
6008         struct net *net = dev_net(skb->dev);
6009         int rc = -EAFNOSUPPORT;
6010         bool check_mtu = false;
6011
6012         if (plen < sizeof(*params))
6013                 return -EINVAL;
6014
6015         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
6016                 return -EINVAL;
6017
6018         if (params->tot_len)
6019                 check_mtu = true;
6020
6021         switch (params->family) {
6022 #if IS_ENABLED(CONFIG_INET)
6023         case AF_INET:
6024                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6025                 break;
6026 #endif
6027 #if IS_ENABLED(CONFIG_IPV6)
6028         case AF_INET6:
6029                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6030                 break;
6031 #endif
6032         }
6033
6034         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6035                 struct net_device *dev;
6036
6037                 /* When tot_len isn't provided by user, check skb
6038                  * against MTU of FIB lookup resulting net_device
6039                  */
6040                 dev = dev_get_by_index_rcu(net, params->ifindex);
6041                 if (!is_skb_forwardable(dev, skb))
6042                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6043
6044                 params->mtu_result = dev->mtu; /* union with tot_len */
6045         }
6046
6047         return rc;
6048 }
6049
6050 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6051         .func           = bpf_skb_fib_lookup,
6052         .gpl_only       = true,
6053         .ret_type       = RET_INTEGER,
6054         .arg1_type      = ARG_PTR_TO_CTX,
6055         .arg2_type      = ARG_PTR_TO_MEM,
6056         .arg3_type      = ARG_CONST_SIZE,
6057         .arg4_type      = ARG_ANYTHING,
6058 };
6059
6060 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6061                                             u32 ifindex)
6062 {
6063         struct net *netns = dev_net(dev_curr);
6064
6065         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6066         if (ifindex == 0)
6067                 return dev_curr;
6068
6069         return dev_get_by_index_rcu(netns, ifindex);
6070 }
6071
6072 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6073            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6074 {
6075         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6076         struct net_device *dev = skb->dev;
6077         int skb_len, dev_len;
6078         int mtu;
6079
6080         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6081                 return -EINVAL;
6082
6083         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6084                 return -EINVAL;
6085
6086         dev = __dev_via_ifindex(dev, ifindex);
6087         if (unlikely(!dev))
6088                 return -ENODEV;
6089
6090         mtu = READ_ONCE(dev->mtu);
6091
6092         dev_len = mtu + dev->hard_header_len;
6093
6094         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6095         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6096
6097         skb_len += len_diff; /* minus result pass check */
6098         if (skb_len <= dev_len) {
6099                 ret = BPF_MTU_CHK_RET_SUCCESS;
6100                 goto out;
6101         }
6102         /* At this point, skb->len exceed MTU, but as it include length of all
6103          * segments, it can still be below MTU.  The SKB can possibly get
6104          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6105          * must choose if segs are to be MTU checked.
6106          */
6107         if (skb_is_gso(skb)) {
6108                 ret = BPF_MTU_CHK_RET_SUCCESS;
6109
6110                 if (flags & BPF_MTU_CHK_SEGS &&
6111                     !skb_gso_validate_network_len(skb, mtu))
6112                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6113         }
6114 out:
6115         /* BPF verifier guarantees valid pointer */
6116         *mtu_len = mtu;
6117
6118         return ret;
6119 }
6120
6121 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6122            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6123 {
6124         struct net_device *dev = xdp->rxq->dev;
6125         int xdp_len = xdp->data_end - xdp->data;
6126         int ret = BPF_MTU_CHK_RET_SUCCESS;
6127         int mtu, dev_len;
6128
6129         /* XDP variant doesn't support multi-buffer segment check (yet) */
6130         if (unlikely(flags))
6131                 return -EINVAL;
6132
6133         dev = __dev_via_ifindex(dev, ifindex);
6134         if (unlikely(!dev))
6135                 return -ENODEV;
6136
6137         mtu = READ_ONCE(dev->mtu);
6138
6139         /* Add L2-header as dev MTU is L3 size */
6140         dev_len = mtu + dev->hard_header_len;
6141
6142         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6143         if (*mtu_len)
6144                 xdp_len = *mtu_len + dev->hard_header_len;
6145
6146         xdp_len += len_diff; /* minus result pass check */
6147         if (xdp_len > dev_len)
6148                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6149
6150         /* BPF verifier guarantees valid pointer */
6151         *mtu_len = mtu;
6152
6153         return ret;
6154 }
6155
6156 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6157         .func           = bpf_skb_check_mtu,
6158         .gpl_only       = true,
6159         .ret_type       = RET_INTEGER,
6160         .arg1_type      = ARG_PTR_TO_CTX,
6161         .arg2_type      = ARG_ANYTHING,
6162         .arg3_type      = ARG_PTR_TO_INT,
6163         .arg4_type      = ARG_ANYTHING,
6164         .arg5_type      = ARG_ANYTHING,
6165 };
6166
6167 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6168         .func           = bpf_xdp_check_mtu,
6169         .gpl_only       = true,
6170         .ret_type       = RET_INTEGER,
6171         .arg1_type      = ARG_PTR_TO_CTX,
6172         .arg2_type      = ARG_ANYTHING,
6173         .arg3_type      = ARG_PTR_TO_INT,
6174         .arg4_type      = ARG_ANYTHING,
6175         .arg5_type      = ARG_ANYTHING,
6176 };
6177
6178 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6179 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6180 {
6181         int err;
6182         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6183
6184         if (!seg6_validate_srh(srh, len, false))
6185                 return -EINVAL;
6186
6187         switch (type) {
6188         case BPF_LWT_ENCAP_SEG6_INLINE:
6189                 if (skb->protocol != htons(ETH_P_IPV6))
6190                         return -EBADMSG;
6191
6192                 err = seg6_do_srh_inline(skb, srh);
6193                 break;
6194         case BPF_LWT_ENCAP_SEG6:
6195                 skb_reset_inner_headers(skb);
6196                 skb->encapsulation = 1;
6197                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6198                 break;
6199         default:
6200                 return -EINVAL;
6201         }
6202
6203         bpf_compute_data_pointers(skb);
6204         if (err)
6205                 return err;
6206
6207         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6208         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6209
6210         return seg6_lookup_nexthop(skb, NULL, 0);
6211 }
6212 #endif /* CONFIG_IPV6_SEG6_BPF */
6213
6214 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6215 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6216                              bool ingress)
6217 {
6218         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6219 }
6220 #endif
6221
6222 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6223            u32, len)
6224 {
6225         switch (type) {
6226 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6227         case BPF_LWT_ENCAP_SEG6:
6228         case BPF_LWT_ENCAP_SEG6_INLINE:
6229                 return bpf_push_seg6_encap(skb, type, hdr, len);
6230 #endif
6231 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6232         case BPF_LWT_ENCAP_IP:
6233                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6234 #endif
6235         default:
6236                 return -EINVAL;
6237         }
6238 }
6239
6240 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6241            void *, hdr, u32, len)
6242 {
6243         switch (type) {
6244 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6245         case BPF_LWT_ENCAP_IP:
6246                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6247 #endif
6248         default:
6249                 return -EINVAL;
6250         }
6251 }
6252
6253 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6254         .func           = bpf_lwt_in_push_encap,
6255         .gpl_only       = false,
6256         .ret_type       = RET_INTEGER,
6257         .arg1_type      = ARG_PTR_TO_CTX,
6258         .arg2_type      = ARG_ANYTHING,
6259         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6260         .arg4_type      = ARG_CONST_SIZE
6261 };
6262
6263 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6264         .func           = bpf_lwt_xmit_push_encap,
6265         .gpl_only       = false,
6266         .ret_type       = RET_INTEGER,
6267         .arg1_type      = ARG_PTR_TO_CTX,
6268         .arg2_type      = ARG_ANYTHING,
6269         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6270         .arg4_type      = ARG_CONST_SIZE
6271 };
6272
6273 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6274 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6275            const void *, from, u32, len)
6276 {
6277         struct seg6_bpf_srh_state *srh_state =
6278                 this_cpu_ptr(&seg6_bpf_srh_states);
6279         struct ipv6_sr_hdr *srh = srh_state->srh;
6280         void *srh_tlvs, *srh_end, *ptr;
6281         int srhoff = 0;
6282
6283         if (srh == NULL)
6284                 return -EINVAL;
6285
6286         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6287         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6288
6289         ptr = skb->data + offset;
6290         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6291                 srh_state->valid = false;
6292         else if (ptr < (void *)&srh->flags ||
6293                  ptr + len > (void *)&srh->segments)
6294                 return -EFAULT;
6295
6296         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6297                 return -EFAULT;
6298         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6299                 return -EINVAL;
6300         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6301
6302         memcpy(skb->data + offset, from, len);
6303         return 0;
6304 }
6305
6306 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6307         .func           = bpf_lwt_seg6_store_bytes,
6308         .gpl_only       = false,
6309         .ret_type       = RET_INTEGER,
6310         .arg1_type      = ARG_PTR_TO_CTX,
6311         .arg2_type      = ARG_ANYTHING,
6312         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6313         .arg4_type      = ARG_CONST_SIZE
6314 };
6315
6316 static void bpf_update_srh_state(struct sk_buff *skb)
6317 {
6318         struct seg6_bpf_srh_state *srh_state =
6319                 this_cpu_ptr(&seg6_bpf_srh_states);
6320         int srhoff = 0;
6321
6322         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6323                 srh_state->srh = NULL;
6324         } else {
6325                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6326                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6327                 srh_state->valid = true;
6328         }
6329 }
6330
6331 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6332            u32, action, void *, param, u32, param_len)
6333 {
6334         struct seg6_bpf_srh_state *srh_state =
6335                 this_cpu_ptr(&seg6_bpf_srh_states);
6336         int hdroff = 0;
6337         int err;
6338
6339         switch (action) {
6340         case SEG6_LOCAL_ACTION_END_X:
6341                 if (!seg6_bpf_has_valid_srh(skb))
6342                         return -EBADMSG;
6343                 if (param_len != sizeof(struct in6_addr))
6344                         return -EINVAL;
6345                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6346         case SEG6_LOCAL_ACTION_END_T:
6347                 if (!seg6_bpf_has_valid_srh(skb))
6348                         return -EBADMSG;
6349                 if (param_len != sizeof(int))
6350                         return -EINVAL;
6351                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6352         case SEG6_LOCAL_ACTION_END_DT6:
6353                 if (!seg6_bpf_has_valid_srh(skb))
6354                         return -EBADMSG;
6355                 if (param_len != sizeof(int))
6356                         return -EINVAL;
6357
6358                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6359                         return -EBADMSG;
6360                 if (!pskb_pull(skb, hdroff))
6361                         return -EBADMSG;
6362
6363                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6364                 skb_reset_network_header(skb);
6365                 skb_reset_transport_header(skb);
6366                 skb->encapsulation = 0;
6367
6368                 bpf_compute_data_pointers(skb);
6369                 bpf_update_srh_state(skb);
6370                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6371         case SEG6_LOCAL_ACTION_END_B6:
6372                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6373                         return -EBADMSG;
6374                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6375                                           param, param_len);
6376                 if (!err)
6377                         bpf_update_srh_state(skb);
6378
6379                 return err;
6380         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6381                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6382                         return -EBADMSG;
6383                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6384                                           param, param_len);
6385                 if (!err)
6386                         bpf_update_srh_state(skb);
6387
6388                 return err;
6389         default:
6390                 return -EINVAL;
6391         }
6392 }
6393
6394 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6395         .func           = bpf_lwt_seg6_action,
6396         .gpl_only       = false,
6397         .ret_type       = RET_INTEGER,
6398         .arg1_type      = ARG_PTR_TO_CTX,
6399         .arg2_type      = ARG_ANYTHING,
6400         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6401         .arg4_type      = ARG_CONST_SIZE
6402 };
6403
6404 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6405            s32, len)
6406 {
6407         struct seg6_bpf_srh_state *srh_state =
6408                 this_cpu_ptr(&seg6_bpf_srh_states);
6409         struct ipv6_sr_hdr *srh = srh_state->srh;
6410         void *srh_end, *srh_tlvs, *ptr;
6411         struct ipv6hdr *hdr;
6412         int srhoff = 0;
6413         int ret;
6414
6415         if (unlikely(srh == NULL))
6416                 return -EINVAL;
6417
6418         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6419                         ((srh->first_segment + 1) << 4));
6420         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6421                         srh_state->hdrlen);
6422         ptr = skb->data + offset;
6423
6424         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6425                 return -EFAULT;
6426         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6427                 return -EFAULT;
6428
6429         if (len > 0) {
6430                 ret = skb_cow_head(skb, len);
6431                 if (unlikely(ret < 0))
6432                         return ret;
6433
6434                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6435         } else {
6436                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6437         }
6438
6439         bpf_compute_data_pointers(skb);
6440         if (unlikely(ret < 0))
6441                 return ret;
6442
6443         hdr = (struct ipv6hdr *)skb->data;
6444         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6445
6446         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6447                 return -EINVAL;
6448         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6449         srh_state->hdrlen += len;
6450         srh_state->valid = false;
6451         return 0;
6452 }
6453
6454 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6455         .func           = bpf_lwt_seg6_adjust_srh,
6456         .gpl_only       = false,
6457         .ret_type       = RET_INTEGER,
6458         .arg1_type      = ARG_PTR_TO_CTX,
6459         .arg2_type      = ARG_ANYTHING,
6460         .arg3_type      = ARG_ANYTHING,
6461 };
6462 #endif /* CONFIG_IPV6_SEG6_BPF */
6463
6464 #ifdef CONFIG_INET
6465 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6466                               int dif, int sdif, u8 family, u8 proto)
6467 {
6468         bool refcounted = false;
6469         struct sock *sk = NULL;
6470
6471         if (family == AF_INET) {
6472                 __be32 src4 = tuple->ipv4.saddr;
6473                 __be32 dst4 = tuple->ipv4.daddr;
6474
6475                 if (proto == IPPROTO_TCP)
6476                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6477                                            src4, tuple->ipv4.sport,
6478                                            dst4, tuple->ipv4.dport,
6479                                            dif, sdif, &refcounted);
6480                 else
6481                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6482                                                dst4, tuple->ipv4.dport,
6483                                                dif, sdif, &udp_table, NULL);
6484 #if IS_ENABLED(CONFIG_IPV6)
6485         } else {
6486                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6487                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6488
6489                 if (proto == IPPROTO_TCP)
6490                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6491                                             src6, tuple->ipv6.sport,
6492                                             dst6, ntohs(tuple->ipv6.dport),
6493                                             dif, sdif, &refcounted);
6494                 else if (likely(ipv6_bpf_stub))
6495                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6496                                                             src6, tuple->ipv6.sport,
6497                                                             dst6, tuple->ipv6.dport,
6498                                                             dif, sdif,
6499                                                             &udp_table, NULL);
6500 #endif
6501         }
6502
6503         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6504                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6505                 sk = NULL;
6506         }
6507         return sk;
6508 }
6509
6510 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6511  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6512  */
6513 static struct sock *
6514 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6515                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6516                  u64 flags)
6517 {
6518         struct sock *sk = NULL;
6519         struct net *net;
6520         u8 family;
6521         int sdif;
6522
6523         if (len == sizeof(tuple->ipv4))
6524                 family = AF_INET;
6525         else if (len == sizeof(tuple->ipv6))
6526                 family = AF_INET6;
6527         else
6528                 return NULL;
6529
6530         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6531                 goto out;
6532
6533         if (family == AF_INET)
6534                 sdif = inet_sdif(skb);
6535         else
6536                 sdif = inet6_sdif(skb);
6537
6538         if ((s32)netns_id < 0) {
6539                 net = caller_net;
6540                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6541         } else {
6542                 net = get_net_ns_by_id(caller_net, netns_id);
6543                 if (unlikely(!net))
6544                         goto out;
6545                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6546                 put_net(net);
6547         }
6548
6549 out:
6550         return sk;
6551 }
6552
6553 static struct sock *
6554 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6555                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6556                 u64 flags)
6557 {
6558         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6559                                            ifindex, proto, netns_id, flags);
6560
6561         if (sk) {
6562                 struct sock *sk2 = sk_to_full_sk(sk);
6563
6564                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6565                  * sock refcnt is decremented to prevent a request_sock leak.
6566                  */
6567                 if (!sk_fullsock(sk2))
6568                         sk2 = NULL;
6569                 if (sk2 != sk) {
6570                         sock_gen_put(sk);
6571                         /* Ensure there is no need to bump sk2 refcnt */
6572                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6573                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6574                                 return NULL;
6575                         }
6576                         sk = sk2;
6577                 }
6578         }
6579
6580         return sk;
6581 }
6582
6583 static struct sock *
6584 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6585                u8 proto, u64 netns_id, u64 flags)
6586 {
6587         struct net *caller_net;
6588         int ifindex;
6589
6590         if (skb->dev) {
6591                 caller_net = dev_net(skb->dev);
6592                 ifindex = skb->dev->ifindex;
6593         } else {
6594                 caller_net = sock_net(skb->sk);
6595                 ifindex = 0;
6596         }
6597
6598         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6599                                 netns_id, flags);
6600 }
6601
6602 static struct sock *
6603 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6604               u8 proto, u64 netns_id, u64 flags)
6605 {
6606         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6607                                          flags);
6608
6609         if (sk) {
6610                 struct sock *sk2 = sk_to_full_sk(sk);
6611
6612                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6613                  * sock refcnt is decremented to prevent a request_sock leak.
