af8c1ea040b9364b076e2d72f04dc3de2d7e2f11
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 /**
852  *      __dev_get_by_name       - find a device by its name
853  *      @net: the applicable net namespace
854  *      @name: name to find
855  *
856  *      Find an interface by name. Must be called under RTNL semaphore
857  *      or @dev_base_lock. If the name is found a pointer to the device
858  *      is returned. If the name is not found then %NULL is returned. The
859  *      reference counters are not incremented so the caller must be
860  *      careful with locks.
861  */
862
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865         struct netdev_name_node *node_name;
866
867         node_name = netdev_name_node_lookup(net, name);
868         return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871
872 /**
873  * dev_get_by_name_rcu  - find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886         struct netdev_name_node *node_name;
887
888         node_name = netdev_name_node_lookup_rcu(net, name);
889         return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893 /**
894  *      dev_get_by_name         - find a device by its name
895  *      @net: the applicable net namespace
896  *      @name: name to find
897  *
898  *      Find an interface by name. This can be called from any
899  *      context and does its own locking. The returned handle has
900  *      the usage count incremented and the caller must use dev_put() to
901  *      release it when it is no longer needed. %NULL is returned if no
902  *      matching device is found.
903  */
904
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907         struct net_device *dev;
908
909         rcu_read_lock();
910         dev = dev_get_by_name_rcu(net, name);
911         if (dev)
912                 dev_hold(dev);
913         rcu_read_unlock();
914         return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917
918 /**
919  *      __dev_get_by_index - find a device by its ifindex
920  *      @net: the applicable net namespace
921  *      @ifindex: index of device
922  *
923  *      Search for an interface by index. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not
925  *      had its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold either the RTNL semaphore
927  *      or @dev_base_lock.
928  */
929
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932         struct net_device *dev;
933         struct hlist_head *head = dev_index_hash(net, ifindex);
934
935         hlist_for_each_entry(dev, head, index_hlist)
936                 if (dev->ifindex == ifindex)
937                         return dev;
938
939         return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942
943 /**
944  *      dev_get_by_index_rcu - find a device by its ifindex
945  *      @net: the applicable net namespace
946  *      @ifindex: index of device
947  *
948  *      Search for an interface by index. Returns %NULL if the device
949  *      is not found or a pointer to the device. The device has not
950  *      had its reference counter increased so the caller must be careful
951  *      about locking. The caller must hold RCU lock.
952  */
953
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956         struct net_device *dev;
957         struct hlist_head *head = dev_index_hash(net, ifindex);
958
959         hlist_for_each_entry_rcu(dev, head, index_hlist)
960                 if (dev->ifindex == ifindex)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968 /**
969  *      dev_get_by_index - find a device by its ifindex
970  *      @net: the applicable net namespace
971  *      @ifindex: index of device
972  *
973  *      Search for an interface by index. Returns NULL if the device
974  *      is not found or a pointer to the device. The device returned has
975  *      had a reference added and the pointer is safe until the user calls
976  *      dev_put to indicate they have finished with it.
977  */
978
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981         struct net_device *dev;
982
983         rcu_read_lock();
984         dev = dev_get_by_index_rcu(net, ifindex);
985         if (dev)
986                 dev_hold(dev);
987         rcu_read_unlock();
988         return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991
992 /**
993  *      dev_get_by_napi_id - find a device by napi_id
994  *      @napi_id: ID of the NAPI struct
995  *
996  *      Search for an interface by NAPI ID. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not had
998  *      its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004         struct napi_struct *napi;
1005
1006         WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008         if (napi_id < MIN_NAPI_ID)
1009                 return NULL;
1010
1011         napi = napi_by_id(napi_id);
1012
1013         return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017 /**
1018  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *      @net: network namespace
1020  *      @name: a pointer to the buffer where the name will be stored.
1021  *      @ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025         struct net_device *dev;
1026         int ret;
1027
1028         down_read(&devnet_rename_sem);
1029         rcu_read_lock();
1030
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (!dev) {
1033                 ret = -ENODEV;
1034                 goto out;
1035         }
1036
1037         strcpy(name, dev->name);
1038
1039         ret = 0;
1040 out:
1041         rcu_read_unlock();
1042         up_read(&devnet_rename_sem);
1043         return ret;
1044 }
1045
1046 /**
1047  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *      @net: the applicable net namespace
1049  *      @type: media type of device
1050  *      @ha: hardware address
1051  *
1052  *      Search for an interface by MAC address. Returns NULL if the device
1053  *      is not found or a pointer to the device.
1054  *      The caller must hold RCU or RTNL.
1055  *      The returned device has not had its ref count increased
1056  *      and the caller must therefore be careful about locking
1057  *
1058  */
1059
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061                                        const char *ha)
1062 {
1063         struct net_device *dev;
1064
1065         for_each_netdev_rcu(net, dev)
1066                 if (dev->type == type &&
1067                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1068                         return dev;
1069
1070         return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076         struct net_device *dev, *ret = NULL;
1077
1078         rcu_read_lock();
1079         for_each_netdev_rcu(net, dev)
1080                 if (dev->type == type) {
1081                         dev_hold(dev);
1082                         ret = dev;
1083                         break;
1084                 }
1085         rcu_read_unlock();
1086         return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090 /**
1091  *      __dev_get_by_flags - find any device with given flags
1092  *      @net: the applicable net namespace
1093  *      @if_flags: IFF_* values
1094  *      @mask: bitmask of bits in if_flags to check
1095  *
1096  *      Search for any interface with the given flags. Returns NULL if a device
1097  *      is not found or a pointer to the device. Must be called inside
1098  *      rtnl_lock(), and result refcount is unchanged.
1099  */
1100
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102                                       unsigned short mask)
1103 {
1104         struct net_device *dev, *ret;
1105
1106         ASSERT_RTNL();
1107
1108         ret = NULL;
1109         for_each_netdev(net, dev) {
1110                 if (((dev->flags ^ if_flags) & mask) == 0) {
1111                         ret = dev;
1112                         break;
1113                 }
1114         }
1115         return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119 /**
1120  *      dev_valid_name - check if name is okay for network device
1121  *      @name: name string
1122  *
1123  *      Network device names need to be valid file names to
1124  *      allow sysfs to work.  We also disallow any kind of
1125  *      whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129         if (*name == '\0')
1130                 return false;
1131         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132                 return false;
1133         if (!strcmp(name, ".") || !strcmp(name, ".."))
1134                 return false;
1135
1136         while (*name) {
1137                 if (*name == '/' || *name == ':' || isspace(*name))
1138                         return false;
1139                 name++;
1140         }
1141         return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144
1145 /**
1146  *      __dev_alloc_name - allocate a name for a device
1147  *      @net: network namespace to allocate the device name in
1148  *      @name: name format string
1149  *      @buf:  scratch buffer and result name string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162         int i = 0;
1163         const char *p;
1164         const int max_netdevices = 8*PAGE_SIZE;
1165         unsigned long *inuse;
1166         struct net_device *d;
1167
1168         if (!dev_valid_name(name))
1169                 return -EINVAL;
1170
1171         p = strchr(name, '%');
1172         if (p) {
1173                 /*
1174                  * Verify the string as this thing may have come from
1175                  * the user.  There must be either one "%d" and no other "%"
1176                  * characters.
1177                  */
1178                 if (p[1] != 'd' || strchr(p + 2, '%'))
1179                         return -EINVAL;
1180
1181                 /* Use one page as a bit array of possible slots */
1182                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183                 if (!inuse)
1184                         return -ENOMEM;
1185
1186                 for_each_netdev(net, d) {
1187                         struct netdev_name_node *name_node;
1188                         list_for_each_entry(name_node, &d->name_node->list, list) {
1189                                 if (!sscanf(name_node->name, name, &i))
1190                                         continue;
1191                                 if (i < 0 || i >= max_netdevices)
1192                                         continue;
1193
1194                                 /*  avoid cases where sscanf is not exact inverse of printf */
1195                                 snprintf(buf, IFNAMSIZ, name, i);
1196                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1197                                         set_bit(i, inuse);
1198                         }
1199                         if (!sscanf(d->name, name, &i))
1200                                 continue;
1201                         if (i < 0 || i >= max_netdevices)
1202                                 continue;
1203
1204                         /*  avoid cases where sscanf is not exact inverse of printf */
1205                         snprintf(buf, IFNAMSIZ, name, i);
1206                         if (!strncmp(buf, d->name, IFNAMSIZ))
1207                                 set_bit(i, inuse);
1208                 }
1209
1210                 i = find_first_zero_bit(inuse, max_netdevices);
1211                 free_page((unsigned long) inuse);
1212         }
1213
1214         snprintf(buf, IFNAMSIZ, name, i);
1215         if (!__dev_get_by_name(net, buf))
1216                 return i;
1217
1218         /* It is possible to run out of possible slots
1219          * when the name is long and there isn't enough space left
1220          * for the digits, or if all bits are used.
1221          */
1222         return -ENFILE;
1223 }
1224
1225 static int dev_alloc_name_ns(struct net *net,
1226                              struct net_device *dev,
1227                              const char *name)
1228 {
1229         char buf[IFNAMSIZ];
1230         int ret;
1231
1232         BUG_ON(!net);
1233         ret = __dev_alloc_name(net, name, buf);
1234         if (ret >= 0)
1235                 strlcpy(dev->name, buf, IFNAMSIZ);
1236         return ret;
1237 }
1238
1239 /**
1240  *      dev_alloc_name - allocate a name for a device
1241  *      @dev: device
1242  *      @name: name format string
1243  *
1244  *      Passed a format string - eg "lt%d" it will try and find a suitable
1245  *      id. It scans list of devices to build up a free map, then chooses
1246  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1247  *      while allocating the name and adding the device in order to avoid
1248  *      duplicates.
1249  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1250  *      Returns the number of the unit assigned or a negative errno code.
1251  */
1252
1253 int dev_alloc_name(struct net_device *dev, const char *name)
1254 {
1255         return dev_alloc_name_ns(dev_net(dev), dev, name);
1256 }
1257 EXPORT_SYMBOL(dev_alloc_name);
1258
1259 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1260                               const char *name)
1261 {
1262         BUG_ON(!net);
1263
1264         if (!dev_valid_name(name))
1265                 return -EINVAL;
1266
1267         if (strchr(name, '%'))
1268                 return dev_alloc_name_ns(net, dev, name);
1269         else if (__dev_get_by_name(net, name))
1270                 return -EEXIST;
1271         else if (dev->name != name)
1272                 strlcpy(dev->name, name, IFNAMSIZ);
1273
1274         return 0;
1275 }
1276
1277 /**
1278  *      dev_change_name - change name of a device
1279  *      @dev: device
1280  *      @newname: name (or format string) must be at least IFNAMSIZ
1281  *
1282  *      Change name of a device, can pass format strings "eth%d".
1283  *      for wildcarding.
1284  */
1285 int dev_change_name(struct net_device *dev, const char *newname)
1286 {
1287         unsigned char old_assign_type;
1288         char oldname[IFNAMSIZ];
1289         int err = 0;
1290         int ret;
1291         struct net *net;
1292
1293         ASSERT_RTNL();
1294         BUG_ON(!dev_net(dev));
1295
1296         net = dev_net(dev);
1297
1298         /* Some auto-enslaved devices e.g. failover slaves are
1299          * special, as userspace might rename the device after
1300          * the interface had been brought up and running since
1301          * the point kernel initiated auto-enslavement. Allow
1302          * live name change even when these slave devices are
1303          * up and running.
1304          *
1305          * Typically, users of these auto-enslaving devices
1306          * don't actually care about slave name change, as
1307          * they are supposed to operate on master interface
1308          * directly.
1309          */
1310         if (dev->flags & IFF_UP &&
1311             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1312                 return -EBUSY;
1313
1314         down_write(&devnet_rename_sem);
1315
1316         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1317                 up_write(&devnet_rename_sem);
1318                 return 0;
1319         }
1320
1321         memcpy(oldname, dev->name, IFNAMSIZ);
1322
1323         err = dev_get_valid_name(net, dev, newname);
1324         if (err < 0) {
1325                 up_write(&devnet_rename_sem);
1326                 return err;
1327         }
1328
1329         if (oldname[0] && !strchr(oldname, '%'))
1330                 netdev_info(dev, "renamed from %s\n", oldname);
1331
1332         old_assign_type = dev->name_assign_type;
1333         dev->name_assign_type = NET_NAME_RENAMED;
1334
1335 rollback:
1336         ret = device_rename(&dev->dev, dev->name);
1337         if (ret) {
1338                 memcpy(dev->name, oldname, IFNAMSIZ);
1339                 dev->name_assign_type = old_assign_type;
1340                 up_write(&devnet_rename_sem);
1341                 return ret;
1342         }
1343
1344         up_write(&devnet_rename_sem);
1345
1346         netdev_adjacent_rename_links(dev, oldname);
1347
1348         write_lock_bh(&dev_base_lock);
1349         netdev_name_node_del(dev->name_node);
1350         write_unlock_bh(&dev_base_lock);
1351
1352         synchronize_rcu();
1353
1354         write_lock_bh(&dev_base_lock);
1355         netdev_name_node_add(net, dev->name_node);
1356         write_unlock_bh(&dev_base_lock);
1357
1358         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1359         ret = notifier_to_errno(ret);
1360
1361         if (ret) {
1362                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1363                 if (err >= 0) {
1364                         err = ret;
1365                         down_write(&devnet_rename_sem);
1366                         memcpy(dev->name, oldname, IFNAMSIZ);
1367                         memcpy(oldname, newname, IFNAMSIZ);
1368                         dev->name_assign_type = old_assign_type;
1369                         old_assign_type = NET_NAME_RENAMED;
1370                         goto rollback;
1371                 } else {
1372                         pr_err("%s: name change rollback failed: %d\n",
1373                                dev->name, ret);
1374                 }
1375         }
1376
1377         return err;
1378 }
1379
1380 /**
1381  *      dev_set_alias - change ifalias of a device
1382  *      @dev: device
1383  *      @alias: name up to IFALIASZ
1384  *      @len: limit of bytes to copy from info
1385  *
1386  *      Set ifalias for a device,
1387  */
1388 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1389 {
1390         struct dev_ifalias *new_alias = NULL;
1391
1392         if (len >= IFALIASZ)
1393                 return -EINVAL;
1394
1395         if (len) {
1396                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1397                 if (!new_alias)
1398                         return -ENOMEM;
1399
1400                 memcpy(new_alias->ifalias, alias, len);
1401                 new_alias->ifalias[len] = 0;
1402         }
1403
1404         mutex_lock(&ifalias_mutex);
1405         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1406                                         mutex_is_locked(&ifalias_mutex));
1407         mutex_unlock(&ifalias_mutex);
1408
1409         if (new_alias)
1410                 kfree_rcu(new_alias, rcuhead);
1411
1412         return len;
1413 }
1414 EXPORT_SYMBOL(dev_set_alias);
1415
1416 /**
1417  *      dev_get_alias - get ifalias of a device
1418  *      @dev: device
1419  *      @name: buffer to store name of ifalias
1420  *      @len: size of buffer
1421  *
1422  *      get ifalias for a device.  Caller must make sure dev cannot go
1423  *      away,  e.g. rcu read lock or own a reference count to device.
1424  */
1425 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1426 {
1427         const struct dev_ifalias *alias;
1428         int ret = 0;
1429
1430         rcu_read_lock();
1431         alias = rcu_dereference(dev->ifalias);
1432         if (alias)
1433                 ret = snprintf(name, len, "%s", alias->ifalias);
1434         rcu_read_unlock();
1435
1436         return ret;
1437 }
1438
1439 /**
1440  *      netdev_features_change - device changes features
1441  *      @dev: device to cause notification
1442  *
1443  *      Called to indicate a device has changed features.
1444  */
1445 void netdev_features_change(struct net_device *dev)
1446 {
1447         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1448 }
1449 EXPORT_SYMBOL(netdev_features_change);
1450
1451 /**
1452  *      netdev_state_change - device changes state
1453  *      @dev: device to cause notification
1454  *
1455  *      Called to indicate a device has changed state. This function calls
1456  *      the notifier chains for netdev_chain and sends a NEWLINK message
1457  *      to the routing socket.
1458  */
1459 void netdev_state_change(struct net_device *dev)
1460 {
1461         if (dev->flags & IFF_UP) {
1462                 struct netdev_notifier_change_info change_info = {
1463                         .info.dev = dev,
1464                 };
1465
1466                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1467                                               &change_info.info);
1468                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1469         }
1470 }
1471 EXPORT_SYMBOL(netdev_state_change);
1472
1473 /**
1474  * __netdev_notify_peers - notify network peers about existence of @dev,
1475  * to be called when rtnl lock is already held.
1476  * @dev: network device
1477  *
1478  * Generate traffic such that interested network peers are aware of
1479  * @dev, such as by generating a gratuitous ARP. This may be used when
1480  * a device wants to inform the rest of the network about some sort of
1481  * reconfiguration such as a failover event or virtual machine
1482  * migration.
1483  */
1484 void __netdev_notify_peers(struct net_device *dev)
1485 {
1486         ASSERT_RTNL();
1487         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1488         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1489 }
1490 EXPORT_SYMBOL(__netdev_notify_peers);
1491
1492 /**
1493  * netdev_notify_peers - notify network peers about existence of @dev
1494  * @dev: network device
1495  *
1496  * Generate traffic such that interested network peers are aware of
1497  * @dev, such as by generating a gratuitous ARP. This may be used when
1498  * a device wants to inform the rest of the network about some sort of
1499  * reconfiguration such as a failover event or virtual machine
1500  * migration.
1501  */
1502 void netdev_notify_peers(struct net_device *dev)
1503 {
1504         rtnl_lock();
1505         __netdev_notify_peers(dev);
1506         rtnl_unlock();
1507 }
1508 EXPORT_SYMBOL(netdev_notify_peers);
1509
1510 static int napi_threaded_poll(void *data);
1511
1512 static int napi_kthread_create(struct napi_struct *n)
1513 {
1514         int err = 0;
1515
1516         /* Create and wake up the kthread once to put it in
1517          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1518          * warning and work with loadavg.
1519          */
1520         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1521                                 n->dev->name, n->napi_id);
1522         if (IS_ERR(n->thread)) {
1523                 err = PTR_ERR(n->thread);
1524                 pr_err("kthread_run failed with err %d\n", err);
1525                 n->thread = NULL;
1526         }
1527
1528         return err;
1529 }
1530
1531 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1532 {
1533         const struct net_device_ops *ops = dev->netdev_ops;
1534         int ret;
1535
1536         ASSERT_RTNL();
1537
1538         if (!netif_device_present(dev)) {
1539                 /* may be detached because parent is runtime-suspended */
1540                 if (dev->dev.parent)
1541                         pm_runtime_resume(dev->dev.parent);
1542                 if (!netif_device_present(dev))
1543                         return -ENODEV;
1544         }
1545
1546         /* Block netpoll from trying to do any rx path servicing.
1547          * If we don't do this there is a chance ndo_poll_controller
1548          * or ndo_poll may be running while we open the device
1549          */
1550         netpoll_poll_disable(dev);
1551
1552         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1553         ret = notifier_to_errno(ret);
1554         if (ret)
1555                 return ret;
1556
1557         set_bit(__LINK_STATE_START, &dev->state);
1558
1559         if (ops->ndo_validate_addr)
1560                 ret = ops->ndo_validate_addr(dev);
1561
1562         if (!ret && ops->ndo_open)
1563                 ret = ops->ndo_open(dev);
1564
1565         netpoll_poll_enable(dev);
1566
1567         if (ret)
1568                 clear_bit(__LINK_STATE_START, &dev->state);
1569         else {
1570                 dev->flags |= IFF_UP;
1571                 dev_set_rx_mode(dev);
1572                 dev_activate(dev);
1573                 add_device_randomness(dev->dev_addr, dev->addr_len);
1574         }
1575
1576         return ret;
1577 }
1578
1579 /**
1580  *      dev_open        - prepare an interface for use.
1581  *      @dev: device to open
1582  *      @extack: netlink extended ack
1583  *
1584  *      Takes a device from down to up state. The device's private open
1585  *      function is invoked and then the multicast lists are loaded. Finally
1586  *      the device is moved into the up state and a %NETDEV_UP message is
1587  *      sent to the netdev notifier chain.
1588  *
1589  *      Calling this function on an active interface is a nop. On a failure
1590  *      a negative errno code is returned.
1591  */
1592 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1593 {
1594         int ret;
1595
1596         if (dev->flags & IFF_UP)
1597                 return 0;
1598
1599         ret = __dev_open(dev, extack);
1600         if (ret < 0)
1601                 return ret;
1602
1603         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1604         call_netdevice_notifiers(NETDEV_UP, dev);
1605
1606         return ret;
1607 }
1608 EXPORT_SYMBOL(dev_open);
1609
1610 static void __dev_close_many(struct list_head *head)
1611 {
1612         struct net_device *dev;
1613
1614         ASSERT_RTNL();
1615         might_sleep();
1616
1617         list_for_each_entry(dev, head, close_list) {
1618                 /* Temporarily disable netpoll until the interface is down */
1619                 netpoll_poll_disable(dev);
1620
1621                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1622
1623                 clear_bit(__LINK_STATE_START, &dev->state);
1624
1625                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1626                  * can be even on different cpu. So just clear netif_running().
1627                  *
1628                  * dev->stop() will invoke napi_disable() on all of it's
1629                  * napi_struct instances on this device.
1630                  */
1631                 smp_mb__after_atomic(); /* Commit netif_running(). */
1632         }
1633
1634         dev_deactivate_many(head);
1635
1636         list_for_each_entry(dev, head, close_list) {
1637                 const struct net_device_ops *ops = dev->netdev_ops;
1638
1639                 /*
1640                  *      Call the device specific close. This cannot fail.
1641                  *      Only if device is UP
1642                  *
1643                  *      We allow it to be called even after a DETACH hot-plug
1644                  *      event.
1645                  */
1646                 if (ops->ndo_stop)
1647                         ops->ndo_stop(dev);
1648
1649                 dev->flags &= ~IFF_UP;
1650                 netpoll_poll_enable(dev);
1651         }
1652 }
1653
1654 static void __dev_close(struct net_device *dev)
1655 {
1656         LIST_HEAD(single);
1657
1658         list_add(&dev->close_list, &single);
1659         __dev_close_many(&single);
1660         list_del(&single);
1661 }
1662
1663 void dev_close_many(struct list_head *head, bool unlink)
1664 {
1665         struct net_device *dev, *tmp;
1666
1667         /* Remove the devices that don't need to be closed */
1668         list_for_each_entry_safe(dev, tmp, head, close_list)
1669                 if (!(dev->flags & IFF_UP))
1670                         list_del_init(&dev->close_list);
1671
1672         __dev_close_many(head);
1673
1674         list_for_each_entry_safe(dev, tmp, head, close_list) {
1675                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1676                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1677                 if (unlink)
1678                         list_del_init(&dev->close_list);
1679         }
1680 }
1681 EXPORT_SYMBOL(dev_close_many);
1682
1683 /**
1684  *      dev_close - shutdown an interface.
1685  *      @dev: device to shutdown
1686  *
1687  *      This function moves an active device into down state. A
1688  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1689  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1690  *      chain.
1691  */
1692 void dev_close(struct net_device *dev)
1693 {
1694         if (dev->flags & IFF_UP) {
1695                 LIST_HEAD(single);
1696
1697                 list_add(&dev->close_list, &single);
1698                 dev_close_many(&single, true);
1699                 list_del(&single);
1700         }
1701 }
1702 EXPORT_SYMBOL(dev_close);
1703
1704
1705 /**
1706  *      dev_disable_lro - disable Large Receive Offload on a device
1707  *      @dev: device
1708  *
1709  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1710  *      called under RTNL.  This is needed if received packets may be
1711  *      forwarded to another interface.
1712  */
1713 void dev_disable_lro(struct net_device *dev)
1714 {
1715         struct net_device *lower_dev;
1716         struct list_head *iter;
1717
1718         dev->wanted_features &= ~NETIF_F_LRO;
1719         netdev_update_features(dev);
1720
1721         if (unlikely(dev->features & NETIF_F_LRO))
1722                 netdev_WARN(dev, "failed to disable LRO!\n");
1723
1724         netdev_for_each_lower_dev(dev, lower_dev, iter)
1725                 dev_disable_lro(lower_dev);
1726 }
1727 EXPORT_SYMBOL(dev_disable_lro);
1728
1729 /**
1730  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1731  *      @dev: device
1732  *
1733  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1734  *      called under RTNL.  This is needed if Generic XDP is installed on
1735  *      the device.
1736  */
1737 static void dev_disable_gro_hw(struct net_device *dev)
1738 {
1739         dev->wanted_features &= ~NETIF_F_GRO_HW;
1740         netdev_update_features(dev);
1741
1742         if (unlikely(dev->features & NETIF_F_GRO_HW))
1743                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1744 }
1745
1746 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1747 {
1748 #define N(val)                                          \
1749         case NETDEV_##val:                              \
1750                 return "NETDEV_" __stringify(val);
1751         switch (cmd) {
1752         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1753         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1754         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1755         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1756         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1757         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1758         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1759         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1760         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1761         N(PRE_CHANGEADDR)
1762         }
1763 #undef N
1764         return "UNKNOWN_NETDEV_EVENT";
1765 }
1766 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1767
1768 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1769                                    struct net_device *dev)
1770 {
1771         struct netdev_notifier_info info = {
1772                 .dev = dev,
1773         };
1774
1775         return nb->notifier_call(nb, val, &info);
1776 }
1777
1778 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1779                                              struct net_device *dev)
1780 {
1781         int err;
1782
1783         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1784         err = notifier_to_errno(err);
1785         if (err)
1786                 return err;
1787
1788         if (!(dev->flags & IFF_UP))
1789                 return 0;
1790
1791         call_netdevice_notifier(nb, NETDEV_UP, dev);
1792         return 0;
1793 }
1794
1795 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1796                                                 struct net_device *dev)
1797 {
1798         if (dev->flags & IFF_UP) {
1799                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1800                                         dev);
1801                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1802         }
1803         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1804 }
1805
1806 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1807                                                  struct net *net)
1808 {
1809         struct net_device *dev;
1810         int err;
1811
1812         for_each_netdev(net, dev) {
1813                 err = call_netdevice_register_notifiers(nb, dev);
1814                 if (err)
1815                         goto rollback;
1816         }
1817         return 0;
1818
1819 rollback:
1820         for_each_netdev_continue_reverse(net, dev)
1821                 call_netdevice_unregister_notifiers(nb, dev);
1822         return err;
1823 }
1824
1825 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1826                                                     struct net *net)
1827 {
1828         struct net_device *dev;
1829
1830         for_each_netdev(net, dev)
1831                 call_netdevice_unregister_notifiers(nb, dev);
1832 }
1833
1834 static int dev_boot_phase = 1;
1835
1836 /**
1837  * register_netdevice_notifier - register a network notifier block
1838  * @nb: notifier
1839  *
1840  * Register a notifier to be called when network device events occur.
1841  * The notifier passed is linked into the kernel structures and must
1842  * not be reused until it has been unregistered. A negative errno code
1843  * is returned on a failure.
1844  *
1845  * When registered all registration and up events are replayed
1846  * to the new notifier to allow device to have a race free
1847  * view of the network device list.
1848  */
1849
1850 int register_netdevice_notifier(struct notifier_block *nb)
1851 {
1852         struct net *net;
1853         int err;
1854
1855         /* Close race with setup_net() and cleanup_net() */
1856         down_write(&pernet_ops_rwsem);
1857         rtnl_lock();
1858         err = raw_notifier_chain_register(&netdev_chain, nb);
1859         if (err)
1860                 goto unlock;
1861         if (dev_boot_phase)
1862                 goto unlock;
1863         for_each_net(net) {
1864                 err = call_netdevice_register_net_notifiers(nb, net);
1865                 if (err)
1866                         goto rollback;
1867         }
1868
1869 unlock:
1870         rtnl_unlock();
1871         up_write(&pernet_ops_rwsem);
1872         return err;
1873
1874 rollback:
1875         for_each_net_continue_reverse(net)
1876                 call_netdevice_unregister_net_notifiers(nb, net);
1877
1878         raw_notifier_chain_unregister(&netdev_chain, nb);
1879         goto unlock;
1880 }
1881 EXPORT_SYMBOL(register_netdevice_notifier);
1882
1883 /**
1884  * unregister_netdevice_notifier - unregister a network notifier block
1885  * @nb: notifier
1886  *
1887  * Unregister a notifier previously registered by
1888  * register_netdevice_notifier(). The notifier is unlinked into the
1889  * kernel structures and may then be reused. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * After unregistering unregister and down device events are synthesized
1893  * for all devices on the device list to the removed notifier to remove
1894  * the need for special case cleanup code.
1895  */
1896
1897 int unregister_netdevice_notifier(struct notifier_block *nb)
1898 {
1899         struct net *net;
1900         int err;
1901
1902         /* Close race with setup_net() and cleanup_net() */
1903         down_write(&pernet_ops_rwsem);
1904         rtnl_lock();
1905         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1906         if (err)
1907                 goto unlock;
1908
1909         for_each_net(net)
1910                 call_netdevice_unregister_net_notifiers(nb, net);
1911
1912 unlock:
1913         rtnl_unlock();
1914         up_write(&pernet_ops_rwsem);
1915         return err;
1916 }
1917 EXPORT_SYMBOL(unregister_netdevice_notifier);
1918
1919 static int __register_netdevice_notifier_net(struct net *net,
1920                                              struct notifier_block *nb,
1921                                              bool ignore_call_fail)
1922 {
1923         int err;
1924
1925         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1926         if (err)
1927                 return err;
1928         if (dev_boot_phase)
1929                 return 0;
1930
1931         err = call_netdevice_register_net_notifiers(nb, net);
1932         if (err && !ignore_call_fail)
1933                 goto chain_unregister;
1934
1935         return 0;
1936
1937 chain_unregister:
1938         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939         return err;
1940 }
1941
1942 static int __unregister_netdevice_notifier_net(struct net *net,
1943                                                struct notifier_block *nb)
1944 {
1945         int err;
1946
1947         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1948         if (err)
1949                 return err;
1950
1951         call_netdevice_unregister_net_notifiers(nb, net);
1952         return 0;
1953 }
1954
1955 /**
1956  * register_netdevice_notifier_net - register a per-netns network notifier block
1957  * @net: network namespace
1958  * @nb: notifier
1959  *
1960  * Register a notifier to be called when network device events occur.
1961  * The notifier passed is linked into the kernel structures and must
1962  * not be reused until it has been unregistered. A negative errno code
1963  * is returned on a failure.
1964  *
1965  * When registered all registration and up events are replayed
1966  * to the new notifier to allow device to have a race free
1967  * view of the network device list.
1968  */
1969
1970 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1971 {
1972         int err;
1973
1974         rtnl_lock();
1975         err = __register_netdevice_notifier_net(net, nb, false);
1976         rtnl_unlock();
1977         return err;
1978 }
1979 EXPORT_SYMBOL(register_netdevice_notifier_net);
1980
1981 /**
1982  * unregister_netdevice_notifier_net - unregister a per-netns
1983  *                                     network notifier block
1984  * @net: network namespace
1985  * @nb: notifier
1986  *
1987  * Unregister a notifier previously registered by
1988  * register_netdevice_notifier(). The notifier is unlinked into the
1989  * kernel structures and may then be reused. A negative errno code
1990  * is returned on a failure.
1991  *
1992  * After unregistering unregister and down device events are synthesized
1993  * for all devices on the device list to the removed notifier to remove
1994  * the need for special case cleanup code.
1995  */
1996
1997 int unregister_netdevice_notifier_net(struct net *net,
1998                                       struct notifier_block *nb)
1999 {
2000         int err;
2001
2002         rtnl_lock();
2003         err = __unregister_netdevice_notifier_net(net, nb);
2004         rtnl_unlock();
2005         return err;
2006 }
2007 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2008
2009 int register_netdevice_notifier_dev_net(struct net_device *dev,
2010                                         struct notifier_block *nb,
2011                                         struct netdev_net_notifier *nn)
2012 {
2013         int err;
2014
2015         rtnl_lock();
2016         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2017         if (!err) {
2018                 nn->nb = nb;
2019                 list_add(&nn->list, &dev->net_notifier_list);
2020         }
2021         rtnl_unlock();
2022         return err;
2023 }
2024 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2025
2026 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2027                                           struct notifier_block *nb,
2028                                           struct netdev_net_notifier *nn)
2029 {
2030         int err;
2031
2032         rtnl_lock();
2033         list_del(&nn->list);
2034         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2035         rtnl_unlock();
2036         return err;
2037 }
2038 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2039
2040 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2041                                              struct net *net)
2042 {
2043         struct netdev_net_notifier *nn;
2044
2045         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2046                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2047                 __register_netdevice_notifier_net(net, nn->nb, true);
2048         }
2049 }
2050
2051 /**
2052  *      call_netdevice_notifiers_info - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @info: notifier information data
2055  *
2056  *      Call all network notifier blocks.  Parameters and return value
2057  *      are as for raw_notifier_call_chain().
2058  */
2059
2060 static int call_netdevice_notifiers_info(unsigned long val,
2061                                          struct netdev_notifier_info *info)
2062 {
2063         struct net *net = dev_net(info->dev);
2064         int ret;
2065
2066         ASSERT_RTNL();
2067
2068         /* Run per-netns notifier block chain first, then run the global one.
2069          * Hopefully, one day, the global one is going to be removed after
2070          * all notifier block registrators get converted to be per-netns.
2071          */
2072         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2073         if (ret & NOTIFY_STOP_MASK)
2074                 return ret;
2075         return raw_notifier_call_chain(&netdev_chain, val, info);
2076 }
2077
2078 static int call_netdevice_notifiers_extack(unsigned long val,
2079                                            struct net_device *dev,
2080                                            struct netlink_ext_ack *extack)
2081 {
2082         struct netdev_notifier_info info = {
2083                 .dev = dev,
2084                 .extack = extack,
2085         };
2086
2087         return call_netdevice_notifiers_info(val, &info);
2088 }
2089
2090 /**
2091  *      call_netdevice_notifiers - call all network notifier blocks
2092  *      @val: value passed unmodified to notifier function
2093  *      @dev: net_device pointer passed unmodified to notifier function
2094  *
2095  *      Call all network notifier blocks.  Parameters and return value
2096  *      are as for raw_notifier_call_chain().
2097  */
2098
2099 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2100 {
2101         return call_netdevice_notifiers_extack(val, dev, NULL);
2102 }
2103 EXPORT_SYMBOL(call_netdevice_notifiers);
2104
2105 /**
2106  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2107  *      @val: value passed unmodified to notifier function
2108  *      @dev: net_device pointer passed unmodified to notifier function
2109  *      @arg: additional u32 argument passed to the notifier function
2110  *
2111  *      Call all network notifier blocks.  Parameters and return value
2112  *      are as for raw_notifier_call_chain().
2113  */
2114 static int call_netdevice_notifiers_mtu(unsigned long val,
2115                                         struct net_device *dev, u32 arg)
2116 {
2117         struct netdev_notifier_info_ext info = {
2118                 .info.dev = dev,
2119                 .ext.mtu = arg,
2120         };
2121
2122         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2123
2124         return call_netdevice_notifiers_info(val, &info.info);
2125 }
2126
2127 #ifdef CONFIG_NET_INGRESS
2128 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2129
2130 void net_inc_ingress_queue(void)
2131 {
2132         static_branch_inc(&ingress_needed_key);
2133 }
2134 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2135
2136 void net_dec_ingress_queue(void)
2137 {
2138         static_branch_dec(&ingress_needed_key);
2139 }
2140 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2141 #endif
2142
2143 #ifdef CONFIG_NET_EGRESS
2144 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2145
2146 void net_inc_egress_queue(void)
2147 {
2148         static_branch_inc(&egress_needed_key);
2149 }
2150 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2151
2152 void net_dec_egress_queue(void)
2153 {
2154         static_branch_dec(&egress_needed_key);
2155 }
2156 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2157 #endif
2158
2159 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2160 #ifdef CONFIG_JUMP_LABEL
2161 static atomic_t netstamp_needed_deferred;
2162 static atomic_t netstamp_wanted;
2163 static void netstamp_clear(struct work_struct *work)
2164 {
2165         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2166         int wanted;
2167
2168         wanted = atomic_add_return(deferred, &netstamp_wanted);
2169         if (wanted > 0)
2170                 static_branch_enable(&netstamp_needed_key);
2171         else
2172                 static_branch_disable(&netstamp_needed_key);
2173 }
2174 static DECLARE_WORK(netstamp_work, netstamp_clear);
2175 #endif
2176
2177 void net_enable_timestamp(void)
2178 {
2179 #ifdef CONFIG_JUMP_LABEL
2180         int wanted;
2181
2182         while (1) {
2183                 wanted = atomic_read(&netstamp_wanted);
2184                 if (wanted <= 0)
2185                         break;
2186                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2187                         return;
2188         }
2189         atomic_inc(&netstamp_needed_deferred);
2190         schedule_work(&netstamp_work);
2191 #else
2192         static_branch_inc(&netstamp_needed_key);
2193 #endif
2194 }
2195 EXPORT_SYMBOL(net_enable_timestamp);
2196
2197 void net_disable_timestamp(void)
2198 {
2199 #ifdef CONFIG_JUMP_LABEL
2200         int wanted;
2201
2202         while (1) {
2203                 wanted = atomic_read(&netstamp_wanted);
2204                 if (wanted <= 1)
2205                         break;
2206                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2207                         return;
2208         }
2209         atomic_dec(&netstamp_needed_deferred);
2210         schedule_work(&netstamp_work);
2211 #else
2212         static_branch_dec(&netstamp_needed_key);
2213 #endif
2214 }
2215 EXPORT_SYMBOL(net_disable_timestamp);
2216
2217 static inline void net_timestamp_set(struct sk_buff *skb)
2218 {
2219         skb->tstamp = 0;
2220         if (static_branch_unlikely(&netstamp_needed_key))
2221                 __net_timestamp(skb);
2222 }
2223
2224 #define net_timestamp_check(COND, SKB)                          \
2225         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2226                 if ((COND) && !(SKB)->tstamp)                   \
2227                         __net_timestamp(SKB);                   \
2228         }                                                       \
2229
2230 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2231 {
2232         return __is_skb_forwardable(dev, skb, true);
2233 }
2234 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2235
2236 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2237                               bool check_mtu)
2238 {
2239         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2240
2241         if (likely(!ret)) {
2242                 skb->protocol = eth_type_trans(skb, dev);
2243                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2244         }
2245
2246         return ret;
2247 }
2248
2249 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2250 {
2251         return __dev_forward_skb2(dev, skb, true);
2252 }
2253 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2254
2255 /**
2256  * dev_forward_skb - loopback an skb to another netif
2257  *
2258  * @dev: destination network device
2259  * @skb: buffer to forward
2260  *
2261  * return values:
2262  *      NET_RX_SUCCESS  (no congestion)
2263  *      NET_RX_DROP     (packet was dropped, but freed)
2264  *
2265  * dev_forward_skb can be used for injecting an skb from the
2266  * start_xmit function of one device into the receive queue
2267  * of another device.
