Merge tag 'dmaengine-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853         int k = stack->num_paths++;
854
855         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856                 return NULL;
857
858         return &stack->path[k];
859 }
860
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862                           struct net_device_path_stack *stack)
863 {
864         const struct net_device *last_dev;
865         struct net_device_path_ctx ctx = {
866                 .dev    = dev,
867                 .daddr  = daddr,
868         };
869         struct net_device_path *path;
870         int ret = 0;
871
872         stack->num_paths = 0;
873         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874                 last_dev = ctx.dev;
875                 path = dev_fwd_path(stack);
876                 if (!path)
877                         return -1;
878
879                 memset(path, 0, sizeof(struct net_device_path));
880                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881                 if (ret < 0)
882                         return -1;
883
884                 if (WARN_ON_ONCE(last_dev == ctx.dev))
885                         return -1;
886         }
887         path = dev_fwd_path(stack);
888         if (!path)
889                 return -1;
890         path->type = DEV_PATH_ETHERNET;
891         path->dev = ctx.dev;
892
893         return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897 /**
898  *      __dev_get_by_name       - find a device by its name
899  *      @net: the applicable net namespace
900  *      @name: name to find
901  *
902  *      Find an interface by name. Must be called under RTNL semaphore
903  *      or @dev_base_lock. If the name is found a pointer to the device
904  *      is returned. If the name is not found then %NULL is returned. The
905  *      reference counters are not incremented so the caller must be
906  *      careful with locks.
907  */
908
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911         struct netdev_name_node *node_name;
912
913         node_name = netdev_name_node_lookup(net, name);
914         return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917
918 /**
919  * dev_get_by_name_rcu  - find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932         struct netdev_name_node *node_name;
933
934         node_name = netdev_name_node_lookup_rcu(net, name);
935         return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939 /**
940  *      dev_get_by_name         - find a device by its name
941  *      @net: the applicable net namespace
942  *      @name: name to find
943  *
944  *      Find an interface by name. This can be called from any
945  *      context and does its own locking. The returned handle has
946  *      the usage count incremented and the caller must use dev_put() to
947  *      release it when it is no longer needed. %NULL is returned if no
948  *      matching device is found.
949  */
950
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953         struct net_device *dev;
954
955         rcu_read_lock();
956         dev = dev_get_by_name_rcu(net, name);
957         if (dev)
958                 dev_hold(dev);
959         rcu_read_unlock();
960         return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963
964 /**
965  *      __dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns %NULL if the device
970  *      is not found or a pointer to the device. The device has not
971  *      had its reference counter increased so the caller must be careful
972  *      about locking. The caller must hold either the RTNL semaphore
973  *      or @dev_base_lock.
974  */
975
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978         struct net_device *dev;
979         struct hlist_head *head = dev_index_hash(net, ifindex);
980
981         hlist_for_each_entry(dev, head, index_hlist)
982                 if (dev->ifindex == ifindex)
983                         return dev;
984
985         return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988
989 /**
990  *      dev_get_by_index_rcu - find a device by its ifindex
991  *      @net: the applicable net namespace
992  *      @ifindex: index of device
993  *
994  *      Search for an interface by index. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not
996  *      had its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002         struct net_device *dev;
1003         struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005         hlist_for_each_entry_rcu(dev, head, index_hlist)
1006                 if (dev->ifindex == ifindex)
1007                         return dev;
1008
1009         return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014 /**
1015  *      dev_get_by_index - find a device by its ifindex
1016  *      @net: the applicable net namespace
1017  *      @ifindex: index of device
1018  *
1019  *      Search for an interface by index. Returns NULL if the device
1020  *      is not found or a pointer to the device. The device returned has
1021  *      had a reference added and the pointer is safe until the user calls
1022  *      dev_put to indicate they have finished with it.
1023  */
1024
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027         struct net_device *dev;
1028
1029         rcu_read_lock();
1030         dev = dev_get_by_index_rcu(net, ifindex);
1031         if (dev)
1032                 dev_hold(dev);
1033         rcu_read_unlock();
1034         return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037
1038 /**
1039  *      dev_get_by_napi_id - find a device by napi_id
1040  *      @napi_id: ID of the NAPI struct
1041  *
1042  *      Search for an interface by NAPI ID. Returns %NULL if the device
1043  *      is not found or a pointer to the device. The device has not had
1044  *      its reference counter increased so the caller must be careful
1045  *      about locking. The caller must hold RCU lock.
1046  */
1047
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050         struct napi_struct *napi;
1051
1052         WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054         if (napi_id < MIN_NAPI_ID)
1055                 return NULL;
1056
1057         napi = napi_by_id(napi_id);
1058
1059         return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063 /**
1064  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *      @net: network namespace
1066  *      @name: a pointer to the buffer where the name will be stored.
1067  *      @ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071         struct net_device *dev;
1072         int ret;
1073
1074         down_read(&devnet_rename_sem);
1075         rcu_read_lock();
1076
1077         dev = dev_get_by_index_rcu(net, ifindex);
1078         if (!dev) {
1079                 ret = -ENODEV;
1080                 goto out;
1081         }
1082
1083         strcpy(name, dev->name);
1084
1085         ret = 0;
1086 out:
1087         rcu_read_unlock();
1088         up_read(&devnet_rename_sem);
1089         return ret;
1090 }
1091
1092 /**
1093  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *      @net: the applicable net namespace
1095  *      @type: media type of device
1096  *      @ha: hardware address
1097  *
1098  *      Search for an interface by MAC address. Returns NULL if the device
1099  *      is not found or a pointer to the device.
1100  *      The caller must hold RCU or RTNL.
1101  *      The returned device has not had its ref count increased
1102  *      and the caller must therefore be careful about locking
1103  *
1104  */
1105
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107                                        const char *ha)
1108 {
1109         struct net_device *dev;
1110
1111         for_each_netdev_rcu(net, dev)
1112                 if (dev->type == type &&
1113                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1114                         return dev;
1115
1116         return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122         struct net_device *dev, *ret = NULL;
1123
1124         rcu_read_lock();
1125         for_each_netdev_rcu(net, dev)
1126                 if (dev->type == type) {
1127                         dev_hold(dev);
1128                         ret = dev;
1129                         break;
1130                 }
1131         rcu_read_unlock();
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136 /**
1137  *      __dev_get_by_flags - find any device with given flags
1138  *      @net: the applicable net namespace
1139  *      @if_flags: IFF_* values
1140  *      @mask: bitmask of bits in if_flags to check
1141  *
1142  *      Search for any interface with the given flags. Returns NULL if a device
1143  *      is not found or a pointer to the device. Must be called inside
1144  *      rtnl_lock(), and result refcount is unchanged.
1145  */
1146
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148                                       unsigned short mask)
1149 {
1150         struct net_device *dev, *ret;
1151
1152         ASSERT_RTNL();
1153
1154         ret = NULL;
1155         for_each_netdev(net, dev) {
1156                 if (((dev->flags ^ if_flags) & mask) == 0) {
1157                         ret = dev;
1158                         break;
1159                 }
1160         }
1161         return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165 /**
1166  *      dev_valid_name - check if name is okay for network device
1167  *      @name: name string
1168  *
1169  *      Network device names need to be valid file names to
1170  *      allow sysfs to work.  We also disallow any kind of
1171  *      whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175         if (*name == '\0')
1176                 return false;
1177         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178                 return false;
1179         if (!strcmp(name, ".") || !strcmp(name, ".."))
1180                 return false;
1181
1182         while (*name) {
1183                 if (*name == '/' || *name == ':' || isspace(*name))
1184                         return false;
1185                 name++;
1186         }
1187         return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190
1191 /**
1192  *      __dev_alloc_name - allocate a name for a device
1193  *      @net: network namespace to allocate the device name in
1194  *      @name: name format string
1195  *      @buf:  scratch buffer and result name string
1196  *
1197  *      Passed a format string - eg "lt%d" it will try and find a suitable
1198  *      id. It scans list of devices to build up a free map, then chooses
1199  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *      while allocating the name and adding the device in order to avoid
1201  *      duplicates.
1202  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *      Returns the number of the unit assigned or a negative errno code.
1204  */
1205
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208         int i = 0;
1209         const char *p;
1210         const int max_netdevices = 8*PAGE_SIZE;
1211         unsigned long *inuse;
1212         struct net_device *d;
1213
1214         if (!dev_valid_name(name))
1215                 return -EINVAL;
1216
1217         p = strchr(name, '%');
1218         if (p) {
1219                 /*
1220                  * Verify the string as this thing may have come from
1221                  * the user.  There must be either one "%d" and no other "%"
1222                  * characters.
1223                  */
1224                 if (p[1] != 'd' || strchr(p + 2, '%'))
1225                         return -EINVAL;
1226
1227                 /* Use one page as a bit array of possible slots */
1228                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229                 if (!inuse)
1230                         return -ENOMEM;
1231
1232                 for_each_netdev(net, d) {
1233                         struct netdev_name_node *name_node;
1234                         list_for_each_entry(name_node, &d->name_node->list, list) {
1235                                 if (!sscanf(name_node->name, name, &i))
1236                                         continue;
1237                                 if (i < 0 || i >= max_netdevices)
1238                                         continue;
1239
1240                                 /*  avoid cases where sscanf is not exact inverse of printf */
1241                                 snprintf(buf, IFNAMSIZ, name, i);
1242                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243                                         set_bit(i, inuse);
1244                         }
1245                         if (!sscanf(d->name, name, &i))
1246                                 continue;
1247                         if (i < 0 || i >= max_netdevices)
1248                                 continue;
1249
1250                         /*  avoid cases where sscanf is not exact inverse of printf */
1251                         snprintf(buf, IFNAMSIZ, name, i);
1252                         if (!strncmp(buf, d->name, IFNAMSIZ))
1253                                 set_bit(i, inuse);
1254                 }
1255
1256                 i = find_first_zero_bit(inuse, max_netdevices);
1257                 free_page((unsigned long) inuse);
1258         }
1259
1260         snprintf(buf, IFNAMSIZ, name, i);
1261         if (!__dev_get_by_name(net, buf))
1262                 return i;
1263
1264         /* It is possible to run out of possible slots
1265          * when the name is long and there isn't enough space left
1266          * for the digits, or if all bits are used.
1267          */
1268         return -ENFILE;
1269 }
1270
1271 static int dev_alloc_name_ns(struct net *net,
1272                              struct net_device *dev,
1273                              const char *name)
1274 {
1275         char buf[IFNAMSIZ];
1276         int ret;
1277
1278         BUG_ON(!net);
1279         ret = __dev_alloc_name(net, name, buf);
1280         if (ret >= 0)
1281                 strlcpy(dev->name, buf, IFNAMSIZ);
1282         return ret;
1283 }
1284
1285 /**
1286  *      dev_alloc_name - allocate a name for a device
1287  *      @dev: device
1288  *      @name: name format string
1289  *
1290  *      Passed a format string - eg "lt%d" it will try and find a suitable
1291  *      id. It scans list of devices to build up a free map, then chooses
1292  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *      while allocating the name and adding the device in order to avoid
1294  *      duplicates.
1295  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *      Returns the number of the unit assigned or a negative errno code.
1297  */
1298
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301         return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306                               const char *name)
1307 {
1308         BUG_ON(!net);
1309
1310         if (!dev_valid_name(name))
1311                 return -EINVAL;
1312
1313         if (strchr(name, '%'))
1314                 return dev_alloc_name_ns(net, dev, name);
1315         else if (__dev_get_by_name(net, name))
1316                 return -EEXIST;
1317         else if (dev->name != name)
1318                 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320         return 0;
1321 }
1322
1323 /**
1324  *      dev_change_name - change name of a device
1325  *      @dev: device
1326  *      @newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *      Change name of a device, can pass format strings "eth%d".
1329  *      for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333         unsigned char old_assign_type;
1334         char oldname[IFNAMSIZ];
1335         int err = 0;
1336         int ret;
1337         struct net *net;
1338
1339         ASSERT_RTNL();
1340         BUG_ON(!dev_net(dev));
1341
1342         net = dev_net(dev);
1343
1344         /* Some auto-enslaved devices e.g. failover slaves are
1345          * special, as userspace might rename the device after
1346          * the interface had been brought up and running since
1347          * the point kernel initiated auto-enslavement. Allow
1348          * live name change even when these slave devices are
1349          * up and running.
1350          *
1351          * Typically, users of these auto-enslaving devices
1352          * don't actually care about slave name change, as
1353          * they are supposed to operate on master interface
1354          * directly.
1355          */
1356         if (dev->flags & IFF_UP &&
1357             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358                 return -EBUSY;
1359
1360         down_write(&devnet_rename_sem);
1361
1362         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363                 up_write(&devnet_rename_sem);
1364                 return 0;
1365         }
1366
1367         memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369         err = dev_get_valid_name(net, dev, newname);
1370         if (err < 0) {
1371                 up_write(&devnet_rename_sem);
1372                 return err;
1373         }
1374
1375         if (oldname[0] && !strchr(oldname, '%'))
1376                 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378         old_assign_type = dev->name_assign_type;
1379         dev->name_assign_type = NET_NAME_RENAMED;
1380
1381 rollback:
1382         ret = device_rename(&dev->dev, dev->name);
1383         if (ret) {
1384                 memcpy(dev->name, oldname, IFNAMSIZ);
1385                 dev->name_assign_type = old_assign_type;
1386                 up_write(&devnet_rename_sem);
1387                 return ret;
1388         }
1389
1390         up_write(&devnet_rename_sem);
1391
1392         netdev_adjacent_rename_links(dev, oldname);
1393
1394         write_lock_bh(&dev_base_lock);
1395         netdev_name_node_del(dev->name_node);
1396         write_unlock_bh(&dev_base_lock);
1397
1398         synchronize_rcu();
1399
1400         write_lock_bh(&dev_base_lock);
1401         netdev_name_node_add(net, dev->name_node);
1402         write_unlock_bh(&dev_base_lock);
1403
1404         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405         ret = notifier_to_errno(ret);
1406
1407         if (ret) {
1408                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409                 if (err >= 0) {
1410                         err = ret;
1411                         down_write(&devnet_rename_sem);
1412                         memcpy(dev->name, oldname, IFNAMSIZ);
1413                         memcpy(oldname, newname, IFNAMSIZ);
1414                         dev->name_assign_type = old_assign_type;
1415                         old_assign_type = NET_NAME_RENAMED;
1416                         goto rollback;
1417                 } else {
1418                         pr_err("%s: name change rollback failed: %d\n",
1419                                dev->name, ret);
1420                 }
1421         }
1422
1423         return err;
1424 }
1425
1426 /**
1427  *      dev_set_alias - change ifalias of a device
1428  *      @dev: device
1429  *      @alias: name up to IFALIASZ
1430  *      @len: limit of bytes to copy from info
1431  *
1432  *      Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436         struct dev_ifalias *new_alias = NULL;
1437
1438         if (len >= IFALIASZ)
1439                 return -EINVAL;
1440
1441         if (len) {
1442                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443                 if (!new_alias)
1444                         return -ENOMEM;
1445
1446                 memcpy(new_alias->ifalias, alias, len);
1447                 new_alias->ifalias[len] = 0;
1448         }
1449
1450         mutex_lock(&ifalias_mutex);
1451         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452                                         mutex_is_locked(&ifalias_mutex));
1453         mutex_unlock(&ifalias_mutex);
1454
1455         if (new_alias)
1456                 kfree_rcu(new_alias, rcuhead);
1457
1458         return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461
1462 /**
1463  *      dev_get_alias - get ifalias of a device
1464  *      @dev: device
1465  *      @name: buffer to store name of ifalias
1466  *      @len: size of buffer
1467  *
1468  *      get ifalias for a device.  Caller must make sure dev cannot go
1469  *      away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473         const struct dev_ifalias *alias;
1474         int ret = 0;
1475
1476         rcu_read_lock();
1477         alias = rcu_dereference(dev->ifalias);
1478         if (alias)
1479                 ret = snprintf(name, len, "%s", alias->ifalias);
1480         rcu_read_unlock();
1481
1482         return ret;
1483 }
1484
1485 /**
1486  *      netdev_features_change - device changes features
1487  *      @dev: device to cause notification
1488  *
1489  *      Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496
1497 /**
1498  *      netdev_state_change - device changes state
1499  *      @dev: device to cause notification
1500  *
1501  *      Called to indicate a device has changed state. This function calls
1502  *      the notifier chains for netdev_chain and sends a NEWLINK message
1503  *      to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507         if (dev->flags & IFF_UP) {
1508                 struct netdev_notifier_change_info change_info = {
1509                         .info.dev = dev,
1510                 };
1511
1512                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513                                               &change_info.info);
1514                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515         }
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532         ASSERT_RTNL();
1533         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550         rtnl_lock();
1551         __netdev_notify_peers(dev);
1552         rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555
1556 static int napi_threaded_poll(void *data);
1557
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560         int err = 0;
1561
1562         /* Create and wake up the kthread once to put it in
1563          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564          * warning and work with loadavg.
1565          */
1566         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567                                 n->dev->name, n->napi_id);
1568         if (IS_ERR(n->thread)) {
1569                 err = PTR_ERR(n->thread);
1570                 pr_err("kthread_run failed with err %d\n", err);
1571                 n->thread = NULL;
1572         }
1573
1574         return err;
1575 }
1576
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579         const struct net_device_ops *ops = dev->netdev_ops;
1580         int ret;
1581
1582         ASSERT_RTNL();
1583
1584         if (!netif_device_present(dev)) {
1585                 /* may be detached because parent is runtime-suspended */
1586                 if (dev->dev.parent)
1587                         pm_runtime_resume(dev->dev.parent);
1588                 if (!netif_device_present(dev))
1589                         return -ENODEV;
1590         }
1591
1592         /* Block netpoll from trying to do any rx path servicing.
1593          * If we don't do this there is a chance ndo_poll_controller
1594          * or ndo_poll may be running while we open the device
1595          */
1596         netpoll_poll_disable(dev);
1597
1598         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599         ret = notifier_to_errno(ret);
1600         if (ret)
1601                 return ret;
1602
1603         set_bit(__LINK_STATE_START, &dev->state);
1604
1605         if (ops->ndo_validate_addr)
1606                 ret = ops->ndo_validate_addr(dev);
1607
1608         if (!ret && ops->ndo_open)
1609                 ret = ops->ndo_open(dev);
1610
1611         netpoll_poll_enable(dev);
1612
1613         if (ret)
1614                 clear_bit(__LINK_STATE_START, &dev->state);
1615         else {
1616                 dev->flags |= IFF_UP;
1617                 dev_set_rx_mode(dev);
1618                 dev_activate(dev);
1619                 add_device_randomness(dev->dev_addr, dev->addr_len);
1620         }
1621
1622         return ret;
1623 }
1624
1625 /**
1626  *      dev_open        - prepare an interface for use.
1627  *      @dev: device to open
1628  *      @extack: netlink extended ack
1629  *
1630  *      Takes a device from down to up state. The device's private open
1631  *      function is invoked and then the multicast lists are loaded. Finally
1632  *      the device is moved into the up state and a %NETDEV_UP message is
1633  *      sent to the netdev notifier chain.
1634  *
1635  *      Calling this function on an active interface is a nop. On a failure
1636  *      a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640         int ret;
1641
1642         if (dev->flags & IFF_UP)
1643                 return 0;
1644
1645         ret = __dev_open(dev, extack);
1646         if (ret < 0)
1647                 return ret;
1648
1649         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650         call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652         return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658         struct net_device *dev;
1659
1660         ASSERT_RTNL();
1661         might_sleep();
1662
1663         list_for_each_entry(dev, head, close_list) {
1664                 /* Temporarily disable netpoll until the interface is down */
1665                 netpoll_poll_disable(dev);
1666
1667                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669                 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672                  * can be even on different cpu. So just clear netif_running().
1673                  *
1674                  * dev->stop() will invoke napi_disable() on all of it's
1675                  * napi_struct instances on this device.
1676                  */
1677                 smp_mb__after_atomic(); /* Commit netif_running(). */
1678         }
1679
1680         dev_deactivate_many(head);
1681
1682         list_for_each_entry(dev, head, close_list) {
1683                 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685                 /*
1686                  *      Call the device specific close. This cannot fail.
1687                  *      Only if device is UP
1688                  *
1689                  *      We allow it to be called even after a DETACH hot-plug
1690                  *      event.
1691                  */
1692                 if (ops->ndo_stop)
1693                         ops->ndo_stop(dev);
1694
1695                 dev->flags &= ~IFF_UP;
1696                 netpoll_poll_enable(dev);
1697         }
1698 }
1699
1700 static void __dev_close(struct net_device *dev)
1701 {
1702         LIST_HEAD(single);
1703
1704         list_add(&dev->close_list, &single);
1705         __dev_close_many(&single);
1706         list_del(&single);
1707 }
1708
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711         struct net_device *dev, *tmp;
1712
1713         /* Remove the devices that don't need to be closed */
1714         list_for_each_entry_safe(dev, tmp, head, close_list)
1715                 if (!(dev->flags & IFF_UP))
1716                         list_del_init(&dev->close_list);
1717
1718         __dev_close_many(head);
1719
1720         list_for_each_entry_safe(dev, tmp, head, close_list) {
1721                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723                 if (unlink)
1724                         list_del_init(&dev->close_list);
1725         }
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728
1729 /**
1730  *      dev_close - shutdown an interface.
1731  *      @dev: device to shutdown
1732  *
1733  *      This function moves an active device into down state. A
1734  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *      chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740         if (dev->flags & IFF_UP) {
1741                 LIST_HEAD(single);
1742
1743                 list_add(&dev->close_list, &single);
1744                 dev_close_many(&single, true);
1745                 list_del(&single);
1746         }
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749
1750
1751 /**
1752  *      dev_disable_lro - disable Large Receive Offload on a device
1753  *      @dev: device
1754  *
1755  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *      called under RTNL.  This is needed if received packets may be
1757  *      forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761         struct net_device *lower_dev;
1762         struct list_head *iter;
1763
1764         dev->wanted_features &= ~NETIF_F_LRO;
1765         netdev_update_features(dev);
1766
1767         if (unlikely(dev->features & NETIF_F_LRO))
1768                 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770         netdev_for_each_lower_dev(dev, lower_dev, iter)
1771                 dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774
1775 /**
1776  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *      @dev: device
1778  *
1779  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *      called under RTNL.  This is needed if Generic XDP is installed on
1781  *      the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785         dev->wanted_features &= ~NETIF_F_GRO_HW;
1786         netdev_update_features(dev);
1787
1788         if (unlikely(dev->features & NETIF_F_GRO_HW))
1789                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val)                                          \
1795         case NETDEV_##val:                              \
1796                 return "NETDEV_" __stringify(val);
1797         switch (cmd) {
1798         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807         N(PRE_CHANGEADDR)
1808         }
1809 #undef N
1810         return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815                                    struct net_device *dev)
1816 {
1817         struct netdev_notifier_info info = {
1818                 .dev = dev,
1819         };
1820
1821         return nb->notifier_call(nb, val, &info);
1822 }
1823
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825                                              struct net_device *dev)
1826 {
1827         int err;
1828
1829         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830         err = notifier_to_errno(err);
1831         if (err)
1832                 return err;
1833
1834         if (!(dev->flags & IFF_UP))
1835                 return 0;
1836
1837         call_netdevice_notifier(nb, NETDEV_UP, dev);
1838         return 0;
1839 }
1840
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842                                                 struct net_device *dev)
1843 {
1844         if (dev->flags & IFF_UP) {
1845                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846                                         dev);
1847                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848         }
1849         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853                                                  struct net *net)
1854 {
1855         struct net_device *dev;
1856         int err;
1857
1858         for_each_netdev(net, dev) {
1859                 err = call_netdevice_register_notifiers(nb, dev);
1860                 if (err)
1861                         goto rollback;
1862         }
1863         return 0;
1864
1865 rollback:
1866         for_each_netdev_continue_reverse(net, dev)
1867                 call_netdevice_unregister_notifiers(nb, dev);
1868         return err;
1869 }
1870
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872                                                     struct net *net)
1873 {
1874         struct net_device *dev;
1875
1876         for_each_netdev(net, dev)
1877                 call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879
1880 static int dev_boot_phase = 1;
1881
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898         struct net *net;
1899         int err;
1900
1901         /* Close race with setup_net() and cleanup_net() */
1902         down_write(&pernet_ops_rwsem);
1903         rtnl_lock();
1904         err = raw_notifier_chain_register(&netdev_chain, nb);
1905         if (err)
1906                 goto unlock;
1907         if (dev_boot_phase)
1908                 goto unlock;
1909         for_each_net(net) {
1910                 err = call_netdevice_register_net_notifiers(nb, net);
1911                 if (err)
1912                         goto rollback;
1913         }
1914
1915 unlock:
1916         rtnl_unlock();
1917         up_write(&pernet_ops_rwsem);
1918         return err;
1919
1920 rollback:
1921         for_each_net_continue_reverse(net)
1922                 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924         raw_notifier_chain_unregister(&netdev_chain, nb);
1925         goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945         struct net *net;
1946         int err;
1947
1948         /* Close race with setup_net() and cleanup_net() */
1949         down_write(&pernet_ops_rwsem);
1950         rtnl_lock();
1951         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952         if (err)
1953                 goto unlock;
1954
1955         for_each_net(net)
1956                 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958 unlock:
1959         rtnl_unlock();
1960         up_write(&pernet_ops_rwsem);
1961         return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965 static int __register_netdevice_notifier_net(struct net *net,
1966                                              struct notifier_block *nb,
1967                                              bool ignore_call_fail)
1968 {
1969         int err;
1970
1971         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972         if (err)
1973                 return err;
1974         if (dev_boot_phase)
1975                 return 0;
1976
1977         err = call_netdevice_register_net_notifiers(nb, net);
1978         if (err && !ignore_call_fail)
1979                 goto chain_unregister;
1980
1981         return 0;
1982
1983 chain_unregister:
1984         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985         return err;
1986 }
1987
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989                                                struct notifier_block *nb)
1990 {
1991         int err;
1992
1993         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994         if (err)
1995                 return err;
1996
1997         call_netdevice_unregister_net_notifiers(nb, net);
1998         return 0;
1999 }
2000
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         err = __register_netdevice_notifier_net(net, nb, false);
2022         rtnl_unlock();
2023         return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042
2043 int unregister_netdevice_notifier_net(struct net *net,
2044                                       struct notifier_block *nb)
2045 {
2046         int err;
2047
2048         rtnl_lock();
2049         err = __unregister_netdevice_notifier_net(net, nb);
2050         rtnl_unlock();
2051         return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056                                         struct notifier_block *nb,
2057                                         struct netdev_net_notifier *nn)
2058 {
2059         int err;
2060
2061         rtnl_lock();
2062         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063         if (!err) {
2064                 nn->nb = nb;
2065                 list_add(&nn->list, &dev->net_notifier_list);
2066         }
2067         rtnl_unlock();
2068         return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073                                           struct notifier_block *nb,
2074                                           struct netdev_net_notifier *nn)
2075 {
2076         int err;
2077
2078         rtnl_lock();
2079         list_del(&nn->list);
2080         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081         rtnl_unlock();
2082         return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087                                              struct net *net)
2088 {
2089         struct netdev_net_notifier *nn;
2090
2091         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093                 __register_netdevice_notifier_net(net, nn->nb, true);
2094         }
2095 }
2096
2097 /**
2098  *      call_netdevice_notifiers_info - call all network notifier blocks
2099  *      @val: value passed unmodified to notifier function
2100  *      @info: notifier information data
2101  *
2102  *      Call all network notifier blocks.  Parameters and return value
2103  *      are as for raw_notifier_call_chain().
2104  */
2105
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107                                          struct netdev_notifier_info *info)
2108 {
2109         struct net *net = dev_net(info->dev);
2110         int ret;
2111
2112         ASSERT_RTNL();
2113
2114         /* Run per-netns notifier block chain first, then run the global one.
2115          * Hopefully, one day, the global one is going to be removed after
2116          * all notifier block registrators get converted to be per-netns.
2117          */
2118         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119         if (ret & NOTIFY_STOP_MASK)
2120                 return ret;
2121         return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125                                            struct net_device *dev,
2126                                            struct netlink_ext_ack *extack)
2127 {
2128         struct netdev_notifier_info info = {
2129                 .dev = dev,
2130                 .extack = extack,
2131         };
2132
2133         return call_netdevice_notifiers_info(val, &info);
2134 }
2135
2136 /**
2137  *      call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *      Call all network notifier blocks.  Parameters and return value
2142  *      are as for raw_notifier_call_chain().
2143  */
2144
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147         return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151 /**
2152  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *      @val: value passed unmodified to notifier function
2154  *      @dev: net_device pointer passed unmodified to notifier function
2155  *      @arg: additional u32 argument passed to the notifier function
2156  *
2157  *      Call all network notifier blocks.  Parameters and return value
2158  *      are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161                                         struct net_device *dev, u32 arg)
2162 {
2163         struct netdev_notifier_info_ext info = {
2164                 .info.dev = dev,
2165                 .ext.mtu = arg,
2166         };
2167
2168         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170         return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176 void net_inc_ingress_queue(void)
2177 {
2178         static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182 void net_dec_ingress_queue(void)
2183 {
2184         static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192 void net_inc_egress_queue(void)
2193 {
2194         static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198 void net_dec_egress_queue(void)
2199 {
2200         static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212         int wanted;
2213
2214         wanted = atomic_add_return(deferred, &netstamp_wanted);
2215         if (wanted > 0)
2216                 static_branch_enable(&netstamp_needed_key);
2217         else
2218                 static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226         int wanted;
2227
2228         while (1) {
2229                 wanted = atomic_read(&netstamp_wanted);
2230                 if (wanted <= 0)
2231                         break;
2232                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233                         return;
2234         }
2235         atomic_inc(&netstamp_needed_deferred);
2236         schedule_work(&netstamp_work);
2237 #else
2238         static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246         int wanted;
2247
2248         while (1) {
2249                 wanted = atomic_read(&netstamp_wanted);
2250                 if (wanted <= 1)
2251                         break;
2252                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253                         return;
2254         }
2255         atomic_dec(&netstamp_needed_deferred);
2256         schedule_work(&netstamp_work);
2257 #else
2258         static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265         skb->tstamp = 0;
2266         if (static_branch_unlikely(&netstamp_needed_key))
2267                 __net_timestamp(skb);
2268 }
2269
2270 #define net_timestamp_check(COND, SKB)                          \
2271         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2272                 if ((COND) && !(SKB)->tstamp)                   \
2273                         __net_timestamp(SKB);                   \
2274         }                                                       \
2275
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278         return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283                               bool check_mtu)
2284 {
2285         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287         if (likely(!ret)) {
2288                 skb->protocol = eth_type_trans(skb, dev);
2289                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290         }
2291
2292         return ret;
2293 }
2294
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297         return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *      NET_RX_SUCCESS  (no congestion)
2309  *      NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329
2330 static inline int deliver_skb(struct sk_buff *skb,
2331                               struct packet_type *pt_prev,
2332                               struct net_device *orig_dev)
2333 {
2334         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335                 return -ENOMEM;
2336         refcount_inc(&skb->users);
2337         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341                                           struct packet_type **pt,
2342                                           struct net_device *orig_dev,
2343                                           __be16 type,
2344                                           struct list_head *ptype_list)
2345 {
2346         struct packet_type *ptype, *pt_prev = *pt;
2347
2348         list_for_each_entry_rcu(ptype, ptype_list, list) {
2349                 if (ptype->type != type)
2350                         continue;
2351                 if (pt_prev)
2352                         deliver_skb(skb, pt_prev, orig_dev);
2353                 pt_prev = ptype;
2354         }
2355         *pt = pt_prev;
2356 }
2357
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360         if (!ptype->af_packet_priv || !skb->sk)
2361                 return false;
2362
2363         if (ptype->id_match)
2364                 return ptype->id_match(ptype, skb->sk);
2365         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366                 return true;
2367
2368         return false;
2369 }
2370
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382 /*
2383  *      Support routine. Sends outgoing frames to any network
2384  *      taps currently in use.
2385  */
2386
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389         struct packet_type *ptype;
2390         struct sk_buff *skb2 = NULL;
2391         struct packet_type *pt_prev = NULL;
2392         struct list_head *ptype_list = &ptype_all;
2393
2394         rcu_read_lock();
2395 again:
2396         list_for_each_entry_rcu(ptype, ptype_list, list) {
2397                 if (ptype->ignore_outgoing)
2398                         continue;
2399
2400                 /* Never send packets back to the socket
2401                  * they originated from - MvS (miquels@drinkel.ow.org)
2402                  */
2403                 if (skb_loop_sk(ptype, skb))
2404                         continue;
2405
2406                 if (pt_prev) {
2407                         deliver_skb(skb2, pt_prev, skb->dev);
2408                         pt_prev = ptype;
2409                         continue;
2410                 }
2411
2412                 /* need to clone skb, done only once */
2413                 skb2 = skb_clone(skb, GFP_ATOMIC);
2414                 if (!skb2)
2415                         goto out_unlock;
2416
2417                 net_timestamp_set(skb2);
2418
2419                 /* skb->nh should be correctly
2420                  * set by sender, so that the second statement is
2421                  * just protection against buggy protocols.
