Merge tag 'audit-pr-20180605' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val)                                          \
1577         case NETDEV_##val:                              \
1578                 return "NETDEV_" __stringify(val);
1579         switch (cmd) {
1580         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589         };
1590 #undef N
1591         return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                    struct net_device *dev)
1597 {
1598         struct netdev_notifier_info info = {
1599                 .dev = dev,
1600         };
1601
1602         return nb->notifier_call(nb, val, &info);
1603 }
1604
1605 static int dev_boot_phase = 1;
1606
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623         struct net_device *dev;
1624         struct net_device *last;
1625         struct net *net;
1626         int err;
1627
1628         /* Close race with setup_net() and cleanup_net() */
1629         down_write(&pernet_ops_rwsem);
1630         rtnl_lock();
1631         err = raw_notifier_chain_register(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634         if (dev_boot_phase)
1635                 goto unlock;
1636         for_each_net(net) {
1637                 for_each_netdev(net, dev) {
1638                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                         err = notifier_to_errno(err);
1640                         if (err)
1641                                 goto rollback;
1642
1643                         if (!(dev->flags & IFF_UP))
1644                                 continue;
1645
1646                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                 }
1648         }
1649
1650 unlock:
1651         rtnl_unlock();
1652         up_write(&pernet_ops_rwsem);
1653         return err;
1654
1655 rollback:
1656         last = dev;
1657         for_each_net(net) {
1658                 for_each_netdev(net, dev) {
1659                         if (dev == last)
1660                                 goto outroll;
1661
1662                         if (dev->flags & IFF_UP) {
1663                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                         dev);
1665                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                         }
1667                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                 }
1669         }
1670
1671 outroll:
1672         raw_notifier_chain_unregister(&netdev_chain, nb);
1673         goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693         struct net_device *dev;
1694         struct net *net;
1695         int err;
1696
1697         /* Close race with setup_net() and cleanup_net() */
1698         down_write(&pernet_ops_rwsem);
1699         rtnl_lock();
1700         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701         if (err)
1702                 goto unlock;
1703
1704         for_each_net(net) {
1705                 for_each_netdev(net, dev) {
1706                         if (dev->flags & IFF_UP) {
1707                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                         dev);
1709                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                         }
1711                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                 }
1713         }
1714 unlock:
1715         rtnl_unlock();
1716         up_write(&pernet_ops_rwsem);
1717         return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721 /**
1722  *      call_netdevice_notifiers_info - call all network notifier blocks
1723  *      @val: value passed unmodified to notifier function
1724  *      @info: notifier information data
1725  *
1726  *      Call all network notifier blocks.  Parameters and return value
1727  *      are as for raw_notifier_call_chain().
1728  */
1729
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731                                          struct netdev_notifier_info *info)
1732 {
1733         ASSERT_RTNL();
1734         return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736
1737 /**
1738  *      call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748         struct netdev_notifier_info info = {
1749                 .dev = dev,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756 #ifdef CONFIG_NET_INGRESS
1757 static struct static_key ingress_needed __read_mostly;
1758
1759 void net_inc_ingress_queue(void)
1760 {
1761         static_key_slow_inc(&ingress_needed);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765 void net_dec_ingress_queue(void)
1766 {
1767         static_key_slow_dec(&ingress_needed);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771
1772 #ifdef CONFIG_NET_EGRESS
1773 static struct static_key egress_needed __read_mostly;
1774
1775 void net_inc_egress_queue(void)
1776 {
1777         static_key_slow_inc(&egress_needed);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781 void net_dec_egress_queue(void)
1782 {
1783         static_key_slow_dec(&egress_needed);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787
1788 static struct static_key netstamp_needed __read_mostly;
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795         int wanted;
1796
1797         wanted = atomic_add_return(deferred, &netstamp_wanted);
1798         if (wanted > 0)
1799                 static_key_enable(&netstamp_needed);
1800         else