2268  *
2269  * The receiving device may be in another namespace, so
2270  * we have to clear all information in the skb that could
2271  * impact namespace isolation.
2272  */
2273 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2274 {
2275         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2276 }
2277 EXPORT_SYMBOL_GPL(dev_forward_skb);
2278
2279 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2280 {
2281         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2282 }
2283
2284 static inline int deliver_skb(struct sk_buff *skb,
2285                               struct packet_type *pt_prev,
2286                               struct net_device *orig_dev)
2287 {
2288         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2289                 return -ENOMEM;
2290         refcount_inc(&skb->users);
2291         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2292 }
2293
2294 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2295                                           struct packet_type **pt,
2296                                           struct net_device *orig_dev,
2297                                           __be16 type,
2298                                           struct list_head *ptype_list)
2299 {
2300         struct packet_type *ptype, *pt_prev = *pt;
2301
2302         list_for_each_entry_rcu(ptype, ptype_list, list) {
2303                 if (ptype->type != type)
2304                         continue;
2305                 if (pt_prev)
2306                         deliver_skb(skb, pt_prev, orig_dev);
2307                 pt_prev = ptype;
2308         }
2309         *pt = pt_prev;
2310 }
2311
2312 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2313 {
2314         if (!ptype->af_packet_priv || !skb->sk)
2315                 return false;
2316
2317         if (ptype->id_match)
2318                 return ptype->id_match(ptype, skb->sk);
2319         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2320                 return true;
2321
2322         return false;
2323 }
2324
2325 /**
2326  * dev_nit_active - return true if any network interface taps are in use
2327  *
2328  * @dev: network device to check for the presence of taps
2329  */
2330 bool dev_nit_active(struct net_device *dev)
2331 {
2332         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2333 }
2334 EXPORT_SYMBOL_GPL(dev_nit_active);
2335
2336 /*
2337  *      Support routine. Sends outgoing frames to any network
2338  *      taps currently in use.
2339  */
2340
2341 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2342 {
2343         struct packet_type *ptype;
2344         struct sk_buff *skb2 = NULL;
2345         struct packet_type *pt_prev = NULL;
2346         struct list_head *ptype_list = &ptype_all;
2347
2348         rcu_read_lock();
2349 again:
2350         list_for_each_entry_rcu(ptype, ptype_list, list) {
2351                 if (ptype->ignore_outgoing)
2352                         continue;
2353
2354                 /* Never send packets back to the socket
2355                  * they originated from - MvS (miquels@drinkel.ow.org)
2356                  */
2357                 if (skb_loop_sk(ptype, skb))
2358                         continue;
2359
2360                 if (pt_prev) {
2361                         deliver_skb(skb2, pt_prev, skb->dev);
2362                         pt_prev = ptype;
2363                         continue;
2364                 }
2365
2366                 /* need to clone skb, done only once */
2367                 skb2 = skb_clone(skb, GFP_ATOMIC);
2368                 if (!skb2)
2369                         goto out_unlock;
2370
2371                 net_timestamp_set(skb2);
2372
2373                 /* skb->nh should be correctly
2374                  * set by sender, so that the second statement is
2375                  * just protection against buggy protocols.
2376                  */
2377                 skb_reset_mac_header(skb2);
2378
2379                 if (skb_network_header(skb2) < skb2->data ||
2380                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2381                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2382                                              ntohs(skb2->protocol),
2383                                              dev->name);
2384                         skb_reset_network_header(skb2);
2385                 }
2386
2387                 skb2->transport_header = skb2->network_header;
2388                 skb2->pkt_type = PACKET_OUTGOING;
2389                 pt_prev = ptype;
2390         }
2391
2392         if (ptype_list == &ptype_all) {
2393                 ptype_list = &dev->ptype_all;
2394                 goto again;
2395         }
2396 out_unlock:
2397         if (pt_prev) {
2398                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2399                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2400                 else
2401                         kfree_skb(skb2);
2402         }
2403         rcu_read_unlock();
2404 }
2405 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2406
2407 /**
2408  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2409  * @dev: Network device
2410  * @txq: number of queues available
2411  *
2412  * If real_num_tx_queues is changed the tc mappings may no longer be
2413  * valid. To resolve this verify the tc mapping remains valid and if
2414  * not NULL the mapping. With no priorities mapping to this
2415  * offset/count pair it will no longer be used. In the worst case TC0
2416  * is invalid nothing can be done so disable priority mappings. If is
2417  * expected that drivers will fix this mapping if they can before
2418  * calling netif_set_real_num_tx_queues.
2419  */
2420 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2421 {
2422         int i;
2423         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2424
2425         /* If TC0 is invalidated disable TC mapping */
2426         if (tc->offset + tc->count > txq) {
2427                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2428                 dev->num_tc = 0;
2429                 return;
2430         }
2431
2432         /* Invalidated prio to tc mappings set to TC0 */
2433         for (i = 1; i < TC_BITMASK + 1; i++) {
2434                 int q = netdev_get_prio_tc_map(dev, i);
2435
2436                 tc = &dev->tc_to_txq[q];
2437                 if (tc->offset + tc->count > txq) {
2438                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2439                                 i, q);
2440                         netdev_set_prio_tc_map(dev, i, 0);
2441                 }
2442         }
2443 }
2444
2445 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2446 {
2447         if (dev->num_tc) {
2448                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2449                 int i;
2450
2451                 /* walk through the TCs and see if it falls into any of them */
2452                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2453                         if ((txq - tc->offset) < tc->count)
2454                                 return i;
2455                 }
2456
2457                 /* didn't find it, just return -1 to indicate no match */
2458                 return -1;
2459         }
2460
2461         return 0;
2462 }
2463 EXPORT_SYMBOL(netdev_txq_to_tc);
2464
2465 #ifdef CONFIG_XPS
2466 struct static_key xps_needed __read_mostly;
2467 EXPORT_SYMBOL(xps_needed);
2468 struct static_key xps_rxqs_needed __read_mostly;
2469 EXPORT_SYMBOL(xps_rxqs_needed);
2470 static DEFINE_MUTEX(xps_map_mutex);
2471 #define xmap_dereference(P)             \
2472         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2473
2474 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2475                              int tci, u16 index)
2476 {
2477         struct xps_map *map = NULL;
2478         int pos;
2479
2480         if (dev_maps)
2481                 map = xmap_dereference(dev_maps->attr_map[tci]);
2482         if (!map)
2483                 return false;
2484
2485         for (pos = map->len; pos--;) {
2486                 if (map->queues[pos] != index)
2487                         continue;
2488
2489                 if (map->len > 1) {
2490                         map->queues[pos] = map->queues[--map->len];
2491                         break;
2492                 }
2493
2494                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2495                 kfree_rcu(map, rcu);
2496                 return false;
2497         }
2498
2499         return true;
2500 }
2501
2502 static bool remove_xps_queue_cpu(struct net_device *dev,
2503                                  struct xps_dev_maps *dev_maps,
2504                                  int cpu, u16 offset, u16 count)
2505 {
2506         int num_tc = dev->num_tc ? : 1;
2507         bool active = false;
2508         int tci;
2509
2510         for (tci = cpu * num_tc; num_tc--; tci++) {
2511                 int i, j;
2512
2513                 for (i = count, j = offset; i--; j++) {
2514                         if (!remove_xps_queue(dev_maps, tci, j))
2515                                 break;
2516                 }
2517
2518                 active |= i < 0;
2519         }
2520
2521         return active;
2522 }
2523
2524 static void reset_xps_maps(struct net_device *dev,
2525                            struct xps_dev_maps *dev_maps,
2526                            bool is_rxqs_map)
2527 {
2528         if (is_rxqs_map) {
2529                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2530                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2531         } else {
2532                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2533         }
2534         static_key_slow_dec_cpuslocked(&xps_needed);
2535         kfree_rcu(dev_maps, rcu);
2536 }
2537
2538 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2539                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2540                            u16 offset, u16 count, bool is_rxqs_map)
2541 {
2542         bool active = false;
2543         int i, j;
2544
2545         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2546              j < nr_ids;)
2547                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2548                                                count);
2549         if (!active)
2550                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2551
2552         if (!is_rxqs_map) {
2553                 for (i = offset + (count - 1); count--; i--) {
2554                         netdev_queue_numa_node_write(
2555                                 netdev_get_tx_queue(dev, i),
2556                                 NUMA_NO_NODE);
2557                 }
2558         }
2559 }
2560
2561 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2562                                    u16 count)
2563 {
2564         const unsigned long *possible_mask = NULL;
2565         struct xps_dev_maps *dev_maps;
2566         unsigned int nr_ids;
2567
2568         if (!static_key_false(&xps_needed))
2569                 return;
2570
2571         cpus_read_lock();
2572         mutex_lock(&xps_map_mutex);
2573
2574         if (static_key_false(&xps_rxqs_needed)) {
2575                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2576                 if (dev_maps) {
2577                         nr_ids = dev->num_rx_queues;
2578                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2579                                        offset, count, true);
2580                 }
2581         }
2582
2583         dev_maps = xmap_dereference(dev->xps_cpus_map);
2584         if (!dev_maps)
2585                 goto out_no_maps;
2586
2587         if (num_possible_cpus() > 1)
2588                 possible_mask = cpumask_bits(cpu_possible_mask);
2589         nr_ids = nr_cpu_ids;
2590         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2591                        false);
2592
2593 out_no_maps:
2594         mutex_unlock(&xps_map_mutex);
2595         cpus_read_unlock();
2596 }
2597
2598 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2599 {
2600         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2601 }
2602
2603 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2604                                       u16 index, bool is_rxqs_map)
2605 {
2606         struct xps_map *new_map;
2607         int alloc_len = XPS_MIN_MAP_ALLOC;
2608         int i, pos;
2609
2610         for (pos = 0; map && pos < map->len; pos++) {
2611                 if (map->queues[pos] != index)
2612                         continue;
2613                 return map;
2614         }
2615
2616         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2617         if (map) {
2618                 if (pos < map->alloc_len)
2619                         return map;
2620
2621                 alloc_len = map->alloc_len * 2;
2622         }
2623
2624         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2625          *  map
2626          */
2627         if (is_rxqs_map)
2628                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2629         else
2630                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2631                                        cpu_to_node(attr_index));
2632         if (!new_map)
2633                 return NULL;
2634
2635         for (i = 0; i < pos; i++)
2636                 new_map->queues[i] = map->queues[i];
2637         new_map->alloc_len = alloc_len;
2638         new_map->len = pos;
2639
2640         return new_map;
2641 }
2642
2643 /* Must be called under cpus_read_lock */
2644 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2645                           u16 index, bool is_rxqs_map)
2646 {
2647         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2648         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2649         int i, j, tci, numa_node_id = -2;
2650         int maps_sz, num_tc = 1, tc = 0;
2651         struct xps_map *map, *new_map;
2652         bool active = false;
2653         unsigned int nr_ids;
2654
2655         if (dev->num_tc) {
2656                 /* Do not allow XPS on subordinate device directly */
2657                 num_tc = dev->num_tc;
2658                 if (num_tc < 0)
2659                         return -EINVAL;
2660
2661                 /* If queue belongs to subordinate dev use its map */
2662                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2663
2664                 tc = netdev_txq_to_tc(dev, index);
2665                 if (tc < 0)
2666                         return -EINVAL;
2667         }
2668
2669         mutex_lock(&xps_map_mutex);
2670         if (is_rxqs_map) {
2671                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2672                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2673                 nr_ids = dev->num_rx_queues;
2674         } else {
2675                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2676                 if (num_possible_cpus() > 1) {
2677                         online_mask = cpumask_bits(cpu_online_mask);
2678                         possible_mask = cpumask_bits(cpu_possible_mask);
2679                 }
2680                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2681                 nr_ids = nr_cpu_ids;
2682         }
2683
2684         if (maps_sz < L1_CACHE_BYTES)
2685                 maps_sz = L1_CACHE_BYTES;
2686
2687         /* allocate memory for queue storage */
2688         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2689              j < nr_ids;) {
2690                 if (!new_dev_maps)
2691                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2692                 if (!new_dev_maps) {
2693                         mutex_unlock(&xps_map_mutex);
2694                         return -ENOMEM;
2695                 }
2696
2697                 tci = j * num_tc + tc;
2698                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2699                                  NULL;
2700
2701                 map = expand_xps_map(map, j, index, is_rxqs_map);
2702                 if (!map)
2703                         goto error;
2704
2705                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706         }
2707
2708         if (!new_dev_maps)
2709                 goto out_no_new_maps;
2710
2711         if (!dev_maps) {
2712                 /* Increment static keys at most once per type */
2713                 static_key_slow_inc_cpuslocked(&xps_needed);
2714                 if (is_rxqs_map)
2715                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2716         }
2717
2718         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2719              j < nr_ids;) {
2720                 /* copy maps belonging to foreign traffic classes */
2721                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2722                         /* fill in the new device map from the old device map */
2723                         map = xmap_dereference(dev_maps->attr_map[tci]);
2724                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725                 }
2726
2727                 /* We need to explicitly update tci as prevous loop
2728                  * could break out early if dev_maps is NULL.
2729                  */
2730                 tci = j * num_tc + tc;
2731
2732                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2733                     netif_attr_test_online(j, online_mask, nr_ids)) {
2734                         /* add tx-queue to CPU/rx-queue maps */
2735                         int pos = 0;
2736
2737                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2738                         while ((pos < map->len) && (map->queues[pos] != index))
2739                                 pos++;
2740
2741                         if (pos == map->len)
2742                                 map->queues[map->len++] = index;
2743 #ifdef CONFIG_NUMA
2744                         if (!is_rxqs_map) {
2745                                 if (numa_node_id == -2)
2746                                         numa_node_id = cpu_to_node(j);
2747                                 else if (numa_node_id != cpu_to_node(j))
2748                                         numa_node_id = -1;
2749                         }
2750 #endif
2751                 } else if (dev_maps) {
2752                         /* fill in the new device map from the old device map */
2753                         map = xmap_dereference(dev_maps->attr_map[tci]);
2754                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2755                 }
2756
2757                 /* copy maps belonging to foreign traffic classes */
2758                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2759                         /* fill in the new device map from the old device map */
2760                         map = xmap_dereference(dev_maps->attr_map[tci]);
2761                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762                 }
2763         }
2764
2765         if (is_rxqs_map)
2766                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2767         else
2768                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2769
2770         /* Cleanup old maps */
2771         if (!dev_maps)
2772                 goto out_no_old_maps;
2773
2774         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775              j < nr_ids;) {
2776                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778                         map = xmap_dereference(dev_maps->attr_map[tci]);
2779                         if (map && map != new_map)
2780                                 kfree_rcu(map, rcu);
2781                 }
2782         }
2783
2784         kfree_rcu(dev_maps, rcu);
2785
2786 out_no_old_maps:
2787         dev_maps = new_dev_maps;
2788         active = true;
2789
2790 out_no_new_maps:
2791         if (!is_rxqs_map) {
2792                 /* update Tx queue numa node */
2793                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2794                                              (numa_node_id >= 0) ?
2795                                              numa_node_id : NUMA_NO_NODE);
2796         }
2797
2798         if (!dev_maps)
2799                 goto out_no_maps;
2800
2801         /* removes tx-queue from unused CPUs/rx-queues */
2802         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2803              j < nr_ids;) {
2804                 for (i = tc, tci = j * num_tc; i--; tci++)
2805                         active |= remove_xps_queue(dev_maps, tci, index);
2806                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2807                     !netif_attr_test_online(j, online_mask, nr_ids))
2808                         active |= remove_xps_queue(dev_maps, tci, index);
2809                 for (i = num_tc - tc, tci++; --i; tci++)
2810                         active |= remove_xps_queue(dev_maps, tci, index);
2811         }
2812
2813         /* free map if not active */
2814         if (!active)
2815                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2816
2817 out_no_maps:
2818         mutex_unlock(&xps_map_mutex);
2819
2820         return 0;
2821 error:
2822         /* remove any maps that we added */
2823         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2824              j < nr_ids;) {
2825                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2826                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2827                         map = dev_maps ?
2828                               xmap_dereference(dev_maps->attr_map[tci]) :
2829                               NULL;
2830                         if (new_map && new_map != map)
2831                                 kfree(new_map);
2832                 }
2833         }
2834
2835         mutex_unlock(&xps_map_mutex);
2836
2837         kfree(new_dev_maps);
2838         return -ENOMEM;
2839 }
2840 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2841
2842 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2843                         u16 index)
2844 {
2845         int ret;
2846
2847         cpus_read_lock();
2848         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2849         cpus_read_unlock();
2850
2851         return ret;
2852 }
2853 EXPORT_SYMBOL(netif_set_xps_queue);
2854
2855 #endif
2856 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2857 {
2858         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859
2860         /* Unbind any subordinate channels */
2861         while (txq-- != &dev->_tx[0]) {
2862                 if (txq->sb_dev)
2863                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2864         }
2865 }
2866
2867 void netdev_reset_tc(struct net_device *dev)
2868 {
2869 #ifdef CONFIG_XPS
2870         netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872         netdev_unbind_all_sb_channels(dev);
2873
2874         /* Reset TC configuration of device */
2875         dev->num_tc = 0;
2876         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2877         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2878 }
2879 EXPORT_SYMBOL(netdev_reset_tc);
2880
2881 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2882 {
2883         if (tc >= dev->num_tc)
2884                 return -EINVAL;
2885
2886 #ifdef CONFIG_XPS
2887         netif_reset_xps_queues(dev, offset, count);
2888 #endif
2889         dev->tc_to_txq[tc].count = count;
2890         dev->tc_to_txq[tc].offset = offset;
2891         return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_tc_queue);
2894
2895 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2896 {
2897         if (num_tc > TC_MAX_QUEUE)
2898                 return -EINVAL;
2899
2900 #ifdef CONFIG_XPS
2901         netif_reset_xps_queues_gt(dev, 0);
2902 #endif
2903         netdev_unbind_all_sb_channels(dev);
2904
2905         dev->num_tc = num_tc;
2906         return 0;
2907 }
2908 EXPORT_SYMBOL(netdev_set_num_tc);
2909
2910 void netdev_unbind_sb_channel(struct net_device *dev,
2911                               struct net_device *sb_dev)
2912 {
2913         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2914
2915 #ifdef CONFIG_XPS
2916         netif_reset_xps_queues_gt(sb_dev, 0);
2917 #endif
2918         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2919         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2920
2921         while (txq-- != &dev->_tx[0]) {
2922                 if (txq->sb_dev == sb_dev)
2923                         txq->sb_dev = NULL;
2924         }
2925 }
2926 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2927
2928 int netdev_bind_sb_channel_queue(struct net_device *dev,
2929                                  struct net_device *sb_dev,
2930                                  u8 tc, u16 count, u16 offset)
2931 {
2932         /* Make certain the sb_dev and dev are already configured */
2933         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2934                 return -EINVAL;
2935
2936         /* We cannot hand out queues we don't have */
2937         if ((offset + count) > dev->real_num_tx_queues)
2938                 return -EINVAL;
2939
2940         /* Record the mapping */
2941         sb_dev->tc_to_txq[tc].count = count;
2942         sb_dev->tc_to_txq[tc].offset = offset;
2943
2944         /* Provide a way for Tx queue to find the tc_to_txq map or
2945          * XPS map for itself.
2946          */
2947         while (count--)
2948                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2949
2950         return 0;
2951 }
2952 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2953
2954 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2955 {
2956         /* Do not use a multiqueue device to represent a subordinate channel */
2957         if (netif_is_multiqueue(dev))
2958                 return -ENODEV;
2959
2960         /* We allow channels 1 - 32767 to be used for subordinate channels.
2961          * Channel 0 is meant to be "native" mode and used only to represent
2962          * the main root device. We allow writing 0 to reset the device back
2963          * to normal mode after being used as a subordinate channel.
2964          */
2965         if (channel > S16_MAX)
2966                 return -EINVAL;
2967
2968         dev->num_tc = -channel;
2969
2970         return 0;
2971 }
2972 EXPORT_SYMBOL(netdev_set_sb_channel);
2973
2974 /*
2975  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2976  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2977  */
2978 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2979 {
2980         bool disabling;
2981         int rc;
2982
2983         disabling = txq < dev->real_num_tx_queues;
2984
2985         if (txq < 1 || txq > dev->num_tx_queues)
2986                 return -EINVAL;
2987
2988         if (dev->reg_state == NETREG_REGISTERED ||
2989             dev->reg_state == NETREG_UNREGISTERING) {
2990                 ASSERT_RTNL();
2991
2992                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2993                                                   txq);
2994                 if (rc)
2995                         return rc;
2996
2997                 if (dev->num_tc)
2998                         netif_setup_tc(dev, txq);
2999
3000                 dev->real_num_tx_queues = txq;
3001
3002                 if (disabling) {
3003                         synchronize_net();
3004                         qdisc_reset_all_tx_gt(dev, txq);
3005 #ifdef CONFIG_XPS
3006                         netif_reset_xps_queues_gt(dev, txq);
3007 #endif
3008                 }
3009         } else {
3010                 dev->real_num_tx_queues = txq;
3011         }
3012
3013         return 0;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3016
3017 #ifdef CONFIG_SYSFS
3018 /**
3019  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3020  *      @dev: Network device
3021  *      @rxq: Actual number of RX queues
3022  *
3023  *      This must be called either with the rtnl_lock held or before
3024  *      registration of the net device.  Returns 0 on success, or a
3025  *      negative error code.  If called before registration, it always
3026  *      succeeds.
3027  */
3028 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3029 {
3030         int rc;
3031
3032         if (rxq < 1 || rxq > dev->num_rx_queues)
3033                 return -EINVAL;
3034
3035         if (dev->reg_state == NETREG_REGISTERED) {
3036                 ASSERT_RTNL();
3037
3038                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3039                                                   rxq);
3040                 if (rc)
3041                         return rc;
3042         }
3043
3044         dev->real_num_rx_queues = rxq;
3045         return 0;
3046 }
3047 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3048 #endif
3049
3050 /**
3051  * netif_get_num_default_rss_queues - default number of RSS queues
3052  *
3053  * This routine should set an upper limit on the number of RSS queues
3054  * used by default by multiqueue devices.
3055  */
3056 int netif_get_num_default_rss_queues(void)
3057 {
3058         return is_kdump_kernel() ?
3059                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3060 }
3061 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062
3063 static void __netif_reschedule(struct Qdisc *q)
3064 {
3065         struct softnet_data *sd;
3066         unsigned long flags;
3067
3068         local_irq_save(flags);
3069         sd = this_cpu_ptr(&softnet_data);
3070         q->next_sched = NULL;
3071         *sd->output_queue_tailp = q;
3072         sd->output_queue_tailp = &q->next_sched;
3073         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074         local_irq_restore(flags);
3075 }
3076
3077 void __netif_schedule(struct Qdisc *q)
3078 {
3079         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080                 __netif_reschedule(q);
3081 }
3082 EXPORT_SYMBOL(__netif_schedule);
3083
3084 struct dev_kfree_skb_cb {
3085         enum skb_free_reason reason;
3086 };
3087
3088 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089 {
3090         return (struct dev_kfree_skb_cb *)skb->cb;
3091 }
3092
3093 void netif_schedule_queue(struct netdev_queue *txq)
3094 {
3095         rcu_read_lock();
3096         if (!netif_xmit_stopped(txq)) {
3097                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3098
3099                 __netif_schedule(q);
3100         }
3101         rcu_read_unlock();
3102 }
3103 EXPORT_SYMBOL(netif_schedule_queue);
3104
3105 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106 {
3107         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108                 struct Qdisc *q;
3109
3110                 rcu_read_lock();
3111                 q = rcu_dereference(dev_queue->qdisc);
3112                 __netif_schedule(q);
3113                 rcu_read_unlock();
3114         }
3115 }
3116 EXPORT_SYMBOL(netif_tx_wake_queue);
3117
3118 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120         unsigned long flags;
3121
3122         if (unlikely(!skb))
3123                 return;
3124
3125         if (likely(refcount_read(&skb->users) == 1)) {
3126                 smp_rmb();
3127                 refcount_set(&skb->users, 0);
3128         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129                 return;
3130         }
3131         get_kfree_skb_cb(skb)->reason = reason;
3132         local_irq_save(flags);
3133         skb->next = __this_cpu_read(softnet_data.completion_queue);
3134         __this_cpu_write(softnet_data.completion_queue, skb);
3135         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136         local_irq_restore(flags);
3137 }
3138 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139
3140 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141 {
3142         if (in_irq() || irqs_disabled())
3143                 __dev_kfree_skb_irq(skb, reason);
3144         else
3145                 dev_kfree_skb(skb);
3146 }
3147 EXPORT_SYMBOL(__dev_kfree_skb_any);
3148
3149
3150 /**
3151  * netif_device_detach - mark device as removed
3152  * @dev: network device
3153  *
3154  * Mark device as removed from system and therefore no longer available.
3155  */
3156 void netif_device_detach(struct net_device *dev)
3157 {
3158         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159             netif_running(dev)) {
3160                 netif_tx_stop_all_queues(dev);
3161         }
3162 }
3163 EXPORT_SYMBOL(netif_device_detach);
3164
3165 /**
3166  * netif_device_attach - mark device as attached
3167  * @dev: network device
3168  *
3169  * Mark device as attached from system and restart if needed.
3170  */
3171 void netif_device_attach(struct net_device *dev)
3172 {
3173         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174             netif_running(dev)) {
3175                 netif_tx_wake_all_queues(dev);
3176                 __netdev_watchdog_up(dev);
3177         }
3178 }
3179 EXPORT_SYMBOL(netif_device_attach);
3180
3181 /*
3182  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183  * to be used as a distribution range.
3184  */
3185 static u16 skb_tx_hash(const struct net_device *dev,
3186                        const struct net_device *sb_dev,
3187                        struct sk_buff *skb)
3188 {
3189         u32 hash;
3190         u16 qoffset = 0;
3191         u16 qcount = dev->real_num_tx_queues;
3192
3193         if (dev->num_tc) {
3194                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195
3196                 qoffset = sb_dev->tc_to_txq[tc].offset;
3197                 qcount = sb_dev->tc_to_txq[tc].count;
3198         }
3199
3200         if (skb_rx_queue_recorded(skb)) {
3201                 hash = skb_get_rx_queue(skb);
3202                 if (hash >= qoffset)
3203                         hash -= qoffset;
3204                 while (unlikely(hash >= qcount))
3205                         hash -= qcount;
3206                 return hash + qoffset;
3207         }
3208
3209         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210 }
3211
3212 static void skb_warn_bad_offload(const struct sk_buff *skb)
3213 {
3214         static const netdev_features_t null_features;
3215         struct net_device *dev = skb->dev;
3216         const char *name = "";
3217
3218         if (!net_ratelimit())
3219                 return;
3220
3221         if (dev) {
3222                 if (dev->dev.parent)
3223                         name = dev_driver_string(dev->dev.parent);
3224                 else
3225                         name = netdev_name(dev);
3226         }
3227         skb_dump(KERN_WARNING, skb, false);
3228         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229              name, dev ? &dev->features : &null_features,
3230              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231 }
3232
3233 /*
3234  * Invalidate hardware checksum when packet is to be mangled, and
3235  * complete checksum manually on outgoing path.
3236  */
3237 int skb_checksum_help(struct sk_buff *skb)
3238 {
3239         __wsum csum;
3240         int ret = 0, offset;
3241
3242         if (skb->ip_summed == CHECKSUM_COMPLETE)
3243                 goto out_set_summed;
3244
3245         if (unlikely(skb_is_gso(skb))) {
3246                 skb_warn_bad_offload(skb);
3247                 return -EINVAL;
3248         }
3249
3250         /* Before computing a checksum, we should make sure no frag could
3251          * be modified by an external entity : checksum could be wrong.
3252          */
3253         if (skb_has_shared_frag(skb)) {
3254                 ret = __skb_linearize(skb);
3255                 if (ret)
3256                         goto out;
3257         }
3258
3259         offset = skb_checksum_start_offset(skb);
3260         BUG_ON(offset >= skb_headlen(skb));
3261         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3262
3263         offset += skb->csum_offset;
3264         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3265
3266         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3267         if (ret)
3268                 goto out;
3269
3270         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3271 out_set_summed:
3272         skb->ip_summed = CHECKSUM_NONE;
3273 out:
3274         return ret;
3275 }
3276 EXPORT_SYMBOL(skb_checksum_help);
3277
3278 int skb_crc32c_csum_help(struct sk_buff *skb)
3279 {
3280         __le32 crc32c_csum;
3281         int ret = 0, offset, start;
3282
3283         if (skb->ip_summed != CHECKSUM_PARTIAL)
3284                 goto out;
3285
3286         if (unlikely(skb_is_gso(skb)))
3287                 goto out;
3288
3289         /* Before computing a checksum, we should make sure no frag could
3290          * be modified by an external entity : checksum could be wrong.
3291          */
3292         if (unlikely(skb_has_shared_frag(skb))) {
3293                 ret = __skb_linearize(skb);
3294                 if (ret)
3295                         goto out;
3296         }
3297         start = skb_checksum_start_offset(skb);
3298         offset = start + offsetof(struct sctphdr, checksum);
3299         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3300                 ret = -EINVAL;
3301                 goto out;
3302         }
3303
3304         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3305         if (ret)
3306                 goto out;
3307
3308         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3309                                                   skb->len - start, ~(__u32)0,
3310                                                   crc32c_csum_stub));
3311         *(__le32 *)(skb->data + offset) = crc32c_csum;
3312         skb->ip_summed = CHECKSUM_NONE;
3313         skb->csum_not_inet = 0;
3314 out:
3315         return ret;
3316 }
3317
3318 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3319 {
3320         __be16 type = skb->protocol;
3321
3322         /* Tunnel gso handlers can set protocol to ethernet. */
3323         if (type == htons(ETH_P_TEB)) {
3324                 struct ethhdr *eth;
3325
3326                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3327                         return 0;
3328
3329                 eth = (struct ethhdr *)skb->data;
3330                 type = eth->h_proto;
3331         }
3332
3333         return __vlan_get_protocol(skb, type, depth);
3334 }
3335
3336 /**
3337  *      skb_mac_gso_segment - mac layer segmentation handler.
3338  *      @skb: buffer to segment
3339  *      @features: features for the output path (see dev->features)
3340  */
3341 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3342                                     netdev_features_t features)
3343 {
3344         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3345         struct packet_offload *ptype;
3346         int vlan_depth = skb->mac_len;
3347         __be16 type = skb_network_protocol(skb, &vlan_depth);
3348
3349         if (unlikely(!type))
3350                 return ERR_PTR(-EINVAL);
3351
3352         __skb_pull(skb, vlan_depth);
3353
3354         rcu_read_lock();
3355         list_for_each_entry_rcu(ptype, &offload_base, list) {
3356                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3357                         segs = ptype->callbacks.gso_segment(skb, features);
3358                         break;
3359                 }
3360         }
3361         rcu_read_unlock();
3362
3363         __skb_push(skb, skb->data - skb_mac_header(skb));
3364
3365         return segs;
3366 }
3367 EXPORT_SYMBOL(skb_mac_gso_segment);
3368
3369
3370 /* openvswitch calls this on rx path, so we need a different check.
3371  */
3372 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3373 {
3374         if (tx_path)
3375                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3376                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3377
3378         return skb->ip_summed == CHECKSUM_NONE;
3379 }
3380
3381 /**
3382  *      __skb_gso_segment - Perform segmentation on skb.
3383  *      @skb: buffer to segment
3384  *      @features: features for the output path (see dev->features)
3385  *      @tx_path: whether it is called in TX path
3386  *
3387  *      This function segments the given skb and returns a list of segments.
3388  *
3389  *      It may return NULL if the skb requires no segmentation.  This is
3390  *      only possible when GSO is used for verifying header integrity.
3391  *
3392  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3393  */
3394 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3395                                   netdev_features_t features, bool tx_path)
3396 {
3397         struct sk_buff *segs;
3398
3399         if (unlikely(skb_needs_check(skb, tx_path))) {
3400                 int err;
3401
3402                 /* We're going to init ->check field in TCP or UDP header */
3403                 err = skb_cow_head(skb, 0);
3404                 if (err < 0)
3405                         return ERR_PTR(err);
3406         }
3407
3408         /* Only report GSO partial support if it will enable us to
3409          * support segmentation on this frame without needing additional
3410          * work.
3411          */
3412         if (features & NETIF_F_GSO_PARTIAL) {
3413                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3414                 struct net_device *dev = skb->dev;
3415
3416                 partial_features |= dev->features & dev->gso_partial_features;
3417                 if (!skb_gso_ok(skb, features | partial_features))
3418                         features &= ~NETIF_F_GSO_PARTIAL;
3419         }
3420
3421         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3422                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3423
3424         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3425         SKB_GSO_CB(skb)->encap_level = 0;
3426
3427         skb_reset_mac_header(skb);
3428         skb_reset_mac_len(skb);
3429
3430         segs = skb_mac_gso_segment(skb, features);
3431
3432         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3433                 skb_warn_bad_offload(skb);
3434
3435         return segs;
3436 }
3437 EXPORT_SYMBOL(__skb_gso_segment);
3438
3439 /* Take action when hardware reception checksum errors are detected. */
3440 #ifdef CONFIG_BUG
3441 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3442 {
3443         if (net_ratelimit()) {
3444                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3445                 skb_dump(KERN_ERR, skb, true);
3446                 dump_stack();
3447         }
3448 }
3449 EXPORT_SYMBOL(netdev_rx_csum_fault);
3450 #endif
3451
3452 /* XXX: check that highmem exists at all on the given machine. */
3453 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3454 {
3455 #ifdef CONFIG_HIGHMEM
3456         int i;
3457
3458         if (!(dev->features & NETIF_F_HIGHDMA)) {
3459                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3460                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461
3462                         if (PageHighMem(skb_frag_page(frag)))
3463                                 return 1;
3464                 }
3465         }
3466 #endif
3467         return 0;
3468 }
3469
3470 /* If MPLS offload request, verify we are testing hardware MPLS features
3471  * instead of standard features for the netdev.
3472  */
3473 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3474 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3475                                            netdev_features_t features,
3476                                            __be16 type)
3477 {
3478         if (eth_p_mpls(type))
3479                 features &= skb->dev->mpls_features;
3480
3481         return features;
3482 }
3483 #else
3484 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3485                                            netdev_features_t features,
3486                                            __be16 type)
3487 {
3488         return features;
3489 }
3490 #endif
3491
3492 static netdev_features_t harmonize_features(struct sk_buff *skb,
3493         netdev_features_t features)
3494 {
3495         __be16 type;
3496
3497         type = skb_network_protocol(skb, NULL);
3498         features = net_mpls_features(skb, features, type);
3499
3500         if (skb->ip_summed != CHECKSUM_NONE &&
3501             !can_checksum_protocol(features, type)) {
3502                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3503         }
3504         if (illegal_highdma(skb->dev, skb))
3505                 features &= ~NETIF_F_SG;
3506
3507         return features;
3508 }
3509
3510 netdev_features_t passthru_features_check(struct sk_buff *skb,
3511                                           struct net_device *dev,
3512                                           netdev_features_t features)
3513 {
3514         return features;
3515 }
3516 EXPORT_SYMBOL(passthru_features_check);
3517
3518 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3519                                              struct net_device *dev,
3520                                              netdev_features_t features)
3521 {
3522         return vlan_features_check(skb, features);
3523 }
3524
3525 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3526                                             struct net_device *dev,
3527                                             netdev_features_t features)
3528 {
3529         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3530
3531         if (gso_segs > dev->gso_max_segs)
3532                 return features & ~NETIF_F_GSO_MASK;
3533
3534         if (!skb_shinfo(skb)->gso_type) {
3535                 skb_warn_bad_offload(skb);
3536                 return features & ~NETIF_F_GSO_MASK;
3537         }
3538
3539         /* Support for GSO partial features requires software
3540          * intervention before we can actually process the packets
3541          * so we need to strip support for any partial features now
3542          * and we can pull them back in after we have partially
3543          * segmented the frame.
3544          */
3545         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3546                 features &= ~dev->gso_partial_features;
3547
3548         /* Make sure to clear the IPv4 ID mangling feature if the
3549          * IPv4 header has the potential to be fragmented.
3550          */
3551         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3552                 struct iphdr *iph = skb->encapsulation ?
3553                                     inner_ip_hdr(skb) : ip_hdr(skb);
3554
3555                 if (!(iph->frag_off & htons(IP_DF)))
3556                         features &= ~NETIF_F_TSO_MANGLEID;
3557         }
3558
3559         return features;
3560 }
3561
3562 netdev_features_t netif_skb_features(struct sk_buff *skb)
3563 {
3564         struct net_device *dev = skb->dev;
3565         netdev_features_t features = dev->features;
3566
3567         if (skb_is_gso(skb))
3568                 features = gso_features_check(skb, dev, features);
3569
3570         /* If encapsulation offload request, verify we are testing
3571          * hardware encapsulation features instead of standard
3572          * features for the netdev
3573          */
3574         if (skb->encapsulation)
3575                 features &= dev->hw_enc_features;
3576
3577         if (skb_vlan_tagged(skb))
3578                 features = netdev_intersect_features(features,
3579                                                      dev->vlan_features |
3580                                                      NETIF_F_HW_VLAN_CTAG_TX |
3581                                                      NETIF_F_HW_VLAN_STAG_TX);
3582
3583         if (dev->netdev_ops->ndo_features_check)
3584                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3585                                                                 features);
3586         else
3587                 features &= dflt_features_check(skb, dev, features);
3588
3589         return harmonize_features(skb, features);
3590 }
3591 EXPORT_SYMBOL(netif_skb_features);
3592
3593 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3594                     struct netdev_queue *txq, bool more)
3595 {
3596         unsigned int len;
3597         int rc;
3598
3599         if (dev_nit_active(dev))
3600                 dev_queue_xmit_nit(skb, dev);
3601
3602         len = skb->len;
3603         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3604         trace_net_dev_start_xmit(skb, dev);
3605         rc = netdev_start_xmit(skb, dev, txq, more);
3606         trace_net_dev_xmit(skb, rc, dev, len);
3607
3608         return rc;
3609 }
3610
3611 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3612                                     struct netdev_queue *txq, int *ret)
3613 {
3614         struct sk_buff *skb = first;
3615         int rc = NETDEV_TX_OK;
3616
3617         while (skb) {
3618                 struct sk_buff *next = skb->next;
3619
3620                 skb_mark_not_on_list(skb);
3621                 rc = xmit_one(skb, dev, txq, next != NULL);
3622                 if (unlikely(!dev_xmit_complete(rc))) {
3623                         skb->next = next;
3624                         goto out;
3625                 }
3626
3627                 skb = next;
3628                 if (netif_tx_queue_stopped(txq) && skb) {
3629                         rc = NETDEV_TX_BUSY;
3630                         break;
3631                 }
3632         }
3633
3634 out:
3635         *ret = rc;
3636         return skb;
3637 }
3638
3639 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3640                                           netdev_features_t features)
3641 {
3642         if (skb_vlan_tag_present(skb) &&
3643             !vlan_hw_offload_capable(features, skb->vlan_proto))
3644                 skb = __vlan_hwaccel_push_inside(skb);
3645         return skb;
3646 }
3647
3648 int skb_csum_hwoffload_help(struct sk_buff *skb,
3649                             const netdev_features_t features)
3650 {
3651         if (unlikely(skb_csum_is_sctp(skb)))
3652                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3653                         skb_crc32c_csum_help(skb);
3654
3655         if (features & NETIF_F_HW_CSUM)
3656                 return 0;
3657
3658         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3659                 switch (skb->csum_offset) {
3660                 case offsetof(struct tcphdr, check):
3661                 case offsetof(struct udphdr, check):
3662                         return 0;
3663                 }
3664         }
3665
3666         return skb_checksum_help(skb);
3667 }
3668 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3669
3670 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3671 {
3672         netdev_features_t features;
3673
3674         features = netif_skb_features(skb);
3675         skb = validate_xmit_vlan(skb, features);
3676         if (unlikely(!skb))
3677                 goto out_null;
3678
3679         skb = sk_validate_xmit_skb(skb, dev);
3680         if (unlikely(!skb))
3681                 goto out_null;
3682
3683         if (netif_needs_gso(skb, features)) {
3684                 struct sk_buff *segs;
3685
3686                 segs = skb_gso_segment(skb, features);
3687                 if (IS_ERR(segs)) {
3688                         goto out_kfree_skb;
3689                 } else if (segs) {
3690                         consume_skb(skb);
3691                         skb = segs;
3692                 }
3693         } else {
3694                 if (skb_needs_linearize(skb, features) &&
3695                     __skb_linearize(skb))
3696                         goto out_kfree_skb;
3697
3698                 /* If packet is not checksummed and device does not
3699                  * support checksumming for this protocol, complete
3700                  * checksumming here.