2422                  */
2423                 skb_reset_mac_header(skb2);
2424
2425                 if (skb_network_header(skb2) < skb2->data ||
2426                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428                                              ntohs(skb2->protocol),
2429                                              dev->name);
2430                         skb_reset_network_header(skb2);
2431                 }
2432
2433                 skb2->transport_header = skb2->network_header;
2434                 skb2->pkt_type = PACKET_OUTGOING;
2435                 pt_prev = ptype;
2436         }
2437
2438         if (ptype_list == &ptype_all) {
2439                 ptype_list = &dev->ptype_all;
2440                 goto again;
2441         }
2442 out_unlock:
2443         if (pt_prev) {
2444                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446                 else
2447                         kfree_skb(skb2);
2448         }
2449         rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468         int i;
2469         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471         /* If TC0 is invalidated disable TC mapping */
2472         if (tc->offset + tc->count > txq) {
2473                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474                 dev->num_tc = 0;
2475                 return;
2476         }
2477
2478         /* Invalidated prio to tc mappings set to TC0 */
2479         for (i = 1; i < TC_BITMASK + 1; i++) {
2480                 int q = netdev_get_prio_tc_map(dev, i);
2481
2482                 tc = &dev->tc_to_txq[q];
2483                 if (tc->offset + tc->count > txq) {
2484                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485                                 i, q);
2486                         netdev_set_prio_tc_map(dev, i, 0);
2487                 }
2488         }
2489 }
2490
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493         if (dev->num_tc) {
2494                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495                 int i;
2496
2497                 /* walk through the TCs and see if it falls into any of them */
2498                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499                         if ((txq - tc->offset) < tc->count)
2500                                 return i;
2501                 }
2502
2503                 /* didn't find it, just return -1 to indicate no match */
2504                 return -1;
2505         }
2506
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)             \
2516         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519                              struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521         struct xps_map *map = NULL;
2522         int pos;
2523
2524         if (dev_maps)
2525                 map = xmap_dereference(dev_maps->attr_map[tci]);
2526         if (!map)
2527                 return false;
2528
2529         for (pos = map->len; pos--;) {
2530                 if (map->queues[pos] != index)
2531                         continue;
2532
2533                 if (map->len > 1) {
2534                         map->queues[pos] = map->queues[--map->len];
2535                         break;
2536                 }
2537
2538                 if (old_maps)
2539                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541                 kfree_rcu(map, rcu);
2542                 return false;
2543         }
2544
2545         return true;
2546 }
2547
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549                                  struct xps_dev_maps *dev_maps,
2550                                  int cpu, u16 offset, u16 count)
2551 {
2552         int num_tc = dev_maps->num_tc;
2553         bool active = false;
2554         int tci;
2555
2556         for (tci = cpu * num_tc; num_tc--; tci++) {
2557                 int i, j;
2558
2559                 for (i = count, j = offset; i--; j++) {
2560                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561                                 break;
2562                 }
2563
2564                 active |= i < 0;
2565         }
2566
2567         return active;
2568 }
2569
2570 static void reset_xps_maps(struct net_device *dev,
2571                            struct xps_dev_maps *dev_maps,
2572                            enum xps_map_type type)
2573 {
2574         static_key_slow_dec_cpuslocked(&xps_needed);
2575         if (type == XPS_RXQS)
2576                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580         kfree_rcu(dev_maps, rcu);
2581 }
2582
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584                            u16 offset, u16 count)
2585 {
2586         struct xps_dev_maps *dev_maps;
2587         bool active = false;
2588         int i, j;
2589
2590         dev_maps = xmap_dereference(dev->xps_maps[type]);
2591         if (!dev_maps)
2592                 return;
2593
2594         for (j = 0; j < dev_maps->nr_ids; j++)
2595                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596         if (!active)
2597                 reset_xps_maps(dev, dev_maps, type);
2598
2599         if (type == XPS_CPUS) {
2600                 for (i = offset + (count - 1); count--; i--)
2601                         netdev_queue_numa_node_write(
2602                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603         }
2604 }
2605
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607                                    u16 count)
2608 {
2609         if (!static_key_false(&xps_needed))
2610                 return;
2611
2612         cpus_read_lock();
2613         mutex_lock(&xps_map_mutex);
2614
2615         if (static_key_false(&xps_rxqs_needed))
2616                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618         clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620         mutex_unlock(&xps_map_mutex);
2621         cpus_read_unlock();
2622 }
2623
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630                                       u16 index, bool is_rxqs_map)
2631 {
2632         struct xps_map *new_map;
2633         int alloc_len = XPS_MIN_MAP_ALLOC;
2634         int i, pos;
2635
2636         for (pos = 0; map && pos < map->len; pos++) {
2637                 if (map->queues[pos] != index)
2638                         continue;
2639                 return map;
2640         }
2641
2642         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643         if (map) {
2644                 if (pos < map->alloc_len)
2645                         return map;
2646
2647                 alloc_len = map->alloc_len * 2;
2648         }
2649
2650         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651          *  map
2652          */
2653         if (is_rxqs_map)
2654                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655         else
2656                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657                                        cpu_to_node(attr_index));
2658         if (!new_map)
2659                 return NULL;
2660
2661         for (i = 0; i < pos; i++)
2662                 new_map->queues[i] = map->queues[i];
2663         new_map->alloc_len = alloc_len;
2664         new_map->len = pos;
2665
2666         return new_map;
2667 }
2668
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671                               struct xps_dev_maps *new_dev_maps, int index,
2672                               int tc, bool skip_tc)
2673 {
2674         int i, tci = index * dev_maps->num_tc;
2675         struct xps_map *map;
2676
2677         /* copy maps belonging to foreign traffic classes */
2678         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679                 if (i == tc && skip_tc)
2680                         continue;
2681
2682                 /* fill in the new device map from the old device map */
2683                 map = xmap_dereference(dev_maps->attr_map[tci]);
2684                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685         }
2686 }
2687
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690                           u16 index, enum xps_map_type type)
2691 {
2692         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693         const unsigned long *online_mask = NULL;
2694         bool active = false, copy = false;
2695         int i, j, tci, numa_node_id = -2;
2696         int maps_sz, num_tc = 1, tc = 0;
2697         struct xps_map *map, *new_map;
2698         unsigned int nr_ids;
2699
2700         if (dev->num_tc) {
2701                 /* Do not allow XPS on subordinate device directly */
2702                 num_tc = dev->num_tc;
2703                 if (num_tc < 0)
2704                         return -EINVAL;
2705
2706                 /* If queue belongs to subordinate dev use its map */
2707                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709                 tc = netdev_txq_to_tc(dev, index);
2710                 if (tc < 0)
2711                         return -EINVAL;
2712         }
2713
2714         mutex_lock(&xps_map_mutex);
2715
2716         dev_maps = xmap_dereference(dev->xps_maps[type]);
2717         if (type == XPS_RXQS) {
2718                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719                 nr_ids = dev->num_rx_queues;
2720         } else {
2721                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722                 if (num_possible_cpus() > 1)
2723                         online_mask = cpumask_bits(cpu_online_mask);
2724                 nr_ids = nr_cpu_ids;
2725         }
2726
2727         if (maps_sz < L1_CACHE_BYTES)
2728                 maps_sz = L1_CACHE_BYTES;
2729
2730         /* The old dev_maps could be larger or smaller than the one we're
2731          * setting up now, as dev->num_tc or nr_ids could have been updated in
2732          * between. We could try to be smart, but let's be safe instead and only
2733          * copy foreign traffic classes if the two map sizes match.
2734          */
2735         if (dev_maps &&
2736             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737                 copy = true;
2738
2739         /* allocate memory for queue storage */
2740         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741              j < nr_ids;) {
2742                 if (!new_dev_maps) {
2743                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744                         if (!new_dev_maps) {
2745                                 mutex_unlock(&xps_map_mutex);
2746                                 return -ENOMEM;
2747                         }
2748
2749                         new_dev_maps->nr_ids = nr_ids;
2750                         new_dev_maps->num_tc = num_tc;
2751                 }
2752
2753                 tci = j * num_tc + tc;
2754                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757                 if (!map)
2758                         goto error;
2759
2760                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761         }
2762
2763         if (!new_dev_maps)
2764                 goto out_no_new_maps;
2765
2766         if (!dev_maps) {
2767                 /* Increment static keys at most once per type */
2768                 static_key_slow_inc_cpuslocked(&xps_needed);
2769                 if (type == XPS_RXQS)
2770                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771         }
2772
2773         for (j = 0; j < nr_ids; j++) {
2774                 bool skip_tc = false;
2775
2776                 tci = j * num_tc + tc;
2777                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778                     netif_attr_test_online(j, online_mask, nr_ids)) {
2779                         /* add tx-queue to CPU/rx-queue maps */
2780                         int pos = 0;
2781
2782                         skip_tc = true;
2783
2784                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785                         while ((pos < map->len) && (map->queues[pos] != index))
2786                                 pos++;
2787
2788                         if (pos == map->len)
2789                                 map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791                         if (type == XPS_CPUS) {
2792                                 if (numa_node_id == -2)
2793                                         numa_node_id = cpu_to_node(j);
2794                                 else if (numa_node_id != cpu_to_node(j))
2795                                         numa_node_id = -1;
2796                         }
2797 #endif
2798                 }
2799
2800                 if (copy)
2801                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802                                           skip_tc);
2803         }
2804
2805         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807         /* Cleanup old maps */
2808         if (!dev_maps)
2809                 goto out_no_old_maps;
2810
2811         for (j = 0; j < dev_maps->nr_ids; j++) {
2812                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813                         map = xmap_dereference(dev_maps->attr_map[tci]);
2814                         if (!map)
2815                                 continue;
2816
2817                         if (copy) {
2818                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                                 if (map == new_map)
2820                                         continue;
2821                         }
2822
2823                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824                         kfree_rcu(map, rcu);
2825                 }
2826         }
2827
2828         old_dev_maps = dev_maps;
2829
2830 out_no_old_maps:
2831         dev_maps = new_dev_maps;
2832         active = true;
2833
2834 out_no_new_maps:
2835         if (type == XPS_CPUS)
2836                 /* update Tx queue numa node */
2837                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838                                              (numa_node_id >= 0) ?
2839                                              numa_node_id : NUMA_NO_NODE);
2840
2841         if (!dev_maps)
2842                 goto out_no_maps;
2843
2844         /* removes tx-queue from unused CPUs/rx-queues */
2845         for (j = 0; j < dev_maps->nr_ids; j++) {
2846                 tci = j * dev_maps->num_tc;
2847
2848                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849                         if (i == tc &&
2850                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852                                 continue;
2853
2854                         active |= remove_xps_queue(dev_maps,
2855                                                    copy ? old_dev_maps : NULL,
2856                                                    tci, index);
2857                 }
2858         }
2859
2860         if (old_dev_maps)
2861                 kfree_rcu(old_dev_maps, rcu);
2862
2863         /* free map if not active */
2864         if (!active)
2865                 reset_xps_maps(dev, dev_maps, type);
2866
2867 out_no_maps:
2868         mutex_unlock(&xps_map_mutex);
2869
2870         return 0;
2871 error:
2872         /* remove any maps that we added */
2873         for (j = 0; j < nr_ids; j++) {
2874                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876                         map = copy ?
2877                               xmap_dereference(dev_maps->attr_map[tci]) :
2878                               NULL;
2879                         if (new_map && new_map != map)
2880                                 kfree(new_map);
2881                 }
2882         }
2883
2884         mutex_unlock(&xps_map_mutex);
2885
2886         kfree(new_dev_maps);
2887         return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892                         u16 index)
2893 {
2894         int ret;
2895
2896         cpus_read_lock();
2897         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898         cpus_read_unlock();
2899
2900         return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909         /* Unbind any subordinate channels */
2910         while (txq-- != &dev->_tx[0]) {
2911                 if (txq->sb_dev)
2912                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2913         }
2914 }
2915
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919         netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921         netdev_unbind_all_sb_channels(dev);
2922
2923         /* Reset TC configuration of device */
2924         dev->num_tc = 0;
2925         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932         if (tc >= dev->num_tc)
2933                 return -EINVAL;
2934
2935 #ifdef CONFIG_XPS
2936         netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938         dev->tc_to_txq[tc].count = count;
2939         dev->tc_to_txq[tc].offset = offset;
2940         return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946         if (num_tc > TC_MAX_QUEUE)
2947                 return -EINVAL;
2948
2949 #ifdef CONFIG_XPS
2950         netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952         netdev_unbind_all_sb_channels(dev);
2953
2954         dev->num_tc = num_tc;
2955         return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960                               struct net_device *sb_dev)
2961 {
2962         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964 #ifdef CONFIG_XPS
2965         netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970         while (txq-- != &dev->_tx[0]) {
2971                 if (txq->sb_dev == sb_dev)
2972                         txq->sb_dev = NULL;
2973         }
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978                                  struct net_device *sb_dev,
2979                                  u8 tc, u16 count, u16 offset)
2980 {
2981         /* Make certain the sb_dev and dev are already configured */
2982         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983                 return -EINVAL;
2984
2985         /* We cannot hand out queues we don't have */
2986         if ((offset + count) > dev->real_num_tx_queues)
2987                 return -EINVAL;
2988
2989         /* Record the mapping */
2990         sb_dev->tc_to_txq[tc].count = count;
2991         sb_dev->tc_to_txq[tc].offset = offset;
2992
2993         /* Provide a way for Tx queue to find the tc_to_txq map or
2994          * XPS map for itself.
2995          */
2996         while (count--)
2997                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999         return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005         /* Do not use a multiqueue device to represent a subordinate channel */
3006         if (netif_is_multiqueue(dev))
3007                 return -ENODEV;
3008
3009         /* We allow channels 1 - 32767 to be used for subordinate channels.
3010          * Channel 0 is meant to be "native" mode and used only to represent
3011          * the main root device. We allow writing 0 to reset the device back
3012          * to normal mode after being used as a subordinate channel.
3013          */
3014         if (channel > S16_MAX)
3015                 return -EINVAL;
3016
3017         dev->num_tc = -channel;
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029         bool disabling;
3030         int rc;
3031
3032         disabling = txq < dev->real_num_tx_queues;
3033
3034         if (txq < 1 || txq > dev->num_tx_queues)
3035                 return -EINVAL;
3036
3037         if (dev->reg_state == NETREG_REGISTERED ||
3038             dev->reg_state == NETREG_UNREGISTERING) {
3039                 ASSERT_RTNL();
3040
3041                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042                                                   txq);
3043                 if (rc)
3044                         return rc;
3045
3046                 if (dev->num_tc)
3047                         netif_setup_tc(dev, txq);
3048
3049                 dev->real_num_tx_queues = txq;
3050
3051                 if (disabling) {
3052                         synchronize_net();
3053                         qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055                         netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057                 }
3058         } else {
3059                 dev->real_num_tx_queues = txq;
3060         }
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *      @dev: Network device
3070  *      @rxq: Actual number of RX queues
3071  *
3072  *      This must be called either with the rtnl_lock held or before
3073  *      registration of the net device.  Returns 0 on success, or a
3074  *      negative error code.  If called before registration, it always
3075  *      succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079         int rc;
3080
3081         if (rxq < 1 || rxq > dev->num_rx_queues)
3082                 return -EINVAL;
3083
3084         if (dev->reg_state == NETREG_REGISTERED) {
3085                 ASSERT_RTNL();
3086
3087                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088                                                   rxq);
3089                 if (rc)
3090                         return rc;
3091         }
3092
3093         dev->real_num_rx_queues = rxq;
3094         return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107         return is_kdump_kernel() ?
3108                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114         struct softnet_data *sd;
3115         unsigned long flags;
3116
3117         local_irq_save(flags);
3118         sd = this_cpu_ptr(&softnet_data);
3119         q->next_sched = NULL;
3120         *sd->output_queue_tailp = q;
3121         sd->output_queue_tailp = &q->next_sched;
3122         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123         local_irq_restore(flags);
3124 }
3125
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129                 __netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132
3133 struct dev_kfree_skb_cb {
3134         enum skb_free_reason reason;
3135 };
3136
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139         return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144         rcu_read_lock();
3145         if (!netif_xmit_stopped(txq)) {
3146                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148                 __netif_schedule(q);
3149         }
3150         rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157                 struct Qdisc *q;
3158
3159                 rcu_read_lock();
3160                 q = rcu_dereference(dev_queue->qdisc);
3161                 __netif_schedule(q);
3162                 rcu_read_unlock();
3163         }
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169         unsigned long flags;
3170
3171         if (unlikely(!skb))
3172                 return;
3173
3174         if (likely(refcount_read(&skb->users) == 1)) {
3175                 smp_rmb();
3176                 refcount_set(&skb->users, 0);
3177         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178                 return;
3179         }
3180         get_kfree_skb_cb(skb)->reason = reason;
3181         local_irq_save(flags);
3182         skb->next = __this_cpu_read(softnet_data.completion_queue);
3183         __this_cpu_write(softnet_data.completion_queue, skb);
3184         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185         local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191         if (in_irq() || irqs_disabled())
3192                 __dev_kfree_skb_irq(skb, reason);
3193         else
3194                 dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208             netif_running(dev)) {
3209                 netif_tx_stop_all_queues(dev);
3210         }
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223             netif_running(dev)) {
3224                 netif_tx_wake_all_queues(dev);
3225                 __netdev_watchdog_up(dev);
3226         }
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235                        const struct net_device *sb_dev,
3236                        struct sk_buff *skb)
3237 {
3238         u32 hash;
3239         u16 qoffset = 0;
3240         u16 qcount = dev->real_num_tx_queues;
3241
3242         if (dev->num_tc) {
3243                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245                 qoffset = sb_dev->tc_to_txq[tc].offset;
3246                 qcount = sb_dev->tc_to_txq[tc].count;
3247         }
3248
3249         if (skb_rx_queue_recorded(skb)) {
3250                 hash = skb_get_rx_queue(skb);
3251                 if (hash >= qoffset)
3252                         hash -= qoffset;
3253                 while (unlikely(hash >= qcount))
3254                         hash -= qcount;
3255                 return hash + qoffset;
3256         }
3257
3258         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263         static const netdev_features_t null_features;
3264         struct net_device *dev = skb->dev;
3265         const char *name = "";
3266
3267         if (!net_ratelimit())
3268                 return;
3269
3270         if (dev) {
3271                 if (dev->dev.parent)
3272                         name = dev_driver_string(dev->dev.parent);
3273                 else
3274                         name = netdev_name(dev);
3275         }
3276         skb_dump(KERN_WARNING, skb, false);
3277         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278              name, dev ? &dev->features : &null_features,
3279              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288         __wsum csum;
3289         int ret = 0, offset;
3290
3291         if (skb->ip_summed == CHECKSUM_COMPLETE)
3292                 goto out_set_summed;
3293
3294         if (unlikely(skb_is_gso(skb))) {
3295                 skb_warn_bad_offload(skb);
3296                 return -EINVAL;
3297         }
3298
3299         /* Before computing a checksum, we should make sure no frag could
3300          * be modified by an external entity : checksum could be wrong.
3301          */
3302         if (skb_has_shared_frag(skb)) {
3303                 ret = __skb_linearize(skb);
3304                 if (ret)
3305                         goto out;
3306         }
3307
3308         offset = skb_checksum_start_offset(skb);
3309         BUG_ON(offset >= skb_headlen(skb));
3310         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312         offset += skb->csum_offset;
3313         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316         if (ret)
3317                 goto out;
3318
3319         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321         skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323         return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329         __le32 crc32c_csum;
3330         int ret = 0, offset, start;
3331
3332         if (skb->ip_summed != CHECKSUM_PARTIAL)
3333                 goto out;
3334
3335         if (unlikely(skb_is_gso(skb)))
3336                 goto out;
3337
3338         /* Before computing a checksum, we should make sure no frag could
3339          * be modified by an external entity : checksum could be wrong.
3340          */
3341         if (unlikely(skb_has_shared_frag(skb))) {
3342                 ret = __skb_linearize(skb);
3343                 if (ret)
3344                         goto out;
3345         }
3346         start = skb_checksum_start_offset(skb);
3347         offset = start + offsetof(struct sctphdr, checksum);
3348         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349                 ret = -EINVAL;
3350                 goto out;
3351         }
3352
3353         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354         if (ret)
3355                 goto out;
3356
3357         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358                                                   skb->len - start, ~(__u32)0,
3359                                                   crc32c_csum_stub));
3360         *(__le32 *)(skb->data + offset) = crc32c_csum;
3361         skb->ip_summed = CHECKSUM_NONE;
3362         skb->csum_not_inet = 0;
3363 out:
3364         return ret;
3365 }
3366
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369         __be16 type = skb->protocol;
3370
3371         /* Tunnel gso handlers can set protocol to ethernet. */
3372         if (type == htons(ETH_P_TEB)) {
3373                 struct ethhdr *eth;
3374
3375                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376                         return 0;
3377
3378                 eth = (struct ethhdr *)skb->data;
3379                 type = eth->h_proto;
3380         }
3381
3382         return __vlan_get_protocol(skb, type, depth);
3383 }
3384
3385 /**
3386  *      skb_mac_gso_segment - mac layer segmentation handler.
3387  *      @skb: buffer to segment
3388  *      @features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391                                     netdev_features_t features)
3392 {
3393         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394         struct packet_offload *ptype;
3395         int vlan_depth = skb->mac_len;
3396         __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398         if (unlikely(!type))
3399                 return ERR_PTR(-EINVAL);
3400
3401         __skb_pull(skb, vlan_depth);
3402
3403         rcu_read_lock();
3404         list_for_each_entry_rcu(ptype, &offload_base, list) {
3405                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406                         segs = ptype->callbacks.gso_segment(skb, features);
3407                         break;
3408                 }
3409         }
3410         rcu_read_unlock();
3411
3412         __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414         return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423         if (tx_path)
3424                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427         return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429
3430 /**
3431  *      __skb_gso_segment - Perform segmentation on skb.
3432  *      @skb: buffer to segment
3433  *      @features: features for the output path (see dev->features)
3434  *      @tx_path: whether it is called in TX path
3435  *
3436  *      This function segments the given skb and returns a list of segments.
3437  *
3438  *      It may return NULL if the skb requires no segmentation.  This is
3439  *      only possible when GSO is used for verifying header integrity.
3440  *
3441  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444                                   netdev_features_t features, bool tx_path)
3445 {
3446         struct sk_buff *segs;
3447
3448         if (unlikely(skb_needs_check(skb, tx_path))) {
3449                 int err;
3450
3451                 /* We're going to init ->check field in TCP or UDP header */
3452                 err = skb_cow_head(skb, 0);
3453                 if (err < 0)
3454                         return ERR_PTR(err);
3455         }
3456
3457         /* Only report GSO partial support if it will enable us to
3458          * support segmentation on this frame without needing additional
3459          * work.
3460          */
3461         if (features & NETIF_F_GSO_PARTIAL) {
3462                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463                 struct net_device *dev = skb->dev;
3464
3465                 partial_features |= dev->features & dev->gso_partial_features;
3466                 if (!skb_gso_ok(skb, features | partial_features))
3467                         features &= ~NETIF_F_GSO_PARTIAL;
3468         }
3469
3470         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474         SKB_GSO_CB(skb)->encap_level = 0;
3475
3476         skb_reset_mac_header(skb);
3477         skb_reset_mac_len(skb);
3478
3479         segs = skb_mac_gso_segment(skb, features);
3480
3481         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482                 skb_warn_bad_offload(skb);
3483
3484         return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492         if (net_ratelimit()) {
3493                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494                 skb_dump(KERN_ERR, skb, true);
3495                 dump_stack();
3496         }
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505         int i;
3506
3507         if (!(dev->features & NETIF_F_HIGHDMA)) {
3508                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511                         if (PageHighMem(skb_frag_page(frag)))
3512                                 return 1;
3513                 }
3514         }
3515 #endif
3516         return 0;
3517 }
3518
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524                                            netdev_features_t features,
3525                                            __be16 type)
3526 {
3527         if (eth_p_mpls(type))
3528                 features &= skb->dev->mpls_features;
3529
3530         return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534                                            netdev_features_t features,
3535                                            __be16 type)
3536 {
3537         return features;
3538 }
3539 #endif
3540
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542         netdev_features_t features)
3543 {
3544         __be16 type;
3545
3546         type = skb_network_protocol(skb, NULL);
3547         features = net_mpls_features(skb, features, type);
3548
3549         if (skb->ip_summed != CHECKSUM_NONE &&
3550             !can_checksum_protocol(features, type)) {
3551                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552         }
3553         if (illegal_highdma(skb->dev, skb))
3554                 features &= ~NETIF_F_SG;
3555
3556         return features;
3557 }
3558
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560                                           struct net_device *dev,
3561                                           netdev_features_t features)
3562 {
3563         return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568                                              struct net_device *dev,
3569                                              netdev_features_t features)
3570 {
3571         return vlan_features_check(skb, features);
3572 }
3573
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575                                             struct net_device *dev,
3576                                             netdev_features_t features)
3577 {
3578         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580         if (gso_segs > dev->gso_max_segs)
3581                 return features & ~NETIF_F_GSO_MASK;
3582
3583         if (!skb_shinfo(skb)->gso_type) {
3584                 skb_warn_bad_offload(skb);
3585                 return features & ~NETIF_F_GSO_MASK;
3586         }
3587
3588         /* Support for GSO partial features requires software
3589          * intervention before we can actually process the packets
3590          * so we need to strip support for any partial features now
3591          * and we can pull them back in after we have partially
3592          * segmented the frame.
3593          */
3594         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595                 features &= ~dev->gso_partial_features;
3596
3597         /* Make sure to clear the IPv4 ID mangling feature if the
3598          * IPv4 header has the potential to be fragmented.
3599          */
3600         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601                 struct iphdr *iph = skb->encapsulation ?
3602                                     inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604                 if (!(iph->frag_off & htons(IP_DF)))
3605                         features &= ~NETIF_F_TSO_MANGLEID;
3606         }
3607
3608         return features;
3609 }
3610
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613         struct net_device *dev = skb->dev;
3614         netdev_features_t features = dev->features;
3615
3616         if (skb_is_gso(skb))
3617                 features = gso_features_check(skb, dev, features);
3618
3619         /* If encapsulation offload request, verify we are testing
3620          * hardware encapsulation features instead of standard
3621          * features for the netdev
3622          */
3623         if (skb->encapsulation)
3624                 features &= dev->hw_enc_features;
3625
3626         if (skb_vlan_tagged(skb))
3627                 features = netdev_intersect_features(features,
3628                                                      dev->vlan_features |
3629                                                      NETIF_F_HW_VLAN_CTAG_TX |
3630                                                      NETIF_F_HW_VLAN_STAG_TX);
3631
3632         if (dev->netdev_ops->ndo_features_check)
3633                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634                                                                 features);
3635         else
3636                 features &= dflt_features_check(skb, dev, features);
3637
3638         return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643                     struct netdev_queue *txq, bool more)
3644 {
3645         unsigned int len;
3646         int rc;
3647
3648         if (dev_nit_active(dev))
3649                 dev_queue_xmit_nit(skb, dev);
3650
3651         len = skb->len;
3652         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653         trace_net_dev_start_xmit(skb, dev);
3654         rc = netdev_start_xmit(skb, dev, txq, more);
3655         trace_net_dev_xmit(skb, rc, dev, len);
3656
3657         return rc;
3658 }
3659
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661                                     struct netdev_queue *txq, int *ret)
3662 {
3663         struct sk_buff *skb = first;
3664         int rc = NETDEV_TX_OK;
3665
3666         while (skb) {
3667                 struct sk_buff *next = skb->next;
3668
3669                 skb_mark_not_on_list(skb);
3670                 rc = xmit_one(skb, dev, txq, next != NULL);
3671                 if (unlikely(!dev_xmit_complete(rc))) {
3672                         skb->next = next;
3673                         goto out;
3674                 }
3675
3676                 skb = next;
3677                 if (netif_tx_queue_stopped(txq) && skb) {
3678                         rc = NETDEV_TX_BUSY;
3679                         break;
3680                 }
3681         }
3682
3683 out:
3684         *ret = rc;
3685         return skb;
3686 }
3687
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689                                           netdev_features_t features)
3690 {
3691         if (skb_vlan_tag_present(skb) &&
3692             !vlan_hw_offload_capable(features, skb->vlan_proto))
3693                 skb = __vlan_hwaccel_push_inside(skb);
3694         return skb;
3695 }
3696
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698                             const netdev_features_t features)
3699 {
3700         if (unlikely(skb_csum_is_sctp(skb)))
3701                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702                         skb_crc32c_csum_help(skb);
3703
3704         if (features & NETIF_F_HW_CSUM)
3705                 return 0;
3706
3707         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708                 switch (skb->csum_offset) {
3709                 case offsetof(struct tcphdr, check):
3710                 case offsetof(struct udphdr, check):
3711                         return 0;
3712                 }
3713         }
3714
3715         return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721         netdev_features_t features;
3722
3723         features = netif_skb_features(skb);
3724         skb = validate_xmit_vlan(skb, features);
3725         if (unlikely(!skb))
3726                 goto out_null;
3727
3728         skb = sk_validate_xmit_skb(skb, dev);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         if (netif_needs_gso(skb, features)) {
3733                 struct sk_buff *segs;
3734
3735                 segs = skb_gso_segment(skb, features);
3736                 if (IS_ERR(segs)) {
3737                         goto out_kfree_skb;
3738                 } else if (segs) {
3739                         consume_skb(skb);
3740                         skb = segs;
3741                 }
3742         } else {
3743                 if (skb_needs_linearize(skb, features) &&
3744                     __skb_linearize(skb))
3745                         goto out_kfree_skb;
3746
3747                 /* If packet is not checksummed and device does not
3748                  * support checksumming for this protocol, complete
3749                  * checksumming here.
3750                  */
3751                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752                         if (skb->encapsulation)
3753                                 skb_set_inner_transport_header(skb,
3754                                                                skb_checksum_start_offset(skb));
3755                         else
3756                                 skb_set_transport_header(skb,
3757                                                          skb_checksum_start_offset(skb));
3758                         if (skb_csum_hwoffload_help(skb, features))
3759                                 goto out_kfree_skb;
3760                 }
3761         }
3762
3763         skb = validate_xmit_xfrm(skb, features, again);
3764
3765         return skb;
3766
3767 out_kfree_skb:
3768         kfree_skb(skb);
3769 out_null:
3770         atomic_long_inc(&dev->tx_dropped);
3771         return NULL;
3772 }
3773
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776         struct sk_buff *next, *head = NULL, *tail;
3777
3778         for (; skb != NULL; skb = next) {
3779                 next = skb->next;
3780                 skb_mark_not_on_list(skb);
3781
3782                 /* in case skb wont be segmented, point to itself */
3783                 skb->prev = skb;
3784
3785                 skb = validate_xmit_skb(skb, dev, again);
3786                 if (!skb)
3787                         continue;
3788
3789                 if (!head)
3790                         head = skb;
3791                 else
3792                         tail->next = skb;
3793                 /* If skb was segmented, skb->prev points to
3794                  * the last segment. If not, it still contains skb.
3795                  */
3796                 tail = skb->prev;
3797         }
3798         return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806         qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808         /* To get more precise estimation of bytes sent on wire,
3809          * we add to pkt_len the headers size of all segments
3810          */
3811         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812                 unsigned int hdr_len;
3813                 u16 gso_segs = shinfo->gso_segs;
3814
3815                 /* mac layer + network layer */
3816                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818                 /* + transport layer */
3819                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820                         const struct tcphdr *th;
3821                         struct tcphdr _tcphdr;
3822
3823                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3824                                                 sizeof(_tcphdr), &_tcphdr);
3825                         if (likely(th))
3826                                 hdr_len += __tcp_hdrlen(th);
3827                 } else {
3828                         struct udphdr _udphdr;
3829
3830                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3831                                                sizeof(_udphdr), &_udphdr))
3832                                 hdr_len += sizeof(struct udphdr);
3833                 }
3834
3835                 if (shinfo->gso_type & SKB_GSO_DODGY)
3836                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837                                                 shinfo->gso_size);
3838
3839                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840         }
3841 }
3842
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844                                  struct net_device *dev,
3845                                  struct netdev_queue *txq)
3846 {
3847         spinlock_t *root_lock = qdisc_lock(q);
3848         struct sk_buff *to_free = NULL;
3849         bool contended;
3850         int rc;
3851
3852         qdisc_calculate_pkt_len(skb, q);
3853
3854         if (q->flags & TCQ_F_NOLOCK) {
3855                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856                 qdisc_run(q);
3857
3858                 if (unlikely(to_free))
3859                         kfree_skb_list(to_free);
3860                 return rc;
3861         }
3862
3863         /*
3864          * Heuristic to force contended enqueues to serialize on a
3865          * separate lock before trying to get qdisc main lock.
3866          * This permits qdisc->running owner to get the lock more
3867          * often and dequeue packets faster.
3868          */
3869         contended = qdisc_is_running(q);
3870         if (unlikely(contended))
3871                 spin_lock(&q->busylock);
3872
3873         spin_lock(root_lock);
3874         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3875                 __qdisc_drop(skb, &to_free);
3876                 rc = NET_XMIT_DROP;
3877         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3878                    qdisc_run_begin(q)) {
3879                 /*
3880                  * This is a work-conserving queue; there are no old skbs
3881                  * waiting to be sent out; and the qdisc is not running -
3882                  * xmit the skb directly.
3883                  */
3884
3885                 qdisc_bstats_update(q, skb);
3886
3887                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3888                         if (unlikely(contended)) {
3889                                 spin_unlock(&q->busylock);
3890                                 contended = false;
3891                         }
3892                         __qdisc_run(q);
3893                 }
3894
3895                 qdisc_run_end(q);
3896                 rc = NET_XMIT_SUCCESS;
3897         } else {
3898                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3899                 if (qdisc_run_begin(q)) {
3900                         if (unlikely(contended)) {
3901                                 spin_unlock(&q->busylock);
3902                                 contended = false;
3903                         }
3904                         __qdisc_run(q);
3905                         qdisc_run_end(q);
3906                 }
3907         }
3908         spin_unlock(root_lock);
3909         if (unlikely(to_free))
3910                 kfree_skb_list(to_free);
3911         if (unlikely(contended))
3912                 spin_unlock(&q->busylock);
3913         return rc;
3914 }
3915
3916 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3917 static void skb_update_prio(struct sk_buff *skb)
3918 {
3919         const struct netprio_map *map;
3920         const struct sock *sk;
3921         unsigned int prioidx;
3922
3923         if (skb->priority)
3924                 return;
3925         map = rcu_dereference_bh(skb->dev->priomap);
3926         if (!map)
3927                 return;
3928         sk = skb_to_full_sk(skb);
3929         if (!sk)
3930                 return;
3931
3932         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3933
3934         if (prioidx < map->priomap_len)
3935                 skb->priority = map->priomap[prioidx];
3936 }
3937 #else
3938 #define skb_update_prio(skb)
3939 #endif
3940
3941 /**
3942  *      dev_loopback_xmit - loop back @skb
3943  *      @net: network namespace this loopback is happening in
3944  *      @sk:  sk needed to be a netfilter okfn
3945  *      @skb: buffer to transmit
3946  */
3947 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3948 {
3949         skb_reset_mac_header(skb);
3950         __skb_pull(skb, skb_network_offset(skb));
3951         skb->pkt_type = PACKET_LOOPBACK;
3952         skb->ip_summed = CHECKSUM_UNNECESSARY;
3953         WARN_ON(!skb_dst(skb));
3954         skb_dst_force(skb);
3955         netif_rx_ni(skb);
3956         return 0;
3957 }
3958 EXPORT_SYMBOL(dev_loopback_xmit);
3959
3960 #ifdef CONFIG_NET_EGRESS
3961 static struct sk_buff *
3962 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3963 {
3964         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3965         struct tcf_result cl_res;
3966
3967         if (!miniq)
3968                 return skb;
3969
3970         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3971         qdisc_skb_cb(skb)->mru = 0;
3972         qdisc_skb_cb(skb)->post_ct = false;
3973         mini_qdisc_bstats_cpu_update(miniq, skb);
3974
3975         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3976         case TC_ACT_OK:
3977         case TC_ACT_RECLASSIFY:
3978                 skb->tc_index = TC_H_MIN(cl_res.classid);
3979                 break;
3980         case TC_ACT_SHOT:
3981                 mini_qdisc_qstats_cpu_drop(miniq);
3982                 *ret = NET_XMIT_DROP;
3983                 kfree_skb(skb);
3984                 return NULL;
3985         case TC_ACT_STOLEN:
3986         case TC_ACT_QUEUED:
3987         case TC_ACT_TRAP:
3988                 *ret = NET_XMIT_SUCCESS;
3989                 consume_skb(skb);
3990                 return NULL;
3991         case TC_ACT_REDIRECT:
3992                 /* No need to push/pop skb's mac_header here on egress! */
3993                 skb_do_redirect(skb);
3994                 *ret = NET_XMIT_SUCCESS;
3995                 return NULL;
3996         default:
3997                 break;
3998         }
3999
4000         return skb;
4001 }
4002 #endif /* CONFIG_NET_EGRESS */
4003
4004 #ifdef CONFIG_XPS
4005 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4006                                struct xps_dev_maps *dev_maps, unsigned int tci)
4007 {
4008         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4009         struct xps_map *map;
4010         int queue_index = -1;
4011
4012         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4013                 return queue_index;
4014
4015         tci *= dev_maps->num_tc;
4016         tci += tc;
4017
4018         map = rcu_dereference(dev_maps->attr_map[tci]);
4019         if (map) {
4020                 if (map->len == 1)
4021                         queue_index = map->queues[0];
4022                 else
4023                         queue_index = map->queues[reciprocal_scale(
4024                                                 skb_get_hash(skb), map->len)];
4025                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4026                         queue_index = -1;
4027         }
4028         return queue_index;
4029 }
4030 #endif
4031
4032 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4033                          struct sk_buff *skb)
4034 {
4035 #ifdef CONFIG_XPS
4036         struct xps_dev_maps *dev_maps;
4037         struct sock *sk = skb->sk;
4038         int queue_index = -1;
4039
4040         if (!static_key_false(&xps_needed))
4041                 return -1;
4042
4043         rcu_read_lock();
4044         if (!static_key_false(&xps_rxqs_needed))
4045                 goto get_cpus_map;
4046
4047         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4048         if (dev_maps) {
4049                 int tci = sk_rx_queue_get(sk);
4050
4051                 if (tci >= 0)
4052                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053                                                           tci);
4054         }
4055
4056 get_cpus_map:
4057         if (queue_index < 0) {
4058                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4059                 if (dev_maps) {
4060                         unsigned int tci = skb->sender_cpu - 1;
4061
4062                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4063                                                           tci);
4064                 }
4065         }
4066         rcu_read_unlock();
4067
4068         return queue_index;
4069 #else
4070         return -1;
4071 #endif
4072 }
4073
4074 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4075                      struct net_device *sb_dev)
4076 {
4077         return 0;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_zero);
4080
4081 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4082                        struct net_device *sb_dev)
4083 {
4084         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4085 }
4086 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4087
4088 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4089                      struct net_device *sb_dev)
4090 {
4091         struct sock *sk = skb->sk;
4092         int queue_index = sk_tx_queue_get(sk);
4093
4094         sb_dev = sb_dev ? : dev;
4095
4096         if (queue_index < 0 || skb->ooo_okay ||
4097             queue_index >= dev->real_num_tx_queues) {
4098                 int new_index = get_xps_queue(dev, sb_dev, skb);
4099
4100                 if (new_index < 0)
4101                         new_index = skb_tx_hash(dev, sb_dev, skb);
4102
4103                 if (queue_index != new_index && sk &&
4104                     sk_fullsock(sk) &&
4105                     rcu_access_pointer(sk->sk_dst_cache))
4106                         sk_tx_queue_set(sk, new_index);
4107
4108                 queue_index = new_index;
4109         }
4110
4111         return queue_index;
4112 }
4113 EXPORT_SYMBOL(netdev_pick_tx);
4114
4115 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4116                                          struct sk_buff *skb,
4117                                          struct net_device *sb_dev)
4118 {
4119         int queue_index = 0;
4120
4121 #ifdef CONFIG_XPS
4122         u32 sender_cpu = skb->sender_cpu - 1;
4123
4124         if (sender_cpu >= (u32)NR_CPUS)
4125                 skb->sender_cpu = raw_smp_processor_id() + 1;
4126 #endif
4127
4128         if (dev->real_num_tx_queues != 1) {
4129                 const struct net_device_ops *ops = dev->netdev_ops;
4130
4131                 if (ops->ndo_select_queue)
4132                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4133                 else
4134                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4135
4136                 queue_index = netdev_cap_txqueue(dev, queue_index);
4137         }
4138
4139         skb_set_queue_mapping(skb, queue_index);
4140         return netdev_get_tx_queue(dev, queue_index);
4141 }
4142
4143 /**
4144  *      __dev_queue_xmit - transmit a buffer
4145  *      @skb: buffer to transmit
4146  *      @sb_dev: suboordinate device used for L2 forwarding offload
4147  *
4148  *      Queue a buffer for transmission to a network device. The caller must
4149  *      have set the device and priority and built the buffer before calling
4150  *      this function. The function can be called from an interrupt.