1801                 static_key_disable(&netstamp_needed);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809         int wanted;
1810
1811         while (1) {
1812                 wanted = atomic_read(&netstamp_wanted);
1813                 if (wanted <= 0)
1814                         break;
1815                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816                         return;
1817         }
1818         atomic_inc(&netstamp_needed_deferred);
1819         schedule_work(&netstamp_work);
1820 #else
1821         static_key_slow_inc(&netstamp_needed);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829         int wanted;
1830
1831         while (1) {
1832                 wanted = atomic_read(&netstamp_wanted);
1833                 if (wanted <= 1)
1834                         break;
1835                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836                         return;
1837         }
1838         atomic_dec(&netstamp_needed_deferred);
1839         schedule_work(&netstamp_work);
1840 #else
1841         static_key_slow_dec(&netstamp_needed);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848         skb->tstamp = 0;
1849         if (static_key_false(&netstamp_needed))
1850                 __net_timestamp(skb);
1851 }
1852
1853 #define net_timestamp_check(COND, SKB)                  \
1854         if (static_key_false(&netstamp_needed)) {               \
1855                 if ((COND) && !(SKB)->tstamp)   \
1856                         __net_timestamp(SKB);           \
1857         }                                               \
1858
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861         unsigned int len;
1862
1863         if (!(dev->flags & IFF_UP))
1864                 return false;
1865
1866         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867         if (skb->len <= len)
1868                 return true;
1869
1870         /* if TSO is enabled, we don't care about the length as the packet
1871          * could be forwarded without being segmented before
1872          */
1873         if (skb_is_gso(skb))
1874                 return true;
1875
1876         return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882         int ret = ____dev_forward_skb(dev, skb);
1883
1884         if (likely(!ret)) {
1885                 skb->protocol = eth_type_trans(skb, dev);
1886                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887         }
1888
1889         return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *      NET_RX_SUCCESS  (no congestion)
1901  *      NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917 static inline int deliver_skb(struct sk_buff *skb,
1918                               struct packet_type *pt_prev,
1919                               struct net_device *orig_dev)
1920 {
1921         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922                 return -ENOMEM;
1923         refcount_inc(&skb->users);
1924         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928                                           struct packet_type **pt,
1929                                           struct net_device *orig_dev,
1930                                           __be16 type,
1931                                           struct list_head *ptype_list)
1932 {
1933         struct packet_type *ptype, *pt_prev = *pt;
1934
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 if (ptype->type != type)
1937                         continue;
1938                 if (pt_prev)
1939                         deliver_skb(skb, pt_prev, orig_dev);
1940                 pt_prev = ptype;
1941         }
1942         *pt = pt_prev;
1943 }
1944
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947         if (!ptype->af_packet_priv || !skb->sk)
1948                 return false;
1949
1950         if (ptype->id_match)
1951                 return ptype->id_match(ptype, skb->sk);
1952         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953                 return true;
1954
1955         return false;
1956 }
1957
1958 /*
1959  *      Support routine. Sends outgoing frames to any network
1960  *      taps currently in use.
1961  */
1962
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965         struct packet_type *ptype;
1966         struct sk_buff *skb2 = NULL;
1967         struct packet_type *pt_prev = NULL;
1968         struct list_head *ptype_list = &ptype_all;
1969
1970         rcu_read_lock();
1971 again:
1972         list_for_each_entry_rcu(ptype, ptype_list, list) {
1973                 /* Never send packets back to the socket
1974                  * they originated from - MvS (miquels@drinkel.ow.org)
1975                  */
1976                 if (skb_loop_sk(ptype, skb))
1977                         continue;
1978
1979                 if (pt_prev) {
1980                         deliver_skb(skb2, pt_prev, skb->dev);
1981                         pt_prev = ptype;
1982                         continue;
1983                 }
1984
1985                 /* need to clone skb, done only once */
1986                 skb2 = skb_clone(skb, GFP_ATOMIC);
1987                 if (!skb2)
1988                         goto out_unlock;
1989
1990                 net_timestamp_set(skb2);
1991
1992                 /* skb->nh should be correctly
1993                  * set by sender, so that the second statement is
1994                  * just protection against buggy protocols.
