ef8cf7619bafa3a229ad9b18cc003792df7b3fac
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853         int k = stack->num_paths++;
854
855         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856                 return NULL;
857
858         return &stack->path[k];
859 }
860
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862                           struct net_device_path_stack *stack)
863 {
864         const struct net_device *last_dev;
865         struct net_device_path_ctx ctx = {
866                 .dev    = dev,
867                 .daddr  = daddr,
868         };
869         struct net_device_path *path;
870         int ret = 0;
871
872         stack->num_paths = 0;
873         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874                 last_dev = ctx.dev;
875                 path = dev_fwd_path(stack);
876                 if (!path)
877                         return -1;
878
879                 memset(path, 0, sizeof(struct net_device_path));
880                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881                 if (ret < 0)
882                         return -1;
883
884                 if (WARN_ON_ONCE(last_dev == ctx.dev))
885                         return -1;
886         }
887         path = dev_fwd_path(stack);
888         if (!path)
889                 return -1;
890         path->type = DEV_PATH_ETHERNET;
891         path->dev = ctx.dev;
892
893         return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897 /**
898  *      __dev_get_by_name       - find a device by its name
899  *      @net: the applicable net namespace
900  *      @name: name to find
901  *
902  *      Find an interface by name. Must be called under RTNL semaphore
903  *      or @dev_base_lock. If the name is found a pointer to the device
904  *      is returned. If the name is not found then %NULL is returned. The
905  *      reference counters are not incremented so the caller must be
906  *      careful with locks.
907  */
908
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911         struct netdev_name_node *node_name;
912
913         node_name = netdev_name_node_lookup(net, name);
914         return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917
918 /**
919  * dev_get_by_name_rcu  - find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932         struct netdev_name_node *node_name;
933
934         node_name = netdev_name_node_lookup_rcu(net, name);
935         return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939 /**
940  *      dev_get_by_name         - find a device by its name
941  *      @net: the applicable net namespace
942  *      @name: name to find
943  *
944  *      Find an interface by name. This can be called from any
945  *      context and does its own locking. The returned handle has
946  *      the usage count incremented and the caller must use dev_put() to
947  *      release it when it is no longer needed. %NULL is returned if no
948  *      matching device is found.
949  */
950
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953         struct net_device *dev;
954
955         rcu_read_lock();
956         dev = dev_get_by_name_rcu(net, name);
957         if (dev)
958                 dev_hold(dev);
959         rcu_read_unlock();
960         return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963
964 /**
965  *      __dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns %NULL if the device
970  *      is not found or a pointer to the device. The device has not
971  *      had its reference counter increased so the caller must be careful
972  *      about locking. The caller must hold either the RTNL semaphore
973  *      or @dev_base_lock.
974  */
975
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978         struct net_device *dev;
979         struct hlist_head *head = dev_index_hash(net, ifindex);
980
981         hlist_for_each_entry(dev, head, index_hlist)
982                 if (dev->ifindex == ifindex)
983                         return dev;
984
985         return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988
989 /**
990  *      dev_get_by_index_rcu - find a device by its ifindex
991  *      @net: the applicable net namespace
992  *      @ifindex: index of device
993  *
994  *      Search for an interface by index. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not
996  *      had its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002         struct net_device *dev;
1003         struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005         hlist_for_each_entry_rcu(dev, head, index_hlist)
1006                 if (dev->ifindex == ifindex)
1007                         return dev;
1008
1009         return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014 /**
1015  *      dev_get_by_index - find a device by its ifindex
1016  *      @net: the applicable net namespace
1017  *      @ifindex: index of device
1018  *
1019  *      Search for an interface by index. Returns NULL if the device
1020  *      is not found or a pointer to the device. The device returned has
1021  *      had a reference added and the pointer is safe until the user calls
1022  *      dev_put to indicate they have finished with it.
1023  */
1024
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027         struct net_device *dev;
1028
1029         rcu_read_lock();
1030         dev = dev_get_by_index_rcu(net, ifindex);
1031         if (dev)
1032                 dev_hold(dev);
1033         rcu_read_unlock();
1034         return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037
1038 /**
1039  *      dev_get_by_napi_id - find a device by napi_id
1040  *      @napi_id: ID of the NAPI struct
1041  *
1042  *      Search for an interface by NAPI ID. Returns %NULL if the device
1043  *      is not found or a pointer to the device. The device has not had
1044  *      its reference counter increased so the caller must be careful
1045  *      about locking. The caller must hold RCU lock.
1046  */
1047
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050         struct napi_struct *napi;
1051
1052         WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054         if (napi_id < MIN_NAPI_ID)
1055                 return NULL;
1056
1057         napi = napi_by_id(napi_id);
1058
1059         return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063 /**
1064  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *      @net: network namespace
1066  *      @name: a pointer to the buffer where the name will be stored.
1067  *      @ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071         struct net_device *dev;
1072         int ret;
1073
1074         down_read(&devnet_rename_sem);
1075         rcu_read_lock();
1076
1077         dev = dev_get_by_index_rcu(net, ifindex);
1078         if (!dev) {
1079                 ret = -ENODEV;
1080                 goto out;
1081         }
1082
1083         strcpy(name, dev->name);
1084
1085         ret = 0;
1086 out:
1087         rcu_read_unlock();
1088         up_read(&devnet_rename_sem);
1089         return ret;
1090 }
1091
1092 /**
1093  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *      @net: the applicable net namespace
1095  *      @type: media type of device
1096  *      @ha: hardware address
1097  *
1098  *      Search for an interface by MAC address. Returns NULL if the device
1099  *      is not found or a pointer to the device.
1100  *      The caller must hold RCU or RTNL.
1101  *      The returned device has not had its ref count increased
1102  *      and the caller must therefore be careful about locking
1103  *
1104  */
1105
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107                                        const char *ha)
1108 {
1109         struct net_device *dev;
1110
1111         for_each_netdev_rcu(net, dev)
1112                 if (dev->type == type &&
1113                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1114                         return dev;
1115
1116         return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122         struct net_device *dev, *ret = NULL;
1123
1124         rcu_read_lock();
1125         for_each_netdev_rcu(net, dev)
1126                 if (dev->type == type) {
1127                         dev_hold(dev);
1128                         ret = dev;
1129                         break;
1130                 }
1131         rcu_read_unlock();
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136 /**
1137  *      __dev_get_by_flags - find any device with given flags
1138  *      @net: the applicable net namespace
1139  *      @if_flags: IFF_* values
1140  *      @mask: bitmask of bits in if_flags to check
1141  *
1142  *      Search for any interface with the given flags. Returns NULL if a device
1143  *      is not found or a pointer to the device. Must be called inside
1144  *      rtnl_lock(), and result refcount is unchanged.
1145  */
1146
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148                                       unsigned short mask)
1149 {
1150         struct net_device *dev, *ret;
1151
1152         ASSERT_RTNL();
1153
1154         ret = NULL;
1155         for_each_netdev(net, dev) {
1156                 if (((dev->flags ^ if_flags) & mask) == 0) {
1157                         ret = dev;
1158                         break;
1159                 }
1160         }
1161         return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165 /**
1166  *      dev_valid_name - check if name is okay for network device
1167  *      @name: name string
1168  *
1169  *      Network device names need to be valid file names to
1170  *      allow sysfs to work.  We also disallow any kind of
1171  *      whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175         if (*name == '\0')
1176                 return false;
1177         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178                 return false;
1179         if (!strcmp(name, ".") || !strcmp(name, ".."))
1180                 return false;
1181
1182         while (*name) {
1183                 if (*name == '/' || *name == ':' || isspace(*name))
1184                         return false;
1185                 name++;
1186         }
1187         return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190
1191 /**
1192  *      __dev_alloc_name - allocate a name for a device
1193  *      @net: network namespace to allocate the device name in
1194  *      @name: name format string
1195  *      @buf:  scratch buffer and result name string
1196  *
1197  *      Passed a format string - eg "lt%d" it will try and find a suitable
1198  *      id. It scans list of devices to build up a free map, then chooses
1199  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *      while allocating the name and adding the device in order to avoid
1201  *      duplicates.
1202  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *      Returns the number of the unit assigned or a negative errno code.
1204  */
1205
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208         int i = 0;
1209         const char *p;
1210         const int max_netdevices = 8*PAGE_SIZE;
1211         unsigned long *inuse;
1212         struct net_device *d;
1213
1214         if (!dev_valid_name(name))
1215                 return -EINVAL;
1216
1217         p = strchr(name, '%');
1218         if (p) {
1219                 /*
1220                  * Verify the string as this thing may have come from
1221                  * the user.  There must be either one "%d" and no other "%"
1222                  * characters.
1223                  */
1224                 if (p[1] != 'd' || strchr(p + 2, '%'))
1225                         return -EINVAL;
1226
1227                 /* Use one page as a bit array of possible slots */
1228                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229                 if (!inuse)
1230                         return -ENOMEM;
1231
1232                 for_each_netdev(net, d) {
1233                         struct netdev_name_node *name_node;
1234                         list_for_each_entry(name_node, &d->name_node->list, list) {
1235                                 if (!sscanf(name_node->name, name, &i))
1236                                         continue;
1237                                 if (i < 0 || i >= max_netdevices)
1238                                         continue;
1239
1240                                 /*  avoid cases where sscanf is not exact inverse of printf */
1241                                 snprintf(buf, IFNAMSIZ, name, i);
1242                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243                                         set_bit(i, inuse);
1244                         }
1245                         if (!sscanf(d->name, name, &i))
1246                                 continue;
1247                         if (i < 0 || i >= max_netdevices)
1248                                 continue;
1249
1250                         /*  avoid cases where sscanf is not exact inverse of printf */
1251                         snprintf(buf, IFNAMSIZ, name, i);
1252                         if (!strncmp(buf, d->name, IFNAMSIZ))
1253                                 set_bit(i, inuse);
1254                 }
1255
1256                 i = find_first_zero_bit(inuse, max_netdevices);
1257                 free_page((unsigned long) inuse);
1258         }
1259
1260         snprintf(buf, IFNAMSIZ, name, i);
1261         if (!__dev_get_by_name(net, buf))
1262                 return i;
1263
1264         /* It is possible to run out of possible slots
1265          * when the name is long and there isn't enough space left
1266          * for the digits, or if all bits are used.
1267          */
1268         return -ENFILE;
1269 }
1270
1271 static int dev_alloc_name_ns(struct net *net,
1272                              struct net_device *dev,
1273                              const char *name)
1274 {
1275         char buf[IFNAMSIZ];
1276         int ret;
1277
1278         BUG_ON(!net);
1279         ret = __dev_alloc_name(net, name, buf);
1280         if (ret >= 0)
1281                 strlcpy(dev->name, buf, IFNAMSIZ);
1282         return ret;
1283 }
1284
1285 /**
1286  *      dev_alloc_name - allocate a name for a device
1287  *      @dev: device
1288  *      @name: name format string
1289  *
1290  *      Passed a format string - eg "lt%d" it will try and find a suitable
1291  *      id. It scans list of devices to build up a free map, then chooses
1292  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *      while allocating the name and adding the device in order to avoid
1294  *      duplicates.
1295  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *      Returns the number of the unit assigned or a negative errno code.
1297  */
1298
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301         return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306                               const char *name)
1307 {
1308         BUG_ON(!net);
1309
1310         if (!dev_valid_name(name))
1311                 return -EINVAL;
1312
1313         if (strchr(name, '%'))
1314                 return dev_alloc_name_ns(net, dev, name);
1315         else if (__dev_get_by_name(net, name))
1316                 return -EEXIST;
1317         else if (dev->name != name)
1318                 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320         return 0;
1321 }
1322
1323 /**
1324  *      dev_change_name - change name of a device
1325  *      @dev: device
1326  *      @newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *      Change name of a device, can pass format strings "eth%d".
1329  *      for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333         unsigned char old_assign_type;
1334         char oldname[IFNAMSIZ];
1335         int err = 0;
1336         int ret;
1337         struct net *net;
1338
1339         ASSERT_RTNL();
1340         BUG_ON(!dev_net(dev));
1341
1342         net = dev_net(dev);
1343
1344         /* Some auto-enslaved devices e.g. failover slaves are
1345          * special, as userspace might rename the device after
1346          * the interface had been brought up and running since
1347          * the point kernel initiated auto-enslavement. Allow
1348          * live name change even when these slave devices are
1349          * up and running.
1350          *
1351          * Typically, users of these auto-enslaving devices
1352          * don't actually care about slave name change, as
1353          * they are supposed to operate on master interface
1354          * directly.
1355          */
1356         if (dev->flags & IFF_UP &&
1357             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358                 return -EBUSY;
1359
1360         down_write(&devnet_rename_sem);
1361
1362         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363                 up_write(&devnet_rename_sem);
1364                 return 0;
1365         }
1366
1367         memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369         err = dev_get_valid_name(net, dev, newname);
1370         if (err < 0) {
1371                 up_write(&devnet_rename_sem);
1372                 return err;
1373         }
1374
1375         if (oldname[0] && !strchr(oldname, '%'))
1376                 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378         old_assign_type = dev->name_assign_type;
1379         dev->name_assign_type = NET_NAME_RENAMED;
1380
1381 rollback:
1382         ret = device_rename(&dev->dev, dev->name);
1383         if (ret) {
1384                 memcpy(dev->name, oldname, IFNAMSIZ);
1385                 dev->name_assign_type = old_assign_type;
1386                 up_write(&devnet_rename_sem);
1387                 return ret;
1388         }
1389
1390         up_write(&devnet_rename_sem);
1391
1392         netdev_adjacent_rename_links(dev, oldname);
1393
1394         write_lock_bh(&dev_base_lock);
1395         netdev_name_node_del(dev->name_node);
1396         write_unlock_bh(&dev_base_lock);
1397
1398         synchronize_rcu();
1399
1400         write_lock_bh(&dev_base_lock);
1401         netdev_name_node_add(net, dev->name_node);
1402         write_unlock_bh(&dev_base_lock);
1403
1404         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405         ret = notifier_to_errno(ret);
1406
1407         if (ret) {
1408                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409                 if (err >= 0) {
1410                         err = ret;
1411                         down_write(&devnet_rename_sem);
1412                         memcpy(dev->name, oldname, IFNAMSIZ);
1413                         memcpy(oldname, newname, IFNAMSIZ);
1414                         dev->name_assign_type = old_assign_type;
1415                         old_assign_type = NET_NAME_RENAMED;
1416                         goto rollback;
1417                 } else {
1418                         pr_err("%s: name change rollback failed: %d\n",
1419                                dev->name, ret);
1420                 }
1421         }
1422
1423         return err;
1424 }
1425
1426 /**
1427  *      dev_set_alias - change ifalias of a device
1428  *      @dev: device
1429  *      @alias: name up to IFALIASZ
1430  *      @len: limit of bytes to copy from info
1431  *
1432  *      Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436         struct dev_ifalias *new_alias = NULL;
1437
1438         if (len >= IFALIASZ)
1439                 return -EINVAL;
1440
1441         if (len) {
1442                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443                 if (!new_alias)
1444                         return -ENOMEM;
1445
1446                 memcpy(new_alias->ifalias, alias, len);
1447                 new_alias->ifalias[len] = 0;
1448         }
1449
1450         mutex_lock(&ifalias_mutex);
1451         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452                                         mutex_is_locked(&ifalias_mutex));
1453         mutex_unlock(&ifalias_mutex);
1454
1455         if (new_alias)
1456                 kfree_rcu(new_alias, rcuhead);
1457
1458         return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461
1462 /**
1463  *      dev_get_alias - get ifalias of a device
1464  *      @dev: device
1465  *      @name: buffer to store name of ifalias
1466  *      @len: size of buffer
1467  *
1468  *      get ifalias for a device.  Caller must make sure dev cannot go
1469  *      away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473         const struct dev_ifalias *alias;
1474         int ret = 0;
1475
1476         rcu_read_lock();
1477         alias = rcu_dereference(dev->ifalias);
1478         if (alias)
1479                 ret = snprintf(name, len, "%s", alias->ifalias);
1480         rcu_read_unlock();
1481
1482         return ret;
1483 }
1484
1485 /**
1486  *      netdev_features_change - device changes features
1487  *      @dev: device to cause notification
1488  *
1489  *      Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496
1497 /**
1498  *      netdev_state_change - device changes state
1499  *      @dev: device to cause notification
1500  *
1501  *      Called to indicate a device has changed state. This function calls
1502  *      the notifier chains for netdev_chain and sends a NEWLINK message
1503  *      to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507         if (dev->flags & IFF_UP) {
1508                 struct netdev_notifier_change_info change_info = {
1509                         .info.dev = dev,
1510                 };
1511
1512                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513                                               &change_info.info);
1514                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515         }
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532         ASSERT_RTNL();
1533         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550         rtnl_lock();
1551         __netdev_notify_peers(dev);
1552         rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555
1556 static int napi_threaded_poll(void *data);
1557
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560         int err = 0;
1561
1562         /* Create and wake up the kthread once to put it in
1563          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564          * warning and work with loadavg.
1565          */
1566         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567                                 n->dev->name, n->napi_id);
1568         if (IS_ERR(n->thread)) {
1569                 err = PTR_ERR(n->thread);
1570                 pr_err("kthread_run failed with err %d\n", err);
1571                 n->thread = NULL;
1572         }
1573
1574         return err;
1575 }
1576
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579         const struct net_device_ops *ops = dev->netdev_ops;
1580         int ret;
1581
1582         ASSERT_RTNL();
1583
1584         if (!netif_device_present(dev)) {
1585                 /* may be detached because parent is runtime-suspended */
1586                 if (dev->dev.parent)
1587                         pm_runtime_resume(dev->dev.parent);
1588                 if (!netif_device_present(dev))
1589                         return -ENODEV;
1590         }
1591
1592         /* Block netpoll from trying to do any rx path servicing.
1593          * If we don't do this there is a chance ndo_poll_controller
1594          * or ndo_poll may be running while we open the device
1595          */
1596         netpoll_poll_disable(dev);
1597
1598         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599         ret = notifier_to_errno(ret);
1600         if (ret)
1601                 return ret;
1602
1603         set_bit(__LINK_STATE_START, &dev->state);
1604
1605         if (ops->ndo_validate_addr)
1606                 ret = ops->ndo_validate_addr(dev);
1607
1608         if (!ret && ops->ndo_open)
1609                 ret = ops->ndo_open(dev);
1610
1611         netpoll_poll_enable(dev);
1612
1613         if (ret)
1614                 clear_bit(__LINK_STATE_START, &dev->state);
1615         else {
1616                 dev->flags |= IFF_UP;
1617                 dev_set_rx_mode(dev);
1618                 dev_activate(dev);
1619                 add_device_randomness(dev->dev_addr, dev->addr_len);
1620         }
1621
1622         return ret;
1623 }
1624
1625 /**
1626  *      dev_open        - prepare an interface for use.
1627  *      @dev: device to open
1628  *      @extack: netlink extended ack
1629  *
1630  *      Takes a device from down to up state. The device's private open
1631  *      function is invoked and then the multicast lists are loaded. Finally
1632  *      the device is moved into the up state and a %NETDEV_UP message is
1633  *      sent to the netdev notifier chain.
1634  *
1635  *      Calling this function on an active interface is a nop. On a failure
1636  *      a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640         int ret;
1641
1642         if (dev->flags & IFF_UP)
1643                 return 0;
1644
1645         ret = __dev_open(dev, extack);
1646         if (ret < 0)
1647                 return ret;
1648
1649         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650         call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652         return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658         struct net_device *dev;
1659
1660         ASSERT_RTNL();
1661         might_sleep();
1662
1663         list_for_each_entry(dev, head, close_list) {
1664                 /* Temporarily disable netpoll until the interface is down */
1665                 netpoll_poll_disable(dev);
1666
1667                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669                 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672                  * can be even on different cpu. So just clear netif_running().
1673                  *
1674                  * dev->stop() will invoke napi_disable() on all of it's
1675                  * napi_struct instances on this device.
1676                  */
1677                 smp_mb__after_atomic(); /* Commit netif_running(). */
1678         }
1679
1680         dev_deactivate_many(head);
1681
1682         list_for_each_entry(dev, head, close_list) {
1683                 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685                 /*
1686                  *      Call the device specific close. This cannot fail.
1687                  *      Only if device is UP
1688                  *
1689                  *      We allow it to be called even after a DETACH hot-plug
1690                  *      event.
1691                  */
1692                 if (ops->ndo_stop)
1693                         ops->ndo_stop(dev);
1694
1695                 dev->flags &= ~IFF_UP;
1696                 netpoll_poll_enable(dev);
1697         }
1698 }
1699
1700 static void __dev_close(struct net_device *dev)
1701 {
1702         LIST_HEAD(single);
1703
1704         list_add(&dev->close_list, &single);
1705         __dev_close_many(&single);
1706         list_del(&single);
1707 }
1708
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711         struct net_device *dev, *tmp;
1712
1713         /* Remove the devices that don't need to be closed */
1714         list_for_each_entry_safe(dev, tmp, head, close_list)
1715                 if (!(dev->flags & IFF_UP))
1716                         list_del_init(&dev->close_list);
1717
1718         __dev_close_many(head);
1719
1720         list_for_each_entry_safe(dev, tmp, head, close_list) {
1721                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723                 if (unlink)
1724                         list_del_init(&dev->close_list);
1725         }
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728
1729 /**
1730  *      dev_close - shutdown an interface.
1731  *      @dev: device to shutdown
1732  *
1733  *      This function moves an active device into down state. A
1734  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *      chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740         if (dev->flags & IFF_UP) {
1741                 LIST_HEAD(single);
1742
1743                 list_add(&dev->close_list, &single);
1744                 dev_close_many(&single, true);
1745                 list_del(&single);
1746         }
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749
1750
1751 /**
1752  *      dev_disable_lro - disable Large Receive Offload on a device
1753  *      @dev: device
1754  *
1755  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *      called under RTNL.  This is needed if received packets may be
1757  *      forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761         struct net_device *lower_dev;
1762         struct list_head *iter;
1763
1764         dev->wanted_features &= ~NETIF_F_LRO;
1765         netdev_update_features(dev);
1766
1767         if (unlikely(dev->features & NETIF_F_LRO))
1768                 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770         netdev_for_each_lower_dev(dev, lower_dev, iter)
1771                 dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774
1775 /**
1776  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *      @dev: device
1778  *
1779  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *      called under RTNL.  This is needed if Generic XDP is installed on
1781  *      the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785         dev->wanted_features &= ~NETIF_F_GRO_HW;
1786         netdev_update_features(dev);
1787
1788         if (unlikely(dev->features & NETIF_F_GRO_HW))
1789                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val)                                          \
1795         case NETDEV_##val:                              \
1796                 return "NETDEV_" __stringify(val);
1797         switch (cmd) {
1798         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807         N(PRE_CHANGEADDR)
1808         }
1809 #undef N
1810         return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815                                    struct net_device *dev)
1816 {
1817         struct netdev_notifier_info info = {
1818                 .dev = dev,
1819         };
1820
1821         return nb->notifier_call(nb, val, &info);
1822 }
1823
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825                                              struct net_device *dev)
1826 {
1827         int err;
1828
1829         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830         err = notifier_to_errno(err);
1831         if (err)
1832                 return err;
1833
1834         if (!(dev->flags & IFF_UP))
1835                 return 0;
1836
1837         call_netdevice_notifier(nb, NETDEV_UP, dev);
1838         return 0;
1839 }
1840
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842                                                 struct net_device *dev)
1843 {
1844         if (dev->flags & IFF_UP) {
1845                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846                                         dev);
1847                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848         }
1849         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853                                                  struct net *net)
1854 {
1855         struct net_device *dev;
1856         int err;
1857
1858         for_each_netdev(net, dev) {
1859                 err = call_netdevice_register_notifiers(nb, dev);
1860                 if (err)
1861                         goto rollback;
1862         }
1863         return 0;
1864
1865 rollback:
1866         for_each_netdev_continue_reverse(net, dev)
1867                 call_netdevice_unregister_notifiers(nb, dev);
1868         return err;
1869 }
1870
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872                                                     struct net *net)
1873 {
1874         struct net_device *dev;
1875
1876         for_each_netdev(net, dev)
1877                 call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879
1880 static int dev_boot_phase = 1;
1881
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898         struct net *net;
1899         int err;
1900
1901         /* Close race with setup_net() and cleanup_net() */
1902         down_write(&pernet_ops_rwsem);
1903         rtnl_lock();
1904         err = raw_notifier_chain_register(&netdev_chain, nb);
1905         if (err)
1906                 goto unlock;
1907         if (dev_boot_phase)
1908                 goto unlock;
1909         for_each_net(net) {
1910                 err = call_netdevice_register_net_notifiers(nb, net);
1911                 if (err)
1912                         goto rollback;
1913         }
1914
1915 unlock:
1916         rtnl_unlock();
1917         up_write(&pernet_ops_rwsem);
1918         return err;
1919
1920 rollback:
1921         for_each_net_continue_reverse(net)
1922                 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924         raw_notifier_chain_unregister(&netdev_chain, nb);
1925         goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945         struct net *net;
1946         int err;
1947
1948         /* Close race with setup_net() and cleanup_net() */
1949         down_write(&pernet_ops_rwsem);
1950         rtnl_lock();
1951         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952         if (err)
1953                 goto unlock;
1954
1955         for_each_net(net)
1956                 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958 unlock:
1959         rtnl_unlock();
1960         up_write(&pernet_ops_rwsem);
1961         return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965 static int __register_netdevice_notifier_net(struct net *net,
1966                                              struct notifier_block *nb,
1967                                              bool ignore_call_fail)
1968 {
1969         int err;
1970
1971         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972         if (err)
1973                 return err;
1974         if (dev_boot_phase)
1975                 return 0;
1976
1977         err = call_netdevice_register_net_notifiers(nb, net);
1978         if (err && !ignore_call_fail)
1979                 goto chain_unregister;
1980
1981         return 0;
1982
1983 chain_unregister:
1984         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985         return err;
1986 }
1987
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989                                                struct notifier_block *nb)
1990 {
1991         int err;
1992
1993         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994         if (err)
1995                 return err;
1996
1997         call_netdevice_unregister_net_notifiers(nb, net);
1998         return 0;
1999 }
2000
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         err = __register_netdevice_notifier_net(net, nb, false);
2022         rtnl_unlock();
2023         return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042
2043 int unregister_netdevice_notifier_net(struct net *net,
2044                                       struct notifier_block *nb)
2045 {
2046         int err;
2047
2048         rtnl_lock();
2049         err = __unregister_netdevice_notifier_net(net, nb);
2050         rtnl_unlock();
2051         return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056                                         struct notifier_block *nb,
2057                                         struct netdev_net_notifier *nn)
2058 {
2059         int err;
2060
2061         rtnl_lock();
2062         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063         if (!err) {
2064                 nn->nb = nb;
2065                 list_add(&nn->list, &dev->net_notifier_list);
2066         }
2067         rtnl_unlock();
2068         return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073                                           struct notifier_block *nb,
2074                                           struct netdev_net_notifier *nn)
2075 {
2076         int err;
2077
2078         rtnl_lock();
2079         list_del(&nn->list);
2080         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081         rtnl_unlock();
2082         return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087                                              struct net *net)
2088 {
2089         struct netdev_net_notifier *nn;
2090
2091         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093                 __register_netdevice_notifier_net(net, nn->nb, true);
2094         }
2095 }
2096
2097 /**
2098  *      call_netdevice_notifiers_info - call all network notifier blocks
2099  *      @val: value passed unmodified to notifier function
2100  *      @info: notifier information data
2101  *
2102  *      Call all network notifier blocks.  Parameters and return value
2103  *      are as for raw_notifier_call_chain().
2104  */
2105
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107                                          struct netdev_notifier_info *info)
2108 {
2109         struct net *net = dev_net(info->dev);
2110         int ret;
2111
2112         ASSERT_RTNL();
2113
2114         /* Run per-netns notifier block chain first, then run the global one.
2115          * Hopefully, one day, the global one is going to be removed after
2116          * all notifier block registrators get converted to be per-netns.
2117          */
2118         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119         if (ret & NOTIFY_STOP_MASK)
2120                 return ret;
2121         return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125                                            struct net_device *dev,
2126                                            struct netlink_ext_ack *extack)
2127 {
2128         struct netdev_notifier_info info = {
2129                 .dev = dev,
2130                 .extack = extack,
2131         };
2132
2133         return call_netdevice_notifiers_info(val, &info);
2134 }
2135
2136 /**
2137  *      call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *      Call all network notifier blocks.  Parameters and return value
2142  *      are as for raw_notifier_call_chain().
2143  */
2144
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147         return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151 /**
2152  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *      @val: value passed unmodified to notifier function
2154  *      @dev: net_device pointer passed unmodified to notifier function
2155  *      @arg: additional u32 argument passed to the notifier function
2156  *
2157  *      Call all network notifier blocks.  Parameters and return value
2158  *      are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161                                         struct net_device *dev, u32 arg)
2162 {
2163         struct netdev_notifier_info_ext info = {
2164                 .info.dev = dev,
2165                 .ext.mtu = arg,
2166         };
2167
2168         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170         return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176 void net_inc_ingress_queue(void)
2177 {
2178         static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182 void net_dec_ingress_queue(void)
2183 {
2184         static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192 void net_inc_egress_queue(void)
2193 {
2194         static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198 void net_dec_egress_queue(void)
2199 {
2200         static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212         int wanted;
2213
2214         wanted = atomic_add_return(deferred, &netstamp_wanted);
2215         if (wanted > 0)
2216                 static_branch_enable(&netstamp_needed_key);
2217         else
2218                 static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226         int wanted;
2227
2228         while (1) {
2229                 wanted = atomic_read(&netstamp_wanted);
2230                 if (wanted <= 0)
2231                         break;
2232                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233                         return;
2234         }
2235         atomic_inc(&netstamp_needed_deferred);
2236         schedule_work(&netstamp_work);
2237 #else
2238         static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246         int wanted;
2247
2248         while (1) {
2249                 wanted = atomic_read(&netstamp_wanted);
2250                 if (wanted <= 1)
2251                         break;
2252                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253                         return;
2254         }
2255         atomic_dec(&netstamp_needed_deferred);
2256         schedule_work(&netstamp_work);
2257 #else
2258         static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265         skb->tstamp = 0;
2266         if (static_branch_unlikely(&netstamp_needed_key))
2267                 __net_timestamp(skb);
2268 }
2269
2270 #define net_timestamp_check(COND, SKB)                          \
2271         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2272                 if ((COND) && !(SKB)->tstamp)                   \
2273                         __net_timestamp(SKB);                   \
2274         }                                                       \
2275
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278         return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283                               bool check_mtu)
2284 {
2285         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287         if (likely(!ret)) {
2288                 skb->protocol = eth_type_trans(skb, dev);
2289                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290         }
2291
2292         return ret;
2293 }
2294
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297         return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *      NET_RX_SUCCESS  (no congestion)
2309  *      NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329
2330 static inline int deliver_skb(struct sk_buff *skb,
2331                               struct packet_type *pt_prev,
2332                               struct net_device *orig_dev)
2333 {
2334         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335                 return -ENOMEM;
2336         refcount_inc(&skb->users);
2337         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341                                           struct packet_type **pt,
2342                                           struct net_device *orig_dev,
2343                                           __be16 type,
2344                                           struct list_head *ptype_list)
2345 {
2346         struct packet_type *ptype, *pt_prev = *pt;
2347
2348         list_for_each_entry_rcu(ptype, ptype_list, list) {
2349                 if (ptype->type != type)
2350                         continue;
2351                 if (pt_prev)
2352                         deliver_skb(skb, pt_prev, orig_dev);
2353                 pt_prev = ptype;
2354         }
2355         *pt = pt_prev;
2356 }
2357
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360         if (!ptype->af_packet_priv || !skb->sk)
2361                 return false;
2362
2363         if (ptype->id_match)
2364                 return ptype->id_match(ptype, skb->sk);
2365         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366                 return true;
2367
2368         return false;
2369 }
2370
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382 /*
2383  *      Support routine. Sends outgoing frames to any network
2384  *      taps currently in use.
2385  */
2386
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389         struct packet_type *ptype;
2390         struct sk_buff *skb2 = NULL;
2391         struct packet_type *pt_prev = NULL;
2392         struct list_head *ptype_list = &ptype_all;
2393
2394         rcu_read_lock();
2395 again:
2396         list_for_each_entry_rcu(ptype, ptype_list, list) {
2397                 if (ptype->ignore_outgoing)
2398                         continue;
2399
2400                 /* Never send packets back to the socket
2401                  * they originated from - MvS (miquels@drinkel.ow.org)
2402                  */
2403                 if (skb_loop_sk(ptype, skb))
2404                         continue;
2405
2406                 if (pt_prev) {
2407                         deliver_skb(skb2, pt_prev, skb->dev);
2408                         pt_prev = ptype;
2409                         continue;
2410                 }
2411
2412                 /* need to clone skb, done only once */
2413                 skb2 = skb_clone(skb, GFP_ATOMIC);
2414                 if (!skb2)
2415                         goto out_unlock;
2416
2417                 net_timestamp_set(skb2);
2418
2419                 /* skb->nh should be correctly
2420                  * set by sender, so that the second statement is
2421                  * just protection against buggy protocols.