4151  *
4152  *      A negative errno code is returned on a failure. A success does not
4153  *      guarantee the frame will be transmitted as it may be dropped due
4154  *      to congestion or traffic shaping.
4155  *
4156  * -----------------------------------------------------------------------------------
4157  *      I notice this method can also return errors from the queue disciplines,
4158  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4159  *      be positive.
4160  *
4161  *      Regardless of the return value, the skb is consumed, so it is currently
4162  *      difficult to retry a send to this method.  (You can bump the ref count
4163  *      before sending to hold a reference for retry if you are careful.)
4164  *
4165  *      When calling this method, interrupts MUST be enabled.  This is because
4166  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4167  *          --BLG
4168  */
4169 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4170 {
4171         struct net_device *dev = skb->dev;
4172         struct netdev_queue *txq;
4173         struct Qdisc *q;
4174         int rc = -ENOMEM;
4175         bool again = false;
4176
4177         skb_reset_mac_header(skb);
4178
4179         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4180                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4181
4182         /* Disable soft irqs for various locks below. Also
4183          * stops preemption for RCU.
4184          */
4185         rcu_read_lock_bh();
4186
4187         skb_update_prio(skb);
4188
4189         qdisc_pkt_len_init(skb);
4190 #ifdef CONFIG_NET_CLS_ACT
4191         skb->tc_at_ingress = 0;
4192 # ifdef CONFIG_NET_EGRESS
4193         if (static_branch_unlikely(&egress_needed_key)) {
4194                 skb = sch_handle_egress(skb, &rc, dev);
4195                 if (!skb)
4196                         goto out;
4197         }
4198 # endif
4199 #endif
4200         /* If device/qdisc don't need skb->dst, release it right now while
4201          * its hot in this cpu cache.
4202          */
4203         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204                 skb_dst_drop(skb);
4205         else
4206                 skb_dst_force(skb);
4207
4208         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4209         q = rcu_dereference_bh(txq->qdisc);
4210
4211         trace_net_dev_queue(skb);
4212         if (q->enqueue) {
4213                 rc = __dev_xmit_skb(skb, q, dev, txq);
4214                 goto out;
4215         }
4216
4217         /* The device has no queue. Common case for software devices:
4218          * loopback, all the sorts of tunnels...
4219
4220          * Really, it is unlikely that netif_tx_lock protection is necessary
4221          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4222          * counters.)
4223          * However, it is possible, that they rely on protection
4224          * made by us here.
4225
4226          * Check this and shot the lock. It is not prone from deadlocks.
4227          *Either shot noqueue qdisc, it is even simpler 8)
4228          */
4229         if (dev->flags & IFF_UP) {
4230                 int cpu = smp_processor_id(); /* ok because BHs are off */
4231
4232                 if (txq->xmit_lock_owner != cpu) {
4233                         if (dev_xmit_recursion())
4234                                 goto recursion_alert;
4235
4236                         skb = validate_xmit_skb(skb, dev, &again);
4237                         if (!skb)
4238                                 goto out;
4239
4240                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4241                         HARD_TX_LOCK(dev, txq, cpu);
4242
4243                         if (!netif_xmit_stopped(txq)) {
4244                                 dev_xmit_recursion_inc();
4245                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4246                                 dev_xmit_recursion_dec();
4247                                 if (dev_xmit_complete(rc)) {
4248                                         HARD_TX_UNLOCK(dev, txq);
4249                                         goto out;
4250                                 }
4251                         }
4252                         HARD_TX_UNLOCK(dev, txq);
4253                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4254                                              dev->name);
4255                 } else {
4256                         /* Recursion is detected! It is possible,
4257                          * unfortunately
4258                          */
4259 recursion_alert:
4260                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4261                                              dev->name);
4262                 }
4263         }
4264
4265         rc = -ENETDOWN;
4266         rcu_read_unlock_bh();
4267
4268         atomic_long_inc(&dev->tx_dropped);
4269         kfree_skb_list(skb);
4270         return rc;
4271 out:
4272         rcu_read_unlock_bh();
4273         return rc;
4274 }
4275
4276 int dev_queue_xmit(struct sk_buff *skb)
4277 {
4278         return __dev_queue_xmit(skb, NULL);
4279 }
4280 EXPORT_SYMBOL(dev_queue_xmit);
4281
4282 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284         return __dev_queue_xmit(skb, sb_dev);
4285 }
4286 EXPORT_SYMBOL(dev_queue_xmit_accel);
4287
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4307
4308         local_bh_disable();
4309
4310         dev_xmit_recursion_inc();
4311         HARD_TX_LOCK(dev, txq, smp_processor_id());
4312         if (!netif_xmit_frozen_or_drv_stopped(txq))
4313                 ret = netdev_start_xmit(skb, dev, txq, false);
4314         HARD_TX_UNLOCK(dev, txq);
4315         dev_xmit_recursion_dec();
4316
4317         local_bh_enable();
4318         return ret;
4319 drop:
4320         atomic_long_inc(&dev->tx_dropped);
4321         kfree_skb_list(skb);
4322         return NET_XMIT_DROP;
4323 }
4324 EXPORT_SYMBOL(__dev_direct_xmit);
4325
4326 /*************************************************************************
4327  *                      Receiver routines
4328  *************************************************************************/
4329
4330 int netdev_max_backlog __read_mostly = 1000;
4331 EXPORT_SYMBOL(netdev_max_backlog);
4332
4333 int netdev_tstamp_prequeue __read_mostly = 1;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4343 int gro_normal_batch __read_mostly = 8;
4344
4345 /* Called with irq disabled */
4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347                                      struct napi_struct *napi)
4348 {
4349         struct task_struct *thread;
4350
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480
4481                 /* First check into global flow table if there is a match */
4482                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483                 if ((ident ^ hash) & ~rps_cpu_mask)
4484                         goto try_rps;
4485
4486                 next_cpu = ident & rps_cpu_mask;
4487
4488                 /* OK, now we know there is a match,
4489                  * we can look at the local (per receive queue) flow table
4490                  */
4491                 rflow = &flow_table->flows[hash & flow_table->mask];
4492                 tcpu = rflow->cpu;
4493
4494                 /*
4495                  * If the desired CPU (where last recvmsg was done) is
4496                  * different from current CPU (one in the rx-queue flow
4497                  * table entry), switch if one of the following holds:
4498                  *   - Current CPU is unset (>= nr_cpu_ids).
4499                  *   - Current CPU is offline.
4500                  *   - The current CPU's queue tail has advanced beyond the
4501                  *     last packet that was enqueued using this table entry.
4502                  *     This guarantees that all previous packets for the flow
4503                  *     have been dequeued, thus preserving in order delivery.
4504                  */
4505                 if (unlikely(tcpu != next_cpu) &&
4506                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508                       rflow->last_qtail)) >= 0)) {
4509                         tcpu = next_cpu;
4510                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511                 }
4512
4513                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514                         *rflowp = rflow;
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519
4520 try_rps:
4521
4522         if (map) {
4523                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524                 if (cpu_online(tcpu)) {
4525                         cpu = tcpu;
4526                         goto done;
4527                 }
4528         }
4529
4530 done:
4531         return cpu;
4532 }
4533
4534 #ifdef CONFIG_RFS_ACCEL
4535
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548                          u32 flow_id, u16 filter_id)
4549 {
4550         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551         struct rps_dev_flow_table *flow_table;
4552         struct rps_dev_flow *rflow;
4553         bool expire = true;
4554         unsigned int cpu;
4555
4556         rcu_read_lock();
4557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558         if (flow_table && flow_id <= flow_table->mask) {
4559                 rflow = &flow_table->flows[flow_id];
4560                 cpu = READ_ONCE(rflow->cpu);
4561                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                            rflow->last_qtail) <
4564                      (int)(10 * flow_table->mask)))
4565                         expire = false;
4566         }
4567         rcu_read_unlock();
4568         return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572 #endif /* CONFIG_RFS_ACCEL */
4573
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577         struct softnet_data *sd = data;
4578
4579         ____napi_schedule(sd, &sd->backlog);
4580         sd->received_rps++;
4581 }
4582
4583 #endif /* CONFIG_RPS */
4584
4585 /*
4586  * Check if this softnet_data structure is another cpu one
4587  * If yes, queue it to our IPI list and return 1
4588  * If no, return 0
4589  */
4590 static int rps_ipi_queued(struct softnet_data *sd)
4591 {
4592 #ifdef CONFIG_RPS
4593         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4594
4595         if (sd != mysd) {
4596                 sd->rps_ipi_next = mysd->rps_ipi_list;
4597                 mysd->rps_ipi_list = sd;
4598
4599                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600                 return 1;
4601         }
4602 #endif /* CONFIG_RPS */
4603         return 0;
4604 }
4605
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609
4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613         struct sd_flow_limit *fl;
4614         struct softnet_data *sd;
4615         unsigned int old_flow, new_flow;
4616
4617         if (qlen < (netdev_max_backlog >> 1))
4618                 return false;
4619
4620         sd = this_cpu_ptr(&softnet_data);
4621
4622         rcu_read_lock();
4623         fl = rcu_dereference(sd->flow_limit);
4624         if (fl) {
4625                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626                 old_flow = fl->history[fl->history_head];
4627                 fl->history[fl->history_head] = new_flow;
4628
4629                 fl->history_head++;
4630                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631
4632                 if (likely(fl->buckets[old_flow]))
4633                         fl->buckets[old_flow]--;
4634
4635                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636                         fl->count++;
4637                         rcu_read_unlock();
4638                         return true;
4639                 }
4640         }
4641         rcu_read_unlock();
4642 #endif
4643         return false;
4644 }
4645
4646 /*
4647  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648  * queue (may be a remote CPU queue).
4649  */
4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651                               unsigned int *qtail)
4652 {
4653         struct softnet_data *sd;
4654         unsigned long flags;
4655         unsigned int qlen;
4656
4657         sd = &per_cpu(softnet_data, cpu);
4658
4659         local_irq_save(flags);
4660
4661         rps_lock(sd);
4662         if (!netif_running(skb->dev))
4663                 goto drop;
4664         qlen = skb_queue_len(&sd->input_pkt_queue);
4665         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4666                 if (qlen) {
4667 enqueue:
4668                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4669                         input_queue_tail_incr_save(sd, qtail);
4670                         rps_unlock(sd);
4671                         local_irq_restore(flags);
4672                         return NET_RX_SUCCESS;
4673                 }
4674
4675                 /* Schedule NAPI for backlog device
4676                  * We can use non atomic operation since we own the queue lock
4677                  */
4678                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4679                         if (!rps_ipi_queued(sd))
4680                                 ____napi_schedule(sd, &sd->backlog);
4681                 }
4682                 goto enqueue;
4683         }
4684
4685 drop:
4686         sd->dropped++;
4687         rps_unlock(sd);
4688
4689         local_irq_restore(flags);
4690
4691         atomic_long_inc(&skb->dev->rx_dropped);
4692         kfree_skb(skb);
4693         return NET_RX_DROP;
4694 }
4695
4696 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4697 {
4698         struct net_device *dev = skb->dev;
4699         struct netdev_rx_queue *rxqueue;
4700
4701         rxqueue = dev->_rx;
4702
4703         if (skb_rx_queue_recorded(skb)) {
4704                 u16 index = skb_get_rx_queue(skb);
4705
4706                 if (unlikely(index >= dev->real_num_rx_queues)) {
4707                         WARN_ONCE(dev->real_num_rx_queues > 1,
4708                                   "%s received packet on queue %u, but number "
4709                                   "of RX queues is %u\n",
4710                                   dev->name, index, dev->real_num_rx_queues);
4711
4712                         return rxqueue; /* Return first rxqueue */
4713                 }
4714                 rxqueue += index;
4715         }
4716         return rxqueue;
4717 }
4718
4719 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4720                                      struct xdp_buff *xdp,
4721                                      struct bpf_prog *xdp_prog)
4722 {
4723         void *orig_data, *orig_data_end, *hard_start;
4724         struct netdev_rx_queue *rxqueue;
4725         u32 metalen, act = XDP_DROP;
4726         bool orig_bcast, orig_host;
4727         u32 mac_len, frame_sz;
4728         __be16 orig_eth_type;
4729         struct ethhdr *eth;
4730         int off;
4731
4732         /* Reinjected packets coming from act_mirred or similar should
4733          * not get XDP generic processing.
4734          */
4735         if (skb_is_redirected(skb))
4736                 return XDP_PASS;
4737
4738         /* XDP packets must be linear and must have sufficient headroom
4739          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4740          * native XDP provides, thus we need to do it here as well.
4741          */
4742         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4743             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4744                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4745                 int troom = skb->tail + skb->data_len - skb->end;
4746
4747                 /* In case we have to go down the path and also linearize,
4748                  * then lets do the pskb_expand_head() work just once here.
4749                  */
4750                 if (pskb_expand_head(skb,
4751                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4752                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4753                         goto do_drop;
4754                 if (skb_linearize(skb))
4755                         goto do_drop;
4756         }
4757
4758         /* The XDP program wants to see the packet starting at the MAC
4759          * header.
4760          */
4761         mac_len = skb->data - skb_mac_header(skb);
4762         hard_start = skb->data - skb_headroom(skb);
4763
4764         /* SKB "head" area always have tailroom for skb_shared_info */
4765         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4766         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4767
4768         rxqueue = netif_get_rxqueue(skb);
4769         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4770         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4771                          skb_headlen(skb) + mac_len, true);
4772
4773         orig_data_end = xdp->data_end;
4774         orig_data = xdp->data;
4775         eth = (struct ethhdr *)xdp->data;
4776         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4777         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4778         orig_eth_type = eth->h_proto;
4779
4780         act = bpf_prog_run_xdp(xdp_prog, xdp);
4781
4782         /* check if bpf_xdp_adjust_head was used */
4783         off = xdp->data - orig_data;
4784         if (off) {
4785                 if (off > 0)
4786                         __skb_pull(skb, off);
4787                 else if (off < 0)
4788                         __skb_push(skb, -off);
4789
4790                 skb->mac_header += off;
4791                 skb_reset_network_header(skb);
4792         }
4793
4794         /* check if bpf_xdp_adjust_tail was used */
4795         off = xdp->data_end - orig_data_end;
4796         if (off != 0) {
4797                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4798                 skb->len += off; /* positive on grow, negative on shrink */
4799         }
4800
4801         /* check if XDP changed eth hdr such SKB needs update */
4802         eth = (struct ethhdr *)xdp->data;
4803         if ((orig_eth_type != eth->h_proto) ||
4804             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4805                                                   skb->dev->dev_addr)) ||
4806             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4807                 __skb_push(skb, ETH_HLEN);
4808                 skb->pkt_type = PACKET_HOST;
4809                 skb->protocol = eth_type_trans(skb, skb->dev);
4810         }
4811
4812         switch (act) {
4813         case XDP_REDIRECT:
4814         case XDP_TX:
4815                 __skb_push(skb, mac_len);
4816                 break;
4817         case XDP_PASS:
4818                 metalen = xdp->data - xdp->data_meta;
4819                 if (metalen)
4820                         skb_metadata_set(skb, metalen);
4821                 break;
4822         default:
4823                 bpf_warn_invalid_xdp_action(act);
4824                 fallthrough;
4825         case XDP_ABORTED:
4826                 trace_xdp_exception(skb->dev, xdp_prog, act);
4827                 fallthrough;
4828         case XDP_DROP:
4829         do_drop:
4830                 kfree_skb(skb);
4831                 break;
4832         }
4833
4834         return act;
4835 }
4836
4837 /* When doing generic XDP we have to bypass the qdisc layer and the
4838  * network taps in order to match in-driver-XDP behavior.
4839  */
4840 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4841 {
4842         struct net_device *dev = skb->dev;
4843         struct netdev_queue *txq;
4844         bool free_skb = true;
4845         int cpu, rc;
4846
4847         txq = netdev_core_pick_tx(dev, skb, NULL);
4848         cpu = smp_processor_id();
4849         HARD_TX_LOCK(dev, txq, cpu);
4850         if (!netif_xmit_stopped(txq)) {
4851                 rc = netdev_start_xmit(skb, dev, txq, 0);
4852                 if (dev_xmit_complete(rc))
4853                         free_skb = false;
4854         }
4855         HARD_TX_UNLOCK(dev, txq);
4856         if (free_skb) {
4857                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4858                 kfree_skb(skb);
4859         }
4860 }
4861
4862 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4863
4864 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4865 {
4866         if (xdp_prog) {
4867                 struct xdp_buff xdp;
4868                 u32 act;
4869                 int err;
4870
4871                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4872                 if (act != XDP_PASS) {
4873                         switch (act) {
4874                         case XDP_REDIRECT:
4875                                 err = xdp_do_generic_redirect(skb->dev, skb,
4876                                                               &xdp, xdp_prog);
4877                                 if (err)
4878                                         goto out_redir;
4879                                 break;
4880                         case XDP_TX:
4881                                 generic_xdp_tx(skb, xdp_prog);
4882                                 break;
4883                         }
4884                         return XDP_DROP;
4885                 }
4886         }
4887         return XDP_PASS;
4888 out_redir:
4889         kfree_skb(skb);
4890         return XDP_DROP;
4891 }
4892 EXPORT_SYMBOL_GPL(do_xdp_generic);
4893
4894 static int netif_rx_internal(struct sk_buff *skb)
4895 {
4896         int ret;
4897
4898         net_timestamp_check(netdev_tstamp_prequeue, skb);
4899
4900         trace_netif_rx(skb);
4901
4902 #ifdef CONFIG_RPS
4903         if (static_branch_unlikely(&rps_needed)) {
4904                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4905                 int cpu;
4906
4907                 preempt_disable();
4908                 rcu_read_lock();
4909
4910                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4911                 if (cpu < 0)
4912                         cpu = smp_processor_id();
4913
4914                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4915
4916                 rcu_read_unlock();
4917                 preempt_enable();
4918         } else
4919 #endif
4920         {
4921                 unsigned int qtail;
4922
4923                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4924                 put_cpu();
4925         }
4926         return ret;
4927 }
4928
4929 /**
4930  *      netif_rx        -       post buffer to the network code
4931  *      @skb: buffer to post
4932  *
4933  *      This function receives a packet from a device driver and queues it for
4934  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4935  *      may be dropped during processing for congestion control or by the
4936  *      protocol layers.
4937  *
4938  *      return values:
4939  *      NET_RX_SUCCESS  (no congestion)
4940  *      NET_RX_DROP     (packet was dropped)
4941  *
4942  */
4943
4944 int netif_rx(struct sk_buff *skb)
4945 {
4946         int ret;
4947
4948         trace_netif_rx_entry(skb);
4949
4950         ret = netif_rx_internal(skb);
4951         trace_netif_rx_exit(ret);
4952
4953         return ret;
4954 }
4955 EXPORT_SYMBOL(netif_rx);
4956
4957 int netif_rx_ni(struct sk_buff *skb)
4958 {
4959         int err;
4960
4961         trace_netif_rx_ni_entry(skb);
4962
4963         preempt_disable();
4964         err = netif_rx_internal(skb);
4965         if (local_softirq_pending())
4966                 do_softirq();
4967         preempt_enable();
4968         trace_netif_rx_ni_exit(err);
4969
4970         return err;
4971 }
4972 EXPORT_SYMBOL(netif_rx_ni);
4973
4974 int netif_rx_any_context(struct sk_buff *skb)
4975 {
4976         /*
4977          * If invoked from contexts which do not invoke bottom half
4978          * processing either at return from interrupt or when softrqs are
4979          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4980          * directly.
4981          */
4982         if (in_interrupt())
4983                 return netif_rx(skb);
4984         else
4985                 return netif_rx_ni(skb);
4986 }
4987 EXPORT_SYMBOL(netif_rx_any_context);
4988
4989 static __latent_entropy void net_tx_action(struct softirq_action *h)
4990 {
4991         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4992
4993         if (sd->completion_queue) {
4994                 struct sk_buff *clist;
4995
4996                 local_irq_disable();
4997                 clist = sd->completion_queue;
4998                 sd->completion_queue = NULL;
4999                 local_irq_enable();
5000
5001                 while (clist) {
5002                         struct sk_buff *skb = clist;
5003
5004                         clist = clist->next;
5005
5006                         WARN_ON(refcount_read(&skb->users));
5007                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5008                                 trace_consume_skb(skb);
5009                         else
5010                                 trace_kfree_skb(skb, net_tx_action);
5011
5012                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5013                                 __kfree_skb(skb);
5014                         else
5015                                 __kfree_skb_defer(skb);
5016                 }
5017         }
5018
5019         if (sd->output_queue) {
5020                 struct Qdisc *head;
5021
5022                 local_irq_disable();
5023                 head = sd->output_queue;
5024                 sd->output_queue = NULL;
5025                 sd->output_queue_tailp = &sd->output_queue;
5026                 local_irq_enable();
5027
5028                 while (head) {
5029                         struct Qdisc *q = head;
5030                         spinlock_t *root_lock = NULL;
5031
5032                         head = head->next_sched;
5033
5034                         if (!(q->flags & TCQ_F_NOLOCK)) {
5035                                 root_lock = qdisc_lock(q);
5036                                 spin_lock(root_lock);
5037                         }
5038                         /* We need to make sure head->next_sched is read
5039                          * before clearing __QDISC_STATE_SCHED
5040                          */
5041                         smp_mb__before_atomic();
5042                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5043                         qdisc_run(q);
5044                         if (root_lock)
5045                                 spin_unlock(root_lock);
5046                 }
5047         }
5048
5049         xfrm_dev_backlog(sd);
5050 }
5051
5052 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5053 /* This hook is defined here for ATM LANE */
5054 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5055                              unsigned char *addr) __read_mostly;
5056 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5057 #endif
5058
5059 static inline struct sk_buff *
5060 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5061                    struct net_device *orig_dev, bool *another)
5062 {
5063 #ifdef CONFIG_NET_CLS_ACT
5064         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5065         struct tcf_result cl_res;
5066
5067         /* If there's at least one ingress present somewhere (so
5068          * we get here via enabled static key), remaining devices
5069          * that are not configured with an ingress qdisc will bail
5070          * out here.
5071          */
5072         if (!miniq)
5073                 return skb;
5074
5075         if (*pt_prev) {
5076                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5077                 *pt_prev = NULL;
5078         }
5079
5080         qdisc_skb_cb(skb)->pkt_len = skb->len;
5081         qdisc_skb_cb(skb)->mru = 0;
5082         qdisc_skb_cb(skb)->post_ct = false;
5083         skb->tc_at_ingress = 1;
5084         mini_qdisc_bstats_cpu_update(miniq, skb);
5085
5086         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5087                                      &cl_res, false)) {
5088         case TC_ACT_OK:
5089         case TC_ACT_RECLASSIFY:
5090                 skb->tc_index = TC_H_MIN(cl_res.classid);
5091                 break;
5092         case TC_ACT_SHOT:
5093                 mini_qdisc_qstats_cpu_drop(miniq);
5094                 kfree_skb(skb);
5095                 return NULL;
5096         case TC_ACT_STOLEN:
5097         case TC_ACT_QUEUED:
5098         case TC_ACT_TRAP:
5099                 consume_skb(skb);
5100                 return NULL;
5101         case TC_ACT_REDIRECT:
5102                 /* skb_mac_header check was done by cls/act_bpf, so
5103                  * we can safely push the L2 header back before
5104                  * redirecting to another netdev
5105                  */
5106                 __skb_push(skb, skb->mac_len);
5107                 if (skb_do_redirect(skb) == -EAGAIN) {
5108                         __skb_pull(skb, skb->mac_len);
5109                         *another = true;
5110                         break;
5111                 }
5112                 return NULL;
5113         case TC_ACT_CONSUMED:
5114                 return NULL;
5115         default:
5116                 break;
5117         }
5118 #endif /* CONFIG_NET_CLS_ACT */
5119         return skb;
5120 }
5121
5122 /**
5123  *      netdev_is_rx_handler_busy - check if receive handler is registered
5124  *      @dev: device to check
5125  *
5126  *      Check if a receive handler is already registered for a given device.
5127  *      Return true if there one.
5128  *
5129  *      The caller must hold the rtnl_mutex.
5130  */
5131 bool netdev_is_rx_handler_busy(struct net_device *dev)
5132 {
5133         ASSERT_RTNL();
5134         return dev && rtnl_dereference(dev->rx_handler);
5135 }
5136 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5137
5138 /**
5139  *      netdev_rx_handler_register - register receive handler
5140  *      @dev: device to register a handler for
5141  *      @rx_handler: receive handler to register
5142  *      @rx_handler_data: data pointer that is used by rx handler
5143  *
5144  *      Register a receive handler for a device. This handler will then be
5145  *      called from __netif_receive_skb. A negative errno code is returned
5146  *      on a failure.
5147  *
5148  *      The caller must hold the rtnl_mutex.
5149  *
5150  *      For a general description of rx_handler, see enum rx_handler_result.
5151  */
5152 int netdev_rx_handler_register(struct net_device *dev,
5153                                rx_handler_func_t *rx_handler,
5154                                void *rx_handler_data)
5155 {
5156         if (netdev_is_rx_handler_busy(dev))
5157                 return -EBUSY;
5158
5159         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5160                 return -EINVAL;
5161
5162         /* Note: rx_handler_data must be set before rx_handler */
5163         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5164         rcu_assign_pointer(dev->rx_handler, rx_handler);
5165
5166         return 0;
5167 }
5168 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5169
5170 /**
5171  *      netdev_rx_handler_unregister - unregister receive handler
5172  *      @dev: device to unregister a handler from
5173  *
5174  *      Unregister a receive handler from a device.
5175  *
5176  *      The caller must hold the rtnl_mutex.
5177  */
5178 void netdev_rx_handler_unregister(struct net_device *dev)
5179 {
5180
5181         ASSERT_RTNL();
5182         RCU_INIT_POINTER(dev->rx_handler, NULL);
5183         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5184          * section has a guarantee to see a non NULL rx_handler_data
5185          * as well.
5186          */
5187         synchronize_net();
5188         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5189 }
5190 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5191
5192 /*
5193  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5194  * the special handling of PFMEMALLOC skbs.
5195  */
5196 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5197 {
5198         switch (skb->protocol) {
5199         case htons(ETH_P_ARP):
5200         case htons(ETH_P_IP):
5201         case htons(ETH_P_IPV6):
5202         case htons(ETH_P_8021Q):
5203         case htons(ETH_P_8021AD):
5204                 return true;
5205         default:
5206                 return false;
5207         }
5208 }
5209
5210 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5211                              int *ret, struct net_device *orig_dev)
5212 {
5213         if (nf_hook_ingress_active(skb)) {
5214                 int ingress_retval;
5215
5216                 if (*pt_prev) {
5217                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5218                         *pt_prev = NULL;
5219                 }
5220
5221                 rcu_read_lock();
5222                 ingress_retval = nf_hook_ingress(skb);
5223                 rcu_read_unlock();
5224                 return ingress_retval;
5225         }
5226         return 0;
5227 }
5228
5229 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5230                                     struct packet_type **ppt_prev)
5231 {
5232         struct packet_type *ptype, *pt_prev;
5233         rx_handler_func_t *rx_handler;
5234         struct sk_buff *skb = *pskb;
5235         struct net_device *orig_dev;
5236         bool deliver_exact = false;
5237         int ret = NET_RX_DROP;
5238         __be16 type;
5239
5240         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5241
5242         trace_netif_receive_skb(skb);
5243
5244         orig_dev = skb->dev;
5245
5246         skb_reset_network_header(skb);
5247         if (!skb_transport_header_was_set(skb))
5248                 skb_reset_transport_header(skb);
5249         skb_reset_mac_len(skb);
5250
5251         pt_prev = NULL;
5252
5253 another_round:
5254         skb->skb_iif = skb->dev->ifindex;
5255
5256         __this_cpu_inc(softnet_data.processed);
5257
5258         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5259                 int ret2;
5260
5261                 preempt_disable();
5262                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5263                 preempt_enable();
5264
5265                 if (ret2 != XDP_PASS) {
5266                         ret = NET_RX_DROP;
5267                         goto out;
5268                 }
5269                 skb_reset_mac_len(skb);
5270         }
5271
5272         if (eth_type_vlan(skb->protocol)) {
5273                 skb = skb_vlan_untag(skb);
5274                 if (unlikely(!skb))
5275                         goto out;
5276         }
5277
5278         if (skb_skip_tc_classify(skb))
5279                 goto skip_classify;
5280
5281         if (pfmemalloc)
5282                 goto skip_taps;
5283
5284         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5285                 if (pt_prev)
5286                         ret = deliver_skb(skb, pt_prev, orig_dev);
5287                 pt_prev = ptype;
5288         }
5289
5290         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5291                 if (pt_prev)
5292                         ret = deliver_skb(skb, pt_prev, orig_dev);
5293                 pt_prev = ptype;
5294         }
5295
5296 skip_taps:
5297 #ifdef CONFIG_NET_INGRESS
5298         if (static_branch_unlikely(&ingress_needed_key)) {
5299                 bool another = false;
5300
5301                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5302                                          &another);
5303                 if (another)
5304                         goto another_round;
5305                 if (!skb)
5306                         goto out;
5307
5308                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5309                         goto out;
5310         }
5311 #endif
5312         skb_reset_redirect(skb);
5313 skip_classify:
5314         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5315                 goto drop;
5316
5317         if (skb_vlan_tag_present(skb)) {
5318                 if (pt_prev) {
5319                         ret = deliver_skb(skb, pt_prev, orig_dev);
5320                         pt_prev = NULL;
5321                 }
5322                 if (vlan_do_receive(&skb))
5323                         goto another_round;
5324                 else if (unlikely(!skb))
5325                         goto out;
5326         }
5327
5328         rx_handler = rcu_dereference(skb->dev->rx_handler);
5329         if (rx_handler) {
5330                 if (pt_prev) {
5331                         ret = deliver_skb(skb, pt_prev, orig_dev);
5332                         pt_prev = NULL;
5333                 }
5334                 switch (rx_handler(&skb)) {
5335                 case RX_HANDLER_CONSUMED:
5336                         ret = NET_RX_SUCCESS;
5337                         goto out;
5338                 case RX_HANDLER_ANOTHER:
5339                         goto another_round;
5340                 case RX_HANDLER_EXACT:
5341                         deliver_exact = true;
5342                         break;
5343                 case RX_HANDLER_PASS:
5344                         break;
5345                 default:
5346                         BUG();
5347                 }
5348         }
5349
5350         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5351 check_vlan_id:
5352                 if (skb_vlan_tag_get_id(skb)) {
5353                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5354                          * find vlan device.
5355                          */
5356                         skb->pkt_type = PACKET_OTHERHOST;
5357                 } else if (eth_type_vlan(skb->protocol)) {
5358                         /* Outer header is 802.1P with vlan 0, inner header is
5359                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5360                          * not find vlan dev for vlan id 0.
5361                          */
5362                         __vlan_hwaccel_clear_tag(skb);
5363                         skb = skb_vlan_untag(skb);
5364                         if (unlikely(!skb))
5365                                 goto out;
5366                         if (vlan_do_receive(&skb))
5367                                 /* After stripping off 802.1P header with vlan 0
5368                                  * vlan dev is found for inner header.
5369                                  */
5370                                 goto another_round;
5371                         else if (unlikely(!skb))
5372                                 goto out;
5373                         else
5374                                 /* We have stripped outer 802.1P vlan 0 header.
5375                                  * But could not find vlan dev.
5376                                  * check again for vlan id to set OTHERHOST.
5377                                  */
5378                                 goto check_vlan_id;
5379                 }
5380                 /* Note: we might in the future use prio bits
5381                  * and set skb->priority like in vlan_do_receive()
5382                  * For the time being, just ignore Priority Code Point
5383                  */
5384                 __vlan_hwaccel_clear_tag(skb);
5385         }
5386
5387         type = skb->protocol;
5388
5389         /* deliver only exact match when indicated */
5390         if (likely(!deliver_exact)) {
5391                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5392                                        &ptype_base[ntohs(type) &
5393                                                    PTYPE_HASH_MASK]);
5394         }
5395
5396         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397                                &orig_dev->ptype_specific);
5398
5399         if (unlikely(skb->dev != orig_dev)) {
5400                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5401                                        &skb->dev->ptype_specific);
5402         }
5403
5404         if (pt_prev) {
5405                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5406                         goto drop;
5407                 *ppt_prev = pt_prev;
5408         } else {
5409 drop:
5410                 if (!deliver_exact)
5411                         atomic_long_inc(&skb->dev->rx_dropped);
5412                 else
5413                         atomic_long_inc(&skb->dev->rx_nohandler);
5414                 kfree_skb(skb);
5415                 /* Jamal, now you will not able to escape explaining
5416                  * me how you were going to use this. :-)
5417                  */
5418                 ret = NET_RX_DROP;
5419         }
5420
5421 out:
5422         /* The invariant here is that if *ppt_prev is not NULL
5423          * then skb should also be non-NULL.
5424          *
5425          * Apparently *ppt_prev assignment above holds this invariant due to
5426          * skb dereferencing near it.
5427          */
5428         *pskb = skb;
5429         return ret;
5430 }
5431
5432 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5433 {
5434         struct net_device *orig_dev = skb->dev;
5435         struct packet_type *pt_prev = NULL;
5436         int ret;
5437
5438         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5439         if (pt_prev)
5440                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5441                                          skb->dev, pt_prev, orig_dev);
5442         return ret;
5443 }
5444
5445 /**
5446  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5447  *      @skb: buffer to process
5448  *
5449  *      More direct receive version of netif_receive_skb().  It should
5450  *      only be used by callers that have a need to skip RPS and Generic XDP.
5451  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5452  *
5453  *      This function may only be called from softirq context and interrupts
5454  *      should be enabled.