1995                  */
1996                 skb_reset_mac_header(skb2);
1997
1998                 if (skb_network_header(skb2) < skb2->data ||
1999                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001                                              ntohs(skb2->protocol),
2002                                              dev->name);
2003                         skb_reset_network_header(skb2);
2004                 }
2005
2006                 skb2->transport_header = skb2->network_header;
2007                 skb2->pkt_type = PACKET_OUTGOING;
2008                 pt_prev = ptype;
2009         }
2010
2011         if (ptype_list == &ptype_all) {
2012                 ptype_list = &dev->ptype_all;
2013                 goto again;
2014         }
2015 out_unlock:
2016         if (pt_prev) {
2017                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019                 else
2020                         kfree_skb(skb2);
2021         }
2022         rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041         int i;
2042         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044         /* If TC0 is invalidated disable TC mapping */
2045         if (tc->offset + tc->count > txq) {
2046                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047                 dev->num_tc = 0;
2048                 return;
2049         }
2050
2051         /* Invalidated prio to tc mappings set to TC0 */
2052         for (i = 1; i < TC_BITMASK + 1; i++) {
2053                 int q = netdev_get_prio_tc_map(dev, i);
2054
2055                 tc = &dev->tc_to_txq[q];
2056                 if (tc->offset + tc->count > txq) {
2057                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058                                 i, q);
2059                         netdev_set_prio_tc_map(dev, i, 0);
2060                 }
2061         }
2062 }
2063
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066         if (dev->num_tc) {
2067                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068                 int i;
2069
2070                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071                         if ((txq - tc->offset) < tc->count)
2072                                 return i;
2073                 }
2074
2075                 return -1;
2076         }
2077
2078         return 0;
2079 }
2080 EXPORT_SYMBOL(netdev_txq_to_tc);
2081
2082 #ifdef CONFIG_XPS
2083 static DEFINE_MUTEX(xps_map_mutex);
2084 #define xmap_dereference(P)             \
2085         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2086
2087 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2088                              int tci, u16 index)
2089 {
2090         struct xps_map *map = NULL;
2091         int pos;
2092
2093         if (dev_maps)
2094                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2095         if (!map)
2096                 return false;
2097
2098         for (pos = map->len; pos--;) {
2099                 if (map->queues[pos] != index)
2100                         continue;
2101
2102                 if (map->len > 1) {
2103                         map->queues[pos] = map->queues[--map->len];
2104                         break;
2105                 }
2106
2107                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2108                 kfree_rcu(map, rcu);
2109                 return false;
2110         }
2111
2112         return true;
2113 }
2114
2115 static bool remove_xps_queue_cpu(struct net_device *dev,
2116                                  struct xps_dev_maps *dev_maps,
2117                                  int cpu, u16 offset, u16 count)
2118 {
2119         int num_tc = dev->num_tc ? : 1;
2120         bool active = false;
2121         int tci;
2122
2123         for (tci = cpu * num_tc; num_tc--; tci++) {
2124                 int i, j;
2125
2126                 for (i = count, j = offset; i--; j++) {
2127                         if (!remove_xps_queue(dev_maps, tci, j))
2128                                 break;
2129                 }
2130
2131                 active |= i < 0;
2132         }
2133
2134         return active;
2135 }
2136
2137 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2138                                    u16 count)
2139 {
2140         struct xps_dev_maps *dev_maps;
2141         int cpu, i;
2142         bool active = false;
2143
2144         mutex_lock(&xps_map_mutex);
2145         dev_maps = xmap_dereference(dev->xps_maps);
2146
2147         if (!dev_maps)
2148                 goto out_no_maps;
2149
2150         for_each_possible_cpu(cpu)
2151                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2152                                                offset, count);
2153
2154         if (!active) {
2155                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2156                 kfree_rcu(dev_maps, rcu);
2157         }
2158
2159         for (i = offset + (count - 1); count--; i--)
2160                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2161                                              NUMA_NO_NODE);
2162
2163 out_no_maps:
2164         mutex_unlock(&xps_map_mutex);
2165 }
2166
2167 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2168 {
2169         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2170 }
2171
2172 static struct xps_map *expand_xps_map(struct xps_map *map,
2173                                       int cpu, u16 index)
2174 {
2175         struct xps_map *new_map;
2176         int alloc_len = XPS_MIN_MAP_ALLOC;
2177         int i, pos;
2178
2179         for (pos = 0; map && pos < map->len; pos++) {
2180                 if (map->queues[pos] != index)
2181                         continue;
2182                 return map;
2183         }
2184
2185         /* Need to add queue to this CPU's existing map */
2186         if (map) {
2187                 if (pos < map->alloc_len)
2188                         return map;
2189
2190                 alloc_len = map->alloc_len * 2;
2191         }
2192
2193         /* Need to allocate new map to store queue on this CPU's map */
2194         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2195                                cpu_to_node(cpu));
2196         if (!new_map)
2197                 return NULL;
2198
2199         for (i = 0; i < pos; i++)
2200                 new_map->queues[i] = map->queues[i];
2201         new_map->alloc_len = alloc_len;
2202         new_map->len = pos;
2203
2204         return new_map;
2205 }
2206
2207 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2208                         u16 index)
2209 {
2210         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2211         int i, cpu, tci, numa_node_id = -2;
2212         int maps_sz, num_tc = 1, tc = 0;
2213         struct xps_map *map, *new_map;
2214         bool active = false;
2215
2216         if (dev->num_tc) {
2217                 num_tc = dev->num_tc;
2218                 tc = netdev_txq_to_tc(dev, index);
2219                 if (tc < 0)
2220                         return -EINVAL;
2221         }
2222
2223         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2224         if (maps_sz < L1_CACHE_BYTES)
2225                 maps_sz = L1_CACHE_BYTES;
2226
2227         mutex_lock(&xps_map_mutex);
2228
2229         dev_maps = xmap_dereference(dev->xps_maps);
2230
2231         /* allocate memory for queue storage */
2232         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2233                 if (!new_dev_maps)
2234                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2235                 if (!new_dev_maps) {
2236                         mutex_unlock(&xps_map_mutex);
2237                         return -ENOMEM;
2238                 }
2239
2240                 tci = cpu * num_tc + tc;
2241                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2242                                  NULL;
2243
2244                 map = expand_xps_map(map, cpu, index);
2245                 if (!map)
2246                         goto error;
2247
2248                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249         }
2250
2251         if (!new_dev_maps)
2252                 goto out_no_new_maps;
2253
2254         for_each_possible_cpu(cpu) {
2255                 /* copy maps belonging to foreign traffic classes */
2256                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2257                         /* fill in the new device map from the old device map */
2258                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260                 }
2261
2262                 /* We need to explicitly update tci as prevous loop
2263                  * could break out early if dev_maps is NULL.