2422                  */
2423                 skb_reset_mac_header(skb2);
2424
2425                 if (skb_network_header(skb2) < skb2->data ||
2426                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428                                              ntohs(skb2->protocol),
2429                                              dev->name);
2430                         skb_reset_network_header(skb2);
2431                 }
2432
2433                 skb2->transport_header = skb2->network_header;
2434                 skb2->pkt_type = PACKET_OUTGOING;
2435                 pt_prev = ptype;
2436         }
2437
2438         if (ptype_list == &ptype_all) {
2439                 ptype_list = &dev->ptype_all;
2440                 goto again;
2441         }
2442 out_unlock:
2443         if (pt_prev) {
2444                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446                 else
2447                         kfree_skb(skb2);
2448         }
2449         rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468         int i;
2469         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471         /* If TC0 is invalidated disable TC mapping */
2472         if (tc->offset + tc->count > txq) {
2473                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474                 dev->num_tc = 0;
2475                 return;
2476         }
2477
2478         /* Invalidated prio to tc mappings set to TC0 */
2479         for (i = 1; i < TC_BITMASK + 1; i++) {
2480                 int q = netdev_get_prio_tc_map(dev, i);
2481
2482                 tc = &dev->tc_to_txq[q];
2483                 if (tc->offset + tc->count > txq) {
2484                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485                                 i, q);
2486                         netdev_set_prio_tc_map(dev, i, 0);
2487                 }
2488         }
2489 }
2490
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493         if (dev->num_tc) {
2494                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495                 int i;
2496
2497                 /* walk through the TCs and see if it falls into any of them */
2498                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499                         if ((txq - tc->offset) < tc->count)
2500                                 return i;
2501                 }
2502
2503                 /* didn't find it, just return -1 to indicate no match */
2504                 return -1;
2505         }
2506
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)             \
2516         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519                              struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521         struct xps_map *map = NULL;
2522         int pos;
2523
2524         if (dev_maps)
2525                 map = xmap_dereference(dev_maps->attr_map[tci]);
2526         if (!map)
2527                 return false;
2528
2529         for (pos = map->len; pos--;) {
2530                 if (map->queues[pos] != index)
2531                         continue;
2532
2533                 if (map->len > 1) {
2534                         map->queues[pos] = map->queues[--map->len];
2535                         break;
2536                 }
2537
2538                 if (old_maps)
2539                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541                 kfree_rcu(map, rcu);
2542                 return false;
2543         }
2544
2545         return true;
2546 }
2547
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549                                  struct xps_dev_maps *dev_maps,
2550                                  int cpu, u16 offset, u16 count)
2551 {
2552         int num_tc = dev_maps->num_tc;
2553         bool active = false;
2554         int tci;
2555
2556         for (tci = cpu * num_tc; num_tc--; tci++) {
2557                 int i, j;
2558
2559                 for (i = count, j = offset; i--; j++) {
2560                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561                                 break;
2562                 }
2563
2564                 active |= i < 0;
2565         }
2566
2567         return active;
2568 }
2569
2570 static void reset_xps_maps(struct net_device *dev,
2571                            struct xps_dev_maps *dev_maps,
2572                            enum xps_map_type type)
2573 {
2574         static_key_slow_dec_cpuslocked(&xps_needed);
2575         if (type == XPS_RXQS)
2576                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580         kfree_rcu(dev_maps, rcu);
2581 }
2582
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584                            u16 offset, u16 count)
2585 {
2586         struct xps_dev_maps *dev_maps;
2587         bool active = false;
2588         int i, j;
2589
2590         dev_maps = xmap_dereference(dev->xps_maps[type]);
2591         if (!dev_maps)
2592                 return;
2593
2594         for (j = 0; j < dev_maps->nr_ids; j++)
2595                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596         if (!active)
2597                 reset_xps_maps(dev, dev_maps, type);
2598
2599         if (type == XPS_CPUS) {
2600                 for (i = offset + (count - 1); count--; i--)
2601                         netdev_queue_numa_node_write(
2602                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603         }
2604 }
2605
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607                                    u16 count)
2608 {
2609         if (!static_key_false(&xps_needed))
2610                 return;
2611
2612         cpus_read_lock();
2613         mutex_lock(&xps_map_mutex);
2614
2615         if (static_key_false(&xps_rxqs_needed))
2616                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618         clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620         mutex_unlock(&xps_map_mutex);
2621         cpus_read_unlock();
2622 }
2623
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630                                       u16 index, bool is_rxqs_map)
2631 {
2632         struct xps_map *new_map;
2633         int alloc_len = XPS_MIN_MAP_ALLOC;
2634         int i, pos;
2635
2636         for (pos = 0; map && pos < map->len; pos++) {
2637                 if (map->queues[pos] != index)
2638                         continue;
2639                 return map;
2640         }
2641
2642         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643         if (map) {
2644                 if (pos < map->alloc_len)
2645                         return map;
2646
2647                 alloc_len = map->alloc_len * 2;
2648         }
2649
2650         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651          *  map
2652          */
2653         if (is_rxqs_map)
2654                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655         else
2656                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657                                        cpu_to_node(attr_index));
2658         if (!new_map)
2659                 return NULL;
2660
2661         for (i = 0; i < pos; i++)
2662                 new_map->queues[i] = map->queues[i];
2663         new_map->alloc_len = alloc_len;
2664         new_map->len = pos;
2665
2666         return new_map;
2667 }
2668
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671                               struct xps_dev_maps *new_dev_maps, int index,
2672                               int tc, bool skip_tc)
2673 {
2674         int i, tci = index * dev_maps->num_tc;
2675         struct xps_map *map;
2676
2677         /* copy maps belonging to foreign traffic classes */
2678         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679                 if (i == tc && skip_tc)
2680                         continue;
2681
2682                 /* fill in the new device map from the old device map */
2683                 map = xmap_dereference(dev_maps->attr_map[tci]);
2684                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685         }
2686 }
2687
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690                           u16 index, enum xps_map_type type)
2691 {
2692         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693         const unsigned long *online_mask = NULL;
2694         bool active = false, copy = false;
2695         int i, j, tci, numa_node_id = -2;
2696         int maps_sz, num_tc = 1, tc = 0;
2697         struct xps_map *map, *new_map;
2698         unsigned int nr_ids;
2699
2700         if (dev->num_tc) {
2701                 /* Do not allow XPS on subordinate device directly */
2702                 num_tc = dev->num_tc;
2703                 if (num_tc < 0)
2704                         return -EINVAL;
2705
2706                 /* If queue belongs to subordinate dev use its map */
2707                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709                 tc = netdev_txq_to_tc(dev, index);
2710                 if (tc < 0)
2711                         return -EINVAL;
2712         }
2713
2714         mutex_lock(&xps_map_mutex);
2715
2716         dev_maps = xmap_dereference(dev->xps_maps[type]);
2717         if (type == XPS_RXQS) {
2718                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719                 nr_ids = dev->num_rx_queues;
2720         } else {
2721                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722                 if (num_possible_cpus() > 1)
2723                         online_mask = cpumask_bits(cpu_online_mask);
2724                 nr_ids = nr_cpu_ids;
2725         }
2726
2727         if (maps_sz < L1_CACHE_BYTES)
2728                 maps_sz = L1_CACHE_BYTES;
2729
2730         /* The old dev_maps could be larger or smaller than the one we're
2731          * setting up now, as dev->num_tc or nr_ids could have been updated in
2732          * between. We could try to be smart, but let's be safe instead and only
2733          * copy foreign traffic classes if the two map sizes match.
2734          */
2735         if (dev_maps &&
2736             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737                 copy = true;
2738
2739         /* allocate memory for queue storage */
2740         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741              j < nr_ids;) {
2742                 if (!new_dev_maps) {
2743                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744                         if (!new_dev_maps) {
2745                                 mutex_unlock(&xps_map_mutex);
2746                                 return -ENOMEM;
2747                         }
2748
2749                         new_dev_maps->nr_ids = nr_ids;
2750                         new_dev_maps->num_tc = num_tc;
2751                 }
2752
2753                 tci = j * num_tc + tc;
2754                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757                 if (!map)
2758                         goto error;
2759
2760                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761         }
2762
2763         if (!new_dev_maps)
2764                 goto out_no_new_maps;
2765
2766         if (!dev_maps) {
2767                 /* Increment static keys at most once per type */
2768                 static_key_slow_inc_cpuslocked(&xps_needed);
2769                 if (type == XPS_RXQS)
2770                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771         }
2772
2773         for (j = 0; j < nr_ids; j++) {
2774                 bool skip_tc = false;
2775
2776                 tci = j * num_tc + tc;
2777                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778                     netif_attr_test_online(j, online_mask, nr_ids)) {
2779                         /* add tx-queue to CPU/rx-queue maps */
2780                         int pos = 0;
2781
2782                         skip_tc = true;
2783
2784                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785                         while ((pos < map->len) && (map->queues[pos] != index))
2786                                 pos++;
2787
2788                         if (pos == map->len)
2789                                 map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791                         if (type == XPS_CPUS) {
2792                                 if (numa_node_id == -2)
2793                                         numa_node_id = cpu_to_node(j);
2794                                 else if (numa_node_id != cpu_to_node(j))
2795                                         numa_node_id = -1;
2796                         }
2797 #endif
2798                 }
2799
2800                 if (copy)
2801                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802                                           skip_tc);
2803         }
2804
2805         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807         /* Cleanup old maps */
2808         if (!dev_maps)
2809                 goto out_no_old_maps;
2810
2811         for (j = 0; j < dev_maps->nr_ids; j++) {
2812                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813                         map = xmap_dereference(dev_maps->attr_map[tci]);
2814                         if (!map)
2815                                 continue;
2816
2817                         if (copy) {
2818                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                                 if (map == new_map)
2820                                         continue;
2821                         }
2822
2823                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824                         kfree_rcu(map, rcu);
2825                 }
2826         }
2827
2828         old_dev_maps = dev_maps;
2829
2830 out_no_old_maps:
2831         dev_maps = new_dev_maps;
2832         active = true;
2833
2834 out_no_new_maps:
2835         if (type == XPS_CPUS)
2836                 /* update Tx queue numa node */
2837                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838                                              (numa_node_id >= 0) ?
2839                                              numa_node_id : NUMA_NO_NODE);
2840
2841         if (!dev_maps)
2842                 goto out_no_maps;
2843
2844         /* removes tx-queue from unused CPUs/rx-queues */
2845         for (j = 0; j < dev_maps->nr_ids; j++) {
2846                 tci = j * dev_maps->num_tc;
2847
2848                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849                         if (i == tc &&
2850                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852                                 continue;
2853
2854                         active |= remove_xps_queue(dev_maps,
2855                                                    copy ? old_dev_maps : NULL,
2856                                                    tci, index);
2857                 }
2858         }
2859
2860         if (old_dev_maps)
2861                 kfree_rcu(old_dev_maps, rcu);
2862
2863         /* free map if not active */
2864         if (!active)
2865                 reset_xps_maps(dev, dev_maps, type);
2866
2867 out_no_maps:
2868         mutex_unlock(&xps_map_mutex);
2869
2870         return 0;
2871 error:
2872         /* remove any maps that we added */
2873         for (j = 0; j < nr_ids; j++) {
2874                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876                         map = copy ?
2877                               xmap_dereference(dev_maps->attr_map[tci]) :
2878                               NULL;
2879                         if (new_map && new_map != map)
2880                                 kfree(new_map);
2881                 }
2882         }
2883
2884         mutex_unlock(&xps_map_mutex);
2885
2886         kfree(new_dev_maps);
2887         return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892                         u16 index)
2893 {
2894         int ret;
2895
2896         cpus_read_lock();
2897         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898         cpus_read_unlock();
2899
2900         return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909         /* Unbind any subordinate channels */
2910         while (txq-- != &dev->_tx[0]) {
2911                 if (txq->sb_dev)
2912                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2913         }
2914 }
2915
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919         netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921         netdev_unbind_all_sb_channels(dev);
2922
2923         /* Reset TC configuration of device */
2924         dev->num_tc = 0;
2925         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932         if (tc >= dev->num_tc)
2933                 return -EINVAL;
2934
2935 #ifdef CONFIG_XPS
2936         netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938         dev->tc_to_txq[tc].count = count;
2939         dev->tc_to_txq[tc].offset = offset;
2940         return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946         if (num_tc > TC_MAX_QUEUE)
2947                 return -EINVAL;
2948
2949 #ifdef CONFIG_XPS
2950         netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952         netdev_unbind_all_sb_channels(dev);
2953
2954         dev->num_tc = num_tc;
2955         return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960                               struct net_device *sb_dev)
2961 {
2962         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964 #ifdef CONFIG_XPS
2965         netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970         while (txq-- != &dev->_tx[0]) {
2971                 if (txq->sb_dev == sb_dev)
2972                         txq->sb_dev = NULL;
2973         }
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978                                  struct net_device *sb_dev,
2979                                  u8 tc, u16 count, u16 offset)
2980 {
2981         /* Make certain the sb_dev and dev are already configured */
2982         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983                 return -EINVAL;
2984
2985         /* We cannot hand out queues we don't have */
2986         if ((offset + count) > dev->real_num_tx_queues)
2987                 return -EINVAL;
2988
2989         /* Record the mapping */
2990         sb_dev->tc_to_txq[tc].count = count;
2991         sb_dev->tc_to_txq[tc].offset = offset;
2992
2993         /* Provide a way for Tx queue to find the tc_to_txq map or
2994          * XPS map for itself.
2995          */
2996         while (count--)
2997                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999         return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005         /* Do not use a multiqueue device to represent a subordinate channel */
3006         if (netif_is_multiqueue(dev))
3007                 return -ENODEV;
3008
3009         /* We allow channels 1 - 32767 to be used for subordinate channels.
3010          * Channel 0 is meant to be "native" mode and used only to represent
3011          * the main root device. We allow writing 0 to reset the device back
3012          * to normal mode after being used as a subordinate channel.
3013          */
3014         if (channel > S16_MAX)
3015                 return -EINVAL;
3016
3017         dev->num_tc = -channel;
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029         bool disabling;
3030         int rc;
3031
3032         disabling = txq < dev->real_num_tx_queues;
3033
3034         if (txq < 1 || txq > dev->num_tx_queues)
3035                 return -EINVAL;
3036
3037         if (dev->reg_state == NETREG_REGISTERED ||
3038             dev->reg_state == NETREG_UNREGISTERING) {
3039                 ASSERT_RTNL();
3040
3041                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042                                                   txq);
3043                 if (rc)
3044                         return rc;
3045
3046                 if (dev->num_tc)
3047                         netif_setup_tc(dev, txq);
3048
3049                 dev->real_num_tx_queues = txq;
3050
3051                 if (disabling) {
3052                         synchronize_net();
3053                         qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055                         netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057                 }
3058         } else {
3059                 dev->real_num_tx_queues = txq;
3060         }
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *      @dev: Network device
3070  *      @rxq: Actual number of RX queues
3071  *
3072  *      This must be called either with the rtnl_lock held or before
3073  *      registration of the net device.  Returns 0 on success, or a
3074  *      negative error code.  If called before registration, it always
3075  *      succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079         int rc;
3080
3081         if (rxq < 1 || rxq > dev->num_rx_queues)
3082                 return -EINVAL;
3083
3084         if (dev->reg_state == NETREG_REGISTERED) {
3085                 ASSERT_RTNL();
3086
3087                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088                                                   rxq);
3089                 if (rc)
3090                         return rc;
3091         }
3092
3093         dev->real_num_rx_queues = rxq;
3094         return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107         return is_kdump_kernel() ?
3108                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114         struct softnet_data *sd;
3115         unsigned long flags;
3116
3117         local_irq_save(flags);
3118         sd = this_cpu_ptr(&softnet_data);
3119         q->next_sched = NULL;
3120         *sd->output_queue_tailp = q;
3121         sd->output_queue_tailp = &q->next_sched;
3122         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123         local_irq_restore(flags);
3124 }
3125
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129                 __netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132
3133 struct dev_kfree_skb_cb {
3134         enum skb_free_reason reason;
3135 };
3136
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139         return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144         rcu_read_lock();
3145         if (!netif_xmit_stopped(txq)) {
3146                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148                 __netif_schedule(q);
3149         }
3150         rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157                 struct Qdisc *q;
3158
3159                 rcu_read_lock();
3160                 q = rcu_dereference(dev_queue->qdisc);
3161                 __netif_schedule(q);
3162                 rcu_read_unlock();
3163         }
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169         unsigned long flags;
3170
3171         if (unlikely(!skb))
3172                 return;
3173
3174         if (likely(refcount_read(&skb->users) == 1)) {
3175                 smp_rmb();
3176                 refcount_set(&skb->users, 0);
3177         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178                 return;
3179         }
3180         get_kfree_skb_cb(skb)->reason = reason;
3181         local_irq_save(flags);
3182         skb->next = __this_cpu_read(softnet_data.completion_queue);
3183         __this_cpu_write(softnet_data.completion_queue, skb);
3184         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185         local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191         if (in_irq() || irqs_disabled())
3192                 __dev_kfree_skb_irq(skb, reason);
3193         else
3194                 dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208             netif_running(dev)) {
3209                 netif_tx_stop_all_queues(dev);
3210         }
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223             netif_running(dev)) {
3224                 netif_tx_wake_all_queues(dev);
3225                 __netdev_watchdog_up(dev);
3226         }
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235                        const struct net_device *sb_dev,
3236                        struct sk_buff *skb)
3237 {
3238         u32 hash;
3239         u16 qoffset = 0;
3240         u16 qcount = dev->real_num_tx_queues;
3241
3242         if (dev->num_tc) {
3243                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245                 qoffset = sb_dev->tc_to_txq[tc].offset;
3246                 qcount = sb_dev->tc_to_txq[tc].count;
3247         }
3248
3249         if (skb_rx_queue_recorded(skb)) {
3250                 hash = skb_get_rx_queue(skb);
3251                 if (hash >= qoffset)
3252                         hash -= qoffset;
3253                 while (unlikely(hash >= qcount))
3254                         hash -= qcount;
3255                 return hash + qoffset;
3256         }
3257
3258         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263         static const netdev_features_t null_features;
3264         struct net_device *dev = skb->dev;
3265         const char *name = "";
3266
3267         if (!net_ratelimit())
3268                 return;
3269
3270         if (dev) {
3271                 if (dev->dev.parent)
3272                         name = dev_driver_string(dev->dev.parent);
3273                 else
3274                         name = netdev_name(dev);
3275         }
3276         skb_dump(KERN_WARNING, skb, false);
3277         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278              name, dev ? &dev->features : &null_features,
3279              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288         __wsum csum;
3289         int ret = 0, offset;
3290
3291         if (skb->ip_summed == CHECKSUM_COMPLETE)
3292                 goto out_set_summed;
3293
3294         if (unlikely(skb_is_gso(skb))) {
3295                 skb_warn_bad_offload(skb);
3296                 return -EINVAL;
3297         }
3298
3299         /* Before computing a checksum, we should make sure no frag could
3300          * be modified by an external entity : checksum could be wrong.
3301          */
3302         if (skb_has_shared_frag(skb)) {
3303                 ret = __skb_linearize(skb);
3304                 if (ret)
3305                         goto out;
3306         }
3307
3308         offset = skb_checksum_start_offset(skb);
3309         BUG_ON(offset >= skb_headlen(skb));
3310         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312         offset += skb->csum_offset;
3313         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316         if (ret)
3317                 goto out;
3318
3319         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321         skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323         return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329         __le32 crc32c_csum;
3330         int ret = 0, offset, start;
3331
3332         if (skb->ip_summed != CHECKSUM_PARTIAL)
3333                 goto out;
3334
3335         if (unlikely(skb_is_gso(skb)))
3336                 goto out;
3337
3338         /* Before computing a checksum, we should make sure no frag could
3339          * be modified by an external entity : checksum could be wrong.
3340          */
3341         if (unlikely(skb_has_shared_frag(skb))) {
3342                 ret = __skb_linearize(skb);
3343                 if (ret)
3344                         goto out;
3345         }
3346         start = skb_checksum_start_offset(skb);
3347         offset = start + offsetof(struct sctphdr, checksum);
3348         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349                 ret = -EINVAL;
3350                 goto out;
3351         }
3352
3353         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354         if (ret)
3355                 goto out;
3356
3357         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358                                                   skb->len - start, ~(__u32)0,
3359                                                   crc32c_csum_stub));
3360         *(__le32 *)(skb->data + offset) = crc32c_csum;
3361         skb->ip_summed = CHECKSUM_NONE;
3362         skb->csum_not_inet = 0;
3363 out:
3364         return ret;
3365 }
3366
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369         __be16 type = skb->protocol;
3370
3371         /* Tunnel gso handlers can set protocol to ethernet. */
3372         if (type == htons(ETH_P_TEB)) {
3373                 struct ethhdr *eth;
3374
3375                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376                         return 0;
3377
3378                 eth = (struct ethhdr *)skb->data;
3379                 type = eth->h_proto;
3380         }
3381
3382         return __vlan_get_protocol(skb, type, depth);
3383 }
3384
3385 /**
3386  *      skb_mac_gso_segment - mac layer segmentation handler.
3387  *      @skb: buffer to segment
3388  *      @features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391                                     netdev_features_t features)
3392 {
3393         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394         struct packet_offload *ptype;
3395         int vlan_depth = skb->mac_len;
3396         __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398         if (unlikely(!type))
3399                 return ERR_PTR(-EINVAL);
3400
3401         __skb_pull(skb, vlan_depth);
3402
3403         rcu_read_lock();
3404         list_for_each_entry_rcu(ptype, &offload_base, list) {
3405                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406                         segs = ptype->callbacks.gso_segment(skb, features);
3407                         break;
3408                 }
3409         }
3410         rcu_read_unlock();
3411
3412         __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414         return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423         if (tx_path)
3424                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427         return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429
3430 /**
3431  *      __skb_gso_segment - Perform segmentation on skb.
3432  *      @skb: buffer to segment
3433  *      @features: features for the output path (see dev->features)
3434  *      @tx_path: whether it is called in TX path
3435  *
3436  *      This function segments the given skb and returns a list of segments.
3437  *
3438  *      It may return NULL if the skb requires no segmentation.  This is
3439  *      only possible when GSO is used for verifying header integrity.
3440  *
3441  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444                                   netdev_features_t features, bool tx_path)
3445 {
3446         struct sk_buff *segs;
3447
3448         if (unlikely(skb_needs_check(skb, tx_path))) {
3449                 int err;
3450
3451                 /* We're going to init ->check field in TCP or UDP header */
3452                 err = skb_cow_head(skb, 0);
3453                 if (err < 0)
3454                         return ERR_PTR(err);
3455         }
3456
3457         /* Only report GSO partial support if it will enable us to
3458          * support segmentation on this frame without needing additional
3459          * work.
3460          */
3461         if (features & NETIF_F_GSO_PARTIAL) {
3462                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463                 struct net_device *dev = skb->dev;
3464
3465                 partial_features |= dev->features & dev->gso_partial_features;
3466                 if (!skb_gso_ok(skb, features | partial_features))
3467                         features &= ~NETIF_F_GSO_PARTIAL;
3468         }
3469
3470         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474         SKB_GSO_CB(skb)->encap_level = 0;
3475
3476         skb_reset_mac_header(skb);
3477         skb_reset_mac_len(skb);
3478
3479         segs = skb_mac_gso_segment(skb, features);
3480
3481         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482                 skb_warn_bad_offload(skb);
3483
3484         return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492         if (net_ratelimit()) {
3493                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494                 skb_dump(KERN_ERR, skb, true);
3495                 dump_stack();
3496         }
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505         int i;
3506
3507         if (!(dev->features & NETIF_F_HIGHDMA)) {
3508                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511                         if (PageHighMem(skb_frag_page(frag)))
3512                                 return 1;
3513                 }
3514         }
3515 #endif
3516         return 0;
3517 }
3518
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524                                            netdev_features_t features,
3525                                            __be16 type)
3526 {
3527         if (eth_p_mpls(type))
3528                 features &= skb->dev->mpls_features;
3529
3530         return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534                                            netdev_features_t features,
3535                                            __be16 type)
3536 {
3537         return features;
3538 }
3539 #endif
3540
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542         netdev_features_t features)
3543 {
3544         __be16 type;
3545
3546         type = skb_network_protocol(skb, NULL);
3547         features = net_mpls_features(skb, features, type);
3548
3549         if (skb->ip_summed != CHECKSUM_NONE &&
3550             !can_checksum_protocol(features, type)) {
3551                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552         }
3553         if (illegal_highdma(skb->dev, skb))
3554                 features &= ~NETIF_F_SG;
3555
3556         return features;
3557 }
3558
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560                                           struct net_device *dev,
3561                                           netdev_features_t features)
3562 {
3563         return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568                                              struct net_device *dev,
3569                                              netdev_features_t features)
3570 {
3571         return vlan_features_check(skb, features);
3572 }
3573
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575                                             struct net_device *dev,
3576                                             netdev_features_t features)
3577 {
3578         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580         if (gso_segs > dev->gso_max_segs)
3581                 return features & ~NETIF_F_GSO_MASK;
3582
3583         if (!skb_shinfo(skb)->gso_type) {
3584                 skb_warn_bad_offload(skb);
3585                 return features & ~NETIF_F_GSO_MASK;
3586         }
3587
3588         /* Support for GSO partial features requires software
3589          * intervention before we can actually process the packets
3590          * so we need to strip support for any partial features now
3591          * and we can pull them back in after we have partially
3592          * segmented the frame.
3593          */
3594         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595                 features &= ~dev->gso_partial_features;
3596
3597         /* Make sure to clear the IPv4 ID mangling feature if the
3598          * IPv4 header has the potential to be fragmented.
3599          */
3600         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601                 struct iphdr *iph = skb->encapsulation ?
3602                                     inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604                 if (!(iph->frag_off & htons(IP_DF)))
3605                         features &= ~NETIF_F_TSO_MANGLEID;
3606         }
3607
3608         return features;
3609 }
3610
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613         struct net_device *dev = skb->dev;
3614         netdev_features_t features = dev->features;
3615
3616         if (skb_is_gso(skb))
3617                 features = gso_features_check(skb, dev, features);
3618
3619         /* If encapsulation offload request, verify we are testing
3620          * hardware encapsulation features instead of standard
3621          * features for the netdev
3622          */
3623         if (skb->encapsulation)
3624                 features &= dev->hw_enc_features;
3625
3626         if (skb_vlan_tagged(skb))
3627                 features = netdev_intersect_features(features,
3628                                                      dev->vlan_features |
3629                                                      NETIF_F_HW_VLAN_CTAG_TX |
3630                                                      NETIF_F_HW_VLAN_STAG_TX);
3631
3632         if (dev->netdev_ops->ndo_features_check)
3633                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634                                                                 features);
3635         else
3636                 features &= dflt_features_check(skb, dev, features);
3637
3638         return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643                     struct netdev_queue *txq, bool more)
3644 {
3645         unsigned int len;
3646         int rc;
3647
3648         if (dev_nit_active(dev))
3649                 dev_queue_xmit_nit(skb, dev);
3650
3651         len = skb->len;
3652         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653         trace_net_dev_start_xmit(skb, dev);
3654         rc = netdev_start_xmit(skb, dev, txq, more);
3655         trace_net_dev_xmit(skb, rc, dev, len);
3656
3657         return rc;
3658 }
3659
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661                                     struct netdev_queue *txq, int *ret)
3662 {
3663         struct sk_buff *skb = first;
3664         int rc = NETDEV_TX_OK;
3665
3666         while (skb) {
3667                 struct sk_buff *next = skb->next;
3668
3669                 skb_mark_not_on_list(skb);
3670                 rc = xmit_one(skb, dev, txq, next != NULL);
3671                 if (unlikely(!dev_xmit_complete(rc))) {
3672                         skb->next = next;
3673                         goto out;
3674                 }
3675
3676                 skb = next;
3677                 if (netif_tx_queue_stopped(txq) && skb) {
3678                         rc = NETDEV_TX_BUSY;
3679                         break;
3680                 }
3681         }
3682
3683 out:
3684         *ret = rc;
3685         return skb;
3686 }
3687
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689                                           netdev_features_t features)
3690 {
3691         if (skb_vlan_tag_present(skb) &&
3692             !vlan_hw_offload_capable(features, skb->vlan_proto))
3693                 skb = __vlan_hwaccel_push_inside(skb);
3694         return skb;
3695 }
3696
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698                             const netdev_features_t features)
3699 {
3700         if (unlikely(skb_csum_is_sctp(skb)))
3701                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702                         skb_crc32c_csum_help(skb);
3703
3704         if (features & NETIF_F_HW_CSUM)
3705                 return 0;
3706
3707         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708                 switch (skb->csum_offset) {
3709                 case offsetof(struct tcphdr, check):
3710                 case offsetof(struct udphdr, check):
3711                         return 0;
3712                 }
3713         }
3714
3715         return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721         netdev_features_t features;
3722
3723         features = netif_skb_features(skb);
3724         skb = validate_xmit_vlan(skb, features);
3725         if (unlikely(!skb))
3726                 goto out_null;
3727
3728         skb = sk_validate_xmit_skb(skb, dev);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         if (netif_needs_gso(skb, features)) {
3733                 struct sk_buff *segs;
3734
3735                 segs = skb_gso_segment(skb, features);
3736                 if (IS_ERR(segs)) {
3737                         goto out_kfree_skb;
3738                 } else if (segs) {
3739                         consume_skb(skb);
3740                         skb = segs;
3741                 }
3742         } else {
3743                 if (skb_needs_linearize(skb, features) &&
3744                     __skb_linearize(skb))
3745                         goto out_kfree_skb;
3746
3747                 /* If packet is not checksummed and device does not
3748                  * support checksumming for this protocol, complete
3749                  * checksumming here.
3750                  */
3751                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752                         if (skb->encapsulation)
3753                                 skb_set_inner_transport_header(skb,
3754                                                                skb_checksum_start_offset(skb));
3755                         else
3756                                 skb_set_transport_header(skb,
3757                                                          skb_checksum_start_offset(skb));
3758                         if (skb_csum_hwoffload_help(skb, features))
3759                                 goto out_kfree_skb;
3760                 }
3761         }
3762
3763         skb = validate_xmit_xfrm(skb, features, again);
3764
3765         return skb;
3766
3767 out_kfree_skb:
3768         kfree_skb(skb);
3769 out_null:
3770         atomic_long_inc(&dev->tx_dropped);
3771         return NULL;
3772 }
3773
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776         struct sk_buff *next, *head = NULL, *tail;
3777
3778         for (; skb != NULL; skb = next) {
3779                 next = skb->next;
3780                 skb_mark_not_on_list(skb);
3781
3782                 /* in case skb wont be segmented, point to itself */
3783                 skb->prev = skb;
3784
3785                 skb = validate_xmit_skb(skb, dev, again);
3786                 if (!skb)
3787                         continue;
3788
3789                 if (!head)
3790                         head = skb;
3791                 else
3792                         tail->next = skb;
3793                 /* If skb was segmented, skb->prev points to
3794                  * the last segment. If not, it still contains skb.
3795                  */
3796                 tail = skb->prev;
3797         }
3798         return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806         qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808         /* To get more precise estimation of bytes sent on wire,
3809          * we add to pkt_len the headers size of all segments
3810          */
3811         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812                 unsigned int hdr_len;
3813                 u16 gso_segs = shinfo->gso_segs;
3814
3815                 /* mac layer + network layer */
3816                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818                 /* + transport layer */
3819                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820                         const struct tcphdr *th;
3821                         struct tcphdr _tcphdr;
3822
3823                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3824                                                 sizeof(_tcphdr), &_tcphdr);
3825                         if (likely(th))
3826                                 hdr_len += __tcp_hdrlen(th);
3827                 } else {
3828                         struct udphdr _udphdr;
3829
3830                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3831                                                sizeof(_udphdr), &_udphdr))
3832                                 hdr_len += sizeof(struct udphdr);
3833                 }
3834
3835                 if (shinfo->gso_type & SKB_GSO_DODGY)
3836                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837                                                 shinfo->gso_size);
3838
3839                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840         }
3841 }
3842
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844                                  struct net_device *dev,
3845                                  struct netdev_queue *txq)
3846 {
3847         spinlock_t *root_lock = qdisc_lock(q);
3848         struct sk_buff *to_free = NULL;
3849         bool contended;
3850         int rc;
3851
3852         qdisc_calculate_pkt_len(skb, q);
3853
3854         if (q->flags & TCQ_F_NOLOCK) {
3855                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856                 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857                         qdisc_run(q);
3858
3859                 if (unlikely(to_free))
3860                         kfree_skb_list(to_free);
3861                 return rc;
3862         }
3863
3864         /*
3865          * Heuristic to force contended enqueues to serialize on a
3866          * separate lock before trying to get qdisc main lock.
3867          * This permits qdisc->running owner to get the lock more
3868          * often and dequeue packets faster.
3869          */
3870         contended = qdisc_is_running(q);
3871         if (unlikely(contended))
3872                 spin_lock(&q->busylock);
3873
3874         spin_lock(root_lock);
3875         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876                 __qdisc_drop(skb, &to_free);
3877                 rc = NET_XMIT_DROP;
3878         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879                    qdisc_run_begin(q)) {
3880                 /*
3881                  * This is a work-conserving queue; there are no old skbs
3882                  * waiting to be sent out; and the qdisc is not running -
3883                  * xmit the skb directly.
3884                  */
3885
3886                 qdisc_bstats_update(q, skb);
3887
3888                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889                         if (unlikely(contended)) {
3890                                 spin_unlock(&q->busylock);
3891                                 contended = false;
3892                         }
3893                         __qdisc_run(q);
3894                 }
3895
3896                 qdisc_run_end(q);
3897                 rc = NET_XMIT_SUCCESS;
3898         } else {
3899                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900                 if (qdisc_run_begin(q)) {
3901                         if (unlikely(contended)) {
3902                                 spin_unlock(&q->busylock);
3903                                 contended = false;
3904                         }
3905                         __qdisc_run(q);
3906                         qdisc_run_end(q);
3907                 }
3908         }
3909         spin_unlock(root_lock);
3910         if (unlikely(to_free))
3911                 kfree_skb_list(to_free);
3912         if (unlikely(contended))
3913                 spin_unlock(&q->busylock);
3914         return rc;
3915 }
3916
3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918 static void skb_update_prio(struct sk_buff *skb)
3919 {
3920         const struct netprio_map *map;
3921         const struct sock *sk;
3922         unsigned int prioidx;
3923
3924         if (skb->priority)
3925                 return;
3926         map = rcu_dereference_bh(skb->dev->priomap);
3927         if (!map)
3928                 return;
3929         sk = skb_to_full_sk(skb);
3930         if (!sk)
3931                 return;
3932
3933         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934
3935         if (prioidx < map->priomap_len)
3936                 skb->priority = map->priomap[prioidx];
3937 }
3938 #else
3939 #define skb_update_prio(skb)
3940 #endif
3941
3942 /**
3943  *      dev_loopback_xmit - loop back @skb
3944  *      @net: network namespace this loopback is happening in
3945  *      @sk:  sk needed to be a netfilter okfn
3946  *      @skb: buffer to transmit
3947  */
3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949 {
3950         skb_reset_mac_header(skb);
3951         __skb_pull(skb, skb_network_offset(skb));
3952         skb->pkt_type = PACKET_LOOPBACK;
3953         skb->ip_summed = CHECKSUM_UNNECESSARY;
3954         WARN_ON(!skb_dst(skb));
3955         skb_dst_force(skb);
3956         netif_rx_ni(skb);
3957         return 0;
3958 }
3959 EXPORT_SYMBOL(dev_loopback_xmit);
3960
3961 #ifdef CONFIG_NET_EGRESS
3962 static struct sk_buff *
3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964 {
3965         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966         struct tcf_result cl_res;
3967
3968         if (!miniq)
3969                 return skb;
3970
3971         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972         qdisc_skb_cb(skb)->mru = 0;
3973         qdisc_skb_cb(skb)->post_ct = false;
3974         mini_qdisc_bstats_cpu_update(miniq, skb);
3975
3976         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977         case TC_ACT_OK:
3978         case TC_ACT_RECLASSIFY:
3979                 skb->tc_index = TC_H_MIN(cl_res.classid);
3980                 break;
3981         case TC_ACT_SHOT:
3982                 mini_qdisc_qstats_cpu_drop(miniq);
3983                 *ret = NET_XMIT_DROP;
3984                 kfree_skb(skb);
3985                 return NULL;
3986         case TC_ACT_STOLEN:
3987         case TC_ACT_QUEUED:
3988         case TC_ACT_TRAP:
3989                 *ret = NET_XMIT_SUCCESS;
3990                 consume_skb(skb);
3991                 return NULL;
3992         case TC_ACT_REDIRECT:
3993                 /* No need to push/pop skb's mac_header here on egress! */
3994                 skb_do_redirect(skb);
3995                 *ret = NET_XMIT_SUCCESS;
3996                 return NULL;
3997         default:
3998                 break;
3999         }
4000
4001         return skb;
4002 }
4003 #endif /* CONFIG_NET_EGRESS */
4004
4005 #ifdef CONFIG_XPS
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007                                struct xps_dev_maps *dev_maps, unsigned int tci)
4008 {
4009         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010         struct xps_map *map;
4011         int queue_index = -1;
4012
4013         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014                 return queue_index;
4015
4016         tci *= dev_maps->num_tc;
4017         tci += tc;
4018
4019         map = rcu_dereference(dev_maps->attr_map[tci]);
4020         if (map) {
4021                 if (map->len == 1)
4022                         queue_index = map->queues[0];
4023                 else
4024                         queue_index = map->queues[reciprocal_scale(
4025                                                 skb_get_hash(skb), map->len)];
4026                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4027                         queue_index = -1;
4028         }
4029         return queue_index;
4030 }
4031 #endif
4032
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034                          struct sk_buff *skb)
4035 {
4036 #ifdef CONFIG_XPS
4037         struct xps_dev_maps *dev_maps;
4038         struct sock *sk = skb->sk;
4039         int queue_index = -1;
4040
4041         if (!static_key_false(&xps_needed))
4042                 return -1;
4043
4044         rcu_read_lock();
4045         if (!static_key_false(&xps_rxqs_needed))
4046                 goto get_cpus_map;
4047
4048         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049         if (dev_maps) {
4050                 int tci = sk_rx_queue_get(sk);
4051
4052                 if (tci >= 0)
4053                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054                                                           tci);
4055         }
4056
4057 get_cpus_map:
4058         if (queue_index < 0) {
4059                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060                 if (dev_maps) {
4061                         unsigned int tci = skb->sender_cpu - 1;
4062
4063                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064                                                           tci);
4065                 }
4066         }
4067         rcu_read_unlock();
4068
4069         return queue_index;
4070 #else
4071         return -1;
4072 #endif
4073 }
4074
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076                      struct net_device *sb_dev)
4077 {
4078         return 0;
4079 }
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4081
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083                        struct net_device *sb_dev)
4084 {
4085         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086 }
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090                      struct net_device *sb_dev)
4091 {
4092         struct sock *sk = skb->sk;
4093         int queue_index = sk_tx_queue_get(sk);
4094
4095         sb_dev = sb_dev ? : dev;
4096
4097         if (queue_index < 0 || skb->ooo_okay ||
4098             queue_index >= dev->real_num_tx_queues) {
4099                 int new_index = get_xps_queue(dev, sb_dev, skb);
4100
4101                 if (new_index < 0)
4102                         new_index = skb_tx_hash(dev, sb_dev, skb);
4103
4104                 if (queue_index != new_index && sk &&
4105                     sk_fullsock(sk) &&
4106                     rcu_access_pointer(sk->sk_dst_cache))
4107                         sk_tx_queue_set(sk, new_index);
4108
4109                 queue_index = new_index;
4110         }
4111
4112         return queue_index;
4113 }
4114 EXPORT_SYMBOL(netdev_pick_tx);
4115
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117                                          struct sk_buff *skb,
4118                                          struct net_device *sb_dev)
4119 {
4120         int queue_index = 0;
4121
4122 #ifdef CONFIG_XPS
4123         u32 sender_cpu = skb->sender_cpu - 1;
4124
4125         if (sender_cpu >= (u32)NR_CPUS)
4126                 skb->sender_cpu = raw_smp_processor_id() + 1;
4127 #endif
4128
4129         if (dev->real_num_tx_queues != 1) {
4130                 const struct net_device_ops *ops = dev->netdev_ops;
4131
4132                 if (ops->ndo_select_queue)
4133                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134                 else
4135                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136
4137                 queue_index = netdev_cap_txqueue(dev, queue_index);
4138         }
4139
4140         skb_set_queue_mapping(skb, queue_index);
4141         return netdev_get_tx_queue(dev, queue_index);
4142 }
4143
4144 /**
4145  *      __dev_queue_xmit - transmit a buffer
4146  *      @skb: buffer to transmit
4147  *      @sb_dev: suboordinate device used for L2 forwarding offload
4148  *
4149  *      Queue a buffer for transmission to a network device. The caller must
4150  *      have set the device and priority and built the buffer before calling
4151  *      this function. The function can be called from an interrupt.