6614                  */
6615                 if (!sk_fullsock(sk2))
6616                         sk2 = NULL;
6617                 if (sk2 != sk) {
6618                         sock_gen_put(sk);
6619                         /* Ensure there is no need to bump sk2 refcnt */
6620                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6621                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6622                                 return NULL;
6623                         }
6624                         sk = sk2;
6625                 }
6626         }
6627
6628         return sk;
6629 }
6630
6631 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6632            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6633 {
6634         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6635                                              netns_id, flags);
6636 }
6637
6638 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6639         .func           = bpf_skc_lookup_tcp,
6640         .gpl_only       = false,
6641         .pkt_access     = true,
6642         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6643         .arg1_type      = ARG_PTR_TO_CTX,
6644         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6645         .arg3_type      = ARG_CONST_SIZE,
6646         .arg4_type      = ARG_ANYTHING,
6647         .arg5_type      = ARG_ANYTHING,
6648 };
6649
6650 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6651            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6652 {
6653         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6654                                             netns_id, flags);
6655 }
6656
6657 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6658         .func           = bpf_sk_lookup_tcp,
6659         .gpl_only       = false,
6660         .pkt_access     = true,
6661         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6662         .arg1_type      = ARG_PTR_TO_CTX,
6663         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6664         .arg3_type      = ARG_CONST_SIZE,
6665         .arg4_type      = ARG_ANYTHING,
6666         .arg5_type      = ARG_ANYTHING,
6667 };
6668
6669 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6670            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6671 {
6672         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6673                                             netns_id, flags);
6674 }
6675
6676 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6677         .func           = bpf_sk_lookup_udp,
6678         .gpl_only       = false,
6679         .pkt_access     = true,
6680         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6681         .arg1_type      = ARG_PTR_TO_CTX,
6682         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6683         .arg3_type      = ARG_CONST_SIZE,
6684         .arg4_type      = ARG_ANYTHING,
6685         .arg5_type      = ARG_ANYTHING,
6686 };
6687
6688 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6689 {
6690         if (sk && sk_is_refcounted(sk))
6691                 sock_gen_put(sk);
6692         return 0;
6693 }
6694
6695 static const struct bpf_func_proto bpf_sk_release_proto = {
6696         .func           = bpf_sk_release,
6697         .gpl_only       = false,
6698         .ret_type       = RET_INTEGER,
6699         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6700 };
6701
6702 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6703            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6704 {
6705         struct net *caller_net = dev_net(ctx->rxq->dev);
6706         int ifindex = ctx->rxq->dev->ifindex;
6707
6708         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6709                                               ifindex, IPPROTO_UDP, netns_id,
6710                                               flags);
6711 }
6712
6713 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6714         .func           = bpf_xdp_sk_lookup_udp,
6715         .gpl_only       = false,
6716         .pkt_access     = true,
6717         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6718         .arg1_type      = ARG_PTR_TO_CTX,
6719         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6720         .arg3_type      = ARG_CONST_SIZE,
6721         .arg4_type      = ARG_ANYTHING,
6722         .arg5_type      = ARG_ANYTHING,
6723 };
6724
6725 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6726            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6727 {
6728         struct net *caller_net = dev_net(ctx->rxq->dev);
6729         int ifindex = ctx->rxq->dev->ifindex;
6730
6731         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6732                                                ifindex, IPPROTO_TCP, netns_id,
6733                                                flags);
6734 }
6735
6736 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6737         .func           = bpf_xdp_skc_lookup_tcp,
6738         .gpl_only       = false,
6739         .pkt_access     = true,
6740         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6741         .arg1_type      = ARG_PTR_TO_CTX,
6742         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6743         .arg3_type      = ARG_CONST_SIZE,
6744         .arg4_type      = ARG_ANYTHING,
6745         .arg5_type      = ARG_ANYTHING,
6746 };
6747
6748 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6749            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6750 {
6751         struct net *caller_net = dev_net(ctx->rxq->dev);
6752         int ifindex = ctx->rxq->dev->ifindex;
6753
6754         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6755                                               ifindex, IPPROTO_TCP, netns_id,
6756                                               flags);
6757 }
6758
6759 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6760         .func           = bpf_xdp_sk_lookup_tcp,
6761         .gpl_only       = false,
6762         .pkt_access     = true,
6763         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6764         .arg1_type      = ARG_PTR_TO_CTX,
6765         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6766         .arg3_type      = ARG_CONST_SIZE,
6767         .arg4_type      = ARG_ANYTHING,
6768         .arg5_type      = ARG_ANYTHING,
6769 };
6770
6771 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6772            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6773 {
6774         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6775                                                sock_net(ctx->sk), 0,
6776                                                IPPROTO_TCP, netns_id, flags);
6777 }
6778
6779 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6780         .func           = bpf_sock_addr_skc_lookup_tcp,
6781         .gpl_only       = false,
6782         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6783         .arg1_type      = ARG_PTR_TO_CTX,
6784         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6785         .arg3_type      = ARG_CONST_SIZE,
6786         .arg4_type      = ARG_ANYTHING,
6787         .arg5_type      = ARG_ANYTHING,
6788 };
6789
6790 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6791            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6792 {
6793         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6794                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6795                                               netns_id, flags);
6796 }
6797
6798 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6799         .func           = bpf_sock_addr_sk_lookup_tcp,
6800         .gpl_only       = false,
6801         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6802         .arg1_type      = ARG_PTR_TO_CTX,
6803         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6804         .arg3_type      = ARG_CONST_SIZE,
6805         .arg4_type      = ARG_ANYTHING,
6806         .arg5_type      = ARG_ANYTHING,
6807 };
6808
6809 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6810            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6811 {
6812         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6813                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6814                                               netns_id, flags);
6815 }
6816
6817 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6818         .func           = bpf_sock_addr_sk_lookup_udp,
6819         .gpl_only       = false,
6820         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6821         .arg1_type      = ARG_PTR_TO_CTX,
6822         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6823         .arg3_type      = ARG_CONST_SIZE,
6824         .arg4_type      = ARG_ANYTHING,
6825         .arg5_type      = ARG_ANYTHING,
6826 };
6827
6828 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6829                                   struct bpf_insn_access_aux *info)
6830 {
6831         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6832                                           icsk_retransmits))
6833                 return false;
6834
6835         if (off % size != 0)
6836                 return false;
6837
6838         switch (off) {
6839         case offsetof(struct bpf_tcp_sock, bytes_received):
6840         case offsetof(struct bpf_tcp_sock, bytes_acked):
6841                 return size == sizeof(__u64);
6842         default:
6843                 return size == sizeof(__u32);
6844         }
6845 }
6846
6847 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6848                                     const struct bpf_insn *si,
6849                                     struct bpf_insn *insn_buf,
6850                                     struct bpf_prog *prog, u32 *target_size)
6851 {
6852         struct bpf_insn *insn = insn_buf;
6853
6854 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6855         do {                                                            \
6856                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6857                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6858                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6859                                       si->dst_reg, si->src_reg,         \
6860                                       offsetof(struct tcp_sock, FIELD)); \
6861         } while (0)
6862
6863 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6864         do {                                                            \
6865                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6866                                           FIELD) >                      \
6867                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6868                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6869                                         struct inet_connection_sock,    \
6870                                         FIELD),                         \
6871                                       si->dst_reg, si->src_reg,         \
6872                                       offsetof(                         \
6873                                         struct inet_connection_sock,    \
6874                                         FIELD));                        \
6875         } while (0)
6876
6877         if (insn > insn_buf)
6878                 return insn - insn_buf;
6879
6880         switch (si->off) {
6881         case offsetof(struct bpf_tcp_sock, rtt_min):
6882                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6883                              sizeof(struct minmax));
6884                 BUILD_BUG_ON(sizeof(struct minmax) <
6885                              sizeof(struct minmax_sample));
6886
6887                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6888                                       offsetof(struct tcp_sock, rtt_min) +
6889                                       offsetof(struct minmax_sample, v));
6890                 break;
6891         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6892                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6893                 break;
6894         case offsetof(struct bpf_tcp_sock, srtt_us):
6895                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6896                 break;
6897         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6898                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6899                 break;
6900         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6901                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6902                 break;
6903         case offsetof(struct bpf_tcp_sock, snd_nxt):
6904                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6905                 break;
6906         case offsetof(struct bpf_tcp_sock, snd_una):
6907                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6908                 break;
6909         case offsetof(struct bpf_tcp_sock, mss_cache):
6910                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6911                 break;
6912         case offsetof(struct bpf_tcp_sock, ecn_flags):
6913                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6914                 break;
6915         case offsetof(struct bpf_tcp_sock, rate_delivered):
6916                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6917                 break;
6918         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6919                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6920                 break;
6921         case offsetof(struct bpf_tcp_sock, packets_out):
6922                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6923                 break;
6924         case offsetof(struct bpf_tcp_sock, retrans_out):
6925                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6926                 break;
6927         case offsetof(struct bpf_tcp_sock, total_retrans):
6928                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6929                 break;
6930         case offsetof(struct bpf_tcp_sock, segs_in):
6931                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6932                 break;
6933         case offsetof(struct bpf_tcp_sock, data_segs_in):
6934                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6935                 break;
6936         case offsetof(struct bpf_tcp_sock, segs_out):
6937                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6938                 break;
6939         case offsetof(struct bpf_tcp_sock, data_segs_out):
6940                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6941                 break;
6942         case offsetof(struct bpf_tcp_sock, lost_out):
6943                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6944                 break;
6945         case offsetof(struct bpf_tcp_sock, sacked_out):
6946                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6947                 break;
6948         case offsetof(struct bpf_tcp_sock, bytes_received):
6949                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6950                 break;
6951         case offsetof(struct bpf_tcp_sock, bytes_acked):
6952                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6953                 break;
6954         case offsetof(struct bpf_tcp_sock, dsack_dups):
6955                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6956                 break;
6957         case offsetof(struct bpf_tcp_sock, delivered):
6958                 BPF_TCP_SOCK_GET_COMMON(delivered);
6959                 break;
6960         case offsetof(struct bpf_tcp_sock, delivered_ce):
6961                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6962                 break;
6963         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6964                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6965                 break;
6966         }
6967
6968         return insn - insn_buf;
6969 }
6970
6971 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6972 {
6973         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6974                 return (unsigned long)sk;
6975
6976         return (unsigned long)NULL;
6977 }
6978
6979 const struct bpf_func_proto bpf_tcp_sock_proto = {
6980         .func           = bpf_tcp_sock,
6981         .gpl_only       = false,
6982         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6983         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6984 };
6985
6986 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6987 {
6988         sk = sk_to_full_sk(sk);
6989
6990         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6991                 return (unsigned long)sk;
6992
6993         return (unsigned long)NULL;
6994 }
6995
6996 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6997         .func           = bpf_get_listener_sock,
6998         .gpl_only       = false,
6999         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7000         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7001 };
7002
7003 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7004 {
7005         unsigned int iphdr_len;
7006
7007         switch (skb_protocol(skb, true)) {
7008         case cpu_to_be16(ETH_P_IP):
7009                 iphdr_len = sizeof(struct iphdr);
7010                 break;
7011         case cpu_to_be16(ETH_P_IPV6):
7012                 iphdr_len = sizeof(struct ipv6hdr);
7013                 break;
7014         default:
7015                 return 0;
7016         }
7017
7018         if (skb_headlen(skb) < iphdr_len)
7019                 return 0;
7020
7021         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7022                 return 0;
7023
7024         return INET_ECN_set_ce(skb);
7025 }
7026
7027 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7028                                   struct bpf_insn_access_aux *info)
7029 {
7030         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7031                 return false;
7032
7033         if (off % size != 0)
7034                 return false;
7035
7036         switch (off) {
7037         default:
7038                 return size == sizeof(__u32);
7039         }
7040 }
7041
7042 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7043                                     const struct bpf_insn *si,
7044                                     struct bpf_insn *insn_buf,
7045                                     struct bpf_prog *prog, u32 *target_size)
7046 {
7047         struct bpf_insn *insn = insn_buf;
7048
7049 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7050         do {                                                            \
7051                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7052                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7053                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7054                                       si->dst_reg, si->src_reg,         \
7055                                       offsetof(struct xdp_sock, FIELD)); \
7056         } while (0)
7057
7058         switch (si->off) {
7059         case offsetof(struct bpf_xdp_sock, queue_id):
7060                 BPF_XDP_SOCK_GET(queue_id);
7061                 break;
7062         }
7063
7064         return insn - insn_buf;
7065 }
7066
7067 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7068         .func           = bpf_skb_ecn_set_ce,
7069         .gpl_only       = false,
7070         .ret_type       = RET_INTEGER,
7071         .arg1_type      = ARG_PTR_TO_CTX,
7072 };
7073
7074 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7075            struct tcphdr *, th, u32, th_len)
7076 {
7077 #ifdef CONFIG_SYN_COOKIES
7078         u32 cookie;
7079         int ret;
7080
7081         if (unlikely(!sk || th_len < sizeof(*th)))
7082                 return -EINVAL;
7083
7084         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7085         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7086                 return -EINVAL;
7087
7088         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7089                 return -EINVAL;
7090
7091         if (!th->ack || th->rst || th->syn)
7092                 return -ENOENT;
7093
7094         if (unlikely(iph_len < sizeof(struct iphdr)))
7095                 return -EINVAL;
7096
7097         if (tcp_synq_no_recent_overflow(sk))
7098                 return -ENOENT;
7099
7100         cookie = ntohl(th->ack_seq) - 1;
7101
7102         /* Both struct iphdr and struct ipv6hdr have the version field at the
7103          * same offset so we can cast to the shorter header (struct iphdr).
7104          */
7105         switch (((struct iphdr *)iph)->version) {
7106         case 4:
7107                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7108                         return -EINVAL;
7109
7110                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7111                 break;
7112
7113 #if IS_BUILTIN(CONFIG_IPV6)
7114         case 6:
7115                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7116                         return -EINVAL;
7117
7118                 if (sk->sk_family != AF_INET6)
7119                         return -EINVAL;
7120
7121                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7122                 break;
7123 #endif /* CONFIG_IPV6 */
7124
7125         default:
7126                 return -EPROTONOSUPPORT;
7127         }
7128
7129         if (ret > 0)
7130                 return 0;
7131
7132         return -ENOENT;
7133 #else
7134         return -ENOTSUPP;
7135 #endif
7136 }
7137
7138 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7139         .func           = bpf_tcp_check_syncookie,
7140         .gpl_only       = true,
7141         .pkt_access     = true,
7142         .ret_type       = RET_INTEGER,
7143         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7144         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7145         .arg3_type      = ARG_CONST_SIZE,
7146         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7147         .arg5_type      = ARG_CONST_SIZE,
7148 };
7149
7150 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7151            struct tcphdr *, th, u32, th_len)
7152 {
7153 #ifdef CONFIG_SYN_COOKIES
7154         u32 cookie;
7155         u16 mss;
7156
7157         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7158                 return -EINVAL;
7159
7160         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7161                 return -EINVAL;
7162
7163         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7164                 return -ENOENT;
7165
7166         if (!th->syn || th->ack || th->fin || th->rst)
7167                 return -EINVAL;
7168
7169         if (unlikely(iph_len < sizeof(struct iphdr)))
7170                 return -EINVAL;
7171
7172         /* Both struct iphdr and struct ipv6hdr have the version field at the
7173          * same offset so we can cast to the shorter header (struct iphdr).
7174          */
7175         switch (((struct iphdr *)iph)->version) {
7176         case 4:
7177                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7178                         return -EINVAL;
7179
7180                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7181                 break;
7182
7183 #if IS_BUILTIN(CONFIG_IPV6)
7184         case 6:
7185                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7186                         return -EINVAL;
7187
7188                 if (sk->sk_family != AF_INET6)
7189                         return -EINVAL;
7190
7191                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7192                 break;
7193 #endif /* CONFIG_IPV6 */
7194
7195         default:
7196                 return -EPROTONOSUPPORT;
7197         }
7198         if (mss == 0)
7199                 return -ENOENT;
7200
7201         return cookie | ((u64)mss << 32);
7202 #else
7203         return -EOPNOTSUPP;
7204 #endif /* CONFIG_SYN_COOKIES */
7205 }
7206
7207 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7208         .func           = bpf_tcp_gen_syncookie,
7209         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7210         .pkt_access     = true,
7211         .ret_type       = RET_INTEGER,
7212         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7213         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7214         .arg3_type      = ARG_CONST_SIZE,
7215         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7216         .arg5_type      = ARG_CONST_SIZE,
7217 };
7218
7219 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7220 {
7221         if (!sk || flags != 0)
7222                 return -EINVAL;
7223         if (!skb_at_tc_ingress(skb))
7224                 return -EOPNOTSUPP;
7225         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7226                 return -ENETUNREACH;
7227         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7228                 return -ESOCKTNOSUPPORT;
7229         if (sk_is_refcounted(sk) &&
7230             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7231                 return -ENOENT;
7232
7233         skb_orphan(skb);
7234         skb->sk = sk;
7235         skb->destructor = sock_pfree;
7236
7237         return 0;
7238 }
7239
7240 static const struct bpf_func_proto bpf_sk_assign_proto = {
7241         .func           = bpf_sk_assign,
7242         .gpl_only       = false,
7243         .ret_type       = RET_INTEGER,
7244         .arg1_type      = ARG_PTR_TO_CTX,
7245         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7246         .arg3_type      = ARG_ANYTHING,
7247 };
7248
7249 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7250                                     u8 search_kind, const u8 *magic,
7251                                     u8 magic_len, bool *eol)
7252 {
7253         u8 kind, kind_len;
7254
7255         *eol = false;
7256
7257         while (op < opend) {
7258                 kind = op[0];
7259
7260                 if (kind == TCPOPT_EOL) {
7261                         *eol = true;
7262                         return ERR_PTR(-ENOMSG);
7263                 } else if (kind == TCPOPT_NOP) {
7264                         op++;
7265                         continue;
7266                 }
7267
7268                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7269                         /* Something is wrong in the received header.
7270                          * Follow the TCP stack's tcp_parse_options()
7271                          * and just bail here.
7272                          */
7273                         return ERR_PTR(-EFAULT);
7274
7275                 kind_len = op[1];
7276                 if (search_kind == kind) {
7277                         if (!magic_len)
7278                                 return op;
7279
7280                         if (magic_len > kind_len - 2)
7281                                 return ERR_PTR(-ENOMSG);
7282
7283                         if (!memcmp(&op[2], magic, magic_len))
7284                                 return op;
7285                 }
7286
7287                 op += kind_len;
7288         }
7289
7290         return ERR_PTR(-ENOMSG);
7291 }
7292
7293 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7294            void *, search_res, u32, len, u64, flags)
7295 {
7296         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7297         const u8 *op, *opend, *magic, *search = search_res;
7298         u8 search_kind, search_len, copy_len, magic_len;
7299         int ret;
7300
7301         /* 2 byte is the minimal option len except TCPOPT_NOP and
7302          * TCPOPT_EOL which are useless for the bpf prog to learn
7303          * and this helper disallow loading them also.
7304          */
7305         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7306                 return -EINVAL;
7307
7308         search_kind = search[0];
7309         search_len = search[1];
7310
7311         if (search_len > len || search_kind == TCPOPT_NOP ||
7312             search_kind == TCPOPT_EOL)
7313                 return -EINVAL;
7314
7315         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7316                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7317                 if (search_len != 4 && search_len != 6)
7318                         return -EINVAL;
7319                 magic = &search[2];
7320                 magic_len = search_len - 2;
7321         } else {
7322                 if (search_len)
7323                         return -EINVAL;
7324                 magic = NULL;
7325                 magic_len = 0;
7326         }
7327
7328         if (load_syn) {
7329                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7330                 if (ret < 0)
7331                         return ret;
7332
7333                 opend = op + ret;
7334                 op += sizeof(struct tcphdr);
7335         } else {
7336                 if (!bpf_sock->skb ||
7337                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7338                         /* This bpf_sock->op cannot call this helper */
7339                         return -EPERM;
7340
7341                 opend = bpf_sock->skb_data_end;
7342                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7343         }
7344
7345         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7346                                 &eol);
7347         if (IS_ERR(op))
7348                 return PTR_ERR(op);
7349
7350         copy_len = op[1];
7351         ret = copy_len;
7352         if (copy_len > len) {
7353                 ret = -ENOSPC;
7354                 copy_len = len;
7355         }
7356
7357         memcpy(search_res, op, copy_len);
7358         return ret;
7359 }
7360
7361 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7362         .func           = bpf_sock_ops_load_hdr_opt,
7363         .gpl_only       = false,
7364         .ret_type       = RET_INTEGER,
7365         .arg1_type      = ARG_PTR_TO_CTX,
7366         .arg2_type      = ARG_PTR_TO_MEM,
7367         .arg3_type      = ARG_CONST_SIZE,
7368         .arg4_type      = ARG_ANYTHING,
7369 };
7370
7371 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7372            const void *, from, u32, len, u64, flags)
7373 {
7374         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7375         const u8 *op, *new_op, *magic = NULL;
7376         struct sk_buff *skb;
7377         bool eol;
7378
7379         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7380                 return -EPERM;
7381
7382         if (len < 2 || flags)
7383                 return -EINVAL;
7384
7385         new_op = from;
7386         new_kind = new_op[0];
7387         new_kind_len = new_op[1];
7388
7389         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7390             new_kind == TCPOPT_EOL)
7391                 return -EINVAL;
7392
7393         if (new_kind_len > bpf_sock->remaining_opt_len)
7394                 return -ENOSPC;
7395
7396         /* 253 is another experimental kind */
7397         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7398                 if (new_kind_len < 4)
7399                         return -EINVAL;
7400                 /* Match for the 2 byte magic also.
7401                  * RFC 6994: the magic could be 2 or 4 bytes.
7402                  * Hence, matching by 2 byte only is on the
7403                  * conservative side but it is the right
7404                  * thing to do for the 'search-for-duplication'
7405                  * purpose.
7406                  */
7407                 magic = &new_op[2];
7408                 magic_len = 2;
7409         }
7410
7411         /* Check for duplication */
7412         skb = bpf_sock->skb;
7413         op = skb->data + sizeof(struct tcphdr);
7414         opend = bpf_sock->skb_data_end;
7415
7416         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7417                                 &eol);
7418         if (!IS_ERR(op))
7419                 return -EEXIST;
7420
7421         if (PTR_ERR(op) != -ENOMSG)
7422                 return PTR_ERR(op);
7423
7424         if (eol)
7425                 /* The option has been ended.  Treat it as no more
7426                  * header option can be written.