5455  *
5456  *      Return values (usually ignored):
5457  *      NET_RX_SUCCESS: no congestion
5458  *      NET_RX_DROP: packet was dropped
5459  */
5460 int netif_receive_skb_core(struct sk_buff *skb)
5461 {
5462         int ret;
5463
5464         rcu_read_lock();
5465         ret = __netif_receive_skb_one_core(skb, false);
5466         rcu_read_unlock();
5467
5468         return ret;
5469 }
5470 EXPORT_SYMBOL(netif_receive_skb_core);
5471
5472 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5473                                                   struct packet_type *pt_prev,
5474                                                   struct net_device *orig_dev)
5475 {
5476         struct sk_buff *skb, *next;
5477
5478         if (!pt_prev)
5479                 return;
5480         if (list_empty(head))
5481                 return;
5482         if (pt_prev->list_func != NULL)
5483                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5484                                    ip_list_rcv, head, pt_prev, orig_dev);
5485         else
5486                 list_for_each_entry_safe(skb, next, head, list) {
5487                         skb_list_del_init(skb);
5488                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5489                 }
5490 }
5491
5492 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5493 {
5494         /* Fast-path assumptions:
5495          * - There is no RX handler.
5496          * - Only one packet_type matches.
5497          * If either of these fails, we will end up doing some per-packet
5498          * processing in-line, then handling the 'last ptype' for the whole
5499          * sublist.  This can't cause out-of-order delivery to any single ptype,
5500          * because the 'last ptype' must be constant across the sublist, and all
5501          * other ptypes are handled per-packet.
5502          */
5503         /* Current (common) ptype of sublist */
5504         struct packet_type *pt_curr = NULL;
5505         /* Current (common) orig_dev of sublist */
5506         struct net_device *od_curr = NULL;
5507         struct list_head sublist;
5508         struct sk_buff *skb, *next;
5509
5510         INIT_LIST_HEAD(&sublist);
5511         list_for_each_entry_safe(skb, next, head, list) {
5512                 struct net_device *orig_dev = skb->dev;
5513                 struct packet_type *pt_prev = NULL;
5514
5515                 skb_list_del_init(skb);
5516                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5517                 if (!pt_prev)
5518                         continue;
5519                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5520                         /* dispatch old sublist */
5521                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5522                         /* start new sublist */
5523                         INIT_LIST_HEAD(&sublist);
5524                         pt_curr = pt_prev;
5525                         od_curr = orig_dev;
5526                 }
5527                 list_add_tail(&skb->list, &sublist);
5528         }
5529
5530         /* dispatch final sublist */
5531         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5532 }
5533
5534 static int __netif_receive_skb(struct sk_buff *skb)
5535 {
5536         int ret;
5537
5538         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5539                 unsigned int noreclaim_flag;
5540
5541                 /*
5542                  * PFMEMALLOC skbs are special, they should
5543                  * - be delivered to SOCK_MEMALLOC sockets only
5544                  * - stay away from userspace
5545                  * - have bounded memory usage
5546                  *
5547                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5548                  * context down to all allocation sites.
5549                  */
5550                 noreclaim_flag = memalloc_noreclaim_save();
5551                 ret = __netif_receive_skb_one_core(skb, true);
5552                 memalloc_noreclaim_restore(noreclaim_flag);
5553         } else
5554                 ret = __netif_receive_skb_one_core(skb, false);
5555
5556         return ret;
5557 }
5558
5559 static void __netif_receive_skb_list(struct list_head *head)
5560 {
5561         unsigned long noreclaim_flag = 0;
5562         struct sk_buff *skb, *next;
5563         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5564
5565         list_for_each_entry_safe(skb, next, head, list) {
5566                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5567                         struct list_head sublist;
5568
5569                         /* Handle the previous sublist */
5570                         list_cut_before(&sublist, head, &skb->list);
5571                         if (!list_empty(&sublist))
5572                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5573                         pfmemalloc = !pfmemalloc;
5574                         /* See comments in __netif_receive_skb */
5575                         if (pfmemalloc)
5576                                 noreclaim_flag = memalloc_noreclaim_save();
5577                         else
5578                                 memalloc_noreclaim_restore(noreclaim_flag);
5579                 }
5580         }
5581         /* Handle the remaining sublist */
5582         if (!list_empty(head))
5583                 __netif_receive_skb_list_core(head, pfmemalloc);
5584         /* Restore pflags */
5585         if (pfmemalloc)
5586                 memalloc_noreclaim_restore(noreclaim_flag);
5587 }
5588
5589 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5590 {
5591         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5592         struct bpf_prog *new = xdp->prog;
5593         int ret = 0;
5594
5595         if (new) {
5596                 u32 i;
5597
5598                 mutex_lock(&new->aux->used_maps_mutex);
5599
5600                 /* generic XDP does not work with DEVMAPs that can
5601                  * have a bpf_prog installed on an entry
5602                  */
5603                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5604                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5605                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5606                                 mutex_unlock(&new->aux->used_maps_mutex);
5607                                 return -EINVAL;
5608                         }
5609                 }
5610
5611                 mutex_unlock(&new->aux->used_maps_mutex);
5612         }
5613
5614         switch (xdp->command) {
5615         case XDP_SETUP_PROG:
5616                 rcu_assign_pointer(dev->xdp_prog, new);
5617                 if (old)
5618                         bpf_prog_put(old);
5619
5620                 if (old && !new) {
5621                         static_branch_dec(&generic_xdp_needed_key);
5622                 } else if (new && !old) {
5623                         static_branch_inc(&generic_xdp_needed_key);
5624                         dev_disable_lro(dev);
5625                         dev_disable_gro_hw(dev);
5626                 }
5627                 break;
5628
5629         default:
5630                 ret = -EINVAL;
5631                 break;
5632         }
5633
5634         return ret;
5635 }
5636
5637 static int netif_receive_skb_internal(struct sk_buff *skb)
5638 {
5639         int ret;
5640
5641         net_timestamp_check(netdev_tstamp_prequeue, skb);
5642
5643         if (skb_defer_rx_timestamp(skb))
5644                 return NET_RX_SUCCESS;
5645
5646         rcu_read_lock();
5647 #ifdef CONFIG_RPS
5648         if (static_branch_unlikely(&rps_needed)) {
5649                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5650                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5651
5652                 if (cpu >= 0) {
5653                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5654                         rcu_read_unlock();
5655                         return ret;
5656                 }
5657         }
5658 #endif
5659         ret = __netif_receive_skb(skb);
5660         rcu_read_unlock();
5661         return ret;
5662 }
5663
5664 static void netif_receive_skb_list_internal(struct list_head *head)
5665 {
5666         struct sk_buff *skb, *next;
5667         struct list_head sublist;
5668
5669         INIT_LIST_HEAD(&sublist);
5670         list_for_each_entry_safe(skb, next, head, list) {
5671                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5672                 skb_list_del_init(skb);
5673                 if (!skb_defer_rx_timestamp(skb))
5674                         list_add_tail(&skb->list, &sublist);
5675         }
5676         list_splice_init(&sublist, head);
5677
5678         rcu_read_lock();
5679 #ifdef CONFIG_RPS
5680         if (static_branch_unlikely(&rps_needed)) {
5681                 list_for_each_entry_safe(skb, next, head, list) {
5682                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5683                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5684
5685                         if (cpu >= 0) {
5686                                 /* Will be handled, remove from list */
5687                                 skb_list_del_init(skb);
5688                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5689                         }
5690                 }
5691         }
5692 #endif
5693         __netif_receive_skb_list(head);
5694         rcu_read_unlock();
5695 }
5696
5697 /**
5698  *      netif_receive_skb - process receive buffer from network
5699  *      @skb: buffer to process
5700  *
5701  *      netif_receive_skb() is the main receive data processing function.
5702  *      It always succeeds. The buffer may be dropped during processing
5703  *      for congestion control or by the protocol layers.
5704  *
5705  *      This function may only be called from softirq context and interrupts
5706  *      should be enabled.
5707  *
5708  *      Return values (usually ignored):
5709  *      NET_RX_SUCCESS: no congestion
5710  *      NET_RX_DROP: packet was dropped
5711  */
5712 int netif_receive_skb(struct sk_buff *skb)
5713 {
5714         int ret;
5715
5716         trace_netif_receive_skb_entry(skb);
5717
5718         ret = netif_receive_skb_internal(skb);
5719         trace_netif_receive_skb_exit(ret);
5720
5721         return ret;
5722 }
5723 EXPORT_SYMBOL(netif_receive_skb);
5724
5725 /**
5726  *      netif_receive_skb_list - process many receive buffers from network
5727  *      @head: list of skbs to process.
5728  *
5729  *      Since return value of netif_receive_skb() is normally ignored, and
5730  *      wouldn't be meaningful for a list, this function returns void.
5731  *
5732  *      This function may only be called from softirq context and interrupts
5733  *      should be enabled.
5734  */
5735 void netif_receive_skb_list(struct list_head *head)
5736 {
5737         struct sk_buff *skb;
5738
5739         if (list_empty(head))
5740                 return;
5741         if (trace_netif_receive_skb_list_entry_enabled()) {
5742                 list_for_each_entry(skb, head, list)
5743                         trace_netif_receive_skb_list_entry(skb);
5744         }
5745         netif_receive_skb_list_internal(head);
5746         trace_netif_receive_skb_list_exit(0);
5747 }
5748 EXPORT_SYMBOL(netif_receive_skb_list);
5749
5750 static DEFINE_PER_CPU(struct work_struct, flush_works);
5751
5752 /* Network device is going away, flush any packets still pending */
5753 static void flush_backlog(struct work_struct *work)
5754 {
5755         struct sk_buff *skb, *tmp;
5756         struct softnet_data *sd;
5757
5758         local_bh_disable();
5759         sd = this_cpu_ptr(&softnet_data);
5760
5761         local_irq_disable();
5762         rps_lock(sd);
5763         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5764                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5765                         __skb_unlink(skb, &sd->input_pkt_queue);
5766                         dev_kfree_skb_irq(skb);
5767                         input_queue_head_incr(sd);
5768                 }
5769         }
5770         rps_unlock(sd);
5771         local_irq_enable();
5772
5773         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5774                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5775                         __skb_unlink(skb, &sd->process_queue);
5776                         kfree_skb(skb);
5777                         input_queue_head_incr(sd);
5778                 }
5779         }
5780         local_bh_enable();
5781 }
5782
5783 static bool flush_required(int cpu)
5784 {
5785 #if IS_ENABLED(CONFIG_RPS)
5786         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5787         bool do_flush;
5788
5789         local_irq_disable();
5790         rps_lock(sd);
5791
5792         /* as insertion into process_queue happens with the rps lock held,
5793          * process_queue access may race only with dequeue
5794          */
5795         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5796                    !skb_queue_empty_lockless(&sd->process_queue);
5797         rps_unlock(sd);
5798         local_irq_enable();
5799
5800         return do_flush;
5801 #endif
5802         /* without RPS we can't safely check input_pkt_queue: during a
5803          * concurrent remote skb_queue_splice() we can detect as empty both
5804          * input_pkt_queue and process_queue even if the latter could end-up
5805          * containing a lot of packets.
5806          */
5807         return true;
5808 }
5809
5810 static void flush_all_backlogs(void)
5811 {
5812         static cpumask_t flush_cpus;
5813         unsigned int cpu;
5814
5815         /* since we are under rtnl lock protection we can use static data
5816          * for the cpumask and avoid allocating on stack the possibly
5817          * large mask
5818          */
5819         ASSERT_RTNL();
5820
5821         get_online_cpus();
5822
5823         cpumask_clear(&flush_cpus);
5824         for_each_online_cpu(cpu) {
5825                 if (flush_required(cpu)) {
5826                         queue_work_on(cpu, system_highpri_wq,
5827                                       per_cpu_ptr(&flush_works, cpu));
5828                         cpumask_set_cpu(cpu, &flush_cpus);
5829                 }
5830         }
5831
5832         /* we can have in flight packet[s] on the cpus we are not flushing,
5833          * synchronize_net() in unregister_netdevice_many() will take care of
5834          * them
5835          */
5836         for_each_cpu(cpu, &flush_cpus)
5837                 flush_work(per_cpu_ptr(&flush_works, cpu));
5838
5839         put_online_cpus();
5840 }
5841
5842 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5843 static void gro_normal_list(struct napi_struct *napi)
5844 {
5845         if (!napi->rx_count)
5846                 return;
5847         netif_receive_skb_list_internal(&napi->rx_list);
5848         INIT_LIST_HEAD(&napi->rx_list);
5849         napi->rx_count = 0;
5850 }
5851
5852 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5853  * pass the whole batch up to the stack.
5854  */
5855 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5856 {
5857         list_add_tail(&skb->list, &napi->rx_list);
5858         napi->rx_count += segs;
5859         if (napi->rx_count >= gro_normal_batch)
5860                 gro_normal_list(napi);
5861 }
5862
5863 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5864 {
5865         struct packet_offload *ptype;
5866         __be16 type = skb->protocol;
5867         struct list_head *head = &offload_base;
5868         int err = -ENOENT;
5869
5870         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5871
5872         if (NAPI_GRO_CB(skb)->count == 1) {
5873                 skb_shinfo(skb)->gso_size = 0;
5874                 goto out;
5875         }
5876
5877         rcu_read_lock();
5878         list_for_each_entry_rcu(ptype, head, list) {
5879                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5880                         continue;
5881
5882                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5883                                          ipv6_gro_complete, inet_gro_complete,
5884                                          skb, 0);
5885                 break;
5886         }
5887         rcu_read_unlock();
5888
5889         if (err) {
5890                 WARN_ON(&ptype->list == head);
5891                 kfree_skb(skb);
5892                 return NET_RX_SUCCESS;
5893         }
5894
5895 out:
5896         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5897         return NET_RX_SUCCESS;
5898 }
5899
5900 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5901                                    bool flush_old)
5902 {
5903         struct list_head *head = &napi->gro_hash[index].list;
5904         struct sk_buff *skb, *p;
5905
5906         list_for_each_entry_safe_reverse(skb, p, head, list) {
5907                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5908                         return;
5909                 skb_list_del_init(skb);
5910                 napi_gro_complete(napi, skb);
5911                 napi->gro_hash[index].count--;
5912         }
5913
5914         if (!napi->gro_hash[index].count)
5915                 __clear_bit(index, &napi->gro_bitmask);
5916 }
5917
5918 /* napi->gro_hash[].list contains packets ordered by age.
5919  * youngest packets at the head of it.
5920  * Complete skbs in reverse order to reduce latencies.
5921  */
5922 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5923 {
5924         unsigned long bitmask = napi->gro_bitmask;
5925         unsigned int i, base = ~0U;
5926
5927         while ((i = ffs(bitmask)) != 0) {
5928                 bitmask >>= i;
5929                 base += i;
5930                 __napi_gro_flush_chain(napi, base, flush_old);
5931         }
5932 }
5933 EXPORT_SYMBOL(napi_gro_flush);
5934
5935 static void gro_list_prepare(const struct list_head *head,
5936                              const struct sk_buff *skb)
5937 {
5938         unsigned int maclen = skb->dev->hard_header_len;
5939         u32 hash = skb_get_hash_raw(skb);
5940         struct sk_buff *p;
5941
5942         list_for_each_entry(p, head, list) {
5943                 unsigned long diffs;
5944
5945                 NAPI_GRO_CB(p)->flush = 0;
5946
5947                 if (hash != skb_get_hash_raw(p)) {
5948                         NAPI_GRO_CB(p)->same_flow = 0;
5949                         continue;
5950                 }
5951
5952                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5953                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5954                 if (skb_vlan_tag_present(p))
5955                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5956                 diffs |= skb_metadata_dst_cmp(p, skb);
5957                 diffs |= skb_metadata_differs(p, skb);
5958                 if (maclen == ETH_HLEN)
5959                         diffs |= compare_ether_header(skb_mac_header(p),
5960                                                       skb_mac_header(skb));
5961                 else if (!diffs)
5962                         diffs = memcmp(skb_mac_header(p),
5963                                        skb_mac_header(skb),
5964                                        maclen);
5965                 NAPI_GRO_CB(p)->same_flow = !diffs;
5966         }
5967 }
5968
5969 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5970 {
5971         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5972         const skb_frag_t *frag0 = &pinfo->frags[0];
5973
5974         NAPI_GRO_CB(skb)->data_offset = 0;
5975         NAPI_GRO_CB(skb)->frag0 = NULL;
5976         NAPI_GRO_CB(skb)->frag0_len = 0;
5977
5978         if (!skb_headlen(skb) && pinfo->nr_frags &&
5979             !PageHighMem(skb_frag_page(frag0)) &&
5980             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5981                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5982                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5983                                                     skb_frag_size(frag0),
5984                                                     skb->end - skb->tail);
5985         }
5986 }
5987
5988 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5989 {
5990         struct skb_shared_info *pinfo = skb_shinfo(skb);
5991
5992         BUG_ON(skb->end - skb->tail < grow);
5993
5994         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5995
5996         skb->data_len -= grow;
5997         skb->tail += grow;
5998
5999         skb_frag_off_add(&pinfo->frags[0], grow);
6000         skb_frag_size_sub(&pinfo->frags[0], grow);
6001
6002         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6003                 skb_frag_unref(skb, 0);
6004                 memmove(pinfo->frags, pinfo->frags + 1,
6005                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6006         }
6007 }
6008
6009 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6010 {
6011         struct sk_buff *oldest;
6012
6013         oldest = list_last_entry(head, struct sk_buff, list);
6014
6015         /* We are called with head length >= MAX_GRO_SKBS, so this is
6016          * impossible.
6017          */
6018         if (WARN_ON_ONCE(!oldest))
6019                 return;
6020
6021         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6022          * SKB to the chain.
6023          */
6024         skb_list_del_init(oldest);
6025         napi_gro_complete(napi, oldest);
6026 }
6027
6028 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6029 {
6030         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6031         struct gro_list *gro_list = &napi->gro_hash[bucket];
6032         struct list_head *head = &offload_base;
6033         struct packet_offload *ptype;
6034         __be16 type = skb->protocol;
6035         struct sk_buff *pp = NULL;
6036         enum gro_result ret;
6037         int same_flow;
6038         int grow;
6039
6040         if (netif_elide_gro(skb->dev))
6041                 goto normal;
6042
6043         gro_list_prepare(&gro_list->list, skb);
6044
6045         rcu_read_lock();
6046         list_for_each_entry_rcu(ptype, head, list) {
6047                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6048                         continue;
6049
6050                 skb_set_network_header(skb, skb_gro_offset(skb));
6051                 skb_reset_mac_len(skb);
6052                 NAPI_GRO_CB(skb)->same_flow = 0;
6053                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6054                 NAPI_GRO_CB(skb)->free = 0;
6055                 NAPI_GRO_CB(skb)->encap_mark = 0;
6056                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6057                 NAPI_GRO_CB(skb)->is_fou = 0;
6058                 NAPI_GRO_CB(skb)->is_atomic = 1;
6059                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6060
6061                 /* Setup for GRO checksum validation */
6062                 switch (skb->ip_summed) {
6063                 case CHECKSUM_COMPLETE:
6064                         NAPI_GRO_CB(skb)->csum = skb->csum;
6065                         NAPI_GRO_CB(skb)->csum_valid = 1;
6066                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6067                         break;
6068                 case CHECKSUM_UNNECESSARY:
6069                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6070                         NAPI_GRO_CB(skb)->csum_valid = 0;
6071                         break;
6072                 default:
6073                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6074                         NAPI_GRO_CB(skb)->csum_valid = 0;
6075                 }
6076
6077                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6078                                         ipv6_gro_receive, inet_gro_receive,
6079                                         &gro_list->list, skb);
6080                 break;
6081         }
6082         rcu_read_unlock();
6083
6084         if (&ptype->list == head)
6085                 goto normal;
6086
6087         if (PTR_ERR(pp) == -EINPROGRESS) {
6088                 ret = GRO_CONSUMED;
6089                 goto ok;
6090         }
6091
6092         same_flow = NAPI_GRO_CB(skb)->same_flow;
6093         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6094
6095         if (pp) {
6096                 skb_list_del_init(pp);
6097                 napi_gro_complete(napi, pp);
6098                 gro_list->count--;
6099         }
6100
6101         if (same_flow)
6102                 goto ok;
6103
6104         if (NAPI_GRO_CB(skb)->flush)
6105                 goto normal;
6106
6107         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6108                 gro_flush_oldest(napi, &gro_list->list);
6109         else
6110                 gro_list->count++;
6111
6112         NAPI_GRO_CB(skb)->count = 1;
6113         NAPI_GRO_CB(skb)->age = jiffies;
6114         NAPI_GRO_CB(skb)->last = skb;
6115         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6116         list_add(&skb->list, &gro_list->list);
6117         ret = GRO_HELD;
6118
6119 pull:
6120         grow = skb_gro_offset(skb) - skb_headlen(skb);
6121         if (grow > 0)
6122                 gro_pull_from_frag0(skb, grow);
6123 ok:
6124         if (gro_list->count) {
6125                 if (!test_bit(bucket, &napi->gro_bitmask))
6126                         __set_bit(bucket, &napi->gro_bitmask);
6127         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6128                 __clear_bit(bucket, &napi->gro_bitmask);
6129         }
6130
6131         return ret;
6132
6133 normal:
6134         ret = GRO_NORMAL;
6135         goto pull;
6136 }
6137
6138 struct packet_offload *gro_find_receive_by_type(__be16 type)
6139 {
6140         struct list_head *offload_head = &offload_base;
6141         struct packet_offload *ptype;
6142
6143         list_for_each_entry_rcu(ptype, offload_head, list) {
6144                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6145                         continue;
6146                 return ptype;
6147         }
6148         return NULL;
6149 }
6150 EXPORT_SYMBOL(gro_find_receive_by_type);
6151
6152 struct packet_offload *gro_find_complete_by_type(__be16 type)
6153 {
6154         struct list_head *offload_head = &offload_base;
6155         struct packet_offload *ptype;
6156
6157         list_for_each_entry_rcu(ptype, offload_head, list) {
6158                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6159                         continue;
6160                 return ptype;
6161         }
6162         return NULL;
6163 }
6164 EXPORT_SYMBOL(gro_find_complete_by_type);
6165
6166 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6167                                     struct sk_buff *skb,
6168                                     gro_result_t ret)
6169 {
6170         switch (ret) {
6171         case GRO_NORMAL:
6172                 gro_normal_one(napi, skb, 1);
6173                 break;
6174
6175         case GRO_MERGED_FREE:
6176                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6177                         napi_skb_free_stolen_head(skb);
6178                 else
6179                         __kfree_skb_defer(skb);
6180                 break;
6181
6182         case GRO_HELD:
6183         case GRO_MERGED:
6184         case GRO_CONSUMED:
6185                 break;
6186         }
6187
6188         return ret;
6189 }
6190
6191 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6192 {
6193         gro_result_t ret;
6194
6195         skb_mark_napi_id(skb, napi);
6196         trace_napi_gro_receive_entry(skb);
6197
6198         skb_gro_reset_offset(skb, 0);
6199
6200         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6201         trace_napi_gro_receive_exit(ret);
6202
6203         return ret;
6204 }
6205 EXPORT_SYMBOL(napi_gro_receive);
6206
6207 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6208 {
6209         if (unlikely(skb->pfmemalloc)) {
6210                 consume_skb(skb);
6211                 return;
6212         }
6213         __skb_pull(skb, skb_headlen(skb));
6214         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6215         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6216         __vlan_hwaccel_clear_tag(skb);
6217         skb->dev = napi->dev;
6218         skb->skb_iif = 0;
6219
6220         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6221         skb->pkt_type = PACKET_HOST;
6222
6223         skb->encapsulation = 0;
6224         skb_shinfo(skb)->gso_type = 0;
6225         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6226         skb_ext_reset(skb);
6227
6228         napi->skb = skb;
6229 }
6230
6231 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6232 {
6233         struct sk_buff *skb = napi->skb;
6234
6235         if (!skb) {
6236                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6237                 if (skb) {
6238                         napi->skb = skb;
6239                         skb_mark_napi_id(skb, napi);
6240                 }
6241         }
6242         return skb;
6243 }
6244 EXPORT_SYMBOL(napi_get_frags);
6245
6246 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6247                                       struct sk_buff *skb,
6248                                       gro_result_t ret)
6249 {
6250         switch (ret) {
6251         case GRO_NORMAL:
6252         case GRO_HELD:
6253                 __skb_push(skb, ETH_HLEN);
6254                 skb->protocol = eth_type_trans(skb, skb->dev);
6255                 if (ret == GRO_NORMAL)
6256                         gro_normal_one(napi, skb, 1);
6257                 break;
6258
6259         case GRO_MERGED_FREE:
6260                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6261                         napi_skb_free_stolen_head(skb);
6262                 else
6263                         napi_reuse_skb(napi, skb);
6264                 break;
6265
6266         case GRO_MERGED:
6267         case GRO_CONSUMED:
6268                 break;
6269         }
6270
6271         return ret;
6272 }
6273
6274 /* Upper GRO stack assumes network header starts at gro_offset=0
6275  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6276  * We copy ethernet header into skb->data to have a common layout.
6277  */
6278 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6279 {
6280         struct sk_buff *skb = napi->skb;
6281         const struct ethhdr *eth;
6282         unsigned int hlen = sizeof(*eth);
6283
6284         napi->skb = NULL;
6285
6286         skb_reset_mac_header(skb);
6287         skb_gro_reset_offset(skb, hlen);
6288
6289         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6290                 eth = skb_gro_header_slow(skb, hlen, 0);
6291                 if (unlikely(!eth)) {
6292                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6293                                              __func__, napi->dev->name);
6294                         napi_reuse_skb(napi, skb);
6295                         return NULL;
6296                 }
6297         } else {
6298                 eth = (const struct ethhdr *)skb->data;
6299                 gro_pull_from_frag0(skb, hlen);
6300                 NAPI_GRO_CB(skb)->frag0 += hlen;
6301                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6302         }
6303         __skb_pull(skb, hlen);
6304
6305         /*
6306          * This works because the only protocols we care about don't require
6307          * special handling.
6308          * We'll fix it up properly in napi_frags_finish()
6309          */
6310         skb->protocol = eth->h_proto;
6311
6312         return skb;
6313 }
6314
6315 gro_result_t napi_gro_frags(struct napi_struct *napi)
6316 {
6317         gro_result_t ret;
6318         struct sk_buff *skb = napi_frags_skb(napi);
6319
6320         trace_napi_gro_frags_entry(skb);
6321
6322         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6323         trace_napi_gro_frags_exit(ret);
6324
6325         return ret;
6326 }
6327 EXPORT_SYMBOL(napi_gro_frags);
6328
6329 /* Compute the checksum from gro_offset and return the folded value
6330  * after adding in any pseudo checksum.
6331  */
6332 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6333 {
6334         __wsum wsum;
6335         __sum16 sum;
6336
6337         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6338
6339         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6340         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6341         /* See comments in __skb_checksum_complete(). */
6342         if (likely(!sum)) {
6343                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6344                     !skb->csum_complete_sw)
6345                         netdev_rx_csum_fault(skb->dev, skb);
6346         }
6347
6348         NAPI_GRO_CB(skb)->csum = wsum;
6349         NAPI_GRO_CB(skb)->csum_valid = 1;
6350
6351         return sum;
6352 }
6353 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6354
6355 static void net_rps_send_ipi(struct softnet_data *remsd)
6356 {
6357 #ifdef CONFIG_RPS
6358         while (remsd) {
6359                 struct softnet_data *next = remsd->rps_ipi_next;
6360
6361                 if (cpu_online(remsd->cpu))
6362                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6363                 remsd = next;
6364         }
6365 #endif
6366 }
6367
6368 /*
6369  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6370  * Note: called with local irq disabled, but exits with local irq enabled.
6371  */
6372 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6373 {
6374 #ifdef CONFIG_RPS
6375         struct softnet_data *remsd = sd->rps_ipi_list;
6376
6377         if (remsd) {
6378                 sd->rps_ipi_list = NULL;
6379
6380                 local_irq_enable();
6381
6382                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6383                 net_rps_send_ipi(remsd);
6384         } else
6385 #endif
6386                 local_irq_enable();
6387 }
6388
6389 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6390 {
6391 #ifdef CONFIG_RPS
6392         return sd->rps_ipi_list != NULL;
6393 #else
6394         return false;
6395 #endif
6396 }
6397
6398 static int process_backlog(struct napi_struct *napi, int quota)
6399 {
6400         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6401         bool again = true;
6402         int work = 0;
6403
6404         /* Check if we have pending ipi, its better to send them now,
6405          * not waiting net_rx_action() end.
6406          */
6407         if (sd_has_rps_ipi_waiting(sd)) {
6408                 local_irq_disable();
6409                 net_rps_action_and_irq_enable(sd);
6410         }
6411
6412         napi->weight = dev_rx_weight;
6413         while (again) {
6414                 struct sk_buff *skb;
6415
6416                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6417                         rcu_read_lock();
6418                         __netif_receive_skb(skb);
6419                         rcu_read_unlock();
6420                         input_queue_head_incr(sd);
6421                         if (++work >= quota)
6422                                 return work;
6423
6424                 }
6425
6426                 local_irq_disable();
6427                 rps_lock(sd);
6428                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6429                         /*
6430                          * Inline a custom version of __napi_complete().
6431                          * only current cpu owns and manipulates this napi,
6432                          * and NAPI_STATE_SCHED is the only possible flag set
6433                          * on backlog.
6434                          * We can use a plain write instead of clear_bit(),
6435                          * and we dont need an smp_mb() memory barrier.
6436                          */
6437                         napi->state = 0;
6438                         again = false;
6439                 } else {
6440                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6441                                                    &sd->process_queue);
6442                 }
6443                 rps_unlock(sd);
6444                 local_irq_enable();
6445         }
6446
6447         return work;
6448 }
6449
6450 /**
6451  * __napi_schedule - schedule for receive
6452  * @n: entry to schedule
6453  *
6454  * The entry's receive function will be scheduled to run.
6455  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6456  */
6457 void __napi_schedule(struct napi_struct *n)
6458 {
6459         unsigned long flags;
6460
6461         local_irq_save(flags);
6462         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6463         local_irq_restore(flags);
6464 }
6465 EXPORT_SYMBOL(__napi_schedule);
6466
6467 /**
6468  *      napi_schedule_prep - check if napi can be scheduled
6469  *      @n: napi context
6470  *
6471  * Test if NAPI routine is already running, and if not mark
6472  * it as running.  This is used as a condition variable to
6473  * insure only one NAPI poll instance runs.  We also make
6474  * sure there is no pending NAPI disable.
6475  */
6476 bool napi_schedule_prep(struct napi_struct *n)
6477 {
6478         unsigned long val, new;
6479
6480         do {
6481                 val = READ_ONCE(n->state);
6482                 if (unlikely(val & NAPIF_STATE_DISABLE))
6483                         return false;
6484                 new = val | NAPIF_STATE_SCHED;
6485
6486                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6487                  * This was suggested by Alexander Duyck, as compiler
6488                  * emits better code than :
6489                  * if (val & NAPIF_STATE_SCHED)
6490                  *     new |= NAPIF_STATE_MISSED;
6491                  */
6492                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6493                                                    NAPIF_STATE_MISSED;
6494         } while (cmpxchg(&n->state, val, new) != val);
6495
6496         return !(val & NAPIF_STATE_SCHED);
6497 }
6498 EXPORT_SYMBOL(napi_schedule_prep);
6499
6500 /**
6501  * __napi_schedule_irqoff - schedule for receive
6502  * @n: entry to schedule
6503  *
6504  * Variant of __napi_schedule() assuming hard irqs are masked
6505  */
6506 void __napi_schedule_irqoff(struct napi_struct *n)
6507 {
6508         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6509 }
6510 EXPORT_SYMBOL(__napi_schedule_irqoff);
6511
6512 bool napi_complete_done(struct napi_struct *n, int work_done)
6513 {
6514         unsigned long flags, val, new, timeout = 0;
6515         bool ret = true;
6516
6517         /*
6518          * 1) Don't let napi dequeue from the cpu poll list
6519          *    just in case its running on a different cpu.
6520          * 2) If we are busy polling, do nothing here, we have
6521          *    the guarantee we will be called later.
6522          */
6523         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6524                                  NAPIF_STATE_IN_BUSY_POLL)))
6525                 return false;
6526
6527         if (work_done) {
6528                 if (n->gro_bitmask)
6529                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6530                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6531         }
6532         if (n->defer_hard_irqs_count > 0) {
6533                 n->defer_hard_irqs_count--;
6534                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6535                 if (timeout)
6536                         ret = false;
6537         }
6538         if (n->gro_bitmask) {
6539                 /* When the NAPI instance uses a timeout and keeps postponing
6540                  * it, we need to bound somehow the time packets are kept in
6541                  * the GRO layer
6542                  */
6543                 napi_gro_flush(n, !!timeout);
6544         }
6545
6546         gro_normal_list(n);
6547
6548         if (unlikely(!list_empty(&n->poll_list))) {
6549                 /* If n->poll_list is not empty, we need to mask irqs */
6550                 local_irq_save(flags);
6551                 list_del_init(&n->poll_list);
6552                 local_irq_restore(flags);
6553         }
6554
6555         do {
6556                 val = READ_ONCE(n->state);
6557
6558                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6559
6560                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6561                               NAPIF_STATE_SCHED_THREADED |
6562                               NAPIF_STATE_PREFER_BUSY_POLL);
6563
6564                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6565                  * because we will call napi->poll() one more time.
6566                  * This C code was suggested by Alexander Duyck to help gcc.
6567                  */
6568                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6569                                                     NAPIF_STATE_SCHED;
6570         } while (cmpxchg(&n->state, val, new) != val);
6571
6572         if (unlikely(val & NAPIF_STATE_MISSED)) {
6573                 __napi_schedule(n);
6574                 return false;
6575         }
6576
6577         if (timeout)
6578                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6579                               HRTIMER_MODE_REL_PINNED);
6580         return ret;
6581 }
6582 EXPORT_SYMBOL(napi_complete_done);
6583
6584 /* must be called under rcu_read_lock(), as we dont take a reference */
6585 static struct napi_struct *napi_by_id(unsigned int napi_id)
6586 {
6587         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6588         struct napi_struct *napi;
6589
6590         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6591                 if (napi->napi_id == napi_id)
6592                         return napi;
6593
6594         return NULL;
6595 }
6596
6597 #if defined(CONFIG_NET_RX_BUSY_POLL)
6598
6599 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6600 {
6601         if (!skip_schedule) {
6602                 gro_normal_list(napi);
6603                 __napi_schedule(napi);
6604                 return;
6605         }
6606
6607         if (napi->gro_bitmask) {
6608                 /* flush too old packets
6609                  * If HZ < 1000, flush all packets.
6610                  */
6611                 napi_gro_flush(napi, HZ >= 1000);
6612         }
6613
6614         gro_normal_list(napi);
6615         clear_bit(NAPI_STATE_SCHED, &napi->state);
6616 }
6617
6618 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6619                            u16 budget)
6620 {
6621         bool skip_schedule = false;
6622         unsigned long timeout;
6623         int rc;
6624
6625         /* Busy polling means there is a high chance device driver hard irq
6626          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6627          * set in napi_schedule_prep().
6628          * Since we are about to call napi->poll() once more, we can safely
6629          * clear NAPI_STATE_MISSED.
6630          *
6631          * Note: x86 could use a single "lock and ..." instruction
6632          * to perform these two clear_bit()
6633          */
6634         clear_bit(NAPI_STATE_MISSED, &napi->state);
6635         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6636
6637         local_bh_disable();
6638
6639         if (prefer_busy_poll) {
6640                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6641                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6642                 if (napi->defer_hard_irqs_count && timeout) {
6643                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6644                         skip_schedule = true;
6645                 }
6646         }
6647
6648         /* All we really want here is to re-enable device interrupts.
6649          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6650          */
6651         rc = napi->poll(napi, budget);
6652         /* We can't gro_normal_list() here, because napi->poll() might have
6653          * rearmed the napi (napi_complete_done()) in which case it could
6654          * already be running on another CPU.