4152  *
4153  *      A negative errno code is returned on a failure. A success does not
4154  *      guarantee the frame will be transmitted as it may be dropped due
4155  *      to congestion or traffic shaping.
4156  *
4157  * -----------------------------------------------------------------------------------
4158  *      I notice this method can also return errors from the queue disciplines,
4159  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4160  *      be positive.
4161  *
4162  *      Regardless of the return value, the skb is consumed, so it is currently
4163  *      difficult to retry a send to this method.  (You can bump the ref count
4164  *      before sending to hold a reference for retry if you are careful.)
4165  *
4166  *      When calling this method, interrupts MUST be enabled.  This is because
4167  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4168  *          --BLG
4169  */
4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172         struct net_device *dev = skb->dev;
4173         struct netdev_queue *txq;
4174         struct Qdisc *q;
4175         int rc = -ENOMEM;
4176         bool again = false;
4177
4178         skb_reset_mac_header(skb);
4179
4180         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182
4183         /* Disable soft irqs for various locks below. Also
4184          * stops preemption for RCU.
4185          */
4186         rcu_read_lock_bh();
4187
4188         skb_update_prio(skb);
4189
4190         qdisc_pkt_len_init(skb);
4191 #ifdef CONFIG_NET_CLS_ACT
4192         skb->tc_at_ingress = 0;
4193 # ifdef CONFIG_NET_EGRESS
4194         if (static_branch_unlikely(&egress_needed_key)) {
4195                 skb = sch_handle_egress(skb, &rc, dev);
4196                 if (!skb)
4197                         goto out;
4198         }
4199 # endif
4200 #endif
4201         /* If device/qdisc don't need skb->dst, release it right now while
4202          * its hot in this cpu cache.
4203          */
4204         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205                 skb_dst_drop(skb);
4206         else
4207                 skb_dst_force(skb);
4208
4209         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210         q = rcu_dereference_bh(txq->qdisc);
4211
4212         trace_net_dev_queue(skb);
4213         if (q->enqueue) {
4214                 rc = __dev_xmit_skb(skb, q, dev, txq);
4215                 goto out;
4216         }
4217
4218         /* The device has no queue. Common case for software devices:
4219          * loopback, all the sorts of tunnels...
4220
4221          * Really, it is unlikely that netif_tx_lock protection is necessary
4222          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4223          * counters.)
4224          * However, it is possible, that they rely on protection
4225          * made by us here.
4226
4227          * Check this and shot the lock. It is not prone from deadlocks.
4228          *Either shot noqueue qdisc, it is even simpler 8)
4229          */
4230         if (dev->flags & IFF_UP) {
4231                 int cpu = smp_processor_id(); /* ok because BHs are off */
4232
4233                 if (txq->xmit_lock_owner != cpu) {
4234                         if (dev_xmit_recursion())
4235                                 goto recursion_alert;
4236
4237                         skb = validate_xmit_skb(skb, dev, &again);
4238                         if (!skb)
4239                                 goto out;
4240
4241                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242                         HARD_TX_LOCK(dev, txq, cpu);
4243
4244                         if (!netif_xmit_stopped(txq)) {
4245                                 dev_xmit_recursion_inc();
4246                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247                                 dev_xmit_recursion_dec();
4248                                 if (dev_xmit_complete(rc)) {
4249                                         HARD_TX_UNLOCK(dev, txq);
4250                                         goto out;
4251                                 }
4252                         }
4253                         HARD_TX_UNLOCK(dev, txq);
4254                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255                                              dev->name);
4256                 } else {
4257                         /* Recursion is detected! It is possible,
4258                          * unfortunately
4259                          */
4260 recursion_alert:
4261                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262                                              dev->name);
4263                 }
4264         }
4265
4266         rc = -ENETDOWN;
4267         rcu_read_unlock_bh();
4268
4269         atomic_long_inc(&dev->tx_dropped);
4270         kfree_skb_list(skb);
4271         return rc;
4272 out:
4273         rcu_read_unlock_bh();
4274         return rc;
4275 }
4276
4277 int dev_queue_xmit(struct sk_buff *skb)
4278 {
4279         return __dev_queue_xmit(skb, NULL);
4280 }
4281 EXPORT_SYMBOL(dev_queue_xmit);
4282
4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284 {
4285         return __dev_queue_xmit(skb, sb_dev);
4286 }
4287 EXPORT_SYMBOL(dev_queue_xmit_accel);
4288
4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290 {
4291         struct net_device *dev = skb->dev;
4292         struct sk_buff *orig_skb = skb;
4293         struct netdev_queue *txq;
4294         int ret = NETDEV_TX_BUSY;
4295         bool again = false;
4296
4297         if (unlikely(!netif_running(dev) ||
4298                      !netif_carrier_ok(dev)))
4299                 goto drop;
4300
4301         skb = validate_xmit_skb_list(skb, dev, &again);
4302         if (skb != orig_skb)
4303                 goto drop;
4304
4305         skb_set_queue_mapping(skb, queue_id);
4306         txq = skb_get_tx_queue(dev, skb);
4307         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308
4309         local_bh_disable();
4310
4311         dev_xmit_recursion_inc();
4312         HARD_TX_LOCK(dev, txq, smp_processor_id());
4313         if (!netif_xmit_frozen_or_drv_stopped(txq))
4314                 ret = netdev_start_xmit(skb, dev, txq, false);
4315         HARD_TX_UNLOCK(dev, txq);
4316         dev_xmit_recursion_dec();
4317
4318         local_bh_enable();
4319         return ret;
4320 drop:
4321         atomic_long_inc(&dev->tx_dropped);
4322         kfree_skb_list(skb);
4323         return NET_XMIT_DROP;
4324 }
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4326
4327 /*************************************************************************
4328  *                      Receiver routines
4329  *************************************************************************/
4330
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4333
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 int netdev_budget __read_mostly = 300;
4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338 int weight_p __read_mostly = 64;           /* old backlog weight */
4339 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4340 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4341 int dev_rx_weight __read_mostly = 64;
4342 int dev_tx_weight __read_mostly = 64;
4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344 int gro_normal_batch __read_mostly = 8;
4345
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348                                      struct napi_struct *napi)
4349 {
4350         struct task_struct *thread;
4351
4352         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353                 /* Paired with smp_mb__before_atomic() in
4354                  * napi_enable()/dev_set_threaded().
4355                  * Use READ_ONCE() to guarantee a complete
4356                  * read on napi->thread. Only call
4357                  * wake_up_process() when it's not NULL.
4358                  */
4359                 thread = READ_ONCE(napi->thread);
4360                 if (thread) {
4361                         /* Avoid doing set_bit() if the thread is in
4362                          * INTERRUPTIBLE state, cause napi_thread_wait()
4363                          * makes sure to proceed with napi polling
4364                          * if the thread is explicitly woken from here.
4365                          */
4366                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368                         wake_up_process(thread);
4369                         return;
4370                 }
4371         }
4372
4373         list_add_tail(&napi->poll_list, &sd->poll_list);
4374         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375 }
4376
4377 #ifdef CONFIG_RPS
4378
4379 /* One global table that all flow-based protocols share. */
4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381 EXPORT_SYMBOL(rps_sock_flow_table);
4382 u32 rps_cpu_mask __read_mostly;
4383 EXPORT_SYMBOL(rps_cpu_mask);
4384
4385 struct static_key_false rps_needed __read_mostly;
4386 EXPORT_SYMBOL(rps_needed);
4387 struct static_key_false rfs_needed __read_mostly;
4388 EXPORT_SYMBOL(rfs_needed);
4389
4390 static struct rps_dev_flow *
4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392             struct rps_dev_flow *rflow, u16 next_cpu)
4393 {
4394         if (next_cpu < nr_cpu_ids) {
4395 #ifdef CONFIG_RFS_ACCEL
4396                 struct netdev_rx_queue *rxqueue;
4397                 struct rps_dev_flow_table *flow_table;
4398                 struct rps_dev_flow *old_rflow;
4399                 u32 flow_id;
4400                 u16 rxq_index;
4401                 int rc;
4402
4403                 /* Should we steer this flow to a different hardware queue? */
4404                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405                     !(dev->features & NETIF_F_NTUPLE))
4406                         goto out;
4407                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408                 if (rxq_index == skb_get_rx_queue(skb))
4409                         goto out;
4410
4411                 rxqueue = dev->_rx + rxq_index;
4412                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413                 if (!flow_table)
4414                         goto out;
4415                 flow_id = skb_get_hash(skb) & flow_table->mask;
4416                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417                                                         rxq_index, flow_id);
4418                 if (rc < 0)
4419                         goto out;
4420                 old_rflow = rflow;
4421                 rflow = &flow_table->flows[flow_id];
4422                 rflow->filter = rc;
4423                 if (old_rflow->filter == rflow->filter)
4424                         old_rflow->filter = RPS_NO_FILTER;
4425         out:
4426 #endif
4427                 rflow->last_qtail =
4428                         per_cpu(softnet_data, next_cpu).input_queue_head;
4429         }
4430
4431         rflow->cpu = next_cpu;
4432         return rflow;
4433 }
4434
4435 /*
4436  * get_rps_cpu is called from netif_receive_skb and returns the target
4437  * CPU from the RPS map of the receiving queue for a given skb.
4438  * rcu_read_lock must be held on entry.
4439  */
4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441                        struct rps_dev_flow **rflowp)
4442 {
4443         const struct rps_sock_flow_table *sock_flow_table;
4444         struct netdev_rx_queue *rxqueue = dev->_rx;
4445         struct rps_dev_flow_table *flow_table;
4446         struct rps_map *map;
4447         int cpu = -1;
4448         u32 tcpu;
4449         u32 hash;
4450
4451         if (skb_rx_queue_recorded(skb)) {
4452                 u16 index = skb_get_rx_queue(skb);
4453
4454                 if (unlikely(index >= dev->real_num_rx_queues)) {
4455                         WARN_ONCE(dev->real_num_rx_queues > 1,
4456                                   "%s received packet on queue %u, but number "
4457                                   "of RX queues is %u\n",
4458                                   dev->name, index, dev->real_num_rx_queues);
4459                         goto done;
4460                 }
4461                 rxqueue += index;
4462         }
4463
4464         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465
4466         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467         map = rcu_dereference(rxqueue->rps_map);
4468         if (!flow_table && !map)
4469                 goto done;
4470
4471         skb_reset_network_header(skb);
4472         hash = skb_get_hash(skb);
4473         if (!hash)
4474                 goto done;
4475
4476         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477         if (flow_table && sock_flow_table) {
4478                 struct rps_dev_flow *rflow;
4479                 u32 next_cpu;
4480                 u32 ident;
4481
4482                 /* First check into global flow table if there is a match */
4483                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484                 if ((ident ^ hash) & ~rps_cpu_mask)
4485                         goto try_rps;
4486
4487                 next_cpu = ident & rps_cpu_mask;
4488
4489                 /* OK, now we know there is a match,
4490                  * we can look at the local (per receive queue) flow table
4491                  */
4492                 rflow = &flow_table->flows[hash & flow_table->mask];
4493                 tcpu = rflow->cpu;
4494
4495                 /*
4496                  * If the desired CPU (where last recvmsg was done) is
4497                  * different from current CPU (one in the rx-queue flow
4498                  * table entry), switch if one of the following holds:
4499                  *   - Current CPU is unset (>= nr_cpu_ids).
4500                  *   - Current CPU is offline.
4501                  *   - The current CPU's queue tail has advanced beyond the
4502                  *     last packet that was enqueued using this table entry.
4503                  *     This guarantees that all previous packets for the flow
4504                  *     have been dequeued, thus preserving in order delivery.
4505                  */
4506                 if (unlikely(tcpu != next_cpu) &&
4507                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509                       rflow->last_qtail)) >= 0)) {
4510                         tcpu = next_cpu;
4511                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512                 }
4513
4514                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515                         *rflowp = rflow;
4516                         cpu = tcpu;
4517                         goto done;
4518                 }
4519         }
4520
4521 try_rps:
4522
4523         if (map) {
4524                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525                 if (cpu_online(tcpu)) {
4526                         cpu = tcpu;
4527                         goto done;
4528                 }
4529         }
4530
4531 done:
4532         return cpu;
4533 }
4534
4535 #ifdef CONFIG_RFS_ACCEL
4536
4537 /**
4538  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539  * @dev: Device on which the filter was set
4540  * @rxq_index: RX queue index
4541  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543  *
4544  * Drivers that implement ndo_rx_flow_steer() should periodically call
4545  * this function for each installed filter and remove the filters for
4546  * which it returns %true.
4547  */
4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549                          u32 flow_id, u16 filter_id)
4550 {
4551         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552         struct rps_dev_flow_table *flow_table;
4553         struct rps_dev_flow *rflow;
4554         bool expire = true;
4555         unsigned int cpu;
4556
4557         rcu_read_lock();
4558         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559         if (flow_table && flow_id <= flow_table->mask) {
4560                 rflow = &flow_table->flows[flow_id];
4561                 cpu = READ_ONCE(rflow->cpu);
4562                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564                            rflow->last_qtail) <
4565                      (int)(10 * flow_table->mask)))
4566                         expire = false;
4567         }
4568         rcu_read_unlock();
4569         return expire;
4570 }
4571 EXPORT_SYMBOL(rps_may_expire_flow);
4572
4573 #endif /* CONFIG_RFS_ACCEL */
4574
4575 /* Called from hardirq (IPI) context */
4576 static void rps_trigger_softirq(void *data)
4577 {
4578         struct softnet_data *sd = data;
4579
4580         ____napi_schedule(sd, &sd->backlog);
4581         sd->received_rps++;
4582 }
4583
4584 #endif /* CONFIG_RPS */
4585
4586 /*
4587  * Check if this softnet_data structure is another cpu one
4588  * If yes, queue it to our IPI list and return 1
4589  * If no, return 0
4590  */
4591 static int rps_ipi_queued(struct softnet_data *sd)
4592 {
4593 #ifdef CONFIG_RPS
4594         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596         if (sd != mysd) {
4597                 sd->rps_ipi_next = mysd->rps_ipi_list;
4598                 mysd->rps_ipi_list = sd;
4599
4600                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601                 return 1;
4602         }
4603 #endif /* CONFIG_RPS */
4604         return 0;
4605 }
4606
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609 #endif
4610
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612 {
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614         struct sd_flow_limit *fl;
4615         struct softnet_data *sd;
4616         unsigned int old_flow, new_flow;
4617
4618         if (qlen < (netdev_max_backlog >> 1))
4619                 return false;
4620
4621         sd = this_cpu_ptr(&softnet_data);
4622
4623         rcu_read_lock();
4624         fl = rcu_dereference(sd->flow_limit);
4625         if (fl) {
4626                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627                 old_flow = fl->history[fl->history_head];
4628                 fl->history[fl->history_head] = new_flow;
4629
4630                 fl->history_head++;
4631                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632
4633                 if (likely(fl->buckets[old_flow]))
4634                         fl->buckets[old_flow]--;
4635
4636                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637                         fl->count++;
4638                         rcu_read_unlock();
4639                         return true;
4640                 }
4641         }
4642         rcu_read_unlock();
4643 #endif
4644         return false;
4645 }
4646
4647 /*
4648  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649  * queue (may be a remote CPU queue).
4650  */
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652                               unsigned int *qtail)
4653 {
4654         struct softnet_data *sd;
4655         unsigned long flags;
4656         unsigned int qlen;
4657
4658         sd = &per_cpu(softnet_data, cpu);
4659
4660         local_irq_save(flags);
4661
4662         rps_lock(sd);
4663         if (!netif_running(skb->dev))
4664                 goto drop;
4665         qlen = skb_queue_len(&sd->input_pkt_queue);
4666         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667                 if (qlen) {
4668 enqueue:
4669                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4670                         input_queue_tail_incr_save(sd, qtail);
4671                         rps_unlock(sd);
4672                         local_irq_restore(flags);
4673                         return NET_RX_SUCCESS;
4674                 }
4675
4676                 /* Schedule NAPI for backlog device
4677                  * We can use non atomic operation since we own the queue lock
4678                  */
4679                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680                         if (!rps_ipi_queued(sd))
4681                                 ____napi_schedule(sd, &sd->backlog);
4682                 }
4683                 goto enqueue;
4684         }
4685
4686 drop:
4687         sd->dropped++;
4688         rps_unlock(sd);
4689
4690         local_irq_restore(flags);
4691
4692         atomic_long_inc(&skb->dev->rx_dropped);
4693         kfree_skb(skb);
4694         return NET_RX_DROP;
4695 }
4696
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699         struct net_device *dev = skb->dev;
4700         struct netdev_rx_queue *rxqueue;
4701
4702         rxqueue = dev->_rx;
4703
4704         if (skb_rx_queue_recorded(skb)) {
4705                 u16 index = skb_get_rx_queue(skb);
4706
4707                 if (unlikely(index >= dev->real_num_rx_queues)) {
4708                         WARN_ONCE(dev->real_num_rx_queues > 1,
4709                                   "%s received packet on queue %u, but number "
4710                                   "of RX queues is %u\n",
4711                                   dev->name, index, dev->real_num_rx_queues);
4712
4713                         return rxqueue; /* Return first rxqueue */
4714                 }
4715                 rxqueue += index;
4716         }
4717         return rxqueue;
4718 }
4719
4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721                                      struct xdp_buff *xdp,
4722                                      struct bpf_prog *xdp_prog)
4723 {
4724         void *orig_data, *orig_data_end, *hard_start;
4725         struct netdev_rx_queue *rxqueue;
4726         u32 metalen, act = XDP_DROP;
4727         bool orig_bcast, orig_host;
4728         u32 mac_len, frame_sz;
4729         __be16 orig_eth_type;
4730         struct ethhdr *eth;
4731         int off;
4732
4733         /* Reinjected packets coming from act_mirred or similar should
4734          * not get XDP generic processing.
4735          */
4736         if (skb_is_redirected(skb))
4737                 return XDP_PASS;
4738
4739         /* XDP packets must be linear and must have sufficient headroom
4740          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741          * native XDP provides, thus we need to do it here as well.
4742          */
4743         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746                 int troom = skb->tail + skb->data_len - skb->end;
4747
4748                 /* In case we have to go down the path and also linearize,
4749                  * then lets do the pskb_expand_head() work just once here.
4750                  */
4751                 if (pskb_expand_head(skb,
4752                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754                         goto do_drop;
4755                 if (skb_linearize(skb))
4756                         goto do_drop;
4757         }
4758
4759         /* The XDP program wants to see the packet starting at the MAC
4760          * header.
4761          */
4762         mac_len = skb->data - skb_mac_header(skb);
4763         hard_start = skb->data - skb_headroom(skb);
4764
4765         /* SKB "head" area always have tailroom for skb_shared_info */
4766         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768
4769         rxqueue = netif_get_rxqueue(skb);
4770         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772                          skb_headlen(skb) + mac_len, true);
4773
4774         orig_data_end = xdp->data_end;
4775         orig_data = xdp->data;
4776         eth = (struct ethhdr *)xdp->data;
4777         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779         orig_eth_type = eth->h_proto;
4780
4781         act = bpf_prog_run_xdp(xdp_prog, xdp);
4782
4783         /* check if bpf_xdp_adjust_head was used */
4784         off = xdp->data - orig_data;
4785         if (off) {
4786                 if (off > 0)
4787                         __skb_pull(skb, off);
4788                 else if (off < 0)
4789                         __skb_push(skb, -off);
4790
4791                 skb->mac_header += off;
4792                 skb_reset_network_header(skb);
4793         }
4794
4795         /* check if bpf_xdp_adjust_tail was used */
4796         off = xdp->data_end - orig_data_end;
4797         if (off != 0) {
4798                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799                 skb->len += off; /* positive on grow, negative on shrink */
4800         }
4801
4802         /* check if XDP changed eth hdr such SKB needs update */
4803         eth = (struct ethhdr *)xdp->data;
4804         if ((orig_eth_type != eth->h_proto) ||
4805             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806                                                   skb->dev->dev_addr)) ||
4807             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808                 __skb_push(skb, ETH_HLEN);
4809                 skb->pkt_type = PACKET_HOST;
4810                 skb->protocol = eth_type_trans(skb, skb->dev);
4811         }
4812
4813         switch (act) {
4814         case XDP_REDIRECT:
4815         case XDP_TX:
4816                 __skb_push(skb, mac_len);
4817                 break;
4818         case XDP_PASS:
4819                 metalen = xdp->data - xdp->data_meta;
4820                 if (metalen)
4821                         skb_metadata_set(skb, metalen);
4822                 break;
4823         default:
4824                 bpf_warn_invalid_xdp_action(act);
4825                 fallthrough;
4826         case XDP_ABORTED:
4827                 trace_xdp_exception(skb->dev, xdp_prog, act);
4828                 fallthrough;
4829         case XDP_DROP:
4830         do_drop:
4831                 kfree_skb(skb);
4832                 break;
4833         }
4834
4835         return act;
4836 }
4837
4838 /* When doing generic XDP we have to bypass the qdisc layer and the
4839  * network taps in order to match in-driver-XDP behavior.
4840  */
4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842 {
4843         struct net_device *dev = skb->dev;
4844         struct netdev_queue *txq;
4845         bool free_skb = true;
4846         int cpu, rc;
4847
4848         txq = netdev_core_pick_tx(dev, skb, NULL);
4849         cpu = smp_processor_id();
4850         HARD_TX_LOCK(dev, txq, cpu);
4851         if (!netif_xmit_stopped(txq)) {
4852                 rc = netdev_start_xmit(skb, dev, txq, 0);
4853                 if (dev_xmit_complete(rc))
4854                         free_skb = false;
4855         }
4856         HARD_TX_UNLOCK(dev, txq);
4857         if (free_skb) {
4858                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859                 kfree_skb(skb);
4860         }
4861 }
4862
4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864
4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866 {
4867         if (xdp_prog) {
4868                 struct xdp_buff xdp;
4869                 u32 act;
4870                 int err;
4871
4872                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873                 if (act != XDP_PASS) {
4874                         switch (act) {
4875                         case XDP_REDIRECT:
4876                                 err = xdp_do_generic_redirect(skb->dev, skb,
4877                                                               &xdp, xdp_prog);
4878                                 if (err)
4879                                         goto out_redir;
4880                                 break;
4881                         case XDP_TX:
4882                                 generic_xdp_tx(skb, xdp_prog);
4883                                 break;
4884                         }
4885                         return XDP_DROP;
4886                 }
4887         }
4888         return XDP_PASS;
4889 out_redir:
4890         kfree_skb(skb);
4891         return XDP_DROP;
4892 }
4893 EXPORT_SYMBOL_GPL(do_xdp_generic);
4894
4895 static int netif_rx_internal(struct sk_buff *skb)
4896 {
4897         int ret;
4898
4899         net_timestamp_check(netdev_tstamp_prequeue, skb);
4900
4901         trace_netif_rx(skb);
4902
4903 #ifdef CONFIG_RPS
4904         if (static_branch_unlikely(&rps_needed)) {
4905                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4906                 int cpu;
4907
4908                 preempt_disable();
4909                 rcu_read_lock();
4910
4911                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912                 if (cpu < 0)
4913                         cpu = smp_processor_id();
4914
4915                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916
4917                 rcu_read_unlock();
4918                 preempt_enable();
4919         } else
4920 #endif
4921         {
4922                 unsigned int qtail;
4923
4924                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925                 put_cpu();
4926         }
4927         return ret;
4928 }
4929
4930 /**
4931  *      netif_rx        -       post buffer to the network code
4932  *      @skb: buffer to post
4933  *
4934  *      This function receives a packet from a device driver and queues it for
4935  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4936  *      may be dropped during processing for congestion control or by the
4937  *      protocol layers.
4938  *
4939  *      return values:
4940  *      NET_RX_SUCCESS  (no congestion)
4941  *      NET_RX_DROP     (packet was dropped)
4942  *
4943  */
4944
4945 int netif_rx(struct sk_buff *skb)
4946 {
4947         int ret;
4948
4949         trace_netif_rx_entry(skb);
4950
4951         ret = netif_rx_internal(skb);
4952         trace_netif_rx_exit(ret);
4953
4954         return ret;
4955 }
4956 EXPORT_SYMBOL(netif_rx);
4957
4958 int netif_rx_ni(struct sk_buff *skb)
4959 {
4960         int err;
4961
4962         trace_netif_rx_ni_entry(skb);
4963
4964         preempt_disable();
4965         err = netif_rx_internal(skb);
4966         if (local_softirq_pending())
4967                 do_softirq();
4968         preempt_enable();
4969         trace_netif_rx_ni_exit(err);
4970
4971         return err;
4972 }
4973 EXPORT_SYMBOL(netif_rx_ni);
4974
4975 int netif_rx_any_context(struct sk_buff *skb)
4976 {
4977         /*
4978          * If invoked from contexts which do not invoke bottom half
4979          * processing either at return from interrupt or when softrqs are
4980          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981          * directly.
4982          */
4983         if (in_interrupt())
4984                 return netif_rx(skb);
4985         else
4986                 return netif_rx_ni(skb);
4987 }
4988 EXPORT_SYMBOL(netif_rx_any_context);
4989
4990 static __latent_entropy void net_tx_action(struct softirq_action *h)
4991 {
4992         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993
4994         if (sd->completion_queue) {
4995                 struct sk_buff *clist;
4996
4997                 local_irq_disable();
4998                 clist = sd->completion_queue;
4999                 sd->completion_queue = NULL;
5000                 local_irq_enable();
5001
5002                 while (clist) {
5003                         struct sk_buff *skb = clist;
5004
5005                         clist = clist->next;
5006
5007                         WARN_ON(refcount_read(&skb->users));
5008                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009                                 trace_consume_skb(skb);
5010                         else
5011                                 trace_kfree_skb(skb, net_tx_action);
5012
5013                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014                                 __kfree_skb(skb);
5015                         else
5016                                 __kfree_skb_defer(skb);
5017                 }
5018         }
5019
5020         if (sd->output_queue) {
5021                 struct Qdisc *head;
5022
5023                 local_irq_disable();
5024                 head = sd->output_queue;
5025                 sd->output_queue = NULL;
5026                 sd->output_queue_tailp = &sd->output_queue;
5027                 local_irq_enable();
5028
5029                 rcu_read_lock();
5030
5031                 while (head) {
5032                         struct Qdisc *q = head;
5033                         spinlock_t *root_lock = NULL;
5034
5035                         head = head->next_sched;
5036
5037                         /* We need to make sure head->next_sched is read
5038                          * before clearing __QDISC_STATE_SCHED
5039                          */
5040                         smp_mb__before_atomic();
5041
5042                         if (!(q->flags & TCQ_F_NOLOCK)) {
5043                                 root_lock = qdisc_lock(q);
5044                                 spin_lock(root_lock);
5045                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046                                                      &q->state))) {
5047                                 /* There is a synchronize_net() between
5048                                  * STATE_DEACTIVATED flag being set and
5049                                  * qdisc_reset()/some_qdisc_is_busy() in
5050                                  * dev_deactivate(), so we can safely bail out
5051                                  * early here to avoid data race between
5052                                  * qdisc_deactivate() and some_qdisc_is_busy()
5053                                  * for lockless qdisc.
5054                                  */
5055                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5056                                 continue;
5057                         }
5058
5059                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5060                         qdisc_run(q);
5061                         if (root_lock)
5062                                 spin_unlock(root_lock);
5063                 }
5064
5065                 rcu_read_unlock();
5066         }
5067
5068         xfrm_dev_backlog(sd);
5069 }
5070
5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072 /* This hook is defined here for ATM LANE */
5073 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074                              unsigned char *addr) __read_mostly;
5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076 #endif
5077
5078 static inline struct sk_buff *
5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080                    struct net_device *orig_dev, bool *another)
5081 {
5082 #ifdef CONFIG_NET_CLS_ACT
5083         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084         struct tcf_result cl_res;
5085
5086         /* If there's at least one ingress present somewhere (so
5087          * we get here via enabled static key), remaining devices
5088          * that are not configured with an ingress qdisc will bail
5089          * out here.
5090          */
5091         if (!miniq)
5092                 return skb;
5093
5094         if (*pt_prev) {
5095                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5096                 *pt_prev = NULL;
5097         }
5098
5099         qdisc_skb_cb(skb)->pkt_len = skb->len;
5100         qdisc_skb_cb(skb)->mru = 0;
5101         qdisc_skb_cb(skb)->post_ct = false;
5102         skb->tc_at_ingress = 1;
5103         mini_qdisc_bstats_cpu_update(miniq, skb);
5104
5105         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106                                      &cl_res, false)) {
5107         case TC_ACT_OK:
5108         case TC_ACT_RECLASSIFY:
5109                 skb->tc_index = TC_H_MIN(cl_res.classid);
5110                 break;
5111         case TC_ACT_SHOT:
5112                 mini_qdisc_qstats_cpu_drop(miniq);
5113                 kfree_skb(skb);
5114                 return NULL;
5115         case TC_ACT_STOLEN:
5116         case TC_ACT_QUEUED:
5117         case TC_ACT_TRAP:
5118                 consume_skb(skb);
5119                 return NULL;
5120         case TC_ACT_REDIRECT:
5121                 /* skb_mac_header check was done by cls/act_bpf, so
5122                  * we can safely push the L2 header back before
5123                  * redirecting to another netdev
5124                  */
5125                 __skb_push(skb, skb->mac_len);
5126                 if (skb_do_redirect(skb) == -EAGAIN) {
5127                         __skb_pull(skb, skb->mac_len);
5128                         *another = true;
5129                         break;
5130                 }
5131                 return NULL;
5132         case TC_ACT_CONSUMED:
5133                 return NULL;
5134         default:
5135                 break;
5136         }
5137 #endif /* CONFIG_NET_CLS_ACT */
5138         return skb;
5139 }
5140
5141 /**
5142  *      netdev_is_rx_handler_busy - check if receive handler is registered
5143  *      @dev: device to check
5144  *
5145  *      Check if a receive handler is already registered for a given device.
5146  *      Return true if there one.
5147  *
5148  *      The caller must hold the rtnl_mutex.
5149  */
5150 bool netdev_is_rx_handler_busy(struct net_device *dev)
5151 {
5152         ASSERT_RTNL();
5153         return dev && rtnl_dereference(dev->rx_handler);
5154 }
5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156
5157 /**
5158  *      netdev_rx_handler_register - register receive handler
5159  *      @dev: device to register a handler for
5160  *      @rx_handler: receive handler to register
5161  *      @rx_handler_data: data pointer that is used by rx handler
5162  *
5163  *      Register a receive handler for a device. This handler will then be
5164  *      called from __netif_receive_skb. A negative errno code is returned
5165  *      on a failure.
5166  *
5167  *      The caller must hold the rtnl_mutex.
5168  *
5169  *      For a general description of rx_handler, see enum rx_handler_result.
5170  */
5171 int netdev_rx_handler_register(struct net_device *dev,
5172                                rx_handler_func_t *rx_handler,
5173                                void *rx_handler_data)
5174 {
5175         if (netdev_is_rx_handler_busy(dev))
5176                 return -EBUSY;
5177
5178         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179                 return -EINVAL;
5180
5181         /* Note: rx_handler_data must be set before rx_handler */
5182         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183         rcu_assign_pointer(dev->rx_handler, rx_handler);
5184
5185         return 0;
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188
5189 /**
5190  *      netdev_rx_handler_unregister - unregister receive handler
5191  *      @dev: device to unregister a handler from
5192  *
5193  *      Unregister a receive handler from a device.
5194  *
5195  *      The caller must hold the rtnl_mutex.
5196  */
5197 void netdev_rx_handler_unregister(struct net_device *dev)
5198 {
5199
5200         ASSERT_RTNL();
5201         RCU_INIT_POINTER(dev->rx_handler, NULL);
5202         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203          * section has a guarantee to see a non NULL rx_handler_data
5204          * as well.
5205          */
5206         synchronize_net();
5207         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208 }
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210
5211 /*
5212  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213  * the special handling of PFMEMALLOC skbs.
5214  */
5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216 {
5217         switch (skb->protocol) {
5218         case htons(ETH_P_ARP):
5219         case htons(ETH_P_IP):
5220         case htons(ETH_P_IPV6):
5221         case htons(ETH_P_8021Q):
5222         case htons(ETH_P_8021AD):
5223                 return true;
5224         default:
5225                 return false;
5226         }
5227 }
5228
5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230                              int *ret, struct net_device *orig_dev)
5231 {
5232         if (nf_hook_ingress_active(skb)) {
5233                 int ingress_retval;
5234
5235                 if (*pt_prev) {
5236                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5237                         *pt_prev = NULL;
5238                 }
5239
5240                 rcu_read_lock();
5241                 ingress_retval = nf_hook_ingress(skb);
5242                 rcu_read_unlock();
5243                 return ingress_retval;
5244         }
5245         return 0;
5246 }
5247
5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249                                     struct packet_type **ppt_prev)
5250 {
5251         struct packet_type *ptype, *pt_prev;
5252         rx_handler_func_t *rx_handler;
5253         struct sk_buff *skb = *pskb;
5254         struct net_device *orig_dev;
5255         bool deliver_exact = false;
5256         int ret = NET_RX_DROP;
5257         __be16 type;
5258
5259         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260
5261         trace_netif_receive_skb(skb);
5262
5263         orig_dev = skb->dev;
5264
5265         skb_reset_network_header(skb);
5266         if (!skb_transport_header_was_set(skb))
5267                 skb_reset_transport_header(skb);
5268         skb_reset_mac_len(skb);
5269
5270         pt_prev = NULL;
5271
5272 another_round:
5273         skb->skb_iif = skb->dev->ifindex;
5274
5275         __this_cpu_inc(softnet_data.processed);
5276
5277         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278                 int ret2;
5279
5280                 preempt_disable();
5281                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282                 preempt_enable();
5283
5284                 if (ret2 != XDP_PASS) {
5285                         ret = NET_RX_DROP;
5286                         goto out;
5287                 }
5288                 skb_reset_mac_len(skb);
5289         }
5290
5291         if (eth_type_vlan(skb->protocol)) {
5292                 skb = skb_vlan_untag(skb);
5293                 if (unlikely(!skb))
5294                         goto out;
5295         }
5296
5297         if (skb_skip_tc_classify(skb))
5298                 goto skip_classify;
5299
5300         if (pfmemalloc)
5301                 goto skip_taps;
5302
5303         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304                 if (pt_prev)
5305                         ret = deliver_skb(skb, pt_prev, orig_dev);
5306                 pt_prev = ptype;
5307         }
5308
5309         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310                 if (pt_prev)
5311                         ret = deliver_skb(skb, pt_prev, orig_dev);
5312                 pt_prev = ptype;
5313         }
5314
5315 skip_taps:
5316 #ifdef CONFIG_NET_INGRESS
5317         if (static_branch_unlikely(&ingress_needed_key)) {
5318                 bool another = false;
5319
5320                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321                                          &another);
5322                 if (another)
5323                         goto another_round;
5324                 if (!skb)
5325                         goto out;
5326
5327                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328                         goto out;
5329         }
5330 #endif
5331         skb_reset_redirect(skb);
5332 skip_classify:
5333         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334                 goto drop;
5335
5336         if (skb_vlan_tag_present(skb)) {
5337                 if (pt_prev) {
5338                         ret = deliver_skb(skb, pt_prev, orig_dev);
5339                         pt_prev = NULL;
5340                 }
5341                 if (vlan_do_receive(&skb))
5342                         goto another_round;
5343                 else if (unlikely(!skb))
5344                         goto out;
5345         }
5346
5347         rx_handler = rcu_dereference(skb->dev->rx_handler);
5348         if (rx_handler) {
5349                 if (pt_prev) {
5350                         ret = deliver_skb(skb, pt_prev, orig_dev);
5351                         pt_prev = NULL;
5352                 }
5353                 switch (rx_handler(&skb)) {
5354                 case RX_HANDLER_CONSUMED:
5355                         ret = NET_RX_SUCCESS;
5356                         goto out;
5357                 case RX_HANDLER_ANOTHER:
5358                         goto another_round;
5359                 case RX_HANDLER_EXACT:
5360                         deliver_exact = true;
5361                         break;
5362                 case RX_HANDLER_PASS:
5363                         break;
5364                 default:
5365                         BUG();
5366                 }
5367         }
5368
5369         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370 check_vlan_id:
5371                 if (skb_vlan_tag_get_id(skb)) {
5372                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5373                          * find vlan device.