7427                  */
7428                 return -ENOSPC;
7429
7430         /* No duplication found.  Store the header option. */
7431         memcpy(opend, from, new_kind_len);
7432
7433         bpf_sock->remaining_opt_len -= new_kind_len;
7434         bpf_sock->skb_data_end += new_kind_len;
7435
7436         return 0;
7437 }
7438
7439 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7440         .func           = bpf_sock_ops_store_hdr_opt,
7441         .gpl_only       = false,
7442         .ret_type       = RET_INTEGER,
7443         .arg1_type      = ARG_PTR_TO_CTX,
7444         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7445         .arg3_type      = ARG_CONST_SIZE,
7446         .arg4_type      = ARG_ANYTHING,
7447 };
7448
7449 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7450            u32, len, u64, flags)
7451 {
7452         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7453                 return -EPERM;
7454
7455         if (flags || len < 2)
7456                 return -EINVAL;
7457
7458         if (len > bpf_sock->remaining_opt_len)
7459                 return -ENOSPC;
7460
7461         bpf_sock->remaining_opt_len -= len;
7462
7463         return 0;
7464 }
7465
7466 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7467         .func           = bpf_sock_ops_reserve_hdr_opt,
7468         .gpl_only       = false,
7469         .ret_type       = RET_INTEGER,
7470         .arg1_type      = ARG_PTR_TO_CTX,
7471         .arg2_type      = ARG_ANYTHING,
7472         .arg3_type      = ARG_ANYTHING,
7473 };
7474
7475 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7476            u64, tstamp, u32, tstamp_type)
7477 {
7478         /* skb_clear_delivery_time() is done for inet protocol */
7479         if (skb->protocol != htons(ETH_P_IP) &&
7480             skb->protocol != htons(ETH_P_IPV6))
7481                 return -EOPNOTSUPP;
7482
7483         switch (tstamp_type) {
7484         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7485                 if (!tstamp)
7486                         return -EINVAL;
7487                 skb->tstamp = tstamp;
7488                 skb->mono_delivery_time = 1;
7489                 break;
7490         case BPF_SKB_TSTAMP_UNSPEC:
7491                 if (tstamp)
7492                         return -EINVAL;
7493                 skb->tstamp = 0;
7494                 skb->mono_delivery_time = 0;
7495                 break;
7496         default:
7497                 return -EINVAL;
7498         }
7499
7500         return 0;
7501 }
7502
7503 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7504         .func           = bpf_skb_set_tstamp,
7505         .gpl_only       = false,
7506         .ret_type       = RET_INTEGER,
7507         .arg1_type      = ARG_PTR_TO_CTX,
7508         .arg2_type      = ARG_ANYTHING,
7509         .arg3_type      = ARG_ANYTHING,
7510 };
7511
7512 #ifdef CONFIG_SYN_COOKIES
7513 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7514            struct tcphdr *, th, u32, th_len)
7515 {
7516         u32 cookie;
7517         u16 mss;
7518
7519         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7520                 return -EINVAL;
7521
7522         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7523         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7524
7525         return cookie | ((u64)mss << 32);
7526 }
7527
7528 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7529         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7530         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7531         .pkt_access     = true,
7532         .ret_type       = RET_INTEGER,
7533         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7534         .arg1_size      = sizeof(struct iphdr),
7535         .arg2_type      = ARG_PTR_TO_MEM,
7536         .arg3_type      = ARG_CONST_SIZE,
7537 };
7538
7539 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7540            struct tcphdr *, th, u32, th_len)
7541 {
7542 #if IS_BUILTIN(CONFIG_IPV6)
7543         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7544                 sizeof(struct ipv6hdr);
7545         u32 cookie;
7546         u16 mss;
7547
7548         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7549                 return -EINVAL;
7550
7551         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7552         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7553
7554         return cookie | ((u64)mss << 32);
7555 #else
7556         return -EPROTONOSUPPORT;
7557 #endif
7558 }
7559
7560 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7561         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7562         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7563         .pkt_access     = true,
7564         .ret_type       = RET_INTEGER,
7565         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7566         .arg1_size      = sizeof(struct ipv6hdr),
7567         .arg2_type      = ARG_PTR_TO_MEM,
7568         .arg3_type      = ARG_CONST_SIZE,
7569 };
7570
7571 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7572            struct tcphdr *, th)
7573 {
7574         u32 cookie = ntohl(th->ack_seq) - 1;
7575
7576         if (__cookie_v4_check(iph, th, cookie) > 0)
7577                 return 0;
7578
7579         return -EACCES;
7580 }
7581
7582 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7583         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7584         .gpl_only       = true, /* __cookie_v4_check is GPL */
7585         .pkt_access     = true,
7586         .ret_type       = RET_INTEGER,
7587         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7588         .arg1_size      = sizeof(struct iphdr),
7589         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7590         .arg2_size      = sizeof(struct tcphdr),
7591 };
7592
7593 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7594            struct tcphdr *, th)
7595 {
7596 #if IS_BUILTIN(CONFIG_IPV6)
7597         u32 cookie = ntohl(th->ack_seq) - 1;
7598
7599         if (__cookie_v6_check(iph, th, cookie) > 0)
7600                 return 0;
7601
7602         return -EACCES;
7603 #else
7604         return -EPROTONOSUPPORT;
7605 #endif
7606 }
7607
7608 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7609         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7610         .gpl_only       = true, /* __cookie_v6_check is GPL */
7611         .pkt_access     = true,
7612         .ret_type       = RET_INTEGER,
7613         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7614         .arg1_size      = sizeof(struct ipv6hdr),
7615         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7616         .arg2_size      = sizeof(struct tcphdr),
7617 };
7618 #endif /* CONFIG_SYN_COOKIES */
7619
7620 #endif /* CONFIG_INET */
7621
7622 bool bpf_helper_changes_pkt_data(void *func)
7623 {
7624         if (func == bpf_skb_vlan_push ||
7625             func == bpf_skb_vlan_pop ||
7626             func == bpf_skb_store_bytes ||
7627             func == bpf_skb_change_proto ||
7628             func == bpf_skb_change_head ||
7629             func == sk_skb_change_head ||
7630             func == bpf_skb_change_tail ||
7631             func == sk_skb_change_tail ||
7632             func == bpf_skb_adjust_room ||
7633             func == sk_skb_adjust_room ||
7634             func == bpf_skb_pull_data ||
7635             func == sk_skb_pull_data ||
7636             func == bpf_clone_redirect ||
7637             func == bpf_l3_csum_replace ||
7638             func == bpf_l4_csum_replace ||
7639             func == bpf_xdp_adjust_head ||
7640             func == bpf_xdp_adjust_meta ||
7641             func == bpf_msg_pull_data ||
7642             func == bpf_msg_push_data ||
7643             func == bpf_msg_pop_data ||
7644             func == bpf_xdp_adjust_tail ||
7645 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7646             func == bpf_lwt_seg6_store_bytes ||
7647             func == bpf_lwt_seg6_adjust_srh ||
7648             func == bpf_lwt_seg6_action ||
7649 #endif
7650 #ifdef CONFIG_INET
7651             func == bpf_sock_ops_store_hdr_opt ||
7652 #endif
7653             func == bpf_lwt_in_push_encap ||
7654             func == bpf_lwt_xmit_push_encap)
7655                 return true;
7656
7657         return false;
7658 }
7659
7660 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7661 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7662
7663 static const struct bpf_func_proto *
7664 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7665 {
7666         switch (func_id) {
7667         /* inet and inet6 sockets are created in a process
7668          * context so there is always a valid uid/gid
7669          */
7670         case BPF_FUNC_get_current_uid_gid:
7671                 return &bpf_get_current_uid_gid_proto;
7672         case BPF_FUNC_get_local_storage:
7673                 return &bpf_get_local_storage_proto;
7674         case BPF_FUNC_get_socket_cookie:
7675                 return &bpf_get_socket_cookie_sock_proto;
7676         case BPF_FUNC_get_netns_cookie:
7677                 return &bpf_get_netns_cookie_sock_proto;
7678         case BPF_FUNC_perf_event_output:
7679                 return &bpf_event_output_data_proto;
7680         case BPF_FUNC_get_current_pid_tgid:
7681                 return &bpf_get_current_pid_tgid_proto;
7682         case BPF_FUNC_get_current_comm:
7683                 return &bpf_get_current_comm_proto;
7684 #ifdef CONFIG_CGROUPS
7685         case BPF_FUNC_get_current_cgroup_id:
7686                 return &bpf_get_current_cgroup_id_proto;
7687         case BPF_FUNC_get_current_ancestor_cgroup_id:
7688                 return &bpf_get_current_ancestor_cgroup_id_proto;
7689 #endif
7690 #ifdef CONFIG_CGROUP_NET_CLASSID
7691         case BPF_FUNC_get_cgroup_classid:
7692                 return &bpf_get_cgroup_classid_curr_proto;
7693 #endif
7694         case BPF_FUNC_sk_storage_get:
7695                 return &bpf_sk_storage_get_cg_sock_proto;
7696         case BPF_FUNC_ktime_get_coarse_ns:
7697                 return &bpf_ktime_get_coarse_ns_proto;
7698         default:
7699                 return bpf_base_func_proto(func_id);
7700         }
7701 }
7702
7703 static const struct bpf_func_proto *
7704 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7705 {
7706         switch (func_id) {
7707         /* inet and inet6 sockets are created in a process
7708          * context so there is always a valid uid/gid
7709          */
7710         case BPF_FUNC_get_current_uid_gid:
7711                 return &bpf_get_current_uid_gid_proto;
7712         case BPF_FUNC_bind:
7713                 switch (prog->expected_attach_type) {
7714                 case BPF_CGROUP_INET4_CONNECT:
7715                 case BPF_CGROUP_INET6_CONNECT:
7716                         return &bpf_bind_proto;
7717                 default:
7718                         return NULL;
7719                 }
7720         case BPF_FUNC_get_socket_cookie:
7721                 return &bpf_get_socket_cookie_sock_addr_proto;
7722         case BPF_FUNC_get_netns_cookie:
7723                 return &bpf_get_netns_cookie_sock_addr_proto;
7724         case BPF_FUNC_get_local_storage:
7725                 return &bpf_get_local_storage_proto;
7726         case BPF_FUNC_perf_event_output:
7727                 return &bpf_event_output_data_proto;
7728         case BPF_FUNC_get_current_pid_tgid:
7729                 return &bpf_get_current_pid_tgid_proto;
7730         case BPF_FUNC_get_current_comm:
7731                 return &bpf_get_current_comm_proto;
7732 #ifdef CONFIG_CGROUPS
7733         case BPF_FUNC_get_current_cgroup_id:
7734                 return &bpf_get_current_cgroup_id_proto;
7735         case BPF_FUNC_get_current_ancestor_cgroup_id:
7736                 return &bpf_get_current_ancestor_cgroup_id_proto;
7737 #endif
7738 #ifdef CONFIG_CGROUP_NET_CLASSID
7739         case BPF_FUNC_get_cgroup_classid:
7740                 return &bpf_get_cgroup_classid_curr_proto;
7741 #endif
7742 #ifdef CONFIG_INET
7743         case BPF_FUNC_sk_lookup_tcp:
7744                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7745         case BPF_FUNC_sk_lookup_udp:
7746                 return &bpf_sock_addr_sk_lookup_udp_proto;
7747         case BPF_FUNC_sk_release:
7748                 return &bpf_sk_release_proto;
7749         case BPF_FUNC_skc_lookup_tcp:
7750                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7751 #endif /* CONFIG_INET */
7752         case BPF_FUNC_sk_storage_get:
7753                 return &bpf_sk_storage_get_proto;
7754         case BPF_FUNC_sk_storage_delete:
7755                 return &bpf_sk_storage_delete_proto;
7756         case BPF_FUNC_setsockopt:
7757                 switch (prog->expected_attach_type) {
7758                 case BPF_CGROUP_INET4_BIND:
7759                 case BPF_CGROUP_INET6_BIND:
7760                 case BPF_CGROUP_INET4_CONNECT:
7761                 case BPF_CGROUP_INET6_CONNECT:
7762                 case BPF_CGROUP_UDP4_RECVMSG:
7763                 case BPF_CGROUP_UDP6_RECVMSG:
7764                 case BPF_CGROUP_UDP4_SENDMSG:
7765                 case BPF_CGROUP_UDP6_SENDMSG:
7766                 case BPF_CGROUP_INET4_GETPEERNAME:
7767                 case BPF_CGROUP_INET6_GETPEERNAME:
7768                 case BPF_CGROUP_INET4_GETSOCKNAME:
7769                 case BPF_CGROUP_INET6_GETSOCKNAME:
7770                         return &bpf_sock_addr_setsockopt_proto;
7771                 default:
7772                         return NULL;
7773                 }
7774         case BPF_FUNC_getsockopt:
7775                 switch (prog->expected_attach_type) {
7776                 case BPF_CGROUP_INET4_BIND:
7777                 case BPF_CGROUP_INET6_BIND:
7778                 case BPF_CGROUP_INET4_CONNECT:
7779                 case BPF_CGROUP_INET6_CONNECT:
7780                 case BPF_CGROUP_UDP4_RECVMSG:
7781                 case BPF_CGROUP_UDP6_RECVMSG:
7782                 case BPF_CGROUP_UDP4_SENDMSG:
7783                 case BPF_CGROUP_UDP6_SENDMSG:
7784                 case BPF_CGROUP_INET4_GETPEERNAME:
7785                 case BPF_CGROUP_INET6_GETPEERNAME:
7786                 case BPF_CGROUP_INET4_GETSOCKNAME:
7787                 case BPF_CGROUP_INET6_GETSOCKNAME:
7788                         return &bpf_sock_addr_getsockopt_proto;
7789                 default:
7790                         return NULL;
7791                 }
7792         default:
7793                 return bpf_sk_base_func_proto(func_id);
7794         }
7795 }
7796
7797 static const struct bpf_func_proto *
7798 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7799 {
7800         switch (func_id) {
7801         case BPF_FUNC_skb_load_bytes:
7802                 return &bpf_skb_load_bytes_proto;
7803         case BPF_FUNC_skb_load_bytes_relative:
7804                 return &bpf_skb_load_bytes_relative_proto;
7805         case BPF_FUNC_get_socket_cookie:
7806                 return &bpf_get_socket_cookie_proto;
7807         case BPF_FUNC_get_socket_uid:
7808                 return &bpf_get_socket_uid_proto;
7809         case BPF_FUNC_perf_event_output:
7810                 return &bpf_skb_event_output_proto;
7811         default:
7812                 return bpf_sk_base_func_proto(func_id);
7813         }
7814 }
7815
7816 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7817 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7818
7819 static const struct bpf_func_proto *
7820 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7821 {
7822         switch (func_id) {
7823         case BPF_FUNC_get_local_storage:
7824                 return &bpf_get_local_storage_proto;
7825         case BPF_FUNC_sk_fullsock:
7826                 return &bpf_sk_fullsock_proto;
7827         case BPF_FUNC_sk_storage_get:
7828                 return &bpf_sk_storage_get_proto;
7829         case BPF_FUNC_sk_storage_delete:
7830                 return &bpf_sk_storage_delete_proto;
7831         case BPF_FUNC_perf_event_output:
7832                 return &bpf_skb_event_output_proto;
7833 #ifdef CONFIG_SOCK_CGROUP_DATA
7834         case BPF_FUNC_skb_cgroup_id:
7835                 return &bpf_skb_cgroup_id_proto;
7836         case BPF_FUNC_skb_ancestor_cgroup_id:
7837                 return &bpf_skb_ancestor_cgroup_id_proto;
7838         case BPF_FUNC_sk_cgroup_id:
7839                 return &bpf_sk_cgroup_id_proto;
7840         case BPF_FUNC_sk_ancestor_cgroup_id:
7841                 return &bpf_sk_ancestor_cgroup_id_proto;
7842 #endif
7843 #ifdef CONFIG_INET
7844         case BPF_FUNC_sk_lookup_tcp:
7845                 return &bpf_sk_lookup_tcp_proto;
7846         case BPF_FUNC_sk_lookup_udp:
7847                 return &bpf_sk_lookup_udp_proto;
7848         case BPF_FUNC_sk_release:
7849                 return &bpf_sk_release_proto;
7850         case BPF_FUNC_skc_lookup_tcp:
7851                 return &bpf_skc_lookup_tcp_proto;
7852         case BPF_FUNC_tcp_sock:
7853                 return &bpf_tcp_sock_proto;
7854         case BPF_FUNC_get_listener_sock:
7855                 return &bpf_get_listener_sock_proto;
7856         case BPF_FUNC_skb_ecn_set_ce:
7857                 return &bpf_skb_ecn_set_ce_proto;
7858 #endif
7859         default:
7860                 return sk_filter_func_proto(func_id, prog);
7861         }
7862 }
7863
7864 static const struct bpf_func_proto *
7865 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7866 {
7867         switch (func_id) {
7868         case BPF_FUNC_skb_store_bytes:
7869                 return &bpf_skb_store_bytes_proto;
7870         case BPF_FUNC_skb_load_bytes:
7871                 return &bpf_skb_load_bytes_proto;
7872         case BPF_FUNC_skb_load_bytes_relative:
7873                 return &bpf_skb_load_bytes_relative_proto;
7874         case BPF_FUNC_skb_pull_data:
7875                 return &bpf_skb_pull_data_proto;
7876         case BPF_FUNC_csum_diff:
7877                 return &bpf_csum_diff_proto;
7878         case BPF_FUNC_csum_update:
7879                 return &bpf_csum_update_proto;
7880         case BPF_FUNC_csum_level:
7881                 return &bpf_csum_level_proto;
7882         case BPF_FUNC_l3_csum_replace:
7883                 return &bpf_l3_csum_replace_proto;
7884         case BPF_FUNC_l4_csum_replace:
7885                 return &bpf_l4_csum_replace_proto;
7886         case BPF_FUNC_clone_redirect:
7887                 return &bpf_clone_redirect_proto;
7888         case BPF_FUNC_get_cgroup_classid:
7889                 return &bpf_get_cgroup_classid_proto;
7890         case BPF_FUNC_skb_vlan_push:
7891                 return &bpf_skb_vlan_push_proto;
7892         case BPF_FUNC_skb_vlan_pop:
7893                 return &bpf_skb_vlan_pop_proto;
7894         case BPF_FUNC_skb_change_proto:
7895                 return &bpf_skb_change_proto_proto;
7896         case BPF_FUNC_skb_change_type:
7897                 return &bpf_skb_change_type_proto;
7898         case BPF_FUNC_skb_adjust_room:
7899                 return &bpf_skb_adjust_room_proto;
7900         case BPF_FUNC_skb_change_tail:
7901                 return &bpf_skb_change_tail_proto;
7902         case BPF_FUNC_skb_change_head:
7903                 return &bpf_skb_change_head_proto;
7904         case BPF_FUNC_skb_get_tunnel_key:
7905                 return &bpf_skb_get_tunnel_key_proto;
7906         case BPF_FUNC_skb_set_tunnel_key:
7907                 return bpf_get_skb_set_tunnel_proto(func_id);
7908         case BPF_FUNC_skb_get_tunnel_opt:
7909                 return &bpf_skb_get_tunnel_opt_proto;
7910         case BPF_FUNC_skb_set_tunnel_opt:
7911                 return bpf_get_skb_set_tunnel_proto(func_id);
7912         case BPF_FUNC_redirect:
7913                 return &bpf_redirect_proto;
7914         case BPF_FUNC_redirect_neigh:
7915                 return &bpf_redirect_neigh_proto;
7916         case BPF_FUNC_redirect_peer:
7917                 return &bpf_redirect_peer_proto;
7918         case BPF_FUNC_get_route_realm:
7919                 return &bpf_get_route_realm_proto;
7920         case BPF_FUNC_get_hash_recalc:
7921                 return &bpf_get_hash_recalc_proto;
7922         case BPF_FUNC_set_hash_invalid:
7923                 return &bpf_set_hash_invalid_proto;
7924         case BPF_FUNC_set_hash:
7925                 return &bpf_set_hash_proto;
7926         case BPF_FUNC_perf_event_output:
7927                 return &bpf_skb_event_output_proto;
7928         case BPF_FUNC_get_smp_processor_id:
7929                 return &bpf_get_smp_processor_id_proto;
7930         case BPF_FUNC_skb_under_cgroup:
7931                 return &bpf_skb_under_cgroup_proto;
7932         case BPF_FUNC_get_socket_cookie:
7933                 return &bpf_get_socket_cookie_proto;
7934         case BPF_FUNC_get_socket_uid:
7935                 return &bpf_get_socket_uid_proto;
7936         case BPF_FUNC_fib_lookup:
7937                 return &bpf_skb_fib_lookup_proto;
7938         case BPF_FUNC_check_mtu:
7939                 return &bpf_skb_check_mtu_proto;
7940         case BPF_FUNC_sk_fullsock:
7941                 return &bpf_sk_fullsock_proto;
7942         case BPF_FUNC_sk_storage_get:
7943                 return &bpf_sk_storage_get_proto;
7944         case BPF_FUNC_sk_storage_delete:
7945                 return &bpf_sk_storage_delete_proto;
7946 #ifdef CONFIG_XFRM
7947         case BPF_FUNC_skb_get_xfrm_state:
7948                 return &bpf_skb_get_xfrm_state_proto;
7949 #endif
7950 #ifdef CONFIG_CGROUP_NET_CLASSID
7951         case BPF_FUNC_skb_cgroup_classid:
7952                 return &bpf_skb_cgroup_classid_proto;
7953 #endif
7954 #ifdef CONFIG_SOCK_CGROUP_DATA
7955         case BPF_FUNC_skb_cgroup_id:
7956                 return &bpf_skb_cgroup_id_proto;
7957         case BPF_FUNC_skb_ancestor_cgroup_id:
7958                 return &bpf_skb_ancestor_cgroup_id_proto;
7959 #endif
7960 #ifdef CONFIG_INET
7961         case BPF_FUNC_sk_lookup_tcp:
7962                 return &bpf_sk_lookup_tcp_proto;
7963         case BPF_FUNC_sk_lookup_udp:
7964                 return &bpf_sk_lookup_udp_proto;
7965         case BPF_FUNC_sk_release:
7966                 return &bpf_sk_release_proto;
7967         case BPF_FUNC_tcp_sock:
7968                 return &bpf_tcp_sock_proto;
7969         case BPF_FUNC_get_listener_sock:
7970                 return &bpf_get_listener_sock_proto;
7971         case BPF_FUNC_skc_lookup_tcp:
7972                 return &bpf_skc_lookup_tcp_proto;
7973         case BPF_FUNC_tcp_check_syncookie:
7974                 return &bpf_tcp_check_syncookie_proto;
7975         case BPF_FUNC_skb_ecn_set_ce:
7976                 return &bpf_skb_ecn_set_ce_proto;
7977         case BPF_FUNC_tcp_gen_syncookie:
7978                 return &bpf_tcp_gen_syncookie_proto;
7979         case BPF_FUNC_sk_assign:
7980                 return &bpf_sk_assign_proto;
7981         case BPF_FUNC_skb_set_tstamp:
7982                 return &bpf_skb_set_tstamp_proto;
7983 #ifdef CONFIG_SYN_COOKIES
7984         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7985                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7986         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7987                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7988         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7989                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7990         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7991                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7992 #endif
7993 #endif
7994         default:
7995                 return bpf_sk_base_func_proto(func_id);
7996         }
7997 }
7998
7999 static const struct bpf_func_proto *
8000 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8001 {
8002         switch (func_id) {
8003         case BPF_FUNC_perf_event_output:
8004                 return &bpf_xdp_event_output_proto;
8005         case BPF_FUNC_get_smp_processor_id:
8006                 return &bpf_get_smp_processor_id_proto;
8007         case BPF_FUNC_csum_diff:
8008                 return &bpf_csum_diff_proto;
8009         case BPF_FUNC_xdp_adjust_head:
8010                 return &bpf_xdp_adjust_head_proto;
8011         case BPF_FUNC_xdp_adjust_meta:
8012                 return &bpf_xdp_adjust_meta_proto;
8013         case BPF_FUNC_redirect:
8014                 return &bpf_xdp_redirect_proto;
8015         case BPF_FUNC_redirect_map:
8016                 return &bpf_xdp_redirect_map_proto;
8017         case BPF_FUNC_xdp_adjust_tail:
8018                 return &bpf_xdp_adjust_tail_proto;
8019         case BPF_FUNC_xdp_get_buff_len:
8020                 return &bpf_xdp_get_buff_len_proto;
8021         case BPF_FUNC_xdp_load_bytes:
8022                 return &bpf_xdp_load_bytes_proto;
8023         case BPF_FUNC_xdp_store_bytes:
8024                 return &bpf_xdp_store_bytes_proto;
8025         case BPF_FUNC_fib_lookup:
8026                 return &bpf_xdp_fib_lookup_proto;
8027         case BPF_FUNC_check_mtu:
8028                 return &bpf_xdp_check_mtu_proto;
8029 #ifdef CONFIG_INET
8030         case BPF_FUNC_sk_lookup_udp:
8031                 return &bpf_xdp_sk_lookup_udp_proto;
8032         case BPF_FUNC_sk_lookup_tcp:
8033                 return &bpf_xdp_sk_lookup_tcp_proto;
8034         case BPF_FUNC_sk_release:
8035                 return &bpf_sk_release_proto;
8036         case BPF_FUNC_skc_lookup_tcp:
8037                 return &bpf_xdp_skc_lookup_tcp_proto;
8038         case BPF_FUNC_tcp_check_syncookie:
8039                 return &bpf_tcp_check_syncookie_proto;
8040         case BPF_FUNC_tcp_gen_syncookie:
8041                 return &bpf_tcp_gen_syncookie_proto;
8042 #ifdef CONFIG_SYN_COOKIES
8043         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8044                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8045         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8046                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8047         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8048                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8049         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8050                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8051 #endif
8052 #endif
8053         default:
8054                 return bpf_sk_base_func_proto(func_id);
8055         }
8056 }
8057
8058 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8059 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8060
8061 static const struct bpf_func_proto *
8062 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8063 {
8064         switch (func_id) {
8065         case BPF_FUNC_setsockopt:
8066                 return &bpf_sock_ops_setsockopt_proto;
8067         case BPF_FUNC_getsockopt:
8068                 return &bpf_sock_ops_getsockopt_proto;