6655          */
6656         trace_napi_poll(napi, rc, budget);
6657         netpoll_poll_unlock(have_poll_lock);
6658         if (rc == budget)
6659                 __busy_poll_stop(napi, skip_schedule);
6660         local_bh_enable();
6661 }
6662
6663 void napi_busy_loop(unsigned int napi_id,
6664                     bool (*loop_end)(void *, unsigned long),
6665                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6666 {
6667         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6668         int (*napi_poll)(struct napi_struct *napi, int budget);
6669         void *have_poll_lock = NULL;
6670         struct napi_struct *napi;
6671
6672 restart:
6673         napi_poll = NULL;
6674
6675         rcu_read_lock();
6676
6677         napi = napi_by_id(napi_id);
6678         if (!napi)
6679                 goto out;
6680
6681         preempt_disable();
6682         for (;;) {
6683                 int work = 0;
6684
6685                 local_bh_disable();
6686                 if (!napi_poll) {
6687                         unsigned long val = READ_ONCE(napi->state);
6688
6689                         /* If multiple threads are competing for this napi,
6690                          * we avoid dirtying napi->state as much as we can.
6691                          */
6692                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6693                                    NAPIF_STATE_IN_BUSY_POLL)) {
6694                                 if (prefer_busy_poll)
6695                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6696                                 goto count;
6697                         }
6698                         if (cmpxchg(&napi->state, val,
6699                                     val | NAPIF_STATE_IN_BUSY_POLL |
6700                                           NAPIF_STATE_SCHED) != val) {
6701                                 if (prefer_busy_poll)
6702                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6703                                 goto count;
6704                         }
6705                         have_poll_lock = netpoll_poll_lock(napi);
6706                         napi_poll = napi->poll;
6707                 }
6708                 work = napi_poll(napi, budget);
6709                 trace_napi_poll(napi, work, budget);
6710                 gro_normal_list(napi);
6711 count:
6712                 if (work > 0)
6713                         __NET_ADD_STATS(dev_net(napi->dev),
6714                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6715                 local_bh_enable();
6716
6717                 if (!loop_end || loop_end(loop_end_arg, start_time))
6718                         break;
6719
6720                 if (unlikely(need_resched())) {
6721                         if (napi_poll)
6722                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6723                         preempt_enable();
6724                         rcu_read_unlock();
6725                         cond_resched();
6726                         if (loop_end(loop_end_arg, start_time))
6727                                 return;
6728                         goto restart;
6729                 }
6730                 cpu_relax();
6731         }
6732         if (napi_poll)
6733                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6734         preempt_enable();
6735 out:
6736         rcu_read_unlock();
6737 }
6738 EXPORT_SYMBOL(napi_busy_loop);
6739
6740 #endif /* CONFIG_NET_RX_BUSY_POLL */
6741
6742 static void napi_hash_add(struct napi_struct *napi)
6743 {
6744         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6745                 return;
6746
6747         spin_lock(&napi_hash_lock);
6748
6749         /* 0..NR_CPUS range is reserved for sender_cpu use */
6750         do {
6751                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6752                         napi_gen_id = MIN_NAPI_ID;
6753         } while (napi_by_id(napi_gen_id));
6754         napi->napi_id = napi_gen_id;
6755
6756         hlist_add_head_rcu(&napi->napi_hash_node,
6757                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6758
6759         spin_unlock(&napi_hash_lock);
6760 }
6761
6762 /* Warning : caller is responsible to make sure rcu grace period
6763  * is respected before freeing memory containing @napi
6764  */
6765 static void napi_hash_del(struct napi_struct *napi)
6766 {
6767         spin_lock(&napi_hash_lock);
6768
6769         hlist_del_init_rcu(&napi->napi_hash_node);
6770
6771         spin_unlock(&napi_hash_lock);
6772 }
6773
6774 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6775 {
6776         struct napi_struct *napi;
6777
6778         napi = container_of(timer, struct napi_struct, timer);
6779
6780         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6781          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6782          */
6783         if (!napi_disable_pending(napi) &&
6784             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6785                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6786                 __napi_schedule_irqoff(napi);
6787         }
6788
6789         return HRTIMER_NORESTART;
6790 }
6791
6792 static void init_gro_hash(struct napi_struct *napi)
6793 {
6794         int i;
6795
6796         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6797                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6798                 napi->gro_hash[i].count = 0;
6799         }
6800         napi->gro_bitmask = 0;
6801 }
6802
6803 int dev_set_threaded(struct net_device *dev, bool threaded)
6804 {
6805         struct napi_struct *napi;
6806         int err = 0;
6807
6808         if (dev->threaded == threaded)
6809                 return 0;
6810
6811         if (threaded) {
6812                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6813                         if (!napi->thread) {
6814                                 err = napi_kthread_create(napi);
6815                                 if (err) {
6816                                         threaded = false;
6817                                         break;
6818                                 }
6819                         }
6820                 }
6821         }
6822
6823         dev->threaded = threaded;
6824
6825         /* Make sure kthread is created before THREADED bit
6826          * is set.
6827          */
6828         smp_mb__before_atomic();
6829
6830         /* Setting/unsetting threaded mode on a napi might not immediately
6831          * take effect, if the current napi instance is actively being
6832          * polled. In this case, the switch between threaded mode and
6833          * softirq mode will happen in the next round of napi_schedule().
6834          * This should not cause hiccups/stalls to the live traffic.
6835          */
6836         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6837                 if (threaded)
6838                         set_bit(NAPI_STATE_THREADED, &napi->state);
6839                 else
6840                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6841         }
6842
6843         return err;
6844 }
6845 EXPORT_SYMBOL(dev_set_threaded);
6846
6847 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6848                     int (*poll)(struct napi_struct *, int), int weight)
6849 {
6850         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6851                 return;
6852
6853         INIT_LIST_HEAD(&napi->poll_list);
6854         INIT_HLIST_NODE(&napi->napi_hash_node);
6855         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6856         napi->timer.function = napi_watchdog;
6857         init_gro_hash(napi);
6858         napi->skb = NULL;
6859         INIT_LIST_HEAD(&napi->rx_list);
6860         napi->rx_count = 0;
6861         napi->poll = poll;
6862         if (weight > NAPI_POLL_WEIGHT)
6863                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6864                                 weight);
6865         napi->weight = weight;
6866         napi->dev = dev;
6867 #ifdef CONFIG_NETPOLL
6868         napi->poll_owner = -1;
6869 #endif
6870         set_bit(NAPI_STATE_SCHED, &napi->state);
6871         set_bit(NAPI_STATE_NPSVC, &napi->state);
6872         list_add_rcu(&napi->dev_list, &dev->napi_list);
6873         napi_hash_add(napi);
6874         /* Create kthread for this napi if dev->threaded is set.
6875          * Clear dev->threaded if kthread creation failed so that
6876          * threaded mode will not be enabled in napi_enable().
6877          */
6878         if (dev->threaded && napi_kthread_create(napi))
6879                 dev->threaded = 0;
6880 }
6881 EXPORT_SYMBOL(netif_napi_add);
6882
6883 void napi_disable(struct napi_struct *n)
6884 {
6885         might_sleep();
6886         set_bit(NAPI_STATE_DISABLE, &n->state);
6887
6888         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6889                 msleep(1);
6890         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6891                 msleep(1);
6892
6893         hrtimer_cancel(&n->timer);
6894
6895         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6896         clear_bit(NAPI_STATE_DISABLE, &n->state);
6897         clear_bit(NAPI_STATE_THREADED, &n->state);
6898 }
6899 EXPORT_SYMBOL(napi_disable);
6900
6901 /**
6902  *      napi_enable - enable NAPI scheduling
6903  *      @n: NAPI context
6904  *
6905  * Resume NAPI from being scheduled on this context.
6906  * Must be paired with napi_disable.
6907  */
6908 void napi_enable(struct napi_struct *n)
6909 {
6910         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6911         smp_mb__before_atomic();
6912         clear_bit(NAPI_STATE_SCHED, &n->state);
6913         clear_bit(NAPI_STATE_NPSVC, &n->state);
6914         if (n->dev->threaded && n->thread)
6915                 set_bit(NAPI_STATE_THREADED, &n->state);
6916 }
6917 EXPORT_SYMBOL(napi_enable);
6918
6919 static void flush_gro_hash(struct napi_struct *napi)
6920 {
6921         int i;
6922
6923         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6924                 struct sk_buff *skb, *n;
6925
6926                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6927                         kfree_skb(skb);
6928                 napi->gro_hash[i].count = 0;
6929         }
6930 }
6931
6932 /* Must be called in process context */
6933 void __netif_napi_del(struct napi_struct *napi)
6934 {
6935         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6936                 return;
6937
6938         napi_hash_del(napi);
6939         list_del_rcu(&napi->dev_list);
6940         napi_free_frags(napi);
6941
6942         flush_gro_hash(napi);
6943         napi->gro_bitmask = 0;
6944
6945         if (napi->thread) {
6946                 kthread_stop(napi->thread);
6947                 napi->thread = NULL;
6948         }
6949 }
6950 EXPORT_SYMBOL(__netif_napi_del);
6951
6952 static int __napi_poll(struct napi_struct *n, bool *repoll)
6953 {
6954         int work, weight;
6955
6956         weight = n->weight;
6957
6958         /* This NAPI_STATE_SCHED test is for avoiding a race
6959          * with netpoll's poll_napi().  Only the entity which
6960          * obtains the lock and sees NAPI_STATE_SCHED set will
6961          * actually make the ->poll() call.  Therefore we avoid
6962          * accidentally calling ->poll() when NAPI is not scheduled.
6963          */
6964         work = 0;
6965         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6966                 work = n->poll(n, weight);
6967                 trace_napi_poll(n, work, weight);
6968         }
6969
6970         if (unlikely(work > weight))
6971                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6972                             n->poll, work, weight);
6973
6974         if (likely(work < weight))
6975                 return work;
6976
6977         /* Drivers must not modify the NAPI state if they
6978          * consume the entire weight.  In such cases this code
6979          * still "owns" the NAPI instance and therefore can
6980          * move the instance around on the list at-will.
6981          */
6982         if (unlikely(napi_disable_pending(n))) {
6983                 napi_complete(n);
6984                 return work;
6985         }
6986
6987         /* The NAPI context has more processing work, but busy-polling
6988          * is preferred. Exit early.
6989          */
6990         if (napi_prefer_busy_poll(n)) {
6991                 if (napi_complete_done(n, work)) {
6992                         /* If timeout is not set, we need to make sure
6993                          * that the NAPI is re-scheduled.
6994                          */
6995                         napi_schedule(n);
6996                 }
6997                 return work;
6998         }
6999
7000         if (n->gro_bitmask) {
7001                 /* flush too old packets
7002                  * If HZ < 1000, flush all packets.
7003                  */
7004                 napi_gro_flush(n, HZ >= 1000);
7005         }
7006
7007         gro_normal_list(n);
7008
7009         /* Some drivers may have called napi_schedule
7010          * prior to exhausting their budget.
7011          */
7012         if (unlikely(!list_empty(&n->poll_list))) {
7013                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7014                              n->dev ? n->dev->name : "backlog");
7015                 return work;
7016         }
7017
7018         *repoll = true;
7019
7020         return work;
7021 }
7022
7023 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7024 {
7025         bool do_repoll = false;
7026         void *have;
7027         int work;
7028
7029         list_del_init(&n->poll_list);
7030
7031         have = netpoll_poll_lock(n);
7032
7033         work = __napi_poll(n, &do_repoll);
7034
7035         if (do_repoll)
7036                 list_add_tail(&n->poll_list, repoll);
7037
7038         netpoll_poll_unlock(have);
7039
7040         return work;
7041 }
7042
7043 static int napi_thread_wait(struct napi_struct *napi)
7044 {
7045         bool woken = false;
7046
7047         set_current_state(TASK_INTERRUPTIBLE);
7048
7049         while (!kthread_should_stop()) {
7050                 /* Testing SCHED_THREADED bit here to make sure the current
7051                  * kthread owns this napi and could poll on this napi.
7052                  * Testing SCHED bit is not enough because SCHED bit might be
7053                  * set by some other busy poll thread or by napi_disable().
7054                  */
7055                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7056                         WARN_ON(!list_empty(&napi->poll_list));
7057                         __set_current_state(TASK_RUNNING);
7058                         return 0;
7059                 }
7060
7061                 schedule();
7062                 /* woken being true indicates this thread owns this napi. */
7063                 woken = true;
7064                 set_current_state(TASK_INTERRUPTIBLE);
7065         }
7066         __set_current_state(TASK_RUNNING);
7067
7068         return -1;
7069 }
7070
7071 static int napi_threaded_poll(void *data)
7072 {
7073         struct napi_struct *napi = data;
7074         void *have;
7075
7076         while (!napi_thread_wait(napi)) {
7077                 for (;;) {
7078                         bool repoll = false;
7079
7080                         local_bh_disable();
7081
7082                         have = netpoll_poll_lock(napi);
7083                         __napi_poll(napi, &repoll);
7084                         netpoll_poll_unlock(have);
7085
7086                         local_bh_enable();
7087
7088                         if (!repoll)
7089                                 break;
7090
7091                         cond_resched();
7092                 }
7093         }
7094         return 0;
7095 }
7096
7097 static __latent_entropy void net_rx_action(struct softirq_action *h)
7098 {
7099         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7100         unsigned long time_limit = jiffies +
7101                 usecs_to_jiffies(netdev_budget_usecs);
7102         int budget = netdev_budget;
7103         LIST_HEAD(list);
7104         LIST_HEAD(repoll);
7105
7106         local_irq_disable();
7107         list_splice_init(&sd->poll_list, &list);
7108         local_irq_enable();
7109
7110         for (;;) {
7111                 struct napi_struct *n;
7112
7113                 if (list_empty(&list)) {
7114                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7115                                 return;
7116                         break;
7117                 }
7118
7119                 n = list_first_entry(&list, struct napi_struct, poll_list);
7120                 budget -= napi_poll(n, &repoll);
7121
7122                 /* If softirq window is exhausted then punt.
7123                  * Allow this to run for 2 jiffies since which will allow
7124                  * an average latency of 1.5/HZ.
7125                  */
7126                 if (unlikely(budget <= 0 ||
7127                              time_after_eq(jiffies, time_limit))) {
7128                         sd->time_squeeze++;
7129                         break;
7130                 }
7131         }
7132
7133         local_irq_disable();
7134
7135         list_splice_tail_init(&sd->poll_list, &list);
7136         list_splice_tail(&repoll, &list);
7137         list_splice(&list, &sd->poll_list);
7138         if (!list_empty(&sd->poll_list))
7139                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7140
7141         net_rps_action_and_irq_enable(sd);
7142 }
7143
7144 struct netdev_adjacent {
7145         struct net_device *dev;
7146
7147         /* upper master flag, there can only be one master device per list */
7148         bool master;
7149
7150         /* lookup ignore flag */
7151         bool ignore;
7152
7153         /* counter for the number of times this device was added to us */
7154         u16 ref_nr;
7155
7156         /* private field for the users */
7157         void *private;
7158
7159         struct list_head list;
7160         struct rcu_head rcu;
7161 };
7162
7163 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7164                                                  struct list_head *adj_list)
7165 {
7166         struct netdev_adjacent *adj;
7167
7168         list_for_each_entry(adj, adj_list, list) {
7169                 if (adj->dev == adj_dev)
7170                         return adj;
7171         }
7172         return NULL;
7173 }
7174
7175 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7176                                     struct netdev_nested_priv *priv)
7177 {
7178         struct net_device *dev = (struct net_device *)priv->data;
7179
7180         return upper_dev == dev;
7181 }
7182
7183 /**
7184  * netdev_has_upper_dev - Check if device is linked to an upper device
7185  * @dev: device
7186  * @upper_dev: upper device to check
7187  *
7188  * Find out if a device is linked to specified upper device and return true
7189  * in case it is. Note that this checks only immediate upper device,
7190  * not through a complete stack of devices. The caller must hold the RTNL lock.
7191  */
7192 bool netdev_has_upper_dev(struct net_device *dev,
7193                           struct net_device *upper_dev)
7194 {
7195         struct netdev_nested_priv priv = {
7196                 .data = (void *)upper_dev,
7197         };
7198
7199         ASSERT_RTNL();
7200
7201         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7202                                              &priv);
7203 }
7204 EXPORT_SYMBOL(netdev_has_upper_dev);
7205
7206 /**
7207  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7208  * @dev: device
7209  * @upper_dev: upper device to check
7210  *
7211  * Find out if a device is linked to specified upper device and return true
7212  * in case it is. Note that this checks the entire upper device chain.
7213  * The caller must hold rcu lock.
7214  */
7215
7216 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7217                                   struct net_device *upper_dev)
7218 {
7219         struct netdev_nested_priv priv = {
7220                 .data = (void *)upper_dev,
7221         };
7222
7223         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7224                                                &priv);
7225 }
7226 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7227
7228 /**
7229  * netdev_has_any_upper_dev - Check if device is linked to some device
7230  * @dev: device
7231  *
7232  * Find out if a device is linked to an upper device and return true in case
7233  * it is. The caller must hold the RTNL lock.
7234  */
7235 bool netdev_has_any_upper_dev(struct net_device *dev)
7236 {
7237         ASSERT_RTNL();
7238
7239         return !list_empty(&dev->adj_list.upper);
7240 }
7241 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7242
7243 /**
7244  * netdev_master_upper_dev_get - Get master upper device
7245  * @dev: device
7246  *
7247  * Find a master upper device and return pointer to it or NULL in case
7248  * it's not there. The caller must hold the RTNL lock.
7249  */
7250 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7251 {
7252         struct netdev_adjacent *upper;
7253
7254         ASSERT_RTNL();
7255
7256         if (list_empty(&dev->adj_list.upper))
7257                 return NULL;
7258
7259         upper = list_first_entry(&dev->adj_list.upper,
7260                                  struct netdev_adjacent, list);
7261         if (likely(upper->master))
7262                 return upper->dev;
7263         return NULL;
7264 }
7265 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7266
7267 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7268 {
7269         struct netdev_adjacent *upper;
7270
7271         ASSERT_RTNL();
7272
7273         if (list_empty(&dev->adj_list.upper))
7274                 return NULL;
7275
7276         upper = list_first_entry(&dev->adj_list.upper,
7277                                  struct netdev_adjacent, list);
7278         if (likely(upper->master) && !upper->ignore)
7279                 return upper->dev;
7280         return NULL;
7281 }
7282
7283 /**
7284  * netdev_has_any_lower_dev - Check if device is linked to some device
7285  * @dev: device
7286  *
7287  * Find out if a device is linked to a lower device and return true in case
7288  * it is. The caller must hold the RTNL lock.
7289  */
7290 static bool netdev_has_any_lower_dev(struct net_device *dev)
7291 {
7292         ASSERT_RTNL();
7293
7294         return !list_empty(&dev->adj_list.lower);
7295 }
7296
7297 void *netdev_adjacent_get_private(struct list_head *adj_list)
7298 {
7299         struct netdev_adjacent *adj;
7300
7301         adj = list_entry(adj_list, struct netdev_adjacent, list);
7302
7303         return adj->private;
7304 }
7305 EXPORT_SYMBOL(netdev_adjacent_get_private);
7306
7307 /**
7308  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7309  * @dev: device
7310  * @iter: list_head ** of the current position
7311  *
7312  * Gets the next device from the dev's upper list, starting from iter
7313  * position. The caller must hold RCU read lock.
7314  */
7315 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7316                                                  struct list_head **iter)
7317 {
7318         struct netdev_adjacent *upper;
7319
7320         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7321
7322         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7323
7324         if (&upper->list == &dev->adj_list.upper)
7325                 return NULL;
7326
7327         *iter = &upper->list;
7328
7329         return upper->dev;
7330 }
7331 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7332
7333 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7334                                                   struct list_head **iter,
7335                                                   bool *ignore)
7336 {
7337         struct netdev_adjacent *upper;
7338
7339         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7340
7341         if (&upper->list == &dev->adj_list.upper)
7342                 return NULL;
7343
7344         *iter = &upper->list;
7345         *ignore = upper->ignore;
7346
7347         return upper->dev;
7348 }
7349
7350 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7351                                                     struct list_head **iter)
7352 {
7353         struct netdev_adjacent *upper;
7354
7355         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7356
7357         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7358
7359         if (&upper->list == &dev->adj_list.upper)
7360                 return NULL;
7361
7362         *iter = &upper->list;
7363
7364         return upper->dev;
7365 }
7366
7367 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7368                                        int (*fn)(struct net_device *dev,
7369                                          struct netdev_nested_priv *priv),
7370                                        struct netdev_nested_priv *priv)
7371 {
7372         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7373         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7374         int ret, cur = 0;
7375         bool ignore;
7376
7377         now = dev;
7378         iter = &dev->adj_list.upper;
7379
7380         while (1) {
7381                 if (now != dev) {
7382                         ret = fn(now, priv);
7383                         if (ret)
7384                                 return ret;
7385                 }
7386
7387                 next = NULL;
7388                 while (1) {
7389                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7390                         if (!udev)
7391                                 break;
7392                         if (ignore)
7393                                 continue;
7394
7395                         next = udev;
7396                         niter = &udev->adj_list.upper;
7397                         dev_stack[cur] = now;
7398                         iter_stack[cur++] = iter;
7399                         break;
7400                 }
7401
7402                 if (!next) {
7403                         if (!cur)
7404                                 return 0;
7405                         next = dev_stack[--cur];
7406                         niter = iter_stack[cur];
7407                 }
7408
7409                 now = next;
7410                 iter = niter;
7411         }
7412
7413         return 0;
7414 }
7415
7416 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7417                                   int (*fn)(struct net_device *dev,
7418                                             struct netdev_nested_priv *priv),
7419                                   struct netdev_nested_priv *priv)
7420 {
7421         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423         int ret, cur = 0;
7424
7425         now = dev;
7426         iter = &dev->adj_list.upper;
7427
7428         while (1) {
7429                 if (now != dev) {
7430                         ret = fn(now, priv);
7431                         if (ret)
7432                                 return ret;
7433                 }
7434
7435                 next = NULL;
7436                 while (1) {
7437                         udev = netdev_next_upper_dev_rcu(now, &iter);
7438                         if (!udev)
7439                                 break;
7440
7441                         next = udev;
7442                         niter = &udev->adj_list.upper;
7443                         dev_stack[cur] = now;
7444                         iter_stack[cur++] = iter;
7445                         break;
7446                 }
7447
7448                 if (!next) {
7449                         if (!cur)
7450                                 return 0;
7451                         next = dev_stack[--cur];
7452                         niter = iter_stack[cur];
7453                 }
7454
7455                 now = next;
7456                 iter = niter;
7457         }
7458
7459         return 0;
7460 }
7461 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7462
7463 static bool __netdev_has_upper_dev(struct net_device *dev,
7464                                    struct net_device *upper_dev)
7465 {
7466         struct netdev_nested_priv priv = {
7467                 .flags = 0,
7468                 .data = (void *)upper_dev,
7469         };
7470
7471         ASSERT_RTNL();
7472
7473         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7474                                            &priv);
7475 }
7476
7477 /**
7478  * netdev_lower_get_next_private - Get the next ->private from the
7479  *                                 lower neighbour list
7480  * @dev: device
7481  * @iter: list_head ** of the current position
7482  *
7483  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7484  * list, starting from iter position. The caller must hold either hold the
7485  * RTNL lock or its own locking that guarantees that the neighbour lower
7486  * list will remain unchanged.
7487  */
7488 void *netdev_lower_get_next_private(struct net_device *dev,
7489                                     struct list_head **iter)
7490 {
7491         struct netdev_adjacent *lower;
7492
7493         lower = list_entry(*iter, struct netdev_adjacent, list);
7494
7495         if (&lower->list == &dev->adj_list.lower)
7496                 return NULL;
7497
7498         *iter = lower->list.next;
7499
7500         return lower->private;
7501 }
7502 EXPORT_SYMBOL(netdev_lower_get_next_private);
7503
7504 /**
7505  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7506  *                                     lower neighbour list, RCU
7507  *                                     variant
7508  * @dev: device
7509  * @iter: list_head ** of the current position
7510  *
7511  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7512  * list, starting from iter position. The caller must hold RCU read lock.
7513  */
7514 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7515                                         struct list_head **iter)
7516 {
7517         struct netdev_adjacent *lower;
7518
7519         WARN_ON_ONCE(!rcu_read_lock_held());
7520
7521         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7522
7523         if (&lower->list == &dev->adj_list.lower)
7524                 return NULL;
7525
7526         *iter = &lower->list;
7527
7528         return lower->private;
7529 }
7530 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7531
7532 /**
7533  * netdev_lower_get_next - Get the next device from the lower neighbour
7534  *                         list
7535  * @dev: device
7536  * @iter: list_head ** of the current position
7537  *
7538  * Gets the next netdev_adjacent from the dev's lower neighbour
7539  * list, starting from iter position. The caller must hold RTNL lock or
7540  * its own locking that guarantees that the neighbour lower
7541  * list will remain unchanged.
7542  */
7543 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7544 {
7545         struct netdev_adjacent *lower;
7546
7547         lower = list_entry(*iter, struct netdev_adjacent, list);
7548
7549         if (&lower->list == &dev->adj_list.lower)
7550                 return NULL;
7551
7552         *iter = lower->list.next;
7553
7554         return lower->dev;
7555 }
7556 EXPORT_SYMBOL(netdev_lower_get_next);
7557
7558 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7559                                                 struct list_head **iter)
7560 {
7561         struct netdev_adjacent *lower;
7562
7563         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7564
7565         if (&lower->list == &dev->adj_list.lower)
7566                 return NULL;
7567
7568         *iter = &lower->list;
7569
7570         return lower->dev;
7571 }
7572
7573 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7574                                                   struct list_head **iter,
7575                                                   bool *ignore)
7576 {
7577         struct netdev_adjacent *lower;
7578
7579         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7580
7581         if (&lower->list == &dev->adj_list.lower)
7582                 return NULL;
7583
7584         *iter = &lower->list;
7585         *ignore = lower->ignore;
7586
7587         return lower->dev;
7588 }
7589
7590 int netdev_walk_all_lower_dev(struct net_device *dev,
7591                               int (*fn)(struct net_device *dev,
7592                                         struct netdev_nested_priv *priv),
7593                               struct netdev_nested_priv *priv)
7594 {
7595         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7596         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7597         int ret, cur = 0;
7598
7599         now = dev;
7600         iter = &dev->adj_list.lower;
7601
7602         while (1) {
7603                 if (now != dev) {
7604                         ret = fn(now, priv);
7605                         if (ret)
7606                                 return ret;
7607                 }
7608
7609                 next = NULL;
7610                 while (1) {
7611                         ldev = netdev_next_lower_dev(now, &iter);
7612                         if (!ldev)
7613                                 break;
7614
7615                         next = ldev;
7616                         niter = &ldev->adj_list.lower;
7617                         dev_stack[cur] = now;
7618                         iter_stack[cur++] = iter;
7619                         break;
7620                 }
7621
7622                 if (!next) {
7623                         if (!cur)
7624                                 return 0;
7625                         next = dev_stack[--cur];
7626                         niter = iter_stack[cur];
7627                 }
7628
7629                 now = next;
7630                 iter = niter;
7631         }
7632
7633         return 0;
7634 }
7635 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7636
7637 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7638                                        int (*fn)(struct net_device *dev,
7639                                          struct netdev_nested_priv *priv),
7640                                        struct netdev_nested_priv *priv)
7641 {
7642         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7643         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7644         int ret, cur = 0;
7645         bool ignore;
7646
7647         now = dev;
7648         iter = &dev->adj_list.lower;
7649
7650         while (1) {
7651                 if (now != dev) {
7652                         ret = fn(now, priv);
7653                         if (ret)
7654                                 return ret;
7655                 }
7656
7657                 next = NULL;
7658                 while (1) {
7659                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7660                         if (!ldev)
7661                                 break;
7662                         if (ignore)
7663                                 continue;
7664
7665                         next = ldev;
7666                         niter = &ldev->adj_list.lower;
7667                         dev_stack[cur] = now;
7668                         iter_stack[cur++] = iter;
7669                         break;
7670                 }
7671
7672                 if (!next) {
7673                         if (!cur)
7674                                 return 0;
7675                         next = dev_stack[--cur];
7676                         niter = iter_stack[cur];
7677                 }
7678
7679                 now = next;
7680                 iter = niter;
7681         }
7682
7683         return 0;
7684 }
7685
7686 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7687                                              struct list_head **iter)
7688 {
7689         struct netdev_adjacent *lower;
7690
7691         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7692         if (&lower->list == &dev->adj_list.lower)
7693                 return NULL;
7694
7695         *iter = &lower->list;
7696
7697         return lower->dev;
7698 }
7699 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7700
7701 static u8 __netdev_upper_depth(struct net_device *dev)
7702 {
7703         struct net_device *udev;
7704         struct list_head *iter;
7705         u8 max_depth = 0;
7706         bool ignore;
7707
7708         for (iter = &dev->adj_list.upper,
7709              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7710              udev;
7711              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7712                 if (ignore)
7713                         continue;
7714                 if (max_depth < udev->upper_level)
7715                         max_depth = udev->upper_level;
7716         }
7717
7718         return max_depth;
7719 }
7720
7721 static u8 __netdev_lower_depth(struct net_device *dev)
7722 {
7723         struct net_device *ldev;
7724         struct list_head *iter;
7725         u8 max_depth = 0;
7726         bool ignore;
7727
7728         for (iter = &dev->adj_list.lower,
7729              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7730              ldev;
7731              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7732                 if (ignore)
7733                         continue;
7734                 if (max_depth < ldev->lower_level)
7735                         max_depth = ldev->lower_level;
7736         }
7737
7738         return max_depth;
7739 }
7740
7741 static int __netdev_update_upper_level(struct net_device *dev,
7742                                        struct netdev_nested_priv *__unused)
7743 {
7744         dev->upper_level = __netdev_upper_depth(dev) + 1;
7745         return 0;
7746 }
7747
7748 static int __netdev_update_lower_level(struct net_device *dev,
7749                                        struct netdev_nested_priv *priv)
7750 {
7751         dev->lower_level = __netdev_lower_depth(dev) + 1;
7752
7753 #ifdef CONFIG_LOCKDEP
7754         if (!priv)
7755                 return 0;
7756
7757         if (priv->flags & NESTED_SYNC_IMM)
7758                 dev->nested_level = dev->lower_level - 1;
7759         if (priv->flags & NESTED_SYNC_TODO)
7760                 net_unlink_todo(dev);
7761 #endif
7762         return 0;
7763 }
7764
7765 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7766                                   int (*fn)(struct net_device *dev,
7767                                             struct netdev_nested_priv *priv),
7768                                   struct netdev_nested_priv *priv)
7769 {
7770         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7771         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7772         int ret, cur = 0;
7773
7774         now = dev;
7775         iter = &dev->adj_list.lower;
7776
7777         while (1) {
7778                 if (now != dev) {
7779                         ret = fn(now, priv);
7780                         if (ret)
7781                                 return ret;
7782                 }
7783
7784                 next = NULL;
7785                 while (1) {
7786                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7787                         if (!ldev)
7788                                 break;
7789
7790                         next = ldev;
7791                         niter = &ldev->adj_list.lower;
7792                         dev_stack[cur] = now;
7793                         iter_stack[cur++] = iter;
7794                         break;
7795                 }
7796
7797                 if (!next) {
7798                         if (!cur)
7799                                 return 0;
7800                         next = dev_stack[--cur];
7801                         niter = iter_stack[cur];
7802                 }
7803
7804                 now = next;
7805                 iter = niter;
7806         }
7807
7808         return 0;
7809 }
7810 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7811
7812 /**
7813  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7814  *                                     lower neighbour list, RCU
7815  *                                     variant
7816  * @dev: device
7817  *
7818  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7819  * list. The caller must hold RCU read lock.
7820  */
7821 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7822 {
7823         struct netdev_adjacent *lower;
7824
7825         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7826                         struct netdev_adjacent, list);
7827         if (lower)
7828                 return lower->private;
7829         return NULL;
7830 }
7831 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7832
7833 /**
7834  * netdev_master_upper_dev_get_rcu - Get master upper device
7835  * @dev: device
7836  *
7837  * Find a master upper device and return pointer to it or NULL in case
7838  * it's not there. The caller must hold the RCU read lock.
7839  */
7840 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7841 {
7842         struct netdev_adjacent *upper;
7843
7844         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7845                                        struct netdev_adjacent, list);
7846         if (upper && likely(upper->master))
7847                 return upper->dev;
7848         return NULL;
7849 }
7850 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7851
7852 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7853                               struct net_device *adj_dev,
7854                               struct list_head *dev_list)
7855 {
7856         char linkname[IFNAMSIZ+7];
7857
7858         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7859                 "upper_%s" : "lower_%s", adj_dev->name);
7860         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7861                                  linkname);
7862 }
7863 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7864                                char *name,
7865                                struct list_head *dev_list)
7866 {
7867         char linkname[IFNAMSIZ+7];
7868
7869         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7870                 "upper_%s" : "lower_%s", name);
7871         sysfs_remove_link(&(dev->dev.kobj), linkname);
7872 }
7873
7874 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7875                                                  struct net_device *adj_dev,
7876                                                  struct list_head *dev_list)
7877 {
7878         return (dev_list == &dev->adj_list.upper ||
7879                 dev_list == &dev->adj_list.lower) &&
7880                 net_eq(dev_net(dev), dev_net(adj_dev));
7881 }
7882
7883 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7884                                         struct net_device *adj_dev,
7885                                         struct list_head *dev_list,
7886                                         void *private, bool master)
7887 {
7888         struct netdev_adjacent *adj;
7889         int ret;
7890
7891         adj = __netdev_find_adj(adj_dev, dev_list);
7892
7893         if (adj) {
7894                 adj->ref_nr += 1;
7895                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7896                          dev->name, adj_dev->name, adj->ref_nr);
7897
7898                 return 0;
7899         }
7900
7901         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7902         if (!adj)
7903                 return -ENOMEM;
7904
7905         adj->dev = adj_dev;
7906         adj->master = master;
7907         adj->ref_nr = 1;
7908         adj->private = private;
7909         adj->ignore = false;
7910         dev_hold(adj_dev);
7911
7912         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7913                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7914
7915         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7916                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7917                 if (ret)
7918                         goto free_adj;
7919         }
7920
7921         /* Ensure that master link is always the first item in list. */
7922         if (master) {
7923                 ret = sysfs_create_link(&(dev->dev.kobj),
7924                                         &(adj_dev->dev.kobj), "master");
7925                 if (ret)
7926                         goto remove_symlinks;
7927
7928                 list_add_rcu(&adj->list, dev_list);
7929         } else {
7930                 list_add_tail_rcu(&adj->list, dev_list);
7931         }
7932
7933         return 0;
7934
7935 remove_symlinks:
7936         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7937                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7938 free_adj:
7939         kfree(adj);
7940         dev_put(adj_dev);
7941
7942         return ret;
7943 }
7944
7945 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7946                                          struct net_device *adj_dev,
7947                                          u16 ref_nr,
7948                                          struct list_head *dev_list)
7949 {
7950         struct netdev_adjacent *adj;
7951
7952         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7953                  dev->name, adj_dev->name, ref_nr);
7954
7955         adj = __netdev_find_adj(adj_dev, dev_list);
7956
7957         if (!adj) {
7958                 pr_err("Adjacency does not exist for device %s from %s\n",
7959                        dev->name, adj_dev->name);
7960                 WARN_ON(1);
7961                 return;
7962         }
7963
7964         if (adj->ref_nr > ref_nr) {
7965                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7966                          dev->name, adj_dev->name, ref_nr,
7967                          adj->ref_nr - ref_nr);
7968                 adj->ref_nr -= ref_nr;
7969                 return;
7970         }
7971
7972         if (adj->master)
7973                 sysfs_remove_link(&(dev->dev.kobj), "master");
7974
7975         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7976                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7977
7978         list_del_rcu(&adj->list);
7979         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7980                  adj_dev->name, dev->name, adj_dev->name);
7981         dev_put(adj_dev);
7982         kfree_rcu(adj, rcu);
7983 }
7984
7985 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7986                                             struct net_device *upper_dev,
7987                                             struct list_head *up_list,
7988                                             struct list_head *down_list,
7989                                             void *private, bool master)
7990 {
7991         int ret;
7992
7993         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7994                                            private, master);
7995         if (ret)
7996                 return ret;
7997
7998         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7999                                            private, false);
8000         if (ret) {
8001                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8002                 return ret;
8003         }
8004
8005         return 0;
8006 }
8007
8008 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8009                                                struct net_device *upper_dev,
8010                                                u16 ref_nr,
8011                                                struct list_head *up_list,
8012                                                struct list_head *down_list)
8013 {
8014         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8015         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8016 }
8017
8018 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8019                                                 struct net_device *upper_dev,
8020                                                 void *private, bool master)
8021 {
8022         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8023                                                 &dev->adj_list.upper,
8024                                                 &upper_dev->adj_list.lower,
8025                                                 private, master);
8026 }
8027
8028 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8029                                                    struct net_device *upper_dev)
8030 {
8031         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8032                                            &dev->adj_list.upper,
8033                                            &upper_dev->adj_list.lower);
8034 }
8035
8036 static int __netdev_upper_dev_link(struct net_device *dev,
8037                                    struct net_device *upper_dev, bool master,
8038                                    void *upper_priv, void *upper_info,
8039                                    struct netdev_nested_priv *priv,
8040                                    struct netlink_ext_ack *extack)
8041 {
8042         struct netdev_notifier_changeupper_info changeupper_info = {
8043                 .info = {
8044                         .dev = dev,
8045                         .extack = extack,
8046                 },
8047                 .upper_dev = upper_dev,
8048                 .master = master,
8049                 .linking = true,
8050                 .upper_info = upper_info,
8051         };
8052         struct net_device *master_dev;
8053         int ret = 0;
8054
8055         ASSERT_RTNL();
8056
8057         if (dev == upper_dev)
8058                 return -EBUSY;
8059
8060         /* To prevent loops, check if dev is not upper device to upper_dev. */
8061         if (__netdev_has_upper_dev(upper_dev, dev))
8062                 return -EBUSY;
8063
8064         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8065                 return -EMLINK;
8066
8067         if (!master) {
8068                 if (__netdev_has_upper_dev(dev, upper_dev))
8069                         return -EEXIST;
8070         } else {
8071                 master_dev = __netdev_master_upper_dev_get(dev);
8072                 if (master_dev)
8073                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8074         }
8075
8076         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8077                                             &changeupper_info.info);
8078         ret = notifier_to_errno(ret);
8079         if (ret)
8080                 return ret;
8081
8082         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8083                                                    master);
8084         if (ret)
8085                 return ret;
8086
8087         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8088                                             &changeupper_info.info);
8089         ret = notifier_to_errno(ret);
8090         if (ret)
8091                 goto rollback;
8092
8093         __netdev_update_upper_level(dev, NULL);
8094         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8095
8096         __netdev_update_lower_level(upper_dev, priv);
8097         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8098                                     priv);
8099
8100         return 0;
8101
8102 rollback:
8103         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8104
8105         return ret;
8106 }
8107
8108 /**
8109  * netdev_upper_dev_link - Add a link to the upper device
8110  * @dev: device
8111  * @upper_dev: new upper device
8112  * @extack: netlink extended ack
8113  *
8114  * Adds a link to device which is upper to this one. The caller must hold
8115  * the RTNL lock. On a failure a negative errno code is returned.