5374                          */
5375                         skb->pkt_type = PACKET_OTHERHOST;
5376                 } else if (eth_type_vlan(skb->protocol)) {
5377                         /* Outer header is 802.1P with vlan 0, inner header is
5378                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5379                          * not find vlan dev for vlan id 0.
5380                          */
5381                         __vlan_hwaccel_clear_tag(skb);
5382                         skb = skb_vlan_untag(skb);
5383                         if (unlikely(!skb))
5384                                 goto out;
5385                         if (vlan_do_receive(&skb))
5386                                 /* After stripping off 802.1P header with vlan 0
5387                                  * vlan dev is found for inner header.
5388                                  */
5389                                 goto another_round;
5390                         else if (unlikely(!skb))
5391                                 goto out;
5392                         else
5393                                 /* We have stripped outer 802.1P vlan 0 header.
5394                                  * But could not find vlan dev.
5395                                  * check again for vlan id to set OTHERHOST.
5396                                  */
5397                                 goto check_vlan_id;
5398                 }
5399                 /* Note: we might in the future use prio bits
5400                  * and set skb->priority like in vlan_do_receive()
5401                  * For the time being, just ignore Priority Code Point
5402                  */
5403                 __vlan_hwaccel_clear_tag(skb);
5404         }
5405
5406         type = skb->protocol;
5407
5408         /* deliver only exact match when indicated */
5409         if (likely(!deliver_exact)) {
5410                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411                                        &ptype_base[ntohs(type) &
5412                                                    PTYPE_HASH_MASK]);
5413         }
5414
5415         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416                                &orig_dev->ptype_specific);
5417
5418         if (unlikely(skb->dev != orig_dev)) {
5419                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420                                        &skb->dev->ptype_specific);
5421         }
5422
5423         if (pt_prev) {
5424                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425                         goto drop;
5426                 *ppt_prev = pt_prev;
5427         } else {
5428 drop:
5429                 if (!deliver_exact)
5430                         atomic_long_inc(&skb->dev->rx_dropped);
5431                 else
5432                         atomic_long_inc(&skb->dev->rx_nohandler);
5433                 kfree_skb(skb);
5434                 /* Jamal, now you will not able to escape explaining
5435                  * me how you were going to use this. :-)
5436                  */
5437                 ret = NET_RX_DROP;
5438         }
5439
5440 out:
5441         /* The invariant here is that if *ppt_prev is not NULL
5442          * then skb should also be non-NULL.
5443          *
5444          * Apparently *ppt_prev assignment above holds this invariant due to
5445          * skb dereferencing near it.
5446          */
5447         *pskb = skb;
5448         return ret;
5449 }
5450
5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452 {
5453         struct net_device *orig_dev = skb->dev;
5454         struct packet_type *pt_prev = NULL;
5455         int ret;
5456
5457         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458         if (pt_prev)
5459                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460                                          skb->dev, pt_prev, orig_dev);
5461         return ret;
5462 }
5463
5464 /**
5465  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5466  *      @skb: buffer to process
5467  *
5468  *      More direct receive version of netif_receive_skb().  It should
5469  *      only be used by callers that have a need to skip RPS and Generic XDP.
5470  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471  *
5472  *      This function may only be called from softirq context and interrupts
5473  *      should be enabled.
5474  *
5475  *      Return values (usually ignored):
5476  *      NET_RX_SUCCESS: no congestion
5477  *      NET_RX_DROP: packet was dropped
5478  */
5479 int netif_receive_skb_core(struct sk_buff *skb)
5480 {
5481         int ret;
5482
5483         rcu_read_lock();
5484         ret = __netif_receive_skb_one_core(skb, false);
5485         rcu_read_unlock();
5486
5487         return ret;
5488 }
5489 EXPORT_SYMBOL(netif_receive_skb_core);
5490
5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492                                                   struct packet_type *pt_prev,
5493                                                   struct net_device *orig_dev)
5494 {
5495         struct sk_buff *skb, *next;
5496
5497         if (!pt_prev)
5498                 return;
5499         if (list_empty(head))
5500                 return;
5501         if (pt_prev->list_func != NULL)
5502                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503                                    ip_list_rcv, head, pt_prev, orig_dev);
5504         else
5505                 list_for_each_entry_safe(skb, next, head, list) {
5506                         skb_list_del_init(skb);
5507                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508                 }
5509 }
5510
5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512 {
5513         /* Fast-path assumptions:
5514          * - There is no RX handler.
5515          * - Only one packet_type matches.
5516          * If either of these fails, we will end up doing some per-packet
5517          * processing in-line, then handling the 'last ptype' for the whole
5518          * sublist.  This can't cause out-of-order delivery to any single ptype,
5519          * because the 'last ptype' must be constant across the sublist, and all
5520          * other ptypes are handled per-packet.
5521          */
5522         /* Current (common) ptype of sublist */
5523         struct packet_type *pt_curr = NULL;
5524         /* Current (common) orig_dev of sublist */
5525         struct net_device *od_curr = NULL;
5526         struct list_head sublist;
5527         struct sk_buff *skb, *next;
5528
5529         INIT_LIST_HEAD(&sublist);
5530         list_for_each_entry_safe(skb, next, head, list) {
5531                 struct net_device *orig_dev = skb->dev;
5532                 struct packet_type *pt_prev = NULL;
5533
5534                 skb_list_del_init(skb);
5535                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536                 if (!pt_prev)
5537                         continue;
5538                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5539                         /* dispatch old sublist */
5540                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541                         /* start new sublist */
5542                         INIT_LIST_HEAD(&sublist);
5543                         pt_curr = pt_prev;
5544                         od_curr = orig_dev;
5545                 }
5546                 list_add_tail(&skb->list, &sublist);
5547         }
5548
5549         /* dispatch final sublist */
5550         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551 }
5552
5553 static int __netif_receive_skb(struct sk_buff *skb)
5554 {
5555         int ret;
5556
5557         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558                 unsigned int noreclaim_flag;
5559
5560                 /*
5561                  * PFMEMALLOC skbs are special, they should
5562                  * - be delivered to SOCK_MEMALLOC sockets only
5563                  * - stay away from userspace
5564                  * - have bounded memory usage
5565                  *
5566                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5567                  * context down to all allocation sites.
5568                  */
5569                 noreclaim_flag = memalloc_noreclaim_save();
5570                 ret = __netif_receive_skb_one_core(skb, true);
5571                 memalloc_noreclaim_restore(noreclaim_flag);
5572         } else
5573                 ret = __netif_receive_skb_one_core(skb, false);
5574
5575         return ret;
5576 }
5577
5578 static void __netif_receive_skb_list(struct list_head *head)
5579 {
5580         unsigned long noreclaim_flag = 0;
5581         struct sk_buff *skb, *next;
5582         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583
5584         list_for_each_entry_safe(skb, next, head, list) {
5585                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586                         struct list_head sublist;
5587
5588                         /* Handle the previous sublist */
5589                         list_cut_before(&sublist, head, &skb->list);
5590                         if (!list_empty(&sublist))
5591                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5592                         pfmemalloc = !pfmemalloc;
5593                         /* See comments in __netif_receive_skb */
5594                         if (pfmemalloc)
5595                                 noreclaim_flag = memalloc_noreclaim_save();
5596                         else
5597                                 memalloc_noreclaim_restore(noreclaim_flag);
5598                 }
5599         }
5600         /* Handle the remaining sublist */
5601         if (!list_empty(head))
5602                 __netif_receive_skb_list_core(head, pfmemalloc);
5603         /* Restore pflags */
5604         if (pfmemalloc)
5605                 memalloc_noreclaim_restore(noreclaim_flag);
5606 }
5607
5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609 {
5610         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611         struct bpf_prog *new = xdp->prog;
5612         int ret = 0;
5613
5614         if (new) {
5615                 u32 i;
5616
5617                 mutex_lock(&new->aux->used_maps_mutex);
5618
5619                 /* generic XDP does not work with DEVMAPs that can
5620                  * have a bpf_prog installed on an entry
5621                  */
5622                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5623                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625                                 mutex_unlock(&new->aux->used_maps_mutex);
5626                                 return -EINVAL;
5627                         }
5628                 }
5629
5630                 mutex_unlock(&new->aux->used_maps_mutex);
5631         }
5632
5633         switch (xdp->command) {
5634         case XDP_SETUP_PROG:
5635                 rcu_assign_pointer(dev->xdp_prog, new);
5636                 if (old)
5637                         bpf_prog_put(old);
5638
5639                 if (old && !new) {
5640                         static_branch_dec(&generic_xdp_needed_key);
5641                 } else if (new && !old) {
5642                         static_branch_inc(&generic_xdp_needed_key);
5643                         dev_disable_lro(dev);
5644                         dev_disable_gro_hw(dev);
5645                 }
5646                 break;
5647
5648         default:
5649                 ret = -EINVAL;
5650                 break;
5651         }
5652
5653         return ret;
5654 }
5655
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5657 {
5658         int ret;
5659
5660         net_timestamp_check(netdev_tstamp_prequeue, skb);
5661
5662         if (skb_defer_rx_timestamp(skb))
5663                 return NET_RX_SUCCESS;
5664
5665         rcu_read_lock();
5666 #ifdef CONFIG_RPS
5667         if (static_branch_unlikely(&rps_needed)) {
5668                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670
5671                 if (cpu >= 0) {
5672                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673                         rcu_read_unlock();
5674                         return ret;
5675                 }
5676         }
5677 #endif
5678         ret = __netif_receive_skb(skb);
5679         rcu_read_unlock();
5680         return ret;
5681 }
5682
5683 static void netif_receive_skb_list_internal(struct list_head *head)
5684 {
5685         struct sk_buff *skb, *next;
5686         struct list_head sublist;
5687
5688         INIT_LIST_HEAD(&sublist);
5689         list_for_each_entry_safe(skb, next, head, list) {
5690                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691                 skb_list_del_init(skb);
5692                 if (!skb_defer_rx_timestamp(skb))
5693                         list_add_tail(&skb->list, &sublist);
5694         }
5695         list_splice_init(&sublist, head);
5696
5697         rcu_read_lock();
5698 #ifdef CONFIG_RPS
5699         if (static_branch_unlikely(&rps_needed)) {
5700                 list_for_each_entry_safe(skb, next, head, list) {
5701                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5702                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703
5704                         if (cpu >= 0) {
5705                                 /* Will be handled, remove from list */
5706                                 skb_list_del_init(skb);
5707                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708                         }
5709                 }
5710         }
5711 #endif
5712         __netif_receive_skb_list(head);
5713         rcu_read_unlock();
5714 }
5715
5716 /**
5717  *      netif_receive_skb - process receive buffer from network
5718  *      @skb: buffer to process
5719  *
5720  *      netif_receive_skb() is the main receive data processing function.
5721  *      It always succeeds. The buffer may be dropped during processing
5722  *      for congestion control or by the protocol layers.
5723  *
5724  *      This function may only be called from softirq context and interrupts
5725  *      should be enabled.
5726  *
5727  *      Return values (usually ignored):
5728  *      NET_RX_SUCCESS: no congestion
5729  *      NET_RX_DROP: packet was dropped
5730  */
5731 int netif_receive_skb(struct sk_buff *skb)
5732 {
5733         int ret;
5734
5735         trace_netif_receive_skb_entry(skb);
5736
5737         ret = netif_receive_skb_internal(skb);
5738         trace_netif_receive_skb_exit(ret);
5739
5740         return ret;
5741 }
5742 EXPORT_SYMBOL(netif_receive_skb);
5743
5744 /**
5745  *      netif_receive_skb_list - process many receive buffers from network
5746  *      @head: list of skbs to process.
5747  *
5748  *      Since return value of netif_receive_skb() is normally ignored, and
5749  *      wouldn't be meaningful for a list, this function returns void.
5750  *
5751  *      This function may only be called from softirq context and interrupts
5752  *      should be enabled.
5753  */
5754 void netif_receive_skb_list(struct list_head *head)
5755 {
5756         struct sk_buff *skb;
5757
5758         if (list_empty(head))
5759                 return;
5760         if (trace_netif_receive_skb_list_entry_enabled()) {
5761                 list_for_each_entry(skb, head, list)
5762                         trace_netif_receive_skb_list_entry(skb);
5763         }
5764         netif_receive_skb_list_internal(head);
5765         trace_netif_receive_skb_list_exit(0);
5766 }
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5768
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5770
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5773 {
5774         struct sk_buff *skb, *tmp;
5775         struct softnet_data *sd;
5776
5777         local_bh_disable();
5778         sd = this_cpu_ptr(&softnet_data);
5779
5780         local_irq_disable();
5781         rps_lock(sd);
5782         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784                         __skb_unlink(skb, &sd->input_pkt_queue);
5785                         dev_kfree_skb_irq(skb);
5786                         input_queue_head_incr(sd);
5787                 }
5788         }
5789         rps_unlock(sd);
5790         local_irq_enable();
5791
5792         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794                         __skb_unlink(skb, &sd->process_queue);
5795                         kfree_skb(skb);
5796                         input_queue_head_incr(sd);
5797                 }
5798         }
5799         local_bh_enable();
5800 }
5801
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806         bool do_flush;
5807
5808         local_irq_disable();
5809         rps_lock(sd);
5810
5811         /* as insertion into process_queue happens with the rps lock held,
5812          * process_queue access may race only with dequeue
5813          */
5814         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815                    !skb_queue_empty_lockless(&sd->process_queue);
5816         rps_unlock(sd);
5817         local_irq_enable();
5818
5819         return do_flush;
5820 #endif
5821         /* without RPS we can't safely check input_pkt_queue: during a
5822          * concurrent remote skb_queue_splice() we can detect as empty both
5823          * input_pkt_queue and process_queue even if the latter could end-up
5824          * containing a lot of packets.
5825          */
5826         return true;
5827 }
5828
5829 static void flush_all_backlogs(void)
5830 {
5831         static cpumask_t flush_cpus;
5832         unsigned int cpu;
5833
5834         /* since we are under rtnl lock protection we can use static data
5835          * for the cpumask and avoid allocating on stack the possibly
5836          * large mask
5837          */
5838         ASSERT_RTNL();
5839
5840         get_online_cpus();
5841
5842         cpumask_clear(&flush_cpus);
5843         for_each_online_cpu(cpu) {
5844                 if (flush_required(cpu)) {
5845                         queue_work_on(cpu, system_highpri_wq,
5846                                       per_cpu_ptr(&flush_works, cpu));
5847                         cpumask_set_cpu(cpu, &flush_cpus);
5848                 }
5849         }
5850
5851         /* we can have in flight packet[s] on the cpus we are not flushing,
5852          * synchronize_net() in unregister_netdevice_many() will take care of
5853          * them
5854          */
5855         for_each_cpu(cpu, &flush_cpus)
5856                 flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858         put_online_cpus();
5859 }
5860
5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862 static void gro_normal_list(struct napi_struct *napi)
5863 {
5864         if (!napi->rx_count)
5865                 return;
5866         netif_receive_skb_list_internal(&napi->rx_list);
5867         INIT_LIST_HEAD(&napi->rx_list);
5868         napi->rx_count = 0;
5869 }
5870
5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872  * pass the whole batch up to the stack.
5873  */
5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875 {
5876         list_add_tail(&skb->list, &napi->rx_list);
5877         napi->rx_count += segs;
5878         if (napi->rx_count >= gro_normal_batch)
5879                 gro_normal_list(napi);
5880 }
5881
5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883 {
5884         struct packet_offload *ptype;
5885         __be16 type = skb->protocol;
5886         struct list_head *head = &offload_base;
5887         int err = -ENOENT;
5888
5889         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890
5891         if (NAPI_GRO_CB(skb)->count == 1) {
5892                 skb_shinfo(skb)->gso_size = 0;
5893                 goto out;
5894         }
5895
5896         rcu_read_lock();
5897         list_for_each_entry_rcu(ptype, head, list) {
5898                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5899                         continue;
5900
5901                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902                                          ipv6_gro_complete, inet_gro_complete,
5903                                          skb, 0);
5904                 break;
5905         }
5906         rcu_read_unlock();
5907
5908         if (err) {
5909                 WARN_ON(&ptype->list == head);
5910                 kfree_skb(skb);
5911                 return NET_RX_SUCCESS;
5912         }
5913
5914 out:
5915         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916         return NET_RX_SUCCESS;
5917 }
5918
5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920                                    bool flush_old)
5921 {
5922         struct list_head *head = &napi->gro_hash[index].list;
5923         struct sk_buff *skb, *p;
5924
5925         list_for_each_entry_safe_reverse(skb, p, head, list) {
5926                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927                         return;
5928                 skb_list_del_init(skb);
5929                 napi_gro_complete(napi, skb);
5930                 napi->gro_hash[index].count--;
5931         }
5932
5933         if (!napi->gro_hash[index].count)
5934                 __clear_bit(index, &napi->gro_bitmask);
5935 }
5936
5937 /* napi->gro_hash[].list contains packets ordered by age.
5938  * youngest packets at the head of it.
5939  * Complete skbs in reverse order to reduce latencies.
5940  */
5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942 {
5943         unsigned long bitmask = napi->gro_bitmask;
5944         unsigned int i, base = ~0U;
5945
5946         while ((i = ffs(bitmask)) != 0) {
5947                 bitmask >>= i;
5948                 base += i;
5949                 __napi_gro_flush_chain(napi, base, flush_old);
5950         }
5951 }
5952 EXPORT_SYMBOL(napi_gro_flush);
5953
5954 static void gro_list_prepare(const struct list_head *head,
5955                              const struct sk_buff *skb)
5956 {
5957         unsigned int maclen = skb->dev->hard_header_len;
5958         u32 hash = skb_get_hash_raw(skb);
5959         struct sk_buff *p;
5960
5961         list_for_each_entry(p, head, list) {
5962                 unsigned long diffs;
5963
5964                 NAPI_GRO_CB(p)->flush = 0;
5965
5966                 if (hash != skb_get_hash_raw(p)) {
5967                         NAPI_GRO_CB(p)->same_flow = 0;
5968                         continue;
5969                 }
5970
5971                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973                 if (skb_vlan_tag_present(p))
5974                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975                 diffs |= skb_metadata_dst_cmp(p, skb);
5976                 diffs |= skb_metadata_differs(p, skb);
5977                 if (maclen == ETH_HLEN)
5978                         diffs |= compare_ether_header(skb_mac_header(p),
5979                                                       skb_mac_header(skb));
5980                 else if (!diffs)
5981                         diffs = memcmp(skb_mac_header(p),
5982                                        skb_mac_header(skb),
5983                                        maclen);
5984                 NAPI_GRO_CB(p)->same_flow = !diffs;
5985         }
5986 }
5987
5988 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5989 {
5990         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991         const skb_frag_t *frag0 = &pinfo->frags[0];
5992
5993         NAPI_GRO_CB(skb)->data_offset = 0;
5994         NAPI_GRO_CB(skb)->frag0 = NULL;
5995         NAPI_GRO_CB(skb)->frag0_len = 0;
5996
5997         if (!skb_headlen(skb) && pinfo->nr_frags &&
5998             !PageHighMem(skb_frag_page(frag0)) &&
5999             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002                                                     skb_frag_size(frag0),
6003                                                     skb->end - skb->tail);
6004         }
6005 }
6006
6007 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6008 {
6009         struct skb_shared_info *pinfo = skb_shinfo(skb);
6010
6011         BUG_ON(skb->end - skb->tail < grow);
6012
6013         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6014
6015         skb->data_len -= grow;
6016         skb->tail += grow;
6017
6018         skb_frag_off_add(&pinfo->frags[0], grow);
6019         skb_frag_size_sub(&pinfo->frags[0], grow);
6020
6021         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022                 skb_frag_unref(skb, 0);
6023                 memmove(pinfo->frags, pinfo->frags + 1,
6024                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6025         }
6026 }
6027
6028 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6029 {
6030         struct sk_buff *oldest;
6031
6032         oldest = list_last_entry(head, struct sk_buff, list);
6033
6034         /* We are called with head length >= MAX_GRO_SKBS, so this is
6035          * impossible.
6036          */
6037         if (WARN_ON_ONCE(!oldest))
6038                 return;
6039
6040         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6041          * SKB to the chain.
6042          */
6043         skb_list_del_init(oldest);
6044         napi_gro_complete(napi, oldest);
6045 }
6046
6047 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6048 {
6049         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050         struct gro_list *gro_list = &napi->gro_hash[bucket];
6051         struct list_head *head = &offload_base;
6052         struct packet_offload *ptype;
6053         __be16 type = skb->protocol;
6054         struct sk_buff *pp = NULL;
6055         enum gro_result ret;
6056         int same_flow;
6057         int grow;
6058
6059         if (netif_elide_gro(skb->dev))
6060                 goto normal;
6061
6062         gro_list_prepare(&gro_list->list, skb);
6063
6064         rcu_read_lock();
6065         list_for_each_entry_rcu(ptype, head, list) {
6066                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6067                         continue;
6068
6069                 skb_set_network_header(skb, skb_gro_offset(skb));
6070                 skb_reset_mac_len(skb);
6071                 NAPI_GRO_CB(skb)->same_flow = 0;
6072                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073                 NAPI_GRO_CB(skb)->free = 0;
6074                 NAPI_GRO_CB(skb)->encap_mark = 0;
6075                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6076                 NAPI_GRO_CB(skb)->is_fou = 0;
6077                 NAPI_GRO_CB(skb)->is_atomic = 1;
6078                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6079
6080                 /* Setup for GRO checksum validation */
6081                 switch (skb->ip_summed) {
6082                 case CHECKSUM_COMPLETE:
6083                         NAPI_GRO_CB(skb)->csum = skb->csum;
6084                         NAPI_GRO_CB(skb)->csum_valid = 1;
6085                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6086                         break;
6087                 case CHECKSUM_UNNECESSARY:
6088                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089                         NAPI_GRO_CB(skb)->csum_valid = 0;
6090                         break;
6091                 default:
6092                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6093                         NAPI_GRO_CB(skb)->csum_valid = 0;
6094                 }
6095
6096                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097                                         ipv6_gro_receive, inet_gro_receive,
6098                                         &gro_list->list, skb);
6099                 break;
6100         }
6101         rcu_read_unlock();
6102
6103         if (&ptype->list == head)
6104                 goto normal;
6105
6106         if (PTR_ERR(pp) == -EINPROGRESS) {
6107                 ret = GRO_CONSUMED;
6108                 goto ok;
6109         }
6110
6111         same_flow = NAPI_GRO_CB(skb)->same_flow;
6112         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6113
6114         if (pp) {
6115                 skb_list_del_init(pp);
6116                 napi_gro_complete(napi, pp);
6117                 gro_list->count--;
6118         }
6119
6120         if (same_flow)
6121                 goto ok;
6122
6123         if (NAPI_GRO_CB(skb)->flush)
6124                 goto normal;
6125
6126         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127                 gro_flush_oldest(napi, &gro_list->list);
6128         else
6129                 gro_list->count++;
6130
6131         NAPI_GRO_CB(skb)->count = 1;
6132         NAPI_GRO_CB(skb)->age = jiffies;
6133         NAPI_GRO_CB(skb)->last = skb;
6134         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135         list_add(&skb->list, &gro_list->list);
6136         ret = GRO_HELD;
6137
6138 pull:
6139         grow = skb_gro_offset(skb) - skb_headlen(skb);
6140         if (grow > 0)
6141                 gro_pull_from_frag0(skb, grow);
6142 ok:
6143         if (gro_list->count) {
6144                 if (!test_bit(bucket, &napi->gro_bitmask))
6145                         __set_bit(bucket, &napi->gro_bitmask);
6146         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6147                 __clear_bit(bucket, &napi->gro_bitmask);
6148         }
6149
6150         return ret;
6151
6152 normal:
6153         ret = GRO_NORMAL;
6154         goto pull;
6155 }
6156
6157 struct packet_offload *gro_find_receive_by_type(__be16 type)
6158 {
6159         struct list_head *offload_head = &offload_base;
6160         struct packet_offload *ptype;
6161
6162         list_for_each_entry_rcu(ptype, offload_head, list) {
6163                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6164                         continue;
6165                 return ptype;
6166         }
6167         return NULL;
6168 }
6169 EXPORT_SYMBOL(gro_find_receive_by_type);
6170
6171 struct packet_offload *gro_find_complete_by_type(__be16 type)
6172 {
6173         struct list_head *offload_head = &offload_base;
6174         struct packet_offload *ptype;
6175
6176         list_for_each_entry_rcu(ptype, offload_head, list) {
6177                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6178                         continue;
6179                 return ptype;
6180         }
6181         return NULL;
6182 }
6183 EXPORT_SYMBOL(gro_find_complete_by_type);
6184
6185 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186                                     struct sk_buff *skb,
6187                                     gro_result_t ret)
6188 {
6189         switch (ret) {
6190         case GRO_NORMAL:
6191                 gro_normal_one(napi, skb, 1);
6192                 break;
6193
6194         case GRO_MERGED_FREE:
6195                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196                         napi_skb_free_stolen_head(skb);
6197                 else
6198                         __kfree_skb_defer(skb);
6199                 break;
6200
6201         case GRO_HELD:
6202         case GRO_MERGED:
6203         case GRO_CONSUMED:
6204                 break;
6205         }
6206
6207         return ret;
6208 }
6209
6210 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6211 {
6212         gro_result_t ret;
6213
6214         skb_mark_napi_id(skb, napi);
6215         trace_napi_gro_receive_entry(skb);
6216
6217         skb_gro_reset_offset(skb, 0);
6218
6219         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220         trace_napi_gro_receive_exit(ret);
6221
6222         return ret;
6223 }
6224 EXPORT_SYMBOL(napi_gro_receive);
6225
6226 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6227 {
6228         if (unlikely(skb->pfmemalloc)) {
6229                 consume_skb(skb);
6230                 return;
6231         }
6232         __skb_pull(skb, skb_headlen(skb));
6233         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235         __vlan_hwaccel_clear_tag(skb);
6236         skb->dev = napi->dev;
6237         skb->skb_iif = 0;
6238
6239         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240         skb->pkt_type = PACKET_HOST;
6241
6242         skb->encapsulation = 0;
6243         skb_shinfo(skb)->gso_type = 0;
6244         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6245         skb_ext_reset(skb);
6246
6247         napi->skb = skb;
6248 }
6249
6250 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6251 {
6252         struct sk_buff *skb = napi->skb;
6253
6254         if (!skb) {
6255                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6256                 if (skb) {
6257                         napi->skb = skb;
6258                         skb_mark_napi_id(skb, napi);
6259                 }
6260         }
6261         return skb;
6262 }
6263 EXPORT_SYMBOL(napi_get_frags);
6264
6265 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266                                       struct sk_buff *skb,
6267                                       gro_result_t ret)
6268 {
6269         switch (ret) {
6270         case GRO_NORMAL:
6271         case GRO_HELD:
6272                 __skb_push(skb, ETH_HLEN);
6273                 skb->protocol = eth_type_trans(skb, skb->dev);
6274                 if (ret == GRO_NORMAL)
6275                         gro_normal_one(napi, skb, 1);
6276                 break;
6277
6278         case GRO_MERGED_FREE:
6279                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280                         napi_skb_free_stolen_head(skb);
6281                 else
6282                         napi_reuse_skb(napi, skb);
6283                 break;
6284
6285         case GRO_MERGED:
6286         case GRO_CONSUMED:
6287                 break;
6288         }
6289
6290         return ret;
6291 }
6292
6293 /* Upper GRO stack assumes network header starts at gro_offset=0
6294  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295  * We copy ethernet header into skb->data to have a common layout.
6296  */
6297 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6298 {
6299         struct sk_buff *skb = napi->skb;
6300         const struct ethhdr *eth;
6301         unsigned int hlen = sizeof(*eth);
6302
6303         napi->skb = NULL;
6304
6305         skb_reset_mac_header(skb);
6306         skb_gro_reset_offset(skb, hlen);
6307
6308         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309                 eth = skb_gro_header_slow(skb, hlen, 0);
6310                 if (unlikely(!eth)) {
6311                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312                                              __func__, napi->dev->name);
6313                         napi_reuse_skb(napi, skb);
6314                         return NULL;
6315                 }
6316         } else {
6317                 eth = (const struct ethhdr *)skb->data;
6318                 gro_pull_from_frag0(skb, hlen);
6319                 NAPI_GRO_CB(skb)->frag0 += hlen;
6320                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6321         }
6322         __skb_pull(skb, hlen);
6323
6324         /*
6325          * This works because the only protocols we care about don't require
6326          * special handling.
6327          * We'll fix it up properly in napi_frags_finish()
6328          */
6329         skb->protocol = eth->h_proto;
6330
6331         return skb;
6332 }
6333
6334 gro_result_t napi_gro_frags(struct napi_struct *napi)
6335 {
6336         gro_result_t ret;
6337         struct sk_buff *skb = napi_frags_skb(napi);
6338
6339         trace_napi_gro_frags_entry(skb);
6340
6341         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342         trace_napi_gro_frags_exit(ret);
6343
6344         return ret;
6345 }
6346 EXPORT_SYMBOL(napi_gro_frags);
6347
6348 /* Compute the checksum from gro_offset and return the folded value
6349  * after adding in any pseudo checksum.
6350  */
6351 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6352 {
6353         __wsum wsum;
6354         __sum16 sum;
6355
6356         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6357
6358         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360         /* See comments in __skb_checksum_complete(). */
6361         if (likely(!sum)) {
6362                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363                     !skb->csum_complete_sw)
6364                         netdev_rx_csum_fault(skb->dev, skb);
6365         }
6366
6367         NAPI_GRO_CB(skb)->csum = wsum;
6368         NAPI_GRO_CB(skb)->csum_valid = 1;
6369
6370         return sum;
6371 }
6372 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6373
6374 static void net_rps_send_ipi(struct softnet_data *remsd)
6375 {
6376 #ifdef CONFIG_RPS
6377         while (remsd) {
6378                 struct softnet_data *next = remsd->rps_ipi_next;
6379
6380                 if (cpu_online(remsd->cpu))
6381                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6382                 remsd = next;
6383         }
6384 #endif
6385 }
6386
6387 /*
6388  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389  * Note: called with local irq disabled, but exits with local irq enabled.
6390  */
6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6392 {
6393 #ifdef CONFIG_RPS
6394         struct softnet_data *remsd = sd->rps_ipi_list;
6395
6396         if (remsd) {
6397                 sd->rps_ipi_list = NULL;
6398
6399                 local_irq_enable();
6400
6401                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6402                 net_rps_send_ipi(remsd);
6403         } else
6404 #endif
6405                 local_irq_enable();
6406 }
6407
6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6409 {
6410 #ifdef CONFIG_RPS
6411         return sd->rps_ipi_list != NULL;
6412 #else
6413         return false;
6414 #endif
6415 }
6416
6417 static int process_backlog(struct napi_struct *napi, int quota)
6418 {
6419         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6420         bool again = true;
6421         int work = 0;
6422
6423         /* Check if we have pending ipi, its better to send them now,
6424          * not waiting net_rx_action() end.
6425          */
6426         if (sd_has_rps_ipi_waiting(sd)) {
6427                 local_irq_disable();
6428                 net_rps_action_and_irq_enable(sd);
6429         }
6430
6431         napi->weight = dev_rx_weight;
6432         while (again) {
6433                 struct sk_buff *skb;
6434
6435                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6436                         rcu_read_lock();
6437                         __netif_receive_skb(skb);
6438                         rcu_read_unlock();
6439                         input_queue_head_incr(sd);
6440                         if (++work >= quota)
6441                                 return work;
6442
6443                 }
6444
6445                 local_irq_disable();
6446                 rps_lock(sd);
6447                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6448                         /*
6449                          * Inline a custom version of __napi_complete().
6450                          * only current cpu owns and manipulates this napi,
6451                          * and NAPI_STATE_SCHED is the only possible flag set
6452                          * on backlog.
6453                          * We can use a plain write instead of clear_bit(),
6454                          * and we dont need an smp_mb() memory barrier.
6455                          */
6456                         napi->state = 0;
6457                         again = false;
6458                 } else {
6459                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460                                                    &sd->process_queue);
6461                 }
6462                 rps_unlock(sd);
6463                 local_irq_enable();
6464         }
6465
6466         return work;
6467 }
6468
6469 /**
6470  * __napi_schedule - schedule for receive
6471  * @n: entry to schedule
6472  *
6473  * The entry's receive function will be scheduled to run.
6474  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6475  */
6476 void __napi_schedule(struct napi_struct *n)
6477 {
6478         unsigned long flags;
6479
6480         local_irq_save(flags);
6481         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482         local_irq_restore(flags);
6483 }
6484 EXPORT_SYMBOL(__napi_schedule);
6485
6486 /**
6487  *      napi_schedule_prep - check if napi can be scheduled
6488  *      @n: napi context
6489  *
6490  * Test if NAPI routine is already running, and if not mark
6491  * it as running.  This is used as a condition variable to
6492  * insure only one NAPI poll instance runs.  We also make
6493  * sure there is no pending NAPI disable.
6494  */
6495 bool napi_schedule_prep(struct napi_struct *n)
6496 {
6497         unsigned long val, new;
6498
6499         do {
6500                 val = READ_ONCE(n->state);
6501                 if (unlikely(val & NAPIF_STATE_DISABLE))
6502                         return false;
6503                 new = val | NAPIF_STATE_SCHED;
6504
6505                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6506                  * This was suggested by Alexander Duyck, as compiler
6507                  * emits better code than :
6508                  * if (val & NAPIF_STATE_SCHED)
6509                  *     new |= NAPIF_STATE_MISSED;
6510                  */
6511                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6512                                                    NAPIF_STATE_MISSED;
6513         } while (cmpxchg(&n->state, val, new) != val);
6514
6515         return !(val & NAPIF_STATE_SCHED);
6516 }
6517 EXPORT_SYMBOL(napi_schedule_prep);
6518
6519 /**
6520  * __napi_schedule_irqoff - schedule for receive
6521  * @n: entry to schedule
6522  *
6523  * Variant of __napi_schedule() assuming hard irqs are masked
6524  */
6525 void __napi_schedule_irqoff(struct napi_struct *n)
6526 {
6527         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528 }
6529 EXPORT_SYMBOL(__napi_schedule_irqoff);
6530
6531 bool napi_complete_done(struct napi_struct *n, int work_done)
6532 {
6533         unsigned long flags, val, new, timeout = 0;
6534         bool ret = true;
6535
6536         /*
6537          * 1) Don't let napi dequeue from the cpu poll list
6538          *    just in case its running on a different cpu.
6539          * 2) If we are busy polling, do nothing here, we have
6540          *    the guarantee we will be called later.
6541          */
6542         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6543                                  NAPIF_STATE_IN_BUSY_POLL)))
6544                 return false;
6545
6546         if (work_done) {
6547                 if (n->gro_bitmask)
6548                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6549                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6550         }
6551         if (n->defer_hard_irqs_count > 0) {
6552                 n->defer_hard_irqs_count--;
6553                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6554                 if (timeout)
6555                         ret = false;
6556         }
6557         if (n->gro_bitmask) {
6558                 /* When the NAPI instance uses a timeout and keeps postponing
6559                  * it, we need to bound somehow the time packets are kept in
6560                  * the GRO layer
6561                  */
6562                 napi_gro_flush(n, !!timeout);
6563         }
6564
6565         gro_normal_list(n);
6566
6567         if (unlikely(!list_empty(&n->poll_list))) {
6568                 /* If n->poll_list is not empty, we need to mask irqs */
6569                 local_irq_save(flags);
6570                 list_del_init(&n->poll_list);
6571                 local_irq_restore(flags);
6572         }
6573
6574         do {
6575                 val = READ_ONCE(n->state);
6576
6577                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6578
6579                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6580                               NAPIF_STATE_SCHED_THREADED |
6581                               NAPIF_STATE_PREFER_BUSY_POLL);
6582
6583                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6584                  * because we will call napi->poll() one more time.
6585                  * This C code was suggested by Alexander Duyck to help gcc.