3701                  */
3702                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3703                         if (skb->encapsulation)
3704                                 skb_set_inner_transport_header(skb,
3705                                                                skb_checksum_start_offset(skb));
3706                         else
3707                                 skb_set_transport_header(skb,
3708                                                          skb_checksum_start_offset(skb));
3709                         if (skb_csum_hwoffload_help(skb, features))
3710                                 goto out_kfree_skb;
3711                 }
3712         }
3713
3714         skb = validate_xmit_xfrm(skb, features, again);
3715
3716         return skb;
3717
3718 out_kfree_skb:
3719         kfree_skb(skb);
3720 out_null:
3721         atomic_long_inc(&dev->tx_dropped);
3722         return NULL;
3723 }
3724
3725 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3726 {
3727         struct sk_buff *next, *head = NULL, *tail;
3728
3729         for (; skb != NULL; skb = next) {
3730                 next = skb->next;
3731                 skb_mark_not_on_list(skb);
3732
3733                 /* in case skb wont be segmented, point to itself */
3734                 skb->prev = skb;
3735
3736                 skb = validate_xmit_skb(skb, dev, again);
3737                 if (!skb)
3738                         continue;
3739
3740                 if (!head)
3741                         head = skb;
3742                 else
3743                         tail->next = skb;
3744                 /* If skb was segmented, skb->prev points to
3745                  * the last segment. If not, it still contains skb.
3746                  */
3747                 tail = skb->prev;
3748         }
3749         return head;
3750 }
3751 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3752
3753 static void qdisc_pkt_len_init(struct sk_buff *skb)
3754 {
3755         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3756
3757         qdisc_skb_cb(skb)->pkt_len = skb->len;
3758
3759         /* To get more precise estimation of bytes sent on wire,
3760          * we add to pkt_len the headers size of all segments
3761          */
3762         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3763                 unsigned int hdr_len;
3764                 u16 gso_segs = shinfo->gso_segs;
3765
3766                 /* mac layer + network layer */
3767                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3768
3769                 /* + transport layer */
3770                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3771                         const struct tcphdr *th;
3772                         struct tcphdr _tcphdr;
3773
3774                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3775                                                 sizeof(_tcphdr), &_tcphdr);
3776                         if (likely(th))
3777                                 hdr_len += __tcp_hdrlen(th);
3778                 } else {
3779                         struct udphdr _udphdr;
3780
3781                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3782                                                sizeof(_udphdr), &_udphdr))
3783                                 hdr_len += sizeof(struct udphdr);
3784                 }
3785
3786                 if (shinfo->gso_type & SKB_GSO_DODGY)
3787                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3788                                                 shinfo->gso_size);
3789
3790                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3791         }
3792 }
3793
3794 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3795                                  struct net_device *dev,
3796                                  struct netdev_queue *txq)
3797 {
3798         spinlock_t *root_lock = qdisc_lock(q);
3799         struct sk_buff *to_free = NULL;
3800         bool contended;
3801         int rc;
3802
3803         qdisc_calculate_pkt_len(skb, q);
3804
3805         if (q->flags & TCQ_F_NOLOCK) {
3806                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3807                 qdisc_run(q);
3808
3809                 if (unlikely(to_free))
3810                         kfree_skb_list(to_free);
3811                 return rc;
3812         }
3813
3814         /*
3815          * Heuristic to force contended enqueues to serialize on a
3816          * separate lock before trying to get qdisc main lock.
3817          * This permits qdisc->running owner to get the lock more
3818          * often and dequeue packets faster.
3819          */
3820         contended = qdisc_is_running(q);
3821         if (unlikely(contended))
3822                 spin_lock(&q->busylock);
3823
3824         spin_lock(root_lock);
3825         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3826                 __qdisc_drop(skb, &to_free);
3827                 rc = NET_XMIT_DROP;
3828         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3829                    qdisc_run_begin(q)) {
3830                 /*
3831                  * This is a work-conserving queue; there are no old skbs
3832                  * waiting to be sent out; and the qdisc is not running -
3833                  * xmit the skb directly.
3834                  */
3835
3836                 qdisc_bstats_update(q, skb);
3837
3838                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3839                         if (unlikely(contended)) {
3840                                 spin_unlock(&q->busylock);
3841                                 contended = false;
3842                         }
3843                         __qdisc_run(q);
3844                 }
3845
3846                 qdisc_run_end(q);
3847                 rc = NET_XMIT_SUCCESS;
3848         } else {
3849                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3850                 if (qdisc_run_begin(q)) {
3851                         if (unlikely(contended)) {
3852                                 spin_unlock(&q->busylock);
3853                                 contended = false;
3854                         }
3855                         __qdisc_run(q);
3856                         qdisc_run_end(q);
3857                 }
3858         }
3859         spin_unlock(root_lock);
3860         if (unlikely(to_free))
3861                 kfree_skb_list(to_free);
3862         if (unlikely(contended))
3863                 spin_unlock(&q->busylock);
3864         return rc;
3865 }
3866
3867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3868 static void skb_update_prio(struct sk_buff *skb)
3869 {
3870         const struct netprio_map *map;
3871         const struct sock *sk;
3872         unsigned int prioidx;
3873
3874         if (skb->priority)
3875                 return;
3876         map = rcu_dereference_bh(skb->dev->priomap);
3877         if (!map)
3878                 return;
3879         sk = skb_to_full_sk(skb);
3880         if (!sk)
3881                 return;
3882
3883         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3884
3885         if (prioidx < map->priomap_len)
3886                 skb->priority = map->priomap[prioidx];
3887 }
3888 #else
3889 #define skb_update_prio(skb)
3890 #endif
3891
3892 /**
3893  *      dev_loopback_xmit - loop back @skb
3894  *      @net: network namespace this loopback is happening in
3895  *      @sk:  sk needed to be a netfilter okfn
3896  *      @skb: buffer to transmit
3897  */
3898 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3899 {
3900         skb_reset_mac_header(skb);
3901         __skb_pull(skb, skb_network_offset(skb));
3902         skb->pkt_type = PACKET_LOOPBACK;
3903         skb->ip_summed = CHECKSUM_UNNECESSARY;
3904         WARN_ON(!skb_dst(skb));
3905         skb_dst_force(skb);
3906         netif_rx_ni(skb);
3907         return 0;
3908 }
3909 EXPORT_SYMBOL(dev_loopback_xmit);
3910
3911 #ifdef CONFIG_NET_EGRESS
3912 static struct sk_buff *
3913 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3914 {
3915         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3916         struct tcf_result cl_res;
3917
3918         if (!miniq)
3919                 return skb;
3920
3921         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3922         qdisc_skb_cb(skb)->mru = 0;
3923         qdisc_skb_cb(skb)->post_ct = false;
3924         mini_qdisc_bstats_cpu_update(miniq, skb);
3925
3926         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3927         case TC_ACT_OK:
3928         case TC_ACT_RECLASSIFY:
3929                 skb->tc_index = TC_H_MIN(cl_res.classid);
3930                 break;
3931         case TC_ACT_SHOT:
3932                 mini_qdisc_qstats_cpu_drop(miniq);
3933                 *ret = NET_XMIT_DROP;
3934                 kfree_skb(skb);
3935                 return NULL;
3936         case TC_ACT_STOLEN:
3937         case TC_ACT_QUEUED:
3938         case TC_ACT_TRAP:
3939                 *ret = NET_XMIT_SUCCESS;
3940                 consume_skb(skb);
3941                 return NULL;
3942         case TC_ACT_REDIRECT:
3943                 /* No need to push/pop skb's mac_header here on egress! */
3944                 skb_do_redirect(skb);
3945                 *ret = NET_XMIT_SUCCESS;
3946                 return NULL;
3947         default:
3948                 break;
3949         }
3950
3951         return skb;
3952 }
3953 #endif /* CONFIG_NET_EGRESS */
3954
3955 #ifdef CONFIG_XPS
3956 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3957                                struct xps_dev_maps *dev_maps, unsigned int tci)
3958 {
3959         struct xps_map *map;
3960         int queue_index = -1;
3961
3962         if (dev->num_tc) {
3963                 tci *= dev->num_tc;
3964                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3965         }
3966
3967         map = rcu_dereference(dev_maps->attr_map[tci]);
3968         if (map) {
3969                 if (map->len == 1)
3970                         queue_index = map->queues[0];
3971                 else
3972                         queue_index = map->queues[reciprocal_scale(
3973                                                 skb_get_hash(skb), map->len)];
3974                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3975                         queue_index = -1;
3976         }
3977         return queue_index;
3978 }
3979 #endif
3980
3981 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3982                          struct sk_buff *skb)
3983 {
3984 #ifdef CONFIG_XPS
3985         struct xps_dev_maps *dev_maps;
3986         struct sock *sk = skb->sk;
3987         int queue_index = -1;
3988
3989         if (!static_key_false(&xps_needed))
3990                 return -1;
3991
3992         rcu_read_lock();
3993         if (!static_key_false(&xps_rxqs_needed))
3994                 goto get_cpus_map;
3995
3996         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3997         if (dev_maps) {
3998                 int tci = sk_rx_queue_get(sk);
3999
4000                 if (tci >= 0 && tci < dev->num_rx_queues)
4001                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4002                                                           tci);
4003         }
4004
4005 get_cpus_map:
4006         if (queue_index < 0) {
4007                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4008                 if (dev_maps) {
4009                         unsigned int tci = skb->sender_cpu - 1;
4010
4011                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012                                                           tci);
4013                 }
4014         }
4015         rcu_read_unlock();
4016
4017         return queue_index;
4018 #else
4019         return -1;
4020 #endif
4021 }
4022
4023 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4024                      struct net_device *sb_dev)
4025 {
4026         return 0;
4027 }
4028 EXPORT_SYMBOL(dev_pick_tx_zero);
4029
4030 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4031                        struct net_device *sb_dev)
4032 {
4033         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4034 }
4035 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4036
4037 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4038                      struct net_device *sb_dev)
4039 {
4040         struct sock *sk = skb->sk;
4041         int queue_index = sk_tx_queue_get(sk);
4042
4043         sb_dev = sb_dev ? : dev;
4044
4045         if (queue_index < 0 || skb->ooo_okay ||
4046             queue_index >= dev->real_num_tx_queues) {
4047                 int new_index = get_xps_queue(dev, sb_dev, skb);
4048
4049                 if (new_index < 0)
4050                         new_index = skb_tx_hash(dev, sb_dev, skb);
4051
4052                 if (queue_index != new_index && sk &&
4053                     sk_fullsock(sk) &&
4054                     rcu_access_pointer(sk->sk_dst_cache))
4055                         sk_tx_queue_set(sk, new_index);
4056
4057                 queue_index = new_index;
4058         }
4059
4060         return queue_index;
4061 }
4062 EXPORT_SYMBOL(netdev_pick_tx);
4063
4064 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4065                                          struct sk_buff *skb,
4066                                          struct net_device *sb_dev)
4067 {
4068         int queue_index = 0;
4069
4070 #ifdef CONFIG_XPS
4071         u32 sender_cpu = skb->sender_cpu - 1;
4072
4073         if (sender_cpu >= (u32)NR_CPUS)
4074                 skb->sender_cpu = raw_smp_processor_id() + 1;
4075 #endif
4076
4077         if (dev->real_num_tx_queues != 1) {
4078                 const struct net_device_ops *ops = dev->netdev_ops;
4079
4080                 if (ops->ndo_select_queue)
4081                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4082                 else
4083                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4084
4085                 queue_index = netdev_cap_txqueue(dev, queue_index);
4086         }
4087
4088         skb_set_queue_mapping(skb, queue_index);
4089         return netdev_get_tx_queue(dev, queue_index);
4090 }
4091
4092 /**
4093  *      __dev_queue_xmit - transmit a buffer
4094  *      @skb: buffer to transmit
4095  *      @sb_dev: suboordinate device used for L2 forwarding offload
4096  *
4097  *      Queue a buffer for transmission to a network device. The caller must
4098  *      have set the device and priority and built the buffer before calling
4099  *      this function. The function can be called from an interrupt.
4100  *
4101  *      A negative errno code is returned on a failure. A success does not
4102  *      guarantee the frame will be transmitted as it may be dropped due
4103  *      to congestion or traffic shaping.
4104  *
4105  * -----------------------------------------------------------------------------------
4106  *      I notice this method can also return errors from the queue disciplines,
4107  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4108  *      be positive.
4109  *
4110  *      Regardless of the return value, the skb is consumed, so it is currently
4111  *      difficult to retry a send to this method.  (You can bump the ref count
4112  *      before sending to hold a reference for retry if you are careful.)
4113  *
4114  *      When calling this method, interrupts MUST be enabled.  This is because
4115  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4116  *          --BLG
4117  */
4118 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4119 {
4120         struct net_device *dev = skb->dev;
4121         struct netdev_queue *txq;
4122         struct Qdisc *q;
4123         int rc = -ENOMEM;
4124         bool again = false;
4125
4126         skb_reset_mac_header(skb);
4127
4128         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4129                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4130
4131         /* Disable soft irqs for various locks below. Also
4132          * stops preemption for RCU.
4133          */
4134         rcu_read_lock_bh();
4135
4136         skb_update_prio(skb);
4137
4138         qdisc_pkt_len_init(skb);
4139 #ifdef CONFIG_NET_CLS_ACT
4140         skb->tc_at_ingress = 0;
4141 # ifdef CONFIG_NET_EGRESS
4142         if (static_branch_unlikely(&egress_needed_key)) {
4143                 skb = sch_handle_egress(skb, &rc, dev);
4144                 if (!skb)
4145                         goto out;
4146         }
4147 # endif
4148 #endif
4149         /* If device/qdisc don't need skb->dst, release it right now while
4150          * its hot in this cpu cache.
4151          */
4152         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4153                 skb_dst_drop(skb);
4154         else
4155                 skb_dst_force(skb);
4156
4157         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4158         q = rcu_dereference_bh(txq->qdisc);
4159
4160         trace_net_dev_queue(skb);
4161         if (q->enqueue) {
4162                 rc = __dev_xmit_skb(skb, q, dev, txq);
4163                 goto out;
4164         }
4165
4166         /* The device has no queue. Common case for software devices:
4167          * loopback, all the sorts of tunnels...
4168
4169          * Really, it is unlikely that netif_tx_lock protection is necessary
4170          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4171          * counters.)
4172          * However, it is possible, that they rely on protection
4173          * made by us here.
4174
4175          * Check this and shot the lock. It is not prone from deadlocks.
4176          *Either shot noqueue qdisc, it is even simpler 8)
4177          */
4178         if (dev->flags & IFF_UP) {
4179                 int cpu = smp_processor_id(); /* ok because BHs are off */
4180
4181                 if (txq->xmit_lock_owner != cpu) {
4182                         if (dev_xmit_recursion())
4183                                 goto recursion_alert;
4184
4185                         skb = validate_xmit_skb(skb, dev, &again);
4186                         if (!skb)
4187                                 goto out;
4188
4189                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4190                         HARD_TX_LOCK(dev, txq, cpu);
4191
4192                         if (!netif_xmit_stopped(txq)) {
4193                                 dev_xmit_recursion_inc();
4194                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4195                                 dev_xmit_recursion_dec();
4196                                 if (dev_xmit_complete(rc)) {
4197                                         HARD_TX_UNLOCK(dev, txq);
4198                                         goto out;
4199                                 }
4200                         }
4201                         HARD_TX_UNLOCK(dev, txq);
4202                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4203                                              dev->name);
4204                 } else {
4205                         /* Recursion is detected! It is possible,
4206                          * unfortunately
4207                          */
4208 recursion_alert:
4209                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4210                                              dev->name);
4211                 }
4212         }
4213
4214         rc = -ENETDOWN;
4215         rcu_read_unlock_bh();
4216
4217         atomic_long_inc(&dev->tx_dropped);
4218         kfree_skb_list(skb);
4219         return rc;
4220 out:
4221         rcu_read_unlock_bh();
4222         return rc;
4223 }
4224
4225 int dev_queue_xmit(struct sk_buff *skb)
4226 {
4227         return __dev_queue_xmit(skb, NULL);
4228 }
4229 EXPORT_SYMBOL(dev_queue_xmit);
4230
4231 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4232 {
4233         return __dev_queue_xmit(skb, sb_dev);
4234 }
4235 EXPORT_SYMBOL(dev_queue_xmit_accel);
4236
4237 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4238 {
4239         struct net_device *dev = skb->dev;
4240         struct sk_buff *orig_skb = skb;
4241         struct netdev_queue *txq;
4242         int ret = NETDEV_TX_BUSY;
4243         bool again = false;
4244
4245         if (unlikely(!netif_running(dev) ||
4246                      !netif_carrier_ok(dev)))
4247                 goto drop;
4248
4249         skb = validate_xmit_skb_list(skb, dev, &again);
4250         if (skb != orig_skb)
4251                 goto drop;
4252
4253         skb_set_queue_mapping(skb, queue_id);
4254         txq = skb_get_tx_queue(dev, skb);
4255         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4256
4257         local_bh_disable();
4258
4259         dev_xmit_recursion_inc();
4260         HARD_TX_LOCK(dev, txq, smp_processor_id());
4261         if (!netif_xmit_frozen_or_drv_stopped(txq))
4262                 ret = netdev_start_xmit(skb, dev, txq, false);
4263         HARD_TX_UNLOCK(dev, txq);
4264         dev_xmit_recursion_dec();
4265
4266         local_bh_enable();
4267         return ret;
4268 drop:
4269         atomic_long_inc(&dev->tx_dropped);
4270         kfree_skb_list(skb);
4271         return NET_XMIT_DROP;
4272 }
4273 EXPORT_SYMBOL(__dev_direct_xmit);
4274
4275 /*************************************************************************
4276  *                      Receiver routines
4277  *************************************************************************/
4278
4279 int netdev_max_backlog __read_mostly = 1000;
4280 EXPORT_SYMBOL(netdev_max_backlog);
4281
4282 int netdev_tstamp_prequeue __read_mostly = 1;
4283 int netdev_budget __read_mostly = 300;
4284 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4285 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4286 int weight_p __read_mostly = 64;           /* old backlog weight */
4287 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4288 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4289 int dev_rx_weight __read_mostly = 64;
4290 int dev_tx_weight __read_mostly = 64;
4291 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4292 int gro_normal_batch __read_mostly = 8;
4293
4294 /* Called with irq disabled */
4295 static inline void ____napi_schedule(struct softnet_data *sd,
4296                                      struct napi_struct *napi)
4297 {
4298         struct task_struct *thread;
4299
4300         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4301                 /* Paired with smp_mb__before_atomic() in
4302                  * napi_enable()/dev_set_threaded().
4303                  * Use READ_ONCE() to guarantee a complete
4304                  * read on napi->thread. Only call
4305                  * wake_up_process() when it's not NULL.
4306                  */
4307                 thread = READ_ONCE(napi->thread);
4308                 if (thread) {
4309                         /* Avoid doing set_bit() if the thread is in
4310                          * INTERRUPTIBLE state, cause napi_thread_wait()
4311                          * makes sure to proceed with napi polling
4312                          * if the thread is explicitly woken from here.
4313                          */
4314                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4315                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4316                         wake_up_process(thread);
4317                         return;
4318                 }
4319         }
4320
4321         list_add_tail(&napi->poll_list, &sd->poll_list);
4322         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4323 }
4324
4325 #ifdef CONFIG_RPS
4326
4327 /* One global table that all flow-based protocols share. */
4328 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4329 EXPORT_SYMBOL(rps_sock_flow_table);
4330 u32 rps_cpu_mask __read_mostly;
4331 EXPORT_SYMBOL(rps_cpu_mask);
4332
4333 struct static_key_false rps_needed __read_mostly;
4334 EXPORT_SYMBOL(rps_needed);
4335 struct static_key_false rfs_needed __read_mostly;
4336 EXPORT_SYMBOL(rfs_needed);
4337
4338 static struct rps_dev_flow *
4339 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4340             struct rps_dev_flow *rflow, u16 next_cpu)
4341 {
4342         if (next_cpu < nr_cpu_ids) {
4343 #ifdef CONFIG_RFS_ACCEL
4344                 struct netdev_rx_queue *rxqueue;
4345                 struct rps_dev_flow_table *flow_table;
4346                 struct rps_dev_flow *old_rflow;
4347                 u32 flow_id;
4348                 u16 rxq_index;
4349                 int rc;
4350
4351                 /* Should we steer this flow to a different hardware queue? */
4352                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4353                     !(dev->features & NETIF_F_NTUPLE))
4354                         goto out;
4355                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4356                 if (rxq_index == skb_get_rx_queue(skb))
4357                         goto out;
4358
4359                 rxqueue = dev->_rx + rxq_index;
4360                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4361                 if (!flow_table)
4362                         goto out;
4363                 flow_id = skb_get_hash(skb) & flow_table->mask;
4364                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4365                                                         rxq_index, flow_id);
4366                 if (rc < 0)
4367                         goto out;
4368                 old_rflow = rflow;
4369                 rflow = &flow_table->flows[flow_id];
4370                 rflow->filter = rc;
4371                 if (old_rflow->filter == rflow->filter)
4372                         old_rflow->filter = RPS_NO_FILTER;
4373         out:
4374 #endif
4375                 rflow->last_qtail =
4376                         per_cpu(softnet_data, next_cpu).input_queue_head;
4377         }
4378
4379         rflow->cpu = next_cpu;
4380         return rflow;
4381 }
4382
4383 /*
4384  * get_rps_cpu is called from netif_receive_skb and returns the target
4385  * CPU from the RPS map of the receiving queue for a given skb.
4386  * rcu_read_lock must be held on entry.
4387  */
4388 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4389                        struct rps_dev_flow **rflowp)
4390 {
4391         const struct rps_sock_flow_table *sock_flow_table;
4392         struct netdev_rx_queue *rxqueue = dev->_rx;
4393         struct rps_dev_flow_table *flow_table;
4394         struct rps_map *map;
4395         int cpu = -1;
4396         u32 tcpu;
4397         u32 hash;
4398
4399         if (skb_rx_queue_recorded(skb)) {
4400                 u16 index = skb_get_rx_queue(skb);
4401
4402                 if (unlikely(index >= dev->real_num_rx_queues)) {
4403                         WARN_ONCE(dev->real_num_rx_queues > 1,
4404                                   "%s received packet on queue %u, but number "
4405                                   "of RX queues is %u\n",
4406                                   dev->name, index, dev->real_num_rx_queues);
4407                         goto done;
4408                 }
4409                 rxqueue += index;
4410         }
4411
4412         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4413
4414         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415         map = rcu_dereference(rxqueue->rps_map);
4416         if (!flow_table && !map)
4417                 goto done;
4418
4419         skb_reset_network_header(skb);
4420         hash = skb_get_hash(skb);
4421         if (!hash)
4422                 goto done;
4423
4424         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4425         if (flow_table && sock_flow_table) {
4426                 struct rps_dev_flow *rflow;
4427                 u32 next_cpu;
4428                 u32 ident;
4429
4430                 /* First check into global flow table if there is a match */
4431                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4432                 if ((ident ^ hash) & ~rps_cpu_mask)
4433                         goto try_rps;
4434
4435                 next_cpu = ident & rps_cpu_mask;
4436
4437                 /* OK, now we know there is a match,
4438                  * we can look at the local (per receive queue) flow table
4439                  */
4440                 rflow = &flow_table->flows[hash & flow_table->mask];
4441                 tcpu = rflow->cpu;
4442
4443                 /*
4444                  * If the desired CPU (where last recvmsg was done) is
4445                  * different from current CPU (one in the rx-queue flow
4446                  * table entry), switch if one of the following holds:
4447                  *   - Current CPU is unset (>= nr_cpu_ids).
4448                  *   - Current CPU is offline.
4449                  *   - The current CPU's queue tail has advanced beyond the
4450                  *     last packet that was enqueued using this table entry.
4451                  *     This guarantees that all previous packets for the flow
4452                  *     have been dequeued, thus preserving in order delivery.
4453                  */
4454                 if (unlikely(tcpu != next_cpu) &&
4455                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4456                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4457                       rflow->last_qtail)) >= 0)) {
4458                         tcpu = next_cpu;
4459                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4460                 }
4461
4462                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4463                         *rflowp = rflow;
4464                         cpu = tcpu;
4465                         goto done;
4466                 }
4467         }
4468
4469 try_rps:
4470
4471         if (map) {
4472                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4473                 if (cpu_online(tcpu)) {
4474                         cpu = tcpu;
4475                         goto done;
4476                 }
4477         }
4478
4479 done:
4480         return cpu;
4481 }
4482
4483 #ifdef CONFIG_RFS_ACCEL
4484
4485 /**
4486  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4487  * @dev: Device on which the filter was set
4488  * @rxq_index: RX queue index
4489  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4490  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4491  *
4492  * Drivers that implement ndo_rx_flow_steer() should periodically call
4493  * this function for each installed filter and remove the filters for
4494  * which it returns %true.
4495  */
4496 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4497                          u32 flow_id, u16 filter_id)
4498 {
4499         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4500         struct rps_dev_flow_table *flow_table;
4501         struct rps_dev_flow *rflow;
4502         bool expire = true;
4503         unsigned int cpu;
4504
4505         rcu_read_lock();
4506         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507         if (flow_table && flow_id <= flow_table->mask) {
4508                 rflow = &flow_table->flows[flow_id];
4509                 cpu = READ_ONCE(rflow->cpu);
4510                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4511                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4512                            rflow->last_qtail) <
4513                      (int)(10 * flow_table->mask)))
4514                         expire = false;
4515         }
4516         rcu_read_unlock();
4517         return expire;
4518 }
4519 EXPORT_SYMBOL(rps_may_expire_flow);
4520
4521 #endif /* CONFIG_RFS_ACCEL */
4522
4523 /* Called from hardirq (IPI) context */
4524 static void rps_trigger_softirq(void *data)
4525 {
4526         struct softnet_data *sd = data;
4527
4528         ____napi_schedule(sd, &sd->backlog);
4529         sd->received_rps++;
4530 }
4531
4532 #endif /* CONFIG_RPS */
4533
4534 /*
4535  * Check if this softnet_data structure is another cpu one
4536  * If yes, queue it to our IPI list and return 1
4537  * If no, return 0
4538  */
4539 static int rps_ipi_queued(struct softnet_data *sd)
4540 {
4541 #ifdef CONFIG_RPS
4542         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4543
4544         if (sd != mysd) {
4545                 sd->rps_ipi_next = mysd->rps_ipi_list;
4546                 mysd->rps_ipi_list = sd;
4547
4548                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4549                 return 1;
4550         }
4551 #endif /* CONFIG_RPS */
4552         return 0;
4553 }
4554
4555 #ifdef CONFIG_NET_FLOW_LIMIT
4556 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4557 #endif
4558
4559 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4560 {
4561 #ifdef CONFIG_NET_FLOW_LIMIT
4562         struct sd_flow_limit *fl;
4563         struct softnet_data *sd;
4564         unsigned int old_flow, new_flow;
4565
4566         if (qlen < (netdev_max_backlog >> 1))
4567                 return false;
4568
4569         sd = this_cpu_ptr(&softnet_data);
4570
4571         rcu_read_lock();
4572         fl = rcu_dereference(sd->flow_limit);
4573         if (fl) {
4574                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4575                 old_flow = fl->history[fl->history_head];
4576                 fl->history[fl->history_head] = new_flow;
4577
4578                 fl->history_head++;
4579                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4580
4581                 if (likely(fl->buckets[old_flow]))
4582                         fl->buckets[old_flow]--;
4583
4584                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4585                         fl->count++;
4586                         rcu_read_unlock();
4587                         return true;
4588                 }
4589         }
4590         rcu_read_unlock();
4591 #endif
4592         return false;
4593 }
4594
4595 /*
4596  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4597  * queue (may be a remote CPU queue).
4598  */
4599 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4600                               unsigned int *qtail)
4601 {
4602         struct softnet_data *sd;
4603         unsigned long flags;
4604         unsigned int qlen;
4605
4606         sd = &per_cpu(softnet_data, cpu);
4607
4608         local_irq_save(flags);
4609
4610         rps_lock(sd);
4611         if (!netif_running(skb->dev))
4612                 goto drop;
4613         qlen = skb_queue_len(&sd->input_pkt_queue);
4614         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4615                 if (qlen) {
4616 enqueue:
4617                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4618                         input_queue_tail_incr_save(sd, qtail);
4619                         rps_unlock(sd);
4620                         local_irq_restore(flags);
4621                         return NET_RX_SUCCESS;
4622                 }
4623
4624                 /* Schedule NAPI for backlog device
4625                  * We can use non atomic operation since we own the queue lock
4626                  */
4627                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4628                         if (!rps_ipi_queued(sd))
4629                                 ____napi_schedule(sd, &sd->backlog);
4630                 }
4631                 goto enqueue;
4632         }
4633
4634 drop:
4635         sd->dropped++;
4636         rps_unlock(sd);
4637
4638         local_irq_restore(flags);
4639
4640         atomic_long_inc(&skb->dev->rx_dropped);
4641         kfree_skb(skb);
4642         return NET_RX_DROP;
4643 }
4644
4645 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4646 {
4647         struct net_device *dev = skb->dev;
4648         struct netdev_rx_queue *rxqueue;
4649
4650         rxqueue = dev->_rx;
4651
4652         if (skb_rx_queue_recorded(skb)) {
4653                 u16 index = skb_get_rx_queue(skb);
4654
4655                 if (unlikely(index >= dev->real_num_rx_queues)) {
4656                         WARN_ONCE(dev->real_num_rx_queues > 1,
4657                                   "%s received packet on queue %u, but number "
4658                                   "of RX queues is %u\n",
4659                                   dev->name, index, dev->real_num_rx_queues);
4660
4661                         return rxqueue; /* Return first rxqueue */
4662                 }
4663                 rxqueue += index;
4664         }
4665         return rxqueue;
4666 }
4667
4668 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4669                                      struct xdp_buff *xdp,
4670                                      struct bpf_prog *xdp_prog)
4671 {
4672         void *orig_data, *orig_data_end, *hard_start;
4673         struct netdev_rx_queue *rxqueue;
4674         u32 metalen, act = XDP_DROP;
4675         u32 mac_len, frame_sz;
4676         __be16 orig_eth_type;
4677         struct ethhdr *eth;
4678         bool orig_bcast;
4679         int off;
4680
4681         /* Reinjected packets coming from act_mirred or similar should
4682          * not get XDP generic processing.
4683          */
4684         if (skb_is_redirected(skb))
4685                 return XDP_PASS;
4686
4687         /* XDP packets must be linear and must have sufficient headroom
4688          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4689          * native XDP provides, thus we need to do it here as well.
4690          */
4691         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4692             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4693                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4694                 int troom = skb->tail + skb->data_len - skb->end;
4695
4696                 /* In case we have to go down the path and also linearize,
4697                  * then lets do the pskb_expand_head() work just once here.
4698                  */
4699                 if (pskb_expand_head(skb,
4700                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4701                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4702                         goto do_drop;
4703                 if (skb_linearize(skb))
4704                         goto do_drop;
4705         }
4706
4707         /* The XDP program wants to see the packet starting at the MAC
4708          * header.
4709          */
4710         mac_len = skb->data - skb_mac_header(skb);
4711         hard_start = skb->data - skb_headroom(skb);
4712
4713         /* SKB "head" area always have tailroom for skb_shared_info */
4714         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4715         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4716
4717         rxqueue = netif_get_rxqueue(skb);
4718         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4719         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4720                          skb_headlen(skb) + mac_len, true);
4721
4722         orig_data_end = xdp->data_end;
4723         orig_data = xdp->data;
4724         eth = (struct ethhdr *)xdp->data;
4725         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726         orig_eth_type = eth->h_proto;
4727
4728         act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730         /* check if bpf_xdp_adjust_head was used */
4731         off = xdp->data - orig_data;
4732         if (off) {
4733                 if (off > 0)
4734                         __skb_pull(skb, off);
4735                 else if (off < 0)
4736                         __skb_push(skb, -off);
4737
4738                 skb->mac_header += off;
4739                 skb_reset_network_header(skb);
4740         }
4741
4742         /* check if bpf_xdp_adjust_tail was used */
4743         off = xdp->data_end - orig_data_end;
4744         if (off != 0) {
4745                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746                 skb->len += off; /* positive on grow, negative on shrink */
4747         }
4748
4749         /* check if XDP changed eth hdr such SKB needs update */
4750         eth = (struct ethhdr *)xdp->data;
4751         if ((orig_eth_type != eth->h_proto) ||
4752             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4753                 __skb_push(skb, ETH_HLEN);
4754                 skb->protocol = eth_type_trans(skb, skb->dev);
4755         }
4756
4757         switch (act) {
4758         case XDP_REDIRECT:
4759         case XDP_TX:
4760                 __skb_push(skb, mac_len);
4761                 break;
4762         case XDP_PASS:
4763                 metalen = xdp->data - xdp->data_meta;
4764                 if (metalen)
4765                         skb_metadata_set(skb, metalen);
4766                 break;
4767         default:
4768                 bpf_warn_invalid_xdp_action(act);
4769                 fallthrough;
4770         case XDP_ABORTED:
4771                 trace_xdp_exception(skb->dev, xdp_prog, act);
4772                 fallthrough;
4773         case XDP_DROP:
4774         do_drop:
4775                 kfree_skb(skb);
4776                 break;
4777         }
4778
4779         return act;
4780 }
4781
4782 /* When doing generic XDP we have to bypass the qdisc layer and the
4783  * network taps in order to match in-driver-XDP behavior.
4784  */
4785 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4786 {
4787         struct net_device *dev = skb->dev;
4788         struct netdev_queue *txq;
4789         bool free_skb = true;
4790         int cpu, rc;
4791
4792         txq = netdev_core_pick_tx(dev, skb, NULL);
4793         cpu = smp_processor_id();
4794         HARD_TX_LOCK(dev, txq, cpu);
4795         if (!netif_xmit_stopped(txq)) {
4796                 rc = netdev_start_xmit(skb, dev, txq, 0);
4797                 if (dev_xmit_complete(rc))
4798                         free_skb = false;
4799         }
4800         HARD_TX_UNLOCK(dev, txq);
4801         if (free_skb) {
4802                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4803                 kfree_skb(skb);
4804         }
4805 }
4806
4807 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4808
4809 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4810 {
4811         if (xdp_prog) {
4812                 struct xdp_buff xdp;
4813                 u32 act;
4814                 int err;
4815
4816                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4817                 if (act != XDP_PASS) {
4818                         switch (act) {
4819                         case XDP_REDIRECT:
4820                                 err = xdp_do_generic_redirect(skb->dev, skb,
4821                                                               &xdp, xdp_prog);
4822                                 if (err)
4823                                         goto out_redir;
4824                                 break;
4825                         case XDP_TX:
4826                                 generic_xdp_tx(skb, xdp_prog);
4827                                 break;
4828                         }
4829                         return XDP_DROP;
4830                 }
4831         }
4832         return XDP_PASS;
4833 out_redir:
4834         kfree_skb(skb);
4835         return XDP_DROP;
4836 }
4837 EXPORT_SYMBOL_GPL(do_xdp_generic);
4838
4839 static int netif_rx_internal(struct sk_buff *skb)
4840 {
4841         int ret;
4842
4843         net_timestamp_check(netdev_tstamp_prequeue, skb);
4844
4845         trace_netif_rx(skb);
4846
4847 #ifdef CONFIG_RPS
4848         if (static_branch_unlikely(&rps_needed)) {
4849                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4850                 int cpu;
4851
4852                 preempt_disable();
4853                 rcu_read_lock();
4854
4855                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4856                 if (cpu < 0)
4857                         cpu = smp_processor_id();
4858
4859                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4860
4861                 rcu_read_unlock();
4862                 preempt_enable();
4863         } else
4864 #endif
4865         {
4866                 unsigned int qtail;
4867
4868                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4869                 put_cpu();
4870         }
4871         return ret;
4872 }
4873
4874 /**
4875  *      netif_rx        -       post buffer to the network code
4876  *      @skb: buffer to post
4877  *
4878  *      This function receives a packet from a device driver and queues it for
4879  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4880  *      may be dropped during processing for congestion control or by the
4881  *      protocol layers.