8069         case BPF_FUNC_sock_ops_cb_flags_set:
8070                 return &bpf_sock_ops_cb_flags_set_proto;
8071         case BPF_FUNC_sock_map_update:
8072                 return &bpf_sock_map_update_proto;
8073         case BPF_FUNC_sock_hash_update:
8074                 return &bpf_sock_hash_update_proto;
8075         case BPF_FUNC_get_socket_cookie:
8076                 return &bpf_get_socket_cookie_sock_ops_proto;
8077         case BPF_FUNC_get_local_storage:
8078                 return &bpf_get_local_storage_proto;
8079         case BPF_FUNC_perf_event_output:
8080                 return &bpf_event_output_data_proto;
8081         case BPF_FUNC_sk_storage_get:
8082                 return &bpf_sk_storage_get_proto;
8083         case BPF_FUNC_sk_storage_delete:
8084                 return &bpf_sk_storage_delete_proto;
8085         case BPF_FUNC_get_netns_cookie:
8086                 return &bpf_get_netns_cookie_sock_ops_proto;
8087 #ifdef CONFIG_INET
8088         case BPF_FUNC_load_hdr_opt:
8089                 return &bpf_sock_ops_load_hdr_opt_proto;
8090         case BPF_FUNC_store_hdr_opt:
8091                 return &bpf_sock_ops_store_hdr_opt_proto;
8092         case BPF_FUNC_reserve_hdr_opt:
8093                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8094         case BPF_FUNC_tcp_sock:
8095                 return &bpf_tcp_sock_proto;
8096 #endif /* CONFIG_INET */
8097         default:
8098                 return bpf_sk_base_func_proto(func_id);
8099         }
8100 }
8101
8102 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8103 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8104
8105 static const struct bpf_func_proto *
8106 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8107 {
8108         switch (func_id) {
8109         case BPF_FUNC_msg_redirect_map:
8110                 return &bpf_msg_redirect_map_proto;
8111         case BPF_FUNC_msg_redirect_hash:
8112                 return &bpf_msg_redirect_hash_proto;
8113         case BPF_FUNC_msg_apply_bytes:
8114                 return &bpf_msg_apply_bytes_proto;
8115         case BPF_FUNC_msg_cork_bytes:
8116                 return &bpf_msg_cork_bytes_proto;
8117         case BPF_FUNC_msg_pull_data:
8118                 return &bpf_msg_pull_data_proto;
8119         case BPF_FUNC_msg_push_data:
8120                 return &bpf_msg_push_data_proto;
8121         case BPF_FUNC_msg_pop_data:
8122                 return &bpf_msg_pop_data_proto;
8123         case BPF_FUNC_perf_event_output:
8124                 return &bpf_event_output_data_proto;
8125         case BPF_FUNC_get_current_uid_gid:
8126                 return &bpf_get_current_uid_gid_proto;
8127         case BPF_FUNC_get_current_pid_tgid:
8128                 return &bpf_get_current_pid_tgid_proto;
8129         case BPF_FUNC_sk_storage_get:
8130                 return &bpf_sk_storage_get_proto;
8131         case BPF_FUNC_sk_storage_delete:
8132                 return &bpf_sk_storage_delete_proto;
8133         case BPF_FUNC_get_netns_cookie:
8134                 return &bpf_get_netns_cookie_sk_msg_proto;
8135 #ifdef CONFIG_CGROUPS
8136         case BPF_FUNC_get_current_cgroup_id:
8137                 return &bpf_get_current_cgroup_id_proto;
8138         case BPF_FUNC_get_current_ancestor_cgroup_id:
8139                 return &bpf_get_current_ancestor_cgroup_id_proto;
8140 #endif
8141 #ifdef CONFIG_CGROUP_NET_CLASSID
8142         case BPF_FUNC_get_cgroup_classid:
8143                 return &bpf_get_cgroup_classid_curr_proto;
8144 #endif
8145         default:
8146                 return bpf_sk_base_func_proto(func_id);
8147         }
8148 }
8149
8150 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8151 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8152
8153 static const struct bpf_func_proto *
8154 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8155 {
8156         switch (func_id) {
8157         case BPF_FUNC_skb_store_bytes:
8158                 return &bpf_skb_store_bytes_proto;
8159         case BPF_FUNC_skb_load_bytes:
8160                 return &bpf_skb_load_bytes_proto;
8161         case BPF_FUNC_skb_pull_data:
8162                 return &sk_skb_pull_data_proto;
8163         case BPF_FUNC_skb_change_tail:
8164                 return &sk_skb_change_tail_proto;
8165         case BPF_FUNC_skb_change_head:
8166                 return &sk_skb_change_head_proto;
8167         case BPF_FUNC_skb_adjust_room:
8168                 return &sk_skb_adjust_room_proto;
8169         case BPF_FUNC_get_socket_cookie:
8170                 return &bpf_get_socket_cookie_proto;
8171         case BPF_FUNC_get_socket_uid:
8172                 return &bpf_get_socket_uid_proto;
8173         case BPF_FUNC_sk_redirect_map:
8174                 return &bpf_sk_redirect_map_proto;
8175         case BPF_FUNC_sk_redirect_hash:
8176                 return &bpf_sk_redirect_hash_proto;
8177         case BPF_FUNC_perf_event_output:
8178                 return &bpf_skb_event_output_proto;
8179 #ifdef CONFIG_INET
8180         case BPF_FUNC_sk_lookup_tcp:
8181                 return &bpf_sk_lookup_tcp_proto;
8182         case BPF_FUNC_sk_lookup_udp:
8183                 return &bpf_sk_lookup_udp_proto;
8184         case BPF_FUNC_sk_release:
8185                 return &bpf_sk_release_proto;
8186         case BPF_FUNC_skc_lookup_tcp:
8187                 return &bpf_skc_lookup_tcp_proto;
8188 #endif
8189         default:
8190                 return bpf_sk_base_func_proto(func_id);
8191         }
8192 }
8193
8194 static const struct bpf_func_proto *
8195 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8196 {
8197         switch (func_id) {
8198         case BPF_FUNC_skb_load_bytes:
8199                 return &bpf_flow_dissector_load_bytes_proto;
8200         default:
8201                 return bpf_sk_base_func_proto(func_id);
8202         }
8203 }
8204
8205 static const struct bpf_func_proto *
8206 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8207 {
8208         switch (func_id) {
8209         case BPF_FUNC_skb_load_bytes:
8210                 return &bpf_skb_load_bytes_proto;
8211         case BPF_FUNC_skb_pull_data:
8212                 return &bpf_skb_pull_data_proto;
8213         case BPF_FUNC_csum_diff:
8214                 return &bpf_csum_diff_proto;
8215         case BPF_FUNC_get_cgroup_classid:
8216                 return &bpf_get_cgroup_classid_proto;
8217         case BPF_FUNC_get_route_realm:
8218                 return &bpf_get_route_realm_proto;
8219         case BPF_FUNC_get_hash_recalc:
8220                 return &bpf_get_hash_recalc_proto;
8221         case BPF_FUNC_perf_event_output:
8222                 return &bpf_skb_event_output_proto;
8223         case BPF_FUNC_get_smp_processor_id:
8224                 return &bpf_get_smp_processor_id_proto;
8225         case BPF_FUNC_skb_under_cgroup:
8226                 return &bpf_skb_under_cgroup_proto;
8227         default:
8228                 return bpf_sk_base_func_proto(func_id);
8229         }
8230 }
8231
8232 static const struct bpf_func_proto *
8233 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8234 {
8235         switch (func_id) {
8236         case BPF_FUNC_lwt_push_encap:
8237                 return &bpf_lwt_in_push_encap_proto;
8238         default:
8239                 return lwt_out_func_proto(func_id, prog);
8240         }
8241 }
8242
8243 static const struct bpf_func_proto *
8244 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8245 {
8246         switch (func_id) {
8247         case BPF_FUNC_skb_get_tunnel_key:
8248                 return &bpf_skb_get_tunnel_key_proto;
8249         case BPF_FUNC_skb_set_tunnel_key:
8250                 return bpf_get_skb_set_tunnel_proto(func_id);
8251         case BPF_FUNC_skb_get_tunnel_opt:
8252                 return &bpf_skb_get_tunnel_opt_proto;
8253         case BPF_FUNC_skb_set_tunnel_opt:
8254                 return bpf_get_skb_set_tunnel_proto(func_id);
8255         case BPF_FUNC_redirect:
8256                 return &bpf_redirect_proto;
8257         case BPF_FUNC_clone_redirect:
8258                 return &bpf_clone_redirect_proto;
8259         case BPF_FUNC_skb_change_tail:
8260                 return &bpf_skb_change_tail_proto;
8261         case BPF_FUNC_skb_change_head:
8262                 return &bpf_skb_change_head_proto;
8263         case BPF_FUNC_skb_store_bytes:
8264                 return &bpf_skb_store_bytes_proto;
8265         case BPF_FUNC_csum_update:
8266                 return &bpf_csum_update_proto;
8267         case BPF_FUNC_csum_level:
8268                 return &bpf_csum_level_proto;
8269         case BPF_FUNC_l3_csum_replace:
8270                 return &bpf_l3_csum_replace_proto;
8271         case BPF_FUNC_l4_csum_replace:
8272                 return &bpf_l4_csum_replace_proto;
8273         case BPF_FUNC_set_hash_invalid:
8274                 return &bpf_set_hash_invalid_proto;
8275         case BPF_FUNC_lwt_push_encap:
8276                 return &bpf_lwt_xmit_push_encap_proto;
8277         default:
8278                 return lwt_out_func_proto(func_id, prog);
8279         }
8280 }
8281
8282 static const struct bpf_func_proto *
8283 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8284 {
8285         switch (func_id) {
8286 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8287         case BPF_FUNC_lwt_seg6_store_bytes:
8288                 return &bpf_lwt_seg6_store_bytes_proto;
8289         case BPF_FUNC_lwt_seg6_action:
8290                 return &bpf_lwt_seg6_action_proto;
8291         case BPF_FUNC_lwt_seg6_adjust_srh:
8292                 return &bpf_lwt_seg6_adjust_srh_proto;
8293 #endif
8294         default:
8295                 return lwt_out_func_proto(func_id, prog);
8296         }
8297 }
8298
8299 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8300                                     const struct bpf_prog *prog,
8301                                     struct bpf_insn_access_aux *info)
8302 {
8303         const int size_default = sizeof(__u32);
8304
8305         if (off < 0 || off >= sizeof(struct __sk_buff))
8306                 return false;
8307
8308         /* The verifier guarantees that size > 0. */
8309         if (off % size != 0)
8310                 return false;
8311
8312         switch (off) {
8313         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8314                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8315                         return false;
8316                 break;
8317         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8318         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8319         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8320         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8321         case bpf_ctx_range(struct __sk_buff, data):
8322         case bpf_ctx_range(struct __sk_buff, data_meta):
8323         case bpf_ctx_range(struct __sk_buff, data_end):
8324                 if (size != size_default)
8325                         return false;
8326                 break;
8327         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8328                 return false;
8329         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8330                 if (type == BPF_WRITE || size != sizeof(__u64))
8331                         return false;
8332                 break;
8333         case bpf_ctx_range(struct __sk_buff, tstamp):
8334                 if (size != sizeof(__u64))
8335                         return false;
8336                 break;
8337         case offsetof(struct __sk_buff, sk):
8338                 if (type == BPF_WRITE || size != sizeof(__u64))
8339                         return false;
8340                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8341                 break;
8342         case offsetof(struct __sk_buff, tstamp_type):
8343                 return false;
8344         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8345                 /* Explicitly prohibit access to padding in __sk_buff. */
8346                 return false;
8347         default:
8348                 /* Only narrow read access allowed for now. */
8349                 if (type == BPF_WRITE) {
8350                         if (size != size_default)
8351                                 return false;
8352                 } else {
8353                         bpf_ctx_record_field_size(info, size_default);
8354                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8355                                 return false;
8356                 }
8357         }
8358
8359         return true;
8360 }
8361
8362 static bool sk_filter_is_valid_access(int off, int size,
8363                                       enum bpf_access_type type,
8364                                       const struct bpf_prog *prog,
8365                                       struct bpf_insn_access_aux *info)
8366 {
8367         switch (off) {
8368         case bpf_ctx_range(struct __sk_buff, tc_classid):
8369         case bpf_ctx_range(struct __sk_buff, data):
8370         case bpf_ctx_range(struct __sk_buff, data_meta):
8371         case bpf_ctx_range(struct __sk_buff, data_end):
8372         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8373         case bpf_ctx_range(struct __sk_buff, tstamp):
8374         case bpf_ctx_range(struct __sk_buff, wire_len):
8375         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8376                 return false;
8377         }
8378
8379         if (type == BPF_WRITE) {
8380                 switch (off) {
8381                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8382                         break;
8383                 default:
8384                         return false;
8385                 }
8386         }
8387
8388         return bpf_skb_is_valid_access(off, size, type, prog, info);
8389 }
8390
8391 static bool cg_skb_is_valid_access(int off, int size,
8392                                    enum bpf_access_type type,
8393                                    const struct bpf_prog *prog,
8394                                    struct bpf_insn_access_aux *info)
8395 {
8396         switch (off) {
8397         case bpf_ctx_range(struct __sk_buff, tc_classid):
8398         case bpf_ctx_range(struct __sk_buff, data_meta):
8399         case bpf_ctx_range(struct __sk_buff, wire_len):
8400                 return false;
8401         case bpf_ctx_range(struct __sk_buff, data):
8402         case bpf_ctx_range(struct __sk_buff, data_end):
8403                 if (!bpf_capable())
8404                         return false;
8405                 break;
8406         }
8407
8408         if (type == BPF_WRITE) {
8409                 switch (off) {
8410                 case bpf_ctx_range(struct __sk_buff, mark):
8411                 case bpf_ctx_range(struct __sk_buff, priority):
8412                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8413                         break;
8414                 case bpf_ctx_range(struct __sk_buff, tstamp):
8415                         if (!bpf_capable())
8416                                 return false;
8417                         break;
8418                 default:
8419                         return false;
8420                 }
8421         }
8422
8423         switch (off) {
8424         case bpf_ctx_range(struct __sk_buff, data):
8425                 info->reg_type = PTR_TO_PACKET;
8426                 break;
8427         case bpf_ctx_range(struct __sk_buff, data_end):
8428                 info->reg_type = PTR_TO_PACKET_END;
8429                 break;
8430         }
8431
8432         return bpf_skb_is_valid_access(off, size, type, prog, info);
8433 }
8434
8435 static bool lwt_is_valid_access(int off, int size,
8436                                 enum bpf_access_type type,
8437                                 const struct bpf_prog *prog,
8438                                 struct bpf_insn_access_aux *info)
8439 {
8440         switch (off) {
8441         case bpf_ctx_range(struct __sk_buff, tc_classid):
8442         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8443         case bpf_ctx_range(struct __sk_buff, data_meta):
8444         case bpf_ctx_range(struct __sk_buff, tstamp):
8445         case bpf_ctx_range(struct __sk_buff, wire_len):
8446         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8447                 return false;
8448         }
8449
8450         if (type == BPF_WRITE) {
8451                 switch (off) {
8452                 case bpf_ctx_range(struct __sk_buff, mark):
8453                 case bpf_ctx_range(struct __sk_buff, priority):
8454                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8455                         break;
8456                 default:
8457                         return false;
8458                 }
8459         }
8460
8461         switch (off) {
8462         case bpf_ctx_range(struct __sk_buff, data):
8463                 info->reg_type = PTR_TO_PACKET;
8464                 break;
8465         case bpf_ctx_range(struct __sk_buff, data_end):
8466                 info->reg_type = PTR_TO_PACKET_END;
8467                 break;
8468         }
8469
8470         return bpf_skb_is_valid_access(off, size, type, prog, info);
8471 }
8472
8473 /* Attach type specific accesses */
8474 static bool __sock_filter_check_attach_type(int off,
8475                                             enum bpf_access_type access_type,
8476                                             enum bpf_attach_type attach_type)
8477 {
8478         switch (off) {
8479         case offsetof(struct bpf_sock, bound_dev_if):
8480         case offsetof(struct bpf_sock, mark):
8481         case offsetof(struct bpf_sock, priority):
8482                 switch (attach_type) {
8483                 case BPF_CGROUP_INET_SOCK_CREATE:
8484                 case BPF_CGROUP_INET_SOCK_RELEASE:
8485                         goto full_access;
8486                 default:
8487                         return false;
8488                 }
8489         case bpf_ctx_range(struct bpf_sock, src_ip4):
8490                 switch (attach_type) {
8491                 case BPF_CGROUP_INET4_POST_BIND:
8492                         goto read_only;
8493                 default:
8494                         return false;
8495                 }
8496         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8497                 switch (attach_type) {
8498                 case BPF_CGROUP_INET6_POST_BIND:
8499                         goto read_only;
8500                 default:
8501                         return false;
8502                 }
8503         case bpf_ctx_range(struct bpf_sock, src_port):
8504                 switch (attach_type) {
8505                 case BPF_CGROUP_INET4_POST_BIND:
8506                 case BPF_CGROUP_INET6_POST_BIND:
8507                         goto read_only;
8508                 default:
8509                         return false;
8510                 }
8511         }
8512 read_only:
8513         return access_type == BPF_READ;
8514 full_access:
8515         return true;
8516 }
8517
8518 bool bpf_sock_common_is_valid_access(int off, int size,
8519                                      enum bpf_access_type type,
8520                                      struct bpf_insn_access_aux *info)
8521 {
8522         switch (off) {
8523         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8524                 return false;
8525         default:
8526                 return bpf_sock_is_valid_access(off, size, type, info);
8527         }
8528 }
8529
8530 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8531                               struct bpf_insn_access_aux *info)
8532 {
8533         const int size_default = sizeof(__u32);
8534         int field_size;
8535
8536         if (off < 0 || off >= sizeof(struct bpf_sock))
8537                 return false;
8538         if (off % size != 0)
8539                 return false;
8540
8541         switch (off) {
8542         case offsetof(struct bpf_sock, state):
8543         case offsetof(struct bpf_sock, family):
8544         case offsetof(struct bpf_sock, type):
8545         case offsetof(struct bpf_sock, protocol):
8546         case offsetof(struct bpf_sock, src_port):
8547         case offsetof(struct bpf_sock, rx_queue_mapping):
8548         case bpf_ctx_range(struct bpf_sock, src_ip4):
8549         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8550         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8551         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8552                 bpf_ctx_record_field_size(info, size_default);
8553                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8554         case bpf_ctx_range(struct bpf_sock, dst_port):
8555                 field_size = size == size_default ?
8556                         size_default : sizeof_field(struct bpf_sock, dst_port);
8557                 bpf_ctx_record_field_size(info, field_size);
8558                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8559         case offsetofend(struct bpf_sock, dst_port) ...
8560              offsetof(struct bpf_sock, dst_ip4) - 1:
8561                 return false;
8562         }
8563
8564         return size == size_default;
8565 }
8566
8567 static bool sock_filter_is_valid_access(int off, int size,
8568                                         enum bpf_access_type type,
8569                                         const struct bpf_prog *prog,
8570                                         struct bpf_insn_access_aux *info)
8571 {
8572         if (!bpf_sock_is_valid_access(off, size, type, info))
8573                 return false;
8574         return __sock_filter_check_attach_type(off, type,
8575                                                prog->expected_attach_type);
8576 }
8577
8578 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8579                              const struct bpf_prog *prog)
8580 {
8581         /* Neither direct read nor direct write requires any preliminary
8582          * action.
8583          */
8584         return 0;
8585 }
8586
8587 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8588                                 const struct bpf_prog *prog, int drop_verdict)
8589 {
8590         struct bpf_insn *insn = insn_buf;
8591
8592         if (!direct_write)
8593                 return 0;
8594
8595         /* if (!skb->cloned)
8596          *       goto start;
8597          *
8598          * (Fast-path, otherwise approximation that we might be
8599          *  a clone, do the rest in helper.)
8600          */
8601         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8602         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8603         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8604
8605         /* ret = bpf_skb_pull_data(skb, 0); */
8606         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8607         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8608         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8609                                BPF_FUNC_skb_pull_data);
8610         /* if (!ret)
8611          *      goto restore;
8612          * return TC_ACT_SHOT;
8613          */
8614         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8615         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8616         *insn++ = BPF_EXIT_INSN();
8617
8618         /* restore: */
8619         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8620         /* start: */
8621         *insn++ = prog->insnsi[0];
8622
8623         return insn - insn_buf;
8624 }
8625
8626 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8627                           struct bpf_insn *insn_buf)
8628 {
8629         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8630         struct bpf_insn *insn = insn_buf;
8631
8632         if (!indirect) {
8633                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8634         } else {
8635                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8636                 if (orig->imm)
8637                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8638         }
8639         /* We're guaranteed here that CTX is in R6. */
8640         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8641
8642         switch (BPF_SIZE(orig->code)) {
8643         case BPF_B:
8644                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8645                 break;
8646         case BPF_H:
8647                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8648                 break;
8649         case BPF_W:
8650                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8651                 break;
8652         }
8653
8654         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8655         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8656         *insn++ = BPF_EXIT_INSN();
8657
8658         return insn - insn_buf;
8659 }
8660
8661 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8662                                const struct bpf_prog *prog)
8663 {
8664         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8665 }
8666
8667 static bool tc_cls_act_is_valid_access(int off, int size,
8668                                        enum bpf_access_type type,
8669                                        const struct bpf_prog *prog,
8670                                        struct bpf_insn_access_aux *info)
8671 {
8672         if (type == BPF_WRITE) {
8673                 switch (off) {
8674                 case bpf_ctx_range(struct __sk_buff, mark):
8675                 case bpf_ctx_range(struct __sk_buff, tc_index):
8676                 case bpf_ctx_range(struct __sk_buff, priority):
8677                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8678                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8679                 case bpf_ctx_range(struct __sk_buff, tstamp):
8680                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8681                         break;
8682                 default:
8683                         return false;
8684                 }
8685         }
8686
8687         switch (off) {
8688         case bpf_ctx_range(struct __sk_buff, data):
8689                 info->reg_type = PTR_TO_PACKET;
8690                 break;
8691         case bpf_ctx_range(struct __sk_buff, data_meta):
8692                 info->reg_type = PTR_TO_PACKET_META;
8693                 break;
8694         case bpf_ctx_range(struct __sk_buff, data_end):
8695                 info->reg_type = PTR_TO_PACKET_END;
8696                 break;
8697         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8698                 return false;
8699         case offsetof(struct __sk_buff, tstamp_type):
8700                 /* The convert_ctx_access() on reading and writing
8701                  * __sk_buff->tstamp depends on whether the bpf prog
8702                  * has used __sk_buff->tstamp_type or not.