2264                  */
2265                 tci = cpu * num_tc + tc;
2266
2267                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2268                         /* add queue to CPU maps */
2269                         int pos = 0;
2270
2271                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2272                         while ((pos < map->len) && (map->queues[pos] != index))
2273                                 pos++;
2274
2275                         if (pos == map->len)
2276                                 map->queues[map->len++] = index;
2277 #ifdef CONFIG_NUMA
2278                         if (numa_node_id == -2)
2279                                 numa_node_id = cpu_to_node(cpu);
2280                         else if (numa_node_id != cpu_to_node(cpu))
2281                                 numa_node_id = -1;
2282 #endif
2283                 } else if (dev_maps) {
2284                         /* fill in the new device map from the old device map */
2285                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2286                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2287                 }
2288
2289                 /* copy maps belonging to foreign traffic classes */
2290                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2291                         /* fill in the new device map from the old device map */
2292                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2293                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2294                 }
2295         }
2296
2297         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2298
2299         /* Cleanup old maps */
2300         if (!dev_maps)
2301                 goto out_no_old_maps;
2302
2303         for_each_possible_cpu(cpu) {
2304                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2307                         if (map && map != new_map)
2308                                 kfree_rcu(map, rcu);
2309                 }
2310         }
2311
2312         kfree_rcu(dev_maps, rcu);
2313
2314 out_no_old_maps:
2315         dev_maps = new_dev_maps;
2316         active = true;
2317
2318 out_no_new_maps:
2319         /* update Tx queue numa node */
2320         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2321                                      (numa_node_id >= 0) ? numa_node_id :
2322                                      NUMA_NO_NODE);
2323
2324         if (!dev_maps)
2325                 goto out_no_maps;
2326
2327         /* removes queue from unused CPUs */
2328         for_each_possible_cpu(cpu) {
2329                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2330                         active |= remove_xps_queue(dev_maps, tci, index);
2331                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2332                         active |= remove_xps_queue(dev_maps, tci, index);
2333                 for (i = num_tc - tc, tci++; --i; tci++)
2334                         active |= remove_xps_queue(dev_maps, tci, index);
2335         }
2336
2337         /* free map if not active */
2338         if (!active) {
2339                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2340                 kfree_rcu(dev_maps, rcu);
2341         }
2342
2343 out_no_maps:
2344         mutex_unlock(&xps_map_mutex);
2345
2346         return 0;
2347 error:
2348         /* remove any maps that we added */
2349         for_each_possible_cpu(cpu) {
2350                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2351                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2352                         map = dev_maps ?