6586                  */
6587                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6588                                                     NAPIF_STATE_SCHED;
6589         } while (cmpxchg(&n->state, val, new) != val);
6590
6591         if (unlikely(val & NAPIF_STATE_MISSED)) {
6592                 __napi_schedule(n);
6593                 return false;
6594         }
6595
6596         if (timeout)
6597                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6598                               HRTIMER_MODE_REL_PINNED);
6599         return ret;
6600 }
6601 EXPORT_SYMBOL(napi_complete_done);
6602
6603 /* must be called under rcu_read_lock(), as we dont take a reference */
6604 static struct napi_struct *napi_by_id(unsigned int napi_id)
6605 {
6606         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6607         struct napi_struct *napi;
6608
6609         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6610                 if (napi->napi_id == napi_id)
6611                         return napi;
6612
6613         return NULL;
6614 }
6615
6616 #if defined(CONFIG_NET_RX_BUSY_POLL)
6617
6618 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6619 {
6620         if (!skip_schedule) {
6621                 gro_normal_list(napi);
6622                 __napi_schedule(napi);
6623                 return;
6624         }
6625
6626         if (napi->gro_bitmask) {
6627                 /* flush too old packets
6628                  * If HZ < 1000, flush all packets.
6629                  */
6630                 napi_gro_flush(napi, HZ >= 1000);
6631         }
6632
6633         gro_normal_list(napi);
6634         clear_bit(NAPI_STATE_SCHED, &napi->state);
6635 }
6636
6637 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6638                            u16 budget)
6639 {
6640         bool skip_schedule = false;
6641         unsigned long timeout;
6642         int rc;
6643
6644         /* Busy polling means there is a high chance device driver hard irq
6645          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6646          * set in napi_schedule_prep().
6647          * Since we are about to call napi->poll() once more, we can safely
6648          * clear NAPI_STATE_MISSED.
6649          *
6650          * Note: x86 could use a single "lock and ..." instruction
6651          * to perform these two clear_bit()
6652          */
6653         clear_bit(NAPI_STATE_MISSED, &napi->state);
6654         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6655
6656         local_bh_disable();
6657
6658         if (prefer_busy_poll) {
6659                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6660                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6661                 if (napi->defer_hard_irqs_count && timeout) {
6662                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6663                         skip_schedule = true;
6664                 }
6665         }
6666
6667         /* All we really want here is to re-enable device interrupts.
6668          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6669          */
6670         rc = napi->poll(napi, budget);
6671         /* We can't gro_normal_list() here, because napi->poll() might have
6672          * rearmed the napi (napi_complete_done()) in which case it could
6673          * already be running on another CPU.
6674          */
6675         trace_napi_poll(napi, rc, budget);
6676         netpoll_poll_unlock(have_poll_lock);
6677         if (rc == budget)
6678                 __busy_poll_stop(napi, skip_schedule);
6679         local_bh_enable();
6680 }
6681
6682 void napi_busy_loop(unsigned int napi_id,
6683                     bool (*loop_end)(void *, unsigned long),
6684                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6685 {
6686         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6687         int (*napi_poll)(struct napi_struct *napi, int budget);
6688         void *have_poll_lock = NULL;
6689         struct napi_struct *napi;
6690
6691 restart:
6692         napi_poll = NULL;
6693
6694         rcu_read_lock();
6695
6696         napi = napi_by_id(napi_id);
6697         if (!napi)
6698                 goto out;
6699
6700         preempt_disable();
6701         for (;;) {
6702                 int work = 0;
6703
6704                 local_bh_disable();
6705                 if (!napi_poll) {
6706                         unsigned long val = READ_ONCE(napi->state);
6707
6708                         /* If multiple threads are competing for this napi,
6709                          * we avoid dirtying napi->state as much as we can.
6710                          */
6711                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6712                                    NAPIF_STATE_IN_BUSY_POLL)) {
6713                                 if (prefer_busy_poll)
6714                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6715                                 goto count;
6716                         }
6717                         if (cmpxchg(&napi->state, val,
6718                                     val | NAPIF_STATE_IN_BUSY_POLL |
6719                                           NAPIF_STATE_SCHED) != val) {
6720                                 if (prefer_busy_poll)
6721                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6722                                 goto count;
6723                         }
6724                         have_poll_lock = netpoll_poll_lock(napi);
6725                         napi_poll = napi->poll;
6726                 }
6727                 work = napi_poll(napi, budget);
6728                 trace_napi_poll(napi, work, budget);
6729                 gro_normal_list(napi);
6730 count:
6731                 if (work > 0)
6732                         __NET_ADD_STATS(dev_net(napi->dev),
6733                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6734                 local_bh_enable();
6735
6736                 if (!loop_end || loop_end(loop_end_arg, start_time))
6737                         break;
6738
6739                 if (unlikely(need_resched())) {
6740                         if (napi_poll)
6741                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6742                         preempt_enable();
6743                         rcu_read_unlock();
6744                         cond_resched();
6745                         if (loop_end(loop_end_arg, start_time))
6746                                 return;
6747                         goto restart;
6748                 }
6749                 cpu_relax();
6750         }
6751         if (napi_poll)
6752                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6753         preempt_enable();
6754 out:
6755         rcu_read_unlock();
6756 }
6757 EXPORT_SYMBOL(napi_busy_loop);
6758
6759 #endif /* CONFIG_NET_RX_BUSY_POLL */
6760
6761 static void napi_hash_add(struct napi_struct *napi)
6762 {
6763         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6764                 return;
6765
6766         spin_lock(&napi_hash_lock);
6767
6768         /* 0..NR_CPUS range is reserved for sender_cpu use */
6769         do {
6770                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6771                         napi_gen_id = MIN_NAPI_ID;
6772         } while (napi_by_id(napi_gen_id));
6773         napi->napi_id = napi_gen_id;
6774
6775         hlist_add_head_rcu(&napi->napi_hash_node,
6776                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6777
6778         spin_unlock(&napi_hash_lock);
6779 }
6780
6781 /* Warning : caller is responsible to make sure rcu grace period
6782  * is respected before freeing memory containing @napi
6783  */
6784 static void napi_hash_del(struct napi_struct *napi)
6785 {
6786         spin_lock(&napi_hash_lock);
6787
6788         hlist_del_init_rcu(&napi->napi_hash_node);
6789
6790         spin_unlock(&napi_hash_lock);
6791 }
6792
6793 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6794 {
6795         struct napi_struct *napi;
6796
6797         napi = container_of(timer, struct napi_struct, timer);
6798
6799         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6800          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6801          */
6802         if (!napi_disable_pending(napi) &&
6803             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6804                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6805                 __napi_schedule_irqoff(napi);
6806         }
6807
6808         return HRTIMER_NORESTART;
6809 }
6810
6811 static void init_gro_hash(struct napi_struct *napi)
6812 {
6813         int i;
6814
6815         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6816                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6817                 napi->gro_hash[i].count = 0;
6818         }
6819         napi->gro_bitmask = 0;
6820 }
6821
6822 int dev_set_threaded(struct net_device *dev, bool threaded)
6823 {
6824         struct napi_struct *napi;
6825         int err = 0;
6826
6827         if (dev->threaded == threaded)
6828                 return 0;
6829
6830         if (threaded) {
6831                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6832                         if (!napi->thread) {
6833                                 err = napi_kthread_create(napi);
6834                                 if (err) {
6835                                         threaded = false;
6836                                         break;
6837                                 }
6838                         }
6839                 }
6840         }
6841
6842         dev->threaded = threaded;
6843
6844         /* Make sure kthread is created before THREADED bit
6845          * is set.
6846          */
6847         smp_mb__before_atomic();
6848
6849         /* Setting/unsetting threaded mode on a napi might not immediately
6850          * take effect, if the current napi instance is actively being
6851          * polled. In this case, the switch between threaded mode and
6852          * softirq mode will happen in the next round of napi_schedule().
6853          * This should not cause hiccups/stalls to the live traffic.
6854          */
6855         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6856                 if (threaded)
6857                         set_bit(NAPI_STATE_THREADED, &napi->state);
6858                 else
6859                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6860         }
6861
6862         return err;
6863 }
6864 EXPORT_SYMBOL(dev_set_threaded);
6865
6866 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6867                     int (*poll)(struct napi_struct *, int), int weight)
6868 {
6869         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6870                 return;
6871
6872         INIT_LIST_HEAD(&napi->poll_list);
6873         INIT_HLIST_NODE(&napi->napi_hash_node);
6874         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6875         napi->timer.function = napi_watchdog;
6876         init_gro_hash(napi);
6877         napi->skb = NULL;
6878         INIT_LIST_HEAD(&napi->rx_list);
6879         napi->rx_count = 0;
6880         napi->poll = poll;
6881         if (weight > NAPI_POLL_WEIGHT)
6882                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6883                                 weight);
6884         napi->weight = weight;
6885         napi->dev = dev;
6886 #ifdef CONFIG_NETPOLL
6887         napi->poll_owner = -1;
6888 #endif
6889         set_bit(NAPI_STATE_SCHED, &napi->state);
6890         set_bit(NAPI_STATE_NPSVC, &napi->state);
6891         list_add_rcu(&napi->dev_list, &dev->napi_list);
6892         napi_hash_add(napi);
6893         /* Create kthread for this napi if dev->threaded is set.
6894          * Clear dev->threaded if kthread creation failed so that
6895          * threaded mode will not be enabled in napi_enable().
6896          */
6897         if (dev->threaded && napi_kthread_create(napi))
6898                 dev->threaded = 0;
6899 }
6900 EXPORT_SYMBOL(netif_napi_add);
6901
6902 void napi_disable(struct napi_struct *n)
6903 {
6904         might_sleep();
6905         set_bit(NAPI_STATE_DISABLE, &n->state);
6906
6907         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6908                 msleep(1);
6909         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6910                 msleep(1);
6911
6912         hrtimer_cancel(&n->timer);
6913
6914         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6915         clear_bit(NAPI_STATE_DISABLE, &n->state);
6916         clear_bit(NAPI_STATE_THREADED, &n->state);
6917 }
6918 EXPORT_SYMBOL(napi_disable);
6919
6920 /**
6921  *      napi_enable - enable NAPI scheduling
6922  *      @n: NAPI context
6923  *
6924  * Resume NAPI from being scheduled on this context.
6925  * Must be paired with napi_disable.
6926  */
6927 void napi_enable(struct napi_struct *n)
6928 {
6929         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6930         smp_mb__before_atomic();
6931         clear_bit(NAPI_STATE_SCHED, &n->state);
6932         clear_bit(NAPI_STATE_NPSVC, &n->state);
6933         if (n->dev->threaded && n->thread)
6934                 set_bit(NAPI_STATE_THREADED, &n->state);
6935 }
6936 EXPORT_SYMBOL(napi_enable);
6937
6938 static void flush_gro_hash(struct napi_struct *napi)
6939 {
6940         int i;
6941
6942         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6943                 struct sk_buff *skb, *n;
6944
6945                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6946                         kfree_skb(skb);
6947                 napi->gro_hash[i].count = 0;
6948         }
6949 }
6950
6951 /* Must be called in process context */
6952 void __netif_napi_del(struct napi_struct *napi)
6953 {
6954         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6955                 return;
6956
6957         napi_hash_del(napi);
6958         list_del_rcu(&napi->dev_list);
6959         napi_free_frags(napi);
6960
6961         flush_gro_hash(napi);
6962         napi->gro_bitmask = 0;
6963
6964         if (napi->thread) {
6965                 kthread_stop(napi->thread);
6966                 napi->thread = NULL;
6967         }
6968 }
6969 EXPORT_SYMBOL(__netif_napi_del);
6970
6971 static int __napi_poll(struct napi_struct *n, bool *repoll)
6972 {
6973         int work, weight;
6974
6975         weight = n->weight;
6976
6977         /* This NAPI_STATE_SCHED test is for avoiding a race
6978          * with netpoll's poll_napi().  Only the entity which
6979          * obtains the lock and sees NAPI_STATE_SCHED set will
6980          * actually make the ->poll() call.  Therefore we avoid
6981          * accidentally calling ->poll() when NAPI is not scheduled.
6982          */
6983         work = 0;
6984         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6985                 work = n->poll(n, weight);
6986                 trace_napi_poll(n, work, weight);
6987         }
6988
6989         if (unlikely(work > weight))
6990                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6991                             n->poll, work, weight);
6992
6993         if (likely(work < weight))
6994                 return work;
6995
6996         /* Drivers must not modify the NAPI state if they
6997          * consume the entire weight.  In such cases this code
6998          * still "owns" the NAPI instance and therefore can
6999          * move the instance around on the list at-will.
7000          */
7001         if (unlikely(napi_disable_pending(n))) {
7002                 napi_complete(n);
7003                 return work;
7004         }
7005
7006         /* The NAPI context has more processing work, but busy-polling
7007          * is preferred. Exit early.
7008          */
7009         if (napi_prefer_busy_poll(n)) {
7010                 if (napi_complete_done(n, work)) {
7011                         /* If timeout is not set, we need to make sure
7012                          * that the NAPI is re-scheduled.
7013                          */
7014                         napi_schedule(n);
7015                 }
7016                 return work;
7017         }
7018
7019         if (n->gro_bitmask) {
7020                 /* flush too old packets
7021                  * If HZ < 1000, flush all packets.
7022                  */
7023                 napi_gro_flush(n, HZ >= 1000);
7024         }
7025
7026         gro_normal_list(n);
7027
7028         /* Some drivers may have called napi_schedule
7029          * prior to exhausting their budget.
7030          */
7031         if (unlikely(!list_empty(&n->poll_list))) {
7032                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7033                              n->dev ? n->dev->name : "backlog");
7034                 return work;
7035         }
7036
7037         *repoll = true;
7038
7039         return work;
7040 }
7041
7042 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7043 {
7044         bool do_repoll = false;
7045         void *have;
7046         int work;
7047
7048         list_del_init(&n->poll_list);
7049
7050         have = netpoll_poll_lock(n);
7051
7052         work = __napi_poll(n, &do_repoll);
7053
7054         if (do_repoll)
7055                 list_add_tail(&n->poll_list, repoll);
7056
7057         netpoll_poll_unlock(have);
7058
7059         return work;
7060 }
7061
7062 static int napi_thread_wait(struct napi_struct *napi)
7063 {
7064         bool woken = false;
7065
7066         set_current_state(TASK_INTERRUPTIBLE);
7067
7068         while (!kthread_should_stop()) {
7069                 /* Testing SCHED_THREADED bit here to make sure the current
7070                  * kthread owns this napi and could poll on this napi.
7071                  * Testing SCHED bit is not enough because SCHED bit might be
7072                  * set by some other busy poll thread or by napi_disable().
7073                  */
7074                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7075                         WARN_ON(!list_empty(&napi->poll_list));
7076                         __set_current_state(TASK_RUNNING);
7077                         return 0;
7078                 }
7079
7080                 schedule();
7081                 /* woken being true indicates this thread owns this napi. */
7082                 woken = true;
7083                 set_current_state(TASK_INTERRUPTIBLE);
7084         }
7085         __set_current_state(TASK_RUNNING);
7086
7087         return -1;
7088 }
7089
7090 static int napi_threaded_poll(void *data)
7091 {
7092         struct napi_struct *napi = data;
7093         void *have;
7094
7095         while (!napi_thread_wait(napi)) {
7096                 for (;;) {
7097                         bool repoll = false;
7098
7099                         local_bh_disable();
7100
7101                         have = netpoll_poll_lock(napi);
7102                         __napi_poll(napi, &repoll);
7103                         netpoll_poll_unlock(have);
7104
7105                         local_bh_enable();
7106
7107                         if (!repoll)
7108                                 break;
7109
7110                         cond_resched();
7111                 }
7112         }
7113         return 0;
7114 }
7115
7116 static __latent_entropy void net_rx_action(struct softirq_action *h)
7117 {
7118         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7119         unsigned long time_limit = jiffies +
7120                 usecs_to_jiffies(netdev_budget_usecs);
7121         int budget = netdev_budget;
7122         LIST_HEAD(list);
7123         LIST_HEAD(repoll);
7124
7125         local_irq_disable();
7126         list_splice_init(&sd->poll_list, &list);
7127         local_irq_enable();
7128
7129         for (;;) {
7130                 struct napi_struct *n;
7131
7132                 if (list_empty(&list)) {
7133                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7134                                 return;
7135                         break;
7136                 }
7137
7138                 n = list_first_entry(&list, struct napi_struct, poll_list);
7139                 budget -= napi_poll(n, &repoll);
7140
7141                 /* If softirq window is exhausted then punt.
7142                  * Allow this to run for 2 jiffies since which will allow
7143                  * an average latency of 1.5/HZ.
7144                  */
7145                 if (unlikely(budget <= 0 ||
7146                              time_after_eq(jiffies, time_limit))) {
7147                         sd->time_squeeze++;
7148                         break;
7149                 }
7150         }
7151
7152         local_irq_disable();
7153
7154         list_splice_tail_init(&sd->poll_list, &list);
7155         list_splice_tail(&repoll, &list);
7156         list_splice(&list, &sd->poll_list);
7157         if (!list_empty(&sd->poll_list))
7158                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7159
7160         net_rps_action_and_irq_enable(sd);
7161 }
7162
7163 struct netdev_adjacent {
7164         struct net_device *dev;
7165
7166         /* upper master flag, there can only be one master device per list */
7167         bool master;
7168
7169         /* lookup ignore flag */
7170         bool ignore;
7171
7172         /* counter for the number of times this device was added to us */
7173         u16 ref_nr;
7174
7175         /* private field for the users */
7176         void *private;
7177
7178         struct list_head list;
7179         struct rcu_head rcu;
7180 };
7181
7182 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7183                                                  struct list_head *adj_list)
7184 {
7185         struct netdev_adjacent *adj;
7186
7187         list_for_each_entry(adj, adj_list, list) {
7188                 if (adj->dev == adj_dev)
7189                         return adj;
7190         }
7191         return NULL;
7192 }
7193
7194 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7195                                     struct netdev_nested_priv *priv)
7196 {
7197         struct net_device *dev = (struct net_device *)priv->data;
7198
7199         return upper_dev == dev;
7200 }
7201
7202 /**
7203  * netdev_has_upper_dev - Check if device is linked to an upper device
7204  * @dev: device
7205  * @upper_dev: upper device to check
7206  *
7207  * Find out if a device is linked to specified upper device and return true
7208  * in case it is. Note that this checks only immediate upper device,
7209  * not through a complete stack of devices. The caller must hold the RTNL lock.
7210  */
7211 bool netdev_has_upper_dev(struct net_device *dev,
7212                           struct net_device *upper_dev)
7213 {
7214         struct netdev_nested_priv priv = {
7215                 .data = (void *)upper_dev,
7216         };
7217
7218         ASSERT_RTNL();
7219
7220         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7221                                              &priv);
7222 }
7223 EXPORT_SYMBOL(netdev_has_upper_dev);
7224
7225 /**
7226  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7227  * @dev: device
7228  * @upper_dev: upper device to check
7229  *
7230  * Find out if a device is linked to specified upper device and return true
7231  * in case it is. Note that this checks the entire upper device chain.
7232  * The caller must hold rcu lock.
7233  */
7234
7235 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7236                                   struct net_device *upper_dev)
7237 {
7238         struct netdev_nested_priv priv = {
7239                 .data = (void *)upper_dev,
7240         };
7241
7242         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7243                                                &priv);
7244 }
7245 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7246
7247 /**
7248  * netdev_has_any_upper_dev - Check if device is linked to some device
7249  * @dev: device
7250  *
7251  * Find out if a device is linked to an upper device and return true in case
7252  * it is. The caller must hold the RTNL lock.
7253  */
7254 bool netdev_has_any_upper_dev(struct net_device *dev)
7255 {
7256         ASSERT_RTNL();
7257
7258         return !list_empty(&dev->adj_list.upper);
7259 }
7260 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7261
7262 /**
7263  * netdev_master_upper_dev_get - Get master upper device
7264  * @dev: device
7265  *
7266  * Find a master upper device and return pointer to it or NULL in case
7267  * it's not there. The caller must hold the RTNL lock.
7268  */
7269 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7270 {
7271         struct netdev_adjacent *upper;
7272
7273         ASSERT_RTNL();
7274
7275         if (list_empty(&dev->adj_list.upper))
7276                 return NULL;
7277
7278         upper = list_first_entry(&dev->adj_list.upper,
7279                                  struct netdev_adjacent, list);
7280         if (likely(upper->master))
7281                 return upper->dev;
7282         return NULL;
7283 }
7284 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7285
7286 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7287 {
7288         struct netdev_adjacent *upper;
7289
7290         ASSERT_RTNL();
7291
7292         if (list_empty(&dev->adj_list.upper))
7293                 return NULL;
7294
7295         upper = list_first_entry(&dev->adj_list.upper,
7296                                  struct netdev_adjacent, list);
7297         if (likely(upper->master) && !upper->ignore)
7298                 return upper->dev;
7299         return NULL;
7300 }
7301
7302 /**
7303  * netdev_has_any_lower_dev - Check if device is linked to some device
7304  * @dev: device
7305  *
7306  * Find out if a device is linked to a lower device and return true in case
7307  * it is. The caller must hold the RTNL lock.
7308  */
7309 static bool netdev_has_any_lower_dev(struct net_device *dev)
7310 {
7311         ASSERT_RTNL();
7312
7313         return !list_empty(&dev->adj_list.lower);
7314 }
7315
7316 void *netdev_adjacent_get_private(struct list_head *adj_list)
7317 {
7318         struct netdev_adjacent *adj;
7319
7320         adj = list_entry(adj_list, struct netdev_adjacent, list);
7321
7322         return adj->private;
7323 }
7324 EXPORT_SYMBOL(netdev_adjacent_get_private);
7325
7326 /**
7327  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7328  * @dev: device
7329  * @iter: list_head ** of the current position
7330  *
7331  * Gets the next device from the dev's upper list, starting from iter
7332  * position. The caller must hold RCU read lock.
7333  */
7334 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7335                                                  struct list_head **iter)
7336 {
7337         struct netdev_adjacent *upper;
7338
7339         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7340
7341         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7342
7343         if (&upper->list == &dev->adj_list.upper)
7344                 return NULL;
7345
7346         *iter = &upper->list;
7347
7348         return upper->dev;
7349 }
7350 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7351
7352 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7353                                                   struct list_head **iter,
7354                                                   bool *ignore)
7355 {
7356         struct netdev_adjacent *upper;
7357
7358         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7359
7360         if (&upper->list == &dev->adj_list.upper)
7361                 return NULL;
7362
7363         *iter = &upper->list;
7364         *ignore = upper->ignore;
7365
7366         return upper->dev;
7367 }
7368
7369 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7370                                                     struct list_head **iter)
7371 {
7372         struct netdev_adjacent *upper;
7373
7374         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375
7376         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378         if (&upper->list == &dev->adj_list.upper)
7379                 return NULL;
7380
7381         *iter = &upper->list;
7382
7383         return upper->dev;
7384 }
7385
7386 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7387                                        int (*fn)(struct net_device *dev,
7388                                          struct netdev_nested_priv *priv),
7389                                        struct netdev_nested_priv *priv)
7390 {
7391         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393         int ret, cur = 0;
7394         bool ignore;
7395
7396         now = dev;
7397         iter = &dev->adj_list.upper;
7398
7399         while (1) {
7400                 if (now != dev) {
7401                         ret = fn(now, priv);
7402                         if (ret)
7403                                 return ret;
7404                 }
7405
7406                 next = NULL;
7407                 while (1) {
7408                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7409                         if (!udev)
7410                                 break;
7411                         if (ignore)
7412                                 continue;
7413
7414                         next = udev;
7415                         niter = &udev->adj_list.upper;
7416                         dev_stack[cur] = now;
7417                         iter_stack[cur++] = iter;
7418                         break;
7419                 }
7420
7421                 if (!next) {
7422                         if (!cur)
7423                                 return 0;
7424                         next = dev_stack[--cur];
7425                         niter = iter_stack[cur];
7426                 }
7427
7428                 now = next;
7429                 iter = niter;
7430         }
7431
7432         return 0;
7433 }
7434
7435 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7436                                   int (*fn)(struct net_device *dev,
7437                                             struct netdev_nested_priv *priv),
7438                                   struct netdev_nested_priv *priv)
7439 {
7440         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7441         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7442         int ret, cur = 0;
7443
7444         now = dev;
7445         iter = &dev->adj_list.upper;
7446
7447         while (1) {
7448                 if (now != dev) {
7449                         ret = fn(now, priv);
7450                         if (ret)
7451                                 return ret;
7452                 }
7453
7454                 next = NULL;
7455                 while (1) {
7456                         udev = netdev_next_upper_dev_rcu(now, &iter);
7457                         if (!udev)
7458                                 break;
7459
7460                         next = udev;
7461                         niter = &udev->adj_list.upper;
7462                         dev_stack[cur] = now;
7463                         iter_stack[cur++] = iter;
7464                         break;
7465                 }
7466
7467                 if (!next) {
7468                         if (!cur)
7469                                 return 0;
7470                         next = dev_stack[--cur];
7471                         niter = iter_stack[cur];
7472                 }
7473
7474                 now = next;
7475                 iter = niter;
7476         }
7477
7478         return 0;
7479 }
7480 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7481
7482 static bool __netdev_has_upper_dev(struct net_device *dev,
7483                                    struct net_device *upper_dev)
7484 {
7485         struct netdev_nested_priv priv = {
7486                 .flags = 0,
7487                 .data = (void *)upper_dev,
7488         };
7489
7490         ASSERT_RTNL();
7491
7492         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7493                                            &priv);
7494 }
7495
7496 /**
7497  * netdev_lower_get_next_private - Get the next ->private from the
7498  *                                 lower neighbour list
7499  * @dev: device
7500  * @iter: list_head ** of the current position
7501  *
7502  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7503  * list, starting from iter position. The caller must hold either hold the
7504  * RTNL lock or its own locking that guarantees that the neighbour lower
7505  * list will remain unchanged.
7506  */
7507 void *netdev_lower_get_next_private(struct net_device *dev,
7508                                     struct list_head **iter)
7509 {
7510         struct netdev_adjacent *lower;
7511
7512         lower = list_entry(*iter, struct netdev_adjacent, list);
7513
7514         if (&lower->list == &dev->adj_list.lower)
7515                 return NULL;
7516
7517         *iter = lower->list.next;
7518
7519         return lower->private;
7520 }
7521 EXPORT_SYMBOL(netdev_lower_get_next_private);
7522
7523 /**
7524  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7525  *                                     lower neighbour list, RCU
7526  *                                     variant
7527  * @dev: device
7528  * @iter: list_head ** of the current position
7529  *
7530  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7531  * list, starting from iter position. The caller must hold RCU read lock.
7532  */
7533 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7534                                         struct list_head **iter)
7535 {
7536         struct netdev_adjacent *lower;
7537
7538         WARN_ON_ONCE(!rcu_read_lock_held());
7539
7540         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7541
7542         if (&lower->list == &dev->adj_list.lower)
7543                 return NULL;
7544
7545         *iter = &lower->list;
7546
7547         return lower->private;
7548 }
7549 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7550
7551 /**
7552  * netdev_lower_get_next - Get the next device from the lower neighbour
7553  *                         list
7554  * @dev: device
7555  * @iter: list_head ** of the current position
7556  *
7557  * Gets the next netdev_adjacent from the dev's lower neighbour
7558  * list, starting from iter position. The caller must hold RTNL lock or
7559  * its own locking that guarantees that the neighbour lower
7560  * list will remain unchanged.
7561  */
7562 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7563 {
7564         struct netdev_adjacent *lower;
7565
7566         lower = list_entry(*iter, struct netdev_adjacent, list);
7567
7568         if (&lower->list == &dev->adj_list.lower)
7569                 return NULL;
7570
7571         *iter = lower->list.next;
7572
7573         return lower->dev;
7574 }
7575 EXPORT_SYMBOL(netdev_lower_get_next);
7576
7577 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7578                                                 struct list_head **iter)
7579 {
7580         struct netdev_adjacent *lower;
7581
7582         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7583
7584         if (&lower->list == &dev->adj_list.lower)
7585                 return NULL;
7586
7587         *iter = &lower->list;
7588
7589         return lower->dev;
7590 }
7591
7592 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7593                                                   struct list_head **iter,
7594                                                   bool *ignore)
7595 {
7596         struct netdev_adjacent *lower;
7597
7598         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7599
7600         if (&lower->list == &dev->adj_list.lower)
7601                 return NULL;
7602
7603         *iter = &lower->list;
7604         *ignore = lower->ignore;
7605
7606         return lower->dev;
7607 }
7608
7609 int netdev_walk_all_lower_dev(struct net_device *dev,
7610                               int (*fn)(struct net_device *dev,
7611                                         struct netdev_nested_priv *priv),
7612                               struct netdev_nested_priv *priv)
7613 {
7614         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7615         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7616         int ret, cur = 0;
7617
7618         now = dev;
7619         iter = &dev->adj_list.lower;
7620
7621         while (1) {
7622                 if (now != dev) {
7623                         ret = fn(now, priv);
7624                         if (ret)
7625                                 return ret;
7626                 }
7627
7628                 next = NULL;
7629                 while (1) {
7630                         ldev = netdev_next_lower_dev(now, &iter);
7631                         if (!ldev)
7632                                 break;
7633
7634                         next = ldev;
7635                         niter = &ldev->adj_list.lower;
7636                         dev_stack[cur] = now;
7637                         iter_stack[cur++] = iter;
7638                         break;
7639                 }
7640
7641                 if (!next) {
7642                         if (!cur)
7643                                 return 0;
7644                         next = dev_stack[--cur];
7645                         niter = iter_stack[cur];
7646                 }
7647
7648                 now = next;
7649                 iter = niter;
7650         }
7651
7652         return 0;
7653 }
7654 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7655
7656 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7657                                        int (*fn)(struct net_device *dev,
7658                                          struct netdev_nested_priv *priv),
7659                                        struct netdev_nested_priv *priv)
7660 {
7661         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7662         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7663         int ret, cur = 0;
7664         bool ignore;
7665
7666         now = dev;
7667         iter = &dev->adj_list.lower;
7668
7669         while (1) {
7670                 if (now != dev) {
7671                         ret = fn(now, priv);
7672                         if (ret)
7673                                 return ret;
7674                 }
7675
7676                 next = NULL;
7677                 while (1) {
7678                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7679                         if (!ldev)
7680                                 break;
7681                         if (ignore)
7682                                 continue;
7683
7684                         next = ldev;
7685                         niter = &ldev->adj_list.lower;
7686                         dev_stack[cur] = now;
7687                         iter_stack[cur++] = iter;
7688                         break;
7689                 }
7690
7691                 if (!next) {
7692                         if (!cur)
7693                                 return 0;
7694                         next = dev_stack[--cur];
7695                         niter = iter_stack[cur];
7696                 }
7697
7698                 now = next;
7699                 iter = niter;
7700         }
7701
7702         return 0;
7703 }
7704
7705 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7706                                              struct list_head **iter)
7707 {
7708         struct netdev_adjacent *lower;
7709
7710         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7711         if (&lower->list == &dev->adj_list.lower)
7712                 return NULL;
7713
7714         *iter = &lower->list;
7715
7716         return lower->dev;
7717 }
7718 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7719
7720 static u8 __netdev_upper_depth(struct net_device *dev)
7721 {
7722         struct net_device *udev;
7723         struct list_head *iter;
7724         u8 max_depth = 0;
7725         bool ignore;
7726
7727         for (iter = &dev->adj_list.upper,
7728              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7729              udev;
7730              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7731                 if (ignore)
7732                         continue;
7733                 if (max_depth < udev->upper_level)
7734                         max_depth = udev->upper_level;
7735         }
7736
7737         return max_depth;
7738 }
7739
7740 static u8 __netdev_lower_depth(struct net_device *dev)
7741 {
7742         struct net_device *ldev;
7743         struct list_head *iter;
7744         u8 max_depth = 0;
7745         bool ignore;
7746
7747         for (iter = &dev->adj_list.lower,
7748              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7749              ldev;
7750              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7751                 if (ignore)
7752                         continue;
7753                 if (max_depth < ldev->lower_level)
7754                         max_depth = ldev->lower_level;
7755         }
7756
7757         return max_depth;
7758 }
7759
7760 static int __netdev_update_upper_level(struct net_device *dev,
7761                                        struct netdev_nested_priv *__unused)
7762 {
7763         dev->upper_level = __netdev_upper_depth(dev) + 1;
7764         return 0;
7765 }
7766
7767 static int __netdev_update_lower_level(struct net_device *dev,
7768                                        struct netdev_nested_priv *priv)
7769 {
7770         dev->lower_level = __netdev_lower_depth(dev) + 1;
7771
7772 #ifdef CONFIG_LOCKDEP
7773         if (!priv)
7774                 return 0;
7775
7776         if (priv->flags & NESTED_SYNC_IMM)
7777                 dev->nested_level = dev->lower_level - 1;
7778         if (priv->flags & NESTED_SYNC_TODO)
7779                 net_unlink_todo(dev);
7780 #endif
7781         return 0;
7782 }
7783
7784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7785                                   int (*fn)(struct net_device *dev,
7786                                             struct netdev_nested_priv *priv),
7787                                   struct netdev_nested_priv *priv)
7788 {
7789         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7790         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7791         int ret, cur = 0;
7792
7793         now = dev;
7794         iter = &dev->adj_list.lower;
7795
7796         while (1) {
7797                 if (now != dev) {
7798                         ret = fn(now, priv);
7799                         if (ret)
7800                                 return ret;
7801                 }
7802
7803                 next = NULL;
7804                 while (1) {
7805                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7806                         if (!ldev)
7807                                 break;
7808
7809                         next = ldev;
7810                         niter = &ldev->adj_list.lower;
7811                         dev_stack[cur] = now;
7812                         iter_stack[cur++] = iter;
7813                         break;
7814                 }
7815
7816                 if (!next) {
7817                         if (!cur)
7818                                 return 0;
7819                         next = dev_stack[--cur];
7820                         niter = iter_stack[cur];
7821                 }
7822
7823                 now = next;
7824                 iter = niter;
7825         }
7826
7827         return 0;
7828 }
7829 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7830
7831 /**
7832  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7833  *                                     lower neighbour list, RCU
7834  *                                     variant
7835  * @dev: device
7836  *
7837  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7838  * list. The caller must hold RCU read lock.
7839  */
7840 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7841 {
7842         struct netdev_adjacent *lower;
7843
7844         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7845                         struct netdev_adjacent, list);
7846         if (lower)
7847                 return lower->private;
7848         return NULL;
7849 }
7850 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7851
7852 /**
7853  * netdev_master_upper_dev_get_rcu - Get master upper device
7854  * @dev: device
7855  *
7856  * Find a master upper device and return pointer to it or NULL in case
7857  * it's not there. The caller must hold the RCU read lock.