4882  *
4883  *      return values:
4884  *      NET_RX_SUCCESS  (no congestion)
4885  *      NET_RX_DROP     (packet was dropped)
4886  *
4887  */
4888
4889 int netif_rx(struct sk_buff *skb)
4890 {
4891         int ret;
4892
4893         trace_netif_rx_entry(skb);
4894
4895         ret = netif_rx_internal(skb);
4896         trace_netif_rx_exit(ret);
4897
4898         return ret;
4899 }
4900 EXPORT_SYMBOL(netif_rx);
4901
4902 int netif_rx_ni(struct sk_buff *skb)
4903 {
4904         int err;
4905
4906         trace_netif_rx_ni_entry(skb);
4907
4908         preempt_disable();
4909         err = netif_rx_internal(skb);
4910         if (local_softirq_pending())
4911                 do_softirq();
4912         preempt_enable();
4913         trace_netif_rx_ni_exit(err);
4914
4915         return err;
4916 }
4917 EXPORT_SYMBOL(netif_rx_ni);
4918
4919 int netif_rx_any_context(struct sk_buff *skb)
4920 {
4921         /*
4922          * If invoked from contexts which do not invoke bottom half
4923          * processing either at return from interrupt or when softrqs are
4924          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4925          * directly.
4926          */
4927         if (in_interrupt())
4928                 return netif_rx(skb);
4929         else
4930                 return netif_rx_ni(skb);
4931 }
4932 EXPORT_SYMBOL(netif_rx_any_context);
4933
4934 static __latent_entropy void net_tx_action(struct softirq_action *h)
4935 {
4936         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4937
4938         if (sd->completion_queue) {
4939                 struct sk_buff *clist;
4940
4941                 local_irq_disable();
4942                 clist = sd->completion_queue;
4943                 sd->completion_queue = NULL;
4944                 local_irq_enable();
4945
4946                 while (clist) {
4947                         struct sk_buff *skb = clist;
4948
4949                         clist = clist->next;
4950
4951                         WARN_ON(refcount_read(&skb->users));
4952                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4953                                 trace_consume_skb(skb);
4954                         else
4955                                 trace_kfree_skb(skb, net_tx_action);
4956
4957                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958                                 __kfree_skb(skb);
4959                         else
4960                                 __kfree_skb_defer(skb);
4961                 }
4962         }
4963
4964         if (sd->output_queue) {
4965                 struct Qdisc *head;
4966
4967                 local_irq_disable();
4968                 head = sd->output_queue;
4969                 sd->output_queue = NULL;
4970                 sd->output_queue_tailp = &sd->output_queue;
4971                 local_irq_enable();
4972
4973                 while (head) {
4974                         struct Qdisc *q = head;
4975                         spinlock_t *root_lock = NULL;
4976
4977                         head = head->next_sched;
4978
4979                         if (!(q->flags & TCQ_F_NOLOCK)) {
4980                                 root_lock = qdisc_lock(q);
4981                                 spin_lock(root_lock);
4982                         }
4983                         /* We need to make sure head->next_sched is read
4984                          * before clearing __QDISC_STATE_SCHED
4985                          */
4986                         smp_mb__before_atomic();
4987                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4988                         qdisc_run(q);
4989                         if (root_lock)
4990                                 spin_unlock(root_lock);
4991                 }
4992         }
4993
4994         xfrm_dev_backlog(sd);
4995 }
4996
4997 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4998 /* This hook is defined here for ATM LANE */
4999 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5000                              unsigned char *addr) __read_mostly;
5001 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5002 #endif
5003
5004 static inline struct sk_buff *
5005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5006                    struct net_device *orig_dev, bool *another)
5007 {
5008 #ifdef CONFIG_NET_CLS_ACT
5009         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5010         struct tcf_result cl_res;
5011
5012         /* If there's at least one ingress present somewhere (so
5013          * we get here via enabled static key), remaining devices
5014          * that are not configured with an ingress qdisc will bail
5015          * out here.
5016          */
5017         if (!miniq)
5018                 return skb;
5019
5020         if (*pt_prev) {
5021                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5022                 *pt_prev = NULL;
5023         }
5024
5025         qdisc_skb_cb(skb)->pkt_len = skb->len;
5026         qdisc_skb_cb(skb)->mru = 0;
5027         qdisc_skb_cb(skb)->post_ct = false;
5028         skb->tc_at_ingress = 1;
5029         mini_qdisc_bstats_cpu_update(miniq, skb);
5030
5031         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5032                                      &cl_res, false)) {
5033         case TC_ACT_OK:
5034         case TC_ACT_RECLASSIFY:
5035                 skb->tc_index = TC_H_MIN(cl_res.classid);
5036                 break;
5037         case TC_ACT_SHOT:
5038                 mini_qdisc_qstats_cpu_drop(miniq);
5039                 kfree_skb(skb);
5040                 return NULL;
5041         case TC_ACT_STOLEN:
5042         case TC_ACT_QUEUED:
5043         case TC_ACT_TRAP:
5044                 consume_skb(skb);
5045                 return NULL;
5046         case TC_ACT_REDIRECT:
5047                 /* skb_mac_header check was done by cls/act_bpf, so
5048                  * we can safely push the L2 header back before
5049                  * redirecting to another netdev
5050                  */
5051                 __skb_push(skb, skb->mac_len);
5052                 if (skb_do_redirect(skb) == -EAGAIN) {
5053                         __skb_pull(skb, skb->mac_len);
5054                         *another = true;
5055                         break;
5056                 }
5057                 return NULL;
5058         case TC_ACT_CONSUMED:
5059                 return NULL;
5060         default:
5061                 break;
5062         }
5063 #endif /* CONFIG_NET_CLS_ACT */
5064         return skb;
5065 }
5066
5067 /**
5068  *      netdev_is_rx_handler_busy - check if receive handler is registered
5069  *      @dev: device to check
5070  *
5071  *      Check if a receive handler is already registered for a given device.
5072  *      Return true if there one.
5073  *
5074  *      The caller must hold the rtnl_mutex.
5075  */
5076 bool netdev_is_rx_handler_busy(struct net_device *dev)
5077 {
5078         ASSERT_RTNL();
5079         return dev && rtnl_dereference(dev->rx_handler);
5080 }
5081 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5082
5083 /**
5084  *      netdev_rx_handler_register - register receive handler
5085  *      @dev: device to register a handler for
5086  *      @rx_handler: receive handler to register
5087  *      @rx_handler_data: data pointer that is used by rx handler
5088  *
5089  *      Register a receive handler for a device. This handler will then be
5090  *      called from __netif_receive_skb. A negative errno code is returned
5091  *      on a failure.
5092  *
5093  *      The caller must hold the rtnl_mutex.
5094  *
5095  *      For a general description of rx_handler, see enum rx_handler_result.
5096  */
5097 int netdev_rx_handler_register(struct net_device *dev,
5098                                rx_handler_func_t *rx_handler,
5099                                void *rx_handler_data)
5100 {
5101         if (netdev_is_rx_handler_busy(dev))
5102                 return -EBUSY;
5103
5104         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5105                 return -EINVAL;
5106
5107         /* Note: rx_handler_data must be set before rx_handler */
5108         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5109         rcu_assign_pointer(dev->rx_handler, rx_handler);
5110
5111         return 0;
5112 }
5113 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5114
5115 /**
5116  *      netdev_rx_handler_unregister - unregister receive handler
5117  *      @dev: device to unregister a handler from
5118  *
5119  *      Unregister a receive handler from a device.
5120  *
5121  *      The caller must hold the rtnl_mutex.
5122  */
5123 void netdev_rx_handler_unregister(struct net_device *dev)
5124 {
5125
5126         ASSERT_RTNL();
5127         RCU_INIT_POINTER(dev->rx_handler, NULL);
5128         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5129          * section has a guarantee to see a non NULL rx_handler_data
5130          * as well.
5131          */
5132         synchronize_net();
5133         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5134 }
5135 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5136
5137 /*
5138  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5139  * the special handling of PFMEMALLOC skbs.
5140  */
5141 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5142 {
5143         switch (skb->protocol) {
5144         case htons(ETH_P_ARP):
5145         case htons(ETH_P_IP):
5146         case htons(ETH_P_IPV6):
5147         case htons(ETH_P_8021Q):
5148         case htons(ETH_P_8021AD):
5149                 return true;
5150         default:
5151                 return false;
5152         }
5153 }
5154
5155 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5156                              int *ret, struct net_device *orig_dev)
5157 {
5158         if (nf_hook_ingress_active(skb)) {
5159                 int ingress_retval;
5160
5161                 if (*pt_prev) {
5162                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5163                         *pt_prev = NULL;
5164                 }
5165
5166                 rcu_read_lock();
5167                 ingress_retval = nf_hook_ingress(skb);
5168                 rcu_read_unlock();
5169                 return ingress_retval;
5170         }
5171         return 0;
5172 }
5173
5174 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5175                                     struct packet_type **ppt_prev)
5176 {
5177         struct packet_type *ptype, *pt_prev;
5178         rx_handler_func_t *rx_handler;
5179         struct sk_buff *skb = *pskb;
5180         struct net_device *orig_dev;
5181         bool deliver_exact = false;
5182         int ret = NET_RX_DROP;
5183         __be16 type;
5184
5185         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5186
5187         trace_netif_receive_skb(skb);
5188
5189         orig_dev = skb->dev;
5190
5191         skb_reset_network_header(skb);
5192         if (!skb_transport_header_was_set(skb))
5193                 skb_reset_transport_header(skb);
5194         skb_reset_mac_len(skb);
5195
5196         pt_prev = NULL;
5197
5198 another_round:
5199         skb->skb_iif = skb->dev->ifindex;
5200
5201         __this_cpu_inc(softnet_data.processed);
5202
5203         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5204                 int ret2;
5205
5206                 preempt_disable();
5207                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5208                 preempt_enable();
5209
5210                 if (ret2 != XDP_PASS) {
5211                         ret = NET_RX_DROP;
5212                         goto out;
5213                 }
5214                 skb_reset_mac_len(skb);
5215         }
5216
5217         if (eth_type_vlan(skb->protocol)) {
5218                 skb = skb_vlan_untag(skb);
5219                 if (unlikely(!skb))
5220                         goto out;
5221         }
5222
5223         if (skb_skip_tc_classify(skb))
5224                 goto skip_classify;
5225
5226         if (pfmemalloc)
5227                 goto skip_taps;
5228
5229         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5230                 if (pt_prev)
5231                         ret = deliver_skb(skb, pt_prev, orig_dev);
5232                 pt_prev = ptype;
5233         }
5234
5235         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5236                 if (pt_prev)
5237                         ret = deliver_skb(skb, pt_prev, orig_dev);
5238                 pt_prev = ptype;
5239         }
5240
5241 skip_taps:
5242 #ifdef CONFIG_NET_INGRESS
5243         if (static_branch_unlikely(&ingress_needed_key)) {
5244                 bool another = false;
5245
5246                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5247                                          &another);
5248                 if (another)
5249                         goto another_round;
5250                 if (!skb)
5251                         goto out;
5252
5253                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5254                         goto out;
5255         }
5256 #endif
5257         skb_reset_redirect(skb);
5258 skip_classify:
5259         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5260                 goto drop;
5261
5262         if (skb_vlan_tag_present(skb)) {
5263                 if (pt_prev) {
5264                         ret = deliver_skb(skb, pt_prev, orig_dev);
5265                         pt_prev = NULL;
5266                 }
5267                 if (vlan_do_receive(&skb))
5268                         goto another_round;
5269                 else if (unlikely(!skb))
5270                         goto out;
5271         }
5272
5273         rx_handler = rcu_dereference(skb->dev->rx_handler);
5274         if (rx_handler) {
5275                 if (pt_prev) {
5276                         ret = deliver_skb(skb, pt_prev, orig_dev);
5277                         pt_prev = NULL;
5278                 }
5279                 switch (rx_handler(&skb)) {
5280                 case RX_HANDLER_CONSUMED:
5281                         ret = NET_RX_SUCCESS;
5282                         goto out;
5283                 case RX_HANDLER_ANOTHER:
5284                         goto another_round;
5285                 case RX_HANDLER_EXACT:
5286                         deliver_exact = true;
5287                 case RX_HANDLER_PASS:
5288                         break;
5289                 default:
5290                         BUG();
5291                 }
5292         }
5293
5294         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5295 check_vlan_id:
5296                 if (skb_vlan_tag_get_id(skb)) {
5297                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5298                          * find vlan device.
5299                          */
5300                         skb->pkt_type = PACKET_OTHERHOST;
5301                 } else if (eth_type_vlan(skb->protocol)) {
5302                         /* Outer header is 802.1P with vlan 0, inner header is
5303                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5304                          * not find vlan dev for vlan id 0.
5305                          */
5306                         __vlan_hwaccel_clear_tag(skb);
5307                         skb = skb_vlan_untag(skb);
5308                         if (unlikely(!skb))
5309                                 goto out;
5310                         if (vlan_do_receive(&skb))
5311                                 /* After stripping off 802.1P header with vlan 0
5312                                  * vlan dev is found for inner header.
5313                                  */
5314                                 goto another_round;
5315                         else if (unlikely(!skb))
5316                                 goto out;
5317                         else
5318                                 /* We have stripped outer 802.1P vlan 0 header.
5319                                  * But could not find vlan dev.
5320                                  * check again for vlan id to set OTHERHOST.
5321                                  */
5322                                 goto check_vlan_id;
5323                 }
5324                 /* Note: we might in the future use prio bits
5325                  * and set skb->priority like in vlan_do_receive()
5326                  * For the time being, just ignore Priority Code Point
5327                  */
5328                 __vlan_hwaccel_clear_tag(skb);
5329         }
5330
5331         type = skb->protocol;
5332
5333         /* deliver only exact match when indicated */
5334         if (likely(!deliver_exact)) {
5335                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336                                        &ptype_base[ntohs(type) &
5337                                                    PTYPE_HASH_MASK]);
5338         }
5339
5340         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5341                                &orig_dev->ptype_specific);
5342
5343         if (unlikely(skb->dev != orig_dev)) {
5344                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5345                                        &skb->dev->ptype_specific);
5346         }
5347
5348         if (pt_prev) {
5349                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5350                         goto drop;
5351                 *ppt_prev = pt_prev;
5352         } else {
5353 drop:
5354                 if (!deliver_exact)
5355                         atomic_long_inc(&skb->dev->rx_dropped);
5356                 else
5357                         atomic_long_inc(&skb->dev->rx_nohandler);
5358                 kfree_skb(skb);
5359                 /* Jamal, now you will not able to escape explaining
5360                  * me how you were going to use this. :-)
5361                  */
5362                 ret = NET_RX_DROP;
5363         }
5364
5365 out:
5366         /* The invariant here is that if *ppt_prev is not NULL
5367          * then skb should also be non-NULL.
5368          *
5369          * Apparently *ppt_prev assignment above holds this invariant due to
5370          * skb dereferencing near it.
5371          */
5372         *pskb = skb;
5373         return ret;
5374 }
5375
5376 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5377 {
5378         struct net_device *orig_dev = skb->dev;
5379         struct packet_type *pt_prev = NULL;
5380         int ret;
5381
5382         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5383         if (pt_prev)
5384                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5385                                          skb->dev, pt_prev, orig_dev);
5386         return ret;
5387 }
5388
5389 /**
5390  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5391  *      @skb: buffer to process
5392  *
5393  *      More direct receive version of netif_receive_skb().  It should
5394  *      only be used by callers that have a need to skip RPS and Generic XDP.
5395  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5396  *
5397  *      This function may only be called from softirq context and interrupts
5398  *      should be enabled.
5399  *
5400  *      Return values (usually ignored):
5401  *      NET_RX_SUCCESS: no congestion
5402  *      NET_RX_DROP: packet was dropped
5403  */
5404 int netif_receive_skb_core(struct sk_buff *skb)
5405 {
5406         int ret;
5407
5408         rcu_read_lock();
5409         ret = __netif_receive_skb_one_core(skb, false);
5410         rcu_read_unlock();
5411
5412         return ret;
5413 }
5414 EXPORT_SYMBOL(netif_receive_skb_core);
5415
5416 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5417                                                   struct packet_type *pt_prev,
5418                                                   struct net_device *orig_dev)
5419 {
5420         struct sk_buff *skb, *next;
5421
5422         if (!pt_prev)
5423                 return;
5424         if (list_empty(head))
5425                 return;
5426         if (pt_prev->list_func != NULL)
5427                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5428                                    ip_list_rcv, head, pt_prev, orig_dev);
5429         else
5430                 list_for_each_entry_safe(skb, next, head, list) {
5431                         skb_list_del_init(skb);
5432                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5433                 }
5434 }
5435
5436 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5437 {
5438         /* Fast-path assumptions:
5439          * - There is no RX handler.
5440          * - Only one packet_type matches.
5441          * If either of these fails, we will end up doing some per-packet
5442          * processing in-line, then handling the 'last ptype' for the whole
5443          * sublist.  This can't cause out-of-order delivery to any single ptype,
5444          * because the 'last ptype' must be constant across the sublist, and all
5445          * other ptypes are handled per-packet.
5446          */
5447         /* Current (common) ptype of sublist */
5448         struct packet_type *pt_curr = NULL;
5449         /* Current (common) orig_dev of sublist */
5450         struct net_device *od_curr = NULL;
5451         struct list_head sublist;
5452         struct sk_buff *skb, *next;
5453
5454         INIT_LIST_HEAD(&sublist);
5455         list_for_each_entry_safe(skb, next, head, list) {
5456                 struct net_device *orig_dev = skb->dev;
5457                 struct packet_type *pt_prev = NULL;
5458
5459                 skb_list_del_init(skb);
5460                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461                 if (!pt_prev)
5462                         continue;
5463                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5464                         /* dispatch old sublist */
5465                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5466                         /* start new sublist */
5467                         INIT_LIST_HEAD(&sublist);
5468                         pt_curr = pt_prev;
5469                         od_curr = orig_dev;
5470                 }
5471                 list_add_tail(&skb->list, &sublist);
5472         }
5473
5474         /* dispatch final sublist */
5475         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5476 }
5477
5478 static int __netif_receive_skb(struct sk_buff *skb)
5479 {
5480         int ret;
5481
5482         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5483                 unsigned int noreclaim_flag;
5484
5485                 /*
5486                  * PFMEMALLOC skbs are special, they should
5487                  * - be delivered to SOCK_MEMALLOC sockets only
5488                  * - stay away from userspace
5489                  * - have bounded memory usage
5490                  *
5491                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5492                  * context down to all allocation sites.
5493                  */
5494                 noreclaim_flag = memalloc_noreclaim_save();
5495                 ret = __netif_receive_skb_one_core(skb, true);
5496                 memalloc_noreclaim_restore(noreclaim_flag);
5497         } else
5498                 ret = __netif_receive_skb_one_core(skb, false);
5499
5500         return ret;
5501 }
5502
5503 static void __netif_receive_skb_list(struct list_head *head)
5504 {
5505         unsigned long noreclaim_flag = 0;
5506         struct sk_buff *skb, *next;
5507         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5508
5509         list_for_each_entry_safe(skb, next, head, list) {
5510                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5511                         struct list_head sublist;
5512
5513                         /* Handle the previous sublist */
5514                         list_cut_before(&sublist, head, &skb->list);
5515                         if (!list_empty(&sublist))
5516                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5517                         pfmemalloc = !pfmemalloc;
5518                         /* See comments in __netif_receive_skb */
5519                         if (pfmemalloc)
5520                                 noreclaim_flag = memalloc_noreclaim_save();
5521                         else
5522                                 memalloc_noreclaim_restore(noreclaim_flag);
5523                 }
5524         }
5525         /* Handle the remaining sublist */
5526         if (!list_empty(head))
5527                 __netif_receive_skb_list_core(head, pfmemalloc);
5528         /* Restore pflags */
5529         if (pfmemalloc)
5530                 memalloc_noreclaim_restore(noreclaim_flag);
5531 }
5532
5533 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5534 {
5535         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5536         struct bpf_prog *new = xdp->prog;
5537         int ret = 0;
5538
5539         if (new) {
5540                 u32 i;
5541
5542                 mutex_lock(&new->aux->used_maps_mutex);
5543
5544                 /* generic XDP does not work with DEVMAPs that can
5545                  * have a bpf_prog installed on an entry
5546                  */
5547                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5548                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5549                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5550                                 mutex_unlock(&new->aux->used_maps_mutex);
5551                                 return -EINVAL;
5552                         }
5553                 }
5554
5555                 mutex_unlock(&new->aux->used_maps_mutex);
5556         }
5557
5558         switch (xdp->command) {
5559         case XDP_SETUP_PROG:
5560                 rcu_assign_pointer(dev->xdp_prog, new);
5561                 if (old)
5562                         bpf_prog_put(old);
5563
5564                 if (old && !new) {
5565                         static_branch_dec(&generic_xdp_needed_key);
5566                 } else if (new && !old) {
5567                         static_branch_inc(&generic_xdp_needed_key);
5568                         dev_disable_lro(dev);
5569                         dev_disable_gro_hw(dev);
5570                 }
5571                 break;
5572
5573         default:
5574                 ret = -EINVAL;
5575                 break;
5576         }
5577
5578         return ret;
5579 }
5580
5581 static int netif_receive_skb_internal(struct sk_buff *skb)
5582 {
5583         int ret;
5584
5585         net_timestamp_check(netdev_tstamp_prequeue, skb);
5586
5587         if (skb_defer_rx_timestamp(skb))
5588                 return NET_RX_SUCCESS;
5589
5590         rcu_read_lock();
5591 #ifdef CONFIG_RPS
5592         if (static_branch_unlikely(&rps_needed)) {
5593                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5594                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5595
5596                 if (cpu >= 0) {
5597                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5598                         rcu_read_unlock();
5599                         return ret;
5600                 }
5601         }
5602 #endif
5603         ret = __netif_receive_skb(skb);
5604         rcu_read_unlock();
5605         return ret;
5606 }
5607
5608 static void netif_receive_skb_list_internal(struct list_head *head)
5609 {
5610         struct sk_buff *skb, *next;
5611         struct list_head sublist;
5612
5613         INIT_LIST_HEAD(&sublist);
5614         list_for_each_entry_safe(skb, next, head, list) {
5615                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5616                 skb_list_del_init(skb);
5617                 if (!skb_defer_rx_timestamp(skb))
5618                         list_add_tail(&skb->list, &sublist);
5619         }
5620         list_splice_init(&sublist, head);
5621
5622         rcu_read_lock();
5623 #ifdef CONFIG_RPS
5624         if (static_branch_unlikely(&rps_needed)) {
5625                 list_for_each_entry_safe(skb, next, head, list) {
5626                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5627                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629                         if (cpu >= 0) {
5630                                 /* Will be handled, remove from list */
5631                                 skb_list_del_init(skb);
5632                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633                         }
5634                 }
5635         }
5636 #endif
5637         __netif_receive_skb_list(head);
5638         rcu_read_unlock();
5639 }
5640
5641 /**
5642  *      netif_receive_skb - process receive buffer from network
5643  *      @skb: buffer to process
5644  *
5645  *      netif_receive_skb() is the main receive data processing function.
5646  *      It always succeeds. The buffer may be dropped during processing
5647  *      for congestion control or by the protocol layers.
5648  *
5649  *      This function may only be called from softirq context and interrupts
5650  *      should be enabled.
5651  *
5652  *      Return values (usually ignored):
5653  *      NET_RX_SUCCESS: no congestion
5654  *      NET_RX_DROP: packet was dropped
5655  */
5656 int netif_receive_skb(struct sk_buff *skb)
5657 {
5658         int ret;
5659
5660         trace_netif_receive_skb_entry(skb);
5661
5662         ret = netif_receive_skb_internal(skb);
5663         trace_netif_receive_skb_exit(ret);
5664
5665         return ret;
5666 }
5667 EXPORT_SYMBOL(netif_receive_skb);
5668
5669 /**
5670  *      netif_receive_skb_list - process many receive buffers from network
5671  *      @head: list of skbs to process.
5672  *
5673  *      Since return value of netif_receive_skb() is normally ignored, and
5674  *      wouldn't be meaningful for a list, this function returns void.
5675  *
5676  *      This function may only be called from softirq context and interrupts
5677  *      should be enabled.
5678  */
5679 void netif_receive_skb_list(struct list_head *head)
5680 {
5681         struct sk_buff *skb;
5682
5683         if (list_empty(head))
5684                 return;
5685         if (trace_netif_receive_skb_list_entry_enabled()) {
5686                 list_for_each_entry(skb, head, list)
5687                         trace_netif_receive_skb_list_entry(skb);
5688         }
5689         netif_receive_skb_list_internal(head);
5690         trace_netif_receive_skb_list_exit(0);
5691 }
5692 EXPORT_SYMBOL(netif_receive_skb_list);
5693
5694 static DEFINE_PER_CPU(struct work_struct, flush_works);
5695
5696 /* Network device is going away, flush any packets still pending */
5697 static void flush_backlog(struct work_struct *work)
5698 {
5699         struct sk_buff *skb, *tmp;
5700         struct softnet_data *sd;
5701
5702         local_bh_disable();
5703         sd = this_cpu_ptr(&softnet_data);
5704
5705         local_irq_disable();
5706         rps_lock(sd);
5707         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5708                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5709                         __skb_unlink(skb, &sd->input_pkt_queue);
5710                         dev_kfree_skb_irq(skb);
5711                         input_queue_head_incr(sd);
5712                 }
5713         }
5714         rps_unlock(sd);
5715         local_irq_enable();
5716
5717         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719                         __skb_unlink(skb, &sd->process_queue);
5720                         kfree_skb(skb);
5721                         input_queue_head_incr(sd);
5722                 }
5723         }
5724         local_bh_enable();
5725 }
5726
5727 static bool flush_required(int cpu)
5728 {
5729 #if IS_ENABLED(CONFIG_RPS)
5730         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731         bool do_flush;
5732
5733         local_irq_disable();
5734         rps_lock(sd);
5735
5736         /* as insertion into process_queue happens with the rps lock held,
5737          * process_queue access may race only with dequeue
5738          */
5739         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5740                    !skb_queue_empty_lockless(&sd->process_queue);
5741         rps_unlock(sd);
5742         local_irq_enable();
5743
5744         return do_flush;
5745 #endif
5746         /* without RPS we can't safely check input_pkt_queue: during a
5747          * concurrent remote skb_queue_splice() we can detect as empty both
5748          * input_pkt_queue and process_queue even if the latter could end-up
5749          * containing a lot of packets.
5750          */
5751         return true;
5752 }
5753
5754 static void flush_all_backlogs(void)
5755 {
5756         static cpumask_t flush_cpus;
5757         unsigned int cpu;
5758
5759         /* since we are under rtnl lock protection we can use static data
5760          * for the cpumask and avoid allocating on stack the possibly
5761          * large mask
5762          */
5763         ASSERT_RTNL();
5764
5765         get_online_cpus();
5766
5767         cpumask_clear(&flush_cpus);
5768         for_each_online_cpu(cpu) {
5769                 if (flush_required(cpu)) {
5770                         queue_work_on(cpu, system_highpri_wq,
5771                                       per_cpu_ptr(&flush_works, cpu));
5772                         cpumask_set_cpu(cpu, &flush_cpus);
5773                 }
5774         }
5775
5776         /* we can have in flight packet[s] on the cpus we are not flushing,
5777          * synchronize_net() in unregister_netdevice_many() will take care of
5778          * them
5779          */
5780         for_each_cpu(cpu, &flush_cpus)
5781                 flush_work(per_cpu_ptr(&flush_works, cpu));
5782
5783         put_online_cpus();
5784 }
5785
5786 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5787 static void gro_normal_list(struct napi_struct *napi)
5788 {
5789         if (!napi->rx_count)
5790                 return;
5791         netif_receive_skb_list_internal(&napi->rx_list);
5792         INIT_LIST_HEAD(&napi->rx_list);
5793         napi->rx_count = 0;
5794 }
5795
5796 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5797  * pass the whole batch up to the stack.
5798  */
5799 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5800 {
5801         list_add_tail(&skb->list, &napi->rx_list);
5802         napi->rx_count += segs;
5803         if (napi->rx_count >= gro_normal_batch)
5804                 gro_normal_list(napi);
5805 }
5806
5807 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5808 {
5809         struct packet_offload *ptype;
5810         __be16 type = skb->protocol;
5811         struct list_head *head = &offload_base;
5812         int err = -ENOENT;
5813
5814         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5815
5816         if (NAPI_GRO_CB(skb)->count == 1) {
5817                 skb_shinfo(skb)->gso_size = 0;
5818                 goto out;
5819         }
5820
5821         rcu_read_lock();
5822         list_for_each_entry_rcu(ptype, head, list) {
5823                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5824                         continue;
5825
5826                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5827                                          ipv6_gro_complete, inet_gro_complete,
5828                                          skb, 0);
5829                 break;
5830         }
5831         rcu_read_unlock();
5832
5833         if (err) {
5834                 WARN_ON(&ptype->list == head);
5835                 kfree_skb(skb);
5836                 return NET_RX_SUCCESS;
5837         }
5838
5839 out:
5840         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5841         return NET_RX_SUCCESS;
5842 }
5843
5844 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5845                                    bool flush_old)
5846 {
5847         struct list_head *head = &napi->gro_hash[index].list;
5848         struct sk_buff *skb, *p;
5849
5850         list_for_each_entry_safe_reverse(skb, p, head, list) {
5851                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5852                         return;
5853                 skb_list_del_init(skb);
5854                 napi_gro_complete(napi, skb);
5855                 napi->gro_hash[index].count--;
5856         }
5857
5858         if (!napi->gro_hash[index].count)
5859                 __clear_bit(index, &napi->gro_bitmask);
5860 }
5861
5862 /* napi->gro_hash[].list contains packets ordered by age.
5863  * youngest packets at the head of it.
5864  * Complete skbs in reverse order to reduce latencies.
5865  */
5866 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5867 {
5868         unsigned long bitmask = napi->gro_bitmask;
5869         unsigned int i, base = ~0U;
5870
5871         while ((i = ffs(bitmask)) != 0) {
5872                 bitmask >>= i;
5873                 base += i;
5874                 __napi_gro_flush_chain(napi, base, flush_old);
5875         }
5876 }
5877 EXPORT_SYMBOL(napi_gro_flush);
5878
5879 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5880                                           struct sk_buff *skb)
5881 {
5882         unsigned int maclen = skb->dev->hard_header_len;
5883         u32 hash = skb_get_hash_raw(skb);
5884         struct list_head *head;
5885         struct sk_buff *p;
5886
5887         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5888         list_for_each_entry(p, head, list) {
5889                 unsigned long diffs;
5890
5891                 NAPI_GRO_CB(p)->flush = 0;
5892
5893                 if (hash != skb_get_hash_raw(p)) {
5894                         NAPI_GRO_CB(p)->same_flow = 0;
5895                         continue;
5896                 }
5897
5898                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5899                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5900                 if (skb_vlan_tag_present(p))
5901                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5902                 diffs |= skb_metadata_dst_cmp(p, skb);
5903                 diffs |= skb_metadata_differs(p, skb);
5904                 if (maclen == ETH_HLEN)
5905                         diffs |= compare_ether_header(skb_mac_header(p),
5906                                                       skb_mac_header(skb));
5907                 else if (!diffs)
5908                         diffs = memcmp(skb_mac_header(p),
5909                                        skb_mac_header(skb),
5910                                        maclen);
5911                 NAPI_GRO_CB(p)->same_flow = !diffs;
5912         }
5913
5914         return head;
5915 }
5916
5917 static void skb_gro_reset_offset(struct sk_buff *skb)
5918 {
5919         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5920         const skb_frag_t *frag0 = &pinfo->frags[0];
5921
5922         NAPI_GRO_CB(skb)->data_offset = 0;
5923         NAPI_GRO_CB(skb)->frag0 = NULL;
5924         NAPI_GRO_CB(skb)->frag0_len = 0;
5925
5926         if (!skb_headlen(skb) && pinfo->nr_frags &&
5927             !PageHighMem(skb_frag_page(frag0))) {
5928                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5929                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5930                                                     skb_frag_size(frag0),
5931                                                     skb->end - skb->tail);
5932         }
5933 }
5934
5935 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5936 {
5937         struct skb_shared_info *pinfo = skb_shinfo(skb);
5938
5939         BUG_ON(skb->end - skb->tail < grow);
5940
5941         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5942
5943         skb->data_len -= grow;
5944         skb->tail += grow;
5945
5946         skb_frag_off_add(&pinfo->frags[0], grow);
5947         skb_frag_size_sub(&pinfo->frags[0], grow);
5948
5949         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5950                 skb_frag_unref(skb, 0);
5951                 memmove(pinfo->frags, pinfo->frags + 1,
5952                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5953         }
5954 }
5955
5956 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5957 {
5958         struct sk_buff *oldest;
5959
5960         oldest = list_last_entry(head, struct sk_buff, list);
5961
5962         /* We are called with head length >= MAX_GRO_SKBS, so this is
5963          * impossible.
5964          */
5965         if (WARN_ON_ONCE(!oldest))
5966                 return;
5967
5968         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5969          * SKB to the chain.
5970          */
5971         skb_list_del_init(oldest);
5972         napi_gro_complete(napi, oldest);
5973 }
5974
5975 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5976 {
5977         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5978         struct list_head *head = &offload_base;
5979         struct packet_offload *ptype;
5980         __be16 type = skb->protocol;
5981         struct list_head *gro_head;
5982         struct sk_buff *pp = NULL;
5983         enum gro_result ret;
5984         int same_flow;
5985         int grow;
5986
5987         if (netif_elide_gro(skb->dev))
5988                 goto normal;
5989
5990         gro_head = gro_list_prepare(napi, skb);
5991
5992         rcu_read_lock();
5993         list_for_each_entry_rcu(ptype, head, list) {
5994                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5995                         continue;
5996
5997                 skb_set_network_header(skb, skb_gro_offset(skb));
5998                 skb_reset_mac_len(skb);
5999                 NAPI_GRO_CB(skb)->same_flow = 0;
6000                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6001                 NAPI_GRO_CB(skb)->free = 0;
6002                 NAPI_GRO_CB(skb)->encap_mark = 0;
6003                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6004                 NAPI_GRO_CB(skb)->is_fou = 0;
6005                 NAPI_GRO_CB(skb)->is_atomic = 1;
6006                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6007
6008                 /* Setup for GRO checksum validation */
6009                 switch (skb->ip_summed) {
6010                 case CHECKSUM_COMPLETE:
6011                         NAPI_GRO_CB(skb)->csum = skb->csum;
6012                         NAPI_GRO_CB(skb)->csum_valid = 1;
6013                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6014                         break;
6015                 case CHECKSUM_UNNECESSARY:
6016                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6017                         NAPI_GRO_CB(skb)->csum_valid = 0;
6018                         break;
6019                 default:
6020                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6021                         NAPI_GRO_CB(skb)->csum_valid = 0;
6022                 }
6023
6024                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6025                                         ipv6_gro_receive, inet_gro_receive,
6026                                         gro_head, skb);
6027                 break;
6028         }
6029         rcu_read_unlock();
6030
6031         if (&ptype->list == head)
6032                 goto normal;
6033
6034         if (PTR_ERR(pp) == -EINPROGRESS) {
6035                 ret = GRO_CONSUMED;
6036                 goto ok;
6037         }
6038
6039         same_flow = NAPI_GRO_CB(skb)->same_flow;
6040         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6041
6042         if (pp) {
6043                 skb_list_del_init(pp);
6044                 napi_gro_complete(napi, pp);
6045                 napi->gro_hash[hash].count--;
6046         }
6047
6048         if (same_flow)
6049                 goto ok;
6050
6051         if (NAPI_GRO_CB(skb)->flush)
6052                 goto normal;
6053
6054         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6055                 gro_flush_oldest(napi, gro_head);
6056         } else {
6057                 napi->gro_hash[hash].count++;
6058         }
6059         NAPI_GRO_CB(skb)->count = 1;
6060         NAPI_GRO_CB(skb)->age = jiffies;
6061         NAPI_GRO_CB(skb)->last = skb;
6062         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6063         list_add(&skb->list, gro_head);
6064         ret = GRO_HELD;
6065
6066 pull:
6067         grow = skb_gro_offset(skb) - skb_headlen(skb);
6068         if (grow > 0)
6069                 gro_pull_from_frag0(skb, grow);
6070 ok:
6071         if (napi->gro_hash[hash].count) {
6072                 if (!test_bit(hash, &napi->gro_bitmask))
6073                         __set_bit(hash, &napi->gro_bitmask);
6074         } else if (test_bit(hash, &napi->gro_bitmask)) {
6075                 __clear_bit(hash, &napi->gro_bitmask);
6076         }
6077
6078         return ret;
6079
6080 normal:
6081         ret = GRO_NORMAL;
6082         goto pull;
6083 }
6084
6085 struct packet_offload *gro_find_receive_by_type(__be16 type)
6086 {
6087         struct list_head *offload_head = &offload_base;
6088         struct packet_offload *ptype;
6089
6090         list_for_each_entry_rcu(ptype, offload_head, list) {
6091                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6092                         continue;
6093                 return ptype;
6094         }
6095         return NULL;
6096 }
6097 EXPORT_SYMBOL(gro_find_receive_by_type);
6098
6099 struct packet_offload *gro_find_complete_by_type(__be16 type)
6100 {
6101         struct list_head *offload_head = &offload_base;
6102         struct packet_offload *ptype;
6103
6104         list_for_each_entry_rcu(ptype, offload_head, list) {
6105                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6106                         continue;
6107                 return ptype;
6108         }
6109         return NULL;
6110 }
6111 EXPORT_SYMBOL(gro_find_complete_by_type);
6112
6113 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6114                                     struct sk_buff *skb,
6115                                     gro_result_t ret)
6116 {
6117         switch (ret) {
6118         case GRO_NORMAL:
6119                 gro_normal_one(napi, skb, 1);
6120                 break;
6121
6122         case GRO_MERGED_FREE:
6123                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6124                         napi_skb_free_stolen_head(skb);
6125                 else
6126                         __kfree_skb_defer(skb);
6127                 break;
6128
6129         case GRO_HELD:
6130         case GRO_MERGED:
6131         case GRO_CONSUMED:
6132                 break;
6133         }
6134
6135         return ret;
6136 }
6137
6138 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6139 {
6140         gro_result_t ret;
6141
6142         skb_mark_napi_id(skb, napi);
6143         trace_napi_gro_receive_entry(skb);
6144
6145         skb_gro_reset_offset(skb);
6146
6147         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6148         trace_napi_gro_receive_exit(ret);
6149
6150         return ret;
6151 }
6152 EXPORT_SYMBOL(napi_gro_receive);
6153
6154 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6155 {
6156         if (unlikely(skb->pfmemalloc)) {
6157                 consume_skb(skb);
6158                 return;
6159         }
6160         __skb_pull(skb, skb_headlen(skb));
6161         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6162         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6163         __vlan_hwaccel_clear_tag(skb);
6164         skb->dev = napi->dev;
6165         skb->skb_iif = 0;
6166
6167         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6168         skb->pkt_type = PACKET_HOST;
6169
6170         skb->encapsulation = 0;
6171         skb_shinfo(skb)->gso_type = 0;
6172         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6173         skb_ext_reset(skb);
6174
6175         napi->skb = skb;
6176 }
6177
6178 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6179 {
6180         struct sk_buff *skb = napi->skb;
6181
6182         if (!skb) {
6183                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6184                 if (skb) {
6185                         napi->skb = skb;
6186                         skb_mark_napi_id(skb, napi);
6187                 }
6188         }
6189         return skb;
6190 }
6191 EXPORT_SYMBOL(napi_get_frags);
6192
6193 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6194                                       struct sk_buff *skb,
6195                                       gro_result_t ret)
6196 {
6197         switch (ret) {
6198         case GRO_NORMAL:
6199         case GRO_HELD:
6200                 __skb_push(skb, ETH_HLEN);
6201                 skb->protocol = eth_type_trans(skb, skb->dev);
6202                 if (ret == GRO_NORMAL)
6203                         gro_normal_one(napi, skb, 1);
6204                 break;
6205
6206         case GRO_MERGED_FREE:
6207                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6208                         napi_skb_free_stolen_head(skb);
6209                 else
6210                         napi_reuse_skb(napi, skb);
6211                 break;
6212
6213         case GRO_MERGED:
6214         case GRO_CONSUMED:
6215                 break;
6216         }
6217
6218         return ret;
6219 }
6220
6221 /* Upper GRO stack assumes network header starts at gro_offset=0
6222  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6223  * We copy ethernet header into skb->data to have a common layout.