8116  * On success the reference counts are adjusted and the function
8117  * returns zero.
8118  */
8119 int netdev_upper_dev_link(struct net_device *dev,
8120                           struct net_device *upper_dev,
8121                           struct netlink_ext_ack *extack)
8122 {
8123         struct netdev_nested_priv priv = {
8124                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8125                 .data = NULL,
8126         };
8127
8128         return __netdev_upper_dev_link(dev, upper_dev, false,
8129                                        NULL, NULL, &priv, extack);
8130 }
8131 EXPORT_SYMBOL(netdev_upper_dev_link);
8132
8133 /**
8134  * netdev_master_upper_dev_link - Add a master link to the upper device
8135  * @dev: device
8136  * @upper_dev: new upper device
8137  * @upper_priv: upper device private
8138  * @upper_info: upper info to be passed down via notifier
8139  * @extack: netlink extended ack
8140  *
8141  * Adds a link to device which is upper to this one. In this case, only
8142  * one master upper device can be linked, although other non-master devices
8143  * might be linked as well. The caller must hold the RTNL lock.
8144  * On a failure a negative errno code is returned. On success the reference
8145  * counts are adjusted and the function returns zero.
8146  */
8147 int netdev_master_upper_dev_link(struct net_device *dev,
8148                                  struct net_device *upper_dev,
8149                                  void *upper_priv, void *upper_info,
8150                                  struct netlink_ext_ack *extack)
8151 {
8152         struct netdev_nested_priv priv = {
8153                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8154                 .data = NULL,
8155         };
8156
8157         return __netdev_upper_dev_link(dev, upper_dev, true,
8158                                        upper_priv, upper_info, &priv, extack);
8159 }
8160 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8161
8162 static void __netdev_upper_dev_unlink(struct net_device *dev,
8163                                       struct net_device *upper_dev,
8164                                       struct netdev_nested_priv *priv)
8165 {
8166         struct netdev_notifier_changeupper_info changeupper_info = {
8167                 .info = {
8168                         .dev = dev,
8169                 },
8170                 .upper_dev = upper_dev,
8171                 .linking = false,
8172         };
8173
8174         ASSERT_RTNL();
8175
8176         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8177
8178         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8179                                       &changeupper_info.info);
8180
8181         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8182
8183         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8184                                       &changeupper_info.info);
8185
8186         __netdev_update_upper_level(dev, NULL);
8187         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8188
8189         __netdev_update_lower_level(upper_dev, priv);
8190         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8191                                     priv);
8192 }
8193
8194 /**
8195  * netdev_upper_dev_unlink - Removes a link to upper device
8196  * @dev: device
8197  * @upper_dev: new upper device
8198  *
8199  * Removes a link to device which is upper to this one. The caller must hold
8200  * the RTNL lock.
8201  */
8202 void netdev_upper_dev_unlink(struct net_device *dev,
8203                              struct net_device *upper_dev)
8204 {
8205         struct netdev_nested_priv priv = {
8206                 .flags = NESTED_SYNC_TODO,
8207                 .data = NULL,
8208         };
8209
8210         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8211 }
8212 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8213
8214 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8215                                       struct net_device *lower_dev,
8216                                       bool val)
8217 {
8218         struct netdev_adjacent *adj;
8219
8220         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8221         if (adj)
8222                 adj->ignore = val;
8223
8224         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8225         if (adj)
8226                 adj->ignore = val;
8227 }
8228
8229 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8230                                         struct net_device *lower_dev)
8231 {
8232         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8233 }
8234
8235 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8236                                        struct net_device *lower_dev)
8237 {
8238         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8239 }
8240
8241 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8242                                    struct net_device *new_dev,
8243                                    struct net_device *dev,
8244                                    struct netlink_ext_ack *extack)
8245 {
8246         struct netdev_nested_priv priv = {
8247                 .flags = 0,
8248                 .data = NULL,
8249         };
8250         int err;
8251
8252         if (!new_dev)
8253                 return 0;
8254
8255         if (old_dev && new_dev != old_dev)
8256                 netdev_adjacent_dev_disable(dev, old_dev);
8257         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8258                                       extack);
8259         if (err) {
8260                 if (old_dev && new_dev != old_dev)
8261                         netdev_adjacent_dev_enable(dev, old_dev);
8262                 return err;
8263         }
8264
8265         return 0;
8266 }
8267 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8268
8269 void netdev_adjacent_change_commit(struct net_device *old_dev,
8270                                    struct net_device *new_dev,
8271                                    struct net_device *dev)
8272 {
8273         struct netdev_nested_priv priv = {
8274                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8275                 .data = NULL,
8276         };
8277
8278         if (!new_dev || !old_dev)
8279                 return;
8280
8281         if (new_dev == old_dev)
8282                 return;
8283
8284         netdev_adjacent_dev_enable(dev, old_dev);
8285         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8286 }
8287 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8288
8289 void netdev_adjacent_change_abort(struct net_device *old_dev,
8290                                   struct net_device *new_dev,
8291                                   struct net_device *dev)
8292 {
8293         struct netdev_nested_priv priv = {
8294                 .flags = 0,
8295                 .data = NULL,
8296         };
8297
8298         if (!new_dev)
8299                 return;
8300
8301         if (old_dev && new_dev != old_dev)
8302                 netdev_adjacent_dev_enable(dev, old_dev);
8303
8304         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8307
8308 /**
8309  * netdev_bonding_info_change - Dispatch event about slave change
8310  * @dev: device
8311  * @bonding_info: info to dispatch
8312  *
8313  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8314  * The caller must hold the RTNL lock.
8315  */
8316 void netdev_bonding_info_change(struct net_device *dev,
8317                                 struct netdev_bonding_info *bonding_info)
8318 {
8319         struct netdev_notifier_bonding_info info = {
8320                 .info.dev = dev,
8321         };
8322
8323         memcpy(&info.bonding_info, bonding_info,
8324                sizeof(struct netdev_bonding_info));
8325         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8326                                       &info.info);
8327 }
8328 EXPORT_SYMBOL(netdev_bonding_info_change);
8329
8330 /**
8331  * netdev_get_xmit_slave - Get the xmit slave of master device
8332  * @dev: device
8333  * @skb: The packet
8334  * @all_slaves: assume all the slaves are active
8335  *
8336  * The reference counters are not incremented so the caller must be
8337  * careful with locks. The caller must hold RCU lock.
8338  * %NULL is returned if no slave is found.
8339  */
8340
8341 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8342                                          struct sk_buff *skb,
8343                                          bool all_slaves)
8344 {
8345         const struct net_device_ops *ops = dev->netdev_ops;
8346
8347         if (!ops->ndo_get_xmit_slave)
8348                 return NULL;
8349         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8350 }
8351 EXPORT_SYMBOL(netdev_get_xmit_slave);
8352
8353 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8354                                                   struct sock *sk)
8355 {
8356         const struct net_device_ops *ops = dev->netdev_ops;
8357
8358         if (!ops->ndo_sk_get_lower_dev)
8359                 return NULL;
8360         return ops->ndo_sk_get_lower_dev(dev, sk);
8361 }
8362
8363 /**
8364  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8365  * @dev: device
8366  * @sk: the socket
8367  *
8368  * %NULL is returned if no lower device is found.
8369  */
8370
8371 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8372                                             struct sock *sk)
8373 {
8374         struct net_device *lower;
8375
8376         lower = netdev_sk_get_lower_dev(dev, sk);
8377         while (lower) {
8378                 dev = lower;
8379                 lower = netdev_sk_get_lower_dev(dev, sk);
8380         }
8381
8382         return dev;
8383 }
8384 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8385
8386 static void netdev_adjacent_add_links(struct net_device *dev)
8387 {
8388         struct netdev_adjacent *iter;
8389
8390         struct net *net = dev_net(dev);
8391
8392         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8393                 if (!net_eq(net, dev_net(iter->dev)))
8394                         continue;
8395                 netdev_adjacent_sysfs_add(iter->dev, dev,
8396                                           &iter->dev->adj_list.lower);
8397                 netdev_adjacent_sysfs_add(dev, iter->dev,
8398                                           &dev->adj_list.upper);
8399         }
8400
8401         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8402                 if (!net_eq(net, dev_net(iter->dev)))
8403                         continue;
8404                 netdev_adjacent_sysfs_add(iter->dev, dev,
8405                                           &iter->dev->adj_list.upper);
8406                 netdev_adjacent_sysfs_add(dev, iter->dev,
8407                                           &dev->adj_list.lower);
8408         }
8409 }
8410
8411 static void netdev_adjacent_del_links(struct net_device *dev)
8412 {
8413         struct netdev_adjacent *iter;
8414
8415         struct net *net = dev_net(dev);
8416
8417         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8418                 if (!net_eq(net, dev_net(iter->dev)))
8419                         continue;
8420                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8421                                           &iter->dev->adj_list.lower);
8422                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8423                                           &dev->adj_list.upper);
8424         }
8425
8426         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8427                 if (!net_eq(net, dev_net(iter->dev)))
8428                         continue;
8429                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8430                                           &iter->dev->adj_list.upper);
8431                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8432                                           &dev->adj_list.lower);
8433         }
8434 }
8435
8436 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8437 {
8438         struct netdev_adjacent *iter;
8439
8440         struct net *net = dev_net(dev);
8441
8442         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8443                 if (!net_eq(net, dev_net(iter->dev)))
8444                         continue;
8445                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8446                                           &iter->dev->adj_list.lower);
8447                 netdev_adjacent_sysfs_add(iter->dev, dev,
8448                                           &iter->dev->adj_list.lower);
8449         }
8450
8451         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8452                 if (!net_eq(net, dev_net(iter->dev)))
8453                         continue;
8454                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8455                                           &iter->dev->adj_list.upper);
8456                 netdev_adjacent_sysfs_add(iter->dev, dev,
8457                                           &iter->dev->adj_list.upper);
8458         }
8459 }
8460
8461 void *netdev_lower_dev_get_private(struct net_device *dev,
8462                                    struct net_device *lower_dev)
8463 {
8464         struct netdev_adjacent *lower;
8465
8466         if (!lower_dev)
8467                 return NULL;
8468         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8469         if (!lower)
8470                 return NULL;
8471
8472         return lower->private;
8473 }
8474 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8475
8476
8477 /**
8478  * netdev_lower_state_changed - Dispatch event about lower device state change
8479  * @lower_dev: device
8480  * @lower_state_info: state to dispatch
8481  *
8482  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8483  * The caller must hold the RTNL lock.
8484  */
8485 void netdev_lower_state_changed(struct net_device *lower_dev,
8486                                 void *lower_state_info)
8487 {
8488         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8489                 .info.dev = lower_dev,
8490         };
8491
8492         ASSERT_RTNL();
8493         changelowerstate_info.lower_state_info = lower_state_info;
8494         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8495                                       &changelowerstate_info.info);
8496 }
8497 EXPORT_SYMBOL(netdev_lower_state_changed);
8498
8499 static void dev_change_rx_flags(struct net_device *dev, int flags)
8500 {
8501         const struct net_device_ops *ops = dev->netdev_ops;
8502
8503         if (ops->ndo_change_rx_flags)
8504                 ops->ndo_change_rx_flags(dev, flags);
8505 }
8506
8507 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8508 {
8509         unsigned int old_flags = dev->flags;
8510         kuid_t uid;
8511         kgid_t gid;
8512
8513         ASSERT_RTNL();
8514
8515         dev->flags |= IFF_PROMISC;
8516         dev->promiscuity += inc;
8517         if (dev->promiscuity == 0) {
8518                 /*
8519                  * Avoid overflow.
8520                  * If inc causes overflow, untouch promisc and return error.
8521                  */
8522                 if (inc < 0)
8523                         dev->flags &= ~IFF_PROMISC;
8524                 else {
8525                         dev->promiscuity -= inc;
8526                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8527                                 dev->name);
8528                         return -EOVERFLOW;
8529                 }
8530         }
8531         if (dev->flags != old_flags) {
8532                 pr_info("device %s %s promiscuous mode\n",
8533                         dev->name,
8534                         dev->flags & IFF_PROMISC ? "entered" : "left");
8535                 if (audit_enabled) {
8536                         current_uid_gid(&uid, &gid);
8537                         audit_log(audit_context(), GFP_ATOMIC,
8538                                   AUDIT_ANOM_PROMISCUOUS,
8539                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8540                                   dev->name, (dev->flags & IFF_PROMISC),
8541                                   (old_flags & IFF_PROMISC),
8542                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8543                                   from_kuid(&init_user_ns, uid),
8544                                   from_kgid(&init_user_ns, gid),
8545                                   audit_get_sessionid(current));
8546                 }
8547
8548                 dev_change_rx_flags(dev, IFF_PROMISC);
8549         }
8550         if (notify)
8551                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8552         return 0;
8553 }
8554
8555 /**
8556  *      dev_set_promiscuity     - update promiscuity count on a device
8557  *      @dev: device
8558  *      @inc: modifier
8559  *
8560  *      Add or remove promiscuity from a device. While the count in the device
8561  *      remains above zero the interface remains promiscuous. Once it hits zero
8562  *      the device reverts back to normal filtering operation. A negative inc
8563  *      value is used to drop promiscuity on the device.
8564  *      Return 0 if successful or a negative errno code on error.
8565  */
8566 int dev_set_promiscuity(struct net_device *dev, int inc)
8567 {
8568         unsigned int old_flags = dev->flags;
8569         int err;
8570
8571         err = __dev_set_promiscuity(dev, inc, true);
8572         if (err < 0)
8573                 return err;
8574         if (dev->flags != old_flags)
8575                 dev_set_rx_mode(dev);
8576         return err;
8577 }
8578 EXPORT_SYMBOL(dev_set_promiscuity);
8579
8580 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8581 {
8582         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8583
8584         ASSERT_RTNL();
8585
8586         dev->flags |= IFF_ALLMULTI;
8587         dev->allmulti += inc;
8588         if (dev->allmulti == 0) {
8589                 /*
8590                  * Avoid overflow.
8591                  * If inc causes overflow, untouch allmulti and return error.
8592                  */
8593                 if (inc < 0)
8594                         dev->flags &= ~IFF_ALLMULTI;
8595                 else {
8596                         dev->allmulti -= inc;
8597                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8598                                 dev->name);
8599                         return -EOVERFLOW;
8600                 }
8601         }
8602         if (dev->flags ^ old_flags) {
8603                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8604                 dev_set_rx_mode(dev);
8605                 if (notify)
8606                         __dev_notify_flags(dev, old_flags,
8607                                            dev->gflags ^ old_gflags);
8608         }
8609         return 0;
8610 }
8611
8612 /**
8613  *      dev_set_allmulti        - update allmulti count on a device
8614  *      @dev: device
8615  *      @inc: modifier
8616  *
8617  *      Add or remove reception of all multicast frames to a device. While the
8618  *      count in the device remains above zero the interface remains listening
8619  *      to all interfaces. Once it hits zero the device reverts back to normal
8620  *      filtering operation. A negative @inc value is used to drop the counter
8621  *      when releasing a resource needing all multicasts.
8622  *      Return 0 if successful or a negative errno code on error.
8623  */
8624
8625 int dev_set_allmulti(struct net_device *dev, int inc)
8626 {
8627         return __dev_set_allmulti(dev, inc, true);
8628 }
8629 EXPORT_SYMBOL(dev_set_allmulti);
8630
8631 /*
8632  *      Upload unicast and multicast address lists to device and
8633  *      configure RX filtering. When the device doesn't support unicast
8634  *      filtering it is put in promiscuous mode while unicast addresses
8635  *      are present.
8636  */
8637 void __dev_set_rx_mode(struct net_device *dev)
8638 {
8639         const struct net_device_ops *ops = dev->netdev_ops;
8640
8641         /* dev_open will call this function so the list will stay sane. */
8642         if (!(dev->flags&IFF_UP))
8643                 return;
8644
8645         if (!netif_device_present(dev))
8646                 return;
8647
8648         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8649                 /* Unicast addresses changes may only happen under the rtnl,
8650                  * therefore calling __dev_set_promiscuity here is safe.
8651                  */
8652                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8653                         __dev_set_promiscuity(dev, 1, false);
8654                         dev->uc_promisc = true;
8655                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8656                         __dev_set_promiscuity(dev, -1, false);
8657                         dev->uc_promisc = false;
8658                 }
8659         }
8660
8661         if (ops->ndo_set_rx_mode)
8662                 ops->ndo_set_rx_mode(dev);
8663 }
8664
8665 void dev_set_rx_mode(struct net_device *dev)
8666 {
8667         netif_addr_lock_bh(dev);
8668         __dev_set_rx_mode(dev);
8669         netif_addr_unlock_bh(dev);
8670 }
8671
8672 /**
8673  *      dev_get_flags - get flags reported to userspace
8674  *      @dev: device
8675  *
8676  *      Get the combination of flag bits exported through APIs to userspace.
8677  */
8678 unsigned int dev_get_flags(const struct net_device *dev)
8679 {
8680         unsigned int flags;
8681
8682         flags = (dev->flags & ~(IFF_PROMISC |
8683                                 IFF_ALLMULTI |
8684                                 IFF_RUNNING |
8685                                 IFF_LOWER_UP |
8686                                 IFF_DORMANT)) |
8687                 (dev->gflags & (IFF_PROMISC |
8688                                 IFF_ALLMULTI));
8689
8690         if (netif_running(dev)) {
8691                 if (netif_oper_up(dev))
8692                         flags |= IFF_RUNNING;
8693                 if (netif_carrier_ok(dev))
8694                         flags |= IFF_LOWER_UP;
8695                 if (netif_dormant(dev))
8696                         flags |= IFF_DORMANT;
8697         }
8698
8699         return flags;
8700 }
8701 EXPORT_SYMBOL(dev_get_flags);
8702
8703 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8704                        struct netlink_ext_ack *extack)
8705 {
8706         unsigned int old_flags = dev->flags;
8707         int ret;
8708
8709         ASSERT_RTNL();
8710
8711         /*
8712          *      Set the flags on our device.
8713          */
8714
8715         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8716                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8717                                IFF_AUTOMEDIA)) |
8718                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8719                                     IFF_ALLMULTI));
8720
8721         /*
8722          *      Load in the correct multicast list now the flags have changed.
8723          */
8724
8725         if ((old_flags ^ flags) & IFF_MULTICAST)
8726                 dev_change_rx_flags(dev, IFF_MULTICAST);
8727
8728         dev_set_rx_mode(dev);
8729
8730         /*
8731          *      Have we downed the interface. We handle IFF_UP ourselves
8732          *      according to user attempts to set it, rather than blindly
8733          *      setting it.
8734          */
8735
8736         ret = 0;
8737         if ((old_flags ^ flags) & IFF_UP) {
8738                 if (old_flags & IFF_UP)
8739                         __dev_close(dev);
8740                 else
8741                         ret = __dev_open(dev, extack);
8742         }
8743
8744         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8745                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8746                 unsigned int old_flags = dev->flags;
8747
8748                 dev->gflags ^= IFF_PROMISC;
8749
8750                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8751                         if (dev->flags != old_flags)
8752                                 dev_set_rx_mode(dev);
8753         }
8754
8755         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8756          * is important. Some (broken) drivers set IFF_PROMISC, when
8757          * IFF_ALLMULTI is requested not asking us and not reporting.
8758          */
8759         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8760                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8761
8762                 dev->gflags ^= IFF_ALLMULTI;
8763                 __dev_set_allmulti(dev, inc, false);
8764         }
8765
8766         return ret;
8767 }
8768
8769 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8770                         unsigned int gchanges)
8771 {
8772         unsigned int changes = dev->flags ^ old_flags;
8773
8774         if (gchanges)
8775                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8776
8777         if (changes & IFF_UP) {
8778                 if (dev->flags & IFF_UP)
8779                         call_netdevice_notifiers(NETDEV_UP, dev);
8780                 else
8781                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8782         }
8783
8784         if (dev->flags & IFF_UP &&
8785             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8786                 struct netdev_notifier_change_info change_info = {
8787                         .info = {
8788                                 .dev = dev,
8789                         },
8790                         .flags_changed = changes,
8791                 };
8792
8793                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8794         }
8795 }
8796
8797 /**
8798  *      dev_change_flags - change device settings
8799  *      @dev: device
8800  *      @flags: device state flags
8801  *      @extack: netlink extended ack
8802  *
8803  *      Change settings on device based state flags. The flags are
8804  *      in the userspace exported format.
8805  */
8806 int dev_change_flags(struct net_device *dev, unsigned int flags,
8807                      struct netlink_ext_ack *extack)
8808 {
8809         int ret;
8810         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8811
8812         ret = __dev_change_flags(dev, flags, extack);
8813         if (ret < 0)
8814                 return ret;
8815
8816         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8817         __dev_notify_flags(dev, old_flags, changes);
8818         return ret;
8819 }
8820 EXPORT_SYMBOL(dev_change_flags);
8821
8822 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8823 {
8824         const struct net_device_ops *ops = dev->netdev_ops;
8825
8826         if (ops->ndo_change_mtu)
8827                 return ops->ndo_change_mtu(dev, new_mtu);
8828
8829         /* Pairs with all the lockless reads of dev->mtu in the stack */
8830         WRITE_ONCE(dev->mtu, new_mtu);
8831         return 0;
8832 }
8833 EXPORT_SYMBOL(__dev_set_mtu);
8834
8835 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8836                      struct netlink_ext_ack *extack)
8837 {
8838         /* MTU must be positive, and in range */
8839         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8840                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8841                 return -EINVAL;
8842         }
8843
8844         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8845                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8846                 return -EINVAL;
8847         }
8848         return 0;
8849 }
8850
8851 /**
8852  *      dev_set_mtu_ext - Change maximum transfer unit
8853  *      @dev: device
8854  *      @new_mtu: new transfer unit
8855  *      @extack: netlink extended ack
8856  *
8857  *      Change the maximum transfer size of the network device.
8858  */
8859 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8860                     struct netlink_ext_ack *extack)
8861 {
8862         int err, orig_mtu;
8863
8864         if (new_mtu == dev->mtu)
8865                 return 0;
8866
8867         err = dev_validate_mtu(dev, new_mtu, extack);
8868         if (err)
8869                 return err;
8870
8871         if (!netif_device_present(dev))
8872                 return -ENODEV;
8873
8874         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8875         err = notifier_to_errno(err);
8876         if (err)
8877                 return err;
8878
8879         orig_mtu = dev->mtu;
8880         err = __dev_set_mtu(dev, new_mtu);
8881
8882         if (!err) {
8883                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8884                                                    orig_mtu);
8885                 err = notifier_to_errno(err);
8886                 if (err) {
8887                         /* setting mtu back and notifying everyone again,
8888                          * so that they have a chance to revert changes.
8889                          */
8890                         __dev_set_mtu(dev, orig_mtu);
8891                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8892                                                      new_mtu);
8893                 }
8894         }
8895         return err;
8896 }
8897
8898 int dev_set_mtu(struct net_device *dev, int new_mtu)
8899 {
8900         struct netlink_ext_ack extack;
8901         int err;
8902
8903         memset(&extack, 0, sizeof(extack));
8904         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8905         if (err && extack._msg)
8906                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8907         return err;
8908 }
8909 EXPORT_SYMBOL(dev_set_mtu);
8910
8911 /**
8912  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8913  *      @dev: device
8914  *      @new_len: new tx queue length
8915  */
8916 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8917 {
8918         unsigned int orig_len = dev->tx_queue_len;
8919         int res;
8920
8921         if (new_len != (unsigned int)new_len)
8922                 return -ERANGE;
8923
8924         if (new_len != orig_len) {
8925                 dev->tx_queue_len = new_len;
8926                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8927                 res = notifier_to_errno(res);
8928                 if (res)
8929                         goto err_rollback;
8930                 res = dev_qdisc_change_tx_queue_len(dev);
8931                 if (res)
8932                         goto err_rollback;
8933         }
8934
8935         return 0;
8936
8937 err_rollback:
8938         netdev_err(dev, "refused to change device tx_queue_len\n");
8939         dev->tx_queue_len = orig_len;
8940         return res;
8941 }
8942
8943 /**
8944  *      dev_set_group - Change group this device belongs to
8945  *      @dev: device
8946  *      @new_group: group this device should belong to
8947  */
8948 void dev_set_group(struct net_device *dev, int new_group)
8949 {
8950         dev->group = new_group;
8951 }
8952 EXPORT_SYMBOL(dev_set_group);
8953
8954 /**
8955  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8956  *      @dev: device
8957  *      @addr: new address
8958  *      @extack: netlink extended ack
8959  */
8960 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8961                               struct netlink_ext_ack *extack)
8962 {
8963         struct netdev_notifier_pre_changeaddr_info info = {
8964                 .info.dev = dev,
8965                 .info.extack = extack,
8966                 .dev_addr = addr,
8967         };
8968         int rc;
8969
8970         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8971         return notifier_to_errno(rc);
8972 }
8973 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8974
8975 /**
8976  *      dev_set_mac_address - Change Media Access Control Address
8977  *      @dev: device
8978  *      @sa: new address
8979  *      @extack: netlink extended ack
8980  *
8981  *      Change the hardware (MAC) address of the device
8982  */
8983 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8984                         struct netlink_ext_ack *extack)
8985 {
8986         const struct net_device_ops *ops = dev->netdev_ops;
8987         int err;
8988
8989         if (!ops->ndo_set_mac_address)
8990                 return -EOPNOTSUPP;
8991         if (sa->sa_family != dev->type)
8992                 return -EINVAL;
8993         if (!netif_device_present(dev))
8994                 return -ENODEV;
8995         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8996         if (err)
8997                 return err;
8998         err = ops->ndo_set_mac_address(dev, sa);
8999         if (err)
9000                 return err;
9001         dev->addr_assign_type = NET_ADDR_SET;
9002         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9003         add_device_randomness(dev->dev_addr, dev->addr_len);
9004         return 0;
9005 }
9006 EXPORT_SYMBOL(dev_set_mac_address);
9007
9008 static DECLARE_RWSEM(dev_addr_sem);
9009
9010 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9011                              struct netlink_ext_ack *extack)
9012 {
9013         int ret;
9014
9015         down_write(&dev_addr_sem);
9016         ret = dev_set_mac_address(dev, sa, extack);
9017         up_write(&dev_addr_sem);
9018         return ret;
9019 }
9020 EXPORT_SYMBOL(dev_set_mac_address_user);
9021
9022 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9023 {
9024         size_t size = sizeof(sa->sa_data);
9025         struct net_device *dev;
9026         int ret = 0;
9027
9028         down_read(&dev_addr_sem);
9029         rcu_read_lock();
9030
9031         dev = dev_get_by_name_rcu(net, dev_name);
9032         if (!dev) {
9033                 ret = -ENODEV;
9034                 goto unlock;
9035         }
9036         if (!dev->addr_len)
9037                 memset(sa->sa_data, 0, size);
9038         else
9039                 memcpy(sa->sa_data, dev->dev_addr,
9040                        min_t(size_t, size, dev->addr_len));
9041         sa->sa_family = dev->type;
9042
9043 unlock:
9044         rcu_read_unlock();
9045         up_read(&dev_addr_sem);
9046         return ret;
9047 }
9048 EXPORT_SYMBOL(dev_get_mac_address);
9049
9050 /**
9051  *      dev_change_carrier - Change device carrier
9052  *      @dev: device
9053  *      @new_carrier: new value
9054  *
9055  *      Change device carrier
9056  */
9057 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9058 {
9059         const struct net_device_ops *ops = dev->netdev_ops;
9060
9061         if (!ops->ndo_change_carrier)
9062                 return -EOPNOTSUPP;
9063         if (!netif_device_present(dev))
9064                 return -ENODEV;
9065         return ops->ndo_change_carrier(dev, new_carrier);
9066 }
9067 EXPORT_SYMBOL(dev_change_carrier);
9068
9069 /**
9070  *      dev_get_phys_port_id - Get device physical port ID
9071  *      @dev: device
9072  *      @ppid: port ID
9073  *
9074  *      Get device physical port ID
9075  */
9076 int dev_get_phys_port_id(struct net_device *dev,
9077                          struct netdev_phys_item_id *ppid)
9078 {
9079         const struct net_device_ops *ops = dev->netdev_ops;
9080
9081         if (!ops->ndo_get_phys_port_id)
9082                 return -EOPNOTSUPP;
9083         return ops->ndo_get_phys_port_id(dev, ppid);
9084 }
9085 EXPORT_SYMBOL(dev_get_phys_port_id);
9086
9087 /**
9088  *      dev_get_phys_port_name - Get device physical port name
9089  *      @dev: device
9090  *      @name: port name
9091  *      @len: limit of bytes to copy to name
9092  *
9093  *      Get device physical port name
9094  */
9095 int dev_get_phys_port_name(struct net_device *dev,
9096                            char *name, size_t len)
9097 {
9098         const struct net_device_ops *ops = dev->netdev_ops;
9099         int err;
9100
9101         if (ops->ndo_get_phys_port_name) {
9102                 err = ops->ndo_get_phys_port_name(dev, name, len);
9103                 if (err != -EOPNOTSUPP)
9104                         return err;
9105         }
9106         return devlink_compat_phys_port_name_get(dev, name, len);
9107 }
9108 EXPORT_SYMBOL(dev_get_phys_port_name);
9109
9110 /**
9111  *      dev_get_port_parent_id - Get the device's port parent identifier
9112  *      @dev: network device
9113  *      @ppid: pointer to a storage for the port's parent identifier
9114  *      @recurse: allow/disallow recursion to lower devices
9115  *
9116  *      Get the devices's port parent identifier
9117  */
9118 int dev_get_port_parent_id(struct net_device *dev,
9119                            struct netdev_phys_item_id *ppid,
9120                            bool recurse)
9121 {
9122         const struct net_device_ops *ops = dev->netdev_ops;
9123         struct netdev_phys_item_id first = { };
9124         struct net_device *lower_dev;
9125         struct list_head *iter;
9126         int err;
9127
9128         if (ops->ndo_get_port_parent_id) {
9129                 err = ops->ndo_get_port_parent_id(dev, ppid);
9130                 if (err != -EOPNOTSUPP)
9131                         return err;
9132         }
9133
9134         err = devlink_compat_switch_id_get(dev, ppid);
9135         if (!err || err != -EOPNOTSUPP)
9136                 return err;
9137
9138         if (!recurse)
9139                 return -EOPNOTSUPP;
9140
9141         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9142                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9143                 if (err)
9144                         break;
9145                 if (!first.id_len)
9146                         first = *ppid;
9147                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9148                         return -EOPNOTSUPP;
9149         }
9150
9151         return err;
9152 }
9153 EXPORT_SYMBOL(dev_get_port_parent_id);
9154
9155 /**
9156  *      netdev_port_same_parent_id - Indicate if two network devices have
9157  *      the same port parent identifier
9158  *      @a: first network device
9159  *      @b: second network device
9160  */
9161 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9162 {
9163         struct netdev_phys_item_id a_id = { };
9164         struct netdev_phys_item_id b_id = { };
9165
9166         if (dev_get_port_parent_id(a, &a_id, true) ||
9167             dev_get_port_parent_id(b, &b_id, true))
9168                 return false;
9169
9170         return netdev_phys_item_id_same(&a_id, &b_id);
9171 }
9172 EXPORT_SYMBOL(netdev_port_same_parent_id);
9173
9174 /**
9175  *      dev_change_proto_down - update protocol port state information
9176  *      @dev: device
9177  *      @proto_down: new value
9178  *
9179  *      This info can be used by switch drivers to set the phys state of the
9180  *      port.
9181  */
9182 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9183 {
9184         const struct net_device_ops *ops = dev->netdev_ops;
9185
9186         if (!ops->ndo_change_proto_down)
9187                 return -EOPNOTSUPP;
9188         if (!netif_device_present(dev))
9189                 return -ENODEV;
9190         return ops->ndo_change_proto_down(dev, proto_down);
9191 }
9192 EXPORT_SYMBOL(dev_change_proto_down);
9193
9194 /**
9195  *      dev_change_proto_down_generic - generic implementation for
9196  *      ndo_change_proto_down that sets carrier according to
9197  *      proto_down.