2353                               xmap_dereference(dev_maps->cpu_map[tci]) :
2354                               NULL;
2355                         if (new_map && new_map != map)
2356                                 kfree(new_map);
2357                 }
2358         }
2359
2360         mutex_unlock(&xps_map_mutex);
2361
2362         kfree(new_dev_maps);
2363         return -ENOMEM;
2364 }
2365 EXPORT_SYMBOL(netif_set_xps_queue);
2366
2367 #endif
2368 void netdev_reset_tc(struct net_device *dev)
2369 {
2370 #ifdef CONFIG_XPS
2371         netif_reset_xps_queues_gt(dev, 0);
2372 #endif
2373         dev->num_tc = 0;
2374         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2375         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2376 }
2377 EXPORT_SYMBOL(netdev_reset_tc);
2378
2379 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2380 {
2381         if (tc >= dev->num_tc)
2382                 return -EINVAL;
2383
2384 #ifdef CONFIG_XPS
2385         netif_reset_xps_queues(dev, offset, count);
2386 #endif
2387         dev->tc_to_txq[tc].count = count;
2388         dev->tc_to_txq[tc].offset = offset;
2389         return 0;
2390 }
2391 EXPORT_SYMBOL(netdev_set_tc_queue);
2392
2393 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2394 {
2395         if (num_tc > TC_MAX_QUEUE)
2396                 return -EINVAL;
2397
2398 #ifdef CONFIG_XPS
2399         netif_reset_xps_queues_gt(dev, 0);
2400 #endif
2401         dev->num_tc = num_tc;
2402         return 0;
2403 }
2404 EXPORT_SYMBOL(netdev_set_num_tc);
2405
2406 /*
2407  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2408  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2409  */
2410 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2411 {
2412         bool disabling;
2413         int rc;
2414
2415         disabling = txq < dev->real_num_tx_queues;
2416
2417         if (txq < 1 || txq > dev->num_tx_queues)
2418                 return -EINVAL;
2419
2420         if (dev->reg_state == NETREG_REGISTERED ||
2421             dev->reg_state == NETREG_UNREGISTERING) {
2422                 ASSERT_RTNL();
2423
2424                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2425                                                   txq);
2426                 if (rc)
2427                         return rc;
2428
2429                 if (dev->num_tc)
2430                         netif_setup_tc(dev, txq);
2431
2432                 dev->real_num_tx_queues = txq;
2433
2434                 if (disabling) {
2435                         synchronize_net();
2436                         qdisc_reset_all_tx_gt(dev, txq);
2437 #ifdef CONFIG_XPS
2438                         netif_reset_xps_queues_gt(dev, txq);
2439 #endif
2440                 }
2441         } else {
2442                 dev->real_num_tx_queues = txq;
2443         }
2444
2445         return 0;
2446 }
2447 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2448
2449 #ifdef CONFIG_SYSFS
2450 /**
2451  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2452  *      @dev: Network device
2453  *      @rxq: Actual number of RX queues
2454  *
2455  *      This must be called either with the rtnl_lock held or before
2456  *      registration of the net device.  Returns 0 on success, or a
2457  *      negative error code.  If called before registration, it always
2458  *      succeeds.
2459  */
2460 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2461 {
2462         int rc;
2463
2464         if (rxq < 1 || rxq > dev->num_rx_queues)
2465                 return -EINVAL;
2466
2467         if (dev->reg_state == NETREG_REGISTERED) {
2468                 ASSERT_RTNL();
2469
2470                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2471                                                   rxq);
2472                 if (rc)
2473                         return rc;
2474         }
2475
2476         dev->real_num_rx_queues = rxq;
2477         return 0;
2478 }
2479 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2480 #endif
2481
2482 /**
2483  * netif_get_num_default_rss_queues - default number of RSS queues
2484  *
2485  * This routine should set an upper limit on the number of RSS queues
2486  * used by default by multiqueue devices.
2487  */
2488 int netif_get_num_default_rss_queues(void)
2489 {
2490         return is_kdump_kernel() ?
2491                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2492 }
2493 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2494
2495 static void __netif_reschedule(struct Qdisc *q)
2496 {
2497         struct softnet_data *sd;
2498         unsigned long flags;
2499
2500         local_irq_save(flags);
2501         sd = this_cpu_ptr(&softnet_data);
2502         q->next_sched = NULL;
2503         *sd->output_queue_tailp = q;
2504         sd->output_queue_tailp = &q->next_sched;
2505         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506         local_irq_restore(flags);
2507 }
2508
2509 void __netif_schedule(struct Qdisc *q)
2510 {
2511         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2512                 __netif_reschedule(q);
2513 }
2514 EXPORT_SYMBOL(__netif_schedule);
2515
2516 struct dev_kfree_skb_cb {
2517         enum skb_free_reason reason;
2518 };
2519
2520 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2521 {
2522         return (struct dev_kfree_skb_cb *)skb->cb;
2523 }
2524
2525 void netif_schedule_queue(struct netdev_queue *txq)
2526 {
2527         rcu_read_lock();
2528         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2529                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2530
2531                 __netif_schedule(q);
2532         }
2533         rcu_read_unlock();
2534 }
2535 EXPORT_SYMBOL(netif_schedule_queue);
2536
2537 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2538 {
2539         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2540                 struct Qdisc *q;
2541
2542                 rcu_read_lock();
2543                 q = rcu_dereference(dev_queue->qdisc);
2544                 __netif_schedule(q);
2545                 rcu_read_unlock();
2546         }
2547 }
2548 EXPORT_SYMBOL(netif_tx_wake_queue);
2549
2550 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2551 {
2552         unsigned long flags;
2553
2554         if (unlikely(!skb))
2555                 return;
2556
2557         if (likely(refcount_read(&skb->users) == 1)) {
2558                 smp_rmb();
2559                 refcount_set(&skb->users, 0);
2560         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2561                 return;
2562         }
2563         get_kfree_skb_cb(skb)->reason = reason;
2564         local_irq_save(flags);
2565         skb->next = __this_cpu_read(softnet_data.completion_queue);
2566         __this_cpu_write(softnet_data.completion_queue, skb);
2567         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2568         local_irq_restore(flags);
2569 }
2570 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2571
2572 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2573 {
2574         if (in_irq() || irqs_disabled())
2575                 __dev_kfree_skb_irq(skb, reason);
2576         else
2577                 dev_kfree_skb(skb);
2578 }
2579 EXPORT_SYMBOL(__dev_kfree_skb_any);
2580
2581
2582 /**
2583  * netif_device_detach - mark device as removed
2584  * @dev: network device
2585  *
2586  * Mark device as removed from system and therefore no longer available.