7858  */
7859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7860 {
7861         struct netdev_adjacent *upper;
7862
7863         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7864                                        struct netdev_adjacent, list);
7865         if (upper && likely(upper->master))
7866                 return upper->dev;
7867         return NULL;
7868 }
7869 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7870
7871 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7872                               struct net_device *adj_dev,
7873                               struct list_head *dev_list)
7874 {
7875         char linkname[IFNAMSIZ+7];
7876
7877         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7878                 "upper_%s" : "lower_%s", adj_dev->name);
7879         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7880                                  linkname);
7881 }
7882 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7883                                char *name,
7884                                struct list_head *dev_list)
7885 {
7886         char linkname[IFNAMSIZ+7];
7887
7888         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7889                 "upper_%s" : "lower_%s", name);
7890         sysfs_remove_link(&(dev->dev.kobj), linkname);
7891 }
7892
7893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7894                                                  struct net_device *adj_dev,
7895                                                  struct list_head *dev_list)
7896 {
7897         return (dev_list == &dev->adj_list.upper ||
7898                 dev_list == &dev->adj_list.lower) &&
7899                 net_eq(dev_net(dev), dev_net(adj_dev));
7900 }
7901
7902 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7903                                         struct net_device *adj_dev,
7904                                         struct list_head *dev_list,
7905                                         void *private, bool master)
7906 {
7907         struct netdev_adjacent *adj;
7908         int ret;
7909
7910         adj = __netdev_find_adj(adj_dev, dev_list);
7911
7912         if (adj) {
7913                 adj->ref_nr += 1;
7914                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7915                          dev->name, adj_dev->name, adj->ref_nr);
7916
7917                 return 0;
7918         }
7919
7920         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7921         if (!adj)
7922                 return -ENOMEM;
7923
7924         adj->dev = adj_dev;
7925         adj->master = master;
7926         adj->ref_nr = 1;
7927         adj->private = private;
7928         adj->ignore = false;
7929         dev_hold(adj_dev);
7930
7931         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7932                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7933
7934         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7935                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7936                 if (ret)
7937                         goto free_adj;
7938         }
7939
7940         /* Ensure that master link is always the first item in list. */
7941         if (master) {
7942                 ret = sysfs_create_link(&(dev->dev.kobj),
7943                                         &(adj_dev->dev.kobj), "master");
7944                 if (ret)
7945                         goto remove_symlinks;
7946
7947                 list_add_rcu(&adj->list, dev_list);
7948         } else {
7949                 list_add_tail_rcu(&adj->list, dev_list);
7950         }
7951
7952         return 0;
7953
7954 remove_symlinks:
7955         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7956                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7957 free_adj:
7958         kfree(adj);
7959         dev_put(adj_dev);
7960
7961         return ret;
7962 }
7963
7964 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7965                                          struct net_device *adj_dev,
7966                                          u16 ref_nr,
7967                                          struct list_head *dev_list)
7968 {
7969         struct netdev_adjacent *adj;
7970
7971         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7972                  dev->name, adj_dev->name, ref_nr);
7973
7974         adj = __netdev_find_adj(adj_dev, dev_list);
7975
7976         if (!adj) {
7977                 pr_err("Adjacency does not exist for device %s from %s\n",
7978                        dev->name, adj_dev->name);
7979                 WARN_ON(1);
7980                 return;
7981         }
7982
7983         if (adj->ref_nr > ref_nr) {
7984                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7985                          dev->name, adj_dev->name, ref_nr,
7986                          adj->ref_nr - ref_nr);
7987                 adj->ref_nr -= ref_nr;
7988                 return;
7989         }
7990
7991         if (adj->master)
7992                 sysfs_remove_link(&(dev->dev.kobj), "master");
7993
7994         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7995                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7996
7997         list_del_rcu(&adj->list);
7998         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7999                  adj_dev->name, dev->name, adj_dev->name);
8000         dev_put(adj_dev);
8001         kfree_rcu(adj, rcu);
8002 }
8003
8004 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8005                                             struct net_device *upper_dev,
8006                                             struct list_head *up_list,
8007                                             struct list_head *down_list,
8008                                             void *private, bool master)
8009 {
8010         int ret;
8011
8012         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8013                                            private, master);
8014         if (ret)
8015                 return ret;
8016
8017         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8018                                            private, false);
8019         if (ret) {
8020                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8021                 return ret;
8022         }
8023
8024         return 0;
8025 }
8026
8027 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8028                                                struct net_device *upper_dev,
8029                                                u16 ref_nr,
8030                                                struct list_head *up_list,
8031                                                struct list_head *down_list)
8032 {
8033         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8034         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8035 }
8036
8037 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8038                                                 struct net_device *upper_dev,
8039                                                 void *private, bool master)
8040 {
8041         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8042                                                 &dev->adj_list.upper,
8043                                                 &upper_dev->adj_list.lower,
8044                                                 private, master);
8045 }
8046
8047 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8048                                                    struct net_device *upper_dev)
8049 {
8050         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8051                                            &dev->adj_list.upper,
8052                                            &upper_dev->adj_list.lower);
8053 }
8054
8055 static int __netdev_upper_dev_link(struct net_device *dev,
8056                                    struct net_device *upper_dev, bool master,
8057                                    void *upper_priv, void *upper_info,
8058                                    struct netdev_nested_priv *priv,
8059                                    struct netlink_ext_ack *extack)
8060 {
8061         struct netdev_notifier_changeupper_info changeupper_info = {
8062                 .info = {
8063                         .dev = dev,
8064                         .extack = extack,
8065                 },
8066                 .upper_dev = upper_dev,
8067                 .master = master,
8068                 .linking = true,
8069                 .upper_info = upper_info,
8070         };
8071         struct net_device *master_dev;
8072         int ret = 0;
8073
8074         ASSERT_RTNL();
8075
8076         if (dev == upper_dev)
8077                 return -EBUSY;
8078
8079         /* To prevent loops, check if dev is not upper device to upper_dev. */
8080         if (__netdev_has_upper_dev(upper_dev, dev))
8081                 return -EBUSY;
8082
8083         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8084                 return -EMLINK;
8085
8086         if (!master) {
8087                 if (__netdev_has_upper_dev(dev, upper_dev))
8088                         return -EEXIST;
8089         } else {
8090                 master_dev = __netdev_master_upper_dev_get(dev);
8091                 if (master_dev)
8092                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8093         }
8094
8095         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8096                                             &changeupper_info.info);
8097         ret = notifier_to_errno(ret);
8098         if (ret)
8099                 return ret;
8100
8101         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8102                                                    master);
8103         if (ret)
8104                 return ret;
8105
8106         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8107                                             &changeupper_info.info);
8108         ret = notifier_to_errno(ret);
8109         if (ret)
8110                 goto rollback;
8111
8112         __netdev_update_upper_level(dev, NULL);
8113         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8114
8115         __netdev_update_lower_level(upper_dev, priv);
8116         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8117                                     priv);
8118
8119         return 0;
8120
8121 rollback:
8122         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8123
8124         return ret;
8125 }
8126
8127 /**
8128  * netdev_upper_dev_link - Add a link to the upper device
8129  * @dev: device
8130  * @upper_dev: new upper device
8131  * @extack: netlink extended ack
8132  *
8133  * Adds a link to device which is upper to this one. The caller must hold
8134  * the RTNL lock. On a failure a negative errno code is returned.
8135  * On success the reference counts are adjusted and the function
8136  * returns zero.
8137  */
8138 int netdev_upper_dev_link(struct net_device *dev,
8139                           struct net_device *upper_dev,
8140                           struct netlink_ext_ack *extack)
8141 {
8142         struct netdev_nested_priv priv = {
8143                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8144                 .data = NULL,
8145         };
8146
8147         return __netdev_upper_dev_link(dev, upper_dev, false,
8148                                        NULL, NULL, &priv, extack);
8149 }
8150 EXPORT_SYMBOL(netdev_upper_dev_link);
8151
8152 /**
8153  * netdev_master_upper_dev_link - Add a master link to the upper device
8154  * @dev: device
8155  * @upper_dev: new upper device
8156  * @upper_priv: upper device private
8157  * @upper_info: upper info to be passed down via notifier
8158  * @extack: netlink extended ack
8159  *
8160  * Adds a link to device which is upper to this one. In this case, only
8161  * one master upper device can be linked, although other non-master devices
8162  * might be linked as well. The caller must hold the RTNL lock.
8163  * On a failure a negative errno code is returned. On success the reference
8164  * counts are adjusted and the function returns zero.
8165  */
8166 int netdev_master_upper_dev_link(struct net_device *dev,
8167                                  struct net_device *upper_dev,
8168                                  void *upper_priv, void *upper_info,
8169                                  struct netlink_ext_ack *extack)
8170 {
8171         struct netdev_nested_priv priv = {
8172                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8173                 .data = NULL,
8174         };
8175
8176         return __netdev_upper_dev_link(dev, upper_dev, true,
8177                                        upper_priv, upper_info, &priv, extack);
8178 }
8179 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8180
8181 static void __netdev_upper_dev_unlink(struct net_device *dev,
8182                                       struct net_device *upper_dev,
8183                                       struct netdev_nested_priv *priv)
8184 {
8185         struct netdev_notifier_changeupper_info changeupper_info = {
8186                 .info = {
8187                         .dev = dev,
8188                 },
8189                 .upper_dev = upper_dev,
8190                 .linking = false,
8191         };
8192
8193         ASSERT_RTNL();
8194
8195         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8196
8197         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8198                                       &changeupper_info.info);
8199
8200         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8201
8202         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8203                                       &changeupper_info.info);
8204
8205         __netdev_update_upper_level(dev, NULL);
8206         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8207
8208         __netdev_update_lower_level(upper_dev, priv);
8209         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8210                                     priv);
8211 }
8212
8213 /**
8214  * netdev_upper_dev_unlink - Removes a link to upper device
8215  * @dev: device
8216  * @upper_dev: new upper device
8217  *
8218  * Removes a link to device which is upper to this one. The caller must hold
8219  * the RTNL lock.
8220  */
8221 void netdev_upper_dev_unlink(struct net_device *dev,
8222                              struct net_device *upper_dev)
8223 {
8224         struct netdev_nested_priv priv = {
8225                 .flags = NESTED_SYNC_TODO,
8226                 .data = NULL,
8227         };
8228
8229         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8230 }
8231 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8232
8233 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8234                                       struct net_device *lower_dev,
8235                                       bool val)
8236 {
8237         struct netdev_adjacent *adj;
8238
8239         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8240         if (adj)
8241                 adj->ignore = val;
8242
8243         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8244         if (adj)
8245                 adj->ignore = val;
8246 }
8247
8248 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8249                                         struct net_device *lower_dev)
8250 {
8251         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8252 }
8253
8254 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8255                                        struct net_device *lower_dev)
8256 {
8257         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8258 }
8259
8260 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8261                                    struct net_device *new_dev,
8262                                    struct net_device *dev,
8263                                    struct netlink_ext_ack *extack)
8264 {
8265         struct netdev_nested_priv priv = {
8266                 .flags = 0,
8267                 .data = NULL,
8268         };
8269         int err;
8270
8271         if (!new_dev)
8272                 return 0;
8273
8274         if (old_dev && new_dev != old_dev)
8275                 netdev_adjacent_dev_disable(dev, old_dev);
8276         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8277                                       extack);
8278         if (err) {
8279                 if (old_dev && new_dev != old_dev)
8280                         netdev_adjacent_dev_enable(dev, old_dev);
8281                 return err;
8282         }
8283
8284         return 0;
8285 }
8286 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8287
8288 void netdev_adjacent_change_commit(struct net_device *old_dev,
8289                                    struct net_device *new_dev,
8290                                    struct net_device *dev)
8291 {
8292         struct netdev_nested_priv priv = {
8293                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8294                 .data = NULL,
8295         };
8296
8297         if (!new_dev || !old_dev)
8298                 return;
8299
8300         if (new_dev == old_dev)
8301                 return;
8302
8303         netdev_adjacent_dev_enable(dev, old_dev);
8304         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8307
8308 void netdev_adjacent_change_abort(struct net_device *old_dev,
8309                                   struct net_device *new_dev,
8310                                   struct net_device *dev)
8311 {
8312         struct netdev_nested_priv priv = {
8313                 .flags = 0,
8314                 .data = NULL,
8315         };
8316
8317         if (!new_dev)
8318                 return;
8319
8320         if (old_dev && new_dev != old_dev)
8321                 netdev_adjacent_dev_enable(dev, old_dev);
8322
8323         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8324 }
8325 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8326
8327 /**
8328  * netdev_bonding_info_change - Dispatch event about slave change
8329  * @dev: device
8330  * @bonding_info: info to dispatch
8331  *
8332  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8333  * The caller must hold the RTNL lock.
8334  */
8335 void netdev_bonding_info_change(struct net_device *dev,
8336                                 struct netdev_bonding_info *bonding_info)
8337 {
8338         struct netdev_notifier_bonding_info info = {
8339                 .info.dev = dev,
8340         };
8341
8342         memcpy(&info.bonding_info, bonding_info,
8343                sizeof(struct netdev_bonding_info));
8344         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8345                                       &info.info);
8346 }
8347 EXPORT_SYMBOL(netdev_bonding_info_change);
8348
8349 /**
8350  * netdev_get_xmit_slave - Get the xmit slave of master device
8351  * @dev: device
8352  * @skb: The packet
8353  * @all_slaves: assume all the slaves are active
8354  *
8355  * The reference counters are not incremented so the caller must be
8356  * careful with locks. The caller must hold RCU lock.
8357  * %NULL is returned if no slave is found.
8358  */
8359
8360 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8361                                          struct sk_buff *skb,
8362                                          bool all_slaves)
8363 {
8364         const struct net_device_ops *ops = dev->netdev_ops;
8365
8366         if (!ops->ndo_get_xmit_slave)
8367                 return NULL;
8368         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8369 }
8370 EXPORT_SYMBOL(netdev_get_xmit_slave);
8371
8372 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8373                                                   struct sock *sk)
8374 {
8375         const struct net_device_ops *ops = dev->netdev_ops;
8376
8377         if (!ops->ndo_sk_get_lower_dev)
8378                 return NULL;
8379         return ops->ndo_sk_get_lower_dev(dev, sk);
8380 }
8381
8382 /**
8383  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8384  * @dev: device
8385  * @sk: the socket
8386  *
8387  * %NULL is returned if no lower device is found.
8388  */
8389
8390 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8391                                             struct sock *sk)
8392 {
8393         struct net_device *lower;
8394
8395         lower = netdev_sk_get_lower_dev(dev, sk);
8396         while (lower) {
8397                 dev = lower;
8398                 lower = netdev_sk_get_lower_dev(dev, sk);
8399         }
8400
8401         return dev;
8402 }
8403 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8404
8405 static void netdev_adjacent_add_links(struct net_device *dev)
8406 {
8407         struct netdev_adjacent *iter;
8408
8409         struct net *net = dev_net(dev);
8410
8411         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8412                 if (!net_eq(net, dev_net(iter->dev)))
8413                         continue;
8414                 netdev_adjacent_sysfs_add(iter->dev, dev,
8415                                           &iter->dev->adj_list.lower);
8416                 netdev_adjacent_sysfs_add(dev, iter->dev,
8417                                           &dev->adj_list.upper);
8418         }
8419
8420         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8421                 if (!net_eq(net, dev_net(iter->dev)))
8422                         continue;
8423                 netdev_adjacent_sysfs_add(iter->dev, dev,
8424                                           &iter->dev->adj_list.upper);
8425                 netdev_adjacent_sysfs_add(dev, iter->dev,
8426                                           &dev->adj_list.lower);
8427         }
8428 }
8429
8430 static void netdev_adjacent_del_links(struct net_device *dev)
8431 {
8432         struct netdev_adjacent *iter;
8433
8434         struct net *net = dev_net(dev);
8435
8436         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8437                 if (!net_eq(net, dev_net(iter->dev)))
8438                         continue;
8439                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8440                                           &iter->dev->adj_list.lower);
8441                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8442                                           &dev->adj_list.upper);
8443         }
8444
8445         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8446                 if (!net_eq(net, dev_net(iter->dev)))
8447                         continue;
8448                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8449                                           &iter->dev->adj_list.upper);
8450                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8451                                           &dev->adj_list.lower);
8452         }
8453 }
8454
8455 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8456 {
8457         struct netdev_adjacent *iter;
8458
8459         struct net *net = dev_net(dev);
8460
8461         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462                 if (!net_eq(net, dev_net(iter->dev)))
8463                         continue;
8464                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8465                                           &iter->dev->adj_list.lower);
8466                 netdev_adjacent_sysfs_add(iter->dev, dev,
8467                                           &iter->dev->adj_list.lower);
8468         }
8469
8470         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471                 if (!net_eq(net, dev_net(iter->dev)))
8472                         continue;
8473                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8474                                           &iter->dev->adj_list.upper);
8475                 netdev_adjacent_sysfs_add(iter->dev, dev,
8476                                           &iter->dev->adj_list.upper);
8477         }
8478 }
8479
8480 void *netdev_lower_dev_get_private(struct net_device *dev,
8481                                    struct net_device *lower_dev)
8482 {
8483         struct netdev_adjacent *lower;
8484
8485         if (!lower_dev)
8486                 return NULL;
8487         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8488         if (!lower)
8489                 return NULL;
8490
8491         return lower->private;
8492 }
8493 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8494
8495
8496 /**
8497  * netdev_lower_state_changed - Dispatch event about lower device state change
8498  * @lower_dev: device
8499  * @lower_state_info: state to dispatch
8500  *
8501  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8502  * The caller must hold the RTNL lock.
8503  */
8504 void netdev_lower_state_changed(struct net_device *lower_dev,
8505                                 void *lower_state_info)
8506 {
8507         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8508                 .info.dev = lower_dev,
8509         };
8510
8511         ASSERT_RTNL();
8512         changelowerstate_info.lower_state_info = lower_state_info;
8513         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8514                                       &changelowerstate_info.info);
8515 }
8516 EXPORT_SYMBOL(netdev_lower_state_changed);
8517
8518 static void dev_change_rx_flags(struct net_device *dev, int flags)
8519 {
8520         const struct net_device_ops *ops = dev->netdev_ops;
8521
8522         if (ops->ndo_change_rx_flags)
8523                 ops->ndo_change_rx_flags(dev, flags);
8524 }
8525
8526 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8527 {
8528         unsigned int old_flags = dev->flags;
8529         kuid_t uid;
8530         kgid_t gid;
8531
8532         ASSERT_RTNL();
8533
8534         dev->flags |= IFF_PROMISC;
8535         dev->promiscuity += inc;
8536         if (dev->promiscuity == 0) {
8537                 /*
8538                  * Avoid overflow.
8539                  * If inc causes overflow, untouch promisc and return error.
8540                  */
8541                 if (inc < 0)
8542                         dev->flags &= ~IFF_PROMISC;
8543                 else {
8544                         dev->promiscuity -= inc;
8545                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8546                                 dev->name);
8547                         return -EOVERFLOW;
8548                 }
8549         }
8550         if (dev->flags != old_flags) {
8551                 pr_info("device %s %s promiscuous mode\n",
8552                         dev->name,
8553                         dev->flags & IFF_PROMISC ? "entered" : "left");
8554                 if (audit_enabled) {
8555                         current_uid_gid(&uid, &gid);
8556                         audit_log(audit_context(), GFP_ATOMIC,
8557                                   AUDIT_ANOM_PROMISCUOUS,
8558                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8559                                   dev->name, (dev->flags & IFF_PROMISC),
8560                                   (old_flags & IFF_PROMISC),
8561                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8562                                   from_kuid(&init_user_ns, uid),
8563                                   from_kgid(&init_user_ns, gid),
8564                                   audit_get_sessionid(current));
8565                 }
8566
8567                 dev_change_rx_flags(dev, IFF_PROMISC);
8568         }
8569         if (notify)
8570                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8571         return 0;
8572 }
8573
8574 /**
8575  *      dev_set_promiscuity     - update promiscuity count on a device
8576  *      @dev: device
8577  *      @inc: modifier
8578  *
8579  *      Add or remove promiscuity from a device. While the count in the device
8580  *      remains above zero the interface remains promiscuous. Once it hits zero
8581  *      the device reverts back to normal filtering operation. A negative inc
8582  *      value is used to drop promiscuity on the device.
8583  *      Return 0 if successful or a negative errno code on error.
8584  */
8585 int dev_set_promiscuity(struct net_device *dev, int inc)
8586 {
8587         unsigned int old_flags = dev->flags;
8588         int err;
8589
8590         err = __dev_set_promiscuity(dev, inc, true);
8591         if (err < 0)
8592                 return err;
8593         if (dev->flags != old_flags)
8594                 dev_set_rx_mode(dev);
8595         return err;
8596 }
8597 EXPORT_SYMBOL(dev_set_promiscuity);
8598
8599 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8600 {
8601         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8602
8603         ASSERT_RTNL();
8604
8605         dev->flags |= IFF_ALLMULTI;
8606         dev->allmulti += inc;
8607         if (dev->allmulti == 0) {
8608                 /*
8609                  * Avoid overflow.
8610                  * If inc causes overflow, untouch allmulti and return error.
8611                  */
8612                 if (inc < 0)
8613                         dev->flags &= ~IFF_ALLMULTI;
8614                 else {
8615                         dev->allmulti -= inc;
8616                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8617                                 dev->name);
8618                         return -EOVERFLOW;
8619                 }
8620         }
8621         if (dev->flags ^ old_flags) {
8622                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8623                 dev_set_rx_mode(dev);
8624                 if (notify)
8625                         __dev_notify_flags(dev, old_flags,
8626                                            dev->gflags ^ old_gflags);
8627         }
8628         return 0;
8629 }
8630
8631 /**
8632  *      dev_set_allmulti        - update allmulti count on a device
8633  *      @dev: device
8634  *      @inc: modifier
8635  *
8636  *      Add or remove reception of all multicast frames to a device. While the
8637  *      count in the device remains above zero the interface remains listening
8638  *      to all interfaces. Once it hits zero the device reverts back to normal
8639  *      filtering operation. A negative @inc value is used to drop the counter
8640  *      when releasing a resource needing all multicasts.
8641  *      Return 0 if successful or a negative errno code on error.
8642  */
8643
8644 int dev_set_allmulti(struct net_device *dev, int inc)
8645 {
8646         return __dev_set_allmulti(dev, inc, true);
8647 }
8648 EXPORT_SYMBOL(dev_set_allmulti);
8649
8650 /*
8651  *      Upload unicast and multicast address lists to device and
8652  *      configure RX filtering. When the device doesn't support unicast
8653  *      filtering it is put in promiscuous mode while unicast addresses
8654  *      are present.
8655  */
8656 void __dev_set_rx_mode(struct net_device *dev)
8657 {
8658         const struct net_device_ops *ops = dev->netdev_ops;
8659
8660         /* dev_open will call this function so the list will stay sane. */
8661         if (!(dev->flags&IFF_UP))
8662                 return;
8663
8664         if (!netif_device_present(dev))
8665                 return;
8666
8667         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8668                 /* Unicast addresses changes may only happen under the rtnl,
8669                  * therefore calling __dev_set_promiscuity here is safe.
8670                  */
8671                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8672                         __dev_set_promiscuity(dev, 1, false);
8673                         dev->uc_promisc = true;
8674                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8675                         __dev_set_promiscuity(dev, -1, false);
8676                         dev->uc_promisc = false;
8677                 }
8678         }
8679
8680         if (ops->ndo_set_rx_mode)
8681                 ops->ndo_set_rx_mode(dev);
8682 }
8683
8684 void dev_set_rx_mode(struct net_device *dev)
8685 {
8686         netif_addr_lock_bh(dev);
8687         __dev_set_rx_mode(dev);
8688         netif_addr_unlock_bh(dev);
8689 }
8690
8691 /**
8692  *      dev_get_flags - get flags reported to userspace
8693  *      @dev: device
8694  *
8695  *      Get the combination of flag bits exported through APIs to userspace.
8696  */
8697 unsigned int dev_get_flags(const struct net_device *dev)
8698 {
8699         unsigned int flags;
8700
8701         flags = (dev->flags & ~(IFF_PROMISC |
8702                                 IFF_ALLMULTI |
8703                                 IFF_RUNNING |
8704                                 IFF_LOWER_UP |
8705                                 IFF_DORMANT)) |
8706                 (dev->gflags & (IFF_PROMISC |
8707                                 IFF_ALLMULTI));
8708
8709         if (netif_running(dev)) {
8710                 if (netif_oper_up(dev))
8711                         flags |= IFF_RUNNING;
8712                 if (netif_carrier_ok(dev))
8713                         flags |= IFF_LOWER_UP;
8714                 if (netif_dormant(dev))
8715                         flags |= IFF_DORMANT;
8716         }
8717
8718         return flags;
8719 }
8720 EXPORT_SYMBOL(dev_get_flags);
8721
8722 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8723                        struct netlink_ext_ack *extack)
8724 {
8725         unsigned int old_flags = dev->flags;
8726         int ret;
8727
8728         ASSERT_RTNL();
8729
8730         /*
8731          *      Set the flags on our device.
8732          */
8733
8734         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8735                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8736                                IFF_AUTOMEDIA)) |
8737                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8738                                     IFF_ALLMULTI));
8739
8740         /*
8741          *      Load in the correct multicast list now the flags have changed.
8742          */
8743
8744         if ((old_flags ^ flags) & IFF_MULTICAST)
8745                 dev_change_rx_flags(dev, IFF_MULTICAST);
8746
8747         dev_set_rx_mode(dev);
8748
8749         /*
8750          *      Have we downed the interface. We handle IFF_UP ourselves
8751          *      according to user attempts to set it, rather than blindly
8752          *      setting it.
8753          */
8754
8755         ret = 0;
8756         if ((old_flags ^ flags) & IFF_UP) {
8757                 if (old_flags & IFF_UP)
8758                         __dev_close(dev);
8759                 else
8760                         ret = __dev_open(dev, extack);
8761         }
8762
8763         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8764                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8765                 unsigned int old_flags = dev->flags;
8766
8767                 dev->gflags ^= IFF_PROMISC;
8768
8769                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8770                         if (dev->flags != old_flags)
8771                                 dev_set_rx_mode(dev);
8772         }
8773
8774         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8775          * is important. Some (broken) drivers set IFF_PROMISC, when
8776          * IFF_ALLMULTI is requested not asking us and not reporting.
8777          */
8778         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8779                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8780
8781                 dev->gflags ^= IFF_ALLMULTI;
8782                 __dev_set_allmulti(dev, inc, false);
8783         }
8784
8785         return ret;
8786 }
8787
8788 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8789                         unsigned int gchanges)
8790 {
8791         unsigned int changes = dev->flags ^ old_flags;
8792
8793         if (gchanges)
8794                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8795
8796         if (changes & IFF_UP) {
8797                 if (dev->flags & IFF_UP)
8798                         call_netdevice_notifiers(NETDEV_UP, dev);
8799                 else
8800                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8801         }
8802
8803         if (dev->flags & IFF_UP &&
8804             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8805                 struct netdev_notifier_change_info change_info = {
8806                         .info = {
8807                                 .dev = dev,
8808                         },
8809                         .flags_changed = changes,
8810                 };
8811
8812                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8813         }
8814 }
8815
8816 /**
8817  *      dev_change_flags - change device settings
8818  *      @dev: device
8819  *      @flags: device state flags
8820  *      @extack: netlink extended ack
8821  *
8822  *      Change settings on device based state flags. The flags are
8823  *      in the userspace exported format.
8824  */
8825 int dev_change_flags(struct net_device *dev, unsigned int flags,
8826                      struct netlink_ext_ack *extack)
8827 {
8828         int ret;
8829         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8830
8831         ret = __dev_change_flags(dev, flags, extack);
8832         if (ret < 0)
8833                 return ret;
8834
8835         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8836         __dev_notify_flags(dev, old_flags, changes);
8837         return ret;
8838 }
8839 EXPORT_SYMBOL(dev_change_flags);
8840
8841 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8842 {
8843         const struct net_device_ops *ops = dev->netdev_ops;
8844
8845         if (ops->ndo_change_mtu)
8846                 return ops->ndo_change_mtu(dev, new_mtu);
8847
8848         /* Pairs with all the lockless reads of dev->mtu in the stack */
8849         WRITE_ONCE(dev->mtu, new_mtu);
8850         return 0;
8851 }
8852 EXPORT_SYMBOL(__dev_set_mtu);
8853
8854 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8855                      struct netlink_ext_ack *extack)
8856 {
8857         /* MTU must be positive, and in range */
8858         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8859                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8860                 return -EINVAL;
8861         }
8862
8863         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8864                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8865                 return -EINVAL;
8866         }
8867         return 0;
8868 }
8869
8870 /**
8871  *      dev_set_mtu_ext - Change maximum transfer unit
8872  *      @dev: device
8873  *      @new_mtu: new transfer unit
8874  *      @extack: netlink extended ack
8875  *
8876  *      Change the maximum transfer size of the network device.
8877  */
8878 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8879                     struct netlink_ext_ack *extack)
8880 {
8881         int err, orig_mtu;
8882
8883         if (new_mtu == dev->mtu)
8884                 return 0;
8885
8886         err = dev_validate_mtu(dev, new_mtu, extack);
8887         if (err)
8888                 return err;
8889
8890         if (!netif_device_present(dev))
8891                 return -ENODEV;
8892
8893         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8894         err = notifier_to_errno(err);
8895         if (err)
8896                 return err;
8897
8898         orig_mtu = dev->mtu;
8899         err = __dev_set_mtu(dev, new_mtu);
8900
8901         if (!err) {
8902                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8903                                                    orig_mtu);
8904                 err = notifier_to_errno(err);
8905                 if (err) {
8906                         /* setting mtu back and notifying everyone again,
8907                          * so that they have a chance to revert changes.
8908                          */
8909                         __dev_set_mtu(dev, orig_mtu);
8910                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911                                                      new_mtu);
8912                 }
8913         }
8914         return err;
8915 }
8916
8917 int dev_set_mtu(struct net_device *dev, int new_mtu)
8918 {
8919         struct netlink_ext_ack extack;
8920         int err;
8921
8922         memset(&extack, 0, sizeof(extack));
8923         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8924         if (err && extack._msg)
8925                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8926         return err;
8927 }
8928 EXPORT_SYMBOL(dev_set_mtu);
8929
8930 /**
8931  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8932  *      @dev: device
8933  *      @new_len: new tx queue length
8934  */
8935 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8936 {
8937         unsigned int orig_len = dev->tx_queue_len;
8938         int res;
8939
8940         if (new_len != (unsigned int)new_len)
8941                 return -ERANGE;
8942
8943         if (new_len != orig_len) {
8944                 dev->tx_queue_len = new_len;
8945                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8946                 res = notifier_to_errno(res);
8947                 if (res)
8948                         goto err_rollback;
8949                 res = dev_qdisc_change_tx_queue_len(dev);
8950                 if (res)
8951                         goto err_rollback;
8952         }
8953
8954         return 0;
8955
8956 err_rollback:
8957         netdev_err(dev, "refused to change device tx_queue_len\n");
8958         dev->tx_queue_len = orig_len;
8959         return res;
8960 }
8961
8962 /**
8963  *      dev_set_group - Change group this device belongs to
8964  *      @dev: device
8965  *      @new_group: group this device should belong to
8966  */
8967 void dev_set_group(struct net_device *dev, int new_group)
8968 {
8969         dev->group = new_group;
8970 }
8971 EXPORT_SYMBOL(dev_set_group);
8972
8973 /**
8974  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8975  *      @dev: device
8976  *      @addr: new address
8977  *      @extack: netlink extended ack
8978  */
8979 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8980                               struct netlink_ext_ack *extack)
8981 {
8982         struct netdev_notifier_pre_changeaddr_info info = {
8983                 .info.dev = dev,
8984                 .info.extack = extack,
8985                 .dev_addr = addr,
8986         };
8987         int rc;
8988
8989         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8990         return notifier_to_errno(rc);
8991 }
8992 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8993
8994 /**
8995  *      dev_set_mac_address - Change Media Access Control Address
8996  *      @dev: device
8997  *      @sa: new address
8998  *      @extack: netlink extended ack
8999  *
9000  *      Change the hardware (MAC) address of the device
9001  */
9002 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9003                         struct netlink_ext_ack *extack)
9004 {
9005         const struct net_device_ops *ops = dev->netdev_ops;
9006         int err;
9007
9008         if (!ops->ndo_set_mac_address)
9009                 return -EOPNOTSUPP;
9010         if (sa->sa_family != dev->type)
9011                 return -EINVAL;
9012         if (!netif_device_present(dev))
9013                 return -ENODEV;
9014         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9015         if (err)
9016                 return err;
9017         err = ops->ndo_set_mac_address(dev, sa);
9018         if (err)
9019                 return err;
9020         dev->addr_assign_type = NET_ADDR_SET;
9021         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9022         add_device_randomness(dev->dev_addr, dev->addr_len);
9023         return 0;
9024 }
9025 EXPORT_SYMBOL(dev_set_mac_address);
9026
9027 static DECLARE_RWSEM(dev_addr_sem);
9028
9029 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9030                              struct netlink_ext_ack *extack)
9031 {
9032         int ret;
9033
9034         down_write(&dev_addr_sem);
9035         ret = dev_set_mac_address(dev, sa, extack);
9036         up_write(&dev_addr_sem);
9037         return ret;
9038 }
9039 EXPORT_SYMBOL(dev_set_mac_address_user);
9040
9041 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9042 {
9043         size_t size = sizeof(sa->sa_data);
9044         struct net_device *dev;
9045         int ret = 0;
9046
9047         down_read(&dev_addr_sem);
9048         rcu_read_lock();
9049
9050         dev = dev_get_by_name_rcu(net, dev_name);
9051         if (!dev) {
9052                 ret = -ENODEV;
9053                 goto unlock;
9054         }
9055         if (!dev->addr_len)
9056                 memset(sa->sa_data, 0, size);
9057         else
9058                 memcpy(sa->sa_data, dev->dev_addr,
9059                        min_t(size_t, size, dev->addr_len));
9060         sa->sa_family = dev->type;
9061
9062 unlock:
9063         rcu_read_unlock();
9064         up_read(&dev_addr_sem);
9065         return ret;
9066 }
9067 EXPORT_SYMBOL(dev_get_mac_address);
9068
9069 /**
9070  *      dev_change_carrier - Change device carrier
9071  *      @dev: device
9072  *      @new_carrier: new value
9073  *
9074  *      Change device carrier
9075  */
9076 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9077 {
9078         const struct net_device_ops *ops = dev->netdev_ops;
9079
9080         if (!ops->ndo_change_carrier)
9081                 return -EOPNOTSUPP;
9082         if (!netif_device_present(dev))
9083                 return -ENODEV;
9084         return ops->ndo_change_carrier(dev, new_carrier);
9085 }
9086 EXPORT_SYMBOL(dev_change_carrier);
9087
9088 /**
9089  *      dev_get_phys_port_id - Get device physical port ID
9090  *      @dev: device
9091  *      @ppid: port ID
9092  *
9093  *      Get device physical port ID
9094  */
9095 int dev_get_phys_port_id(struct net_device *dev,
9096                          struct netdev_phys_item_id *ppid)
9097 {
9098         const struct net_device_ops *ops = dev->netdev_ops;
9099
9100         if (!ops->ndo_get_phys_port_id)
9101                 return -EOPNOTSUPP;
9102         return ops->ndo_get_phys_port_id(dev, ppid);
9103 }
9104 EXPORT_SYMBOL(dev_get_phys_port_id);
9105
9106 /**
9107  *      dev_get_phys_port_name - Get device physical port name
9108  *      @dev: device
9109  *      @name: port name
9110  *      @len: limit of bytes to copy to name
9111  *
9112  *      Get device physical port name
9113  */
9114 int dev_get_phys_port_name(struct net_device *dev,
9115                            char *name, size_t len)
9116 {
9117         const struct net_device_ops *ops = dev->netdev_ops;
9118         int err;
9119
9120         if (ops->ndo_get_phys_port_name) {
9121                 err = ops->ndo_get_phys_port_name(dev, name, len);
9122                 if (err != -EOPNOTSUPP)
9123                         return err;
9124         }
9125         return devlink_compat_phys_port_name_get(dev, name, len);
9126 }
9127 EXPORT_SYMBOL(dev_get_phys_port_name);
9128
9129 /**
9130  *      dev_get_port_parent_id - Get the device's port parent identifier
9131  *      @dev: network device
9132  *      @ppid: pointer to a storage for the port's parent identifier
9133  *      @recurse: allow/disallow recursion to lower devices
9134  *
9135  *      Get the devices's port parent identifier
9136  */
9137 int dev_get_port_parent_id(struct net_device *dev,
9138                            struct netdev_phys_item_id *ppid,
9139                            bool recurse)
9140 {
9141         const struct net_device_ops *ops = dev->netdev_ops;
9142         struct netdev_phys_item_id first = { };
9143         struct net_device *lower_dev;
9144         struct list_head *iter;
9145         int err;
9146
9147         if (ops->ndo_get_port_parent_id) {
9148                 err = ops->ndo_get_port_parent_id(dev, ppid);
9149                 if (err != -EOPNOTSUPP)
9150                         return err;
9151         }
9152
9153         err = devlink_compat_switch_id_get(dev, ppid);
9154         if (!err || err != -EOPNOTSUPP)
9155                 return err;
9156
9157         if (!recurse)
9158                 return -EOPNOTSUPP;
9159
9160         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9161                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9162                 if (err)
9163                         break;
9164                 if (!first.id_len)
9165                         first = *ppid;
9166                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9167                         return -EOPNOTSUPP;
9168         }
9169
9170         return err;
9171 }
9172 EXPORT_SYMBOL(dev_get_port_parent_id);
9173
9174 /**
9175  *      netdev_port_same_parent_id - Indicate if two network devices have
9176  *      the same port parent identifier
9177  *      @a: first network device
9178  *      @b: second network device
9179  */
9180 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9181 {
9182         struct netdev_phys_item_id a_id = { };
9183         struct netdev_phys_item_id b_id = { };
9184
9185         if (dev_get_port_parent_id(a, &a_id, true) ||
9186             dev_get_port_parent_id(b, &b_id, true))
9187                 return false;
9188
9189         return netdev_phys_item_id_same(&a_id, &b_id);
9190 }
9191 EXPORT_SYMBOL(netdev_port_same_parent_id);
9192
9193 /**
9194  *      dev_change_proto_down - update protocol port state information
9195  *      @dev: device
9196  *      @proto_down: new value
9197  *
9198  *      This info can be used by switch drivers to set the phys state of the
9199  *      port.