8703                  * Thus, we need to set prog->tstamp_type_access
8704                  * earlier during is_valid_access() here.
8705                  */
8706                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8707                 return size == sizeof(__u8);
8708         }
8709
8710         return bpf_skb_is_valid_access(off, size, type, prog, info);
8711 }
8712
8713 static bool __is_valid_xdp_access(int off, int size)
8714 {
8715         if (off < 0 || off >= sizeof(struct xdp_md))
8716                 return false;
8717         if (off % size != 0)
8718                 return false;
8719         if (size != sizeof(__u32))
8720                 return false;
8721
8722         return true;
8723 }
8724
8725 static bool xdp_is_valid_access(int off, int size,
8726                                 enum bpf_access_type type,
8727                                 const struct bpf_prog *prog,
8728                                 struct bpf_insn_access_aux *info)
8729 {
8730         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8731                 switch (off) {
8732                 case offsetof(struct xdp_md, egress_ifindex):
8733                         return false;
8734                 }
8735         }
8736
8737         if (type == BPF_WRITE) {
8738                 if (bpf_prog_is_dev_bound(prog->aux)) {
8739                         switch (off) {
8740                         case offsetof(struct xdp_md, rx_queue_index):
8741                                 return __is_valid_xdp_access(off, size);
8742                         }
8743                 }
8744                 return false;
8745         }
8746
8747         switch (off) {
8748         case offsetof(struct xdp_md, data):
8749                 info->reg_type = PTR_TO_PACKET;
8750                 break;
8751         case offsetof(struct xdp_md, data_meta):
8752                 info->reg_type = PTR_TO_PACKET_META;
8753                 break;
8754         case offsetof(struct xdp_md, data_end):
8755                 info->reg_type = PTR_TO_PACKET_END;
8756                 break;
8757         }
8758
8759         return __is_valid_xdp_access(off, size);
8760 }
8761
8762 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8763 {
8764         const u32 act_max = XDP_REDIRECT;
8765
8766         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8767                      act > act_max ? "Illegal" : "Driver unsupported",
8768                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8769 }
8770 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8771
8772 static bool sock_addr_is_valid_access(int off, int size,
8773                                       enum bpf_access_type type,
8774                                       const struct bpf_prog *prog,
8775                                       struct bpf_insn_access_aux *info)
8776 {
8777         const int size_default = sizeof(__u32);
8778
8779         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8780                 return false;
8781         if (off % size != 0)
8782                 return false;
8783
8784         /* Disallow access to IPv6 fields from IPv4 contex and vise
8785          * versa.
8786          */
8787         switch (off) {
8788         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8789                 switch (prog->expected_attach_type) {
8790                 case BPF_CGROUP_INET4_BIND:
8791                 case BPF_CGROUP_INET4_CONNECT:
8792                 case BPF_CGROUP_INET4_GETPEERNAME:
8793                 case BPF_CGROUP_INET4_GETSOCKNAME:
8794                 case BPF_CGROUP_UDP4_SENDMSG:
8795                 case BPF_CGROUP_UDP4_RECVMSG:
8796                         break;
8797                 default:
8798                         return false;
8799                 }
8800                 break;
8801         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8802                 switch (prog->expected_attach_type) {
8803                 case BPF_CGROUP_INET6_BIND:
8804                 case BPF_CGROUP_INET6_CONNECT:
8805                 case BPF_CGROUP_INET6_GETPEERNAME:
8806                 case BPF_CGROUP_INET6_GETSOCKNAME:
8807                 case BPF_CGROUP_UDP6_SENDMSG:
8808                 case BPF_CGROUP_UDP6_RECVMSG:
8809                         break;
8810                 default:
8811                         return false;
8812                 }
8813                 break;
8814         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8815                 switch (prog->expected_attach_type) {
8816                 case BPF_CGROUP_UDP4_SENDMSG:
8817                         break;
8818                 default:
8819                         return false;
8820                 }
8821                 break;
8822         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8823                                 msg_src_ip6[3]):
8824                 switch (prog->expected_attach_type) {
8825                 case BPF_CGROUP_UDP6_SENDMSG:
8826                         break;
8827                 default:
8828                         return false;
8829                 }
8830                 break;
8831         }
8832
8833         switch (off) {
8834         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8835         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8836         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8837         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8838                                 msg_src_ip6[3]):
8839         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8840                 if (type == BPF_READ) {
8841                         bpf_ctx_record_field_size(info, size_default);
8842
8843                         if (bpf_ctx_wide_access_ok(off, size,
8844                                                    struct bpf_sock_addr,
8845                                                    user_ip6))
8846                                 return true;
8847
8848                         if (bpf_ctx_wide_access_ok(off, size,
8849                                                    struct bpf_sock_addr,
8850                                                    msg_src_ip6))
8851                                 return true;
8852
8853                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8854                                 return false;
8855                 } else {
8856                         if (bpf_ctx_wide_access_ok(off, size,
8857                                                    struct bpf_sock_addr,
8858                                                    user_ip6))
8859                                 return true;
8860
8861                         if (bpf_ctx_wide_access_ok(off, size,
8862                                                    struct bpf_sock_addr,
8863                                                    msg_src_ip6))
8864                                 return true;
8865
8866                         if (size != size_default)
8867                                 return false;
8868                 }
8869                 break;
8870         case offsetof(struct bpf_sock_addr, sk):
8871                 if (type != BPF_READ)
8872                         return false;
8873                 if (size != sizeof(__u64))
8874                         return false;
8875                 info->reg_type = PTR_TO_SOCKET;
8876                 break;
8877         default:
8878                 if (type == BPF_READ) {
8879                         if (size != size_default)
8880                                 return false;
8881                 } else {
8882                         return false;
8883                 }
8884         }
8885
8886         return true;
8887 }
8888
8889 static bool sock_ops_is_valid_access(int off, int size,
8890                                      enum bpf_access_type type,
8891                                      const struct bpf_prog *prog,
8892                                      struct bpf_insn_access_aux *info)
8893 {
8894         const int size_default = sizeof(__u32);
8895
8896         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8897                 return false;
8898
8899         /* The verifier guarantees that size > 0. */
8900         if (off % size != 0)
8901                 return false;
8902
8903         if (type == BPF_WRITE) {
8904                 switch (off) {
8905                 case offsetof(struct bpf_sock_ops, reply):
8906                 case offsetof(struct bpf_sock_ops, sk_txhash):
8907                         if (size != size_default)
8908                                 return false;
8909                         break;
8910                 default:
8911                         return false;
8912                 }
8913         } else {
8914                 switch (off) {
8915                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8916                                         bytes_acked):
8917                         if (size != sizeof(__u64))
8918                                 return false;
8919                         break;
8920                 case offsetof(struct bpf_sock_ops, sk):
8921                         if (size != sizeof(__u64))
8922                                 return false;
8923                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8924                         break;
8925                 case offsetof(struct bpf_sock_ops, skb_data):
8926                         if (size != sizeof(__u64))
8927                                 return false;
8928                         info->reg_type = PTR_TO_PACKET;
8929                         break;
8930                 case offsetof(struct bpf_sock_ops, skb_data_end):
8931                         if (size != sizeof(__u64))
8932                                 return false;
8933                         info->reg_type = PTR_TO_PACKET_END;
8934                         break;
8935                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8936                         bpf_ctx_record_field_size(info, size_default);
8937                         return bpf_ctx_narrow_access_ok(off, size,
8938                                                         size_default);
8939                 default:
8940                         if (size != size_default)
8941                                 return false;
8942                         break;
8943                 }
8944         }
8945
8946         return true;
8947 }
8948
8949 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8950                            const struct bpf_prog *prog)
8951 {
8952         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8953 }
8954
8955 static bool sk_skb_is_valid_access(int off, int size,
8956                                    enum bpf_access_type type,
8957                                    const struct bpf_prog *prog,
8958                                    struct bpf_insn_access_aux *info)
8959 {
8960         switch (off) {
8961         case bpf_ctx_range(struct __sk_buff, tc_classid):
8962         case bpf_ctx_range(struct __sk_buff, data_meta):
8963         case bpf_ctx_range(struct __sk_buff, tstamp):
8964         case bpf_ctx_range(struct __sk_buff, wire_len):
8965         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8966                 return false;
8967         }
8968
8969         if (type == BPF_WRITE) {
8970                 switch (off) {
8971                 case bpf_ctx_range(struct __sk_buff, tc_index):
8972                 case bpf_ctx_range(struct __sk_buff, priority):
8973                         break;
8974                 default:
8975                         return false;
8976                 }
8977         }
8978
8979         switch (off) {
8980         case bpf_ctx_range(struct __sk_buff, mark):
8981                 return false;
8982         case bpf_ctx_range(struct __sk_buff, data):
8983                 info->reg_type = PTR_TO_PACKET;
8984                 break;
8985         case bpf_ctx_range(struct __sk_buff, data_end):
8986                 info->reg_type = PTR_TO_PACKET_END;
8987                 break;
8988         }
8989
8990         return bpf_skb_is_valid_access(off, size, type, prog, info);
8991 }
8992
8993 static bool sk_msg_is_valid_access(int off, int size,
8994                                    enum bpf_access_type type,
8995                                    const struct bpf_prog *prog,
8996                                    struct bpf_insn_access_aux *info)
8997 {
8998         if (type == BPF_WRITE)
8999                 return false;
9000
9001         if (off % size != 0)
9002                 return false;
9003
9004         switch (off) {
9005         case offsetof(struct sk_msg_md, data):
9006                 info->reg_type = PTR_TO_PACKET;
9007                 if (size != sizeof(__u64))
9008                         return false;
9009                 break;
9010         case offsetof(struct sk_msg_md, data_end):
9011                 info->reg_type = PTR_TO_PACKET_END;
9012                 if (size != sizeof(__u64))
9013                         return false;
9014                 break;
9015         case offsetof(struct sk_msg_md, sk):
9016                 if (size != sizeof(__u64))
9017                         return false;
9018                 info->reg_type = PTR_TO_SOCKET;
9019                 break;
9020         case bpf_ctx_range(struct sk_msg_md, family):
9021         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9022         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9023         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9024         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9025         case bpf_ctx_range(struct sk_msg_md, remote_port):
9026         case bpf_ctx_range(struct sk_msg_md, local_port):
9027         case bpf_ctx_range(struct sk_msg_md, size):
9028                 if (size != sizeof(__u32))
9029                         return false;
9030                 break;
9031         default:
9032                 return false;
9033         }
9034         return true;
9035 }
9036
9037 static bool flow_dissector_is_valid_access(int off, int size,
9038                                            enum bpf_access_type type,
9039                                            const struct bpf_prog *prog,
9040                                            struct bpf_insn_access_aux *info)
9041 {
9042         const int size_default = sizeof(__u32);
9043
9044         if (off < 0 || off >= sizeof(struct __sk_buff))
9045                 return false;
9046
9047         if (type == BPF_WRITE)
9048                 return false;
9049
9050         switch (off) {
9051         case bpf_ctx_range(struct __sk_buff, data):
9052                 if (size != size_default)
9053                         return false;
9054                 info->reg_type = PTR_TO_PACKET;
9055                 return true;
9056         case bpf_ctx_range(struct __sk_buff, data_end):
9057                 if (size != size_default)
9058                         return false;
9059                 info->reg_type = PTR_TO_PACKET_END;
9060                 return true;
9061         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9062                 if (size != sizeof(__u64))
9063                         return false;
9064                 info->reg_type = PTR_TO_FLOW_KEYS;
9065                 return true;
9066         default:
9067                 return false;
9068         }
9069 }
9070
9071 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9072                                              const struct bpf_insn *si,
9073                                              struct bpf_insn *insn_buf,
9074                                              struct bpf_prog *prog,
9075                                              u32 *target_size)
9076
9077 {
9078         struct bpf_insn *insn = insn_buf;
9079
9080         switch (si->off) {
9081         case offsetof(struct __sk_buff, data):
9082                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9083                                       si->dst_reg, si->src_reg,
9084                                       offsetof(struct bpf_flow_dissector, data));
9085                 break;
9086
9087         case offsetof(struct __sk_buff, data_end):
9088                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9089                                       si->dst_reg, si->src_reg,
9090                                       offsetof(struct bpf_flow_dissector, data_end));
9091                 break;
9092
9093         case offsetof(struct __sk_buff, flow_keys):
9094                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9095                                       si->dst_reg, si->src_reg,
9096                                       offsetof(struct bpf_flow_dissector, flow_keys));
9097                 break;
9098         }
9099
9100         return insn - insn_buf;
9101 }
9102
9103 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9104                                                      struct bpf_insn *insn)
9105 {
9106         __u8 value_reg = si->dst_reg;
9107         __u8 skb_reg = si->src_reg;
9108         /* AX is needed because src_reg and dst_reg could be the same */
9109         __u8 tmp_reg = BPF_REG_AX;
9110
9111         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9112                               PKT_VLAN_PRESENT_OFFSET);
9113         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9114                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9115         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9116         *insn++ = BPF_JMP_A(1);
9117         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9118
9119         return insn;
9120 }
9121
9122 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9123                                                   struct bpf_insn *insn)
9124 {
9125         /* si->dst_reg = skb_shinfo(SKB); */
9126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9127         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9128                               BPF_REG_AX, si->src_reg,
9129                               offsetof(struct sk_buff, end));
9130         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9131                               si->dst_reg, si->src_reg,
9132                               offsetof(struct sk_buff, head));
9133         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9134 #else
9135         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9136                               si->dst_reg, si->src_reg,
9137                               offsetof(struct sk_buff, end));
9138 #endif
9139
9140         return insn;
9141 }
9142
9143 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9144                                                 const struct bpf_insn *si,
9145                                                 struct bpf_insn *insn)
9146 {
9147         __u8 value_reg = si->dst_reg;
9148         __u8 skb_reg = si->src_reg;
9149
9150 #ifdef CONFIG_NET_CLS_ACT
9151         /* If the tstamp_type is read,
9152          * the bpf prog is aware the tstamp could have delivery time.
9153          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9154          */
9155         if (!prog->tstamp_type_access) {
9156                 /* AX is needed because src_reg and dst_reg could be the same */
9157                 __u8 tmp_reg = BPF_REG_AX;
9158
9159                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9160                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9161                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9162                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9163                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9164                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9165                  * read 0 as the (rcv) timestamp.
9166                  */
9167                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9168                 *insn++ = BPF_JMP_A(1);
9169         }
9170 #endif
9171
9172         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9173                               offsetof(struct sk_buff, tstamp));
9174         return insn;
9175 }
9176
9177 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9178                                                  const struct bpf_insn *si,
9179                                                  struct bpf_insn *insn)
9180 {
9181         __u8 value_reg = si->src_reg;
9182         __u8 skb_reg = si->dst_reg;
9183
9184 #ifdef CONFIG_NET_CLS_ACT
9185         /* If the tstamp_type is read,
9186          * the bpf prog is aware the tstamp could have delivery time.
9187          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9188          * Otherwise, writing at ingress will have to clear the
9189          * mono_delivery_time bit also.
9190          */
9191         if (!prog->tstamp_type_access) {
9192                 __u8 tmp_reg = BPF_REG_AX;
9193
9194                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9195                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9196                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9197                 /* goto <store> */
9198                 *insn++ = BPF_JMP_A(2);
9199                 /* <clear>: mono_delivery_time */
9200                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9201                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9202         }
9203 #endif
9204
9205         /* <store>: skb->tstamp = tstamp */
9206         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9207                               offsetof(struct sk_buff, tstamp));
9208         return insn;
9209 }
9210
9211 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9212                                   const struct bpf_insn *si,
9213                                   struct bpf_insn *insn_buf,
9214                                   struct bpf_prog *prog, u32 *target_size)
9215 {
9216         struct bpf_insn *insn = insn_buf;
9217         int off;
9218
9219         switch (si->off) {
9220         case offsetof(struct __sk_buff, len):
9221                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9222                                       bpf_target_off(struct sk_buff, len, 4,
9223                                                      target_size));
9224                 break;
9225
9226         case offsetof(struct __sk_buff, protocol):
9227                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9228                                       bpf_target_off(struct sk_buff, protocol, 2,
9229                                                      target_size));
9230                 break;
9231
9232         case offsetof(struct __sk_buff, vlan_proto):
9233                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9234                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9235                                                      target_size));
9236                 break;
9237
9238         case offsetof(struct __sk_buff, priority):
9239                 if (type == BPF_WRITE)
9240                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9241                                               bpf_target_off(struct sk_buff, priority, 4,
9242                                                              target_size));
9243                 else
9244                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9245                                               bpf_target_off(struct sk_buff, priority, 4,
9246                                                              target_size));
9247                 break;
9248
9249         case offsetof(struct __sk_buff, ingress_ifindex):
9250                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9251                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9252                                                      target_size));
9253                 break;
9254
9255         case offsetof(struct __sk_buff, ifindex):
9256                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9257                                       si->dst_reg, si->src_reg,
9258                                       offsetof(struct sk_buff, dev));
9259                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9260                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9261                                       bpf_target_off(struct net_device, ifindex, 4,
9262                                                      target_size));
9263                 break;
9264
9265         case offsetof(struct __sk_buff, hash):
9266                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9267                                       bpf_target_off(struct sk_buff, hash, 4,
9268                                                      target_size));
9269                 break;
9270
9271         case offsetof(struct __sk_buff, mark):
9272                 if (type == BPF_WRITE)
9273                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9274                                               bpf_target_off(struct sk_buff, mark, 4,
9275                                                              target_size));
9276                 else
9277                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9278                                               bpf_target_off(struct sk_buff, mark, 4,
9279                                                              target_size));
9280                 break;
9281
9282         case offsetof(struct __sk_buff, pkt_type):
9283                 *target_size = 1;
9284                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9285                                       PKT_TYPE_OFFSET);
9286                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9287 #ifdef __BIG_ENDIAN_BITFIELD
9288                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9289 #endif
9290                 break;
9291
9292         case offsetof(struct __sk_buff, queue_mapping):
9293                 if (type == BPF_WRITE) {
9294                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9295                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9296                                               bpf_target_off(struct sk_buff,
9297                                                              queue_mapping,
9298                                                              2, target_size));
9299                 } else {
9300                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9301                                               bpf_target_off(struct sk_buff,
9302                                                              queue_mapping,
9303                                                              2, target_size));
9304                 }
9305                 break;
9306
9307         case offsetof(struct __sk_buff, vlan_present):
9308                 *target_size = 1;
9309                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9310                                       PKT_VLAN_PRESENT_OFFSET);
9311                 if (PKT_VLAN_PRESENT_BIT)
9312                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9313                 if (PKT_VLAN_PRESENT_BIT < 7)
9314                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9315                 break;
9316
9317         case offsetof(struct __sk_buff, vlan_tci):
9318                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9319                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9320                                                      target_size));
9321                 break;
9322
9323         case offsetof(struct __sk_buff, cb[0]) ...