2587  */
2588 void netif_device_detach(struct net_device *dev)
2589 {
2590         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2591             netif_running(dev)) {
2592                 netif_tx_stop_all_queues(dev);
2593         }
2594 }
2595 EXPORT_SYMBOL(netif_device_detach);
2596
2597 /**
2598  * netif_device_attach - mark device as attached
2599  * @dev: network device
2600  *
2601  * Mark device as attached from system and restart if needed.
2602  */
2603 void netif_device_attach(struct net_device *dev)
2604 {
2605         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2606             netif_running(dev)) {
2607                 netif_tx_wake_all_queues(dev);
2608                 __netdev_watchdog_up(dev);
2609         }
2610 }
2611 EXPORT_SYMBOL(netif_device_attach);
2612
2613 /*
2614  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2615  * to be used as a distribution range.
2616  */
2617 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2618                   unsigned int num_tx_queues)
2619 {
2620         u32 hash;
2621         u16 qoffset = 0;
2622         u16 qcount = num_tx_queues;
2623
2624         if (skb_rx_queue_recorded(skb)) {
2625                 hash = skb_get_rx_queue(skb);
2626                 while (unlikely(hash >= num_tx_queues))
2627                         hash -= num_tx_queues;
2628                 return hash;
2629         }
2630
2631         if (dev->num_tc) {
2632                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634                 qoffset = dev->tc_to_txq[tc].offset;
2635                 qcount = dev->tc_to_txq[tc].count;
2636         }
2637
2638         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640 EXPORT_SYMBOL(__skb_tx_hash);
2641
2642 static void skb_warn_bad_offload(const struct sk_buff *skb)
2643 {
2644         static const netdev_features_t null_features;
2645         struct net_device *dev = skb->dev;
2646         const char *name = "";
2647
2648         if (!net_ratelimit())
2649                 return;
2650
2651         if (dev) {
2652                 if (dev->dev.parent)
2653                         name = dev_driver_string(dev->dev.parent);
2654                 else
2655                         name = netdev_name(dev);
2656         }
2657         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2658              "gso_type=%d ip_summed=%d\n",
2659              name, dev ? &dev->features : &null_features,
2660              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2661              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2662              skb_shinfo(skb)->gso_type, skb->ip_summed);
2663 }
2664
2665 /*
2666  * Invalidate hardware checksum when packet is to be mangled, and
2667  * complete checksum manually on outgoing path.
2668  */
2669 int skb_checksum_help(struct sk_buff *skb)
2670 {
2671         __wsum csum;
2672         int ret = 0, offset;
2673
2674         if (skb->ip_summed == CHECKSUM_COMPLETE)
2675                 goto out_set_summed;
2676
2677         if (unlikely(skb_shinfo(skb)->gso_size)) {
2678                 skb_warn_bad_offload(skb);
2679                 return -EINVAL;
2680         }
2681
2682         /* Before computing a checksum, we should make sure no frag could
2683          * be modified by an external entity : checksum could be wrong.