6224  */
6225 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6226 {
6227         struct sk_buff *skb = napi->skb;
6228         const struct ethhdr *eth;
6229         unsigned int hlen = sizeof(*eth);
6230
6231         napi->skb = NULL;
6232
6233         skb_reset_mac_header(skb);
6234         skb_gro_reset_offset(skb);
6235
6236         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6237                 eth = skb_gro_header_slow(skb, hlen, 0);
6238                 if (unlikely(!eth)) {
6239                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6240                                              __func__, napi->dev->name);
6241                         napi_reuse_skb(napi, skb);
6242                         return NULL;
6243                 }
6244         } else {
6245                 eth = (const struct ethhdr *)skb->data;
6246                 gro_pull_from_frag0(skb, hlen);
6247                 NAPI_GRO_CB(skb)->frag0 += hlen;
6248                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6249         }
6250         __skb_pull(skb, hlen);
6251
6252         /*
6253          * This works because the only protocols we care about don't require
6254          * special handling.
6255          * We'll fix it up properly in napi_frags_finish()
6256          */
6257         skb->protocol = eth->h_proto;
6258
6259         return skb;
6260 }
6261
6262 gro_result_t napi_gro_frags(struct napi_struct *napi)
6263 {
6264         gro_result_t ret;
6265         struct sk_buff *skb = napi_frags_skb(napi);
6266
6267         trace_napi_gro_frags_entry(skb);
6268
6269         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6270         trace_napi_gro_frags_exit(ret);
6271
6272         return ret;
6273 }
6274 EXPORT_SYMBOL(napi_gro_frags);
6275
6276 /* Compute the checksum from gro_offset and return the folded value
6277  * after adding in any pseudo checksum.
6278  */
6279 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6280 {
6281         __wsum wsum;
6282         __sum16 sum;
6283
6284         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6285
6286         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6287         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6288         /* See comments in __skb_checksum_complete(). */
6289         if (likely(!sum)) {
6290                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6291                     !skb->csum_complete_sw)
6292                         netdev_rx_csum_fault(skb->dev, skb);
6293         }
6294
6295         NAPI_GRO_CB(skb)->csum = wsum;
6296         NAPI_GRO_CB(skb)->csum_valid = 1;
6297
6298         return sum;
6299 }
6300 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6301
6302 static void net_rps_send_ipi(struct softnet_data *remsd)
6303 {
6304 #ifdef CONFIG_RPS
6305         while (remsd) {
6306                 struct softnet_data *next = remsd->rps_ipi_next;
6307
6308                 if (cpu_online(remsd->cpu))
6309                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6310                 remsd = next;
6311         }
6312 #endif
6313 }
6314
6315 /*
6316  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6317  * Note: called with local irq disabled, but exits with local irq enabled.
6318  */
6319 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6320 {
6321 #ifdef CONFIG_RPS
6322         struct softnet_data *remsd = sd->rps_ipi_list;
6323
6324         if (remsd) {
6325                 sd->rps_ipi_list = NULL;
6326
6327                 local_irq_enable();
6328
6329                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6330                 net_rps_send_ipi(remsd);
6331         } else
6332 #endif
6333                 local_irq_enable();
6334 }
6335
6336 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6337 {
6338 #ifdef CONFIG_RPS
6339         return sd->rps_ipi_list != NULL;
6340 #else
6341         return false;
6342 #endif
6343 }
6344
6345 static int process_backlog(struct napi_struct *napi, int quota)
6346 {
6347         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6348         bool again = true;
6349         int work = 0;
6350
6351         /* Check if we have pending ipi, its better to send them now,
6352          * not waiting net_rx_action() end.
6353          */
6354         if (sd_has_rps_ipi_waiting(sd)) {
6355                 local_irq_disable();
6356                 net_rps_action_and_irq_enable(sd);
6357         }
6358
6359         napi->weight = dev_rx_weight;
6360         while (again) {
6361                 struct sk_buff *skb;
6362
6363                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6364                         rcu_read_lock();
6365                         __netif_receive_skb(skb);
6366                         rcu_read_unlock();
6367                         input_queue_head_incr(sd);
6368                         if (++work >= quota)
6369                                 return work;
6370
6371                 }
6372
6373                 local_irq_disable();
6374                 rps_lock(sd);
6375                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6376                         /*
6377                          * Inline a custom version of __napi_complete().
6378                          * only current cpu owns and manipulates this napi,
6379                          * and NAPI_STATE_SCHED is the only possible flag set
6380                          * on backlog.
6381                          * We can use a plain write instead of clear_bit(),
6382                          * and we dont need an smp_mb() memory barrier.
6383                          */
6384                         napi->state = 0;
6385                         again = false;
6386                 } else {
6387                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6388                                                    &sd->process_queue);
6389                 }
6390                 rps_unlock(sd);
6391                 local_irq_enable();
6392         }
6393
6394         return work;
6395 }
6396
6397 /**
6398  * __napi_schedule - schedule for receive
6399  * @n: entry to schedule
6400  *
6401  * The entry's receive function will be scheduled to run.
6402  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6403  */
6404 void __napi_schedule(struct napi_struct *n)
6405 {
6406         unsigned long flags;
6407
6408         local_irq_save(flags);
6409         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6410         local_irq_restore(flags);
6411 }
6412 EXPORT_SYMBOL(__napi_schedule);
6413
6414 /**
6415  *      napi_schedule_prep - check if napi can be scheduled
6416  *      @n: napi context
6417  *
6418  * Test if NAPI routine is already running, and if not mark
6419  * it as running.  This is used as a condition variable to
6420  * insure only one NAPI poll instance runs.  We also make
6421  * sure there is no pending NAPI disable.
6422  */
6423 bool napi_schedule_prep(struct napi_struct *n)
6424 {
6425         unsigned long val, new;
6426
6427         do {
6428                 val = READ_ONCE(n->state);
6429                 if (unlikely(val & NAPIF_STATE_DISABLE))
6430                         return false;
6431                 new = val | NAPIF_STATE_SCHED;
6432
6433                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6434                  * This was suggested by Alexander Duyck, as compiler
6435                  * emits better code than :
6436                  * if (val & NAPIF_STATE_SCHED)
6437                  *     new |= NAPIF_STATE_MISSED;
6438                  */
6439                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6440                                                    NAPIF_STATE_MISSED;
6441         } while (cmpxchg(&n->state, val, new) != val);
6442
6443         return !(val & NAPIF_STATE_SCHED);
6444 }
6445 EXPORT_SYMBOL(napi_schedule_prep);
6446
6447 /**
6448  * __napi_schedule_irqoff - schedule for receive
6449  * @n: entry to schedule
6450  *
6451  * Variant of __napi_schedule() assuming hard irqs are masked
6452  */
6453 void __napi_schedule_irqoff(struct napi_struct *n)
6454 {
6455         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6456 }
6457 EXPORT_SYMBOL(__napi_schedule_irqoff);
6458
6459 bool napi_complete_done(struct napi_struct *n, int work_done)
6460 {
6461         unsigned long flags, val, new, timeout = 0;
6462         bool ret = true;
6463
6464         /*
6465          * 1) Don't let napi dequeue from the cpu poll list
6466          *    just in case its running on a different cpu.
6467          * 2) If we are busy polling, do nothing here, we have
6468          *    the guarantee we will be called later.
6469          */
6470         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6471                                  NAPIF_STATE_IN_BUSY_POLL)))
6472                 return false;
6473
6474         if (work_done) {
6475                 if (n->gro_bitmask)
6476                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6477                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6478         }
6479         if (n->defer_hard_irqs_count > 0) {
6480                 n->defer_hard_irqs_count--;
6481                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6482                 if (timeout)
6483                         ret = false;
6484         }
6485         if (n->gro_bitmask) {
6486                 /* When the NAPI instance uses a timeout and keeps postponing
6487                  * it, we need to bound somehow the time packets are kept in
6488                  * the GRO layer
6489                  */
6490                 napi_gro_flush(n, !!timeout);
6491         }
6492
6493         gro_normal_list(n);
6494
6495         if (unlikely(!list_empty(&n->poll_list))) {
6496                 /* If n->poll_list is not empty, we need to mask irqs */
6497                 local_irq_save(flags);
6498                 list_del_init(&n->poll_list);
6499                 local_irq_restore(flags);
6500         }
6501
6502         do {
6503                 val = READ_ONCE(n->state);
6504
6505                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6506
6507                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6508                               NAPIF_STATE_SCHED_THREADED |
6509                               NAPIF_STATE_PREFER_BUSY_POLL);
6510
6511                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6512                  * because we will call napi->poll() one more time.
6513                  * This C code was suggested by Alexander Duyck to help gcc.
6514                  */
6515                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6516                                                     NAPIF_STATE_SCHED;
6517         } while (cmpxchg(&n->state, val, new) != val);
6518
6519         if (unlikely(val & NAPIF_STATE_MISSED)) {
6520                 __napi_schedule(n);
6521                 return false;
6522         }
6523
6524         if (timeout)
6525                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6526                               HRTIMER_MODE_REL_PINNED);
6527         return ret;
6528 }
6529 EXPORT_SYMBOL(napi_complete_done);
6530
6531 /* must be called under rcu_read_lock(), as we dont take a reference */
6532 static struct napi_struct *napi_by_id(unsigned int napi_id)
6533 {
6534         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6535         struct napi_struct *napi;
6536
6537         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6538                 if (napi->napi_id == napi_id)
6539                         return napi;
6540
6541         return NULL;
6542 }
6543
6544 #if defined(CONFIG_NET_RX_BUSY_POLL)
6545
6546 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6547 {
6548         if (!skip_schedule) {
6549                 gro_normal_list(napi);
6550                 __napi_schedule(napi);
6551                 return;
6552         }
6553
6554         if (napi->gro_bitmask) {
6555                 /* flush too old packets
6556                  * If HZ < 1000, flush all packets.
6557                  */
6558                 napi_gro_flush(napi, HZ >= 1000);
6559         }
6560
6561         gro_normal_list(napi);
6562         clear_bit(NAPI_STATE_SCHED, &napi->state);
6563 }
6564
6565 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6566                            u16 budget)
6567 {
6568         bool skip_schedule = false;
6569         unsigned long timeout;
6570         int rc;
6571
6572         /* Busy polling means there is a high chance device driver hard irq
6573          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6574          * set in napi_schedule_prep().
6575          * Since we are about to call napi->poll() once more, we can safely
6576          * clear NAPI_STATE_MISSED.
6577          *
6578          * Note: x86 could use a single "lock and ..." instruction
6579          * to perform these two clear_bit()
6580          */
6581         clear_bit(NAPI_STATE_MISSED, &napi->state);
6582         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6583
6584         local_bh_disable();
6585
6586         if (prefer_busy_poll) {
6587                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6588                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6589                 if (napi->defer_hard_irqs_count && timeout) {
6590                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6591                         skip_schedule = true;
6592                 }
6593         }
6594
6595         /* All we really want here is to re-enable device interrupts.
6596          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6597          */
6598         rc = napi->poll(napi, budget);
6599         /* We can't gro_normal_list() here, because napi->poll() might have
6600          * rearmed the napi (napi_complete_done()) in which case it could
6601          * already be running on another CPU.
6602          */
6603         trace_napi_poll(napi, rc, budget);
6604         netpoll_poll_unlock(have_poll_lock);
6605         if (rc == budget)
6606                 __busy_poll_stop(napi, skip_schedule);
6607         local_bh_enable();
6608 }
6609
6610 void napi_busy_loop(unsigned int napi_id,
6611                     bool (*loop_end)(void *, unsigned long),
6612                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6613 {
6614         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6615         int (*napi_poll)(struct napi_struct *napi, int budget);
6616         void *have_poll_lock = NULL;
6617         struct napi_struct *napi;
6618
6619 restart:
6620         napi_poll = NULL;
6621
6622         rcu_read_lock();
6623
6624         napi = napi_by_id(napi_id);
6625         if (!napi)
6626                 goto out;
6627
6628         preempt_disable();
6629         for (;;) {
6630                 int work = 0;
6631
6632                 local_bh_disable();
6633                 if (!napi_poll) {
6634                         unsigned long val = READ_ONCE(napi->state);
6635
6636                         /* If multiple threads are competing for this napi,
6637                          * we avoid dirtying napi->state as much as we can.
6638                          */
6639                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6640                                    NAPIF_STATE_IN_BUSY_POLL)) {
6641                                 if (prefer_busy_poll)
6642                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6643                                 goto count;
6644                         }
6645                         if (cmpxchg(&napi->state, val,
6646                                     val | NAPIF_STATE_IN_BUSY_POLL |
6647                                           NAPIF_STATE_SCHED) != val) {
6648                                 if (prefer_busy_poll)
6649                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6650                                 goto count;
6651                         }
6652                         have_poll_lock = netpoll_poll_lock(napi);
6653                         napi_poll = napi->poll;
6654                 }
6655                 work = napi_poll(napi, budget);
6656                 trace_napi_poll(napi, work, budget);
6657                 gro_normal_list(napi);
6658 count:
6659                 if (work > 0)
6660                         __NET_ADD_STATS(dev_net(napi->dev),
6661                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6662                 local_bh_enable();
6663
6664                 if (!loop_end || loop_end(loop_end_arg, start_time))
6665                         break;
6666
6667                 if (unlikely(need_resched())) {
6668                         if (napi_poll)
6669                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6670                         preempt_enable();
6671                         rcu_read_unlock();
6672                         cond_resched();
6673                         if (loop_end(loop_end_arg, start_time))
6674                                 return;
6675                         goto restart;
6676                 }
6677                 cpu_relax();
6678         }
6679         if (napi_poll)
6680                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6681         preempt_enable();
6682 out:
6683         rcu_read_unlock();
6684 }
6685 EXPORT_SYMBOL(napi_busy_loop);
6686
6687 #endif /* CONFIG_NET_RX_BUSY_POLL */
6688
6689 static void napi_hash_add(struct napi_struct *napi)
6690 {
6691         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6692                 return;
6693
6694         spin_lock(&napi_hash_lock);
6695
6696         /* 0..NR_CPUS range is reserved for sender_cpu use */
6697         do {
6698                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6699                         napi_gen_id = MIN_NAPI_ID;
6700         } while (napi_by_id(napi_gen_id));
6701         napi->napi_id = napi_gen_id;
6702
6703         hlist_add_head_rcu(&napi->napi_hash_node,
6704                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6705
6706         spin_unlock(&napi_hash_lock);
6707 }
6708
6709 /* Warning : caller is responsible to make sure rcu grace period
6710  * is respected before freeing memory containing @napi
6711  */
6712 static void napi_hash_del(struct napi_struct *napi)
6713 {
6714         spin_lock(&napi_hash_lock);
6715
6716         hlist_del_init_rcu(&napi->napi_hash_node);
6717
6718         spin_unlock(&napi_hash_lock);
6719 }
6720
6721 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6722 {
6723         struct napi_struct *napi;
6724
6725         napi = container_of(timer, struct napi_struct, timer);
6726
6727         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6728          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6729          */
6730         if (!napi_disable_pending(napi) &&
6731             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6732                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6733                 __napi_schedule_irqoff(napi);
6734         }
6735
6736         return HRTIMER_NORESTART;
6737 }
6738
6739 static void init_gro_hash(struct napi_struct *napi)
6740 {
6741         int i;
6742
6743         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6744                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6745                 napi->gro_hash[i].count = 0;
6746         }
6747         napi->gro_bitmask = 0;
6748 }
6749
6750 int dev_set_threaded(struct net_device *dev, bool threaded)
6751 {
6752         struct napi_struct *napi;
6753         int err = 0;
6754
6755         if (dev->threaded == threaded)
6756                 return 0;
6757
6758         if (threaded) {
6759                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6760                         if (!napi->thread) {
6761                                 err = napi_kthread_create(napi);
6762                                 if (err) {
6763                                         threaded = false;
6764                                         break;
6765                                 }
6766                         }
6767                 }
6768         }
6769
6770         dev->threaded = threaded;
6771
6772         /* Make sure kthread is created before THREADED bit
6773          * is set.
6774          */
6775         smp_mb__before_atomic();
6776
6777         /* Setting/unsetting threaded mode on a napi might not immediately
6778          * take effect, if the current napi instance is actively being
6779          * polled. In this case, the switch between threaded mode and
6780          * softirq mode will happen in the next round of napi_schedule().
6781          * This should not cause hiccups/stalls to the live traffic.
6782          */
6783         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6784                 if (threaded)
6785                         set_bit(NAPI_STATE_THREADED, &napi->state);
6786                 else
6787                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6788         }
6789
6790         return err;
6791 }
6792
6793 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6794                     int (*poll)(struct napi_struct *, int), int weight)
6795 {
6796         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6797                 return;
6798
6799         INIT_LIST_HEAD(&napi->poll_list);
6800         INIT_HLIST_NODE(&napi->napi_hash_node);
6801         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6802         napi->timer.function = napi_watchdog;
6803         init_gro_hash(napi);
6804         napi->skb = NULL;
6805         INIT_LIST_HEAD(&napi->rx_list);
6806         napi->rx_count = 0;
6807         napi->poll = poll;
6808         if (weight > NAPI_POLL_WEIGHT)
6809                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6810                                 weight);
6811         napi->weight = weight;
6812         napi->dev = dev;
6813 #ifdef CONFIG_NETPOLL
6814         napi->poll_owner = -1;
6815 #endif
6816         set_bit(NAPI_STATE_SCHED, &napi->state);
6817         set_bit(NAPI_STATE_NPSVC, &napi->state);
6818         list_add_rcu(&napi->dev_list, &dev->napi_list);
6819         napi_hash_add(napi);
6820         /* Create kthread for this napi if dev->threaded is set.
6821          * Clear dev->threaded if kthread creation failed so that
6822          * threaded mode will not be enabled in napi_enable().
6823          */
6824         if (dev->threaded && napi_kthread_create(napi))
6825                 dev->threaded = 0;
6826 }
6827 EXPORT_SYMBOL(netif_napi_add);
6828
6829 void napi_disable(struct napi_struct *n)
6830 {
6831         might_sleep();
6832         set_bit(NAPI_STATE_DISABLE, &n->state);
6833
6834         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6835                 msleep(1);
6836         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6837                 msleep(1);
6838
6839         hrtimer_cancel(&n->timer);
6840
6841         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6842         clear_bit(NAPI_STATE_DISABLE, &n->state);
6843         clear_bit(NAPI_STATE_THREADED, &n->state);
6844 }
6845 EXPORT_SYMBOL(napi_disable);
6846
6847 /**
6848  *      napi_enable - enable NAPI scheduling
6849  *      @n: NAPI context
6850  *
6851  * Resume NAPI from being scheduled on this context.
6852  * Must be paired with napi_disable.
6853  */
6854 void napi_enable(struct napi_struct *n)
6855 {
6856         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6857         smp_mb__before_atomic();
6858         clear_bit(NAPI_STATE_SCHED, &n->state);
6859         clear_bit(NAPI_STATE_NPSVC, &n->state);
6860         if (n->dev->threaded && n->thread)
6861                 set_bit(NAPI_STATE_THREADED, &n->state);
6862 }
6863 EXPORT_SYMBOL(napi_enable);
6864
6865 static void flush_gro_hash(struct napi_struct *napi)
6866 {
6867         int i;
6868
6869         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6870                 struct sk_buff *skb, *n;
6871
6872                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6873                         kfree_skb(skb);
6874                 napi->gro_hash[i].count = 0;
6875         }
6876 }
6877
6878 /* Must be called in process context */
6879 void __netif_napi_del(struct napi_struct *napi)
6880 {
6881         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6882                 return;
6883
6884         napi_hash_del(napi);
6885         list_del_rcu(&napi->dev_list);
6886         napi_free_frags(napi);
6887
6888         flush_gro_hash(napi);
6889         napi->gro_bitmask = 0;
6890
6891         if (napi->thread) {
6892                 kthread_stop(napi->thread);
6893                 napi->thread = NULL;
6894         }
6895 }
6896 EXPORT_SYMBOL(__netif_napi_del);
6897
6898 static int __napi_poll(struct napi_struct *n, bool *repoll)
6899 {
6900         int work, weight;
6901
6902         weight = n->weight;
6903
6904         /* This NAPI_STATE_SCHED test is for avoiding a race
6905          * with netpoll's poll_napi().  Only the entity which
6906          * obtains the lock and sees NAPI_STATE_SCHED set will
6907          * actually make the ->poll() call.  Therefore we avoid
6908          * accidentally calling ->poll() when NAPI is not scheduled.
6909          */
6910         work = 0;
6911         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6912                 work = n->poll(n, weight);
6913                 trace_napi_poll(n, work, weight);
6914         }
6915
6916         if (unlikely(work > weight))
6917                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6918                             n->poll, work, weight);
6919
6920         if (likely(work < weight))
6921                 return work;
6922
6923         /* Drivers must not modify the NAPI state if they
6924          * consume the entire weight.  In such cases this code
6925          * still "owns" the NAPI instance and therefore can
6926          * move the instance around on the list at-will.
6927          */
6928         if (unlikely(napi_disable_pending(n))) {
6929                 napi_complete(n);
6930                 return work;
6931         }
6932
6933         /* The NAPI context has more processing work, but busy-polling
6934          * is preferred. Exit early.
6935          */
6936         if (napi_prefer_busy_poll(n)) {
6937                 if (napi_complete_done(n, work)) {
6938                         /* If timeout is not set, we need to make sure
6939                          * that the NAPI is re-scheduled.
6940                          */
6941                         napi_schedule(n);
6942                 }
6943                 return work;
6944         }
6945
6946         if (n->gro_bitmask) {
6947                 /* flush too old packets
6948                  * If HZ < 1000, flush all packets.
6949                  */
6950                 napi_gro_flush(n, HZ >= 1000);
6951         }
6952
6953         gro_normal_list(n);
6954
6955         /* Some drivers may have called napi_schedule
6956          * prior to exhausting their budget.
6957          */
6958         if (unlikely(!list_empty(&n->poll_list))) {
6959                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6960                              n->dev ? n->dev->name : "backlog");
6961                 return work;
6962         }
6963
6964         *repoll = true;
6965
6966         return work;
6967 }
6968
6969 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6970 {
6971         bool do_repoll = false;
6972         void *have;
6973         int work;
6974
6975         list_del_init(&n->poll_list);
6976
6977         have = netpoll_poll_lock(n);
6978
6979         work = __napi_poll(n, &do_repoll);
6980
6981         if (do_repoll)
6982                 list_add_tail(&n->poll_list, repoll);
6983
6984         netpoll_poll_unlock(have);
6985
6986         return work;
6987 }
6988
6989 static int napi_thread_wait(struct napi_struct *napi)
6990 {
6991         bool woken = false;
6992
6993         set_current_state(TASK_INTERRUPTIBLE);
6994
6995         while (!kthread_should_stop()) {
6996                 /* Testing SCHED_THREADED bit here to make sure the current
6997                  * kthread owns this napi and could poll on this napi.
6998                  * Testing SCHED bit is not enough because SCHED bit might be
6999                  * set by some other busy poll thread or by napi_disable().
7000                  */
7001                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7002                         WARN_ON(!list_empty(&napi->poll_list));
7003                         __set_current_state(TASK_RUNNING);
7004                         return 0;
7005                 }
7006
7007                 schedule();
7008                 /* woken being true indicates this thread owns this napi. */
7009                 woken = true;
7010                 set_current_state(TASK_INTERRUPTIBLE);
7011         }
7012         __set_current_state(TASK_RUNNING);
7013
7014         return -1;
7015 }
7016
7017 static int napi_threaded_poll(void *data)
7018 {
7019         struct napi_struct *napi = data;
7020         void *have;
7021
7022         while (!napi_thread_wait(napi)) {
7023                 for (;;) {
7024                         bool repoll = false;
7025
7026                         local_bh_disable();
7027
7028                         have = netpoll_poll_lock(napi);
7029                         __napi_poll(napi, &repoll);
7030                         netpoll_poll_unlock(have);
7031
7032                         local_bh_enable();
7033
7034                         if (!repoll)
7035                                 break;
7036
7037                         cond_resched();
7038                 }
7039         }
7040         return 0;
7041 }
7042
7043 static __latent_entropy void net_rx_action(struct softirq_action *h)
7044 {
7045         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7046         unsigned long time_limit = jiffies +
7047                 usecs_to_jiffies(netdev_budget_usecs);
7048         int budget = netdev_budget;
7049         LIST_HEAD(list);
7050         LIST_HEAD(repoll);
7051
7052         local_irq_disable();
7053         list_splice_init(&sd->poll_list, &list);
7054         local_irq_enable();
7055
7056         for (;;) {
7057                 struct napi_struct *n;
7058
7059                 if (list_empty(&list)) {
7060                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7061                                 return;
7062                         break;
7063                 }
7064
7065                 n = list_first_entry(&list, struct napi_struct, poll_list);
7066                 budget -= napi_poll(n, &repoll);
7067
7068                 /* If softirq window is exhausted then punt.
7069                  * Allow this to run for 2 jiffies since which will allow
7070                  * an average latency of 1.5/HZ.
7071                  */
7072                 if (unlikely(budget <= 0 ||
7073                              time_after_eq(jiffies, time_limit))) {
7074                         sd->time_squeeze++;
7075                         break;
7076                 }
7077         }
7078
7079         local_irq_disable();
7080
7081         list_splice_tail_init(&sd->poll_list, &list);
7082         list_splice_tail(&repoll, &list);
7083         list_splice(&list, &sd->poll_list);
7084         if (!list_empty(&sd->poll_list))
7085                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7086
7087         net_rps_action_and_irq_enable(sd);
7088 }
7089
7090 struct netdev_adjacent {
7091         struct net_device *dev;
7092
7093         /* upper master flag, there can only be one master device per list */
7094         bool master;
7095
7096         /* lookup ignore flag */
7097         bool ignore;
7098
7099         /* counter for the number of times this device was added to us */
7100         u16 ref_nr;
7101
7102         /* private field for the users */
7103         void *private;
7104
7105         struct list_head list;
7106         struct rcu_head rcu;
7107 };
7108
7109 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7110                                                  struct list_head *adj_list)
7111 {
7112         struct netdev_adjacent *adj;
7113
7114         list_for_each_entry(adj, adj_list, list) {
7115                 if (adj->dev == adj_dev)
7116                         return adj;
7117         }
7118         return NULL;
7119 }
7120
7121 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7122                                     struct netdev_nested_priv *priv)
7123 {
7124         struct net_device *dev = (struct net_device *)priv->data;
7125
7126         return upper_dev == dev;
7127 }
7128
7129 /**
7130  * netdev_has_upper_dev - Check if device is linked to an upper device
7131  * @dev: device
7132  * @upper_dev: upper device to check
7133  *
7134  * Find out if a device is linked to specified upper device and return true
7135  * in case it is. Note that this checks only immediate upper device,
7136  * not through a complete stack of devices. The caller must hold the RTNL lock.
7137  */
7138 bool netdev_has_upper_dev(struct net_device *dev,
7139                           struct net_device *upper_dev)
7140 {
7141         struct netdev_nested_priv priv = {
7142                 .data = (void *)upper_dev,
7143         };
7144
7145         ASSERT_RTNL();
7146
7147         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7148                                              &priv);
7149 }
7150 EXPORT_SYMBOL(netdev_has_upper_dev);
7151
7152 /**
7153  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7154  * @dev: device
7155  * @upper_dev: upper device to check
7156  *
7157  * Find out if a device is linked to specified upper device and return true
7158  * in case it is. Note that this checks the entire upper device chain.
7159  * The caller must hold rcu lock.
7160  */
7161
7162 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7163                                   struct net_device *upper_dev)
7164 {
7165         struct netdev_nested_priv priv = {
7166                 .data = (void *)upper_dev,
7167         };
7168
7169         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7170                                                &priv);
7171 }
7172 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7173
7174 /**
7175  * netdev_has_any_upper_dev - Check if device is linked to some device
7176  * @dev: device
7177  *
7178  * Find out if a device is linked to an upper device and return true in case
7179  * it is. The caller must hold the RTNL lock.
7180  */
7181 bool netdev_has_any_upper_dev(struct net_device *dev)
7182 {
7183         ASSERT_RTNL();
7184
7185         return !list_empty(&dev->adj_list.upper);
7186 }
7187 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7188
7189 /**
7190  * netdev_master_upper_dev_get - Get master upper device
7191  * @dev: device
7192  *
7193  * Find a master upper device and return pointer to it or NULL in case
7194  * it's not there. The caller must hold the RTNL lock.
7195  */
7196 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7197 {
7198         struct netdev_adjacent *upper;
7199
7200         ASSERT_RTNL();
7201
7202         if (list_empty(&dev->adj_list.upper))
7203                 return NULL;
7204
7205         upper = list_first_entry(&dev->adj_list.upper,
7206                                  struct netdev_adjacent, list);
7207         if (likely(upper->master))
7208                 return upper->dev;
7209         return NULL;
7210 }
7211 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7212
7213 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7214 {
7215         struct netdev_adjacent *upper;
7216
7217         ASSERT_RTNL();
7218
7219         if (list_empty(&dev->adj_list.upper))
7220                 return NULL;
7221
7222         upper = list_first_entry(&dev->adj_list.upper,
7223                                  struct netdev_adjacent, list);
7224         if (likely(upper->master) && !upper->ignore)
7225                 return upper->dev;
7226         return NULL;
7227 }
7228
7229 /**
7230  * netdev_has_any_lower_dev - Check if device is linked to some device
7231  * @dev: device
7232  *
7233  * Find out if a device is linked to a lower device and return true in case
7234  * it is. The caller must hold the RTNL lock.
7235  */
7236 static bool netdev_has_any_lower_dev(struct net_device *dev)
7237 {
7238         ASSERT_RTNL();
7239
7240         return !list_empty(&dev->adj_list.lower);
7241 }
7242
7243 void *netdev_adjacent_get_private(struct list_head *adj_list)
7244 {
7245         struct netdev_adjacent *adj;
7246
7247         adj = list_entry(adj_list, struct netdev_adjacent, list);
7248
7249         return adj->private;
7250 }
7251 EXPORT_SYMBOL(netdev_adjacent_get_private);
7252
7253 /**
7254  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7255  * @dev: device
7256  * @iter: list_head ** of the current position
7257  *
7258  * Gets the next device from the dev's upper list, starting from iter
7259  * position. The caller must hold RCU read lock.
7260  */
7261 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7262                                                  struct list_head **iter)
7263 {
7264         struct netdev_adjacent *upper;
7265
7266         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7267
7268         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7269
7270         if (&upper->list == &dev->adj_list.upper)
7271                 return NULL;
7272
7273         *iter = &upper->list;
7274
7275         return upper->dev;
7276 }
7277 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7278
7279 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7280                                                   struct list_head **iter,
7281                                                   bool *ignore)
7282 {
7283         struct netdev_adjacent *upper;
7284
7285         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7286
7287         if (&upper->list == &dev->adj_list.upper)
7288                 return NULL;
7289
7290         *iter = &upper->list;
7291         *ignore = upper->ignore;
7292
7293         return upper->dev;
7294 }
7295
7296 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7297                                                     struct list_head **iter)
7298 {
7299         struct netdev_adjacent *upper;
7300
7301         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7302
7303         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7304
7305         if (&upper->list == &dev->adj_list.upper)
7306                 return NULL;
7307
7308         *iter = &upper->list;
7309
7310         return upper->dev;
7311 }
7312
7313 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7314                                        int (*fn)(struct net_device *dev,
7315                                          struct netdev_nested_priv *priv),
7316                                        struct netdev_nested_priv *priv)
7317 {
7318         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7319         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7320         int ret, cur = 0;
7321         bool ignore;
7322
7323         now = dev;
7324         iter = &dev->adj_list.upper;
7325
7326         while (1) {
7327                 if (now != dev) {
7328                         ret = fn(now, priv);
7329                         if (ret)
7330                                 return ret;
7331                 }
7332
7333                 next = NULL;
7334                 while (1) {
7335                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7336                         if (!udev)
7337                                 break;
7338                         if (ignore)
7339                                 continue;
7340
7341                         next = udev;
7342                         niter = &udev->adj_list.upper;
7343                         dev_stack[cur] = now;
7344                         iter_stack[cur++] = iter;
7345                         break;
7346                 }
7347
7348                 if (!next) {
7349                         if (!cur)
7350                                 return 0;
7351                         next = dev_stack[--cur];
7352                         niter = iter_stack[cur];
7353                 }
7354
7355                 now = next;
7356                 iter = niter;
7357         }
7358
7359         return 0;
7360 }
7361
7362 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7363                                   int (*fn)(struct net_device *dev,
7364                                             struct netdev_nested_priv *priv),
7365                                   struct netdev_nested_priv *priv)
7366 {
7367         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7368         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7369         int ret, cur = 0;
7370
7371         now = dev;
7372         iter = &dev->adj_list.upper;
7373
7374         while (1) {
7375                 if (now != dev) {
7376                         ret = fn(now, priv);
7377                         if (ret)
7378                                 return ret;
7379                 }
7380
7381                 next = NULL;
7382                 while (1) {
7383                         udev = netdev_next_upper_dev_rcu(now, &iter);
7384                         if (!udev)
7385                                 break;
7386
7387                         next = udev;
7388                         niter = &udev->adj_list.upper;
7389                         dev_stack[cur] = now;
7390                         iter_stack[cur++] = iter;
7391                         break;
7392                 }
7393
7394                 if (!next) {
7395                         if (!cur)
7396                                 return 0;
7397                         next = dev_stack[--cur];
7398                         niter = iter_stack[cur];
7399                 }
7400
7401                 now = next;
7402                 iter = niter;
7403         }
7404
7405         return 0;
7406 }
7407 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7408
7409 static bool __netdev_has_upper_dev(struct net_device *dev,
7410                                    struct net_device *upper_dev)
7411 {
7412         struct netdev_nested_priv priv = {
7413                 .flags = 0,
7414                 .data = (void *)upper_dev,
7415         };
7416
7417         ASSERT_RTNL();
7418
7419         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7420                                            &priv);
7421 }
7422
7423 /**
7424  * netdev_lower_get_next_private - Get the next ->private from the
7425  *                                 lower neighbour list
7426  * @dev: device
7427  * @iter: list_head ** of the current position
7428  *
7429  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7430  * list, starting from iter position. The caller must hold either hold the
7431  * RTNL lock or its own locking that guarantees that the neighbour lower
7432  * list will remain unchanged.
7433  */
7434 void *netdev_lower_get_next_private(struct net_device *dev,
7435                                     struct list_head **iter)
7436 {
7437         struct netdev_adjacent *lower;
7438
7439         lower = list_entry(*iter, struct netdev_adjacent, list);
7440
7441         if (&lower->list == &dev->adj_list.lower)
7442                 return NULL;
7443
7444         *iter = lower->list.next;
7445
7446         return lower->private;
7447 }
7448 EXPORT_SYMBOL(netdev_lower_get_next_private);
7449
7450 /**
7451  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7452  *                                     lower neighbour list, RCU
7453  *                                     variant
7454  * @dev: device
7455  * @iter: list_head ** of the current position
7456  *
7457  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7458  * list, starting from iter position. The caller must hold RCU read lock.
7459  */
7460 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7461                                         struct list_head **iter)
7462 {
7463         struct netdev_adjacent *lower;
7464
7465         WARN_ON_ONCE(!rcu_read_lock_held());
7466
7467         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7468
7469         if (&lower->list == &dev->adj_list.lower)
7470                 return NULL;
7471
7472         *iter = &lower->list;
7473
7474         return lower->private;
7475 }
7476 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7477
7478 /**
7479  * netdev_lower_get_next - Get the next device from the lower neighbour
7480  *                         list
7481  * @dev: device
7482  * @iter: list_head ** of the current position
7483  *
7484  * Gets the next netdev_adjacent from the dev's lower neighbour
7485  * list, starting from iter position. The caller must hold RTNL lock or
7486  * its own locking that guarantees that the neighbour lower
7487  * list will remain unchanged.