9198  *
9199  *      @dev: device
9200  *      @proto_down: new value
9201  */
9202 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9203 {
9204         if (proto_down)
9205                 netif_carrier_off(dev);
9206         else
9207                 netif_carrier_on(dev);
9208         dev->proto_down = proto_down;
9209         return 0;
9210 }
9211 EXPORT_SYMBOL(dev_change_proto_down_generic);
9212
9213 /**
9214  *      dev_change_proto_down_reason - proto down reason
9215  *
9216  *      @dev: device
9217  *      @mask: proto down mask
9218  *      @value: proto down value
9219  */
9220 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9221                                   u32 value)
9222 {
9223         int b;
9224
9225         if (!mask) {
9226                 dev->proto_down_reason = value;
9227         } else {
9228                 for_each_set_bit(b, &mask, 32) {
9229                         if (value & (1 << b))
9230                                 dev->proto_down_reason |= BIT(b);
9231                         else
9232                                 dev->proto_down_reason &= ~BIT(b);
9233                 }
9234         }
9235 }
9236 EXPORT_SYMBOL(dev_change_proto_down_reason);
9237
9238 struct bpf_xdp_link {
9239         struct bpf_link link;
9240         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9241         int flags;
9242 };
9243
9244 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9245 {
9246         if (flags & XDP_FLAGS_HW_MODE)
9247                 return XDP_MODE_HW;
9248         if (flags & XDP_FLAGS_DRV_MODE)
9249                 return XDP_MODE_DRV;
9250         if (flags & XDP_FLAGS_SKB_MODE)
9251                 return XDP_MODE_SKB;
9252         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9253 }
9254
9255 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9256 {
9257         switch (mode) {
9258         case XDP_MODE_SKB:
9259                 return generic_xdp_install;
9260         case XDP_MODE_DRV:
9261         case XDP_MODE_HW:
9262                 return dev->netdev_ops->ndo_bpf;
9263         default:
9264                 return NULL;
9265         }
9266 }
9267
9268 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9269                                          enum bpf_xdp_mode mode)
9270 {
9271         return dev->xdp_state[mode].link;
9272 }
9273
9274 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9275                                      enum bpf_xdp_mode mode)
9276 {
9277         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9278
9279         if (link)
9280                 return link->link.prog;
9281         return dev->xdp_state[mode].prog;
9282 }
9283
9284 static u8 dev_xdp_prog_count(struct net_device *dev)
9285 {
9286         u8 count = 0;
9287         int i;
9288
9289         for (i = 0; i < __MAX_XDP_MODE; i++)
9290                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9291                         count++;
9292         return count;
9293 }
9294
9295 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9296 {
9297         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9298
9299         return prog ? prog->aux->id : 0;
9300 }
9301
9302 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9303                              struct bpf_xdp_link *link)
9304 {
9305         dev->xdp_state[mode].link = link;
9306         dev->xdp_state[mode].prog = NULL;
9307 }
9308
9309 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9310                              struct bpf_prog *prog)
9311 {
9312         dev->xdp_state[mode].link = NULL;
9313         dev->xdp_state[mode].prog = prog;
9314 }
9315
9316 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9317                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9318                            u32 flags, struct bpf_prog *prog)
9319 {
9320         struct netdev_bpf xdp;
9321         int err;
9322
9323         memset(&xdp, 0, sizeof(xdp));
9324         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9325         xdp.extack = extack;
9326         xdp.flags = flags;
9327         xdp.prog = prog;
9328
9329         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9330          * "moved" into driver), so they don't increment it on their own, but
9331          * they do decrement refcnt when program is detached or replaced.
9332          * Given net_device also owns link/prog, we need to bump refcnt here
9333          * to prevent drivers from underflowing it.
9334          */
9335         if (prog)
9336                 bpf_prog_inc(prog);
9337         err = bpf_op(dev, &xdp);
9338         if (err) {
9339                 if (prog)
9340                         bpf_prog_put(prog);
9341                 return err;
9342         }
9343
9344         if (mode != XDP_MODE_HW)
9345                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9346
9347         return 0;
9348 }
9349
9350 static void dev_xdp_uninstall(struct net_device *dev)
9351 {
9352         struct bpf_xdp_link *link;
9353         struct bpf_prog *prog;
9354         enum bpf_xdp_mode mode;
9355         bpf_op_t bpf_op;
9356
9357         ASSERT_RTNL();
9358
9359         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9360                 prog = dev_xdp_prog(dev, mode);
9361                 if (!prog)
9362                         continue;
9363
9364                 bpf_op = dev_xdp_bpf_op(dev, mode);
9365                 if (!bpf_op)
9366                         continue;
9367
9368                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9369
9370                 /* auto-detach link from net device */
9371                 link = dev_xdp_link(dev, mode);
9372                 if (link)
9373                         link->dev = NULL;
9374                 else
9375                         bpf_prog_put(prog);
9376
9377                 dev_xdp_set_link(dev, mode, NULL);
9378         }
9379 }
9380
9381 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9382                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9383                           struct bpf_prog *old_prog, u32 flags)
9384 {
9385         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9386         struct bpf_prog *cur_prog;
9387         enum bpf_xdp_mode mode;
9388         bpf_op_t bpf_op;
9389         int err;
9390
9391         ASSERT_RTNL();
9392
9393         /* either link or prog attachment, never both */
9394         if (link && (new_prog || old_prog))
9395                 return -EINVAL;
9396         /* link supports only XDP mode flags */
9397         if (link && (flags & ~XDP_FLAGS_MODES)) {
9398                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9399                 return -EINVAL;
9400         }
9401         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9402         if (num_modes > 1) {
9403                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9404                 return -EINVAL;
9405         }
9406         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9407         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9408                 NL_SET_ERR_MSG(extack,
9409                                "More than one program loaded, unset mode is ambiguous");
9410                 return -EINVAL;
9411         }
9412         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9413         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9414                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9415                 return -EINVAL;
9416         }
9417
9418         mode = dev_xdp_mode(dev, flags);
9419         /* can't replace attached link */
9420         if (dev_xdp_link(dev, mode)) {
9421                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9422                 return -EBUSY;
9423         }
9424
9425         cur_prog = dev_xdp_prog(dev, mode);
9426         /* can't replace attached prog with link */
9427         if (link && cur_prog) {
9428                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9429                 return -EBUSY;
9430         }
9431         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9432                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9433                 return -EEXIST;
9434         }
9435
9436         /* put effective new program into new_prog */
9437         if (link)
9438                 new_prog = link->link.prog;
9439
9440         if (new_prog) {
9441                 bool offload = mode == XDP_MODE_HW;
9442                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9443                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9444
9445                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9446                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9447                         return -EBUSY;
9448                 }
9449                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9450                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9451                         return -EEXIST;
9452                 }
9453                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9454                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9455                         return -EINVAL;
9456                 }
9457                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9458                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9459                         return -EINVAL;
9460                 }
9461                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9462                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9463                         return -EINVAL;
9464                 }
9465         }
9466
9467         /* don't call drivers if the effective program didn't change */
9468         if (new_prog != cur_prog) {
9469                 bpf_op = dev_xdp_bpf_op(dev, mode);
9470                 if (!bpf_op) {
9471                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9472                         return -EOPNOTSUPP;
9473                 }
9474
9475                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9476                 if (err)
9477                         return err;
9478         }
9479
9480         if (link)
9481                 dev_xdp_set_link(dev, mode, link);
9482         else
9483                 dev_xdp_set_prog(dev, mode, new_prog);
9484         if (cur_prog)
9485                 bpf_prog_put(cur_prog);
9486
9487         return 0;
9488 }
9489
9490 static int dev_xdp_attach_link(struct net_device *dev,
9491                                struct netlink_ext_ack *extack,
9492                                struct bpf_xdp_link *link)
9493 {
9494         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9495 }
9496
9497 static int dev_xdp_detach_link(struct net_device *dev,
9498                                struct netlink_ext_ack *extack,
9499                                struct bpf_xdp_link *link)
9500 {
9501         enum bpf_xdp_mode mode;
9502         bpf_op_t bpf_op;
9503
9504         ASSERT_RTNL();
9505
9506         mode = dev_xdp_mode(dev, link->flags);
9507         if (dev_xdp_link(dev, mode) != link)
9508                 return -EINVAL;
9509
9510         bpf_op = dev_xdp_bpf_op(dev, mode);
9511         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9512         dev_xdp_set_link(dev, mode, NULL);
9513         return 0;
9514 }
9515
9516 static void bpf_xdp_link_release(struct bpf_link *link)
9517 {
9518         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9519
9520         rtnl_lock();
9521
9522         /* if racing with net_device's tear down, xdp_link->dev might be
9523          * already NULL, in which case link was already auto-detached
9524          */
9525         if (xdp_link->dev) {
9526                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9527                 xdp_link->dev = NULL;
9528         }
9529
9530         rtnl_unlock();
9531 }
9532
9533 static int bpf_xdp_link_detach(struct bpf_link *link)
9534 {
9535         bpf_xdp_link_release(link);
9536         return 0;
9537 }
9538
9539 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9540 {
9541         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9542
9543         kfree(xdp_link);
9544 }
9545
9546 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9547                                      struct seq_file *seq)
9548 {
9549         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9550         u32 ifindex = 0;
9551
9552         rtnl_lock();
9553         if (xdp_link->dev)
9554                 ifindex = xdp_link->dev->ifindex;
9555         rtnl_unlock();
9556
9557         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9558 }
9559
9560 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9561                                        struct bpf_link_info *info)
9562 {
9563         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9564         u32 ifindex = 0;
9565
9566         rtnl_lock();
9567         if (xdp_link->dev)
9568                 ifindex = xdp_link->dev->ifindex;
9569         rtnl_unlock();
9570
9571         info->xdp.ifindex = ifindex;
9572         return 0;
9573 }
9574
9575 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9576                                struct bpf_prog *old_prog)
9577 {
9578         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9579         enum bpf_xdp_mode mode;
9580         bpf_op_t bpf_op;
9581         int err = 0;
9582
9583         rtnl_lock();
9584
9585         /* link might have been auto-released already, so fail */
9586         if (!xdp_link->dev) {
9587                 err = -ENOLINK;
9588                 goto out_unlock;
9589         }
9590
9591         if (old_prog && link->prog != old_prog) {
9592                 err = -EPERM;
9593                 goto out_unlock;
9594         }
9595         old_prog = link->prog;
9596         if (old_prog == new_prog) {
9597                 /* no-op, don't disturb drivers */
9598                 bpf_prog_put(new_prog);
9599                 goto out_unlock;
9600         }
9601
9602         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9603         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9604         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9605                               xdp_link->flags, new_prog);
9606         if (err)
9607                 goto out_unlock;
9608
9609         old_prog = xchg(&link->prog, new_prog);
9610         bpf_prog_put(old_prog);
9611
9612 out_unlock:
9613         rtnl_unlock();
9614         return err;
9615 }
9616
9617 static const struct bpf_link_ops bpf_xdp_link_lops = {
9618         .release = bpf_xdp_link_release,
9619         .dealloc = bpf_xdp_link_dealloc,
9620         .detach = bpf_xdp_link_detach,
9621         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9622         .fill_link_info = bpf_xdp_link_fill_link_info,
9623         .update_prog = bpf_xdp_link_update,
9624 };
9625
9626 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9627 {
9628         struct net *net = current->nsproxy->net_ns;
9629         struct bpf_link_primer link_primer;
9630         struct bpf_xdp_link *link;
9631         struct net_device *dev;
9632         int err, fd;
9633
9634         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9635         if (!dev)
9636                 return -EINVAL;
9637
9638         link = kzalloc(sizeof(*link), GFP_USER);
9639         if (!link) {
9640                 err = -ENOMEM;
9641                 goto out_put_dev;
9642         }
9643
9644         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9645         link->dev = dev;
9646         link->flags = attr->link_create.flags;
9647
9648         err = bpf_link_prime(&link->link, &link_primer);
9649         if (err) {
9650                 kfree(link);
9651                 goto out_put_dev;
9652         }
9653
9654         rtnl_lock();
9655         err = dev_xdp_attach_link(dev, NULL, link);
9656         rtnl_unlock();
9657
9658         if (err) {
9659                 bpf_link_cleanup(&link_primer);
9660                 goto out_put_dev;
9661         }
9662
9663         fd = bpf_link_settle(&link_primer);
9664         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9665         dev_put(dev);
9666         return fd;
9667
9668 out_put_dev:
9669         dev_put(dev);
9670         return err;
9671 }
9672
9673 /**
9674  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9675  *      @dev: device
9676  *      @extack: netlink extended ack
9677  *      @fd: new program fd or negative value to clear
9678  *      @expected_fd: old program fd that userspace expects to replace or clear
9679  *      @flags: xdp-related flags
9680  *
9681  *      Set or clear a bpf program for a device
9682  */
9683 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9684                       int fd, int expected_fd, u32 flags)
9685 {
9686         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9687         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9688         int err;
9689
9690         ASSERT_RTNL();
9691
9692         if (fd >= 0) {
9693                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9694                                                  mode != XDP_MODE_SKB);
9695                 if (IS_ERR(new_prog))
9696                         return PTR_ERR(new_prog);
9697         }
9698
9699         if (expected_fd >= 0) {
9700                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9701                                                  mode != XDP_MODE_SKB);
9702                 if (IS_ERR(old_prog)) {
9703                         err = PTR_ERR(old_prog);
9704                         old_prog = NULL;
9705                         goto err_out;
9706                 }
9707         }
9708
9709         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9710
9711 err_out:
9712         if (err && new_prog)
9713                 bpf_prog_put(new_prog);
9714         if (old_prog)
9715                 bpf_prog_put(old_prog);
9716         return err;
9717 }
9718
9719 /**
9720  *      dev_new_index   -       allocate an ifindex
9721  *      @net: the applicable net namespace
9722  *
9723  *      Returns a suitable unique value for a new device interface
9724  *      number.  The caller must hold the rtnl semaphore or the
9725  *      dev_base_lock to be sure it remains unique.
9726  */
9727 static int dev_new_index(struct net *net)
9728 {
9729         int ifindex = net->ifindex;
9730
9731         for (;;) {
9732                 if (++ifindex <= 0)
9733                         ifindex = 1;
9734                 if (!__dev_get_by_index(net, ifindex))
9735                         return net->ifindex = ifindex;
9736         }
9737 }
9738
9739 /* Delayed registration/unregisteration */
9740 static LIST_HEAD(net_todo_list);
9741 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9742
9743 static void net_set_todo(struct net_device *dev)
9744 {
9745         list_add_tail(&dev->todo_list, &net_todo_list);
9746         dev_net(dev)->dev_unreg_count++;
9747 }
9748
9749 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9750         struct net_device *upper, netdev_features_t features)
9751 {
9752         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9753         netdev_features_t feature;
9754         int feature_bit;
9755
9756         for_each_netdev_feature(upper_disables, feature_bit) {
9757                 feature = __NETIF_F_BIT(feature_bit);
9758                 if (!(upper->wanted_features & feature)
9759                     && (features & feature)) {
9760                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9761                                    &feature, upper->name);
9762                         features &= ~feature;
9763                 }
9764         }
9765
9766         return features;
9767 }
9768
9769 static void netdev_sync_lower_features(struct net_device *upper,
9770         struct net_device *lower, netdev_features_t features)
9771 {
9772         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9773         netdev_features_t feature;
9774         int feature_bit;
9775
9776         for_each_netdev_feature(upper_disables, feature_bit) {
9777                 feature = __NETIF_F_BIT(feature_bit);
9778                 if (!(features & feature) && (lower->features & feature)) {
9779                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9780                                    &feature, lower->name);
9781                         lower->wanted_features &= ~feature;
9782                         __netdev_update_features(lower);
9783
9784                         if (unlikely(lower->features & feature))
9785                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9786                                             &feature, lower->name);
9787                         else
9788                                 netdev_features_change(lower);
9789                 }
9790         }
9791 }
9792
9793 static netdev_features_t netdev_fix_features(struct net_device *dev,
9794         netdev_features_t features)
9795 {
9796         /* Fix illegal checksum combinations */
9797         if ((features & NETIF_F_HW_CSUM) &&
9798             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9799                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9800                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9801         }
9802
9803         /* TSO requires that SG is present as well. */
9804         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9805                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9806                 features &= ~NETIF_F_ALL_TSO;
9807         }
9808
9809         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9810                                         !(features & NETIF_F_IP_CSUM)) {
9811                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9812                 features &= ~NETIF_F_TSO;
9813                 features &= ~NETIF_F_TSO_ECN;
9814         }
9815
9816         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9817                                          !(features & NETIF_F_IPV6_CSUM)) {
9818                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9819                 features &= ~NETIF_F_TSO6;
9820         }
9821
9822         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9823         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9824                 features &= ~NETIF_F_TSO_MANGLEID;
9825
9826         /* TSO ECN requires that TSO is present as well. */
9827         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9828                 features &= ~NETIF_F_TSO_ECN;
9829
9830         /* Software GSO depends on SG. */
9831         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9832                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9833                 features &= ~NETIF_F_GSO;
9834         }
9835
9836         /* GSO partial features require GSO partial be set */
9837         if ((features & dev->gso_partial_features) &&
9838             !(features & NETIF_F_GSO_PARTIAL)) {
9839                 netdev_dbg(dev,
9840                            "Dropping partially supported GSO features since no GSO partial.\n");
9841                 features &= ~dev->gso_partial_features;
9842         }
9843
9844         if (!(features & NETIF_F_RXCSUM)) {
9845                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9846                  * successfully merged by hardware must also have the
9847                  * checksum verified by hardware.  If the user does not
9848                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9849                  */
9850                 if (features & NETIF_F_GRO_HW) {
9851                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9852                         features &= ~NETIF_F_GRO_HW;
9853                 }
9854         }
9855
9856         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9857         if (features & NETIF_F_RXFCS) {
9858                 if (features & NETIF_F_LRO) {
9859                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9860                         features &= ~NETIF_F_LRO;
9861                 }
9862
9863                 if (features & NETIF_F_GRO_HW) {
9864                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9865                         features &= ~NETIF_F_GRO_HW;
9866                 }
9867         }
9868
9869         if (features & NETIF_F_HW_TLS_TX) {
9870                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9871                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9872                 bool hw_csum = features & NETIF_F_HW_CSUM;
9873
9874                 if (!ip_csum && !hw_csum) {
9875                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9876                         features &= ~NETIF_F_HW_TLS_TX;
9877                 }
9878         }
9879
9880         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9881                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9882                 features &= ~NETIF_F_HW_TLS_RX;
9883         }
9884
9885         return features;
9886 }
9887
9888 int __netdev_update_features(struct net_device *dev)
9889 {
9890         struct net_device *upper, *lower;
9891         netdev_features_t features;
9892         struct list_head *iter;
9893         int err = -1;
9894
9895         ASSERT_RTNL();
9896
9897         features = netdev_get_wanted_features(dev);
9898
9899         if (dev->netdev_ops->ndo_fix_features)
9900                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9901
9902         /* driver might be less strict about feature dependencies */
9903         features = netdev_fix_features(dev, features);
9904
9905         /* some features can't be enabled if they're off on an upper device */
9906         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9907                 features = netdev_sync_upper_features(dev, upper, features);
9908
9909         if (dev->features == features)
9910                 goto sync_lower;
9911
9912         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9913                 &dev->features, &features);
9914
9915         if (dev->netdev_ops->ndo_set_features)
9916                 err = dev->netdev_ops->ndo_set_features(dev, features);
9917         else
9918                 err = 0;
9919
9920         if (unlikely(err < 0)) {
9921                 netdev_err(dev,
9922                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9923                         err, &features, &dev->features);
9924                 /* return non-0 since some features might have changed and
9925                  * it's better to fire a spurious notification than miss it
9926                  */
9927                 return -1;
9928         }
9929
9930 sync_lower:
9931         /* some features must be disabled on lower devices when disabled
9932          * on an upper device (think: bonding master or bridge)
9933          */
9934         netdev_for_each_lower_dev(dev, lower, iter)
9935                 netdev_sync_lower_features(dev, lower, features);
9936
9937         if (!err) {
9938                 netdev_features_t diff = features ^ dev->features;
9939
9940                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9941                         /* udp_tunnel_{get,drop}_rx_info both need
9942                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9943                          * device, or they won't do anything.
9944                          * Thus we need to update dev->features
9945                          * *before* calling udp_tunnel_get_rx_info,
9946                          * but *after* calling udp_tunnel_drop_rx_info.
9947                          */
9948                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9949                                 dev->features = features;
9950                                 udp_tunnel_get_rx_info(dev);
9951                         } else {
9952                                 udp_tunnel_drop_rx_info(dev);
9953                         }
9954                 }
9955
9956                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9957                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9958                                 dev->features = features;
9959                                 err |= vlan_get_rx_ctag_filter_info(dev);
9960                         } else {
9961                                 vlan_drop_rx_ctag_filter_info(dev);
9962                         }
9963                 }
9964
9965                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9966                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9967                                 dev->features = features;
9968                                 err |= vlan_get_rx_stag_filter_info(dev);
9969                         } else {
9970                                 vlan_drop_rx_stag_filter_info(dev);
9971                         }
9972                 }
9973
9974                 dev->features = features;
9975         }
9976
9977         return err < 0 ? 0 : 1;
9978 }
9979
9980 /**
9981  *      netdev_update_features - recalculate device features
9982  *      @dev: the device to check
9983  *
9984  *      Recalculate dev->features set and send notifications if it
9985  *      has changed. Should be called after driver or hardware dependent
9986  *      conditions might have changed that influence the features.
9987  */
9988 void netdev_update_features(struct net_device *dev)
9989 {
9990         if (__netdev_update_features(dev))
9991                 netdev_features_change(dev);
9992 }
9993 EXPORT_SYMBOL(netdev_update_features);
9994
9995 /**
9996  *      netdev_change_features - recalculate device features
9997  *      @dev: the device to check
9998  *
9999  *      Recalculate dev->features set and send notifications even
10000  *      if they have not changed. Should be called instead of
10001  *      netdev_update_features() if also dev->vlan_features might
10002  *      have changed to allow the changes to be propagated to stacked
10003  *      VLAN devices.
10004  */
10005 void netdev_change_features(struct net_device *dev)
10006 {
10007         __netdev_update_features(dev);
10008         netdev_features_change(dev);
10009 }
10010 EXPORT_SYMBOL(netdev_change_features);
10011
10012 /**
10013  *      netif_stacked_transfer_operstate -      transfer operstate
10014  *      @rootdev: the root or lower level device to transfer state from
10015  *      @dev: the device to transfer operstate to
10016  *
10017  *      Transfer operational state from root to device. This is normally
10018  *      called when a stacking relationship exists between the root
10019  *      device and the device(a leaf device).
10020  */
10021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10022                                         struct net_device *dev)
10023 {
10024         if (rootdev->operstate == IF_OPER_DORMANT)
10025                 netif_dormant_on(dev);
10026         else
10027                 netif_dormant_off(dev);
10028
10029         if (rootdev->operstate == IF_OPER_TESTING)
10030                 netif_testing_on(dev);
10031         else
10032                 netif_testing_off(dev);
10033
10034         if (netif_carrier_ok(rootdev))
10035                 netif_carrier_on(dev);
10036         else
10037                 netif_carrier_off(dev);
10038 }
10039 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10040
10041 static int netif_alloc_rx_queues(struct net_device *dev)
10042 {
10043         unsigned int i, count = dev->num_rx_queues;
10044         struct netdev_rx_queue *rx;
10045         size_t sz = count * sizeof(*rx);
10046         int err = 0;
10047
10048         BUG_ON(count < 1);
10049
10050         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10051         if (!rx)
10052                 return -ENOMEM;
10053
10054         dev->_rx = rx;
10055
10056         for (i = 0; i < count; i++) {
10057                 rx[i].dev = dev;
10058
10059                 /* XDP RX-queue setup */
10060                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10061                 if (err < 0)
10062                         goto err_rxq_info;
10063         }
10064         return 0;
10065
10066 err_rxq_info:
10067         /* Rollback successful reg's and free other resources */
10068         while (i--)
10069                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10070         kvfree(dev->_rx);
10071         dev->_rx = NULL;
10072         return err;
10073 }
10074
10075 static void netif_free_rx_queues(struct net_device *dev)
10076 {
10077         unsigned int i, count = dev->num_rx_queues;
10078
10079         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10080         if (!dev->_rx)
10081                 return;
10082
10083         for (i = 0; i < count; i++)
10084                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10085
10086         kvfree(dev->_rx);
10087 }
10088
10089 static void netdev_init_one_queue(struct net_device *dev,
10090                                   struct netdev_queue *queue, void *_unused)
10091 {
10092         /* Initialize queue lock */
10093         spin_lock_init(&queue->_xmit_lock);
10094         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10095         queue->xmit_lock_owner = -1;
10096         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10097         queue->dev = dev;
10098 #ifdef CONFIG_BQL
10099         dql_init(&queue->dql, HZ);
10100 #endif
10101 }
10102
10103 static void netif_free_tx_queues(struct net_device *dev)
10104 {
10105         kvfree(dev->_tx);
10106 }
10107
10108 static int netif_alloc_netdev_queues(struct net_device *dev)
10109 {
10110         unsigned int count = dev->num_tx_queues;
10111         struct netdev_queue *tx;
10112         size_t sz = count * sizeof(*tx);
10113
10114         if (count < 1 || count > 0xffff)
10115                 return -EINVAL;
10116
10117         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10118         if (!tx)
10119                 return -ENOMEM;
10120
10121         dev->_tx = tx;
10122
10123         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10124         spin_lock_init(&dev->tx_global_lock);
10125
10126         return 0;
10127 }
10128
10129 void netif_tx_stop_all_queues(struct net_device *dev)
10130 {
10131         unsigned int i;
10132
10133         for (i = 0; i < dev->num_tx_queues; i++) {
10134                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10135
10136                 netif_tx_stop_queue(txq);
10137         }
10138 }
10139 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10140
10141 /**
10142  *      register_netdevice      - register a network device
10143  *      @dev: device to register
10144  *
10145  *      Take a completed network device structure and add it to the kernel
10146  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10147  *      chain. 0 is returned on success. A negative errno code is returned
10148  *      on a failure to set up the device, or if the name is a duplicate.
10149  *
10150  *      Callers must hold the rtnl semaphore. You may want
10151  *      register_netdev() instead of this.
10152  *
10153  *      BUGS:
10154  *      The locking appears insufficient to guarantee two parallel registers
10155  *      will not get the same name.
10156  */
10157
10158 int register_netdevice(struct net_device *dev)
10159 {
10160         int ret;
10161         struct net *net = dev_net(dev);
10162
10163         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10164                      NETDEV_FEATURE_COUNT);
10165         BUG_ON(dev_boot_phase);
10166         ASSERT_RTNL();
10167
10168         might_sleep();
10169
10170         /* When net_device's are persistent, this will be fatal. */
10171         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10172         BUG_ON(!net);
10173
10174         ret = ethtool_check_ops(dev->ethtool_ops);
10175         if (ret)
10176                 return ret;
10177
10178         spin_lock_init(&dev->addr_list_lock);
10179         netdev_set_addr_lockdep_class(dev);
10180
10181         ret = dev_get_valid_name(net, dev, dev->name);
10182         if (ret < 0)
10183                 goto out;
10184
10185         ret = -ENOMEM;
10186         dev->name_node = netdev_name_node_head_alloc(dev);
10187         if (!dev->name_node)
10188                 goto out;
10189
10190         /* Init, if this function is available */
10191         if (dev->netdev_ops->ndo_init) {
10192                 ret = dev->netdev_ops->ndo_init(dev);
10193                 if (ret) {
10194                         if (ret > 0)
10195                                 ret = -EIO;
10196                         goto err_free_name;
10197                 }
10198         }
10199
10200         if (((dev->hw_features | dev->features) &
10201              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10202             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10203              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10204                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10205                 ret = -EINVAL;
10206                 goto err_uninit;
10207         }
10208
10209         ret = -EBUSY;
10210         if (!dev->ifindex)
10211                 dev->ifindex = dev_new_index(net);
10212         else if (__dev_get_by_index(net, dev->ifindex))
10213                 goto err_uninit;
10214
10215         /* Transfer changeable features to wanted_features and enable
10216          * software offloads (GSO and GRO).
10217          */
10218         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10219         dev->features |= NETIF_F_SOFT_FEATURES;
10220
10221         if (dev->udp_tunnel_nic_info) {
10222                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10223                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10224         }
10225
10226         dev->wanted_features = dev->features & dev->hw_features;
10227
10228         if (!(dev->flags & IFF_LOOPBACK))
10229                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10230
10231         /* If IPv4 TCP segmentation offload is supported we should also
10232          * allow the device to enable segmenting the frame with the option
10233          * of ignoring a static IP ID value.  This doesn't enable the
10234          * feature itself but allows the user to enable it later.
10235          */
10236         if (dev->hw_features & NETIF_F_TSO)
10237                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10238         if (dev->vlan_features & NETIF_F_TSO)
10239                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10240         if (dev->mpls_features & NETIF_F_TSO)
10241                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10242         if (dev->hw_enc_features & NETIF_F_TSO)
10243                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10244
10245         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10246          */
10247         dev->vlan_features |= NETIF_F_HIGHDMA;
10248
10249         /* Make NETIF_F_SG inheritable to tunnel devices.
10250          */
10251         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10252
10253         /* Make NETIF_F_SG inheritable to MPLS.
10254          */
10255         dev->mpls_features |= NETIF_F_SG;
10256
10257         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10258         ret = notifier_to_errno(ret);
10259         if (ret)
10260                 goto err_uninit;
10261
10262         ret = netdev_register_kobject(dev);
10263         if (ret) {
10264                 dev->reg_state = NETREG_UNREGISTERED;
10265                 goto err_uninit;
10266         }
10267         dev->reg_state = NETREG_REGISTERED;
10268
10269         __netdev_update_features(dev);
10270
10271         /*
10272          *      Default initial state at registry is that the
10273          *      device is present.
10274          */
10275
10276         set_bit(__LINK_STATE_PRESENT, &dev->state);
10277
10278         linkwatch_init_dev(dev);
10279
10280         dev_init_scheduler(dev);
10281         dev_hold(dev);
10282         list_netdevice(dev);
10283         add_device_randomness(dev->dev_addr, dev->addr_len);
10284
10285         /* If the device has permanent device address, driver should
10286          * set dev_addr and also addr_assign_type should be set to
10287          * NET_ADDR_PERM (default value).
10288          */
10289         if (dev->addr_assign_type == NET_ADDR_PERM)
10290                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10291
10292         /* Notify protocols, that a new device appeared. */
10293         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10294         ret = notifier_to_errno(ret);
10295         if (ret) {
10296                 /* Expect explicit free_netdev() on failure */
10297                 dev->needs_free_netdev = false;
10298                 unregister_netdevice_queue(dev, NULL);
10299                 goto out;
10300         }
10301         /*
10302          *      Prevent userspace races by waiting until the network
10303          *      device is fully setup before sending notifications.
10304          */
10305         if (!dev->rtnl_link_ops ||
10306             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10307                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10308
10309 out:
10310         return ret;
10311
10312 err_uninit:
10313         if (dev->netdev_ops->ndo_uninit)
10314                 dev->netdev_ops->ndo_uninit(dev);
10315         if (dev->priv_destructor)
10316                 dev->priv_destructor(dev);
10317 err_free_name:
10318         netdev_name_node_free(dev->name_node);
10319         goto out;
10320 }
10321 EXPORT_SYMBOL(register_netdevice);
10322
10323 /**
10324  *      init_dummy_netdev       - init a dummy network device for NAPI
10325  *      @dev: device to init
10326  *
10327  *      This takes a network device structure and initialize the minimum
10328  *      amount of fields so it can be used to schedule NAPI polls without
10329  *      registering a full blown interface. This is to be used by drivers
10330  *      that need to tie several hardware interfaces to a single NAPI
10331  *      poll scheduler due to HW limitations.
10332  */
10333 int init_dummy_netdev(struct net_device *dev)
10334 {
10335         /* Clear everything. Note we don't initialize spinlocks
10336          * are they aren't supposed to be taken by any of the
10337          * NAPI code and this dummy netdev is supposed to be
10338          * only ever used for NAPI polls
10339          */
10340         memset(dev, 0, sizeof(struct net_device));
10341
10342         /* make sure we BUG if trying to hit standard
10343          * register/unregister code path
10344          */
10345         dev->reg_state = NETREG_DUMMY;
10346
10347         /* NAPI wants this */
10348         INIT_LIST_HEAD(&dev->napi_list);
10349
10350         /* a dummy interface is started by default */
10351         set_bit(__LINK_STATE_PRESENT, &dev->state);
10352         set_bit(__LINK_STATE_START, &dev->state);
10353
10354         /* napi_busy_loop stats accounting wants this */
10355         dev_net_set(dev, &init_net);
10356
10357         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10358          * because users of this 'device' dont need to change
10359          * its refcount.
10360          */
10361
10362         return 0;
10363 }
10364 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10365
10366
10367 /**
10368  *      register_netdev - register a network device
10369  *      @dev: device to register
10370  *
10371  *      Take a completed network device structure and add it to the kernel
10372  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10373  *      chain. 0 is returned on success. A negative errno code is returned
10374  *      on a failure to set up the device, or if the name is a duplicate.
10375  *
10376  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10377  *      and expands the device name if you passed a format string to
10378  *      alloc_netdev.
10379  */
10380 int register_netdev(struct net_device *dev)
10381 {
10382         int err;
10383
10384         if (rtnl_lock_killable())
10385                 return -EINTR;
10386         err = register_netdevice(dev);
10387         rtnl_unlock();
10388         return err;
10389 }
10390 EXPORT_SYMBOL(register_netdev);
10391
10392 int netdev_refcnt_read(const struct net_device *dev)
10393 {
10394 #ifdef CONFIG_PCPU_DEV_REFCNT
10395         int i, refcnt = 0;
10396
10397         for_each_possible_cpu(i)
10398                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10399         return refcnt;
10400 #else
10401         return refcount_read(&dev->dev_refcnt);
10402 #endif
10403 }
10404 EXPORT_SYMBOL(netdev_refcnt_read);
10405
10406 int netdev_unregister_timeout_secs __read_mostly = 10;
10407
10408 #define WAIT_REFS_MIN_MSECS 1
10409 #define WAIT_REFS_MAX_MSECS 250
10410 /**
10411  * netdev_wait_allrefs - wait until all references are gone.
10412  * @dev: target net_device
10413  *
10414  * This is called when unregistering network devices.
10415  *
10416  * Any protocol or device that holds a reference should register
10417  * for netdevice notification, and cleanup and put back the
10418  * reference if they receive an UNREGISTER event.
10419  * We can get stuck here if buggy protocols don't correctly
10420  * call dev_put.
10421  */
10422 static void netdev_wait_allrefs(struct net_device *dev)
10423 {
10424         unsigned long rebroadcast_time, warning_time;
10425         int wait = 0, refcnt;
10426
10427         linkwatch_forget_dev(dev);
10428
10429         rebroadcast_time = warning_time = jiffies;
10430         refcnt = netdev_refcnt_read(dev);
10431
10432         while (refcnt != 1) {
10433                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10434                         rtnl_lock();
10435
10436                         /* Rebroadcast unregister notification */
10437                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10438
10439                         __rtnl_unlock();
10440                         rcu_barrier();
10441                         rtnl_lock();
10442
10443                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10444                                      &dev->state)) {
10445                                 /* We must not have linkwatch events
10446                                  * pending on unregister. If this
10447                                  * happens, we simply run the queue
10448                                  * unscheduled, resulting in a noop
10449                                  * for this device.
10450                                  */
10451                                 linkwatch_run_queue();
10452                         }
10453
10454                         __rtnl_unlock();
10455
10456                         rebroadcast_time = jiffies;
10457                 }
10458
10459                 if (!wait) {
10460                         rcu_barrier();
10461                         wait = WAIT_REFS_MIN_MSECS;
10462                 } else {
10463                         msleep(wait);
10464                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10465                 }
10466
10467                 refcnt = netdev_refcnt_read(dev);
10468
10469                 if (refcnt != 1 &&
10470                     time_after(jiffies, warning_time +
10471                                netdev_unregister_timeout_secs * HZ)) {
10472                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10473                                  dev->name, refcnt);
10474                         warning_time = jiffies;
10475                 }
10476         }
10477 }
10478
10479 /* The sequence is:
10480  *
10481  *      rtnl_lock();
10482  *      ...
10483  *      register_netdevice(x1);
10484  *      register_netdevice(x2);
10485  *      ...
10486  *      unregister_netdevice(y1);
10487  *      unregister_netdevice(y2);
10488  *      ...