2684          */
2685         if (skb_has_shared_frag(skb)) {
2686                 ret = __skb_linearize(skb);
2687                 if (ret)
2688                         goto out;
2689         }
2690
2691         offset = skb_checksum_start_offset(skb);
2692         BUG_ON(offset >= skb_headlen(skb));
2693         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2694
2695         offset += skb->csum_offset;
2696         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2697
2698         if (skb_cloned(skb) &&
2699             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2700                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2701                 if (ret)
2702                         goto out;
2703         }
2704
2705         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2706 out_set_summed:
2707         skb->ip_summed = CHECKSUM_NONE;
2708 out:
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(skb_checksum_help);
2712
2713 int skb_crc32c_csum_help(struct sk_buff *skb)
2714 {
2715         __le32 crc32c_csum;
2716         int ret = 0, offset, start;
2717
2718         if (skb->ip_summed != CHECKSUM_PARTIAL)
2719                 goto out;
2720
2721         if (unlikely(skb_is_gso(skb)))
2722                 goto out;
2723
2724         /* Before computing a checksum, we should make sure no frag could
2725          * be modified by an external entity : checksum could be wrong.
2726          */
2727         if (unlikely(skb_has_shared_frag(skb))) {
2728                 ret = __skb_linearize(skb);
2729                 if (ret)
2730                         goto out;
2731         }
2732         start = skb_checksum_start_offset(skb);
2733         offset = start + offsetof(struct sctphdr, checksum);
2734         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2735                 ret = -EINVAL;
2736                 goto out;
2737         }
2738         if (skb_cloned(skb) &&
2739             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2740                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741                 if (ret)
2742                         goto out;
2743         }
2744         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2745                                                   skb->len - start, ~(__u32)0,
2746                                                   crc32c_csum_stub));
2747         *(__le32 *)(skb->data + offset) = crc32c_csum;
2748         skb->ip_summed = CHECKSUM_NONE;
2749         skb->csum_not_inet = 0;
2750 out:
2751         return ret;
2752 }
2753
2754 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2755 {
2756         __be16 type = skb->protocol;
2757
2758         /* Tunnel gso handlers can set protocol to ethernet. */
2759         if (type == htons(ETH_P_TEB)) {
2760                 struct ethhdr *eth;
2761
2762                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2763                         return 0;
2764
2765                 eth = (struct ethhdr *)skb->data;
2766                 type = eth->h_proto;
2767         }
2768
2769         return __vlan_get_protocol(skb, type, depth);
2770 }
2771
2772 /**
2773  *      skb_mac_gso_segment - mac layer segmentation handler.
2774  *      @skb: buffer to segment
2775  *      @features: features for the output path (see dev->features)
2776  */
2777 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2778                                     netdev_features_t features)
2779 {
2780         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2781         struct packet_offload *ptype;
2782         int vlan_depth = skb->mac_len;
2783         __be16 type = skb_network_protocol(skb, &vlan_depth);
2784
2785         if (unlikely(!type))
2786                 return ERR_PTR(-EINVAL);
2787
2788         __skb_pull(skb, vlan_depth);
2789
2790         rcu_read_lock();
2791         list_for_each_entry_rcu(ptype, &offload_base, list) {
2792                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2793                         segs = ptype->callbacks.gso_segment(skb, features);
2794                         break;
2795                 }
2796         }
2797         rcu_read_unlock();
2798
2799         __skb_push(skb, skb->data - skb_mac_header(skb));
2800
2801         return segs;
2802 }
2803 EXPORT_SYMBOL(skb_mac_gso_segment);
2804
2805
2806 /* openvswitch calls this on rx path, so we need a different check.
2807  */
2808 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2809 {
2810         if (tx_path)
2811                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2812                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2813
2814         return skb->ip_summed == CHECKSUM_NONE;
2815 }
2816
2817 /**
2818  *      __skb_gso_segment - Perform segmentation on skb.
2819  *      @skb: buffer to segment
2820  *      @features: features for the output path (see dev->features)
2821  *      @tx_path: whether it is called in TX path
2822  *
2823  *      This function segments the given skb and returns a list of segments.
2824  *
2825  *      It may return NULL if the skb requires no segmentation.  This is
2826  *      only possible when GSO is used for verifying header integrity.
2827  *
2828  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2829  */
2830 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2831                                   netdev_features_t features, bool tx_path)
2832 {
2833         struct sk_buff *segs;
2834
2835         if (unlikely(skb_needs_check(skb, tx_path))) {
2836                 int err;
2837
2838                 /* We're going to init ->check field in TCP or UDP header */
2839                 err = skb_cow_head(skb, 0);
2840                 if (err < 0)
2841                         return ERR_PTR(err);
2842         }
2843
2844         /* Only report GSO partial support if it will enable us to
2845          * support segmentation on this frame without needing additional
2846          * work.