9324              offsetofend(struct __sk_buff, cb[4]) - 1:
9325                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9326                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9327                               offsetof(struct qdisc_skb_cb, data)) %
9328                              sizeof(__u64));
9329
9330                 prog->cb_access = 1;
9331                 off  = si->off;
9332                 off -= offsetof(struct __sk_buff, cb[0]);
9333                 off += offsetof(struct sk_buff, cb);
9334                 off += offsetof(struct qdisc_skb_cb, data);
9335                 if (type == BPF_WRITE)
9336                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9337                                               si->src_reg, off);
9338                 else
9339                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9340                                               si->src_reg, off);
9341                 break;
9342
9343         case offsetof(struct __sk_buff, tc_classid):
9344                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9345
9346                 off  = si->off;
9347                 off -= offsetof(struct __sk_buff, tc_classid);
9348                 off += offsetof(struct sk_buff, cb);
9349                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9350                 *target_size = 2;
9351                 if (type == BPF_WRITE)
9352                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9353                                               si->src_reg, off);
9354                 else
9355                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9356                                               si->src_reg, off);
9357                 break;
9358
9359         case offsetof(struct __sk_buff, data):
9360                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9361                                       si->dst_reg, si->src_reg,
9362                                       offsetof(struct sk_buff, data));
9363                 break;
9364
9365         case offsetof(struct __sk_buff, data_meta):
9366                 off  = si->off;
9367                 off -= offsetof(struct __sk_buff, data_meta);
9368                 off += offsetof(struct sk_buff, cb);
9369                 off += offsetof(struct bpf_skb_data_end, data_meta);
9370                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9371                                       si->src_reg, off);
9372                 break;
9373
9374         case offsetof(struct __sk_buff, data_end):
9375                 off  = si->off;
9376                 off -= offsetof(struct __sk_buff, data_end);
9377                 off += offsetof(struct sk_buff, cb);
9378                 off += offsetof(struct bpf_skb_data_end, data_end);
9379                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9380                                       si->src_reg, off);
9381                 break;
9382
9383         case offsetof(struct __sk_buff, tc_index):
9384 #ifdef CONFIG_NET_SCHED
9385                 if (type == BPF_WRITE)
9386                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9387                                               bpf_target_off(struct sk_buff, tc_index, 2,
9388                                                              target_size));
9389                 else
9390                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9391                                               bpf_target_off(struct sk_buff, tc_index, 2,
9392                                                              target_size));
9393 #else
9394                 *target_size = 2;
9395                 if (type == BPF_WRITE)
9396                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9397                 else
9398                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9399 #endif
9400                 break;
9401
9402         case offsetof(struct __sk_buff, napi_id):
9403 #if defined(CONFIG_NET_RX_BUSY_POLL)
9404                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9405                                       bpf_target_off(struct sk_buff, napi_id, 4,
9406                                                      target_size));
9407                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9408                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9409 #else
9410                 *target_size = 4;
9411                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9412 #endif
9413                 break;
9414         case offsetof(struct __sk_buff, family):
9415                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9416
9417                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9418                                       si->dst_reg, si->src_reg,
9419                                       offsetof(struct sk_buff, sk));
9420                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9421                                       bpf_target_off(struct sock_common,
9422                                                      skc_family,
9423                                                      2, target_size));
9424                 break;
9425         case offsetof(struct __sk_buff, remote_ip4):
9426                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9427
9428                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9429                                       si->dst_reg, si->src_reg,
9430                                       offsetof(struct sk_buff, sk));
9431                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9432                                       bpf_target_off(struct sock_common,
9433                                                      skc_daddr,
9434                                                      4, target_size));
9435                 break;
9436         case offsetof(struct __sk_buff, local_ip4):
9437                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9438                                           skc_rcv_saddr) != 4);
9439
9440                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9441                                       si->dst_reg, si->src_reg,
9442                                       offsetof(struct sk_buff, sk));
9443                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9444                                       bpf_target_off(struct sock_common,
9445                                                      skc_rcv_saddr,
9446                                                      4, target_size));
9447                 break;
9448         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9449              offsetof(struct __sk_buff, remote_ip6[3]):
9450 #if IS_ENABLED(CONFIG_IPV6)
9451                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9452                                           skc_v6_daddr.s6_addr32[0]) != 4);
9453
9454                 off = si->off;
9455                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9456
9457                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9458                                       si->dst_reg, si->src_reg,
9459                                       offsetof(struct sk_buff, sk));
9460                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9461                                       offsetof(struct sock_common,
9462                                                skc_v6_daddr.s6_addr32[0]) +
9463                                       off);
9464 #else
9465                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9466 #endif
9467                 break;
9468         case offsetof(struct __sk_buff, local_ip6[0]) ...
9469              offsetof(struct __sk_buff, local_ip6[3]):
9470 #if IS_ENABLED(CONFIG_IPV6)
9471                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9472                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9473
9474                 off = si->off;
9475                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9476
9477                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9478                                       si->dst_reg, si->src_reg,
9479                                       offsetof(struct sk_buff, sk));
9480                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9481                                       offsetof(struct sock_common,
9482                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9483                                       off);
9484 #else
9485                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9486 #endif
9487                 break;
9488
9489         case offsetof(struct __sk_buff, remote_port):
9490                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9491
9492                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9493                                       si->dst_reg, si->src_reg,
9494                                       offsetof(struct sk_buff, sk));
9495                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9496                                       bpf_target_off(struct sock_common,
9497                                                      skc_dport,
9498                                                      2, target_size));
9499 #ifndef __BIG_ENDIAN_BITFIELD
9500                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9501 #endif
9502                 break;
9503
9504         case offsetof(struct __sk_buff, local_port):
9505                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9506
9507                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9508                                       si->dst_reg, si->src_reg,
9509                                       offsetof(struct sk_buff, sk));
9510                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9511                                       bpf_target_off(struct sock_common,
9512                                                      skc_num, 2, target_size));
9513                 break;
9514
9515         case offsetof(struct __sk_buff, tstamp):
9516                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9517
9518                 if (type == BPF_WRITE)
9519                         insn = bpf_convert_tstamp_write(prog, si, insn);
9520                 else
9521                         insn = bpf_convert_tstamp_read(prog, si, insn);
9522                 break;
9523
9524         case offsetof(struct __sk_buff, tstamp_type):
9525                 insn = bpf_convert_tstamp_type_read(si, insn);
9526                 break;
9527
9528         case offsetof(struct __sk_buff, gso_segs):
9529                 insn = bpf_convert_shinfo_access(si, insn);
9530                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9531                                       si->dst_reg, si->dst_reg,
9532                                       bpf_target_off(struct skb_shared_info,
9533                                                      gso_segs, 2,
9534                                                      target_size));
9535                 break;
9536         case offsetof(struct __sk_buff, gso_size):
9537                 insn = bpf_convert_shinfo_access(si, insn);
9538                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9539                                       si->dst_reg, si->dst_reg,
9540                                       bpf_target_off(struct skb_shared_info,
9541                                                      gso_size, 2,
9542                                                      target_size));
9543                 break;
9544         case offsetof(struct __sk_buff, wire_len):
9545                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9546
9547                 off = si->off;
9548                 off -= offsetof(struct __sk_buff, wire_len);
9549                 off += offsetof(struct sk_buff, cb);
9550                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9551                 *target_size = 4;
9552                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9553                 break;
9554
9555         case offsetof(struct __sk_buff, sk):
9556                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9557                                       si->dst_reg, si->src_reg,
9558                                       offsetof(struct sk_buff, sk));
9559                 break;
9560         case offsetof(struct __sk_buff, hwtstamp):
9561                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9562                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9563
9564                 insn = bpf_convert_shinfo_access(si, insn);
9565                 *insn++ = BPF_LDX_MEM(BPF_DW,
9566                                       si->dst_reg, si->dst_reg,
9567                                       bpf_target_off(struct skb_shared_info,
9568                                                      hwtstamps, 8,
9569                                                      target_size));
9570                 break;
9571         }
9572
9573         return insn - insn_buf;
9574 }
9575
9576 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9577                                 const struct bpf_insn *si,
9578                                 struct bpf_insn *insn_buf,
9579                                 struct bpf_prog *prog, u32 *target_size)
9580 {
9581         struct bpf_insn *insn = insn_buf;
9582         int off;
9583
9584         switch (si->off) {
9585         case offsetof(struct bpf_sock, bound_dev_if):
9586                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9587
9588                 if (type == BPF_WRITE)
9589                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9590                                         offsetof(struct sock, sk_bound_dev_if));
9591                 else
9592                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9593                                       offsetof(struct sock, sk_bound_dev_if));
9594                 break;
9595
9596         case offsetof(struct bpf_sock, mark):
9597                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9598
9599                 if (type == BPF_WRITE)
9600                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9601                                         offsetof(struct sock, sk_mark));
9602                 else
9603                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9604                                       offsetof(struct sock, sk_mark));
9605                 break;
9606
9607         case offsetof(struct bpf_sock, priority):
9608                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9609
9610                 if (type == BPF_WRITE)
9611                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9612                                         offsetof(struct sock, sk_priority));
9613                 else
9614                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9615                                       offsetof(struct sock, sk_priority));
9616                 break;
9617
9618         case offsetof(struct bpf_sock, family):
9619                 *insn++ = BPF_LDX_MEM(
9620                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9621                         si->dst_reg, si->src_reg,
9622                         bpf_target_off(struct sock_common,
9623                                        skc_family,
9624                                        sizeof_field(struct sock_common,
9625                                                     skc_family),
9626                                        target_size));
9627                 break;
9628
9629         case offsetof(struct bpf_sock, type):
9630                 *insn++ = BPF_LDX_MEM(
9631                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9632                         si->dst_reg, si->src_reg,
9633                         bpf_target_off(struct sock, sk_type,
9634                                        sizeof_field(struct sock, sk_type),
9635                                        target_size));
9636                 break;
9637
9638         case offsetof(struct bpf_sock, protocol):
9639                 *insn++ = BPF_LDX_MEM(
9640                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9641                         si->dst_reg, si->src_reg,
9642                         bpf_target_off(struct sock, sk_protocol,
9643                                        sizeof_field(struct sock, sk_protocol),
9644                                        target_size));
9645                 break;
9646
9647         case offsetof(struct bpf_sock, src_ip4):
9648                 *insn++ = BPF_LDX_MEM(
9649                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9650                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9651                                        sizeof_field(struct sock_common,
9652                                                     skc_rcv_saddr),
9653                                        target_size));
9654                 break;
9655
9656         case offsetof(struct bpf_sock, dst_ip4):
9657                 *insn++ = BPF_LDX_MEM(
9658                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9659                         bpf_target_off(struct sock_common, skc_daddr,
9660                                        sizeof_field(struct sock_common,
9661                                                     skc_daddr),
9662                                        target_size));
9663                 break;
9664
9665         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9666 #if IS_ENABLED(CONFIG_IPV6)
9667                 off = si->off;
9668                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9669                 *insn++ = BPF_LDX_MEM(
9670                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9671                         bpf_target_off(
9672                                 struct sock_common,
9673                                 skc_v6_rcv_saddr.s6_addr32[0],
9674                                 sizeof_field(struct sock_common,
9675                                              skc_v6_rcv_saddr.s6_addr32[0]),
9676                                 target_size) + off);
9677 #else
9678                 (void)off;
9679                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9680 #endif
9681                 break;
9682
9683         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9684 #if IS_ENABLED(CONFIG_IPV6)
9685                 off = si->off;
9686                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9687                 *insn++ = BPF_LDX_MEM(
9688                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9689                         bpf_target_off(struct sock_common,
9690                                        skc_v6_daddr.s6_addr32[0],
9691                                        sizeof_field(struct sock_common,
9692                                                     skc_v6_daddr.s6_addr32[0]),
9693                                        target_size) + off);
9694 #else
9695                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9696                 *target_size = 4;
9697 #endif
9698                 break;
9699
9700         case offsetof(struct bpf_sock, src_port):
9701                 *insn++ = BPF_LDX_MEM(
9702                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9703                         si->dst_reg, si->src_reg,
9704                         bpf_target_off(struct sock_common, skc_num,
9705                                        sizeof_field(struct sock_common,
9706                                                     skc_num),
9707                                        target_size));
9708                 break;
9709
9710         case offsetof(struct bpf_sock, dst_port):
9711                 *insn++ = BPF_LDX_MEM(
9712                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9713                         si->dst_reg, si->src_reg,
9714                         bpf_target_off(struct sock_common, skc_dport,
9715                                        sizeof_field(struct sock_common,
9716                                                     skc_dport),
9717                                        target_size));
9718                 break;
9719
9720         case offsetof(struct bpf_sock, state):
9721                 *insn++ = BPF_LDX_MEM(
9722                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9723                         si->dst_reg, si->src_reg,
9724                         bpf_target_off(struct sock_common, skc_state,
9725                                        sizeof_field(struct sock_common,
9726                                                     skc_state),
9727                                        target_size));
9728                 break;
9729         case offsetof(struct bpf_sock, rx_queue_mapping):
9730 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9731                 *insn++ = BPF_LDX_MEM(
9732                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9733                         si->dst_reg, si->src_reg,
9734                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9735                                        sizeof_field(struct sock,
9736                                                     sk_rx_queue_mapping),
9737                                        target_size));
9738                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9739                                       1);
9740                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9741 #else
9742                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9743                 *target_size = 2;
9744 #endif
9745                 break;
9746         }
9747
9748         return insn - insn_buf;
9749 }
9750
9751 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9752                                          const struct bpf_insn *si,
9753                                          struct bpf_insn *insn_buf,
9754                                          struct bpf_prog *prog, u32 *target_size)
9755 {
9756         struct bpf_insn *insn = insn_buf;
9757
9758         switch (si->off) {
9759         case offsetof(struct __sk_buff, ifindex):
9760                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9761                                       si->dst_reg, si->src_reg,
9762                                       offsetof(struct sk_buff, dev));
9763                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9764                                       bpf_target_off(struct net_device, ifindex, 4,
9765                                                      target_size));
9766                 break;
9767         default:
9768                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9769                                               target_size);
9770         }
9771
9772         return insn - insn_buf;
9773 }
9774
9775 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9776                                   const struct bpf_insn *si,
9777                                   struct bpf_insn *insn_buf,
9778                                   struct bpf_prog *prog, u32 *target_size)
9779 {
9780         struct bpf_insn *insn = insn_buf;
9781
9782         switch (si->off) {
9783         case offsetof(struct xdp_md, data):
9784                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9785                                       si->dst_reg, si->src_reg,
9786                                       offsetof(struct xdp_buff, data));
9787                 break;
9788         case offsetof(struct xdp_md, data_meta):
9789                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9790                                       si->dst_reg, si->src_reg,
9791                                       offsetof(struct xdp_buff, data_meta));
9792                 break;
9793         case offsetof(struct xdp_md, data_end):
9794                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9795                                       si->dst_reg, si->src_reg,
9796                                       offsetof(struct xdp_buff, data_end));
9797                 break;
9798         case offsetof(struct xdp_md, ingress_ifindex):
9799                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9800                                       si->dst_reg, si->src_reg,
9801                                       offsetof(struct xdp_buff, rxq));
9802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9803                                       si->dst_reg, si->dst_reg,
9804                                       offsetof(struct xdp_rxq_info, dev));
9805                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9806                                       offsetof(struct net_device, ifindex));
9807                 break;
9808         case offsetof(struct xdp_md, rx_queue_index):
9809                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9810                                       si->dst_reg, si->src_reg,
9811                                       offsetof(struct xdp_buff, rxq));
9812                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9813                                       offsetof(struct xdp_rxq_info,
9814                                                queue_index));
9815                 break;
9816         case offsetof(struct xdp_md, egress_ifindex):
9817                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9818                                       si->dst_reg, si->src_reg,
9819                                       offsetof(struct xdp_buff, txq));
9820                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9821                                       si->dst_reg, si->dst_reg,
9822                                       offsetof(struct xdp_txq_info, dev));
9823                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9824                                       offsetof(struct net_device, ifindex));
9825                 break;
9826         }
9827
9828         return insn - insn_buf;
9829 }
9830
9831 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9832  * context Structure, F is Field in context structure that contains a pointer
9833  * to Nested Structure of type NS that has the field NF.
9834  *
9835  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9836  * sure that SIZE is not greater than actual size of S.F.NF.
9837  *
9838  * If offset OFF is provided, the load happens from that offset relative to
9839  * offset of NF.
9840  */
9841 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9842         do {                                                                   \
9843                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9844                                       si->src_reg, offsetof(S, F));            \
9845                 *insn++ = BPF_LDX_MEM(                                         \
9846                         SIZE, si->dst_reg, si->dst_reg,                        \
9847                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9848                                        target_size)                            \
9849                                 + OFF);                                        \
9850         } while (0)
9851
9852 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9853         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9854                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9855
9856 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9857  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9858  *
9859  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9860  * "register" since two registers available in convert_ctx_access are not
9861  * enough: we can't override neither SRC, since it contains value to store, nor
9862  * DST since it contains pointer to context that may be used by later
9863  * instructions. But we need a temporary place to save pointer to nested
9864  * structure whose field we want to store to.
9865  */
9866 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9867         do {                                                                   \
9868                 int tmp_reg = BPF_REG_9;                                       \
9869                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9870                         --tmp_reg;                                             \
9871                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9872                         --tmp_reg;                                             \
9873                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9874                                       offsetof(S, TF));                        \
9875                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9876                                       si->dst_reg, offsetof(S, F));            \
9877                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9878                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9879                                        target_size)                            \
9880                                 + OFF);                                        \
9881                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9882                                       offsetof(S, TF));                        \
9883         } while (0)
9884
9885 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9886                                                       TF)                      \
9887         do {                                                                   \
9888                 if (type == BPF_WRITE) {                                       \
9889                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9890                                                          OFF, TF);             \
9891                 } else {                                                       \
9892                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9893                                 S, NS, F, NF, SIZE, OFF);  \
9894                 }                                                              \
9895         } while (0)
9896
9897 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9898         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9899                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9900
9901 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9902                                         const struct bpf_insn *si,
9903                                         struct bpf_insn *insn_buf,
9904                                         struct bpf_prog *prog, u32 *target_size)
9905 {
9906         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9907         struct bpf_insn *insn = insn_buf;
9908
9909         switch (si->off) {
9910         case offsetof(struct bpf_sock_addr, user_family):
9911                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9912                                             struct sockaddr, uaddr, sa_family);
9913                 break;
9914
9915         case offsetof(struct bpf_sock_addr, user_ip4):
9916                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9917                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9918                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9919                 break;
9920
9921         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9922                 off = si->off;
9923                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9924                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9925                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9926                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9927                         tmp_reg);
9928                 break;
9929
9930         case offsetof(struct bpf_sock_addr, user_port):
9931                 /* To get port we need to know sa_family first and then treat
9932                  * sockaddr as either sockaddr_in or sockaddr_in6.
9933                  * Though we can simplify since port field has same offset and
9934                  * size in both structures.
9935                  * Here we check this invariant and use just one of the
9936                  * structures if it's true.
9937                  */
9938                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9939                              offsetof(struct sockaddr_in6, sin6_port));
9940                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9941                              sizeof_field(struct sockaddr_in6, sin6_port));
9942                 /* Account for sin6_port being smaller than user_port. */
9943                 port_size = min(port_size, BPF_LDST_BYTES(si));
9944                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9945                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9946                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9947                 break;
9948
9949         case offsetof(struct bpf_sock_addr, family):
9950                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9951                                             struct sock, sk, sk_family);
9952                 break;
9953
9954         case offsetof(struct bpf_sock_addr, type):
9955                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9956                                             struct sock, sk, sk_type);
9957                 break;
9958
9959         case offsetof(struct bpf_sock_addr, protocol):
9960                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9961                                             struct sock, sk, sk_protocol);
9962                 break;
9963
9964         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9965                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9966                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9967                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9968                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9969                 break;
9970
9971         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9972                                 msg_src_ip6[3]):
9973                 off = si->off;
9974                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9975                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9976                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9977                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9978                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9979                 break;
9980         case offsetof(struct bpf_sock_addr, sk):
9981                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9982                                       si->dst_reg, si->src_reg,
9983                                       offsetof(struct bpf_sock_addr_kern, sk));
9984                 break;
9985         }
9986
9987         return insn - insn_buf;
9988 }
9989
9990 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9991                                        const struct bpf_insn *si,
9992                                        struct bpf_insn *insn_buf,
9993                                        struct bpf_prog *prog,
9994                                        u32 *target_size)
9995 {
9996         struct bpf_insn *insn = insn_buf;
9997         int off;
9998
9999 /* Helper macro for adding read access to tcp_sock or sock fields. */
10000 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10001         do {                                                                  \
10002                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10003                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10004                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10005                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10006                         reg--;                                                \
10007                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10008                         reg--;                                                \
10009                 if (si->dst_reg == si->src_reg) {                             \
10010                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10011                                           offsetof(struct bpf_sock_ops_kern,  \
10012                                           temp));                             \
10013                         fullsock_reg = reg;                                   \
10014                         jmp += 2;                                             \
10015                 }                                                             \
10016                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10017                                                 struct bpf_sock_ops_kern,     \
10018                                                 is_fullsock),                 \
10019                                       fullsock_reg, si->src_reg,              \
10020                                       offsetof(struct bpf_sock_ops_kern,      \
10021                                                is_fullsock));                 \
10022                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10023                 if (si->dst_reg == si->src_reg)                               \
10024                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10025                                       offsetof(struct bpf_sock_ops_kern,      \
10026                                       temp));                                 \
10027                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10028                                                 struct bpf_sock_ops_kern, sk),\
10029                                       si->dst_reg, si->src_reg,               \
10030                                       offsetof(struct bpf_sock_ops_kern, sk));\
10031                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10032                                                        OBJ_FIELD),            \
10033                                       si->dst_reg, si->dst_reg,               \
10034                                       offsetof(OBJ, OBJ_FIELD));              \
10035                 if (si->dst_reg == si->src_reg) {                             \
10036                         *insn++ = BPF_JMP_A(1);                               \
10037                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10038                                       offsetof(struct bpf_sock_ops_kern,      \
10039                                       temp));                                 \
10040                 }                                                             \
10041         } while (0)
10042
10043 #define SOCK_OPS_GET_SK()                                                             \
10044         do {                                                                  \
10045                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10046                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10047                         reg--;                                                \
10048                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10049                         reg--;                                                \
10050                 if (si->dst_reg == si->src_reg) {                             \
10051                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10052                                           offsetof(struct bpf_sock_ops_kern,  \
10053                                           temp));                             \
10054                         fullsock_reg = reg;                                   \
10055                         jmp += 2;                                             \
10056                 }                                                             \
10057                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10058                                                 struct bpf_sock_ops_kern,     \
10059                                                 is_fullsock),                 \
10060                                       fullsock_reg, si->src_reg,              \
10061                                       offsetof(struct bpf_sock_ops_kern,      \
10062                                                is_fullsock));                 \
10063                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10064                 if (si->dst_reg == si->src_reg)                               \
10065                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10066                                       offsetof(struct bpf_sock_ops_kern,      \
10067                                       temp));                                 \
10068                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10069                                                 struct bpf_sock_ops_kern, sk),\
10070                                       si->dst_reg, si->src_reg,               \
10071                                       offsetof(struct bpf_sock_ops_kern, sk));\
10072                 if (si->dst_reg == si->src_reg) {                             \
10073                         *insn++ = BPF_JMP_A(1);                               \
10074                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10075                                       offsetof(struct bpf_sock_ops_kern,      \
10076                                       temp));                                 \
10077                 }                                                             \
10078         } while (0)
10079
10080 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10081                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10082
10083 /* Helper macro for adding write access to tcp_sock or sock fields.