7488  */
7489 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7490 {
7491         struct netdev_adjacent *lower;
7492
7493         lower = list_entry(*iter, struct netdev_adjacent, list);
7494
7495         if (&lower->list == &dev->adj_list.lower)
7496                 return NULL;
7497
7498         *iter = lower->list.next;
7499
7500         return lower->dev;
7501 }
7502 EXPORT_SYMBOL(netdev_lower_get_next);
7503
7504 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7505                                                 struct list_head **iter)
7506 {
7507         struct netdev_adjacent *lower;
7508
7509         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7510
7511         if (&lower->list == &dev->adj_list.lower)
7512                 return NULL;
7513
7514         *iter = &lower->list;
7515
7516         return lower->dev;
7517 }
7518
7519 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7520                                                   struct list_head **iter,
7521                                                   bool *ignore)
7522 {
7523         struct netdev_adjacent *lower;
7524
7525         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7526
7527         if (&lower->list == &dev->adj_list.lower)
7528                 return NULL;
7529
7530         *iter = &lower->list;
7531         *ignore = lower->ignore;
7532
7533         return lower->dev;
7534 }
7535
7536 int netdev_walk_all_lower_dev(struct net_device *dev,
7537                               int (*fn)(struct net_device *dev,
7538                                         struct netdev_nested_priv *priv),
7539                               struct netdev_nested_priv *priv)
7540 {
7541         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7542         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7543         int ret, cur = 0;
7544
7545         now = dev;
7546         iter = &dev->adj_list.lower;
7547
7548         while (1) {
7549                 if (now != dev) {
7550                         ret = fn(now, priv);
7551                         if (ret)
7552                                 return ret;
7553                 }
7554
7555                 next = NULL;
7556                 while (1) {
7557                         ldev = netdev_next_lower_dev(now, &iter);
7558                         if (!ldev)
7559                                 break;
7560
7561                         next = ldev;
7562                         niter = &ldev->adj_list.lower;
7563                         dev_stack[cur] = now;
7564                         iter_stack[cur++] = iter;
7565                         break;
7566                 }
7567
7568                 if (!next) {
7569                         if (!cur)
7570                                 return 0;
7571                         next = dev_stack[--cur];
7572                         niter = iter_stack[cur];
7573                 }
7574
7575                 now = next;
7576                 iter = niter;
7577         }
7578
7579         return 0;
7580 }
7581 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7582
7583 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7584                                        int (*fn)(struct net_device *dev,
7585                                          struct netdev_nested_priv *priv),
7586                                        struct netdev_nested_priv *priv)
7587 {
7588         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7589         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7590         int ret, cur = 0;
7591         bool ignore;
7592
7593         now = dev;
7594         iter = &dev->adj_list.lower;
7595
7596         while (1) {
7597                 if (now != dev) {
7598                         ret = fn(now, priv);
7599                         if (ret)
7600                                 return ret;
7601                 }
7602
7603                 next = NULL;
7604                 while (1) {
7605                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7606                         if (!ldev)
7607                                 break;
7608                         if (ignore)
7609                                 continue;
7610
7611                         next = ldev;
7612                         niter = &ldev->adj_list.lower;
7613                         dev_stack[cur] = now;
7614                         iter_stack[cur++] = iter;
7615                         break;
7616                 }
7617
7618                 if (!next) {
7619                         if (!cur)
7620                                 return 0;
7621                         next = dev_stack[--cur];
7622                         niter = iter_stack[cur];
7623                 }
7624
7625                 now = next;
7626                 iter = niter;
7627         }
7628
7629         return 0;
7630 }
7631
7632 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7633                                              struct list_head **iter)
7634 {
7635         struct netdev_adjacent *lower;
7636
7637         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7638         if (&lower->list == &dev->adj_list.lower)
7639                 return NULL;
7640
7641         *iter = &lower->list;
7642
7643         return lower->dev;
7644 }
7645 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7646
7647 static u8 __netdev_upper_depth(struct net_device *dev)
7648 {
7649         struct net_device *udev;
7650         struct list_head *iter;
7651         u8 max_depth = 0;
7652         bool ignore;
7653
7654         for (iter = &dev->adj_list.upper,
7655              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7656              udev;
7657              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7658                 if (ignore)
7659                         continue;
7660                 if (max_depth < udev->upper_level)
7661                         max_depth = udev->upper_level;
7662         }
7663
7664         return max_depth;
7665 }
7666
7667 static u8 __netdev_lower_depth(struct net_device *dev)
7668 {
7669         struct net_device *ldev;
7670         struct list_head *iter;
7671         u8 max_depth = 0;
7672         bool ignore;
7673
7674         for (iter = &dev->adj_list.lower,
7675              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7676              ldev;
7677              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7678                 if (ignore)
7679                         continue;
7680                 if (max_depth < ldev->lower_level)
7681                         max_depth = ldev->lower_level;
7682         }
7683
7684         return max_depth;
7685 }
7686
7687 static int __netdev_update_upper_level(struct net_device *dev,
7688                                        struct netdev_nested_priv *__unused)
7689 {
7690         dev->upper_level = __netdev_upper_depth(dev) + 1;
7691         return 0;
7692 }
7693
7694 static int __netdev_update_lower_level(struct net_device *dev,
7695                                        struct netdev_nested_priv *priv)
7696 {
7697         dev->lower_level = __netdev_lower_depth(dev) + 1;
7698
7699 #ifdef CONFIG_LOCKDEP
7700         if (!priv)
7701                 return 0;
7702
7703         if (priv->flags & NESTED_SYNC_IMM)
7704                 dev->nested_level = dev->lower_level - 1;
7705         if (priv->flags & NESTED_SYNC_TODO)
7706                 net_unlink_todo(dev);
7707 #endif
7708         return 0;
7709 }
7710
7711 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7712                                   int (*fn)(struct net_device *dev,
7713                                             struct netdev_nested_priv *priv),
7714                                   struct netdev_nested_priv *priv)
7715 {
7716         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7717         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7718         int ret, cur = 0;
7719
7720         now = dev;
7721         iter = &dev->adj_list.lower;
7722
7723         while (1) {
7724                 if (now != dev) {
7725                         ret = fn(now, priv);
7726                         if (ret)
7727                                 return ret;
7728                 }
7729
7730                 next = NULL;
7731                 while (1) {
7732                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7733                         if (!ldev)
7734                                 break;
7735
7736                         next = ldev;
7737                         niter = &ldev->adj_list.lower;
7738                         dev_stack[cur] = now;
7739                         iter_stack[cur++] = iter;
7740                         break;
7741                 }
7742
7743                 if (!next) {
7744                         if (!cur)
7745                                 return 0;
7746                         next = dev_stack[--cur];
7747                         niter = iter_stack[cur];
7748                 }
7749
7750                 now = next;
7751                 iter = niter;
7752         }
7753
7754         return 0;
7755 }
7756 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7757
7758 /**
7759  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7760  *                                     lower neighbour list, RCU
7761  *                                     variant
7762  * @dev: device
7763  *
7764  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7765  * list. The caller must hold RCU read lock.
7766  */
7767 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7768 {
7769         struct netdev_adjacent *lower;
7770
7771         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7772                         struct netdev_adjacent, list);
7773         if (lower)
7774                 return lower->private;
7775         return NULL;
7776 }
7777 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7778
7779 /**
7780  * netdev_master_upper_dev_get_rcu - Get master upper device
7781  * @dev: device
7782  *
7783  * Find a master upper device and return pointer to it or NULL in case
7784  * it's not there. The caller must hold the RCU read lock.
7785  */
7786 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7787 {
7788         struct netdev_adjacent *upper;
7789
7790         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7791                                        struct netdev_adjacent, list);
7792         if (upper && likely(upper->master))
7793                 return upper->dev;
7794         return NULL;
7795 }
7796 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7797
7798 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7799                               struct net_device *adj_dev,
7800                               struct list_head *dev_list)
7801 {
7802         char linkname[IFNAMSIZ+7];
7803
7804         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7805                 "upper_%s" : "lower_%s", adj_dev->name);
7806         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7807                                  linkname);
7808 }
7809 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7810                                char *name,
7811                                struct list_head *dev_list)
7812 {
7813         char linkname[IFNAMSIZ+7];
7814
7815         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7816                 "upper_%s" : "lower_%s", name);
7817         sysfs_remove_link(&(dev->dev.kobj), linkname);
7818 }
7819
7820 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7821                                                  struct net_device *adj_dev,
7822                                                  struct list_head *dev_list)
7823 {
7824         return (dev_list == &dev->adj_list.upper ||
7825                 dev_list == &dev->adj_list.lower) &&
7826                 net_eq(dev_net(dev), dev_net(adj_dev));
7827 }
7828
7829 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7830                                         struct net_device *adj_dev,
7831                                         struct list_head *dev_list,
7832                                         void *private, bool master)
7833 {
7834         struct netdev_adjacent *adj;
7835         int ret;
7836
7837         adj = __netdev_find_adj(adj_dev, dev_list);
7838
7839         if (adj) {
7840                 adj->ref_nr += 1;
7841                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7842                          dev->name, adj_dev->name, adj->ref_nr);
7843
7844                 return 0;
7845         }
7846
7847         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7848         if (!adj)
7849                 return -ENOMEM;
7850
7851         adj->dev = adj_dev;
7852         adj->master = master;
7853         adj->ref_nr = 1;
7854         adj->private = private;
7855         adj->ignore = false;
7856         dev_hold(adj_dev);
7857
7858         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7859                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7860
7861         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7862                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7863                 if (ret)
7864                         goto free_adj;
7865         }
7866
7867         /* Ensure that master link is always the first item in list. */
7868         if (master) {
7869                 ret = sysfs_create_link(&(dev->dev.kobj),
7870                                         &(adj_dev->dev.kobj), "master");
7871                 if (ret)
7872                         goto remove_symlinks;
7873
7874                 list_add_rcu(&adj->list, dev_list);
7875         } else {
7876                 list_add_tail_rcu(&adj->list, dev_list);
7877         }
7878
7879         return 0;
7880
7881 remove_symlinks:
7882         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7883                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7884 free_adj:
7885         kfree(adj);
7886         dev_put(adj_dev);
7887
7888         return ret;
7889 }
7890
7891 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7892                                          struct net_device *adj_dev,
7893                                          u16 ref_nr,
7894                                          struct list_head *dev_list)
7895 {
7896         struct netdev_adjacent *adj;
7897
7898         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7899                  dev->name, adj_dev->name, ref_nr);
7900
7901         adj = __netdev_find_adj(adj_dev, dev_list);
7902
7903         if (!adj) {
7904                 pr_err("Adjacency does not exist for device %s from %s\n",
7905                        dev->name, adj_dev->name);
7906                 WARN_ON(1);
7907                 return;
7908         }
7909
7910         if (adj->ref_nr > ref_nr) {
7911                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7912                          dev->name, adj_dev->name, ref_nr,
7913                          adj->ref_nr - ref_nr);
7914                 adj->ref_nr -= ref_nr;
7915                 return;
7916         }
7917
7918         if (adj->master)
7919                 sysfs_remove_link(&(dev->dev.kobj), "master");
7920
7921         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7922                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7923
7924         list_del_rcu(&adj->list);
7925         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7926                  adj_dev->name, dev->name, adj_dev->name);
7927         dev_put(adj_dev);
7928         kfree_rcu(adj, rcu);
7929 }
7930
7931 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7932                                             struct net_device *upper_dev,
7933                                             struct list_head *up_list,
7934                                             struct list_head *down_list,
7935                                             void *private, bool master)
7936 {
7937         int ret;
7938
7939         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7940                                            private, master);
7941         if (ret)
7942                 return ret;
7943
7944         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7945                                            private, false);
7946         if (ret) {
7947                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7948                 return ret;
7949         }
7950
7951         return 0;
7952 }
7953
7954 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7955                                                struct net_device *upper_dev,
7956                                                u16 ref_nr,
7957                                                struct list_head *up_list,
7958                                                struct list_head *down_list)
7959 {
7960         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7961         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7962 }
7963
7964 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7965                                                 struct net_device *upper_dev,
7966                                                 void *private, bool master)
7967 {
7968         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7969                                                 &dev->adj_list.upper,
7970                                                 &upper_dev->adj_list.lower,
7971                                                 private, master);
7972 }
7973
7974 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7975                                                    struct net_device *upper_dev)
7976 {
7977         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7978                                            &dev->adj_list.upper,
7979                                            &upper_dev->adj_list.lower);
7980 }
7981
7982 static int __netdev_upper_dev_link(struct net_device *dev,
7983                                    struct net_device *upper_dev, bool master,
7984                                    void *upper_priv, void *upper_info,
7985                                    struct netdev_nested_priv *priv,
7986                                    struct netlink_ext_ack *extack)
7987 {
7988         struct netdev_notifier_changeupper_info changeupper_info = {
7989                 .info = {
7990                         .dev = dev,
7991                         .extack = extack,
7992                 },
7993                 .upper_dev = upper_dev,
7994                 .master = master,
7995                 .linking = true,
7996                 .upper_info = upper_info,
7997         };
7998         struct net_device *master_dev;
7999         int ret = 0;
8000
8001         ASSERT_RTNL();
8002
8003         if (dev == upper_dev)
8004                 return -EBUSY;
8005
8006         /* To prevent loops, check if dev is not upper device to upper_dev. */
8007         if (__netdev_has_upper_dev(upper_dev, dev))
8008                 return -EBUSY;
8009
8010         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8011                 return -EMLINK;
8012
8013         if (!master) {
8014                 if (__netdev_has_upper_dev(dev, upper_dev))
8015                         return -EEXIST;
8016         } else {
8017                 master_dev = __netdev_master_upper_dev_get(dev);
8018                 if (master_dev)
8019                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8020         }
8021
8022         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8023                                             &changeupper_info.info);
8024         ret = notifier_to_errno(ret);
8025         if (ret)
8026                 return ret;
8027
8028         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8029                                                    master);
8030         if (ret)
8031                 return ret;
8032
8033         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8034                                             &changeupper_info.info);
8035         ret = notifier_to_errno(ret);
8036         if (ret)
8037                 goto rollback;
8038
8039         __netdev_update_upper_level(dev, NULL);
8040         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8041
8042         __netdev_update_lower_level(upper_dev, priv);
8043         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8044                                     priv);
8045
8046         return 0;
8047
8048 rollback:
8049         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8050
8051         return ret;
8052 }
8053
8054 /**
8055  * netdev_upper_dev_link - Add a link to the upper device
8056  * @dev: device
8057  * @upper_dev: new upper device
8058  * @extack: netlink extended ack
8059  *
8060  * Adds a link to device which is upper to this one. The caller must hold
8061  * the RTNL lock. On a failure a negative errno code is returned.
8062  * On success the reference counts are adjusted and the function
8063  * returns zero.
8064  */
8065 int netdev_upper_dev_link(struct net_device *dev,
8066                           struct net_device *upper_dev,
8067                           struct netlink_ext_ack *extack)
8068 {
8069         struct netdev_nested_priv priv = {
8070                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8071                 .data = NULL,
8072         };
8073
8074         return __netdev_upper_dev_link(dev, upper_dev, false,
8075                                        NULL, NULL, &priv, extack);
8076 }
8077 EXPORT_SYMBOL(netdev_upper_dev_link);
8078
8079 /**
8080  * netdev_master_upper_dev_link - Add a master link to the upper device
8081  * @dev: device
8082  * @upper_dev: new upper device
8083  * @upper_priv: upper device private
8084  * @upper_info: upper info to be passed down via notifier
8085  * @extack: netlink extended ack
8086  *
8087  * Adds a link to device which is upper to this one. In this case, only
8088  * one master upper device can be linked, although other non-master devices
8089  * might be linked as well. The caller must hold the RTNL lock.
8090  * On a failure a negative errno code is returned. On success the reference
8091  * counts are adjusted and the function returns zero.
8092  */
8093 int netdev_master_upper_dev_link(struct net_device *dev,
8094                                  struct net_device *upper_dev,
8095                                  void *upper_priv, void *upper_info,
8096                                  struct netlink_ext_ack *extack)
8097 {
8098         struct netdev_nested_priv priv = {
8099                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8100                 .data = NULL,
8101         };
8102
8103         return __netdev_upper_dev_link(dev, upper_dev, true,
8104                                        upper_priv, upper_info, &priv, extack);
8105 }
8106 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8107
8108 static void __netdev_upper_dev_unlink(struct net_device *dev,
8109                                       struct net_device *upper_dev,
8110                                       struct netdev_nested_priv *priv)
8111 {
8112         struct netdev_notifier_changeupper_info changeupper_info = {
8113                 .info = {
8114                         .dev = dev,
8115                 },
8116                 .upper_dev = upper_dev,
8117                 .linking = false,
8118         };
8119
8120         ASSERT_RTNL();
8121
8122         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8123
8124         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8125                                       &changeupper_info.info);
8126
8127         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8128
8129         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8130                                       &changeupper_info.info);
8131
8132         __netdev_update_upper_level(dev, NULL);
8133         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8134
8135         __netdev_update_lower_level(upper_dev, priv);
8136         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8137                                     priv);
8138 }
8139
8140 /**
8141  * netdev_upper_dev_unlink - Removes a link to upper device
8142  * @dev: device
8143  * @upper_dev: new upper device
8144  *
8145  * Removes a link to device which is upper to this one. The caller must hold
8146  * the RTNL lock.
8147  */
8148 void netdev_upper_dev_unlink(struct net_device *dev,
8149                              struct net_device *upper_dev)
8150 {
8151         struct netdev_nested_priv priv = {
8152                 .flags = NESTED_SYNC_TODO,
8153                 .data = NULL,
8154         };
8155
8156         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8157 }
8158 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8159
8160 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8161                                       struct net_device *lower_dev,
8162                                       bool val)
8163 {
8164         struct netdev_adjacent *adj;
8165
8166         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8167         if (adj)
8168                 adj->ignore = val;
8169
8170         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8171         if (adj)
8172                 adj->ignore = val;
8173 }
8174
8175 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8176                                         struct net_device *lower_dev)
8177 {
8178         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8179 }
8180
8181 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8182                                        struct net_device *lower_dev)
8183 {
8184         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8185 }
8186
8187 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8188                                    struct net_device *new_dev,
8189                                    struct net_device *dev,
8190                                    struct netlink_ext_ack *extack)
8191 {
8192         struct netdev_nested_priv priv = {
8193                 .flags = 0,
8194                 .data = NULL,
8195         };
8196         int err;
8197
8198         if (!new_dev)
8199                 return 0;
8200
8201         if (old_dev && new_dev != old_dev)
8202                 netdev_adjacent_dev_disable(dev, old_dev);
8203         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8204                                       extack);
8205         if (err) {
8206                 if (old_dev && new_dev != old_dev)
8207                         netdev_adjacent_dev_enable(dev, old_dev);
8208                 return err;
8209         }
8210
8211         return 0;
8212 }
8213 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8214
8215 void netdev_adjacent_change_commit(struct net_device *old_dev,
8216                                    struct net_device *new_dev,
8217                                    struct net_device *dev)
8218 {
8219         struct netdev_nested_priv priv = {
8220                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8221                 .data = NULL,
8222         };
8223
8224         if (!new_dev || !old_dev)
8225                 return;
8226
8227         if (new_dev == old_dev)
8228                 return;
8229
8230         netdev_adjacent_dev_enable(dev, old_dev);
8231         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8232 }
8233 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8234
8235 void netdev_adjacent_change_abort(struct net_device *old_dev,
8236                                   struct net_device *new_dev,
8237                                   struct net_device *dev)
8238 {
8239         struct netdev_nested_priv priv = {
8240                 .flags = 0,
8241                 .data = NULL,
8242         };
8243
8244         if (!new_dev)
8245                 return;
8246
8247         if (old_dev && new_dev != old_dev)
8248                 netdev_adjacent_dev_enable(dev, old_dev);
8249
8250         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8251 }
8252 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8253
8254 /**
8255  * netdev_bonding_info_change - Dispatch event about slave change
8256  * @dev: device
8257  * @bonding_info: info to dispatch
8258  *
8259  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8260  * The caller must hold the RTNL lock.
8261  */
8262 void netdev_bonding_info_change(struct net_device *dev,
8263                                 struct netdev_bonding_info *bonding_info)
8264 {
8265         struct netdev_notifier_bonding_info info = {
8266                 .info.dev = dev,
8267         };
8268
8269         memcpy(&info.bonding_info, bonding_info,
8270                sizeof(struct netdev_bonding_info));
8271         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8272                                       &info.info);
8273 }
8274 EXPORT_SYMBOL(netdev_bonding_info_change);
8275
8276 /**
8277  * netdev_get_xmit_slave - Get the xmit slave of master device
8278  * @dev: device
8279  * @skb: The packet
8280  * @all_slaves: assume all the slaves are active
8281  *
8282  * The reference counters are not incremented so the caller must be
8283  * careful with locks. The caller must hold RCU lock.
8284  * %NULL is returned if no slave is found.
8285  */
8286
8287 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8288                                          struct sk_buff *skb,
8289                                          bool all_slaves)
8290 {
8291         const struct net_device_ops *ops = dev->netdev_ops;
8292
8293         if (!ops->ndo_get_xmit_slave)
8294                 return NULL;
8295         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8296 }
8297 EXPORT_SYMBOL(netdev_get_xmit_slave);
8298
8299 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8300                                                   struct sock *sk)
8301 {
8302         const struct net_device_ops *ops = dev->netdev_ops;
8303
8304         if (!ops->ndo_sk_get_lower_dev)
8305                 return NULL;
8306         return ops->ndo_sk_get_lower_dev(dev, sk);
8307 }
8308
8309 /**
8310  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8311  * @dev: device
8312  * @sk: the socket
8313  *
8314  * %NULL is returned if no lower device is found.
8315  */
8316
8317 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8318                                             struct sock *sk)
8319 {
8320         struct net_device *lower;
8321
8322         lower = netdev_sk_get_lower_dev(dev, sk);
8323         while (lower) {
8324                 dev = lower;
8325                 lower = netdev_sk_get_lower_dev(dev, sk);
8326         }
8327
8328         return dev;
8329 }
8330 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8331
8332 static void netdev_adjacent_add_links(struct net_device *dev)
8333 {
8334         struct netdev_adjacent *iter;
8335
8336         struct net *net = dev_net(dev);
8337
8338         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8339                 if (!net_eq(net, dev_net(iter->dev)))
8340                         continue;
8341                 netdev_adjacent_sysfs_add(iter->dev, dev,
8342                                           &iter->dev->adj_list.lower);
8343                 netdev_adjacent_sysfs_add(dev, iter->dev,
8344                                           &dev->adj_list.upper);
8345         }
8346
8347         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8348                 if (!net_eq(net, dev_net(iter->dev)))
8349                         continue;
8350                 netdev_adjacent_sysfs_add(iter->dev, dev,
8351                                           &iter->dev->adj_list.upper);
8352                 netdev_adjacent_sysfs_add(dev, iter->dev,
8353                                           &dev->adj_list.lower);
8354         }
8355 }
8356
8357 static void netdev_adjacent_del_links(struct net_device *dev)
8358 {
8359         struct netdev_adjacent *iter;
8360
8361         struct net *net = dev_net(dev);
8362
8363         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8364                 if (!net_eq(net, dev_net(iter->dev)))
8365                         continue;
8366                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8367                                           &iter->dev->adj_list.lower);
8368                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8369                                           &dev->adj_list.upper);
8370         }
8371
8372         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8373                 if (!net_eq(net, dev_net(iter->dev)))
8374                         continue;
8375                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8376                                           &iter->dev->adj_list.upper);
8377                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8378                                           &dev->adj_list.lower);
8379         }
8380 }
8381
8382 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8383 {
8384         struct netdev_adjacent *iter;
8385
8386         struct net *net = dev_net(dev);
8387
8388         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8389                 if (!net_eq(net, dev_net(iter->dev)))
8390                         continue;
8391                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8392                                           &iter->dev->adj_list.lower);
8393                 netdev_adjacent_sysfs_add(iter->dev, dev,
8394                                           &iter->dev->adj_list.lower);
8395         }
8396
8397         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8398                 if (!net_eq(net, dev_net(iter->dev)))
8399                         continue;
8400                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8401                                           &iter->dev->adj_list.upper);
8402                 netdev_adjacent_sysfs_add(iter->dev, dev,
8403                                           &iter->dev->adj_list.upper);
8404         }
8405 }
8406
8407 void *netdev_lower_dev_get_private(struct net_device *dev,
8408                                    struct net_device *lower_dev)
8409 {
8410         struct netdev_adjacent *lower;
8411
8412         if (!lower_dev)
8413                 return NULL;
8414         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8415         if (!lower)
8416                 return NULL;
8417
8418         return lower->private;
8419 }
8420 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8421
8422
8423 /**
8424  * netdev_lower_state_changed - Dispatch event about lower device state change
8425  * @lower_dev: device
8426  * @lower_state_info: state to dispatch
8427  *
8428  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8429  * The caller must hold the RTNL lock.
8430  */
8431 void netdev_lower_state_changed(struct net_device *lower_dev,
8432                                 void *lower_state_info)
8433 {
8434         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8435                 .info.dev = lower_dev,
8436         };
8437
8438         ASSERT_RTNL();
8439         changelowerstate_info.lower_state_info = lower_state_info;
8440         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8441                                       &changelowerstate_info.info);
8442 }
8443 EXPORT_SYMBOL(netdev_lower_state_changed);
8444
8445 static void dev_change_rx_flags(struct net_device *dev, int flags)
8446 {
8447         const struct net_device_ops *ops = dev->netdev_ops;
8448
8449         if (ops->ndo_change_rx_flags)
8450                 ops->ndo_change_rx_flags(dev, flags);
8451 }
8452
8453 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8454 {
8455         unsigned int old_flags = dev->flags;
8456         kuid_t uid;
8457         kgid_t gid;
8458
8459         ASSERT_RTNL();
8460
8461         dev->flags |= IFF_PROMISC;
8462         dev->promiscuity += inc;
8463         if (dev->promiscuity == 0) {
8464                 /*
8465                  * Avoid overflow.
8466                  * If inc causes overflow, untouch promisc and return error.
8467                  */
8468                 if (inc < 0)
8469                         dev->flags &= ~IFF_PROMISC;
8470                 else {
8471                         dev->promiscuity -= inc;
8472                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8473                                 dev->name);
8474                         return -EOVERFLOW;
8475                 }
8476         }
8477         if (dev->flags != old_flags) {
8478                 pr_info("device %s %s promiscuous mode\n",
8479                         dev->name,
8480                         dev->flags & IFF_PROMISC ? "entered" : "left");
8481                 if (audit_enabled) {
8482                         current_uid_gid(&uid, &gid);
8483                         audit_log(audit_context(), GFP_ATOMIC,
8484                                   AUDIT_ANOM_PROMISCUOUS,
8485                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8486                                   dev->name, (dev->flags & IFF_PROMISC),
8487                                   (old_flags & IFF_PROMISC),
8488                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8489                                   from_kuid(&init_user_ns, uid),
8490                                   from_kgid(&init_user_ns, gid),
8491                                   audit_get_sessionid(current));
8492                 }
8493
8494                 dev_change_rx_flags(dev, IFF_PROMISC);
8495         }
8496         if (notify)
8497                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8498         return 0;
8499 }
8500
8501 /**
8502  *      dev_set_promiscuity     - update promiscuity count on a device
8503  *      @dev: device
8504  *      @inc: modifier
8505  *
8506  *      Add or remove promiscuity from a device. While the count in the device
8507  *      remains above zero the interface remains promiscuous. Once it hits zero
8508  *      the device reverts back to normal filtering operation. A negative inc
8509  *      value is used to drop promiscuity on the device.
8510  *      Return 0 if successful or a negative errno code on error.
8511  */
8512 int dev_set_promiscuity(struct net_device *dev, int inc)
8513 {
8514         unsigned int old_flags = dev->flags;
8515         int err;
8516
8517         err = __dev_set_promiscuity(dev, inc, true);
8518         if (err < 0)
8519                 return err;
8520         if (dev->flags != old_flags)
8521                 dev_set_rx_mode(dev);
8522         return err;
8523 }
8524 EXPORT_SYMBOL(dev_set_promiscuity);
8525
8526 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8527 {
8528         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8529
8530         ASSERT_RTNL();
8531
8532         dev->flags |= IFF_ALLMULTI;
8533         dev->allmulti += inc;
8534         if (dev->allmulti == 0) {
8535                 /*
8536                  * Avoid overflow.
8537                  * If inc causes overflow, untouch allmulti and return error.
8538                  */
8539                 if (inc < 0)
8540                         dev->flags &= ~IFF_ALLMULTI;
8541                 else {
8542                         dev->allmulti -= inc;
8543                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8544                                 dev->name);
8545                         return -EOVERFLOW;
8546                 }
8547         }
8548         if (dev->flags ^ old_flags) {
8549                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8550                 dev_set_rx_mode(dev);
8551                 if (notify)
8552                         __dev_notify_flags(dev, old_flags,
8553                                            dev->gflags ^ old_gflags);
8554         }
8555         return 0;
8556 }
8557
8558 /**
8559  *      dev_set_allmulti        - update allmulti count on a device
8560  *      @dev: device
8561  *      @inc: modifier
8562  *
8563  *      Add or remove reception of all multicast frames to a device. While the
8564  *      count in the device remains above zero the interface remains listening
8565  *      to all interfaces. Once it hits zero the device reverts back to normal
8566  *      filtering operation. A negative @inc value is used to drop the counter
8567  *      when releasing a resource needing all multicasts.
8568  *      Return 0 if successful or a negative errno code on error.
8569  */
8570
8571 int dev_set_allmulti(struct net_device *dev, int inc)
8572 {
8573         return __dev_set_allmulti(dev, inc, true);
8574 }
8575 EXPORT_SYMBOL(dev_set_allmulti);
8576
8577 /*
8578  *      Upload unicast and multicast address lists to device and
8579  *      configure RX filtering. When the device doesn't support unicast
8580  *      filtering it is put in promiscuous mode while unicast addresses
8581  *      are present.
8582  */
8583 void __dev_set_rx_mode(struct net_device *dev)
8584 {
8585         const struct net_device_ops *ops = dev->netdev_ops;
8586
8587         /* dev_open will call this function so the list will stay sane. */
8588         if (!(dev->flags&IFF_UP))
8589                 return;
8590
8591         if (!netif_device_present(dev))
8592                 return;
8593
8594         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8595                 /* Unicast addresses changes may only happen under the rtnl,
8596                  * therefore calling __dev_set_promiscuity here is safe.
8597                  */
8598                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8599                         __dev_set_promiscuity(dev, 1, false);
8600                         dev->uc_promisc = true;
8601                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8602                         __dev_set_promiscuity(dev, -1, false);
8603                         dev->uc_promisc = false;
8604                 }
8605         }
8606
8607         if (ops->ndo_set_rx_mode)
8608                 ops->ndo_set_rx_mode(dev);
8609 }
8610
8611 void dev_set_rx_mode(struct net_device *dev)
8612 {
8613         netif_addr_lock_bh(dev);
8614         __dev_set_rx_mode(dev);
8615         netif_addr_unlock_bh(dev);
8616 }
8617
8618 /**
8619  *      dev_get_flags - get flags reported to userspace
8620  *      @dev: device
8621  *
8622  *      Get the combination of flag bits exported through APIs to userspace.
8623  */
8624 unsigned int dev_get_flags(const struct net_device *dev)
8625 {
8626         unsigned int flags;
8627
8628         flags = (dev->flags & ~(IFF_PROMISC |
8629                                 IFF_ALLMULTI |
8630                                 IFF_RUNNING |
8631                                 IFF_LOWER_UP |
8632                                 IFF_DORMANT)) |
8633                 (dev->gflags & (IFF_PROMISC |
8634                                 IFF_ALLMULTI));
8635
8636         if (netif_running(dev)) {
8637                 if (netif_oper_up(dev))
8638                         flags |= IFF_RUNNING;
8639                 if (netif_carrier_ok(dev))
8640                         flags |= IFF_LOWER_UP;
8641                 if (netif_dormant(dev))
8642                         flags |= IFF_DORMANT;
8643         }
8644
8645         return flags;
8646 }
8647 EXPORT_SYMBOL(dev_get_flags);
8648
8649 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8650                        struct netlink_ext_ack *extack)
8651 {
8652         unsigned int old_flags = dev->flags;
8653         int ret;
8654
8655         ASSERT_RTNL();
8656
8657         /*
8658          *      Set the flags on our device.
8659          */
8660
8661         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8662                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8663                                IFF_AUTOMEDIA)) |
8664                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8665                                     IFF_ALLMULTI));
8666
8667         /*
8668          *      Load in the correct multicast list now the flags have changed.
8669          */
8670
8671         if ((old_flags ^ flags) & IFF_MULTICAST)
8672                 dev_change_rx_flags(dev, IFF_MULTICAST);
8673
8674         dev_set_rx_mode(dev);
8675
8676         /*
8677          *      Have we downed the interface. We handle IFF_UP ourselves
8678          *      according to user attempts to set it, rather than blindly
8679          *      setting it.
8680          */
8681
8682         ret = 0;
8683         if ((old_flags ^ flags) & IFF_UP) {
8684                 if (old_flags & IFF_UP)
8685                         __dev_close(dev);
8686                 else
8687                         ret = __dev_open(dev, extack);
8688         }
8689
8690         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8691                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8692                 unsigned int old_flags = dev->flags;
8693
8694                 dev->gflags ^= IFF_PROMISC;
8695
8696                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8697                         if (dev->flags != old_flags)
8698                                 dev_set_rx_mode(dev);
8699         }
8700
8701         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8702          * is important. Some (broken) drivers set IFF_PROMISC, when
8703          * IFF_ALLMULTI is requested not asking us and not reporting.
8704          */
8705         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8706                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8707
8708                 dev->gflags ^= IFF_ALLMULTI;
8709                 __dev_set_allmulti(dev, inc, false);
8710         }
8711
8712         return ret;
8713 }
8714
8715 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8716                         unsigned int gchanges)
8717 {
8718         unsigned int changes = dev->flags ^ old_flags;
8719
8720         if (gchanges)
8721                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8722
8723         if (changes & IFF_UP) {
8724                 if (dev->flags & IFF_UP)
8725                         call_netdevice_notifiers(NETDEV_UP, dev);
8726                 else
8727                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8728         }
8729
8730         if (dev->flags & IFF_UP &&
8731             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8732                 struct netdev_notifier_change_info change_info = {
8733                         .info = {
8734                                 .dev = dev,
8735                         },
8736                         .flags_changed = changes,
8737                 };
8738
8739                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8740         }
8741 }
8742
8743 /**
8744  *      dev_change_flags - change device settings
8745  *      @dev: device
8746  *      @flags: device state flags
8747  *      @extack: netlink extended ack
8748  *
8749  *      Change settings on device based state flags. The flags are
8750  *      in the userspace exported format.
8751  */
8752 int dev_change_flags(struct net_device *dev, unsigned int flags,
8753                      struct netlink_ext_ack *extack)
8754 {
8755         int ret;
8756         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8757
8758         ret = __dev_change_flags(dev, flags, extack);
8759         if (ret < 0)
8760                 return ret;
8761
8762         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8763         __dev_notify_flags(dev, old_flags, changes);
8764         return ret;
8765 }
8766 EXPORT_SYMBOL(dev_change_flags);
8767
8768 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8769 {
8770         const struct net_device_ops *ops = dev->netdev_ops;
8771
8772         if (ops->ndo_change_mtu)
8773                 return ops->ndo_change_mtu(dev, new_mtu);
8774
8775         /* Pairs with all the lockless reads of dev->mtu in the stack */
8776         WRITE_ONCE(dev->mtu, new_mtu);
8777         return 0;
8778 }
8779 EXPORT_SYMBOL(__dev_set_mtu);
8780
8781 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8782                      struct netlink_ext_ack *extack)
8783 {
8784         /* MTU must be positive, and in range */
8785         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8786                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8787                 return -EINVAL;
8788         }
8789
8790         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8791                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8792                 return -EINVAL;
8793         }
8794         return 0;
8795 }
8796
8797 /**
8798  *      dev_set_mtu_ext - Change maximum transfer unit
8799  *      @dev: device
8800  *      @new_mtu: new transfer unit
8801  *      @extack: netlink extended ack
8802  *
8803  *      Change the maximum transfer size of the network device.
8804  */
8805 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8806                     struct netlink_ext_ack *extack)
8807 {
8808         int err, orig_mtu;
8809
8810         if (new_mtu == dev->mtu)
8811                 return 0;
8812
8813         err = dev_validate_mtu(dev, new_mtu, extack);
8814         if (err)
8815                 return err;
8816
8817         if (!netif_device_present(dev))
8818                 return -ENODEV;
8819
8820         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8821         err = notifier_to_errno(err);
8822         if (err)
8823                 return err;
8824
8825         orig_mtu = dev->mtu;
8826         err = __dev_set_mtu(dev, new_mtu);
8827
8828         if (!err) {
8829                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8830                                                    orig_mtu);
8831                 err = notifier_to_errno(err);
8832                 if (err) {
8833                         /* setting mtu back and notifying everyone again,
8834                          * so that they have a chance to revert changes.