9200  */
9201 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9202 {
9203         const struct net_device_ops *ops = dev->netdev_ops;
9204
9205         if (!ops->ndo_change_proto_down)
9206                 return -EOPNOTSUPP;
9207         if (!netif_device_present(dev))
9208                 return -ENODEV;
9209         return ops->ndo_change_proto_down(dev, proto_down);
9210 }
9211 EXPORT_SYMBOL(dev_change_proto_down);
9212
9213 /**
9214  *      dev_change_proto_down_generic - generic implementation for
9215  *      ndo_change_proto_down that sets carrier according to
9216  *      proto_down.
9217  *
9218  *      @dev: device
9219  *      @proto_down: new value
9220  */
9221 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9222 {
9223         if (proto_down)
9224                 netif_carrier_off(dev);
9225         else
9226                 netif_carrier_on(dev);
9227         dev->proto_down = proto_down;
9228         return 0;
9229 }
9230 EXPORT_SYMBOL(dev_change_proto_down_generic);
9231
9232 /**
9233  *      dev_change_proto_down_reason - proto down reason
9234  *
9235  *      @dev: device
9236  *      @mask: proto down mask
9237  *      @value: proto down value
9238  */
9239 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9240                                   u32 value)
9241 {
9242         int b;
9243
9244         if (!mask) {
9245                 dev->proto_down_reason = value;
9246         } else {
9247                 for_each_set_bit(b, &mask, 32) {
9248                         if (value & (1 << b))
9249                                 dev->proto_down_reason |= BIT(b);
9250                         else
9251                                 dev->proto_down_reason &= ~BIT(b);
9252                 }
9253         }
9254 }
9255 EXPORT_SYMBOL(dev_change_proto_down_reason);
9256
9257 struct bpf_xdp_link {
9258         struct bpf_link link;
9259         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9260         int flags;
9261 };
9262
9263 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9264 {
9265         if (flags & XDP_FLAGS_HW_MODE)
9266                 return XDP_MODE_HW;
9267         if (flags & XDP_FLAGS_DRV_MODE)
9268                 return XDP_MODE_DRV;
9269         if (flags & XDP_FLAGS_SKB_MODE)
9270                 return XDP_MODE_SKB;
9271         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9272 }
9273
9274 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9275 {
9276         switch (mode) {
9277         case XDP_MODE_SKB:
9278                 return generic_xdp_install;
9279         case XDP_MODE_DRV:
9280         case XDP_MODE_HW:
9281                 return dev->netdev_ops->ndo_bpf;
9282         default:
9283                 return NULL;
9284         }
9285 }
9286
9287 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9288                                          enum bpf_xdp_mode mode)
9289 {
9290         return dev->xdp_state[mode].link;
9291 }
9292
9293 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9294                                      enum bpf_xdp_mode mode)
9295 {
9296         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9297
9298         if (link)
9299                 return link->link.prog;
9300         return dev->xdp_state[mode].prog;
9301 }
9302
9303 static u8 dev_xdp_prog_count(struct net_device *dev)
9304 {
9305         u8 count = 0;
9306         int i;
9307
9308         for (i = 0; i < __MAX_XDP_MODE; i++)
9309                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9310                         count++;
9311         return count;
9312 }
9313
9314 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9315 {
9316         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9317
9318         return prog ? prog->aux->id : 0;
9319 }
9320
9321 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9322                              struct bpf_xdp_link *link)
9323 {
9324         dev->xdp_state[mode].link = link;
9325         dev->xdp_state[mode].prog = NULL;
9326 }
9327
9328 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9329                              struct bpf_prog *prog)
9330 {
9331         dev->xdp_state[mode].link = NULL;
9332         dev->xdp_state[mode].prog = prog;
9333 }
9334
9335 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9336                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9337                            u32 flags, struct bpf_prog *prog)
9338 {
9339         struct netdev_bpf xdp;
9340         int err;
9341
9342         memset(&xdp, 0, sizeof(xdp));
9343         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9344         xdp.extack = extack;
9345         xdp.flags = flags;
9346         xdp.prog = prog;
9347
9348         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9349          * "moved" into driver), so they don't increment it on their own, but
9350          * they do decrement refcnt when program is detached or replaced.
9351          * Given net_device also owns link/prog, we need to bump refcnt here
9352          * to prevent drivers from underflowing it.
9353          */
9354         if (prog)
9355                 bpf_prog_inc(prog);
9356         err = bpf_op(dev, &xdp);
9357         if (err) {
9358                 if (prog)
9359                         bpf_prog_put(prog);
9360                 return err;
9361         }
9362
9363         if (mode != XDP_MODE_HW)
9364                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9365
9366         return 0;
9367 }
9368
9369 static void dev_xdp_uninstall(struct net_device *dev)
9370 {
9371         struct bpf_xdp_link *link;
9372         struct bpf_prog *prog;
9373         enum bpf_xdp_mode mode;
9374         bpf_op_t bpf_op;
9375
9376         ASSERT_RTNL();
9377
9378         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9379                 prog = dev_xdp_prog(dev, mode);
9380                 if (!prog)
9381                         continue;
9382
9383                 bpf_op = dev_xdp_bpf_op(dev, mode);
9384                 if (!bpf_op)
9385                         continue;
9386
9387                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388
9389                 /* auto-detach link from net device */
9390                 link = dev_xdp_link(dev, mode);
9391                 if (link)
9392                         link->dev = NULL;
9393                 else
9394                         bpf_prog_put(prog);
9395
9396                 dev_xdp_set_link(dev, mode, NULL);
9397         }
9398 }
9399
9400 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9401                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9402                           struct bpf_prog *old_prog, u32 flags)
9403 {
9404         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9405         struct bpf_prog *cur_prog;
9406         enum bpf_xdp_mode mode;
9407         bpf_op_t bpf_op;
9408         int err;
9409
9410         ASSERT_RTNL();
9411
9412         /* either link or prog attachment, never both */
9413         if (link && (new_prog || old_prog))
9414                 return -EINVAL;
9415         /* link supports only XDP mode flags */
9416         if (link && (flags & ~XDP_FLAGS_MODES)) {
9417                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9418                 return -EINVAL;
9419         }
9420         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9421         if (num_modes > 1) {
9422                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9423                 return -EINVAL;
9424         }
9425         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9426         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9427                 NL_SET_ERR_MSG(extack,
9428                                "More than one program loaded, unset mode is ambiguous");
9429                 return -EINVAL;
9430         }
9431         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9432         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9433                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9434                 return -EINVAL;
9435         }
9436
9437         mode = dev_xdp_mode(dev, flags);
9438         /* can't replace attached link */
9439         if (dev_xdp_link(dev, mode)) {
9440                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9441                 return -EBUSY;
9442         }
9443
9444         cur_prog = dev_xdp_prog(dev, mode);
9445         /* can't replace attached prog with link */
9446         if (link && cur_prog) {
9447                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9448                 return -EBUSY;
9449         }
9450         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9451                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9452                 return -EEXIST;
9453         }
9454
9455         /* put effective new program into new_prog */
9456         if (link)
9457                 new_prog = link->link.prog;
9458
9459         if (new_prog) {
9460                 bool offload = mode == XDP_MODE_HW;
9461                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9462                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9463
9464                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9465                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9466                         return -EBUSY;
9467                 }
9468                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9469                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9470                         return -EEXIST;
9471                 }
9472                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9473                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9474                         return -EINVAL;
9475                 }
9476                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9477                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9478                         return -EINVAL;
9479                 }
9480                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9481                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9482                         return -EINVAL;
9483                 }
9484         }
9485
9486         /* don't call drivers if the effective program didn't change */
9487         if (new_prog != cur_prog) {
9488                 bpf_op = dev_xdp_bpf_op(dev, mode);
9489                 if (!bpf_op) {
9490                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9491                         return -EOPNOTSUPP;
9492                 }
9493
9494                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9495                 if (err)
9496                         return err;
9497         }
9498
9499         if (link)
9500                 dev_xdp_set_link(dev, mode, link);
9501         else
9502                 dev_xdp_set_prog(dev, mode, new_prog);
9503         if (cur_prog)
9504                 bpf_prog_put(cur_prog);
9505
9506         return 0;
9507 }
9508
9509 static int dev_xdp_attach_link(struct net_device *dev,
9510                                struct netlink_ext_ack *extack,
9511                                struct bpf_xdp_link *link)
9512 {
9513         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9514 }
9515
9516 static int dev_xdp_detach_link(struct net_device *dev,
9517                                struct netlink_ext_ack *extack,
9518                                struct bpf_xdp_link *link)
9519 {
9520         enum bpf_xdp_mode mode;
9521         bpf_op_t bpf_op;
9522
9523         ASSERT_RTNL();
9524
9525         mode = dev_xdp_mode(dev, link->flags);
9526         if (dev_xdp_link(dev, mode) != link)
9527                 return -EINVAL;
9528
9529         bpf_op = dev_xdp_bpf_op(dev, mode);
9530         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9531         dev_xdp_set_link(dev, mode, NULL);
9532         return 0;
9533 }
9534
9535 static void bpf_xdp_link_release(struct bpf_link *link)
9536 {
9537         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538
9539         rtnl_lock();
9540
9541         /* if racing with net_device's tear down, xdp_link->dev might be
9542          * already NULL, in which case link was already auto-detached
9543          */
9544         if (xdp_link->dev) {
9545                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9546                 xdp_link->dev = NULL;
9547         }
9548
9549         rtnl_unlock();
9550 }
9551
9552 static int bpf_xdp_link_detach(struct bpf_link *link)
9553 {
9554         bpf_xdp_link_release(link);
9555         return 0;
9556 }
9557
9558 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9559 {
9560         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9561
9562         kfree(xdp_link);
9563 }
9564
9565 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9566                                      struct seq_file *seq)
9567 {
9568         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569         u32 ifindex = 0;
9570
9571         rtnl_lock();
9572         if (xdp_link->dev)
9573                 ifindex = xdp_link->dev->ifindex;
9574         rtnl_unlock();
9575
9576         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9577 }
9578
9579 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9580                                        struct bpf_link_info *info)
9581 {
9582         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9583         u32 ifindex = 0;
9584
9585         rtnl_lock();
9586         if (xdp_link->dev)
9587                 ifindex = xdp_link->dev->ifindex;
9588         rtnl_unlock();
9589
9590         info->xdp.ifindex = ifindex;
9591         return 0;
9592 }
9593
9594 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9595                                struct bpf_prog *old_prog)
9596 {
9597         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9598         enum bpf_xdp_mode mode;
9599         bpf_op_t bpf_op;
9600         int err = 0;
9601
9602         rtnl_lock();
9603
9604         /* link might have been auto-released already, so fail */
9605         if (!xdp_link->dev) {
9606                 err = -ENOLINK;
9607                 goto out_unlock;
9608         }
9609
9610         if (old_prog && link->prog != old_prog) {
9611                 err = -EPERM;
9612                 goto out_unlock;
9613         }
9614         old_prog = link->prog;
9615         if (old_prog == new_prog) {
9616                 /* no-op, don't disturb drivers */
9617                 bpf_prog_put(new_prog);
9618                 goto out_unlock;
9619         }
9620
9621         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9622         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9623         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9624                               xdp_link->flags, new_prog);
9625         if (err)
9626                 goto out_unlock;
9627
9628         old_prog = xchg(&link->prog, new_prog);
9629         bpf_prog_put(old_prog);
9630
9631 out_unlock:
9632         rtnl_unlock();
9633         return err;
9634 }
9635
9636 static const struct bpf_link_ops bpf_xdp_link_lops = {
9637         .release = bpf_xdp_link_release,
9638         .dealloc = bpf_xdp_link_dealloc,
9639         .detach = bpf_xdp_link_detach,
9640         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9641         .fill_link_info = bpf_xdp_link_fill_link_info,
9642         .update_prog = bpf_xdp_link_update,
9643 };
9644
9645 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9646 {
9647         struct net *net = current->nsproxy->net_ns;
9648         struct bpf_link_primer link_primer;
9649         struct bpf_xdp_link *link;
9650         struct net_device *dev;
9651         int err, fd;
9652
9653         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9654         if (!dev)
9655                 return -EINVAL;
9656
9657         link = kzalloc(sizeof(*link), GFP_USER);
9658         if (!link) {
9659                 err = -ENOMEM;
9660                 goto out_put_dev;
9661         }
9662
9663         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9664         link->dev = dev;
9665         link->flags = attr->link_create.flags;
9666
9667         err = bpf_link_prime(&link->link, &link_primer);
9668         if (err) {
9669                 kfree(link);
9670                 goto out_put_dev;
9671         }
9672
9673         rtnl_lock();
9674         err = dev_xdp_attach_link(dev, NULL, link);
9675         rtnl_unlock();
9676
9677         if (err) {
9678                 bpf_link_cleanup(&link_primer);
9679                 goto out_put_dev;
9680         }
9681
9682         fd = bpf_link_settle(&link_primer);
9683         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9684         dev_put(dev);
9685         return fd;
9686
9687 out_put_dev:
9688         dev_put(dev);
9689         return err;
9690 }
9691
9692 /**
9693  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9694  *      @dev: device
9695  *      @extack: netlink extended ack
9696  *      @fd: new program fd or negative value to clear
9697  *      @expected_fd: old program fd that userspace expects to replace or clear
9698  *      @flags: xdp-related flags
9699  *
9700  *      Set or clear a bpf program for a device
9701  */
9702 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9703                       int fd, int expected_fd, u32 flags)
9704 {
9705         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9706         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9707         int err;
9708
9709         ASSERT_RTNL();
9710
9711         if (fd >= 0) {
9712                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9713                                                  mode != XDP_MODE_SKB);
9714                 if (IS_ERR(new_prog))
9715                         return PTR_ERR(new_prog);
9716         }
9717
9718         if (expected_fd >= 0) {
9719                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9720                                                  mode != XDP_MODE_SKB);
9721                 if (IS_ERR(old_prog)) {
9722                         err = PTR_ERR(old_prog);
9723                         old_prog = NULL;
9724                         goto err_out;
9725                 }
9726         }
9727
9728         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9729
9730 err_out:
9731         if (err && new_prog)
9732                 bpf_prog_put(new_prog);
9733         if (old_prog)
9734                 bpf_prog_put(old_prog);
9735         return err;
9736 }
9737
9738 /**
9739  *      dev_new_index   -       allocate an ifindex
9740  *      @net: the applicable net namespace
9741  *
9742  *      Returns a suitable unique value for a new device interface
9743  *      number.  The caller must hold the rtnl semaphore or the
9744  *      dev_base_lock to be sure it remains unique.
9745  */
9746 static int dev_new_index(struct net *net)
9747 {
9748         int ifindex = net->ifindex;
9749
9750         for (;;) {
9751                 if (++ifindex <= 0)
9752                         ifindex = 1;
9753                 if (!__dev_get_by_index(net, ifindex))
9754                         return net->ifindex = ifindex;
9755         }
9756 }
9757
9758 /* Delayed registration/unregisteration */
9759 static LIST_HEAD(net_todo_list);
9760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9761
9762 static void net_set_todo(struct net_device *dev)
9763 {
9764         list_add_tail(&dev->todo_list, &net_todo_list);
9765         dev_net(dev)->dev_unreg_count++;
9766 }
9767
9768 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9769         struct net_device *upper, netdev_features_t features)
9770 {
9771         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9772         netdev_features_t feature;
9773         int feature_bit;
9774
9775         for_each_netdev_feature(upper_disables, feature_bit) {
9776                 feature = __NETIF_F_BIT(feature_bit);
9777                 if (!(upper->wanted_features & feature)
9778                     && (features & feature)) {
9779                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9780                                    &feature, upper->name);
9781                         features &= ~feature;
9782                 }
9783         }
9784
9785         return features;
9786 }
9787
9788 static void netdev_sync_lower_features(struct net_device *upper,
9789         struct net_device *lower, netdev_features_t features)
9790 {
9791         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9792         netdev_features_t feature;
9793         int feature_bit;
9794
9795         for_each_netdev_feature(upper_disables, feature_bit) {
9796                 feature = __NETIF_F_BIT(feature_bit);
9797                 if (!(features & feature) && (lower->features & feature)) {
9798                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9799                                    &feature, lower->name);
9800                         lower->wanted_features &= ~feature;
9801                         __netdev_update_features(lower);
9802
9803                         if (unlikely(lower->features & feature))
9804                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9805                                             &feature, lower->name);
9806                         else
9807                                 netdev_features_change(lower);
9808                 }
9809         }
9810 }
9811
9812 static netdev_features_t netdev_fix_features(struct net_device *dev,
9813         netdev_features_t features)
9814 {
9815         /* Fix illegal checksum combinations */
9816         if ((features & NETIF_F_HW_CSUM) &&
9817             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9818                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9819                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9820         }
9821
9822         /* TSO requires that SG is present as well. */
9823         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9824                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9825                 features &= ~NETIF_F_ALL_TSO;
9826         }
9827
9828         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9829                                         !(features & NETIF_F_IP_CSUM)) {
9830                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9831                 features &= ~NETIF_F_TSO;
9832                 features &= ~NETIF_F_TSO_ECN;
9833         }
9834
9835         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9836                                          !(features & NETIF_F_IPV6_CSUM)) {
9837                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9838                 features &= ~NETIF_F_TSO6;
9839         }
9840
9841         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9842         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9843                 features &= ~NETIF_F_TSO_MANGLEID;
9844
9845         /* TSO ECN requires that TSO is present as well. */
9846         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9847                 features &= ~NETIF_F_TSO_ECN;
9848
9849         /* Software GSO depends on SG. */
9850         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9851                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9852                 features &= ~NETIF_F_GSO;
9853         }
9854
9855         /* GSO partial features require GSO partial be set */
9856         if ((features & dev->gso_partial_features) &&
9857             !(features & NETIF_F_GSO_PARTIAL)) {
9858                 netdev_dbg(dev,
9859                            "Dropping partially supported GSO features since no GSO partial.\n");
9860                 features &= ~dev->gso_partial_features;
9861         }
9862
9863         if (!(features & NETIF_F_RXCSUM)) {
9864                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9865                  * successfully merged by hardware must also have the
9866                  * checksum verified by hardware.  If the user does not
9867                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9868                  */
9869                 if (features & NETIF_F_GRO_HW) {
9870                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9871                         features &= ~NETIF_F_GRO_HW;
9872                 }
9873         }
9874
9875         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9876         if (features & NETIF_F_RXFCS) {
9877                 if (features & NETIF_F_LRO) {
9878                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9879                         features &= ~NETIF_F_LRO;
9880                 }
9881
9882                 if (features & NETIF_F_GRO_HW) {
9883                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9884                         features &= ~NETIF_F_GRO_HW;
9885                 }
9886         }
9887
9888         if (features & NETIF_F_HW_TLS_TX) {
9889                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9890                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9891                 bool hw_csum = features & NETIF_F_HW_CSUM;
9892
9893                 if (!ip_csum && !hw_csum) {
9894                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9895                         features &= ~NETIF_F_HW_TLS_TX;
9896                 }
9897         }
9898
9899         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9900                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9901                 features &= ~NETIF_F_HW_TLS_RX;
9902         }
9903
9904         return features;
9905 }
9906
9907 int __netdev_update_features(struct net_device *dev)
9908 {
9909         struct net_device *upper, *lower;
9910         netdev_features_t features;
9911         struct list_head *iter;
9912         int err = -1;
9913
9914         ASSERT_RTNL();
9915
9916         features = netdev_get_wanted_features(dev);
9917
9918         if (dev->netdev_ops->ndo_fix_features)
9919                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9920
9921         /* driver might be less strict about feature dependencies */
9922         features = netdev_fix_features(dev, features);
9923
9924         /* some features can't be enabled if they're off on an upper device */
9925         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9926                 features = netdev_sync_upper_features(dev, upper, features);
9927
9928         if (dev->features == features)
9929                 goto sync_lower;
9930
9931         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9932                 &dev->features, &features);
9933
9934         if (dev->netdev_ops->ndo_set_features)
9935                 err = dev->netdev_ops->ndo_set_features(dev, features);
9936         else
9937                 err = 0;
9938
9939         if (unlikely(err < 0)) {
9940                 netdev_err(dev,
9941                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9942                         err, &features, &dev->features);
9943                 /* return non-0 since some features might have changed and
9944                  * it's better to fire a spurious notification than miss it
9945                  */
9946                 return -1;
9947         }
9948
9949 sync_lower:
9950         /* some features must be disabled on lower devices when disabled
9951          * on an upper device (think: bonding master or bridge)
9952          */
9953         netdev_for_each_lower_dev(dev, lower, iter)
9954                 netdev_sync_lower_features(dev, lower, features);
9955
9956         if (!err) {
9957                 netdev_features_t diff = features ^ dev->features;
9958
9959                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9960                         /* udp_tunnel_{get,drop}_rx_info both need
9961                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9962                          * device, or they won't do anything.
9963                          * Thus we need to update dev->features
9964                          * *before* calling udp_tunnel_get_rx_info,
9965                          * but *after* calling udp_tunnel_drop_rx_info.
9966                          */
9967                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9968                                 dev->features = features;
9969                                 udp_tunnel_get_rx_info(dev);
9970                         } else {
9971                                 udp_tunnel_drop_rx_info(dev);
9972                         }
9973                 }
9974
9975                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9976                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9977                                 dev->features = features;
9978                                 err |= vlan_get_rx_ctag_filter_info(dev);
9979                         } else {
9980                                 vlan_drop_rx_ctag_filter_info(dev);
9981                         }
9982                 }
9983
9984                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9985                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9986                                 dev->features = features;
9987                                 err |= vlan_get_rx_stag_filter_info(dev);
9988                         } else {
9989                                 vlan_drop_rx_stag_filter_info(dev);
9990                         }
9991                 }
9992
9993                 dev->features = features;
9994         }
9995
9996         return err < 0 ? 0 : 1;
9997 }
9998
9999 /**
10000  *      netdev_update_features - recalculate device features
10001  *      @dev: the device to check
10002  *
10003  *      Recalculate dev->features set and send notifications if it
10004  *      has changed. Should be called after driver or hardware dependent
10005  *      conditions might have changed that influence the features.
10006  */
10007 void netdev_update_features(struct net_device *dev)
10008 {
10009         if (__netdev_update_features(dev))
10010                 netdev_features_change(dev);
10011 }
10012 EXPORT_SYMBOL(netdev_update_features);
10013
10014 /**
10015  *      netdev_change_features - recalculate device features
10016  *      @dev: the device to check
10017  *
10018  *      Recalculate dev->features set and send notifications even
10019  *      if they have not changed. Should be called instead of
10020  *      netdev_update_features() if also dev->vlan_features might
10021  *      have changed to allow the changes to be propagated to stacked
10022  *      VLAN devices.
10023  */
10024 void netdev_change_features(struct net_device *dev)
10025 {
10026         __netdev_update_features(dev);
10027         netdev_features_change(dev);
10028 }
10029 EXPORT_SYMBOL(netdev_change_features);
10030
10031 /**
10032  *      netif_stacked_transfer_operstate -      transfer operstate
10033  *      @rootdev: the root or lower level device to transfer state from
10034  *      @dev: the device to transfer operstate to
10035  *
10036  *      Transfer operational state from root to device. This is normally
10037  *      called when a stacking relationship exists between the root
10038  *      device and the device(a leaf device).
10039  */
10040 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10041                                         struct net_device *dev)
10042 {
10043         if (rootdev->operstate == IF_OPER_DORMANT)
10044                 netif_dormant_on(dev);
10045         else
10046                 netif_dormant_off(dev);
10047
10048         if (rootdev->operstate == IF_OPER_TESTING)
10049                 netif_testing_on(dev);
10050         else
10051                 netif_testing_off(dev);
10052
10053         if (netif_carrier_ok(rootdev))
10054                 netif_carrier_on(dev);
10055         else
10056                 netif_carrier_off(dev);
10057 }
10058 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10059
10060 static int netif_alloc_rx_queues(struct net_device *dev)
10061 {
10062         unsigned int i, count = dev->num_rx_queues;
10063         struct netdev_rx_queue *rx;
10064         size_t sz = count * sizeof(*rx);
10065         int err = 0;
10066
10067         BUG_ON(count < 1);
10068
10069         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10070         if (!rx)
10071                 return -ENOMEM;
10072
10073         dev->_rx = rx;
10074
10075         for (i = 0; i < count; i++) {
10076                 rx[i].dev = dev;
10077
10078                 /* XDP RX-queue setup */
10079                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10080                 if (err < 0)
10081                         goto err_rxq_info;
10082         }
10083         return 0;
10084
10085 err_rxq_info:
10086         /* Rollback successful reg's and free other resources */
10087         while (i--)
10088                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10089         kvfree(dev->_rx);
10090         dev->_rx = NULL;
10091         return err;
10092 }
10093
10094 static void netif_free_rx_queues(struct net_device *dev)
10095 {
10096         unsigned int i, count = dev->num_rx_queues;
10097
10098         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10099         if (!dev->_rx)
10100                 return;
10101
10102         for (i = 0; i < count; i++)
10103                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10104
10105         kvfree(dev->_rx);
10106 }
10107
10108 static void netdev_init_one_queue(struct net_device *dev,
10109                                   struct netdev_queue *queue, void *_unused)
10110 {
10111         /* Initialize queue lock */
10112         spin_lock_init(&queue->_xmit_lock);
10113         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10114         queue->xmit_lock_owner = -1;
10115         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10116         queue->dev = dev;
10117 #ifdef CONFIG_BQL
10118         dql_init(&queue->dql, HZ);
10119 #endif
10120 }
10121
10122 static void netif_free_tx_queues(struct net_device *dev)
10123 {
10124         kvfree(dev->_tx);
10125 }
10126
10127 static int netif_alloc_netdev_queues(struct net_device *dev)
10128 {
10129         unsigned int count = dev->num_tx_queues;
10130         struct netdev_queue *tx;
10131         size_t sz = count * sizeof(*tx);
10132
10133         if (count < 1 || count > 0xffff)
10134                 return -EINVAL;
10135
10136         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10137         if (!tx)
10138                 return -ENOMEM;
10139
10140         dev->_tx = tx;
10141
10142         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10143         spin_lock_init(&dev->tx_global_lock);
10144
10145         return 0;
10146 }
10147
10148 void netif_tx_stop_all_queues(struct net_device *dev)
10149 {
10150         unsigned int i;
10151
10152         for (i = 0; i < dev->num_tx_queues; i++) {
10153                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10154
10155                 netif_tx_stop_queue(txq);
10156         }
10157 }
10158 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10159
10160 /**
10161  *      register_netdevice      - register a network device
10162  *      @dev: device to register
10163  *
10164  *      Take a completed network device structure and add it to the kernel
10165  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166  *      chain. 0 is returned on success. A negative errno code is returned
10167  *      on a failure to set up the device, or if the name is a duplicate.
10168  *
10169  *      Callers must hold the rtnl semaphore. You may want
10170  *      register_netdev() instead of this.
10171  *
10172  *      BUGS:
10173  *      The locking appears insufficient to guarantee two parallel registers
10174  *      will not get the same name.
10175  */
10176
10177 int register_netdevice(struct net_device *dev)
10178 {
10179         int ret;
10180         struct net *net = dev_net(dev);
10181
10182         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10183                      NETDEV_FEATURE_COUNT);
10184         BUG_ON(dev_boot_phase);
10185         ASSERT_RTNL();
10186
10187         might_sleep();
10188
10189         /* When net_device's are persistent, this will be fatal. */
10190         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10191         BUG_ON(!net);
10192
10193         ret = ethtool_check_ops(dev->ethtool_ops);
10194         if (ret)
10195                 return ret;
10196
10197         spin_lock_init(&dev->addr_list_lock);
10198         netdev_set_addr_lockdep_class(dev);
10199
10200         ret = dev_get_valid_name(net, dev, dev->name);
10201         if (ret < 0)
10202                 goto out;
10203
10204         ret = -ENOMEM;
10205         dev->name_node = netdev_name_node_head_alloc(dev);
10206         if (!dev->name_node)
10207                 goto out;
10208
10209         /* Init, if this function is available */
10210         if (dev->netdev_ops->ndo_init) {
10211                 ret = dev->netdev_ops->ndo_init(dev);
10212                 if (ret) {
10213                         if (ret > 0)
10214                                 ret = -EIO;
10215                         goto err_free_name;
10216                 }
10217         }
10218
10219         if (((dev->hw_features | dev->features) &
10220              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10221             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10222              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10223                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10224                 ret = -EINVAL;
10225                 goto err_uninit;
10226         }
10227
10228         ret = -EBUSY;
10229         if (!dev->ifindex)
10230                 dev->ifindex = dev_new_index(net);
10231         else if (__dev_get_by_index(net, dev->ifindex))
10232                 goto err_uninit;
10233
10234         /* Transfer changeable features to wanted_features and enable
10235          * software offloads (GSO and GRO).
10236          */
10237         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10238         dev->features |= NETIF_F_SOFT_FEATURES;
10239
10240         if (dev->udp_tunnel_nic_info) {
10241                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10242                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10243         }
10244
10245         dev->wanted_features = dev->features & dev->hw_features;
10246
10247         if (!(dev->flags & IFF_LOOPBACK))
10248                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10249
10250         /* If IPv4 TCP segmentation offload is supported we should also
10251          * allow the device to enable segmenting the frame with the option
10252          * of ignoring a static IP ID value.  This doesn't enable the
10253          * feature itself but allows the user to enable it later.
10254          */
10255         if (dev->hw_features & NETIF_F_TSO)
10256                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10257         if (dev->vlan_features & NETIF_F_TSO)
10258                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10259         if (dev->mpls_features & NETIF_F_TSO)
10260                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10261         if (dev->hw_enc_features & NETIF_F_TSO)
10262                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10263
10264         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10265          */
10266         dev->vlan_features |= NETIF_F_HIGHDMA;
10267
10268         /* Make NETIF_F_SG inheritable to tunnel devices.
10269          */
10270         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10271
10272         /* Make NETIF_F_SG inheritable to MPLS.
10273          */
10274         dev->mpls_features |= NETIF_F_SG;
10275
10276         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10277         ret = notifier_to_errno(ret);
10278         if (ret)
10279                 goto err_uninit;
10280
10281         ret = netdev_register_kobject(dev);
10282         if (ret) {
10283                 dev->reg_state = NETREG_UNREGISTERED;
10284                 goto err_uninit;
10285         }
10286         dev->reg_state = NETREG_REGISTERED;
10287
10288         __netdev_update_features(dev);
10289
10290         /*
10291          *      Default initial state at registry is that the
10292          *      device is present.
10293          */
10294
10295         set_bit(__LINK_STATE_PRESENT, &dev->state);
10296
10297         linkwatch_init_dev(dev);
10298
10299         dev_init_scheduler(dev);
10300         dev_hold(dev);
10301         list_netdevice(dev);
10302         add_device_randomness(dev->dev_addr, dev->addr_len);
10303
10304         /* If the device has permanent device address, driver should
10305          * set dev_addr and also addr_assign_type should be set to
10306          * NET_ADDR_PERM (default value).
10307          */
10308         if (dev->addr_assign_type == NET_ADDR_PERM)
10309                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10310
10311         /* Notify protocols, that a new device appeared. */
10312         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10313         ret = notifier_to_errno(ret);
10314         if (ret) {
10315                 /* Expect explicit free_netdev() on failure */
10316                 dev->needs_free_netdev = false;
10317                 unregister_netdevice_queue(dev, NULL);
10318                 goto out;
10319         }
10320         /*
10321          *      Prevent userspace races by waiting until the network
10322          *      device is fully setup before sending notifications.
10323          */
10324         if (!dev->rtnl_link_ops ||
10325             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10326                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10327
10328 out:
10329         return ret;
10330
10331 err_uninit:
10332         if (dev->netdev_ops->ndo_uninit)
10333                 dev->netdev_ops->ndo_uninit(dev);
10334         if (dev->priv_destructor)
10335                 dev->priv_destructor(dev);
10336 err_free_name:
10337         netdev_name_node_free(dev->name_node);
10338         goto out;
10339 }
10340 EXPORT_SYMBOL(register_netdevice);
10341
10342 /**
10343  *      init_dummy_netdev       - init a dummy network device for NAPI
10344  *      @dev: device to init
10345  *
10346  *      This takes a network device structure and initialize the minimum
10347  *      amount of fields so it can be used to schedule NAPI polls without
10348  *      registering a full blown interface. This is to be used by drivers
10349  *      that need to tie several hardware interfaces to a single NAPI
10350  *      poll scheduler due to HW limitations.
10351  */
10352 int init_dummy_netdev(struct net_device *dev)
10353 {
10354         /* Clear everything. Note we don't initialize spinlocks
10355          * are they aren't supposed to be taken by any of the
10356          * NAPI code and this dummy netdev is supposed to be
10357          * only ever used for NAPI polls
10358          */
10359         memset(dev, 0, sizeof(struct net_device));
10360
10361         /* make sure we BUG if trying to hit standard
10362          * register/unregister code path
10363          */
10364         dev->reg_state = NETREG_DUMMY;
10365
10366         /* NAPI wants this */
10367         INIT_LIST_HEAD(&dev->napi_list);
10368
10369         /* a dummy interface is started by default */
10370         set_bit(__LINK_STATE_PRESENT, &dev->state);
10371         set_bit(__LINK_STATE_START, &dev->state);
10372
10373         /* napi_busy_loop stats accounting wants this */
10374         dev_net_set(dev, &init_net);
10375
10376         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10377          * because users of this 'device' dont need to change
10378          * its refcount.
10379          */
10380
10381         return 0;
10382 }
10383 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10384
10385
10386 /**
10387  *      register_netdev - register a network device
10388  *      @dev: device to register
10389  *
10390  *      Take a completed network device structure and add it to the kernel
10391  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10392  *      chain. 0 is returned on success. A negative errno code is returned
10393  *      on a failure to set up the device, or if the name is a duplicate.
10394  *
10395  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10396  *      and expands the device name if you passed a format string to
10397  *      alloc_netdev.
10398  */
10399 int register_netdev(struct net_device *dev)
10400 {
10401         int err;
10402
10403         if (rtnl_lock_killable())
10404                 return -EINTR;
10405         err = register_netdevice(dev);
10406         rtnl_unlock();
10407         return err;
10408 }
10409 EXPORT_SYMBOL(register_netdev);
10410
10411 int netdev_refcnt_read(const struct net_device *dev)
10412 {
10413 #ifdef CONFIG_PCPU_DEV_REFCNT
10414         int i, refcnt = 0;
10415
10416         for_each_possible_cpu(i)
10417                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10418         return refcnt;
10419 #else
10420         return refcount_read(&dev->dev_refcnt);
10421 #endif
10422 }
10423 EXPORT_SYMBOL(netdev_refcnt_read);
10424
10425 int netdev_unregister_timeout_secs __read_mostly = 10;
10426
10427 #define WAIT_REFS_MIN_MSECS 1
10428 #define WAIT_REFS_MAX_MSECS 250
10429 /**
10430  * netdev_wait_allrefs - wait until all references are gone.
10431  * @dev: target net_device
10432  *
10433  * This is called when unregistering network devices.
10434  *
10435  * Any protocol or device that holds a reference should register
10436  * for netdevice notification, and cleanup and put back the
10437  * reference if they receive an UNREGISTER event.
10438  * We can get stuck here if buggy protocols don't correctly
10439  * call dev_put.
10440  */
10441 static void netdev_wait_allrefs(struct net_device *dev)
10442 {
10443         unsigned long rebroadcast_time, warning_time;
10444         int wait = 0, refcnt;
10445
10446         linkwatch_forget_dev(dev);
10447
10448         rebroadcast_time = warning_time = jiffies;
10449         refcnt = netdev_refcnt_read(dev);
10450
10451         while (refcnt != 1) {
10452                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10453                         rtnl_lock();
10454
10455                         /* Rebroadcast unregister notification */
10456                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10457
10458                         __rtnl_unlock();
10459                         rcu_barrier();
10460                         rtnl_lock();
10461
10462                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10463                                      &dev->state)) {
10464                                 /* We must not have linkwatch events
10465                                  * pending on unregister. If this
10466                                  * happens, we simply run the queue
10467                                  * unscheduled, resulting in a noop
10468                                  * for this device.