10084  * The macro is called with two registers, dst_reg which contains a pointer
10085  * to ctx (context) and src_reg which contains the value that should be
10086  * stored. However, we need an additional register since we cannot overwrite
10087  * dst_reg because it may be used later in the program.
10088  * Instead we "borrow" one of the other register. We first save its value
10089  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10090  * it at the end of the macro.
10091  */
10092 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10093         do {                                                                  \
10094                 int reg = BPF_REG_9;                                          \
10095                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10096                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10097                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10098                         reg--;                                                \
10099                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10100                         reg--;                                                \
10101                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10102                                       offsetof(struct bpf_sock_ops_kern,      \
10103                                                temp));                        \
10104                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10105                                                 struct bpf_sock_ops_kern,     \
10106                                                 is_fullsock),                 \
10107                                       reg, si->dst_reg,                       \
10108                                       offsetof(struct bpf_sock_ops_kern,      \
10109                                                is_fullsock));                 \
10110                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10111                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10112                                                 struct bpf_sock_ops_kern, sk),\
10113                                       reg, si->dst_reg,                       \
10114                                       offsetof(struct bpf_sock_ops_kern, sk));\
10115                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10116                                       reg, si->src_reg,                       \
10117                                       offsetof(OBJ, OBJ_FIELD));              \
10118                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10119                                       offsetof(struct bpf_sock_ops_kern,      \
10120                                                temp));                        \
10121         } while (0)
10122
10123 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10124         do {                                                                  \
10125                 if (TYPE == BPF_WRITE)                                        \
10126                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10127                 else                                                          \
10128                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10129         } while (0)
10130
10131         if (insn > insn_buf)
10132                 return insn - insn_buf;
10133
10134         switch (si->off) {
10135         case offsetof(struct bpf_sock_ops, op):
10136                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10137                                                        op),
10138                                       si->dst_reg, si->src_reg,
10139                                       offsetof(struct bpf_sock_ops_kern, op));
10140                 break;
10141
10142         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10143              offsetof(struct bpf_sock_ops, replylong[3]):
10144                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10145                              sizeof_field(struct bpf_sock_ops_kern, reply));
10146                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10147                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10148                 off = si->off;
10149                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10150                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10151                 if (type == BPF_WRITE)
10152                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10153                                               off);
10154                 else
10155                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10156                                               off);
10157                 break;
10158
10159         case offsetof(struct bpf_sock_ops, family):
10160                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10161
10162                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10163                                               struct bpf_sock_ops_kern, sk),
10164                                       si->dst_reg, si->src_reg,
10165                                       offsetof(struct bpf_sock_ops_kern, sk));
10166                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10167                                       offsetof(struct sock_common, skc_family));
10168                 break;
10169
10170         case offsetof(struct bpf_sock_ops, remote_ip4):
10171                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10172
10173                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10174                                                 struct bpf_sock_ops_kern, sk),
10175                                       si->dst_reg, si->src_reg,
10176                                       offsetof(struct bpf_sock_ops_kern, sk));
10177                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10178                                       offsetof(struct sock_common, skc_daddr));
10179                 break;
10180
10181         case offsetof(struct bpf_sock_ops, local_ip4):
10182                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10183                                           skc_rcv_saddr) != 4);
10184
10185                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10186                                               struct bpf_sock_ops_kern, sk),
10187                                       si->dst_reg, si->src_reg,
10188                                       offsetof(struct bpf_sock_ops_kern, sk));
10189                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10190                                       offsetof(struct sock_common,
10191                                                skc_rcv_saddr));
10192                 break;
10193
10194         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10195              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10196 #if IS_ENABLED(CONFIG_IPV6)
10197                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10198                                           skc_v6_daddr.s6_addr32[0]) != 4);
10199
10200                 off = si->off;
10201                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10202                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10203                                                 struct bpf_sock_ops_kern, sk),
10204                                       si->dst_reg, si->src_reg,
10205                                       offsetof(struct bpf_sock_ops_kern, sk));
10206                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10207                                       offsetof(struct sock_common,
10208                                                skc_v6_daddr.s6_addr32[0]) +
10209                                       off);
10210 #else
10211                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10212 #endif
10213                 break;
10214
10215         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10216              offsetof(struct bpf_sock_ops, local_ip6[3]):
10217 #if IS_ENABLED(CONFIG_IPV6)
10218                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10219                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10220
10221                 off = si->off;
10222                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10223                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10224                                                 struct bpf_sock_ops_kern, sk),
10225                                       si->dst_reg, si->src_reg,
10226                                       offsetof(struct bpf_sock_ops_kern, sk));
10227                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10228                                       offsetof(struct sock_common,
10229                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10230                                       off);
10231 #else
10232                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10233 #endif
10234                 break;
10235
10236         case offsetof(struct bpf_sock_ops, remote_port):
10237                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10238
10239                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10240                                                 struct bpf_sock_ops_kern, sk),
10241                                       si->dst_reg, si->src_reg,
10242                                       offsetof(struct bpf_sock_ops_kern, sk));
10243                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10244                                       offsetof(struct sock_common, skc_dport));
10245 #ifndef __BIG_ENDIAN_BITFIELD
10246                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10247 #endif
10248                 break;
10249
10250         case offsetof(struct bpf_sock_ops, local_port):
10251                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10252
10253                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10254                                                 struct bpf_sock_ops_kern, sk),
10255                                       si->dst_reg, si->src_reg,
10256                                       offsetof(struct bpf_sock_ops_kern, sk));
10257                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10258                                       offsetof(struct sock_common, skc_num));
10259                 break;
10260
10261         case offsetof(struct bpf_sock_ops, is_fullsock):
10262                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10263                                                 struct bpf_sock_ops_kern,
10264                                                 is_fullsock),
10265                                       si->dst_reg, si->src_reg,
10266                                       offsetof(struct bpf_sock_ops_kern,
10267                                                is_fullsock));
10268                 break;
10269
10270         case offsetof(struct bpf_sock_ops, state):
10271                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10272
10273                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10274                                                 struct bpf_sock_ops_kern, sk),
10275                                       si->dst_reg, si->src_reg,
10276                                       offsetof(struct bpf_sock_ops_kern, sk));
10277                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10278                                       offsetof(struct sock_common, skc_state));
10279                 break;
10280
10281         case offsetof(struct bpf_sock_ops, rtt_min):
10282                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10283                              sizeof(struct minmax));
10284                 BUILD_BUG_ON(sizeof(struct minmax) <
10285                              sizeof(struct minmax_sample));
10286
10287                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10288                                                 struct bpf_sock_ops_kern, sk),
10289                                       si->dst_reg, si->src_reg,
10290                                       offsetof(struct bpf_sock_ops_kern, sk));
10291                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10292                                       offsetof(struct tcp_sock, rtt_min) +
10293                                       sizeof_field(struct minmax_sample, t));
10294                 break;
10295
10296         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10297                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10298                                    struct tcp_sock);
10299                 break;
10300
10301         case offsetof(struct bpf_sock_ops, sk_txhash):
10302                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10303                                           struct sock, type);
10304                 break;
10305         case offsetof(struct bpf_sock_ops, snd_cwnd):
10306                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10307                 break;
10308         case offsetof(struct bpf_sock_ops, srtt_us):
10309                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10310                 break;
10311         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10312                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10313                 break;
10314         case offsetof(struct bpf_sock_ops, rcv_nxt):
10315                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10316                 break;
10317         case offsetof(struct bpf_sock_ops, snd_nxt):
10318                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10319                 break;
10320         case offsetof(struct bpf_sock_ops, snd_una):
10321                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10322                 break;
10323         case offsetof(struct bpf_sock_ops, mss_cache):
10324                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10325                 break;
10326         case offsetof(struct bpf_sock_ops, ecn_flags):
10327                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10328                 break;
10329         case offsetof(struct bpf_sock_ops, rate_delivered):
10330                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10331                 break;
10332         case offsetof(struct bpf_sock_ops, rate_interval_us):
10333                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10334                 break;
10335         case offsetof(struct bpf_sock_ops, packets_out):
10336                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10337                 break;
10338         case offsetof(struct bpf_sock_ops, retrans_out):
10339                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10340                 break;
10341         case offsetof(struct bpf_sock_ops, total_retrans):
10342                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10343                 break;
10344         case offsetof(struct bpf_sock_ops, segs_in):
10345                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10346                 break;
10347         case offsetof(struct bpf_sock_ops, data_segs_in):
10348                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10349                 break;
10350         case offsetof(struct bpf_sock_ops, segs_out):
10351                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10352                 break;
10353         case offsetof(struct bpf_sock_ops, data_segs_out):
10354                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10355                 break;
10356         case offsetof(struct bpf_sock_ops, lost_out):
10357                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10358                 break;
10359         case offsetof(struct bpf_sock_ops, sacked_out):
10360                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10361                 break;
10362         case offsetof(struct bpf_sock_ops, bytes_received):
10363                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10364                 break;
10365         case offsetof(struct bpf_sock_ops, bytes_acked):
10366                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10367                 break;
10368         case offsetof(struct bpf_sock_ops, sk):
10369                 SOCK_OPS_GET_SK();
10370                 break;
10371         case offsetof(struct bpf_sock_ops, skb_data_end):
10372                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10373                                                        skb_data_end),
10374                                       si->dst_reg, si->src_reg,
10375                                       offsetof(struct bpf_sock_ops_kern,
10376                                                skb_data_end));
10377                 break;
10378         case offsetof(struct bpf_sock_ops, skb_data):
10379                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10380                                                        skb),
10381                                       si->dst_reg, si->src_reg,
10382                                       offsetof(struct bpf_sock_ops_kern,
10383                                                skb));
10384                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10385                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10386                                       si->dst_reg, si->dst_reg,
10387                                       offsetof(struct sk_buff, data));
10388                 break;
10389         case offsetof(struct bpf_sock_ops, skb_len):
10390                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10391                                                        skb),
10392                                       si->dst_reg, si->src_reg,
10393                                       offsetof(struct bpf_sock_ops_kern,
10394                                                skb));
10395                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10396                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10397                                       si->dst_reg, si->dst_reg,
10398                                       offsetof(struct sk_buff, len));
10399                 break;
10400         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10401                 off = offsetof(struct sk_buff, cb);
10402                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10403                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10404                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10405                                                        skb),
10406                                       si->dst_reg, si->src_reg,
10407                                       offsetof(struct bpf_sock_ops_kern,
10408                                                skb));
10409                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10410                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10411                                                        tcp_flags),
10412                                       si->dst_reg, si->dst_reg, off);
10413                 break;
10414         }
10415         return insn - insn_buf;
10416 }
10417
10418 /* data_end = skb->data + skb_headlen() */
10419 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10420                                                     struct bpf_insn *insn)
10421 {
10422         int reg;
10423         int temp_reg_off = offsetof(struct sk_buff, cb) +
10424                            offsetof(struct sk_skb_cb, temp_reg);
10425
10426         if (si->src_reg == si->dst_reg) {
10427                 /* We need an extra register, choose and save a register. */
10428                 reg = BPF_REG_9;
10429                 if (si->src_reg == reg || si->dst_reg == reg)
10430                         reg--;
10431                 if (si->src_reg == reg || si->dst_reg == reg)
10432                         reg--;
10433                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10434         } else {
10435                 reg = si->dst_reg;
10436         }
10437
10438         /* reg = skb->data */
10439         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10440                               reg, si->src_reg,
10441                               offsetof(struct sk_buff, data));
10442         /* AX = skb->len */
10443         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10444                               BPF_REG_AX, si->src_reg,
10445                               offsetof(struct sk_buff, len));
10446         /* reg = skb->data + skb->len */
10447         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10448         /* AX = skb->data_len */
10449         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10450                               BPF_REG_AX, si->src_reg,
10451                               offsetof(struct sk_buff, data_len));
10452
10453         /* reg = skb->data + skb->len - skb->data_len */
10454         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10455
10456         if (si->src_reg == si->dst_reg) {
10457                 /* Restore the saved register */
10458                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10459                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10460                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10461         }
10462
10463         return insn;
10464 }
10465
10466 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10467                                      const struct bpf_insn *si,
10468                                      struct bpf_insn *insn_buf,
10469                                      struct bpf_prog *prog, u32 *target_size)
10470 {
10471         struct bpf_insn *insn = insn_buf;
10472         int off;
10473
10474         switch (si->off) {
10475         case offsetof(struct __sk_buff, data_end):
10476                 insn = bpf_convert_data_end_access(si, insn);
10477                 break;
10478         case offsetof(struct __sk_buff, cb[0]) ...
10479              offsetofend(struct __sk_buff, cb[4]) - 1:
10480                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10481                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10482                               offsetof(struct sk_skb_cb, data)) %
10483                              sizeof(__u64));
10484
10485                 prog->cb_access = 1;
10486                 off  = si->off;
10487                 off -= offsetof(struct __sk_buff, cb[0]);
10488                 off += offsetof(struct sk_buff, cb);
10489                 off += offsetof(struct sk_skb_cb, data);
10490                 if (type == BPF_WRITE)
10491                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10492                                               si->src_reg, off);
10493                 else
10494                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10495                                               si->src_reg, off);
10496                 break;
10497
10498
10499         default:
10500                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10501                                               target_size);
10502         }
10503
10504         return insn - insn_buf;
10505 }
10506
10507 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10508                                      const struct bpf_insn *si,
10509                                      struct bpf_insn *insn_buf,
10510                                      struct bpf_prog *prog, u32 *target_size)
10511 {
10512         struct bpf_insn *insn = insn_buf;
10513 #if IS_ENABLED(CONFIG_IPV6)
10514         int off;
10515 #endif
10516
10517         /* convert ctx uses the fact sg element is first in struct */
10518         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10519
10520         switch (si->off) {
10521         case offsetof(struct sk_msg_md, data):
10522                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10523                                       si->dst_reg, si->src_reg,
10524                                       offsetof(struct sk_msg, data));
10525                 break;
10526         case offsetof(struct sk_msg_md, data_end):
10527                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10528                                       si->dst_reg, si->src_reg,
10529                                       offsetof(struct sk_msg, data_end));
10530                 break;
10531         case offsetof(struct sk_msg_md, family):
10532                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10533
10534                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10535                                               struct sk_msg, sk),
10536                                       si->dst_reg, si->src_reg,
10537                                       offsetof(struct sk_msg, sk));
10538                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10539                                       offsetof(struct sock_common, skc_family));
10540                 break;
10541
10542         case offsetof(struct sk_msg_md, remote_ip4):
10543                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10544
10545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10546                                                 struct sk_msg, sk),
10547                                       si->dst_reg, si->src_reg,
10548                                       offsetof(struct sk_msg, sk));
10549                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10550                                       offsetof(struct sock_common, skc_daddr));
10551                 break;
10552
10553         case offsetof(struct sk_msg_md, local_ip4):
10554                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10555                                           skc_rcv_saddr) != 4);
10556
10557                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10558                                               struct sk_msg, sk),
10559                                       si->dst_reg, si->src_reg,
10560                                       offsetof(struct sk_msg, sk));
10561                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10562                                       offsetof(struct sock_common,
10563                                                skc_rcv_saddr));
10564                 break;
10565
10566         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10567              offsetof(struct sk_msg_md, remote_ip6[3]):
10568 #if IS_ENABLED(CONFIG_IPV6)
10569                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10570                                           skc_v6_daddr.s6_addr32[0]) != 4);
10571
10572                 off = si->off;
10573                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10574                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10575                                                 struct sk_msg, sk),
10576                                       si->dst_reg, si->src_reg,
10577                                       offsetof(struct sk_msg, sk));
10578                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10579                                       offsetof(struct sock_common,
10580                                                skc_v6_daddr.s6_addr32[0]) +
10581                                       off);
10582 #else
10583                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10584 #endif
10585                 break;
10586
10587         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10588              offsetof(struct sk_msg_md, local_ip6[3]):
10589 #if IS_ENABLED(CONFIG_IPV6)
10590                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10591                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10592
10593                 off = si->off;
10594                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10595                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10596                                                 struct sk_msg, sk),
10597                                       si->dst_reg, si->src_reg,
10598                                       offsetof(struct sk_msg, sk));
10599                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10600                                       offsetof(struct sock_common,
10601                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10602                                       off);
10603 #else
10604                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10605 #endif
10606                 break;
10607
10608         case offsetof(struct sk_msg_md, remote_port):
10609                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10610
10611                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10612                                                 struct sk_msg, sk),
10613                                       si->dst_reg, si->src_reg,
10614                                       offsetof(struct sk_msg, sk));
10615                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10616                                       offsetof(struct sock_common, skc_dport));
10617 #ifndef __BIG_ENDIAN_BITFIELD
10618                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10619 #endif
10620                 break;
10621
10622         case offsetof(struct sk_msg_md, local_port):
10623                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10624
10625                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10626                                                 struct sk_msg, sk),
10627                                       si->dst_reg, si->src_reg,
10628                                       offsetof(struct sk_msg, sk));
10629                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10630                                       offsetof(struct sock_common, skc_num));
10631                 break;
10632
10633         case offsetof(struct sk_msg_md, size):
10634                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10635                                       si->dst_reg, si->src_reg,
10636                                       offsetof(struct sk_msg_sg, size));
10637                 break;
10638
10639         case offsetof(struct sk_msg_md, sk):
10640                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10641                                       si->dst_reg, si->src_reg,
10642                                       offsetof(struct sk_msg, sk));
10643                 break;
10644         }
10645
10646         return insn - insn_buf;
10647 }
10648
10649 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10650         .get_func_proto         = sk_filter_func_proto,
10651         .is_valid_access        = sk_filter_is_valid_access,
10652         .convert_ctx_access     = bpf_convert_ctx_access,
10653         .gen_ld_abs             = bpf_gen_ld_abs,
10654 };
10655
10656 const struct bpf_prog_ops sk_filter_prog_ops = {
10657         .test_run               = bpf_prog_test_run_skb,
10658 };
10659
10660 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10661         .get_func_proto         = tc_cls_act_func_proto,
10662         .is_valid_access        = tc_cls_act_is_valid_access,
10663         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10664         .gen_prologue           = tc_cls_act_prologue,
10665         .gen_ld_abs             = bpf_gen_ld_abs,
10666 };
10667
10668 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10669         .test_run               = bpf_prog_test_run_skb,
10670 };
10671
10672 const struct bpf_verifier_ops xdp_verifier_ops = {
10673         .get_func_proto         = xdp_func_proto,
10674         .is_valid_access        = xdp_is_valid_access,
10675         .convert_ctx_access     = xdp_convert_ctx_access,
10676         .gen_prologue           = bpf_noop_prologue,
10677 };
10678
10679 const struct bpf_prog_ops xdp_prog_ops = {
10680         .test_run               = bpf_prog_test_run_xdp,
10681 };
10682
10683 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10684         .get_func_proto         = cg_skb_func_proto,
10685         .is_valid_access        = cg_skb_is_valid_access,
10686         .convert_ctx_access     = bpf_convert_ctx_access,
10687 };
10688
10689 const struct bpf_prog_ops cg_skb_prog_ops = {
10690         .test_run               = bpf_prog_test_run_skb,
10691 };
10692
10693 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10694         .get_func_proto         = lwt_in_func_proto,
10695         .is_valid_access        = lwt_is_valid_access,
10696         .convert_ctx_access     = bpf_convert_ctx_access,
10697 };
10698
10699 const struct bpf_prog_ops lwt_in_prog_ops = {
10700         .test_run               = bpf_prog_test_run_skb,
10701 };
10702
10703 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10704         .get_func_proto         = lwt_out_func_proto,
10705         .is_valid_access        = lwt_is_valid_access,
10706         .convert_ctx_access     = bpf_convert_ctx_access,
10707 };
10708
10709 const struct bpf_prog_ops lwt_out_prog_ops = {
10710         .test_run               = bpf_prog_test_run_skb,
10711 };
10712
10713 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10714         .get_func_proto         = lwt_xmit_func_proto,
10715         .is_valid_access        = lwt_is_valid_access,
10716         .convert_ctx_access     = bpf_convert_ctx_access,
10717         .gen_prologue           = tc_cls_act_prologue,
10718 };
10719
10720 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10721         .test_run               = bpf_prog_test_run_skb,
10722 };
10723
10724 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10725         .get_func_proto         = lwt_seg6local_func_proto,
10726         .is_valid_access        = lwt_is_valid_access,
10727         .convert_ctx_access     = bpf_convert_ctx_access,
10728 };
10729
10730 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10731         .test_run               = bpf_prog_test_run_skb,
10732 };
10733
10734 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10735         .get_func_proto         = sock_filter_func_proto,
10736         .is_valid_access        = sock_filter_is_valid_access,
10737         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10738 };
10739
10740 const struct bpf_prog_ops cg_sock_prog_ops = {
10741 };
10742
10743 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10744         .get_func_proto         = sock_addr_func_proto,
10745         .is_valid_access        = sock_addr_is_valid_access,
10746         .convert_ctx_access     = sock_addr_convert_ctx_access,
10747 };
10748
10749 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10750 };
10751
10752 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10753         .get_func_proto         = sock_ops_func_proto,
10754         .is_valid_access        = sock_ops_is_valid_access,
10755         .convert_ctx_access     = sock_ops_convert_ctx_access,
10756 };
10757
10758 const struct bpf_prog_ops sock_ops_prog_ops = {
10759 };
10760
10761 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10762         .get_func_proto         = sk_skb_func_proto,
10763         .is_valid_access        = sk_skb_is_valid_access,
10764         .convert_ctx_access     = sk_skb_convert_ctx_access,
10765         .gen_prologue           = sk_skb_prologue,
10766 };
10767
10768 const struct bpf_prog_ops sk_skb_prog_ops = {
10769 };
10770
10771 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10772         .get_func_proto         = sk_msg_func_proto,
10773         .is_valid_access        = sk_msg_is_valid_access,
10774         .convert_ctx_access     = sk_msg_convert_ctx_access,
10775         .gen_prologue           = bpf_noop_prologue,
10776 };
10777
10778 const struct bpf_prog_ops sk_msg_prog_ops = {
10779 };
10780
10781 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10782         .get_func_proto         = flow_dissector_func_proto,
10783         .is_valid_access        = flow_dissector_is_valid_access,
10784         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10785 };
10786
10787 const struct bpf_prog_ops flow_dissector_prog_ops = {
10788         .test_run               = bpf_prog_test_run_flow_dissector,
10789 };
10790
10791 int sk_detach_filter(struct sock *sk)
10792 {
10793         int ret = -ENOENT;
10794         struct sk_filter *filter;
10795
10796         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10797                 return -EPERM;
10798
10799         filter = rcu_dereference_protected(sk->sk_filter,
10800                                            lockdep_sock_is_held(sk));
10801         if (filter) {
10802                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10803                 sk_filter_uncharge(sk, filter);
10804                 ret = 0;
10805         }
10806
10807         return ret;
10808 }
10809 EXPORT_SYMBOL_GPL(sk_detach_filter);
10810
10811 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10812                   unsigned int len)
10813 {
10814         struct sock_fprog_kern *fprog;
10815         struct sk_filter *filter;
10816         int ret = 0;
10817
10818         lock_sock(sk);
10819         filter = rcu_dereference_protected(sk->sk_filter,
10820                                            lockdep_sock_is_held(sk));
10821         if (!filter)
10822                 goto out;
10823
10824         /* We're copying the filter that has been originally attached,
10825          * so no conversion/decode needed anymore. eBPF programs that
10826          * have no original program cannot be dumped through this.