8835                          */
8836                         __dev_set_mtu(dev, orig_mtu);
8837                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8838                                                      new_mtu);
8839                 }
8840         }
8841         return err;
8842 }
8843
8844 int dev_set_mtu(struct net_device *dev, int new_mtu)
8845 {
8846         struct netlink_ext_ack extack;
8847         int err;
8848
8849         memset(&extack, 0, sizeof(extack));
8850         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8851         if (err && extack._msg)
8852                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8853         return err;
8854 }
8855 EXPORT_SYMBOL(dev_set_mtu);
8856
8857 /**
8858  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8859  *      @dev: device
8860  *      @new_len: new tx queue length
8861  */
8862 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8863 {
8864         unsigned int orig_len = dev->tx_queue_len;
8865         int res;
8866
8867         if (new_len != (unsigned int)new_len)
8868                 return -ERANGE;
8869
8870         if (new_len != orig_len) {
8871                 dev->tx_queue_len = new_len;
8872                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8873                 res = notifier_to_errno(res);
8874                 if (res)
8875                         goto err_rollback;
8876                 res = dev_qdisc_change_tx_queue_len(dev);
8877                 if (res)
8878                         goto err_rollback;
8879         }
8880
8881         return 0;
8882
8883 err_rollback:
8884         netdev_err(dev, "refused to change device tx_queue_len\n");
8885         dev->tx_queue_len = orig_len;
8886         return res;
8887 }
8888
8889 /**
8890  *      dev_set_group - Change group this device belongs to
8891  *      @dev: device
8892  *      @new_group: group this device should belong to
8893  */
8894 void dev_set_group(struct net_device *dev, int new_group)
8895 {
8896         dev->group = new_group;
8897 }
8898 EXPORT_SYMBOL(dev_set_group);
8899
8900 /**
8901  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8902  *      @dev: device
8903  *      @addr: new address
8904  *      @extack: netlink extended ack
8905  */
8906 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8907                               struct netlink_ext_ack *extack)
8908 {
8909         struct netdev_notifier_pre_changeaddr_info info = {
8910                 .info.dev = dev,
8911                 .info.extack = extack,
8912                 .dev_addr = addr,
8913         };
8914         int rc;
8915
8916         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8917         return notifier_to_errno(rc);
8918 }
8919 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8920
8921 /**
8922  *      dev_set_mac_address - Change Media Access Control Address
8923  *      @dev: device
8924  *      @sa: new address
8925  *      @extack: netlink extended ack
8926  *
8927  *      Change the hardware (MAC) address of the device
8928  */
8929 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8930                         struct netlink_ext_ack *extack)
8931 {
8932         const struct net_device_ops *ops = dev->netdev_ops;
8933         int err;
8934
8935         if (!ops->ndo_set_mac_address)
8936                 return -EOPNOTSUPP;
8937         if (sa->sa_family != dev->type)
8938                 return -EINVAL;
8939         if (!netif_device_present(dev))
8940                 return -ENODEV;
8941         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8942         if (err)
8943                 return err;
8944         err = ops->ndo_set_mac_address(dev, sa);
8945         if (err)
8946                 return err;
8947         dev->addr_assign_type = NET_ADDR_SET;
8948         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8949         add_device_randomness(dev->dev_addr, dev->addr_len);
8950         return 0;
8951 }
8952 EXPORT_SYMBOL(dev_set_mac_address);
8953
8954 static DECLARE_RWSEM(dev_addr_sem);
8955
8956 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8957                              struct netlink_ext_ack *extack)
8958 {
8959         int ret;
8960
8961         down_write(&dev_addr_sem);
8962         ret = dev_set_mac_address(dev, sa, extack);
8963         up_write(&dev_addr_sem);
8964         return ret;
8965 }
8966 EXPORT_SYMBOL(dev_set_mac_address_user);
8967
8968 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8969 {
8970         size_t size = sizeof(sa->sa_data);
8971         struct net_device *dev;
8972         int ret = 0;
8973
8974         down_read(&dev_addr_sem);
8975         rcu_read_lock();
8976
8977         dev = dev_get_by_name_rcu(net, dev_name);
8978         if (!dev) {
8979                 ret = -ENODEV;
8980                 goto unlock;
8981         }
8982         if (!dev->addr_len)
8983                 memset(sa->sa_data, 0, size);
8984         else
8985                 memcpy(sa->sa_data, dev->dev_addr,
8986                        min_t(size_t, size, dev->addr_len));
8987         sa->sa_family = dev->type;
8988
8989 unlock:
8990         rcu_read_unlock();
8991         up_read(&dev_addr_sem);
8992         return ret;
8993 }
8994 EXPORT_SYMBOL(dev_get_mac_address);
8995
8996 /**
8997  *      dev_change_carrier - Change device carrier
8998  *      @dev: device
8999  *      @new_carrier: new value
9000  *
9001  *      Change device carrier
9002  */
9003 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9004 {
9005         const struct net_device_ops *ops = dev->netdev_ops;
9006
9007         if (!ops->ndo_change_carrier)
9008                 return -EOPNOTSUPP;
9009         if (!netif_device_present(dev))
9010                 return -ENODEV;
9011         return ops->ndo_change_carrier(dev, new_carrier);
9012 }
9013 EXPORT_SYMBOL(dev_change_carrier);
9014
9015 /**
9016  *      dev_get_phys_port_id - Get device physical port ID
9017  *      @dev: device
9018  *      @ppid: port ID
9019  *
9020  *      Get device physical port ID
9021  */
9022 int dev_get_phys_port_id(struct net_device *dev,
9023                          struct netdev_phys_item_id *ppid)
9024 {
9025         const struct net_device_ops *ops = dev->netdev_ops;
9026
9027         if (!ops->ndo_get_phys_port_id)
9028                 return -EOPNOTSUPP;
9029         return ops->ndo_get_phys_port_id(dev, ppid);
9030 }
9031 EXPORT_SYMBOL(dev_get_phys_port_id);
9032
9033 /**
9034  *      dev_get_phys_port_name - Get device physical port name
9035  *      @dev: device
9036  *      @name: port name
9037  *      @len: limit of bytes to copy to name
9038  *
9039  *      Get device physical port name
9040  */
9041 int dev_get_phys_port_name(struct net_device *dev,
9042                            char *name, size_t len)
9043 {
9044         const struct net_device_ops *ops = dev->netdev_ops;
9045         int err;
9046
9047         if (ops->ndo_get_phys_port_name) {
9048                 err = ops->ndo_get_phys_port_name(dev, name, len);
9049                 if (err != -EOPNOTSUPP)
9050                         return err;
9051         }
9052         return devlink_compat_phys_port_name_get(dev, name, len);
9053 }
9054 EXPORT_SYMBOL(dev_get_phys_port_name);
9055
9056 /**
9057  *      dev_get_port_parent_id - Get the device's port parent identifier
9058  *      @dev: network device
9059  *      @ppid: pointer to a storage for the port's parent identifier
9060  *      @recurse: allow/disallow recursion to lower devices
9061  *
9062  *      Get the devices's port parent identifier
9063  */
9064 int dev_get_port_parent_id(struct net_device *dev,
9065                            struct netdev_phys_item_id *ppid,
9066                            bool recurse)
9067 {
9068         const struct net_device_ops *ops = dev->netdev_ops;
9069         struct netdev_phys_item_id first = { };
9070         struct net_device *lower_dev;
9071         struct list_head *iter;
9072         int err;
9073
9074         if (ops->ndo_get_port_parent_id) {
9075                 err = ops->ndo_get_port_parent_id(dev, ppid);
9076                 if (err != -EOPNOTSUPP)
9077                         return err;
9078         }
9079
9080         err = devlink_compat_switch_id_get(dev, ppid);
9081         if (!err || err != -EOPNOTSUPP)
9082                 return err;
9083
9084         if (!recurse)
9085                 return -EOPNOTSUPP;
9086
9087         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9088                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9089                 if (err)
9090                         break;
9091                 if (!first.id_len)
9092                         first = *ppid;
9093                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9094                         return -EOPNOTSUPP;
9095         }
9096
9097         return err;
9098 }
9099 EXPORT_SYMBOL(dev_get_port_parent_id);
9100
9101 /**
9102  *      netdev_port_same_parent_id - Indicate if two network devices have
9103  *      the same port parent identifier
9104  *      @a: first network device
9105  *      @b: second network device
9106  */
9107 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9108 {
9109         struct netdev_phys_item_id a_id = { };
9110         struct netdev_phys_item_id b_id = { };
9111
9112         if (dev_get_port_parent_id(a, &a_id, true) ||
9113             dev_get_port_parent_id(b, &b_id, true))
9114                 return false;
9115
9116         return netdev_phys_item_id_same(&a_id, &b_id);
9117 }
9118 EXPORT_SYMBOL(netdev_port_same_parent_id);
9119
9120 /**
9121  *      dev_change_proto_down - update protocol port state information
9122  *      @dev: device
9123  *      @proto_down: new value
9124  *
9125  *      This info can be used by switch drivers to set the phys state of the
9126  *      port.
9127  */
9128 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9129 {
9130         const struct net_device_ops *ops = dev->netdev_ops;
9131
9132         if (!ops->ndo_change_proto_down)
9133                 return -EOPNOTSUPP;
9134         if (!netif_device_present(dev))
9135                 return -ENODEV;
9136         return ops->ndo_change_proto_down(dev, proto_down);
9137 }
9138 EXPORT_SYMBOL(dev_change_proto_down);
9139
9140 /**
9141  *      dev_change_proto_down_generic - generic implementation for
9142  *      ndo_change_proto_down that sets carrier according to
9143  *      proto_down.
9144  *
9145  *      @dev: device
9146  *      @proto_down: new value
9147  */
9148 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9149 {
9150         if (proto_down)
9151                 netif_carrier_off(dev);
9152         else
9153                 netif_carrier_on(dev);
9154         dev->proto_down = proto_down;
9155         return 0;
9156 }
9157 EXPORT_SYMBOL(dev_change_proto_down_generic);
9158
9159 /**
9160  *      dev_change_proto_down_reason - proto down reason
9161  *
9162  *      @dev: device
9163  *      @mask: proto down mask
9164  *      @value: proto down value
9165  */
9166 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9167                                   u32 value)
9168 {
9169         int b;
9170
9171         if (!mask) {
9172                 dev->proto_down_reason = value;
9173         } else {
9174                 for_each_set_bit(b, &mask, 32) {
9175                         if (value & (1 << b))
9176                                 dev->proto_down_reason |= BIT(b);
9177                         else
9178                                 dev->proto_down_reason &= ~BIT(b);
9179                 }
9180         }
9181 }
9182 EXPORT_SYMBOL(dev_change_proto_down_reason);
9183
9184 struct bpf_xdp_link {
9185         struct bpf_link link;
9186         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9187         int flags;
9188 };
9189
9190 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9191 {
9192         if (flags & XDP_FLAGS_HW_MODE)
9193                 return XDP_MODE_HW;
9194         if (flags & XDP_FLAGS_DRV_MODE)
9195                 return XDP_MODE_DRV;
9196         if (flags & XDP_FLAGS_SKB_MODE)
9197                 return XDP_MODE_SKB;
9198         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9199 }
9200
9201 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9202 {
9203         switch (mode) {
9204         case XDP_MODE_SKB:
9205                 return generic_xdp_install;
9206         case XDP_MODE_DRV:
9207         case XDP_MODE_HW:
9208                 return dev->netdev_ops->ndo_bpf;
9209         default:
9210                 return NULL;
9211         }
9212 }
9213
9214 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9215                                          enum bpf_xdp_mode mode)
9216 {
9217         return dev->xdp_state[mode].link;
9218 }
9219
9220 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9221                                      enum bpf_xdp_mode mode)
9222 {
9223         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9224
9225         if (link)
9226                 return link->link.prog;
9227         return dev->xdp_state[mode].prog;
9228 }
9229
9230 static u8 dev_xdp_prog_count(struct net_device *dev)
9231 {
9232         u8 count = 0;
9233         int i;
9234
9235         for (i = 0; i < __MAX_XDP_MODE; i++)
9236                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9237                         count++;
9238         return count;
9239 }
9240
9241 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9242 {
9243         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9244
9245         return prog ? prog->aux->id : 0;
9246 }
9247
9248 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9249                              struct bpf_xdp_link *link)
9250 {
9251         dev->xdp_state[mode].link = link;
9252         dev->xdp_state[mode].prog = NULL;
9253 }
9254
9255 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9256                              struct bpf_prog *prog)
9257 {
9258         dev->xdp_state[mode].link = NULL;
9259         dev->xdp_state[mode].prog = prog;
9260 }
9261
9262 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9263                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9264                            u32 flags, struct bpf_prog *prog)
9265 {
9266         struct netdev_bpf xdp;
9267         int err;
9268
9269         memset(&xdp, 0, sizeof(xdp));
9270         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9271         xdp.extack = extack;
9272         xdp.flags = flags;
9273         xdp.prog = prog;
9274
9275         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9276          * "moved" into driver), so they don't increment it on their own, but
9277          * they do decrement refcnt when program is detached or replaced.
9278          * Given net_device also owns link/prog, we need to bump refcnt here
9279          * to prevent drivers from underflowing it.
9280          */
9281         if (prog)
9282                 bpf_prog_inc(prog);
9283         err = bpf_op(dev, &xdp);
9284         if (err) {
9285                 if (prog)
9286                         bpf_prog_put(prog);
9287                 return err;
9288         }
9289
9290         if (mode != XDP_MODE_HW)
9291                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9292
9293         return 0;
9294 }
9295
9296 static void dev_xdp_uninstall(struct net_device *dev)
9297 {
9298         struct bpf_xdp_link *link;
9299         struct bpf_prog *prog;
9300         enum bpf_xdp_mode mode;
9301         bpf_op_t bpf_op;
9302
9303         ASSERT_RTNL();
9304
9305         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9306                 prog = dev_xdp_prog(dev, mode);
9307                 if (!prog)
9308                         continue;
9309
9310                 bpf_op = dev_xdp_bpf_op(dev, mode);
9311                 if (!bpf_op)
9312                         continue;
9313
9314                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9315
9316                 /* auto-detach link from net device */
9317                 link = dev_xdp_link(dev, mode);
9318                 if (link)
9319                         link->dev = NULL;
9320                 else
9321                         bpf_prog_put(prog);
9322
9323                 dev_xdp_set_link(dev, mode, NULL);
9324         }
9325 }
9326
9327 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9328                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9329                           struct bpf_prog *old_prog, u32 flags)
9330 {
9331         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9332         struct bpf_prog *cur_prog;
9333         enum bpf_xdp_mode mode;
9334         bpf_op_t bpf_op;
9335         int err;
9336
9337         ASSERT_RTNL();
9338
9339         /* either link or prog attachment, never both */
9340         if (link && (new_prog || old_prog))
9341                 return -EINVAL;
9342         /* link supports only XDP mode flags */
9343         if (link && (flags & ~XDP_FLAGS_MODES)) {
9344                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9345                 return -EINVAL;
9346         }
9347         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9348         if (num_modes > 1) {
9349                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9350                 return -EINVAL;
9351         }
9352         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9353         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9354                 NL_SET_ERR_MSG(extack,
9355                                "More than one program loaded, unset mode is ambiguous");
9356                 return -EINVAL;
9357         }
9358         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9359         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9360                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9361                 return -EINVAL;
9362         }
9363
9364         mode = dev_xdp_mode(dev, flags);
9365         /* can't replace attached link */
9366         if (dev_xdp_link(dev, mode)) {
9367                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9368                 return -EBUSY;
9369         }
9370
9371         cur_prog = dev_xdp_prog(dev, mode);
9372         /* can't replace attached prog with link */
9373         if (link && cur_prog) {
9374                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9375                 return -EBUSY;
9376         }
9377         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9378                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9379                 return -EEXIST;
9380         }
9381
9382         /* put effective new program into new_prog */
9383         if (link)
9384                 new_prog = link->link.prog;
9385
9386         if (new_prog) {
9387                 bool offload = mode == XDP_MODE_HW;
9388                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9389                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9390
9391                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9392                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9393                         return -EBUSY;
9394                 }
9395                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9396                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9397                         return -EEXIST;
9398                 }
9399                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9400                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9401                         return -EINVAL;
9402                 }
9403                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9404                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9405                         return -EINVAL;
9406                 }
9407                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9408                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9409                         return -EINVAL;
9410                 }
9411         }
9412
9413         /* don't call drivers if the effective program didn't change */
9414         if (new_prog != cur_prog) {
9415                 bpf_op = dev_xdp_bpf_op(dev, mode);
9416                 if (!bpf_op) {
9417                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9418                         return -EOPNOTSUPP;
9419                 }
9420
9421                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9422                 if (err)
9423                         return err;
9424         }
9425
9426         if (link)
9427                 dev_xdp_set_link(dev, mode, link);
9428         else
9429                 dev_xdp_set_prog(dev, mode, new_prog);
9430         if (cur_prog)
9431                 bpf_prog_put(cur_prog);
9432
9433         return 0;
9434 }
9435
9436 static int dev_xdp_attach_link(struct net_device *dev,
9437                                struct netlink_ext_ack *extack,
9438                                struct bpf_xdp_link *link)
9439 {
9440         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9441 }
9442
9443 static int dev_xdp_detach_link(struct net_device *dev,
9444                                struct netlink_ext_ack *extack,
9445                                struct bpf_xdp_link *link)
9446 {
9447         enum bpf_xdp_mode mode;
9448         bpf_op_t bpf_op;
9449
9450         ASSERT_RTNL();
9451
9452         mode = dev_xdp_mode(dev, link->flags);
9453         if (dev_xdp_link(dev, mode) != link)
9454                 return -EINVAL;
9455
9456         bpf_op = dev_xdp_bpf_op(dev, mode);
9457         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9458         dev_xdp_set_link(dev, mode, NULL);
9459         return 0;
9460 }
9461
9462 static void bpf_xdp_link_release(struct bpf_link *link)
9463 {
9464         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9465
9466         rtnl_lock();
9467
9468         /* if racing with net_device's tear down, xdp_link->dev might be
9469          * already NULL, in which case link was already auto-detached
9470          */
9471         if (xdp_link->dev) {
9472                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9473                 xdp_link->dev = NULL;
9474         }
9475
9476         rtnl_unlock();
9477 }
9478
9479 static int bpf_xdp_link_detach(struct bpf_link *link)
9480 {
9481         bpf_xdp_link_release(link);
9482         return 0;
9483 }
9484
9485 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9486 {
9487         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9488
9489         kfree(xdp_link);
9490 }
9491
9492 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9493                                      struct seq_file *seq)
9494 {
9495         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9496         u32 ifindex = 0;
9497
9498         rtnl_lock();
9499         if (xdp_link->dev)
9500                 ifindex = xdp_link->dev->ifindex;
9501         rtnl_unlock();
9502
9503         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9504 }
9505
9506 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9507                                        struct bpf_link_info *info)
9508 {
9509         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9510         u32 ifindex = 0;
9511
9512         rtnl_lock();
9513         if (xdp_link->dev)
9514                 ifindex = xdp_link->dev->ifindex;
9515         rtnl_unlock();
9516
9517         info->xdp.ifindex = ifindex;
9518         return 0;
9519 }
9520
9521 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9522                                struct bpf_prog *old_prog)
9523 {
9524         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9525         enum bpf_xdp_mode mode;
9526         bpf_op_t bpf_op;
9527         int err = 0;
9528
9529         rtnl_lock();
9530
9531         /* link might have been auto-released already, so fail */
9532         if (!xdp_link->dev) {
9533                 err = -ENOLINK;
9534                 goto out_unlock;
9535         }
9536
9537         if (old_prog && link->prog != old_prog) {
9538                 err = -EPERM;
9539                 goto out_unlock;
9540         }
9541         old_prog = link->prog;
9542         if (old_prog == new_prog) {
9543                 /* no-op, don't disturb drivers */
9544                 bpf_prog_put(new_prog);
9545                 goto out_unlock;
9546         }
9547
9548         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9549         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9550         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9551                               xdp_link->flags, new_prog);
9552         if (err)
9553                 goto out_unlock;
9554
9555         old_prog = xchg(&link->prog, new_prog);
9556         bpf_prog_put(old_prog);
9557
9558 out_unlock:
9559         rtnl_unlock();
9560         return err;
9561 }
9562
9563 static const struct bpf_link_ops bpf_xdp_link_lops = {
9564         .release = bpf_xdp_link_release,
9565         .dealloc = bpf_xdp_link_dealloc,
9566         .detach = bpf_xdp_link_detach,
9567         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9568         .fill_link_info = bpf_xdp_link_fill_link_info,
9569         .update_prog = bpf_xdp_link_update,
9570 };
9571
9572 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9573 {
9574         struct net *net = current->nsproxy->net_ns;
9575         struct bpf_link_primer link_primer;
9576         struct bpf_xdp_link *link;
9577         struct net_device *dev;
9578         int err, fd;
9579
9580         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9581         if (!dev)
9582                 return -EINVAL;
9583
9584         link = kzalloc(sizeof(*link), GFP_USER);
9585         if (!link) {
9586                 err = -ENOMEM;
9587                 goto out_put_dev;
9588         }
9589
9590         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9591         link->dev = dev;
9592         link->flags = attr->link_create.flags;
9593
9594         err = bpf_link_prime(&link->link, &link_primer);
9595         if (err) {
9596                 kfree(link);
9597                 goto out_put_dev;
9598         }
9599
9600         rtnl_lock();
9601         err = dev_xdp_attach_link(dev, NULL, link);
9602         rtnl_unlock();
9603
9604         if (err) {
9605                 bpf_link_cleanup(&link_primer);
9606                 goto out_put_dev;
9607         }
9608
9609         fd = bpf_link_settle(&link_primer);
9610         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9611         dev_put(dev);
9612         return fd;
9613
9614 out_put_dev:
9615         dev_put(dev);
9616         return err;
9617 }
9618
9619 /**
9620  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9621  *      @dev: device
9622  *      @extack: netlink extended ack
9623  *      @fd: new program fd or negative value to clear
9624  *      @expected_fd: old program fd that userspace expects to replace or clear
9625  *      @flags: xdp-related flags
9626  *
9627  *      Set or clear a bpf program for a device
9628  */
9629 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9630                       int fd, int expected_fd, u32 flags)
9631 {
9632         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9633         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9634         int err;
9635
9636         ASSERT_RTNL();
9637
9638         if (fd >= 0) {
9639                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9640                                                  mode != XDP_MODE_SKB);
9641                 if (IS_ERR(new_prog))
9642                         return PTR_ERR(new_prog);
9643         }
9644
9645         if (expected_fd >= 0) {
9646                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9647                                                  mode != XDP_MODE_SKB);
9648                 if (IS_ERR(old_prog)) {
9649                         err = PTR_ERR(old_prog);
9650                         old_prog = NULL;
9651                         goto err_out;
9652                 }
9653         }
9654
9655         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9656
9657 err_out:
9658         if (err && new_prog)
9659                 bpf_prog_put(new_prog);
9660         if (old_prog)
9661                 bpf_prog_put(old_prog);
9662         return err;
9663 }
9664
9665 /**
9666  *      dev_new_index   -       allocate an ifindex
9667  *      @net: the applicable net namespace
9668  *
9669  *      Returns a suitable unique value for a new device interface
9670  *      number.  The caller must hold the rtnl semaphore or the
9671  *      dev_base_lock to be sure it remains unique.
9672  */
9673 static int dev_new_index(struct net *net)
9674 {
9675         int ifindex = net->ifindex;
9676
9677         for (;;) {
9678                 if (++ifindex <= 0)
9679                         ifindex = 1;
9680                 if (!__dev_get_by_index(net, ifindex))
9681                         return net->ifindex = ifindex;
9682         }
9683 }
9684
9685 /* Delayed registration/unregisteration */
9686 static LIST_HEAD(net_todo_list);
9687 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9688
9689 static void net_set_todo(struct net_device *dev)
9690 {
9691         list_add_tail(&dev->todo_list, &net_todo_list);
9692         dev_net(dev)->dev_unreg_count++;
9693 }
9694
9695 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9696         struct net_device *upper, netdev_features_t features)
9697 {
9698         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9699         netdev_features_t feature;
9700         int feature_bit;
9701
9702         for_each_netdev_feature(upper_disables, feature_bit) {
9703                 feature = __NETIF_F_BIT(feature_bit);
9704                 if (!(upper->wanted_features & feature)
9705                     && (features & feature)) {
9706                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9707                                    &feature, upper->name);
9708                         features &= ~feature;
9709                 }
9710         }
9711
9712         return features;
9713 }
9714
9715 static void netdev_sync_lower_features(struct net_device *upper,
9716         struct net_device *lower, netdev_features_t features)
9717 {
9718         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9719         netdev_features_t feature;
9720         int feature_bit;
9721
9722         for_each_netdev_feature(upper_disables, feature_bit) {
9723                 feature = __NETIF_F_BIT(feature_bit);
9724                 if (!(features & feature) && (lower->features & feature)) {
9725                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9726                                    &feature, lower->name);
9727                         lower->wanted_features &= ~feature;
9728                         __netdev_update_features(lower);
9729
9730                         if (unlikely(lower->features & feature))
9731                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9732                                             &feature, lower->name);
9733                         else
9734                                 netdev_features_change(lower);
9735                 }
9736         }
9737 }
9738
9739 static netdev_features_t netdev_fix_features(struct net_device *dev,
9740         netdev_features_t features)
9741 {
9742         /* Fix illegal checksum combinations */
9743         if ((features & NETIF_F_HW_CSUM) &&
9744             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9745                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9746                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9747         }
9748
9749         /* TSO requires that SG is present as well. */
9750         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9751                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9752                 features &= ~NETIF_F_ALL_TSO;
9753         }
9754
9755         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9756                                         !(features & NETIF_F_IP_CSUM)) {
9757                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9758                 features &= ~NETIF_F_TSO;
9759                 features &= ~NETIF_F_TSO_ECN;
9760         }
9761
9762         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9763                                          !(features & NETIF_F_IPV6_CSUM)) {
9764                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9765                 features &= ~NETIF_F_TSO6;
9766         }
9767
9768         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9769         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9770                 features &= ~NETIF_F_TSO_MANGLEID;
9771
9772         /* TSO ECN requires that TSO is present as well. */
9773         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9774                 features &= ~NETIF_F_TSO_ECN;
9775
9776         /* Software GSO depends on SG. */
9777         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9778                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9779                 features &= ~NETIF_F_GSO;
9780         }
9781
9782         /* GSO partial features require GSO partial be set */
9783         if ((features & dev->gso_partial_features) &&
9784             !(features & NETIF_F_GSO_PARTIAL)) {
9785                 netdev_dbg(dev,
9786                            "Dropping partially supported GSO features since no GSO partial.\n");
9787                 features &= ~dev->gso_partial_features;
9788         }
9789
9790         if (!(features & NETIF_F_RXCSUM)) {
9791                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9792                  * successfully merged by hardware must also have the
9793                  * checksum verified by hardware.  If the user does not
9794                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9795                  */
9796                 if (features & NETIF_F_GRO_HW) {
9797                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9798                         features &= ~NETIF_F_GRO_HW;
9799                 }
9800         }
9801
9802         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9803         if (features & NETIF_F_RXFCS) {
9804                 if (features & NETIF_F_LRO) {
9805                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9806                         features &= ~NETIF_F_LRO;
9807                 }
9808
9809                 if (features & NETIF_F_GRO_HW) {
9810                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9811                         features &= ~NETIF_F_GRO_HW;
9812                 }
9813         }
9814
9815         if (features & NETIF_F_HW_TLS_TX) {
9816                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9817                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9818                 bool hw_csum = features & NETIF_F_HW_CSUM;
9819
9820                 if (!ip_csum && !hw_csum) {
9821                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9822                         features &= ~NETIF_F_HW_TLS_TX;
9823                 }
9824         }
9825
9826         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9827                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9828                 features &= ~NETIF_F_HW_TLS_RX;
9829         }
9830
9831         return features;
9832 }
9833
9834 int __netdev_update_features(struct net_device *dev)
9835 {
9836         struct net_device *upper, *lower;
9837         netdev_features_t features;
9838         struct list_head *iter;
9839         int err = -1;
9840
9841         ASSERT_RTNL();
9842
9843         features = netdev_get_wanted_features(dev);
9844
9845         if (dev->netdev_ops->ndo_fix_features)
9846                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9847
9848         /* driver might be less strict about feature dependencies */
9849         features = netdev_fix_features(dev, features);
9850
9851         /* some features can't be enabled if they're off on an upper device */
9852         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9853                 features = netdev_sync_upper_features(dev, upper, features);
9854
9855         if (dev->features == features)
9856                 goto sync_lower;
9857
9858         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9859                 &dev->features, &features);
9860
9861         if (dev->netdev_ops->ndo_set_features)
9862                 err = dev->netdev_ops->ndo_set_features(dev, features);
9863         else
9864                 err = 0;
9865
9866         if (unlikely(err < 0)) {
9867                 netdev_err(dev,
9868                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9869                         err, &features, &dev->features);
9870                 /* return non-0 since some features might have changed and
9871                  * it's better to fire a spurious notification than miss it
9872                  */
9873                 return -1;
9874         }
9875
9876 sync_lower:
9877         /* some features must be disabled on lower devices when disabled
9878          * on an upper device (think: bonding master or bridge)
9879          */
9880         netdev_for_each_lower_dev(dev, lower, iter)
9881                 netdev_sync_lower_features(dev, lower, features);
9882
9883         if (!err) {
9884                 netdev_features_t diff = features ^ dev->features;
9885
9886                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9887                         /* udp_tunnel_{get,drop}_rx_info both need
9888                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9889                          * device, or they won't do anything.
9890                          * Thus we need to update dev->features
9891                          * *before* calling udp_tunnel_get_rx_info,
9892                          * but *after* calling udp_tunnel_drop_rx_info.
9893                          */
9894                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9895                                 dev->features = features;
9896                                 udp_tunnel_get_rx_info(dev);
9897                         } else {
9898                                 udp_tunnel_drop_rx_info(dev);
9899                         }
9900                 }
9901
9902                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9903                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9904                                 dev->features = features;
9905                                 err |= vlan_get_rx_ctag_filter_info(dev);
9906                         } else {
9907                                 vlan_drop_rx_ctag_filter_info(dev);
9908                         }
9909                 }
9910
9911                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9912                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9913                                 dev->features = features;
9914                                 err |= vlan_get_rx_stag_filter_info(dev);
9915                         } else {
9916                                 vlan_drop_rx_stag_filter_info(dev);
9917                         }
9918                 }
9919
9920                 dev->features = features;
9921         }
9922
9923         return err < 0 ? 0 : 1;
9924 }
9925
9926 /**
9927  *      netdev_update_features - recalculate device features
9928  *      @dev: the device to check
9929  *
9930  *      Recalculate dev->features set and send notifications if it
9931  *      has changed. Should be called after driver or hardware dependent
9932  *      conditions might have changed that influence the features.
9933  */
9934 void netdev_update_features(struct net_device *dev)
9935 {
9936         if (__netdev_update_features(dev))
9937                 netdev_features_change(dev);
9938 }
9939 EXPORT_SYMBOL(netdev_update_features);
9940
9941 /**
9942  *      netdev_change_features - recalculate device features
9943  *      @dev: the device to check
9944  *
9945  *      Recalculate dev->features set and send notifications even
9946  *      if they have not changed. Should be called instead of
9947  *      netdev_update_features() if also dev->vlan_features might
9948  *      have changed to allow the changes to be propagated to stacked
9949  *      VLAN devices.
9950  */
9951 void netdev_change_features(struct net_device *dev)
9952 {
9953         __netdev_update_features(dev);
9954         netdev_features_change(dev);
9955 }
9956 EXPORT_SYMBOL(netdev_change_features);
9957
9958 /**
9959  *      netif_stacked_transfer_operstate -      transfer operstate
9960  *      @rootdev: the root or lower level device to transfer state from
9961  *      @dev: the device to transfer operstate to
9962  *
9963  *      Transfer operational state from root to device. This is normally
9964  *      called when a stacking relationship exists between the root
9965  *      device and the device(a leaf device).
9966  */
9967 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9968                                         struct net_device *dev)
9969 {
9970         if (rootdev->operstate == IF_OPER_DORMANT)
9971                 netif_dormant_on(dev);
9972         else
9973                 netif_dormant_off(dev);
9974
9975         if (rootdev->operstate == IF_OPER_TESTING)
9976                 netif_testing_on(dev);
9977         else
9978                 netif_testing_off(dev);
9979
9980         if (netif_carrier_ok(rootdev))
9981                 netif_carrier_on(dev);
9982         else
9983                 netif_carrier_off(dev);
9984 }
9985 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9986
9987 static int netif_alloc_rx_queues(struct net_device *dev)
9988 {
9989         unsigned int i, count = dev->num_rx_queues;
9990         struct netdev_rx_queue *rx;
9991         size_t sz = count * sizeof(*rx);
9992         int err = 0;
9993
9994         BUG_ON(count < 1);
9995
9996         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9997         if (!rx)
9998                 return -ENOMEM;
9999
10000         dev->_rx = rx;
10001
10002         for (i = 0; i < count; i++) {
10003                 rx[i].dev = dev;
10004
10005                 /* XDP RX-queue setup */
10006                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10007                 if (err < 0)
10008                         goto err_rxq_info;
10009         }
10010         return 0;
10011
10012 err_rxq_info:
10013         /* Rollback successful reg's and free other resources */
10014         while (i--)
10015                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10016         kvfree(dev->_rx);
10017         dev->_rx = NULL;
10018         return err;
10019 }
10020
10021 static void netif_free_rx_queues(struct net_device *dev)
10022 {
10023         unsigned int i, count = dev->num_rx_queues;
10024
10025         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10026         if (!dev->_rx)
10027                 return;
10028
10029         for (i = 0; i < count; i++)
10030                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10031
10032         kvfree(dev->_rx);
10033 }
10034
10035 static void netdev_init_one_queue(struct net_device *dev,
10036                                   struct netdev_queue *queue, void *_unused)
10037 {
10038         /* Initialize queue lock */
10039         spin_lock_init(&queue->_xmit_lock);
10040         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10041         queue->xmit_lock_owner = -1;
10042         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10043         queue->dev = dev;
10044 #ifdef CONFIG_BQL
10045         dql_init(&queue->dql, HZ);
10046 #endif
10047 }
10048
10049 static void netif_free_tx_queues(struct net_device *dev)
10050 {
10051         kvfree(dev->_tx);
10052 }
10053
10054 static int netif_alloc_netdev_queues(struct net_device *dev)
10055 {
10056         unsigned int count = dev->num_tx_queues;
10057         struct netdev_queue *tx;
10058         size_t sz = count * sizeof(*tx);
10059
10060         if (count < 1 || count > 0xffff)
10061                 return -EINVAL;
10062
10063         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10064         if (!tx)
10065                 return -ENOMEM;
10066
10067         dev->_tx = tx;
10068
10069         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10070         spin_lock_init(&dev->tx_global_lock);
10071
10072         return 0;
10073 }
10074
10075 void netif_tx_stop_all_queues(struct net_device *dev)
10076 {
10077         unsigned int i;
10078
10079         for (i = 0; i < dev->num_tx_queues; i++) {
10080                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10081
10082                 netif_tx_stop_queue(txq);
10083         }
10084 }
10085 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10086
10087 /**
10088  *      register_netdevice      - register a network device
10089  *      @dev: device to register
10090  *
10091  *      Take a completed network device structure and add it to the kernel
10092  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10093  *      chain. 0 is returned on success. A negative errno code is returned
10094  *      on a failure to set up the device, or if the name is a duplicate.
10095  *
10096  *      Callers must hold the rtnl semaphore. You may want
10097  *      register_netdev() instead of this.
10098  *
10099  *      BUGS:
10100  *      The locking appears insufficient to guarantee two parallel registers
10101  *      will not get the same name.
10102  */
10103
10104 int register_netdevice(struct net_device *dev)
10105 {
10106         int ret;
10107         struct net *net = dev_net(dev);
10108
10109         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10110                      NETDEV_FEATURE_COUNT);
10111         BUG_ON(dev_boot_phase);
10112         ASSERT_RTNL();
10113
10114         might_sleep();
10115
10116         /* When net_device's are persistent, this will be fatal. */
10117         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10118         BUG_ON(!net);
10119
10120         ret = ethtool_check_ops(dev->ethtool_ops);
10121         if (ret)
10122                 return ret;
10123
10124         spin_lock_init(&dev->addr_list_lock);
10125         netdev_set_addr_lockdep_class(dev);
10126
10127         ret = dev_get_valid_name(net, dev, dev->name);
10128         if (ret < 0)
10129                 goto out;
10130
10131         ret = -ENOMEM;
10132         dev->name_node = netdev_name_node_head_alloc(dev);
10133         if (!dev->name_node)
10134                 goto out;
10135
10136         /* Init, if this function is available */
10137         if (dev->netdev_ops->ndo_init) {
10138                 ret = dev->netdev_ops->ndo_init(dev);
10139                 if (ret) {
10140                         if (ret > 0)
10141                                 ret = -EIO;
10142                         goto err_free_name;
10143                 }
10144         }
10145
10146         if (((dev->hw_features | dev->features) &
10147              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10148             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10149              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10150                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10151                 ret = -EINVAL;
10152                 goto err_uninit;
10153         }
10154
10155         ret = -EBUSY;
10156         if (!dev->ifindex)
10157                 dev->ifindex = dev_new_index(net);
10158         else if (__dev_get_by_index(net, dev->ifindex))
10159                 goto err_uninit;
10160
10161         /* Transfer changeable features to wanted_features and enable
10162          * software offloads (GSO and GRO).
10163          */
10164         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10165         dev->features |= NETIF_F_SOFT_FEATURES;
10166
10167         if (dev->udp_tunnel_nic_info) {
10168                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10169                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10170         }
10171
10172         dev->wanted_features = dev->features & dev->hw_features;
10173
10174         if (!(dev->flags & IFF_LOOPBACK))
10175                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10176
10177         /* If IPv4 TCP segmentation offload is supported we should also
10178          * allow the device to enable segmenting the frame with the option
10179          * of ignoring a static IP ID value.  This doesn't enable the
10180          * feature itself but allows the user to enable it later.
10181          */
10182         if (dev->hw_features & NETIF_F_TSO)
10183                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10184         if (dev->vlan_features & NETIF_F_TSO)
10185                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10186         if (dev->mpls_features & NETIF_F_TSO)
10187                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10188         if (dev->hw_enc_features & NETIF_F_TSO)
10189                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10190
10191         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10192          */
10193         dev->vlan_features |= NETIF_F_HIGHDMA;
10194
10195         /* Make NETIF_F_SG inheritable to tunnel devices.
10196          */
10197         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10198
10199         /* Make NETIF_F_SG inheritable to MPLS.
10200          */
10201         dev->mpls_features |= NETIF_F_SG;
10202
10203         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10204         ret = notifier_to_errno(ret);
10205         if (ret)
10206                 goto err_uninit;
10207
10208         ret = netdev_register_kobject(dev);
10209         if (ret) {
10210                 dev->reg_state = NETREG_UNREGISTERED;
10211                 goto err_uninit;
10212         }
10213         dev->reg_state = NETREG_REGISTERED;
10214
10215         __netdev_update_features(dev);
10216
10217         /*
10218          *      Default initial state at registry is that the
10219          *      device is present.
10220          */
10221
10222         set_bit(__LINK_STATE_PRESENT, &dev->state);
10223
10224         linkwatch_init_dev(dev);
10225
10226         dev_init_scheduler(dev);
10227         dev_hold(dev);
10228         list_netdevice(dev);
10229         add_device_randomness(dev->dev_addr, dev->addr_len);
10230
10231         /* If the device has permanent device address, driver should
10232          * set dev_addr and also addr_assign_type should be set to
10233          * NET_ADDR_PERM (default value).
10234          */
10235         if (dev->addr_assign_type == NET_ADDR_PERM)
10236                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10237
10238         /* Notify protocols, that a new device appeared. */
10239         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10240         ret = notifier_to_errno(ret);
10241         if (ret) {
10242                 /* Expect explicit free_netdev() on failure */
10243                 dev->needs_free_netdev = false;
10244                 unregister_netdevice_queue(dev, NULL);
10245                 goto out;
10246         }
10247         /*
10248          *      Prevent userspace races by waiting until the network
10249          *      device is fully setup before sending notifications.
10250          */
10251         if (!dev->rtnl_link_ops ||
10252             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10253                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10254
10255 out:
10256         return ret;
10257
10258 err_uninit:
10259         if (dev->netdev_ops->ndo_uninit)
10260                 dev->netdev_ops->ndo_uninit(dev);
10261         if (dev->priv_destructor)
10262                 dev->priv_destructor(dev);
10263 err_free_name:
10264         netdev_name_node_free(dev->name_node);
10265         goto out;
10266 }
10267 EXPORT_SYMBOL(register_netdevice);
10268
10269 /**
10270  *      init_dummy_netdev       - init a dummy network device for NAPI
10271  *      @dev: device to init
10272  *
10273  *      This takes a network device structure and initialize the minimum
10274  *      amount of fields so it can be used to schedule NAPI polls without
10275  *      registering a full blown interface. This is to be used by drivers
10276  *      that need to tie several hardware interfaces to a single NAPI
10277  *      poll scheduler due to HW limitations.
10278  */
10279 int init_dummy_netdev(struct net_device *dev)
10280 {
10281         /* Clear everything. Note we don't initialize spinlocks
10282          * are they aren't supposed to be taken by any of the
10283          * NAPI code and this dummy netdev is supposed to be
10284          * only ever used for NAPI polls
10285          */
10286         memset(dev, 0, sizeof(struct net_device));
10287
10288         /* make sure we BUG if trying to hit standard
10289          * register/unregister code path
10290          */
10291         dev->reg_state = NETREG_DUMMY;
10292
10293         /* NAPI wants this */
10294         INIT_LIST_HEAD(&dev->napi_list);
10295
10296         /* a dummy interface is started by default */
10297         set_bit(__LINK_STATE_PRESENT, &dev->state);
10298         set_bit(__LINK_STATE_START, &dev->state);
10299
10300         /* napi_busy_loop stats accounting wants this */
10301         dev_net_set(dev, &init_net);
10302
10303         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10304          * because users of this 'device' dont need to change
10305          * its refcount.