10469                                  */
10470                                 linkwatch_run_queue();
10471                         }
10472
10473                         __rtnl_unlock();
10474
10475                         rebroadcast_time = jiffies;
10476                 }
10477
10478                 if (!wait) {
10479                         rcu_barrier();
10480                         wait = WAIT_REFS_MIN_MSECS;
10481                 } else {
10482                         msleep(wait);
10483                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10484                 }
10485
10486                 refcnt = netdev_refcnt_read(dev);
10487
10488                 if (refcnt != 1 &&
10489                     time_after(jiffies, warning_time +
10490                                netdev_unregister_timeout_secs * HZ)) {
10491                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10492                                  dev->name, refcnt);
10493                         warning_time = jiffies;
10494                 }
10495         }
10496 }
10497
10498 /* The sequence is:
10499  *
10500  *      rtnl_lock();
10501  *      ...
10502  *      register_netdevice(x1);
10503  *      register_netdevice(x2);
10504  *      ...
10505  *      unregister_netdevice(y1);
10506  *      unregister_netdevice(y2);
10507  *      ...
10508  *      rtnl_unlock();
10509  *      free_netdev(y1);
10510  *      free_netdev(y2);
10511  *
10512  * We are invoked by rtnl_unlock().
10513  * This allows us to deal with problems:
10514  * 1) We can delete sysfs objects which invoke hotplug
10515  *    without deadlocking with linkwatch via keventd.
10516  * 2) Since we run with the RTNL semaphore not held, we can sleep
10517  *    safely in order to wait for the netdev refcnt to drop to zero.
10518  *
10519  * We must not return until all unregister events added during
10520  * the interval the lock was held have been completed.
10521  */
10522 void netdev_run_todo(void)
10523 {
10524         struct list_head list;
10525 #ifdef CONFIG_LOCKDEP
10526         struct list_head unlink_list;
10527
10528         list_replace_init(&net_unlink_list, &unlink_list);
10529
10530         while (!list_empty(&unlink_list)) {
10531                 struct net_device *dev = list_first_entry(&unlink_list,
10532                                                           struct net_device,
10533                                                           unlink_list);
10534                 list_del_init(&dev->unlink_list);
10535                 dev->nested_level = dev->lower_level - 1;
10536         }
10537 #endif
10538
10539         /* Snapshot list, allow later requests */
10540         list_replace_init(&net_todo_list, &list);
10541
10542         __rtnl_unlock();
10543
10544
10545         /* Wait for rcu callbacks to finish before next phase */
10546         if (!list_empty(&list))
10547                 rcu_barrier();
10548
10549         while (!list_empty(&list)) {
10550                 struct net_device *dev
10551                         = list_first_entry(&list, struct net_device, todo_list);
10552                 list_del(&dev->todo_list);
10553
10554                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10555                         pr_err("network todo '%s' but state %d\n",
10556                                dev->name, dev->reg_state);
10557                         dump_stack();
10558                         continue;
10559                 }
10560
10561                 dev->reg_state = NETREG_UNREGISTERED;
10562
10563                 netdev_wait_allrefs(dev);
10564
10565                 /* paranoia */
10566                 BUG_ON(netdev_refcnt_read(dev) != 1);
10567                 BUG_ON(!list_empty(&dev->ptype_all));
10568                 BUG_ON(!list_empty(&dev->ptype_specific));
10569                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10570                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10571 #if IS_ENABLED(CONFIG_DECNET)
10572                 WARN_ON(dev->dn_ptr);
10573 #endif
10574                 if (dev->priv_destructor)
10575                         dev->priv_destructor(dev);
10576                 if (dev->needs_free_netdev)
10577                         free_netdev(dev);
10578
10579                 /* Report a network device has been unregistered */
10580                 rtnl_lock();
10581                 dev_net(dev)->dev_unreg_count--;
10582                 __rtnl_unlock();
10583                 wake_up(&netdev_unregistering_wq);
10584
10585                 /* Free network device */
10586                 kobject_put(&dev->dev.kobj);
10587         }
10588 }
10589
10590 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10591  * all the same fields in the same order as net_device_stats, with only
10592  * the type differing, but rtnl_link_stats64 may have additional fields
10593  * at the end for newer counters.
10594  */
10595 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10596                              const struct net_device_stats *netdev_stats)
10597 {
10598 #if BITS_PER_LONG == 64
10599         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10600         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10601         /* zero out counters that only exist in rtnl_link_stats64 */
10602         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10603                sizeof(*stats64) - sizeof(*netdev_stats));
10604 #else
10605         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10606         const unsigned long *src = (const unsigned long *)netdev_stats;
10607         u64 *dst = (u64 *)stats64;
10608
10609         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10610         for (i = 0; i < n; i++)
10611                 dst[i] = src[i];
10612         /* zero out counters that only exist in rtnl_link_stats64 */
10613         memset((char *)stats64 + n * sizeof(u64), 0,
10614                sizeof(*stats64) - n * sizeof(u64));
10615 #endif
10616 }
10617 EXPORT_SYMBOL(netdev_stats_to_stats64);
10618
10619 /**
10620  *      dev_get_stats   - get network device statistics
10621  *      @dev: device to get statistics from
10622  *      @storage: place to store stats
10623  *
10624  *      Get network statistics from device. Return @storage.
10625  *      The device driver may provide its own method by setting
10626  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10627  *      otherwise the internal statistics structure is used.
10628  */
10629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10630                                         struct rtnl_link_stats64 *storage)
10631 {
10632         const struct net_device_ops *ops = dev->netdev_ops;
10633
10634         if (ops->ndo_get_stats64) {
10635                 memset(storage, 0, sizeof(*storage));
10636                 ops->ndo_get_stats64(dev, storage);
10637         } else if (ops->ndo_get_stats) {
10638                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10639         } else {
10640                 netdev_stats_to_stats64(storage, &dev->stats);
10641         }
10642         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10643         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10644         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10645         return storage;
10646 }
10647 EXPORT_SYMBOL(dev_get_stats);
10648
10649 /**
10650  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10651  *      @s: place to store stats
10652  *      @netstats: per-cpu network stats to read from
10653  *
10654  *      Read per-cpu network statistics and populate the related fields in @s.
10655  */
10656 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10657                            const struct pcpu_sw_netstats __percpu *netstats)
10658 {
10659         int cpu;
10660
10661         for_each_possible_cpu(cpu) {
10662                 const struct pcpu_sw_netstats *stats;
10663                 struct pcpu_sw_netstats tmp;
10664                 unsigned int start;
10665
10666                 stats = per_cpu_ptr(netstats, cpu);
10667                 do {
10668                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10669                         tmp.rx_packets = stats->rx_packets;
10670                         tmp.rx_bytes   = stats->rx_bytes;
10671                         tmp.tx_packets = stats->tx_packets;
10672                         tmp.tx_bytes   = stats->tx_bytes;
10673                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10674
10675                 s->rx_packets += tmp.rx_packets;
10676                 s->rx_bytes   += tmp.rx_bytes;
10677                 s->tx_packets += tmp.tx_packets;
10678                 s->tx_bytes   += tmp.tx_bytes;
10679         }
10680 }
10681 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10682
10683 /**
10684  *      dev_get_tstats64 - ndo_get_stats64 implementation
10685  *      @dev: device to get statistics from
10686  *      @s: place to store stats
10687  *
10688  *      Populate @s from dev->stats and dev->tstats. Can be used as
10689  *      ndo_get_stats64() callback.
10690  */
10691 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10692 {
10693         netdev_stats_to_stats64(s, &dev->stats);
10694         dev_fetch_sw_netstats(s, dev->tstats);
10695 }
10696 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10697
10698 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10699 {
10700         struct netdev_queue *queue = dev_ingress_queue(dev);
10701
10702 #ifdef CONFIG_NET_CLS_ACT
10703         if (queue)
10704                 return queue;
10705         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10706         if (!queue)
10707                 return NULL;
10708         netdev_init_one_queue(dev, queue, NULL);
10709         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10710         queue->qdisc_sleeping = &noop_qdisc;
10711         rcu_assign_pointer(dev->ingress_queue, queue);
10712 #endif
10713         return queue;
10714 }
10715
10716 static const struct ethtool_ops default_ethtool_ops;
10717
10718 void netdev_set_default_ethtool_ops(struct net_device *dev,
10719                                     const struct ethtool_ops *ops)
10720 {
10721         if (dev->ethtool_ops == &default_ethtool_ops)
10722                 dev->ethtool_ops = ops;
10723 }
10724 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10725
10726 void netdev_freemem(struct net_device *dev)
10727 {
10728         char *addr = (char *)dev - dev->padded;
10729
10730         kvfree(addr);
10731 }
10732
10733 /**
10734  * alloc_netdev_mqs - allocate network device
10735  * @sizeof_priv: size of private data to allocate space for
10736  * @name: device name format string
10737  * @name_assign_type: origin of device name
10738  * @setup: callback to initialize device
10739  * @txqs: the number of TX subqueues to allocate
10740  * @rxqs: the number of RX subqueues to allocate
10741  *
10742  * Allocates a struct net_device with private data area for driver use
10743  * and performs basic initialization.  Also allocates subqueue structs
10744  * for each queue on the device.
10745  */
10746 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10747                 unsigned char name_assign_type,
10748                 void (*setup)(struct net_device *),
10749                 unsigned int txqs, unsigned int rxqs)
10750 {
10751         struct net_device *dev;
10752         unsigned int alloc_size;
10753         struct net_device *p;
10754
10755         BUG_ON(strlen(name) >= sizeof(dev->name));
10756
10757         if (txqs < 1) {
10758                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10759                 return NULL;
10760         }
10761
10762         if (rxqs < 1) {
10763                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10764                 return NULL;
10765         }
10766
10767         alloc_size = sizeof(struct net_device);
10768         if (sizeof_priv) {
10769                 /* ensure 32-byte alignment of private area */
10770                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10771                 alloc_size += sizeof_priv;
10772         }
10773         /* ensure 32-byte alignment of whole construct */
10774         alloc_size += NETDEV_ALIGN - 1;
10775
10776         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10777         if (!p)
10778                 return NULL;
10779
10780         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10781         dev->padded = (char *)dev - (char *)p;
10782
10783 #ifdef CONFIG_PCPU_DEV_REFCNT
10784         dev->pcpu_refcnt = alloc_percpu(int);
10785         if (!dev->pcpu_refcnt)
10786                 goto free_dev;
10787         dev_hold(dev);
10788 #else
10789         refcount_set(&dev->dev_refcnt, 1);
10790 #endif
10791
10792         if (dev_addr_init(dev))
10793                 goto free_pcpu;
10794
10795         dev_mc_init(dev);
10796         dev_uc_init(dev);
10797
10798         dev_net_set(dev, &init_net);
10799
10800         dev->gso_max_size = GSO_MAX_SIZE;
10801         dev->gso_max_segs = GSO_MAX_SEGS;
10802         dev->upper_level = 1;
10803         dev->lower_level = 1;
10804 #ifdef CONFIG_LOCKDEP
10805         dev->nested_level = 0;
10806         INIT_LIST_HEAD(&dev->unlink_list);
10807 #endif
10808
10809         INIT_LIST_HEAD(&dev->napi_list);
10810         INIT_LIST_HEAD(&dev->unreg_list);
10811         INIT_LIST_HEAD(&dev->close_list);
10812         INIT_LIST_HEAD(&dev->link_watch_list);
10813         INIT_LIST_HEAD(&dev->adj_list.upper);
10814         INIT_LIST_HEAD(&dev->adj_list.lower);
10815         INIT_LIST_HEAD(&dev->ptype_all);
10816         INIT_LIST_HEAD(&dev->ptype_specific);
10817         INIT_LIST_HEAD(&dev->net_notifier_list);
10818 #ifdef CONFIG_NET_SCHED
10819         hash_init(dev->qdisc_hash);
10820 #endif
10821         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10822         setup(dev);
10823
10824         if (!dev->tx_queue_len) {
10825                 dev->priv_flags |= IFF_NO_QUEUE;
10826                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10827         }
10828
10829         dev->num_tx_queues = txqs;
10830         dev->real_num_tx_queues = txqs;
10831         if (netif_alloc_netdev_queues(dev))
10832                 goto free_all;
10833
10834         dev->num_rx_queues = rxqs;
10835         dev->real_num_rx_queues = rxqs;
10836         if (netif_alloc_rx_queues(dev))
10837                 goto free_all;
10838
10839         strcpy(dev->name, name);
10840         dev->name_assign_type = name_assign_type;
10841         dev->group = INIT_NETDEV_GROUP;
10842         if (!dev->ethtool_ops)
10843                 dev->ethtool_ops = &default_ethtool_ops;
10844
10845         nf_hook_ingress_init(dev);
10846
10847         return dev;
10848
10849 free_all:
10850         free_netdev(dev);
10851         return NULL;
10852
10853 free_pcpu:
10854 #ifdef CONFIG_PCPU_DEV_REFCNT
10855         free_percpu(dev->pcpu_refcnt);
10856 free_dev:
10857 #endif
10858         netdev_freemem(dev);
10859         return NULL;
10860 }
10861 EXPORT_SYMBOL(alloc_netdev_mqs);
10862
10863 /**
10864  * free_netdev - free network device
10865  * @dev: device
10866  *
10867  * This function does the last stage of destroying an allocated device
10868  * interface. The reference to the device object is released. If this
10869  * is the last reference then it will be freed.Must be called in process
10870  * context.
10871  */
10872 void free_netdev(struct net_device *dev)
10873 {
10874         struct napi_struct *p, *n;
10875
10876         might_sleep();
10877
10878         /* When called immediately after register_netdevice() failed the unwind
10879          * handling may still be dismantling the device. Handle that case by
10880          * deferring the free.
10881          */
10882         if (dev->reg_state == NETREG_UNREGISTERING) {
10883                 ASSERT_RTNL();
10884                 dev->needs_free_netdev = true;
10885                 return;
10886         }
10887
10888         netif_free_tx_queues(dev);
10889         netif_free_rx_queues(dev);
10890
10891         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10892
10893         /* Flush device addresses */
10894         dev_addr_flush(dev);
10895
10896         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10897                 netif_napi_del(p);
10898
10899 #ifdef CONFIG_PCPU_DEV_REFCNT
10900         free_percpu(dev->pcpu_refcnt);
10901         dev->pcpu_refcnt = NULL;
10902 #endif
10903         free_percpu(dev->xdp_bulkq);
10904         dev->xdp_bulkq = NULL;
10905
10906         /*  Compatibility with error handling in drivers */
10907         if (dev->reg_state == NETREG_UNINITIALIZED) {
10908                 netdev_freemem(dev);
10909                 return;
10910         }
10911
10912         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10913         dev->reg_state = NETREG_RELEASED;
10914
10915         /* will free via device release */
10916         put_device(&dev->dev);
10917 }
10918 EXPORT_SYMBOL(free_netdev);
10919
10920 /**
10921  *      synchronize_net -  Synchronize with packet receive processing
10922  *
10923  *      Wait for packets currently being received to be done.
10924  *      Does not block later packets from starting.
10925  */
10926 void synchronize_net(void)
10927 {
10928         might_sleep();
10929         if (rtnl_is_locked())
10930                 synchronize_rcu_expedited();
10931         else
10932                 synchronize_rcu();
10933 }
10934 EXPORT_SYMBOL(synchronize_net);
10935
10936 /**
10937  *      unregister_netdevice_queue - remove device from the kernel
10938  *      @dev: device
10939  *      @head: list
10940  *
10941  *      This function shuts down a device interface and removes it
10942  *      from the kernel tables.
10943  *      If head not NULL, device is queued to be unregistered later.
10944  *
10945  *      Callers must hold the rtnl semaphore.  You may want
10946  *      unregister_netdev() instead of this.
10947  */
10948
10949 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10950 {
10951         ASSERT_RTNL();
10952
10953         if (head) {
10954                 list_move_tail(&dev->unreg_list, head);
10955         } else {
10956                 LIST_HEAD(single);
10957
10958                 list_add(&dev->unreg_list, &single);
10959                 unregister_netdevice_many(&single);
10960         }
10961 }
10962 EXPORT_SYMBOL(unregister_netdevice_queue);
10963
10964 /**
10965  *      unregister_netdevice_many - unregister many devices
10966  *      @head: list of devices
10967  *
10968  *  Note: As most callers use a stack allocated list_head,
10969  *  we force a list_del() to make sure stack wont be corrupted later.
10970  */
10971 void unregister_netdevice_many(struct list_head *head)
10972 {
10973         struct net_device *dev, *tmp;
10974         LIST_HEAD(close_head);
10975
10976         BUG_ON(dev_boot_phase);
10977         ASSERT_RTNL();
10978
10979         if (list_empty(head))
10980                 return;
10981
10982         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10983                 /* Some devices call without registering
10984                  * for initialization unwind. Remove those
10985                  * devices and proceed with the remaining.
10986                  */
10987                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10988                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10989                                  dev->name, dev);
10990
10991                         WARN_ON(1);
10992                         list_del(&dev->unreg_list);
10993                         continue;
10994                 }
10995                 dev->dismantle = true;
10996                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10997         }
10998
10999         /* If device is running, close it first. */
11000         list_for_each_entry(dev, head, unreg_list)
11001                 list_add_tail(&dev->close_list, &close_head);
11002         dev_close_many(&close_head, true);
11003
11004         list_for_each_entry(dev, head, unreg_list) {
11005                 /* And unlink it from device chain. */
11006                 unlist_netdevice(dev);
11007
11008                 dev->reg_state = NETREG_UNREGISTERING;
11009         }
11010         flush_all_backlogs();
11011
11012         synchronize_net();
11013
11014         list_for_each_entry(dev, head, unreg_list) {
11015                 struct sk_buff *skb = NULL;
11016
11017                 /* Shutdown queueing discipline. */
11018                 dev_shutdown(dev);
11019
11020                 dev_xdp_uninstall(dev);
11021
11022                 /* Notify protocols, that we are about to destroy
11023                  * this device. They should clean all the things.
11024                  */
11025                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026
11027                 if (!dev->rtnl_link_ops ||
11028                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030                                                      GFP_KERNEL, NULL, 0);
11031
11032                 /*
11033                  *      Flush the unicast and multicast chains
11034                  */
11035                 dev_uc_flush(dev);
11036                 dev_mc_flush(dev);
11037
11038                 netdev_name_node_alt_flush(dev);
11039                 netdev_name_node_free(dev->name_node);
11040
11041                 if (dev->netdev_ops->ndo_uninit)
11042                         dev->netdev_ops->ndo_uninit(dev);
11043
11044                 if (skb)
11045                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11046
11047                 /* Notifier chain MUST detach us all upper devices. */
11048                 WARN_ON(netdev_has_any_upper_dev(dev));
11049                 WARN_ON(netdev_has_any_lower_dev(dev));
11050
11051                 /* Remove entries from kobject tree */
11052                 netdev_unregister_kobject(dev);
11053 #ifdef CONFIG_XPS
11054                 /* Remove XPS queueing entries */
11055                 netif_reset_xps_queues_gt(dev, 0);
11056 #endif
11057         }
11058
11059         synchronize_net();
11060
11061         list_for_each_entry(dev, head, unreg_list) {
11062                 dev_put(dev);
11063                 net_set_todo(dev);
11064         }
11065
11066         list_del(head);
11067 }
11068 EXPORT_SYMBOL(unregister_netdevice_many);
11069
11070 /**
11071  *      unregister_netdev - remove device from the kernel
11072  *      @dev: device
11073  *
11074  *      This function shuts down a device interface and removes it
11075  *      from the kernel tables.
11076  *
11077  *      This is just a wrapper for unregister_netdevice that takes
11078  *      the rtnl semaphore.  In general you want to use this and not
11079  *      unregister_netdevice.
11080  */
11081 void unregister_netdev(struct net_device *dev)
11082 {
11083         rtnl_lock();
11084         unregister_netdevice(dev);
11085         rtnl_unlock();
11086 }
11087 EXPORT_SYMBOL(unregister_netdev);
11088
11089 /**
11090  *      __dev_change_net_namespace - move device to different nethost namespace
11091  *      @dev: device
11092  *      @net: network namespace
11093  *      @pat: If not NULL name pattern to try if the current device name
11094  *            is already taken in the destination network namespace.
11095  *      @new_ifindex: If not zero, specifies device index in the target
11096  *                    namespace.
11097  *
11098  *      This function shuts down a device interface and moves it
11099  *      to a new network namespace. On success 0 is returned, on
11100  *      a failure a netagive errno code is returned.
11101  *
11102  *      Callers must hold the rtnl semaphore.
11103  */
11104
11105 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11106                                const char *pat, int new_ifindex)
11107 {
11108         struct net *net_old = dev_net(dev);
11109         int err, new_nsid;
11110
11111         ASSERT_RTNL();
11112
11113         /* Don't allow namespace local devices to be moved. */
11114         err = -EINVAL;
11115         if (dev->features & NETIF_F_NETNS_LOCAL)
11116                 goto out;
11117
11118         /* Ensure the device has been registrered */
11119         if (dev->reg_state != NETREG_REGISTERED)
11120                 goto out;
11121
11122         /* Get out if there is nothing todo */
11123         err = 0;
11124         if (net_eq(net_old, net))
11125                 goto out;
11126
11127         /* Pick the destination device name, and ensure
11128          * we can use it in the destination network namespace.
11129          */
11130         err = -EEXIST;
11131         if (__dev_get_by_name(net, dev->name)) {
11132                 /* We get here if we can't use the current device name */
11133                 if (!pat)
11134                         goto out;
11135                 err = dev_get_valid_name(net, dev, pat);
11136                 if (err < 0)
11137                         goto out;
11138         }
11139
11140         /* Check that new_ifindex isn't used yet. */
11141         err = -EBUSY;
11142         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11143                 goto out;
11144
11145         /*
11146          * And now a mini version of register_netdevice unregister_netdevice.
11147          */
11148
11149         /* If device is running close it first. */
11150         dev_close(dev);
11151
11152         /* And unlink it from device chain */
11153         unlist_netdevice(dev);
11154
11155         synchronize_net();
11156
11157         /* Shutdown queueing discipline. */
11158         dev_shutdown(dev);
11159
11160         /* Notify protocols, that we are about to destroy
11161          * this device. They should clean all the things.
11162          *
11163          * Note that dev->reg_state stays at NETREG_REGISTERED.
11164          * This is wanted because this way 8021q and macvlan know
11165          * the device is just moving and can keep their slaves up.
11166          */
11167         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11168         rcu_barrier();
11169
11170         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11171         /* If there is an ifindex conflict assign a new one */
11172         if (!new_ifindex) {
11173                 if (__dev_get_by_index(net, dev->ifindex))
11174                         new_ifindex = dev_new_index(net);
11175                 else
11176                         new_ifindex = dev->ifindex;
11177         }
11178
11179         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11180                             new_ifindex);
11181
11182         /*
11183          *      Flush the unicast and multicast chains
11184          */
11185         dev_uc_flush(dev);
11186         dev_mc_flush(dev);
11187
11188         /* Send a netdev-removed uevent to the old namespace */
11189         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11190         netdev_adjacent_del_links(dev);
11191
11192         /* Move per-net netdevice notifiers that are following the netdevice */
11193         move_netdevice_notifiers_dev_net(dev, net);
11194
11195         /* Actually switch the network namespace */
11196         dev_net_set(dev, net);
11197         dev->ifindex = new_ifindex;
11198
11199         /* Send a netdev-add uevent to the new namespace */
11200         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11201         netdev_adjacent_add_links(dev);
11202
11203         /* Fixup kobjects */
11204         err = device_rename(&dev->dev, dev->name);
11205         WARN_ON(err);
11206
11207         /* Adapt owner in case owning user namespace of target network
11208          * namespace is different from the original one.
11209          */
11210         err = netdev_change_owner(dev, net_old, net);
11211         WARN_ON(err);
11212
11213         /* Add the device back in the hashes */
11214         list_netdevice(dev);
11215
11216         /* Notify protocols, that a new device appeared. */
11217         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11218
11219         /*
11220          *      Prevent userspace races by waiting until the network
11221          *      device is fully setup before sending notifications.
11222          */
11223         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11224
11225         synchronize_net();
11226         err = 0;
11227 out:
11228         return err;
11229 }
11230 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11231
11232 static int dev_cpu_dead(unsigned int oldcpu)
11233 {
11234         struct sk_buff **list_skb;
11235         struct sk_buff *skb;
11236         unsigned int cpu;
11237         struct softnet_data *sd, *oldsd, *remsd = NULL;
11238
11239         local_irq_disable();
11240         cpu = smp_processor_id();
11241         sd = &per_cpu(softnet_data, cpu);
11242         oldsd = &per_cpu(softnet_data, oldcpu);
11243
11244         /* Find end of our completion_queue. */
11245         list_skb = &sd->completion_queue;
11246         while (*list_skb)
11247                 list_skb = &(*list_skb)->next;
11248         /* Append completion queue from offline CPU. */
11249         *list_skb = oldsd->completion_queue;
11250         oldsd->completion_queue = NULL;
11251
11252         /* Append output queue from offline CPU. */
11253         if (oldsd->output_queue) {
11254                 *sd->output_queue_tailp = oldsd->output_queue;
11255                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11256                 oldsd->output_queue = NULL;
11257                 oldsd->output_queue_tailp = &oldsd->output_queue;
11258         }
11259         /* Append NAPI poll list from offline CPU, with one exception :
11260          * process_backlog() must be called by cpu owning percpu backlog.
11261          * We properly handle process_queue & input_pkt_queue later.
11262          */
11263         while (!list_empty(&oldsd->poll_list)) {
11264                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11265                                                             struct napi_struct,
11266                                                             poll_list);
11267
11268                 list_del_init(&napi->poll_list);
11269                 if (napi->poll == process_backlog)
11270                         napi->state = 0;
11271                 else
11272                         ____napi_schedule(sd, napi);
11273         }
11274
11275         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11276         local_irq_enable();
11277
11278 #ifdef CONFIG_RPS
11279         remsd = oldsd->rps_ipi_list;
11280         oldsd->rps_ipi_list = NULL;
11281 #endif
11282         /* send out pending IPI's on offline CPU */
11283         net_rps_send_ipi(remsd);
11284
11285         /* Process offline CPU's input_pkt_queue */
11286         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11287                 netif_rx_ni(skb);
11288                 input_queue_head_incr(oldsd);
11289         }
11290         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11291                 netif_rx_ni(skb);
11292                 input_queue_head_incr(oldsd);
11293         }
11294
11295         return 0;
11296 }
11297
11298 /**
11299  *      netdev_increment_features - increment feature set by one
11300  *      @all: current feature set
11301  *      @one: new feature set
11302  *      @mask: mask feature set
11303  *
11304  *      Computes a new feature set after adding a device with feature set
11305  *      @one to the master device with current feature set @all.  Will not
11306  *      enable anything that is off in @mask. Returns the new feature set.
11307  */
11308 netdev_features_t netdev_increment_features(netdev_features_t all,
11309         netdev_features_t one, netdev_features_t mask)
11310 {
11311         if (mask & NETIF_F_HW_CSUM)
11312                 mask |= NETIF_F_CSUM_MASK;
11313         mask |= NETIF_F_VLAN_CHALLENGED;
11314
11315         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11316         all &= one | ~NETIF_F_ALL_FOR_ALL;
11317
11318         /* If one device supports hw checksumming, set for all. */
11319         if (all & NETIF_F_HW_CSUM)
11320                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11321
11322         return all;
11323 }
11324 EXPORT_SYMBOL(netdev_increment_features);
11325
11326 static struct hlist_head * __net_init netdev_create_hash(void)
11327 {
11328         int i;
11329         struct hlist_head *hash;
11330
11331         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11332         if (hash != NULL)
11333                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11334                         INIT_HLIST_HEAD(&hash[i]);
11335
11336         return hash;
11337 }
11338
11339 /* Initialize per network namespace state */
11340 static int __net_init netdev_init(struct net *net)
11341 {
11342         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11343                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11344
11345         if (net != &init_net)
11346                 INIT_LIST_HEAD(&net->dev_base_head);
11347
11348         net->dev_name_head = netdev_create_hash();
11349         if (net->dev_name_head == NULL)
11350                 goto err_name;
11351
11352         net->dev_index_head = netdev_create_hash();
11353         if (net->dev_index_head == NULL)
11354                 goto err_idx;
11355
11356         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11357
11358         return 0;
11359
11360 err_idx:
11361         kfree(net->dev_name_head);
11362 err_name:
11363         return -ENOMEM;
11364 }
11365
11366 /**
11367  *      netdev_drivername - network driver for the device
11368  *      @dev: network device
11369  *
11370  *      Determine network driver for device.
11371  */
11372 const char *netdev_drivername(const struct net_device *dev)
11373 {
11374         const struct device_driver *driver;
11375         const struct device *parent;
11376         const char *empty = "";
11377
11378         parent = dev->dev.parent;
11379         if (!parent)
11380                 return empty;
11381
11382         driver = parent->driver;
11383         if (driver && driver->name)
11384                 return driver->name;
11385         return empty;
11386 }
11387
11388 static void __netdev_printk(const char *level, const struct net_device *dev,
11389                             struct va_format *vaf)
11390 {
11391         if (dev && dev->dev.parent) {
11392                 dev_printk_emit(level[1] - '0',
11393                                 dev->dev.parent,
11394                                 "%s %s %s%s: %pV",
11395                                 dev_driver_string(dev->dev.parent),
11396                                 dev_name(dev->dev.parent),
11397                                 netdev_name(dev), netdev_reg_state(dev),
11398                                 vaf);
11399         } else if (dev) {
11400                 printk("%s%s%s: %pV",
11401                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11402         } else {
11403                 printk("%s(NULL net_device): %pV", level, vaf);
11404         }
11405 }
11406
11407 void netdev_printk(const char *level, const struct net_device *dev,
11408                    const char *format, ...)
11409 {
11410         struct va_format vaf;
11411         va_list args;
11412
11413         va_start(args, format);
11414
11415         vaf.fmt = format;
11416         vaf.va = &args;
11417
11418         __netdev_printk(level, dev, &vaf);
11419
11420         va_end(args);
11421 }
11422 EXPORT_SYMBOL(netdev_printk);
11423
11424 #define define_netdev_printk_level(func, level)                 \
11425 void func(const struct net_device *dev, const char *fmt, ...)   \
11426 {                                                               \
11427         struct va_format vaf;                                   \
11428         va_list args;                                           \
11429                                                                 \
11430         va_start(args, fmt);                                    \
11431                                                                 \
11432         vaf.fmt = fmt;                                          \
11433         vaf.va = &args;                                         \
11434                                                                 \
11435         __netdev_printk(level, dev, &vaf);                      \
11436                                                                 \
11437         va_end(args);                                           \
11438 }                                                               \
11439 EXPORT_SYMBOL(func);
11440
11441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11444 define_netdev_printk_level(netdev_err, KERN_ERR);
11445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11447 define_netdev_printk_level(netdev_info, KERN_INFO);
11448
11449 static void __net_exit netdev_exit(struct net *net)
11450 {
11451         kfree(net->dev_name_head);
11452         kfree(net->dev_index_head);
11453         if (net != &init_net)
11454                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11455 }
11456
11457 static struct pernet_operations __net_initdata netdev_net_ops = {
11458         .init = netdev_init,
11459         .exit = netdev_exit,
11460 };
11461
11462 static void __net_exit default_device_exit(struct net *net)
11463 {
11464         struct net_device *dev, *aux;
11465         /*
11466          * Push all migratable network devices back to the
11467          * initial network namespace
11468          */
11469         rtnl_lock();
11470         for_each_netdev_safe(net, dev, aux) {
11471                 int err;
11472                 char fb_name[IFNAMSIZ];
11473
11474                 /* Ignore unmoveable devices (i.e. loopback) */
11475                 if (dev->features & NETIF_F_NETNS_LOCAL)
11476                         continue;
11477
11478                 /* Leave virtual devices for the generic cleanup */
11479                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11480                         continue;
11481
11482                 /* Push remaining network devices to init_net */
11483                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11484                 if (__dev_get_by_name(&init_net, fb_name))
11485                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11486                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11487                 if (err) {
11488                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11489                                  __func__, dev->name, err);
11490                         BUG();
11491                 }
11492         }
11493         rtnl_unlock();
11494 }
11495
11496 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11497 {
11498         /* Return with the rtnl_lock held when there are no network
11499          * devices unregistering in any network namespace in net_list.
11500          */
11501         struct net *net;
11502         bool unregistering;
11503         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11504
11505         add_wait_queue(&netdev_unregistering_wq, &wait);
11506         for (;;) {
11507                 unregistering = false;
11508                 rtnl_lock();
11509                 list_for_each_entry(net, net_list, exit_list) {
11510                         if (net->dev_unreg_count > 0) {
11511                                 unregistering = true;
11512                                 break;
11513                         }
11514                 }
11515                 if (!unregistering)
11516                         break;
11517                 __rtnl_unlock();
11518
11519                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11520         }
11521         remove_wait_queue(&netdev_unregistering_wq, &wait);
11522 }
11523
11524 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11525 {
11526         /* At exit all network devices most be removed from a network
11527          * namespace.  Do this in the reverse order of registration.
11528          * Do this across as many network namespaces as possible to
11529          * improve batching efficiency.
11530          */
11531         struct net_device *dev;
11532         struct net *net;
11533         LIST_HEAD(dev_kill_list);
11534
11535         /* To prevent network device cleanup code from dereferencing
11536          * loopback devices or network devices that have been freed
11537          * wait here for all pending unregistrations to complete,
11538          * before unregistring the loopback device and allowing the
11539          * network namespace be freed.
11540          *
11541          * The netdev todo list containing all network devices
11542          * unregistrations that happen in default_device_exit_batch
11543          * will run in the rtnl_unlock() at the end of
11544          * default_device_exit_batch.
11545          */
11546         rtnl_lock_unregistering(net_list);
11547         list_for_each_entry(net, net_list, exit_list) {
11548                 for_each_netdev_reverse(net, dev) {
11549                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11550                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11551                         else
11552                                 unregister_netdevice_queue(dev, &dev_kill_list);
11553                 }
11554         }
11555         unregister_netdevice_many(&dev_kill_list);
11556         rtnl_unlock();
11557 }
11558
11559 static struct pernet_operations __net_initdata default_device_ops = {
11560         .exit = default_device_exit,
11561         .exit_batch = default_device_exit_batch,
11562 };
11563
11564 /*
11565  *      Initialize the DEV module. At boot time this walks the device list and
11566  *      unhooks any devices that fail to initialise (normally hardware not
11567  *      present) and leaves us with a valid list of present and active devices.
11568  *
11569  */
11570
11571 /*
11572  *       This is called single threaded during boot, so no need
11573  *       to take the rtnl semaphore.
11574  */
11575 static int __init net_dev_init(void)
11576 {
11577         int i, rc = -ENOMEM;
11578
11579         BUG_ON(!dev_boot_phase);
11580
11581         if (dev_proc_init())
11582                 goto out;
11583
11584         if (netdev_kobject_init())
11585                 goto out;
11586
11587         INIT_LIST_HEAD(&ptype_all);
11588         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11589                 INIT_LIST_HEAD(&ptype_base[i]);
11590
11591         INIT_LIST_HEAD(&offload_base);
11592
11593         if (register_pernet_subsys(&netdev_net_ops))
11594                 goto out;
11595
11596         /*
11597          *      Initialise the packet receive queues.
11598          */
11599
11600         for_each_possible_cpu(i) {
11601                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11602                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11603
11604                 INIT_WORK(flush, flush_backlog);
11605
11606                 skb_queue_head_init(&sd->input_pkt_queue);
11607                 skb_queue_head_init(&sd->process_queue);
11608 #ifdef CONFIG_XFRM_OFFLOAD
11609                 skb_queue_head_init(&sd->xfrm_backlog);
11610 #endif
11611                 INIT_LIST_HEAD(&sd->poll_list);
11612                 sd->output_queue_tailp = &sd->output_queue;
11613 #ifdef CONFIG_RPS
11614                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11615                 sd->cpu = i;
11616 #endif
11617
11618                 init_gro_hash(&sd->backlog);
11619                 sd->backlog.poll = process_backlog;
11620                 sd->backlog.weight = weight_p;
11621         }
11622
11623         dev_boot_phase = 0;
11624
11625         /* The loopback device is special if any other network devices
11626          * is present in a network namespace the loopback device must
11627          * be present. Since we now dynamically allocate and free the
11628          * loopback device ensure this invariant is maintained by
11629          * keeping the loopback device as the first device on the
11630          * list of network devices.  Ensuring the loopback devices
11631          * is the first device that appears and the last network device
11632          * that disappears.
11633          */
11634         if (register_pernet_device(&loopback_net_ops))
11635                 goto out;
11636
11637         if (register_pernet_device(&default_device_ops))
11638                 goto out;
11639
11640         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11641         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11642
11643         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11644                                        NULL, dev_cpu_dead);
11645         WARN_ON(rc < 0);
11646         rc = 0;
11647 out:
11648         return rc;
11649 }
11650
11651 subsys_initcall(net_dev_init);