10489  *      rtnl_unlock();
10490  *      free_netdev(y1);
10491  *      free_netdev(y2);
10492  *
10493  * We are invoked by rtnl_unlock().
10494  * This allows us to deal with problems:
10495  * 1) We can delete sysfs objects which invoke hotplug
10496  *    without deadlocking with linkwatch via keventd.
10497  * 2) Since we run with the RTNL semaphore not held, we can sleep
10498  *    safely in order to wait for the netdev refcnt to drop to zero.
10499  *
10500  * We must not return until all unregister events added during
10501  * the interval the lock was held have been completed.
10502  */
10503 void netdev_run_todo(void)
10504 {
10505         struct list_head list;
10506 #ifdef CONFIG_LOCKDEP
10507         struct list_head unlink_list;
10508
10509         list_replace_init(&net_unlink_list, &unlink_list);
10510
10511         while (!list_empty(&unlink_list)) {
10512                 struct net_device *dev = list_first_entry(&unlink_list,
10513                                                           struct net_device,
10514                                                           unlink_list);
10515                 list_del_init(&dev->unlink_list);
10516                 dev->nested_level = dev->lower_level - 1;
10517         }
10518 #endif
10519
10520         /* Snapshot list, allow later requests */
10521         list_replace_init(&net_todo_list, &list);
10522
10523         __rtnl_unlock();
10524
10525
10526         /* Wait for rcu callbacks to finish before next phase */
10527         if (!list_empty(&list))
10528                 rcu_barrier();
10529
10530         while (!list_empty(&list)) {
10531                 struct net_device *dev
10532                         = list_first_entry(&list, struct net_device, todo_list);
10533                 list_del(&dev->todo_list);
10534
10535                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10536                         pr_err("network todo '%s' but state %d\n",
10537                                dev->name, dev->reg_state);
10538                         dump_stack();
10539                         continue;
10540                 }
10541
10542                 dev->reg_state = NETREG_UNREGISTERED;
10543
10544                 netdev_wait_allrefs(dev);
10545
10546                 /* paranoia */
10547                 BUG_ON(netdev_refcnt_read(dev) != 1);
10548                 BUG_ON(!list_empty(&dev->ptype_all));
10549                 BUG_ON(!list_empty(&dev->ptype_specific));
10550                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10551                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10552 #if IS_ENABLED(CONFIG_DECNET)
10553                 WARN_ON(dev->dn_ptr);
10554 #endif
10555                 if (dev->priv_destructor)
10556                         dev->priv_destructor(dev);
10557                 if (dev->needs_free_netdev)
10558                         free_netdev(dev);
10559
10560                 /* Report a network device has been unregistered */
10561                 rtnl_lock();
10562                 dev_net(dev)->dev_unreg_count--;
10563                 __rtnl_unlock();
10564                 wake_up(&netdev_unregistering_wq);
10565
10566                 /* Free network device */
10567                 kobject_put(&dev->dev.kobj);
10568         }
10569 }
10570
10571 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10572  * all the same fields in the same order as net_device_stats, with only
10573  * the type differing, but rtnl_link_stats64 may have additional fields
10574  * at the end for newer counters.
10575  */
10576 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10577                              const struct net_device_stats *netdev_stats)
10578 {
10579 #if BITS_PER_LONG == 64
10580         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10581         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10582         /* zero out counters that only exist in rtnl_link_stats64 */
10583         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10584                sizeof(*stats64) - sizeof(*netdev_stats));
10585 #else
10586         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10587         const unsigned long *src = (const unsigned long *)netdev_stats;
10588         u64 *dst = (u64 *)stats64;
10589
10590         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10591         for (i = 0; i < n; i++)
10592                 dst[i] = src[i];
10593         /* zero out counters that only exist in rtnl_link_stats64 */
10594         memset((char *)stats64 + n * sizeof(u64), 0,
10595                sizeof(*stats64) - n * sizeof(u64));
10596 #endif
10597 }
10598 EXPORT_SYMBOL(netdev_stats_to_stats64);
10599
10600 /**
10601  *      dev_get_stats   - get network device statistics
10602  *      @dev: device to get statistics from
10603  *      @storage: place to store stats
10604  *
10605  *      Get network statistics from device. Return @storage.
10606  *      The device driver may provide its own method by setting
10607  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10608  *      otherwise the internal statistics structure is used.
10609  */
10610 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10611                                         struct rtnl_link_stats64 *storage)
10612 {
10613         const struct net_device_ops *ops = dev->netdev_ops;
10614
10615         if (ops->ndo_get_stats64) {
10616                 memset(storage, 0, sizeof(*storage));
10617                 ops->ndo_get_stats64(dev, storage);
10618         } else if (ops->ndo_get_stats) {
10619                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10620         } else {
10621                 netdev_stats_to_stats64(storage, &dev->stats);
10622         }
10623         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10624         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10625         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10626         return storage;
10627 }
10628 EXPORT_SYMBOL(dev_get_stats);
10629
10630 /**
10631  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10632  *      @s: place to store stats
10633  *      @netstats: per-cpu network stats to read from
10634  *
10635  *      Read per-cpu network statistics and populate the related fields in @s.
10636  */
10637 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10638                            const struct pcpu_sw_netstats __percpu *netstats)
10639 {
10640         int cpu;
10641
10642         for_each_possible_cpu(cpu) {
10643                 const struct pcpu_sw_netstats *stats;
10644                 struct pcpu_sw_netstats tmp;
10645                 unsigned int start;
10646
10647                 stats = per_cpu_ptr(netstats, cpu);
10648                 do {
10649                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10650                         tmp.rx_packets = stats->rx_packets;
10651                         tmp.rx_bytes   = stats->rx_bytes;
10652                         tmp.tx_packets = stats->tx_packets;
10653                         tmp.tx_bytes   = stats->tx_bytes;
10654                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10655
10656                 s->rx_packets += tmp.rx_packets;
10657                 s->rx_bytes   += tmp.rx_bytes;
10658                 s->tx_packets += tmp.tx_packets;
10659                 s->tx_bytes   += tmp.tx_bytes;
10660         }
10661 }
10662 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10663
10664 /**
10665  *      dev_get_tstats64 - ndo_get_stats64 implementation
10666  *      @dev: device to get statistics from
10667  *      @s: place to store stats
10668  *
10669  *      Populate @s from dev->stats and dev->tstats. Can be used as
10670  *      ndo_get_stats64() callback.
10671  */
10672 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10673 {
10674         netdev_stats_to_stats64(s, &dev->stats);
10675         dev_fetch_sw_netstats(s, dev->tstats);
10676 }
10677 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10678
10679 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10680 {
10681         struct netdev_queue *queue = dev_ingress_queue(dev);
10682
10683 #ifdef CONFIG_NET_CLS_ACT
10684         if (queue)
10685                 return queue;
10686         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10687         if (!queue)
10688                 return NULL;
10689         netdev_init_one_queue(dev, queue, NULL);
10690         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10691         queue->qdisc_sleeping = &noop_qdisc;
10692         rcu_assign_pointer(dev->ingress_queue, queue);
10693 #endif
10694         return queue;
10695 }
10696
10697 static const struct ethtool_ops default_ethtool_ops;
10698
10699 void netdev_set_default_ethtool_ops(struct net_device *dev,
10700                                     const struct ethtool_ops *ops)
10701 {
10702         if (dev->ethtool_ops == &default_ethtool_ops)
10703                 dev->ethtool_ops = ops;
10704 }
10705 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10706
10707 void netdev_freemem(struct net_device *dev)
10708 {
10709         char *addr = (char *)dev - dev->padded;
10710
10711         kvfree(addr);
10712 }
10713
10714 /**
10715  * alloc_netdev_mqs - allocate network device
10716  * @sizeof_priv: size of private data to allocate space for
10717  * @name: device name format string
10718  * @name_assign_type: origin of device name
10719  * @setup: callback to initialize device
10720  * @txqs: the number of TX subqueues to allocate
10721  * @rxqs: the number of RX subqueues to allocate
10722  *
10723  * Allocates a struct net_device with private data area for driver use
10724  * and performs basic initialization.  Also allocates subqueue structs
10725  * for each queue on the device.
10726  */
10727 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10728                 unsigned char name_assign_type,
10729                 void (*setup)(struct net_device *),
10730                 unsigned int txqs, unsigned int rxqs)
10731 {
10732         struct net_device *dev;
10733         unsigned int alloc_size;
10734         struct net_device *p;
10735
10736         BUG_ON(strlen(name) >= sizeof(dev->name));
10737
10738         if (txqs < 1) {
10739                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10740                 return NULL;
10741         }
10742
10743         if (rxqs < 1) {
10744                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10745                 return NULL;
10746         }
10747
10748         alloc_size = sizeof(struct net_device);
10749         if (sizeof_priv) {
10750                 /* ensure 32-byte alignment of private area */
10751                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10752                 alloc_size += sizeof_priv;
10753         }
10754         /* ensure 32-byte alignment of whole construct */
10755         alloc_size += NETDEV_ALIGN - 1;
10756
10757         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10758         if (!p)
10759                 return NULL;
10760
10761         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10762         dev->padded = (char *)dev - (char *)p;
10763
10764 #ifdef CONFIG_PCPU_DEV_REFCNT
10765         dev->pcpu_refcnt = alloc_percpu(int);
10766         if (!dev->pcpu_refcnt)
10767                 goto free_dev;
10768         dev_hold(dev);
10769 #else
10770         refcount_set(&dev->dev_refcnt, 1);
10771 #endif
10772
10773         if (dev_addr_init(dev))
10774                 goto free_pcpu;
10775
10776         dev_mc_init(dev);
10777         dev_uc_init(dev);
10778
10779         dev_net_set(dev, &init_net);
10780
10781         dev->gso_max_size = GSO_MAX_SIZE;
10782         dev->gso_max_segs = GSO_MAX_SEGS;
10783         dev->upper_level = 1;
10784         dev->lower_level = 1;
10785 #ifdef CONFIG_LOCKDEP
10786         dev->nested_level = 0;
10787         INIT_LIST_HEAD(&dev->unlink_list);
10788 #endif
10789
10790         INIT_LIST_HEAD(&dev->napi_list);
10791         INIT_LIST_HEAD(&dev->unreg_list);
10792         INIT_LIST_HEAD(&dev->close_list);
10793         INIT_LIST_HEAD(&dev->link_watch_list);
10794         INIT_LIST_HEAD(&dev->adj_list.upper);
10795         INIT_LIST_HEAD(&dev->adj_list.lower);
10796         INIT_LIST_HEAD(&dev->ptype_all);
10797         INIT_LIST_HEAD(&dev->ptype_specific);
10798         INIT_LIST_HEAD(&dev->net_notifier_list);
10799 #ifdef CONFIG_NET_SCHED
10800         hash_init(dev->qdisc_hash);
10801 #endif
10802         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10803         setup(dev);
10804
10805         if (!dev->tx_queue_len) {
10806                 dev->priv_flags |= IFF_NO_QUEUE;
10807                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10808         }
10809
10810         dev->num_tx_queues = txqs;
10811         dev->real_num_tx_queues = txqs;
10812         if (netif_alloc_netdev_queues(dev))
10813                 goto free_all;
10814
10815         dev->num_rx_queues = rxqs;
10816         dev->real_num_rx_queues = rxqs;
10817         if (netif_alloc_rx_queues(dev))
10818                 goto free_all;
10819
10820         strcpy(dev->name, name);
10821         dev->name_assign_type = name_assign_type;
10822         dev->group = INIT_NETDEV_GROUP;
10823         if (!dev->ethtool_ops)
10824                 dev->ethtool_ops = &default_ethtool_ops;
10825
10826         nf_hook_ingress_init(dev);
10827
10828         return dev;
10829
10830 free_all:
10831         free_netdev(dev);
10832         return NULL;
10833
10834 free_pcpu:
10835 #ifdef CONFIG_PCPU_DEV_REFCNT
10836         free_percpu(dev->pcpu_refcnt);
10837 free_dev:
10838 #endif
10839         netdev_freemem(dev);
10840         return NULL;
10841 }
10842 EXPORT_SYMBOL(alloc_netdev_mqs);
10843
10844 /**
10845  * free_netdev - free network device
10846  * @dev: device
10847  *
10848  * This function does the last stage of destroying an allocated device
10849  * interface. The reference to the device object is released. If this
10850  * is the last reference then it will be freed.Must be called in process
10851  * context.
10852  */
10853 void free_netdev(struct net_device *dev)
10854 {
10855         struct napi_struct *p, *n;
10856
10857         might_sleep();
10858
10859         /* When called immediately after register_netdevice() failed the unwind
10860          * handling may still be dismantling the device. Handle that case by
10861          * deferring the free.
10862          */
10863         if (dev->reg_state == NETREG_UNREGISTERING) {
10864                 ASSERT_RTNL();
10865                 dev->needs_free_netdev = true;
10866                 return;
10867         }
10868
10869         netif_free_tx_queues(dev);
10870         netif_free_rx_queues(dev);
10871
10872         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10873
10874         /* Flush device addresses */
10875         dev_addr_flush(dev);
10876
10877         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10878                 netif_napi_del(p);
10879
10880 #ifdef CONFIG_PCPU_DEV_REFCNT
10881         free_percpu(dev->pcpu_refcnt);
10882         dev->pcpu_refcnt = NULL;
10883 #endif
10884         free_percpu(dev->xdp_bulkq);
10885         dev->xdp_bulkq = NULL;
10886
10887         /*  Compatibility with error handling in drivers */
10888         if (dev->reg_state == NETREG_UNINITIALIZED) {
10889                 netdev_freemem(dev);
10890                 return;
10891         }
10892
10893         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10894         dev->reg_state = NETREG_RELEASED;
10895
10896         /* will free via device release */
10897         put_device(&dev->dev);
10898 }
10899 EXPORT_SYMBOL(free_netdev);
10900
10901 /**
10902  *      synchronize_net -  Synchronize with packet receive processing
10903  *
10904  *      Wait for packets currently being received to be done.
10905  *      Does not block later packets from starting.
10906  */
10907 void synchronize_net(void)
10908 {
10909         might_sleep();
10910         if (rtnl_is_locked())
10911                 synchronize_rcu_expedited();
10912         else
10913                 synchronize_rcu();
10914 }
10915 EXPORT_SYMBOL(synchronize_net);
10916
10917 /**
10918  *      unregister_netdevice_queue - remove device from the kernel
10919  *      @dev: device
10920  *      @head: list
10921  *
10922  *      This function shuts down a device interface and removes it
10923  *      from the kernel tables.
10924  *      If head not NULL, device is queued to be unregistered later.
10925  *
10926  *      Callers must hold the rtnl semaphore.  You may want
10927  *      unregister_netdev() instead of this.
10928  */
10929
10930 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10931 {
10932         ASSERT_RTNL();
10933
10934         if (head) {
10935                 list_move_tail(&dev->unreg_list, head);
10936         } else {
10937                 LIST_HEAD(single);
10938
10939                 list_add(&dev->unreg_list, &single);
10940                 unregister_netdevice_many(&single);
10941         }
10942 }
10943 EXPORT_SYMBOL(unregister_netdevice_queue);
10944
10945 /**
10946  *      unregister_netdevice_many - unregister many devices
10947  *      @head: list of devices
10948  *
10949  *  Note: As most callers use a stack allocated list_head,
10950  *  we force a list_del() to make sure stack wont be corrupted later.
10951  */
10952 void unregister_netdevice_many(struct list_head *head)
10953 {
10954         struct net_device *dev, *tmp;
10955         LIST_HEAD(close_head);
10956
10957         BUG_ON(dev_boot_phase);
10958         ASSERT_RTNL();
10959
10960         if (list_empty(head))
10961                 return;
10962
10963         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10964                 /* Some devices call without registering
10965                  * for initialization unwind. Remove those
10966                  * devices and proceed with the remaining.
10967                  */
10968                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10969                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10970                                  dev->name, dev);
10971
10972                         WARN_ON(1);
10973                         list_del(&dev->unreg_list);
10974                         continue;
10975                 }
10976                 dev->dismantle = true;
10977                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10978         }
10979
10980         /* If device is running, close it first. */
10981         list_for_each_entry(dev, head, unreg_list)
10982                 list_add_tail(&dev->close_list, &close_head);
10983         dev_close_many(&close_head, true);
10984
10985         list_for_each_entry(dev, head, unreg_list) {
10986                 /* And unlink it from device chain. */
10987                 unlist_netdevice(dev);
10988
10989                 dev->reg_state = NETREG_UNREGISTERING;
10990         }
10991         flush_all_backlogs();
10992
10993         synchronize_net();
10994
10995         list_for_each_entry(dev, head, unreg_list) {
10996                 struct sk_buff *skb = NULL;
10997
10998                 /* Shutdown queueing discipline. */
10999                 dev_shutdown(dev);
11000
11001                 dev_xdp_uninstall(dev);
11002
11003                 /* Notify protocols, that we are about to destroy
11004                  * this device. They should clean all the things.
11005                  */
11006                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11007
11008                 if (!dev->rtnl_link_ops ||
11009                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11010                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11011                                                      GFP_KERNEL, NULL, 0);
11012
11013                 /*
11014                  *      Flush the unicast and multicast chains
11015                  */
11016                 dev_uc_flush(dev);
11017                 dev_mc_flush(dev);
11018
11019                 netdev_name_node_alt_flush(dev);
11020                 netdev_name_node_free(dev->name_node);
11021
11022                 if (dev->netdev_ops->ndo_uninit)
11023                         dev->netdev_ops->ndo_uninit(dev);
11024
11025                 if (skb)
11026                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11027
11028                 /* Notifier chain MUST detach us all upper devices. */
11029                 WARN_ON(netdev_has_any_upper_dev(dev));
11030                 WARN_ON(netdev_has_any_lower_dev(dev));
11031
11032                 /* Remove entries from kobject tree */
11033                 netdev_unregister_kobject(dev);
11034 #ifdef CONFIG_XPS
11035                 /* Remove XPS queueing entries */
11036                 netif_reset_xps_queues_gt(dev, 0);
11037 #endif
11038         }
11039
11040         synchronize_net();
11041
11042         list_for_each_entry(dev, head, unreg_list) {
11043                 dev_put(dev);
11044                 net_set_todo(dev);
11045         }
11046
11047         list_del(head);
11048 }
11049 EXPORT_SYMBOL(unregister_netdevice_many);
11050
11051 /**
11052  *      unregister_netdev - remove device from the kernel
11053  *      @dev: device
11054  *
11055  *      This function shuts down a device interface and removes it
11056  *      from the kernel tables.
11057  *
11058  *      This is just a wrapper for unregister_netdevice that takes
11059  *      the rtnl semaphore.  In general you want to use this and not
11060  *      unregister_netdevice.
11061  */
11062 void unregister_netdev(struct net_device *dev)
11063 {
11064         rtnl_lock();
11065         unregister_netdevice(dev);
11066         rtnl_unlock();
11067 }
11068 EXPORT_SYMBOL(unregister_netdev);
11069
11070 /**
11071  *      __dev_change_net_namespace - move device to different nethost namespace
11072  *      @dev: device
11073  *      @net: network namespace
11074  *      @pat: If not NULL name pattern to try if the current device name
11075  *            is already taken in the destination network namespace.
11076  *      @new_ifindex: If not zero, specifies device index in the target
11077  *                    namespace.
11078  *
11079  *      This function shuts down a device interface and moves it
11080  *      to a new network namespace. On success 0 is returned, on
11081  *      a failure a netagive errno code is returned.
11082  *
11083  *      Callers must hold the rtnl semaphore.
11084  */
11085
11086 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11087                                const char *pat, int new_ifindex)
11088 {
11089         struct net *net_old = dev_net(dev);
11090         int err, new_nsid;
11091
11092         ASSERT_RTNL();
11093
11094         /* Don't allow namespace local devices to be moved. */
11095         err = -EINVAL;
11096         if (dev->features & NETIF_F_NETNS_LOCAL)
11097                 goto out;
11098
11099         /* Ensure the device has been registrered */
11100         if (dev->reg_state != NETREG_REGISTERED)
11101                 goto out;
11102
11103         /* Get out if there is nothing todo */
11104         err = 0;
11105         if (net_eq(net_old, net))
11106                 goto out;
11107
11108         /* Pick the destination device name, and ensure
11109          * we can use it in the destination network namespace.
11110          */
11111         err = -EEXIST;
11112         if (__dev_get_by_name(net, dev->name)) {
11113                 /* We get here if we can't use the current device name */
11114                 if (!pat)
11115                         goto out;
11116                 err = dev_get_valid_name(net, dev, pat);
11117                 if (err < 0)
11118                         goto out;
11119         }
11120
11121         /* Check that new_ifindex isn't used yet. */
11122         err = -EBUSY;
11123         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11124                 goto out;
11125
11126         /*
11127          * And now a mini version of register_netdevice unregister_netdevice.
11128          */
11129
11130         /* If device is running close it first. */
11131         dev_close(dev);
11132
11133         /* And unlink it from device chain */
11134         unlist_netdevice(dev);
11135
11136         synchronize_net();
11137
11138         /* Shutdown queueing discipline. */
11139         dev_shutdown(dev);
11140
11141         /* Notify protocols, that we are about to destroy
11142          * this device. They should clean all the things.
11143          *
11144          * Note that dev->reg_state stays at NETREG_REGISTERED.
11145          * This is wanted because this way 8021q and macvlan know
11146          * the device is just moving and can keep their slaves up.
11147          */
11148         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11149         rcu_barrier();
11150
11151         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11152         /* If there is an ifindex conflict assign a new one */
11153         if (!new_ifindex) {
11154                 if (__dev_get_by_index(net, dev->ifindex))
11155                         new_ifindex = dev_new_index(net);
11156                 else
11157                         new_ifindex = dev->ifindex;
11158         }
11159
11160         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11161                             new_ifindex);
11162
11163         /*
11164          *      Flush the unicast and multicast chains
11165          */
11166         dev_uc_flush(dev);
11167         dev_mc_flush(dev);
11168
11169         /* Send a netdev-removed uevent to the old namespace */
11170         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11171         netdev_adjacent_del_links(dev);
11172
11173         /* Move per-net netdevice notifiers that are following the netdevice */
11174         move_netdevice_notifiers_dev_net(dev, net);
11175
11176         /* Actually switch the network namespace */
11177         dev_net_set(dev, net);
11178         dev->ifindex = new_ifindex;
11179
11180         /* Send a netdev-add uevent to the new namespace */
11181         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11182         netdev_adjacent_add_links(dev);
11183
11184         /* Fixup kobjects */
11185         err = device_rename(&dev->dev, dev->name);
11186         WARN_ON(err);
11187
11188         /* Adapt owner in case owning user namespace of target network
11189          * namespace is different from the original one.
11190          */
11191         err = netdev_change_owner(dev, net_old, net);
11192         WARN_ON(err);
11193
11194         /* Add the device back in the hashes */
11195         list_netdevice(dev);
11196
11197         /* Notify protocols, that a new device appeared. */
11198         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11199
11200         /*
11201          *      Prevent userspace races by waiting until the network
11202          *      device is fully setup before sending notifications.
11203          */
11204         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11205
11206         synchronize_net();
11207         err = 0;
11208 out:
11209         return err;
11210 }
11211 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11212
11213 static int dev_cpu_dead(unsigned int oldcpu)
11214 {
11215         struct sk_buff **list_skb;
11216         struct sk_buff *skb;
11217         unsigned int cpu;
11218         struct softnet_data *sd, *oldsd, *remsd = NULL;
11219
11220         local_irq_disable();
11221         cpu = smp_processor_id();
11222         sd = &per_cpu(softnet_data, cpu);
11223         oldsd = &per_cpu(softnet_data, oldcpu);
11224
11225         /* Find end of our completion_queue. */
11226         list_skb = &sd->completion_queue;
11227         while (*list_skb)
11228                 list_skb = &(*list_skb)->next;
11229         /* Append completion queue from offline CPU. */
11230         *list_skb = oldsd->completion_queue;
11231         oldsd->completion_queue = NULL;
11232
11233         /* Append output queue from offline CPU. */
11234         if (oldsd->output_queue) {
11235                 *sd->output_queue_tailp = oldsd->output_queue;
11236                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11237                 oldsd->output_queue = NULL;
11238                 oldsd->output_queue_tailp = &oldsd->output_queue;
11239         }
11240         /* Append NAPI poll list from offline CPU, with one exception :
11241          * process_backlog() must be called by cpu owning percpu backlog.
11242          * We properly handle process_queue & input_pkt_queue later.
11243          */
11244         while (!list_empty(&oldsd->poll_list)) {
11245                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11246                                                             struct napi_struct,
11247                                                             poll_list);
11248
11249                 list_del_init(&napi->poll_list);
11250                 if (napi->poll == process_backlog)
11251                         napi->state = 0;
11252                 else
11253                         ____napi_schedule(sd, napi);
11254         }
11255
11256         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11257         local_irq_enable();
11258
11259 #ifdef CONFIG_RPS
11260         remsd = oldsd->rps_ipi_list;
11261         oldsd->rps_ipi_list = NULL;
11262 #endif
11263         /* send out pending IPI's on offline CPU */
11264         net_rps_send_ipi(remsd);
11265
11266         /* Process offline CPU's input_pkt_queue */
11267         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11268                 netif_rx_ni(skb);
11269                 input_queue_head_incr(oldsd);
11270         }
11271         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11272                 netif_rx_ni(skb);
11273                 input_queue_head_incr(oldsd);
11274         }
11275
11276         return 0;
11277 }
11278
11279 /**
11280  *      netdev_increment_features - increment feature set by one
11281  *      @all: current feature set
11282  *      @one: new feature set
11283  *      @mask: mask feature set
11284  *
11285  *      Computes a new feature set after adding a device with feature set
11286  *      @one to the master device with current feature set @all.  Will not
11287  *      enable anything that is off in @mask. Returns the new feature set.
11288  */
11289 netdev_features_t netdev_increment_features(netdev_features_t all,
11290         netdev_features_t one, netdev_features_t mask)
11291 {
11292         if (mask & NETIF_F_HW_CSUM)
11293                 mask |= NETIF_F_CSUM_MASK;
11294         mask |= NETIF_F_VLAN_CHALLENGED;
11295
11296         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11297         all &= one | ~NETIF_F_ALL_FOR_ALL;
11298
11299         /* If one device supports hw checksumming, set for all. */
11300         if (all & NETIF_F_HW_CSUM)
11301                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11302
11303         return all;
11304 }
11305 EXPORT_SYMBOL(netdev_increment_features);
11306
11307 static struct hlist_head * __net_init netdev_create_hash(void)
11308 {
11309         int i;
11310         struct hlist_head *hash;
11311
11312         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11313         if (hash != NULL)
11314                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11315                         INIT_HLIST_HEAD(&hash[i]);
11316
11317         return hash;
11318 }
11319
11320 /* Initialize per network namespace state */
11321 static int __net_init netdev_init(struct net *net)
11322 {
11323         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11324                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11325
11326         if (net != &init_net)
11327                 INIT_LIST_HEAD(&net->dev_base_head);
11328
11329         net->dev_name_head = netdev_create_hash();
11330         if (net->dev_name_head == NULL)
11331                 goto err_name;
11332
11333         net->dev_index_head = netdev_create_hash();
11334         if (net->dev_index_head == NULL)
11335                 goto err_idx;
11336
11337         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11338
11339         return 0;
11340
11341 err_idx:
11342         kfree(net->dev_name_head);
11343 err_name:
11344         return -ENOMEM;
11345 }
11346
11347 /**
11348  *      netdev_drivername - network driver for the device
11349  *      @dev: network device
11350  *
11351  *      Determine network driver for device.
11352  */
11353 const char *netdev_drivername(const struct net_device *dev)
11354 {
11355         const struct device_driver *driver;
11356         const struct device *parent;
11357         const char *empty = "";
11358
11359         parent = dev->dev.parent;
11360         if (!parent)
11361                 return empty;
11362
11363         driver = parent->driver;
11364         if (driver && driver->name)
11365                 return driver->name;
11366         return empty;
11367 }
11368
11369 static void __netdev_printk(const char *level, const struct net_device *dev,
11370                             struct va_format *vaf)
11371 {
11372         if (dev && dev->dev.parent) {
11373                 dev_printk_emit(level[1] - '0',
11374                                 dev->dev.parent,
11375                                 "%s %s %s%s: %pV",
11376                                 dev_driver_string(dev->dev.parent),
11377                                 dev_name(dev->dev.parent),
11378                                 netdev_name(dev), netdev_reg_state(dev),
11379                                 vaf);
11380         } else if (dev) {
11381                 printk("%s%s%s: %pV",
11382                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11383         } else {
11384                 printk("%s(NULL net_device): %pV", level, vaf);
11385         }
11386 }
11387
11388 void netdev_printk(const char *level, const struct net_device *dev,
11389                    const char *format, ...)
11390 {
11391         struct va_format vaf;
11392         va_list args;
11393
11394         va_start(args, format);
11395
11396         vaf.fmt = format;
11397         vaf.va = &args;
11398
11399         __netdev_printk(level, dev, &vaf);
11400
11401         va_end(args);
11402 }
11403 EXPORT_SYMBOL(netdev_printk);
11404
11405 #define define_netdev_printk_level(func, level)                 \
11406 void func(const struct net_device *dev, const char *fmt, ...)   \
11407 {                                                               \
11408         struct va_format vaf;                                   \
11409         va_list args;                                           \
11410                                                                 \
11411         va_start(args, fmt);                                    \
11412                                                                 \
11413         vaf.fmt = fmt;                                          \
11414         vaf.va = &args;                                         \
11415                                                                 \
11416         __netdev_printk(level, dev, &vaf);                      \
11417                                                                 \
11418         va_end(args);                                           \
11419 }                                                               \
11420 EXPORT_SYMBOL(func);
11421
11422 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11423 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11424 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11425 define_netdev_printk_level(netdev_err, KERN_ERR);
11426 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11427 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11428 define_netdev_printk_level(netdev_info, KERN_INFO);
11429
11430 static void __net_exit netdev_exit(struct net *net)
11431 {
11432         kfree(net->dev_name_head);
11433         kfree(net->dev_index_head);
11434         if (net != &init_net)
11435                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11436 }
11437
11438 static struct pernet_operations __net_initdata netdev_net_ops = {
11439         .init = netdev_init,
11440         .exit = netdev_exit,
11441 };
11442
11443 static void __net_exit default_device_exit(struct net *net)
11444 {
11445         struct net_device *dev, *aux;
11446         /*
11447          * Push all migratable network devices back to the
11448          * initial network namespace
11449          */
11450         rtnl_lock();
11451         for_each_netdev_safe(net, dev, aux) {
11452                 int err;
11453                 char fb_name[IFNAMSIZ];
11454
11455                 /* Ignore unmoveable devices (i.e. loopback) */
11456                 if (dev->features & NETIF_F_NETNS_LOCAL)
11457                         continue;
11458
11459                 /* Leave virtual devices for the generic cleanup */
11460                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11461                         continue;
11462
11463                 /* Push remaining network devices to init_net */
11464                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11465                 if (__dev_get_by_name(&init_net, fb_name))
11466                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11467                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11468                 if (err) {
11469                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11470                                  __func__, dev->name, err);
11471                         BUG();
11472                 }
11473         }
11474         rtnl_unlock();
11475 }
11476
11477 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11478 {
11479         /* Return with the rtnl_lock held when there are no network
11480          * devices unregistering in any network namespace in net_list.
11481          */
11482         struct net *net;
11483         bool unregistering;
11484         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11485
11486         add_wait_queue(&netdev_unregistering_wq, &wait);
11487         for (;;) {
11488                 unregistering = false;
11489                 rtnl_lock();
11490                 list_for_each_entry(net, net_list, exit_list) {
11491                         if (net->dev_unreg_count > 0) {
11492                                 unregistering = true;
11493                                 break;
11494                         }
11495                 }
11496                 if (!unregistering)
11497                         break;
11498                 __rtnl_unlock();
11499
11500                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11501         }
11502         remove_wait_queue(&netdev_unregistering_wq, &wait);
11503 }
11504
11505 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11506 {
11507         /* At exit all network devices most be removed from a network
11508          * namespace.  Do this in the reverse order of registration.
11509          * Do this across as many network namespaces as possible to
11510          * improve batching efficiency.
11511          */
11512         struct net_device *dev;
11513         struct net *net;
11514         LIST_HEAD(dev_kill_list);
11515
11516         /* To prevent network device cleanup code from dereferencing
11517          * loopback devices or network devices that have been freed
11518          * wait here for all pending unregistrations to complete,
11519          * before unregistring the loopback device and allowing the
11520          * network namespace be freed.
11521          *
11522          * The netdev todo list containing all network devices
11523          * unregistrations that happen in default_device_exit_batch
11524          * will run in the rtnl_unlock() at the end of
11525          * default_device_exit_batch.
11526          */
11527         rtnl_lock_unregistering(net_list);
11528         list_for_each_entry(net, net_list, exit_list) {
11529                 for_each_netdev_reverse(net, dev) {
11530                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11531                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11532                         else
11533                                 unregister_netdevice_queue(dev, &dev_kill_list);
11534                 }
11535         }
11536         unregister_netdevice_many(&dev_kill_list);
11537         rtnl_unlock();
11538 }
11539
11540 static struct pernet_operations __net_initdata default_device_ops = {
11541         .exit = default_device_exit,
11542         .exit_batch = default_device_exit_batch,
11543 };
11544
11545 /*
11546  *      Initialize the DEV module. At boot time this walks the device list and
11547  *      unhooks any devices that fail to initialise (normally hardware not
11548  *      present) and leaves us with a valid list of present and active devices.
11549  *
11550  */
11551
11552 /*
11553  *       This is called single threaded during boot, so no need
11554  *       to take the rtnl semaphore.
11555  */
11556 static int __init net_dev_init(void)
11557 {
11558         int i, rc = -ENOMEM;
11559
11560         BUG_ON(!dev_boot_phase);
11561
11562         if (dev_proc_init())
11563                 goto out;
11564
11565         if (netdev_kobject_init())
11566                 goto out;
11567
11568         INIT_LIST_HEAD(&ptype_all);
11569         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11570                 INIT_LIST_HEAD(&ptype_base[i]);
11571
11572         INIT_LIST_HEAD(&offload_base);
11573
11574         if (register_pernet_subsys(&netdev_net_ops))
11575                 goto out;
11576
11577         /*
11578          *      Initialise the packet receive queues.
11579          */
11580
11581         for_each_possible_cpu(i) {
11582                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11583                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11584
11585                 INIT_WORK(flush, flush_backlog);
11586
11587                 skb_queue_head_init(&sd->input_pkt_queue);
11588                 skb_queue_head_init(&sd->process_queue);
11589 #ifdef CONFIG_XFRM_OFFLOAD
11590                 skb_queue_head_init(&sd->xfrm_backlog);
11591 #endif
11592                 INIT_LIST_HEAD(&sd->poll_list);
11593                 sd->output_queue_tailp = &sd->output_queue;
11594 #ifdef CONFIG_RPS
11595                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11596                 sd->cpu = i;
11597 #endif
11598
11599                 init_gro_hash(&sd->backlog);
11600                 sd->backlog.poll = process_backlog;
11601                 sd->backlog.weight = weight_p;
11602         }
11603
11604         dev_boot_phase = 0;
11605
11606         /* The loopback device is special if any other network devices
11607          * is present in a network namespace the loopback device must
11608          * be present. Since we now dynamically allocate and free the
11609          * loopback device ensure this invariant is maintained by
11610          * keeping the loopback device as the first device on the
11611          * list of network devices.  Ensuring the loopback devices
11612          * is the first device that appears and the last network device
11613          * that disappears.
11614          */
11615         if (register_pernet_device(&loopback_net_ops))
11616                 goto out;
11617
11618         if (register_pernet_device(&default_device_ops))
11619                 goto out;
11620
11621         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11622         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11623
11624         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11625                                        NULL, dev_cpu_dead);
11626         WARN_ON(rc < 0);
11627         rc = 0;
11628 out:
11629         return rc;
11630 }
11631
11632 subsys_initcall(net_dev_init);