10306          */
10307
10308         return 0;
10309 }
10310 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10311
10312
10313 /**
10314  *      register_netdev - register a network device
10315  *      @dev: device to register
10316  *
10317  *      Take a completed network device structure and add it to the kernel
10318  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10319  *      chain. 0 is returned on success. A negative errno code is returned
10320  *      on a failure to set up the device, or if the name is a duplicate.
10321  *
10322  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10323  *      and expands the device name if you passed a format string to
10324  *      alloc_netdev.
10325  */
10326 int register_netdev(struct net_device *dev)
10327 {
10328         int err;
10329
10330         if (rtnl_lock_killable())
10331                 return -EINTR;
10332         err = register_netdevice(dev);
10333         rtnl_unlock();
10334         return err;
10335 }
10336 EXPORT_SYMBOL(register_netdev);
10337
10338 int netdev_refcnt_read(const struct net_device *dev)
10339 {
10340         int i, refcnt = 0;
10341
10342         for_each_possible_cpu(i)
10343                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10344         return refcnt;
10345 }
10346 EXPORT_SYMBOL(netdev_refcnt_read);
10347
10348 #define WAIT_REFS_MIN_MSECS 1
10349 #define WAIT_REFS_MAX_MSECS 250
10350 /**
10351  * netdev_wait_allrefs - wait until all references are gone.
10352  * @dev: target net_device
10353  *
10354  * This is called when unregistering network devices.
10355  *
10356  * Any protocol or device that holds a reference should register
10357  * for netdevice notification, and cleanup and put back the
10358  * reference if they receive an UNREGISTER event.
10359  * We can get stuck here if buggy protocols don't correctly
10360  * call dev_put.
10361  */
10362 static void netdev_wait_allrefs(struct net_device *dev)
10363 {
10364         unsigned long rebroadcast_time, warning_time;
10365         int wait = 0, refcnt;
10366
10367         linkwatch_forget_dev(dev);
10368
10369         rebroadcast_time = warning_time = jiffies;
10370         refcnt = netdev_refcnt_read(dev);
10371
10372         while (refcnt != 0) {
10373                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10374                         rtnl_lock();
10375
10376                         /* Rebroadcast unregister notification */
10377                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10378
10379                         __rtnl_unlock();
10380                         rcu_barrier();
10381                         rtnl_lock();
10382
10383                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10384                                      &dev->state)) {
10385                                 /* We must not have linkwatch events
10386                                  * pending on unregister. If this
10387                                  * happens, we simply run the queue
10388                                  * unscheduled, resulting in a noop
10389                                  * for this device.
10390                                  */
10391                                 linkwatch_run_queue();
10392                         }
10393
10394                         __rtnl_unlock();
10395
10396                         rebroadcast_time = jiffies;
10397                 }
10398
10399                 if (!wait) {
10400                         rcu_barrier();
10401                         wait = WAIT_REFS_MIN_MSECS;
10402                 } else {
10403                         msleep(wait);
10404                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10405                 }
10406
10407                 refcnt = netdev_refcnt_read(dev);
10408
10409                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10410                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10411                                  dev->name, refcnt);
10412                         warning_time = jiffies;
10413                 }
10414         }
10415 }
10416
10417 /* The sequence is:
10418  *
10419  *      rtnl_lock();
10420  *      ...
10421  *      register_netdevice(x1);
10422  *      register_netdevice(x2);
10423  *      ...
10424  *      unregister_netdevice(y1);
10425  *      unregister_netdevice(y2);
10426  *      ...
10427  *      rtnl_unlock();
10428  *      free_netdev(y1);
10429  *      free_netdev(y2);
10430  *
10431  * We are invoked by rtnl_unlock().
10432  * This allows us to deal with problems:
10433  * 1) We can delete sysfs objects which invoke hotplug
10434  *    without deadlocking with linkwatch via keventd.
10435  * 2) Since we run with the RTNL semaphore not held, we can sleep
10436  *    safely in order to wait for the netdev refcnt to drop to zero.
10437  *
10438  * We must not return until all unregister events added during
10439  * the interval the lock was held have been completed.
10440  */
10441 void netdev_run_todo(void)
10442 {
10443         struct list_head list;
10444 #ifdef CONFIG_LOCKDEP
10445         struct list_head unlink_list;
10446
10447         list_replace_init(&net_unlink_list, &unlink_list);
10448
10449         while (!list_empty(&unlink_list)) {
10450                 struct net_device *dev = list_first_entry(&unlink_list,
10451                                                           struct net_device,
10452                                                           unlink_list);
10453                 list_del_init(&dev->unlink_list);
10454                 dev->nested_level = dev->lower_level - 1;
10455         }
10456 #endif
10457
10458         /* Snapshot list, allow later requests */
10459         list_replace_init(&net_todo_list, &list);
10460
10461         __rtnl_unlock();
10462
10463
10464         /* Wait for rcu callbacks to finish before next phase */
10465         if (!list_empty(&list))
10466                 rcu_barrier();
10467
10468         while (!list_empty(&list)) {
10469                 struct net_device *dev
10470                         = list_first_entry(&list, struct net_device, todo_list);
10471                 list_del(&dev->todo_list);
10472
10473                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10474                         pr_err("network todo '%s' but state %d\n",
10475                                dev->name, dev->reg_state);
10476                         dump_stack();
10477                         continue;
10478                 }
10479
10480                 dev->reg_state = NETREG_UNREGISTERED;
10481
10482                 netdev_wait_allrefs(dev);
10483
10484                 /* paranoia */
10485                 BUG_ON(netdev_refcnt_read(dev));
10486                 BUG_ON(!list_empty(&dev->ptype_all));
10487                 BUG_ON(!list_empty(&dev->ptype_specific));
10488                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10489                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10490 #if IS_ENABLED(CONFIG_DECNET)
10491                 WARN_ON(dev->dn_ptr);
10492 #endif
10493                 if (dev->priv_destructor)
10494                         dev->priv_destructor(dev);
10495                 if (dev->needs_free_netdev)
10496                         free_netdev(dev);
10497
10498                 /* Report a network device has been unregistered */
10499                 rtnl_lock();
10500                 dev_net(dev)->dev_unreg_count--;
10501                 __rtnl_unlock();
10502                 wake_up(&netdev_unregistering_wq);
10503
10504                 /* Free network device */
10505                 kobject_put(&dev->dev.kobj);
10506         }
10507 }
10508
10509 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10510  * all the same fields in the same order as net_device_stats, with only
10511  * the type differing, but rtnl_link_stats64 may have additional fields
10512  * at the end for newer counters.
10513  */
10514 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10515                              const struct net_device_stats *netdev_stats)
10516 {
10517 #if BITS_PER_LONG == 64
10518         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10519         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10520         /* zero out counters that only exist in rtnl_link_stats64 */
10521         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10522                sizeof(*stats64) - sizeof(*netdev_stats));
10523 #else
10524         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10525         const unsigned long *src = (const unsigned long *)netdev_stats;
10526         u64 *dst = (u64 *)stats64;
10527
10528         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10529         for (i = 0; i < n; i++)
10530                 dst[i] = src[i];
10531         /* zero out counters that only exist in rtnl_link_stats64 */
10532         memset((char *)stats64 + n * sizeof(u64), 0,
10533                sizeof(*stats64) - n * sizeof(u64));
10534 #endif
10535 }
10536 EXPORT_SYMBOL(netdev_stats_to_stats64);
10537
10538 /**
10539  *      dev_get_stats   - get network device statistics
10540  *      @dev: device to get statistics from
10541  *      @storage: place to store stats
10542  *
10543  *      Get network statistics from device. Return @storage.
10544  *      The device driver may provide its own method by setting
10545  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10546  *      otherwise the internal statistics structure is used.
10547  */
10548 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10549                                         struct rtnl_link_stats64 *storage)
10550 {
10551         const struct net_device_ops *ops = dev->netdev_ops;
10552
10553         if (ops->ndo_get_stats64) {
10554                 memset(storage, 0, sizeof(*storage));
10555                 ops->ndo_get_stats64(dev, storage);
10556         } else if (ops->ndo_get_stats) {
10557                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10558         } else {
10559                 netdev_stats_to_stats64(storage, &dev->stats);
10560         }
10561         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10562         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10563         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10564         return storage;
10565 }
10566 EXPORT_SYMBOL(dev_get_stats);
10567
10568 /**
10569  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10570  *      @s: place to store stats
10571  *      @netstats: per-cpu network stats to read from
10572  *
10573  *      Read per-cpu network statistics and populate the related fields in @s.
10574  */
10575 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10576                            const struct pcpu_sw_netstats __percpu *netstats)
10577 {
10578         int cpu;
10579
10580         for_each_possible_cpu(cpu) {
10581                 const struct pcpu_sw_netstats *stats;
10582                 struct pcpu_sw_netstats tmp;
10583                 unsigned int start;
10584
10585                 stats = per_cpu_ptr(netstats, cpu);
10586                 do {
10587                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10588                         tmp.rx_packets = stats->rx_packets;
10589                         tmp.rx_bytes   = stats->rx_bytes;
10590                         tmp.tx_packets = stats->tx_packets;
10591                         tmp.tx_bytes   = stats->tx_bytes;
10592                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10593
10594                 s->rx_packets += tmp.rx_packets;
10595                 s->rx_bytes   += tmp.rx_bytes;
10596                 s->tx_packets += tmp.tx_packets;
10597                 s->tx_bytes   += tmp.tx_bytes;
10598         }
10599 }
10600 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10601
10602 /**
10603  *      dev_get_tstats64 - ndo_get_stats64 implementation
10604  *      @dev: device to get statistics from
10605  *      @s: place to store stats
10606  *
10607  *      Populate @s from dev->stats and dev->tstats. Can be used as
10608  *      ndo_get_stats64() callback.
10609  */
10610 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10611 {
10612         netdev_stats_to_stats64(s, &dev->stats);
10613         dev_fetch_sw_netstats(s, dev->tstats);
10614 }
10615 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10616
10617 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10618 {
10619         struct netdev_queue *queue = dev_ingress_queue(dev);
10620
10621 #ifdef CONFIG_NET_CLS_ACT
10622         if (queue)
10623                 return queue;
10624         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10625         if (!queue)
10626                 return NULL;
10627         netdev_init_one_queue(dev, queue, NULL);
10628         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10629         queue->qdisc_sleeping = &noop_qdisc;
10630         rcu_assign_pointer(dev->ingress_queue, queue);
10631 #endif
10632         return queue;
10633 }
10634
10635 static const struct ethtool_ops default_ethtool_ops;
10636
10637 void netdev_set_default_ethtool_ops(struct net_device *dev,
10638                                     const struct ethtool_ops *ops)
10639 {
10640         if (dev->ethtool_ops == &default_ethtool_ops)
10641                 dev->ethtool_ops = ops;
10642 }
10643 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10644
10645 void netdev_freemem(struct net_device *dev)
10646 {
10647         char *addr = (char *)dev - dev->padded;
10648
10649         kvfree(addr);
10650 }
10651
10652 /**
10653  * alloc_netdev_mqs - allocate network device
10654  * @sizeof_priv: size of private data to allocate space for
10655  * @name: device name format string
10656  * @name_assign_type: origin of device name
10657  * @setup: callback to initialize device
10658  * @txqs: the number of TX subqueues to allocate
10659  * @rxqs: the number of RX subqueues to allocate
10660  *
10661  * Allocates a struct net_device with private data area for driver use
10662  * and performs basic initialization.  Also allocates subqueue structs
10663  * for each queue on the device.
10664  */
10665 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10666                 unsigned char name_assign_type,
10667                 void (*setup)(struct net_device *),
10668                 unsigned int txqs, unsigned int rxqs)
10669 {
10670         struct net_device *dev;
10671         unsigned int alloc_size;
10672         struct net_device *p;
10673
10674         BUG_ON(strlen(name) >= sizeof(dev->name));
10675
10676         if (txqs < 1) {
10677                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10678                 return NULL;
10679         }
10680
10681         if (rxqs < 1) {
10682                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10683                 return NULL;
10684         }
10685
10686         alloc_size = sizeof(struct net_device);
10687         if (sizeof_priv) {
10688                 /* ensure 32-byte alignment of private area */
10689                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10690                 alloc_size += sizeof_priv;
10691         }
10692         /* ensure 32-byte alignment of whole construct */
10693         alloc_size += NETDEV_ALIGN - 1;
10694
10695         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10696         if (!p)
10697                 return NULL;
10698
10699         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10700         dev->padded = (char *)dev - (char *)p;
10701
10702         dev->pcpu_refcnt = alloc_percpu(int);
10703         if (!dev->pcpu_refcnt)
10704                 goto free_dev;
10705
10706         if (dev_addr_init(dev))
10707                 goto free_pcpu;
10708
10709         dev_mc_init(dev);
10710         dev_uc_init(dev);
10711
10712         dev_net_set(dev, &init_net);
10713
10714         dev->gso_max_size = GSO_MAX_SIZE;
10715         dev->gso_max_segs = GSO_MAX_SEGS;
10716         dev->upper_level = 1;
10717         dev->lower_level = 1;
10718 #ifdef CONFIG_LOCKDEP
10719         dev->nested_level = 0;
10720         INIT_LIST_HEAD(&dev->unlink_list);
10721 #endif
10722
10723         INIT_LIST_HEAD(&dev->napi_list);
10724         INIT_LIST_HEAD(&dev->unreg_list);
10725         INIT_LIST_HEAD(&dev->close_list);
10726         INIT_LIST_HEAD(&dev->link_watch_list);
10727         INIT_LIST_HEAD(&dev->adj_list.upper);
10728         INIT_LIST_HEAD(&dev->adj_list.lower);
10729         INIT_LIST_HEAD(&dev->ptype_all);
10730         INIT_LIST_HEAD(&dev->ptype_specific);
10731         INIT_LIST_HEAD(&dev->net_notifier_list);
10732 #ifdef CONFIG_NET_SCHED
10733         hash_init(dev->qdisc_hash);
10734 #endif
10735         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10736         setup(dev);
10737
10738         if (!dev->tx_queue_len) {
10739                 dev->priv_flags |= IFF_NO_QUEUE;
10740                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10741         }
10742
10743         dev->num_tx_queues = txqs;
10744         dev->real_num_tx_queues = txqs;
10745         if (netif_alloc_netdev_queues(dev))
10746                 goto free_all;
10747
10748         dev->num_rx_queues = rxqs;
10749         dev->real_num_rx_queues = rxqs;
10750         if (netif_alloc_rx_queues(dev))
10751                 goto free_all;
10752
10753         strcpy(dev->name, name);
10754         dev->name_assign_type = name_assign_type;
10755         dev->group = INIT_NETDEV_GROUP;
10756         if (!dev->ethtool_ops)
10757                 dev->ethtool_ops = &default_ethtool_ops;
10758
10759         nf_hook_ingress_init(dev);
10760
10761         return dev;
10762
10763 free_all:
10764         free_netdev(dev);
10765         return NULL;
10766
10767 free_pcpu:
10768         free_percpu(dev->pcpu_refcnt);
10769 free_dev:
10770         netdev_freemem(dev);
10771         return NULL;
10772 }
10773 EXPORT_SYMBOL(alloc_netdev_mqs);
10774
10775 /**
10776  * free_netdev - free network device
10777  * @dev: device
10778  *
10779  * This function does the last stage of destroying an allocated device
10780  * interface. The reference to the device object is released. If this
10781  * is the last reference then it will be freed.Must be called in process
10782  * context.
10783  */
10784 void free_netdev(struct net_device *dev)
10785 {
10786         struct napi_struct *p, *n;
10787
10788         might_sleep();
10789
10790         /* When called immediately after register_netdevice() failed the unwind
10791          * handling may still be dismantling the device. Handle that case by
10792          * deferring the free.
10793          */
10794         if (dev->reg_state == NETREG_UNREGISTERING) {
10795                 ASSERT_RTNL();
10796                 dev->needs_free_netdev = true;
10797                 return;
10798         }
10799
10800         netif_free_tx_queues(dev);
10801         netif_free_rx_queues(dev);
10802
10803         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10804
10805         /* Flush device addresses */
10806         dev_addr_flush(dev);
10807
10808         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10809                 netif_napi_del(p);
10810
10811         free_percpu(dev->pcpu_refcnt);
10812         dev->pcpu_refcnt = NULL;
10813         free_percpu(dev->xdp_bulkq);
10814         dev->xdp_bulkq = NULL;
10815
10816         /*  Compatibility with error handling in drivers */
10817         if (dev->reg_state == NETREG_UNINITIALIZED) {
10818                 netdev_freemem(dev);
10819                 return;
10820         }
10821
10822         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10823         dev->reg_state = NETREG_RELEASED;
10824
10825         /* will free via device release */
10826         put_device(&dev->dev);
10827 }
10828 EXPORT_SYMBOL(free_netdev);
10829
10830 /**
10831  *      synchronize_net -  Synchronize with packet receive processing
10832  *
10833  *      Wait for packets currently being received to be done.
10834  *      Does not block later packets from starting.
10835  */
10836 void synchronize_net(void)
10837 {
10838         might_sleep();
10839         if (rtnl_is_locked())
10840                 synchronize_rcu_expedited();
10841         else
10842                 synchronize_rcu();
10843 }
10844 EXPORT_SYMBOL(synchronize_net);
10845
10846 /**
10847  *      unregister_netdevice_queue - remove device from the kernel
10848  *      @dev: device
10849  *      @head: list
10850  *
10851  *      This function shuts down a device interface and removes it
10852  *      from the kernel tables.
10853  *      If head not NULL, device is queued to be unregistered later.
10854  *
10855  *      Callers must hold the rtnl semaphore.  You may want
10856  *      unregister_netdev() instead of this.
10857  */
10858
10859 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10860 {
10861         ASSERT_RTNL();
10862
10863         if (head) {
10864                 list_move_tail(&dev->unreg_list, head);
10865         } else {
10866                 LIST_HEAD(single);
10867
10868                 list_add(&dev->unreg_list, &single);
10869                 unregister_netdevice_many(&single);
10870         }
10871 }
10872 EXPORT_SYMBOL(unregister_netdevice_queue);
10873
10874 /**
10875  *      unregister_netdevice_many - unregister many devices
10876  *      @head: list of devices
10877  *
10878  *  Note: As most callers use a stack allocated list_head,
10879  *  we force a list_del() to make sure stack wont be corrupted later.
10880  */
10881 void unregister_netdevice_many(struct list_head *head)
10882 {
10883         struct net_device *dev, *tmp;
10884         LIST_HEAD(close_head);
10885
10886         BUG_ON(dev_boot_phase);
10887         ASSERT_RTNL();
10888
10889         if (list_empty(head))
10890                 return;
10891
10892         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10893                 /* Some devices call without registering
10894                  * for initialization unwind. Remove those
10895                  * devices and proceed with the remaining.
10896                  */
10897                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10898                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10899                                  dev->name, dev);
10900
10901                         WARN_ON(1);
10902                         list_del(&dev->unreg_list);
10903                         continue;
10904                 }
10905                 dev->dismantle = true;
10906                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10907         }
10908
10909         /* If device is running, close it first. */
10910         list_for_each_entry(dev, head, unreg_list)
10911                 list_add_tail(&dev->close_list, &close_head);
10912         dev_close_many(&close_head, true);
10913
10914         list_for_each_entry(dev, head, unreg_list) {
10915                 /* And unlink it from device chain. */
10916                 unlist_netdevice(dev);
10917
10918                 dev->reg_state = NETREG_UNREGISTERING;
10919         }
10920         flush_all_backlogs();
10921
10922         synchronize_net();
10923
10924         list_for_each_entry(dev, head, unreg_list) {
10925                 struct sk_buff *skb = NULL;
10926
10927                 /* Shutdown queueing discipline. */
10928                 dev_shutdown(dev);
10929
10930                 dev_xdp_uninstall(dev);
10931
10932                 /* Notify protocols, that we are about to destroy
10933                  * this device. They should clean all the things.
10934                  */
10935                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10936
10937                 if (!dev->rtnl_link_ops ||
10938                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10939                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10940                                                      GFP_KERNEL, NULL, 0);
10941
10942                 /*
10943                  *      Flush the unicast and multicast chains
10944                  */
10945                 dev_uc_flush(dev);
10946                 dev_mc_flush(dev);
10947
10948                 netdev_name_node_alt_flush(dev);
10949                 netdev_name_node_free(dev->name_node);
10950
10951                 if (dev->netdev_ops->ndo_uninit)
10952                         dev->netdev_ops->ndo_uninit(dev);
10953
10954                 if (skb)
10955                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10956
10957                 /* Notifier chain MUST detach us all upper devices. */
10958                 WARN_ON(netdev_has_any_upper_dev(dev));
10959                 WARN_ON(netdev_has_any_lower_dev(dev));
10960
10961                 /* Remove entries from kobject tree */
10962                 netdev_unregister_kobject(dev);
10963 #ifdef CONFIG_XPS
10964                 /* Remove XPS queueing entries */
10965                 netif_reset_xps_queues_gt(dev, 0);
10966 #endif
10967         }
10968
10969         synchronize_net();
10970
10971         list_for_each_entry(dev, head, unreg_list) {
10972                 dev_put(dev);
10973                 net_set_todo(dev);
10974         }
10975
10976         list_del(head);
10977 }
10978 EXPORT_SYMBOL(unregister_netdevice_many);
10979
10980 /**
10981  *      unregister_netdev - remove device from the kernel
10982  *      @dev: device
10983  *
10984  *      This function shuts down a device interface and removes it
10985  *      from the kernel tables.
10986  *
10987  *      This is just a wrapper for unregister_netdevice that takes
10988  *      the rtnl semaphore.  In general you want to use this and not
10989  *      unregister_netdevice.
10990  */
10991 void unregister_netdev(struct net_device *dev)
10992 {
10993         rtnl_lock();
10994         unregister_netdevice(dev);
10995         rtnl_unlock();
10996 }
10997 EXPORT_SYMBOL(unregister_netdev);
10998
10999 /**
11000  *      dev_change_net_namespace - move device to different nethost namespace
11001  *      @dev: device
11002  *      @net: network namespace
11003  *      @pat: If not NULL name pattern to try if the current device name
11004  *            is already taken in the destination network namespace.
11005  *
11006  *      This function shuts down a device interface and moves it
11007  *      to a new network namespace. On success 0 is returned, on
11008  *      a failure a netagive errno code is returned.
11009  *
11010  *      Callers must hold the rtnl semaphore.
11011  */
11012
11013 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11014 {
11015         struct net *net_old = dev_net(dev);
11016         int err, new_nsid, new_ifindex;
11017
11018         ASSERT_RTNL();
11019
11020         /* Don't allow namespace local devices to be moved. */
11021         err = -EINVAL;
11022         if (dev->features & NETIF_F_NETNS_LOCAL)
11023                 goto out;
11024
11025         /* Ensure the device has been registrered */
11026         if (dev->reg_state != NETREG_REGISTERED)
11027                 goto out;
11028
11029         /* Get out if there is nothing todo */
11030         err = 0;
11031         if (net_eq(net_old, net))
11032                 goto out;
11033
11034         /* Pick the destination device name, and ensure
11035          * we can use it in the destination network namespace.
11036          */
11037         err = -EEXIST;
11038         if (__dev_get_by_name(net, dev->name)) {
11039                 /* We get here if we can't use the current device name */
11040                 if (!pat)
11041                         goto out;
11042                 err = dev_get_valid_name(net, dev, pat);
11043                 if (err < 0)
11044                         goto out;
11045         }
11046
11047         /*
11048          * And now a mini version of register_netdevice unregister_netdevice.
11049          */
11050
11051         /* If device is running close it first. */
11052         dev_close(dev);
11053
11054         /* And unlink it from device chain */
11055         unlist_netdevice(dev);
11056
11057         synchronize_net();
11058
11059         /* Shutdown queueing discipline. */
11060         dev_shutdown(dev);
11061
11062         /* Notify protocols, that we are about to destroy
11063          * this device. They should clean all the things.
11064          *
11065          * Note that dev->reg_state stays at NETREG_REGISTERED.
11066          * This is wanted because this way 8021q and macvlan know
11067          * the device is just moving and can keep their slaves up.
11068          */
11069         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11070         rcu_barrier();
11071
11072         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11073         /* If there is an ifindex conflict assign a new one */
11074         if (__dev_get_by_index(net, dev->ifindex))
11075                 new_ifindex = dev_new_index(net);
11076         else
11077                 new_ifindex = dev->ifindex;
11078
11079         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11080                             new_ifindex);
11081
11082         /*
11083          *      Flush the unicast and multicast chains
11084          */
11085         dev_uc_flush(dev);
11086         dev_mc_flush(dev);
11087
11088         /* Send a netdev-removed uevent to the old namespace */
11089         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11090         netdev_adjacent_del_links(dev);
11091
11092         /* Move per-net netdevice notifiers that are following the netdevice */
11093         move_netdevice_notifiers_dev_net(dev, net);
11094
11095         /* Actually switch the network namespace */
11096         dev_net_set(dev, net);
11097         dev->ifindex = new_ifindex;
11098
11099         /* Send a netdev-add uevent to the new namespace */
11100         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11101         netdev_adjacent_add_links(dev);
11102
11103         /* Fixup kobjects */
11104         err = device_rename(&dev->dev, dev->name);
11105         WARN_ON(err);
11106
11107         /* Adapt owner in case owning user namespace of target network
11108          * namespace is different from the original one.
11109          */
11110         err = netdev_change_owner(dev, net_old, net);
11111         WARN_ON(err);
11112
11113         /* Add the device back in the hashes */
11114         list_netdevice(dev);
11115
11116         /* Notify protocols, that a new device appeared. */
11117         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11118
11119         /*
11120          *      Prevent userspace races by waiting until the network
11121          *      device is fully setup before sending notifications.
11122          */
11123         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11124
11125         synchronize_net();
11126         err = 0;
11127 out:
11128         return err;
11129 }
11130 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11131
11132 static int dev_cpu_dead(unsigned int oldcpu)
11133 {
11134         struct sk_buff **list_skb;
11135         struct sk_buff *skb;
11136         unsigned int cpu;
11137         struct softnet_data *sd, *oldsd, *remsd = NULL;
11138
11139         local_irq_disable();
11140         cpu = smp_processor_id();
11141         sd = &per_cpu(softnet_data, cpu);
11142         oldsd = &per_cpu(softnet_data, oldcpu);
11143
11144         /* Find end of our completion_queue. */
11145         list_skb = &sd->completion_queue;
11146         while (*list_skb)
11147                 list_skb = &(*list_skb)->next;
11148         /* Append completion queue from offline CPU. */
11149         *list_skb = oldsd->completion_queue;
11150         oldsd->completion_queue = NULL;
11151
11152         /* Append output queue from offline CPU. */
11153         if (oldsd->output_queue) {
11154                 *sd->output_queue_tailp = oldsd->output_queue;
11155                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11156                 oldsd->output_queue = NULL;
11157                 oldsd->output_queue_tailp = &oldsd->output_queue;
11158         }
11159         /* Append NAPI poll list from offline CPU, with one exception :
11160          * process_backlog() must be called by cpu owning percpu backlog.
11161          * We properly handle process_queue & input_pkt_queue later.
11162          */
11163         while (!list_empty(&oldsd->poll_list)) {
11164                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11165                                                             struct napi_struct,
11166                                                             poll_list);
11167
11168                 list_del_init(&napi->poll_list);
11169                 if (napi->poll == process_backlog)
11170                         napi->state = 0;
11171                 else
11172                         ____napi_schedule(sd, napi);
11173         }
11174
11175         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11176         local_irq_enable();
11177
11178 #ifdef CONFIG_RPS
11179         remsd = oldsd->rps_ipi_list;
11180         oldsd->rps_ipi_list = NULL;
11181 #endif
11182         /* send out pending IPI's on offline CPU */
11183         net_rps_send_ipi(remsd);
11184
11185         /* Process offline CPU's input_pkt_queue */
11186         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11187                 netif_rx_ni(skb);
11188                 input_queue_head_incr(oldsd);
11189         }
11190         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11191                 netif_rx_ni(skb);
11192                 input_queue_head_incr(oldsd);
11193         }
11194
11195         return 0;
11196 }
11197
11198 /**
11199  *      netdev_increment_features - increment feature set by one
11200  *      @all: current feature set
11201  *      @one: new feature set
11202  *      @mask: mask feature set
11203  *
11204  *      Computes a new feature set after adding a device with feature set
11205  *      @one to the master device with current feature set @all.  Will not
11206  *      enable anything that is off in @mask. Returns the new feature set.
11207  */
11208 netdev_features_t netdev_increment_features(netdev_features_t all,
11209         netdev_features_t one, netdev_features_t mask)
11210 {
11211         if (mask & NETIF_F_HW_CSUM)
11212                 mask |= NETIF_F_CSUM_MASK;
11213         mask |= NETIF_F_VLAN_CHALLENGED;
11214
11215         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11216         all &= one | ~NETIF_F_ALL_FOR_ALL;
11217
11218         /* If one device supports hw checksumming, set for all. */
11219         if (all & NETIF_F_HW_CSUM)
11220                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11221
11222         return all;
11223 }
11224 EXPORT_SYMBOL(netdev_increment_features);
11225
11226 static struct hlist_head * __net_init netdev_create_hash(void)
11227 {
11228         int i;
11229         struct hlist_head *hash;
11230
11231         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11232         if (hash != NULL)
11233                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11234                         INIT_HLIST_HEAD(&hash[i]);
11235
11236         return hash;
11237 }
11238
11239 /* Initialize per network namespace state */
11240 static int __net_init netdev_init(struct net *net)
11241 {
11242         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11243                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11244
11245         if (net != &init_net)
11246                 INIT_LIST_HEAD(&net->dev_base_head);
11247
11248         net->dev_name_head = netdev_create_hash();
11249         if (net->dev_name_head == NULL)
11250                 goto err_name;
11251
11252         net->dev_index_head = netdev_create_hash();
11253         if (net->dev_index_head == NULL)
11254                 goto err_idx;
11255
11256         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11257
11258         return 0;
11259
11260 err_idx:
11261         kfree(net->dev_name_head);
11262 err_name:
11263         return -ENOMEM;
11264 }
11265
11266 /**
11267  *      netdev_drivername - network driver for the device
11268  *      @dev: network device
11269  *
11270  *      Determine network driver for device.
11271  */
11272 const char *netdev_drivername(const struct net_device *dev)
11273 {
11274         const struct device_driver *driver;
11275         const struct device *parent;
11276         const char *empty = "";
11277
11278         parent = dev->dev.parent;
11279         if (!parent)
11280                 return empty;
11281
11282         driver = parent->driver;
11283         if (driver && driver->name)
11284                 return driver->name;
11285         return empty;
11286 }
11287
11288 static void __netdev_printk(const char *level, const struct net_device *dev,
11289                             struct va_format *vaf)
11290 {
11291         if (dev && dev->dev.parent) {
11292                 dev_printk_emit(level[1] - '0',
11293                                 dev->dev.parent,
11294                                 "%s %s %s%s: %pV",
11295                                 dev_driver_string(dev->dev.parent),
11296                                 dev_name(dev->dev.parent),
11297                                 netdev_name(dev), netdev_reg_state(dev),
11298                                 vaf);
11299         } else if (dev) {
11300                 printk("%s%s%s: %pV",
11301                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11302         } else {
11303                 printk("%s(NULL net_device): %pV", level, vaf);
11304         }
11305 }
11306
11307 void netdev_printk(const char *level, const struct net_device *dev,
11308                    const char *format, ...)
11309 {
11310         struct va_format vaf;
11311         va_list args;
11312
11313         va_start(args, format);
11314
11315         vaf.fmt = format;
11316         vaf.va = &args;
11317
11318         __netdev_printk(level, dev, &vaf);
11319
11320         va_end(args);
11321 }
11322 EXPORT_SYMBOL(netdev_printk);
11323
11324 #define define_netdev_printk_level(func, level)                 \
11325 void func(const struct net_device *dev, const char *fmt, ...)   \
11326 {                                                               \
11327         struct va_format vaf;                                   \
11328         va_list args;                                           \
11329                                                                 \
11330         va_start(args, fmt);                                    \
11331                                                                 \
11332         vaf.fmt = fmt;                                          \
11333         vaf.va = &args;                                         \
11334                                                                 \
11335         __netdev_printk(level, dev, &vaf);                      \
11336                                                                 \
11337         va_end(args);                                           \
11338 }                                                               \
11339 EXPORT_SYMBOL(func);
11340
11341 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11342 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11343 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11344 define_netdev_printk_level(netdev_err, KERN_ERR);
11345 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11346 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11347 define_netdev_printk_level(netdev_info, KERN_INFO);
11348
11349 static void __net_exit netdev_exit(struct net *net)
11350 {
11351         kfree(net->dev_name_head);
11352         kfree(net->dev_index_head);
11353         if (net != &init_net)
11354                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11355 }
11356
11357 static struct pernet_operations __net_initdata netdev_net_ops = {
11358         .init = netdev_init,
11359         .exit = netdev_exit,
11360 };
11361
11362 static void __net_exit default_device_exit(struct net *net)
11363 {
11364         struct net_device *dev, *aux;
11365         /*
11366          * Push all migratable network devices back to the
11367          * initial network namespace
11368          */
11369         rtnl_lock();
11370         for_each_netdev_safe(net, dev, aux) {
11371                 int err;
11372                 char fb_name[IFNAMSIZ];
11373
11374                 /* Ignore unmoveable devices (i.e. loopback) */
11375                 if (dev->features & NETIF_F_NETNS_LOCAL)
11376                         continue;
11377
11378                 /* Leave virtual devices for the generic cleanup */
11379                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11380                         continue;
11381
11382                 /* Push remaining network devices to init_net */
11383                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11384                 if (__dev_get_by_name(&init_net, fb_name))
11385                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11386                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11387                 if (err) {
11388                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11389                                  __func__, dev->name, err);
11390                         BUG();
11391                 }
11392         }
11393         rtnl_unlock();
11394 }
11395
11396 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11397 {
11398         /* Return with the rtnl_lock held when there are no network
11399          * devices unregistering in any network namespace in net_list.
11400          */
11401         struct net *net;
11402         bool unregistering;
11403         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11404
11405         add_wait_queue(&netdev_unregistering_wq, &wait);
11406         for (;;) {
11407                 unregistering = false;
11408                 rtnl_lock();
11409                 list_for_each_entry(net, net_list, exit_list) {
11410                         if (net->dev_unreg_count > 0) {
11411                                 unregistering = true;
11412                                 break;
11413                         }
11414                 }
11415                 if (!unregistering)
11416                         break;
11417                 __rtnl_unlock();
11418
11419                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11420         }
11421         remove_wait_queue(&netdev_unregistering_wq, &wait);
11422 }
11423
11424 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11425 {
11426         /* At exit all network devices most be removed from a network
11427          * namespace.  Do this in the reverse order of registration.
11428          * Do this across as many network namespaces as possible to
11429          * improve batching efficiency.
11430          */
11431         struct net_device *dev;
11432         struct net *net;
11433         LIST_HEAD(dev_kill_list);
11434
11435         /* To prevent network device cleanup code from dereferencing
11436          * loopback devices or network devices that have been freed
11437          * wait here for all pending unregistrations to complete,
11438          * before unregistring the loopback device and allowing the
11439          * network namespace be freed.
11440          *
11441          * The netdev todo list containing all network devices
11442          * unregistrations that happen in default_device_exit_batch
11443          * will run in the rtnl_unlock() at the end of
11444          * default_device_exit_batch.
11445          */
11446         rtnl_lock_unregistering(net_list);
11447         list_for_each_entry(net, net_list, exit_list) {
11448                 for_each_netdev_reverse(net, dev) {
11449                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11450                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11451                         else
11452                                 unregister_netdevice_queue(dev, &dev_kill_list);
11453                 }
11454         }
11455         unregister_netdevice_many(&dev_kill_list);
11456         rtnl_unlock();
11457 }
11458
11459 static struct pernet_operations __net_initdata default_device_ops = {
11460         .exit = default_device_exit,
11461         .exit_batch = default_device_exit_batch,
11462 };
11463
11464 /*
11465  *      Initialize the DEV module. At boot time this walks the device list and
11466  *      unhooks any devices that fail to initialise (normally hardware not
11467  *      present) and leaves us with a valid list of present and active devices.
11468  *
11469  */
11470
11471 /*
11472  *       This is called single threaded during boot, so no need
11473  *       to take the rtnl semaphore.
11474  */
11475 static int __init net_dev_init(void)
11476 {
11477         int i, rc = -ENOMEM;
11478
11479         BUG_ON(!dev_boot_phase);
11480
11481         if (dev_proc_init())
11482                 goto out;
11483
11484         if (netdev_kobject_init())
11485                 goto out;
11486
11487         INIT_LIST_HEAD(&ptype_all);
11488         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11489                 INIT_LIST_HEAD(&ptype_base[i]);
11490
11491         INIT_LIST_HEAD(&offload_base);
11492
11493         if (register_pernet_subsys(&netdev_net_ops))
11494                 goto out;
11495
11496         /*
11497          *      Initialise the packet receive queues.
11498          */
11499
11500         for_each_possible_cpu(i) {
11501                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11502                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11503
11504                 INIT_WORK(flush, flush_backlog);
11505
11506                 skb_queue_head_init(&sd->input_pkt_queue);
11507                 skb_queue_head_init(&sd->process_queue);
11508 #ifdef CONFIG_XFRM_OFFLOAD
11509                 skb_queue_head_init(&sd->xfrm_backlog);
11510 #endif
11511                 INIT_LIST_HEAD(&sd->poll_list);
11512                 sd->output_queue_tailp = &sd->output_queue;
11513 #ifdef CONFIG_RPS
11514                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11515                 sd->cpu = i;
11516 #endif
11517
11518                 init_gro_hash(&sd->backlog);
11519                 sd->backlog.poll = process_backlog;
11520                 sd->backlog.weight = weight_p;
11521         }
11522
11523         dev_boot_phase = 0;
11524
11525         /* The loopback device is special if any other network devices
11526          * is present in a network namespace the loopback device must
11527          * be present. Since we now dynamically allocate and free the
11528          * loopback device ensure this invariant is maintained by
11529          * keeping the loopback device as the first device on the
11530          * list of network devices.  Ensuring the loopback devices
11531          * is the first device that appears and the last network device
11532          * that disappears.
11533          */
11534         if (register_pernet_device(&loopback_net_ops))
11535                 goto out;
11536
11537         if (register_pernet_device(&default_device_ops))
11538                 goto out;
11539
11540         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11541         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11542
11543         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11544                                        NULL, dev_cpu_dead);
11545         WARN_ON(rc < 0);
11546         rc = 0;
11547 out:
11548         return rc;
11549 }
11550
11551 subsys_initcall(net_dev_init);