10827          */
10828         ret = -EACCES;
10829         fprog = filter->prog->orig_prog;
10830         if (!fprog)
10831                 goto out;
10832
10833         ret = fprog->len;
10834         if (!len)
10835                 /* User space only enquires number of filter blocks. */
10836                 goto out;
10837
10838         ret = -EINVAL;
10839         if (len < fprog->len)
10840                 goto out;
10841
10842         ret = -EFAULT;
10843         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10844                 goto out;
10845
10846         /* Instead of bytes, the API requests to return the number
10847          * of filter blocks.
10848          */
10849         ret = fprog->len;
10850 out:
10851         release_sock(sk);
10852         return ret;
10853 }
10854
10855 #ifdef CONFIG_INET
10856 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10857                                     struct sock_reuseport *reuse,
10858                                     struct sock *sk, struct sk_buff *skb,
10859                                     struct sock *migrating_sk,
10860                                     u32 hash)
10861 {
10862         reuse_kern->skb = skb;
10863         reuse_kern->sk = sk;
10864         reuse_kern->selected_sk = NULL;
10865         reuse_kern->migrating_sk = migrating_sk;
10866         reuse_kern->data_end = skb->data + skb_headlen(skb);
10867         reuse_kern->hash = hash;
10868         reuse_kern->reuseport_id = reuse->reuseport_id;
10869         reuse_kern->bind_inany = reuse->bind_inany;
10870 }
10871
10872 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10873                                   struct bpf_prog *prog, struct sk_buff *skb,
10874                                   struct sock *migrating_sk,
10875                                   u32 hash)
10876 {
10877         struct sk_reuseport_kern reuse_kern;
10878         enum sk_action action;
10879
10880         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10881         action = bpf_prog_run(prog, &reuse_kern);
10882
10883         if (action == SK_PASS)
10884                 return reuse_kern.selected_sk;
10885         else
10886                 return ERR_PTR(-ECONNREFUSED);
10887 }
10888
10889 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10890            struct bpf_map *, map, void *, key, u32, flags)
10891 {
10892         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10893         struct sock_reuseport *reuse;
10894         struct sock *selected_sk;
10895
10896         selected_sk = map->ops->map_lookup_elem(map, key);
10897         if (!selected_sk)
10898                 return -ENOENT;
10899
10900         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10901         if (!reuse) {
10902                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10903                 if (sk_is_refcounted(selected_sk))
10904                         sock_put(selected_sk);
10905
10906                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10907                  * The only (!reuse) case here is - the sk has already been
10908                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10909                  *
10910                  * Other maps (e.g. sock_map) do not provide this guarantee and
10911                  * the sk may never be in the reuseport group to begin with.
10912                  */
10913                 return is_sockarray ? -ENOENT : -EINVAL;
10914         }
10915
10916         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10917                 struct sock *sk = reuse_kern->sk;
10918
10919                 if (sk->sk_protocol != selected_sk->sk_protocol)
10920                         return -EPROTOTYPE;
10921                 else if (sk->sk_family != selected_sk->sk_family)
10922                         return -EAFNOSUPPORT;
10923
10924                 /* Catch all. Likely bound to a different sockaddr. */
10925                 return -EBADFD;
10926         }
10927
10928         reuse_kern->selected_sk = selected_sk;
10929
10930         return 0;
10931 }
10932
10933 static const struct bpf_func_proto sk_select_reuseport_proto = {
10934         .func           = sk_select_reuseport,
10935         .gpl_only       = false,
10936         .ret_type       = RET_INTEGER,
10937         .arg1_type      = ARG_PTR_TO_CTX,
10938         .arg2_type      = ARG_CONST_MAP_PTR,
10939         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10940         .arg4_type      = ARG_ANYTHING,
10941 };
10942
10943 BPF_CALL_4(sk_reuseport_load_bytes,
10944            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10945            void *, to, u32, len)
10946 {
10947         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10948 }
10949
10950 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10951         .func           = sk_reuseport_load_bytes,
10952         .gpl_only       = false,
10953         .ret_type       = RET_INTEGER,
10954         .arg1_type      = ARG_PTR_TO_CTX,
10955         .arg2_type      = ARG_ANYTHING,
10956         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10957         .arg4_type      = ARG_CONST_SIZE,
10958 };
10959
10960 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10961            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10962            void *, to, u32, len, u32, start_header)
10963 {
10964         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10965                                                len, start_header);
10966 }
10967
10968 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10969         .func           = sk_reuseport_load_bytes_relative,
10970         .gpl_only       = false,
10971         .ret_type       = RET_INTEGER,
10972         .arg1_type      = ARG_PTR_TO_CTX,
10973         .arg2_type      = ARG_ANYTHING,
10974         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10975         .arg4_type      = ARG_CONST_SIZE,
10976         .arg5_type      = ARG_ANYTHING,
10977 };
10978
10979 static const struct bpf_func_proto *
10980 sk_reuseport_func_proto(enum bpf_func_id func_id,
10981                         const struct bpf_prog *prog)
10982 {
10983         switch (func_id) {
10984         case BPF_FUNC_sk_select_reuseport:
10985                 return &sk_select_reuseport_proto;
10986         case BPF_FUNC_skb_load_bytes:
10987                 return &sk_reuseport_load_bytes_proto;
10988         case BPF_FUNC_skb_load_bytes_relative:
10989                 return &sk_reuseport_load_bytes_relative_proto;
10990         case BPF_FUNC_get_socket_cookie:
10991                 return &bpf_get_socket_ptr_cookie_proto;
10992         case BPF_FUNC_ktime_get_coarse_ns:
10993                 return &bpf_ktime_get_coarse_ns_proto;
10994         default:
10995                 return bpf_base_func_proto(func_id);
10996         }
10997 }
10998
10999 static bool
11000 sk_reuseport_is_valid_access(int off, int size,
11001                              enum bpf_access_type type,
11002                              const struct bpf_prog *prog,
11003                              struct bpf_insn_access_aux *info)
11004 {
11005         const u32 size_default = sizeof(__u32);
11006
11007         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11008             off % size || type != BPF_READ)
11009                 return false;
11010
11011         switch (off) {
11012         case offsetof(struct sk_reuseport_md, data):
11013                 info->reg_type = PTR_TO_PACKET;
11014                 return size == sizeof(__u64);
11015
11016         case offsetof(struct sk_reuseport_md, data_end):
11017                 info->reg_type = PTR_TO_PACKET_END;
11018                 return size == sizeof(__u64);
11019
11020         case offsetof(struct sk_reuseport_md, hash):
11021                 return size == size_default;
11022
11023         case offsetof(struct sk_reuseport_md, sk):
11024                 info->reg_type = PTR_TO_SOCKET;
11025                 return size == sizeof(__u64);
11026
11027         case offsetof(struct sk_reuseport_md, migrating_sk):
11028                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11029                 return size == sizeof(__u64);
11030
11031         /* Fields that allow narrowing */
11032         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11033                 if (size < sizeof_field(struct sk_buff, protocol))
11034                         return false;
11035                 fallthrough;
11036         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11037         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11038         case bpf_ctx_range(struct sk_reuseport_md, len):
11039                 bpf_ctx_record_field_size(info, size_default);
11040                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11041
11042         default:
11043                 return false;
11044         }
11045 }
11046
11047 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11048         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11049                               si->dst_reg, si->src_reg,                 \
11050                               bpf_target_off(struct sk_reuseport_kern, F, \
11051                                              sizeof_field(struct sk_reuseport_kern, F), \
11052                                              target_size));             \
11053         })
11054
11055 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11056         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11057                                     struct sk_buff,                     \
11058                                     skb,                                \
11059                                     SKB_FIELD)
11060
11061 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11062         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11063                                     struct sock,                        \
11064                                     sk,                                 \
11065                                     SK_FIELD)
11066
11067 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11068                                            const struct bpf_insn *si,
11069                                            struct bpf_insn *insn_buf,
11070                                            struct bpf_prog *prog,
11071                                            u32 *target_size)
11072 {
11073         struct bpf_insn *insn = insn_buf;
11074
11075         switch (si->off) {
11076         case offsetof(struct sk_reuseport_md, data):
11077                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11078                 break;
11079
11080         case offsetof(struct sk_reuseport_md, len):
11081                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11082                 break;
11083
11084         case offsetof(struct sk_reuseport_md, eth_protocol):
11085                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11086                 break;
11087
11088         case offsetof(struct sk_reuseport_md, ip_protocol):
11089                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11090                 break;
11091
11092         case offsetof(struct sk_reuseport_md, data_end):
11093                 SK_REUSEPORT_LOAD_FIELD(data_end);
11094                 break;
11095
11096         case offsetof(struct sk_reuseport_md, hash):
11097                 SK_REUSEPORT_LOAD_FIELD(hash);
11098                 break;
11099
11100         case offsetof(struct sk_reuseport_md, bind_inany):
11101                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11102                 break;
11103
11104         case offsetof(struct sk_reuseport_md, sk):
11105                 SK_REUSEPORT_LOAD_FIELD(sk);
11106                 break;
11107
11108         case offsetof(struct sk_reuseport_md, migrating_sk):
11109                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11110                 break;
11111         }
11112
11113         return insn - insn_buf;
11114 }
11115
11116 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11117         .get_func_proto         = sk_reuseport_func_proto,
11118         .is_valid_access        = sk_reuseport_is_valid_access,
11119         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11120 };
11121
11122 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11123 };
11124
11125 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11126 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11127
11128 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11129            struct sock *, sk, u64, flags)
11130 {
11131         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11132                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11133                 return -EINVAL;
11134         if (unlikely(sk && sk_is_refcounted(sk)))
11135                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11136         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11137                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11138         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11139                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11140
11141         /* Check if socket is suitable for packet L3/L4 protocol */
11142         if (sk && sk->sk_protocol != ctx->protocol)
11143                 return -EPROTOTYPE;
11144         if (sk && sk->sk_family != ctx->family &&
11145             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11146                 return -EAFNOSUPPORT;
11147
11148         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11149                 return -EEXIST;
11150
11151         /* Select socket as lookup result */
11152         ctx->selected_sk = sk;
11153         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11154         return 0;
11155 }
11156
11157 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11158         .func           = bpf_sk_lookup_assign,
11159         .gpl_only       = false,
11160         .ret_type       = RET_INTEGER,
11161         .arg1_type      = ARG_PTR_TO_CTX,
11162         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11163         .arg3_type      = ARG_ANYTHING,
11164 };
11165
11166 static const struct bpf_func_proto *
11167 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11168 {
11169         switch (func_id) {
11170         case BPF_FUNC_perf_event_output:
11171                 return &bpf_event_output_data_proto;
11172         case BPF_FUNC_sk_assign:
11173                 return &bpf_sk_lookup_assign_proto;
11174         case BPF_FUNC_sk_release:
11175                 return &bpf_sk_release_proto;
11176         default:
11177                 return bpf_sk_base_func_proto(func_id);
11178         }
11179 }
11180
11181 static bool sk_lookup_is_valid_access(int off, int size,
11182                                       enum bpf_access_type type,
11183                                       const struct bpf_prog *prog,
11184                                       struct bpf_insn_access_aux *info)
11185 {
11186         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11187                 return false;
11188         if (off % size != 0)
11189                 return false;
11190         if (type != BPF_READ)
11191                 return false;
11192
11193         switch (off) {
11194         case offsetof(struct bpf_sk_lookup, sk):
11195                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11196                 return size == sizeof(__u64);
11197
11198         case bpf_ctx_range(struct bpf_sk_lookup, family):
11199         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11200         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11201         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11202         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11203         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11204         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11205         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11206                 bpf_ctx_record_field_size(info, sizeof(__u32));
11207                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11208
11209         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11210                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11211                 if (size == sizeof(__u32))
11212                         return true;
11213                 bpf_ctx_record_field_size(info, sizeof(__be16));
11214                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11215
11216         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11217              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11218                 /* Allow access to zero padding for backward compatibility */
11219                 bpf_ctx_record_field_size(info, sizeof(__u16));
11220                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11221
11222         default:
11223                 return false;
11224         }
11225 }
11226
11227 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11228                                         const struct bpf_insn *si,
11229                                         struct bpf_insn *insn_buf,
11230                                         struct bpf_prog *prog,
11231                                         u32 *target_size)
11232 {
11233         struct bpf_insn *insn = insn_buf;
11234
11235         switch (si->off) {
11236         case offsetof(struct bpf_sk_lookup, sk):
11237                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11238                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11239                 break;
11240
11241         case offsetof(struct bpf_sk_lookup, family):
11242                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11243                                       bpf_target_off(struct bpf_sk_lookup_kern,
11244                                                      family, 2, target_size));
11245                 break;
11246
11247         case offsetof(struct bpf_sk_lookup, protocol):
11248                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11249                                       bpf_target_off(struct bpf_sk_lookup_kern,
11250                                                      protocol, 2, target_size));
11251                 break;
11252
11253         case offsetof(struct bpf_sk_lookup, remote_ip4):
11254                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11255                                       bpf_target_off(struct bpf_sk_lookup_kern,
11256                                                      v4.saddr, 4, target_size));
11257                 break;
11258
11259         case offsetof(struct bpf_sk_lookup, local_ip4):
11260                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11261                                       bpf_target_off(struct bpf_sk_lookup_kern,
11262                                                      v4.daddr, 4, target_size));
11263                 break;
11264
11265         case bpf_ctx_range_till(struct bpf_sk_lookup,
11266                                 remote_ip6[0], remote_ip6[3]): {
11267 #if IS_ENABLED(CONFIG_IPV6)
11268                 int off = si->off;
11269
11270                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11271                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11272                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11273                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11274                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11275                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11276 #else
11277                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11278 #endif
11279                 break;
11280         }
11281         case bpf_ctx_range_till(struct bpf_sk_lookup,
11282                                 local_ip6[0], local_ip6[3]): {
11283 #if IS_ENABLED(CONFIG_IPV6)
11284                 int off = si->off;
11285
11286                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11287                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11288                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11289                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11290                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11291                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11292 #else
11293                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11294 #endif
11295                 break;
11296         }
11297         case offsetof(struct bpf_sk_lookup, remote_port):
11298                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11299                                       bpf_target_off(struct bpf_sk_lookup_kern,
11300                                                      sport, 2, target_size));
11301                 break;
11302
11303         case offsetofend(struct bpf_sk_lookup, remote_port):
11304                 *target_size = 2;
11305                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11306                 break;
11307
11308         case offsetof(struct bpf_sk_lookup, local_port):
11309                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11310                                       bpf_target_off(struct bpf_sk_lookup_kern,
11311                                                      dport, 2, target_size));
11312                 break;
11313
11314         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11315                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11316                                       bpf_target_off(struct bpf_sk_lookup_kern,
11317                                                      ingress_ifindex, 4, target_size));
11318                 break;
11319         }
11320
11321         return insn - insn_buf;
11322 }
11323
11324 const struct bpf_prog_ops sk_lookup_prog_ops = {
11325         .test_run = bpf_prog_test_run_sk_lookup,
11326 };
11327
11328 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11329         .get_func_proto         = sk_lookup_func_proto,
11330         .is_valid_access        = sk_lookup_is_valid_access,
11331         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11332 };
11333
11334 #endif /* CONFIG_INET */
11335
11336 DEFINE_BPF_DISPATCHER(xdp)
11337
11338 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11339 {
11340         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11341 }
11342
11343 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11344 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11345 BTF_SOCK_TYPE_xxx
11346 #undef BTF_SOCK_TYPE
11347
11348 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11349 {
11350         /* tcp6_sock type is not generated in dwarf and hence btf,
11351          * trigger an explicit type generation here.
11352          */
11353         BTF_TYPE_EMIT(struct tcp6_sock);
11354         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11355             sk->sk_family == AF_INET6)
11356                 return (unsigned long)sk;
11357
11358         return (unsigned long)NULL;
11359 }
11360
11361 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11362         .func                   = bpf_skc_to_tcp6_sock,
11363         .gpl_only               = false,
11364         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11365         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11366         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11367 };
11368
11369 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11370 {
11371         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11372                 return (unsigned long)sk;
11373
11374         return (unsigned long)NULL;
11375 }
11376
11377 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11378         .func                   = bpf_skc_to_tcp_sock,
11379         .gpl_only               = false,
11380         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11381         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11382         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11383 };
11384
11385 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11386 {
11387         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11388          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11389          */
11390         BTF_TYPE_EMIT(struct inet_timewait_sock);
11391         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11392
11393 #ifdef CONFIG_INET
11394         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11395                 return (unsigned long)sk;
11396 #endif
11397
11398 #if IS_BUILTIN(CONFIG_IPV6)
11399         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11400                 return (unsigned long)sk;
11401 #endif
11402
11403         return (unsigned long)NULL;
11404 }
11405
11406 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11407         .func                   = bpf_skc_to_tcp_timewait_sock,
11408         .gpl_only               = false,
11409         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11410         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11411         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11412 };
11413
11414 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11415 {
11416 #ifdef CONFIG_INET
11417         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11418                 return (unsigned long)sk;
11419 #endif
11420
11421 #if IS_BUILTIN(CONFIG_IPV6)
11422         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11423                 return (unsigned long)sk;
11424 #endif
11425
11426         return (unsigned long)NULL;
11427 }
11428
11429 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11430         .func                   = bpf_skc_to_tcp_request_sock,
11431         .gpl_only               = false,
11432         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11433         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11434         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11435 };
11436
11437 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11438 {
11439         /* udp6_sock type is not generated in dwarf and hence btf,
11440          * trigger an explicit type generation here.
11441          */
11442         BTF_TYPE_EMIT(struct udp6_sock);
11443         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11444             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11445                 return (unsigned long)sk;
11446
11447         return (unsigned long)NULL;
11448 }
11449
11450 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11451         .func                   = bpf_skc_to_udp6_sock,
11452         .gpl_only               = false,
11453         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11454         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11455         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11456 };
11457
11458 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11459 {
11460         /* unix_sock type is not generated in dwarf and hence btf,
11461          * trigger an explicit type generation here.
11462          */
11463         BTF_TYPE_EMIT(struct unix_sock);
11464         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11465                 return (unsigned long)sk;
11466
11467         return (unsigned long)NULL;
11468 }
11469
11470 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11471         .func                   = bpf_skc_to_unix_sock,
11472         .gpl_only               = false,
11473         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11474         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11475         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11476 };
11477
11478 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11479 {
11480         BTF_TYPE_EMIT(struct mptcp_sock);
11481         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11482 }
11483
11484 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11485         .func           = bpf_skc_to_mptcp_sock,
11486         .gpl_only       = false,
11487         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11488         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11489         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11490 };
11491
11492 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11493 {
11494         return (unsigned long)sock_from_file(file);
11495 }
11496
11497 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11498 BTF_ID(struct, socket)
11499 BTF_ID(struct, file)
11500
11501 const struct bpf_func_proto bpf_sock_from_file_proto = {
11502         .func           = bpf_sock_from_file,
11503         .gpl_only       = false,
11504         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11505         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11506         .arg1_type      = ARG_PTR_TO_BTF_ID,
11507         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11508 };
11509
11510 static const struct bpf_func_proto *
11511 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11512 {
11513         const struct bpf_func_proto *func;
11514
11515         switch (func_id) {
11516         case BPF_FUNC_skc_to_tcp6_sock:
11517                 func = &bpf_skc_to_tcp6_sock_proto;
11518                 break;
11519         case BPF_FUNC_skc_to_tcp_sock:
11520                 func = &bpf_skc_to_tcp_sock_proto;
11521                 break;
11522         case BPF_FUNC_skc_to_tcp_timewait_sock:
11523                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11524                 break;
11525         case BPF_FUNC_skc_to_tcp_request_sock:
11526                 func = &bpf_skc_to_tcp_request_sock_proto;
11527                 break;
11528         case BPF_FUNC_skc_to_udp6_sock:
11529                 func = &bpf_skc_to_udp6_sock_proto;
11530                 break;
11531         case BPF_FUNC_skc_to_unix_sock:
11532                 func = &bpf_skc_to_unix_sock_proto;
11533                 break;
11534         case BPF_FUNC_skc_to_mptcp_sock:
11535                 func = &bpf_skc_to_mptcp_sock_proto;
11536                 break;
11537         case BPF_FUNC_ktime_get_coarse_ns:
11538                 return &bpf_ktime_get_coarse_ns_proto;
11539         default:
11540                 return bpf_base_func_proto(func_id);
11541         }
11542
11543         if (!perfmon_capable())
11544                 return NULL;
11545
11546         return func;
11547 }