2847          */
2848         if (features & NETIF_F_GSO_PARTIAL) {
2849                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2850                 struct net_device *dev = skb->dev;
2851
2852                 partial_features |= dev->features & dev->gso_partial_features;
2853                 if (!skb_gso_ok(skb, features | partial_features))
2854                         features &= ~NETIF_F_GSO_PARTIAL;
2855         }
2856
2857         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2858                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2859
2860         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2861         SKB_GSO_CB(skb)->encap_level = 0;
2862
2863         skb_reset_mac_header(skb);
2864         skb_reset_mac_len(skb);
2865
2866         segs = skb_mac_gso_segment(skb, features);
2867
2868         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2869                 skb_warn_bad_offload(skb);
2870
2871         return segs;
2872 }
2873 EXPORT_SYMBOL(__skb_gso_segment);
2874
2875 /* Take action when hardware reception checksum errors are detected. */
2876 #ifdef CONFIG_BUG
2877 void netdev_rx_csum_fault(struct net_device *dev)
2878 {
2879         if (net_ratelimit()) {
2880                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2881                 dump_stack();
2882         }
2883 }
2884 EXPORT_SYMBOL(netdev_rx_csum_fault);
2885 #endif
2886
2887 /* XXX: check that highmem exists at all on the given machine. */
2888 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2889 {
2890 #ifdef CONFIG_HIGHMEM
2891         int i;
2892
2893         if (!(dev->features & NETIF_F_HIGHDMA)) {
2894                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2895                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2896
2897                         if (PageHighMem(skb_frag_page(frag)))
2898                                 return 1;
2899                 }
2900         }
2901 #endif
2902         return 0;
2903 }
2904
2905 /* If MPLS offload request, verify we are testing hardware MPLS features
2906  * instead of standard features for the netdev.
2907  */
2908 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2909 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2910                                            netdev_features_t features,
2911                                            __be16 type)
2912 {
2913         if (eth_p_mpls(type))
2914                 features &= skb->dev->mpls_features;
2915
2916         return features;
2917 }
2918 #else
2919 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2920                                            netdev_features_t features,
2921                                            __be16 type)
2922 {
2923         return features;
2924 }
2925 #endif
2926
2927 static netdev_features_t harmonize_features(struct sk_buff *skb,
2928         netdev_features_t features)
2929 {
2930         int tmp;
2931         __be16 type;
2932
2933         type = skb_network_protocol(skb, &tmp);
2934         features = net_mpls_features(skb, features, type);
2935
2936         if (skb->ip_summed != CHECKSUM_NONE &&
2937             !can_checksum_protocol(features, type)) {
2938                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2939         }
2940         if (illegal_highdma(skb->dev, skb))
2941                 features &= ~NETIF_F_SG;
2942
2943         return features;
2944 }
2945
2946 netdev_features_t passthru_features_check(struct sk_buff *skb,
2947                                           struct net_device *dev,
2948                                           netdev_features_t features)
2949 {
2950         return features;
2951 }
2952 EXPORT_SYMBOL(passthru_features_check);
2953
2954 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2955                                              struct net_device *dev,
2956                                              netdev_features_t features)
2957 {
2958         return vlan_features_check(skb, features);
2959 }
2960
2961 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2962                                             struct net_device *dev,
2963                                             netdev_features_t features)
2964 {
2965         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2966
2967         if (gso_segs > dev->gso_max_segs)
2968                 return features & ~NETIF_F_GSO_MASK;
2969
2970         /* Support for GSO partial features requires software
2971          * intervention before we can actually process the packets
2972          * so we need to strip support for any partial features now
2973          * and we can pull them back in after we have partially
2974          * segmented the frame.
2975          */
2976         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2977                 features &= ~dev->gso_partial_features;
2978
2979         /* Make sure to clear the IPv4 ID mangling feature if the
2980          * IPv4 header has the potential to be fragmented.
2981          */
2982         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2983                 struct iphdr *iph = skb->encapsulation ?
2984                                     inner_ip_hdr(skb) : ip_hdr(skb);
2985
2986                 if (!(iph->frag_off & htons(IP_DF)))
2987                         features &= ~NETIF_F_TSO_MANGLEID;
2988         }
2989
2990         return features;
2991 }
2992
2993 netdev_features_t netif_skb_features(struct sk_buff *skb)
2994 {
2995         struct net_device *dev = skb->dev;
2996         netdev_features_t features = dev->features;
2997
2998         if (skb_is_gso(skb))
2999                 features = gso_features_check(skb, dev, features);
3000
3001         /* If encapsulation offload request, verify we are testing
3002          * hardware encapsulation features instead of standard
3003          * features for the netdev
3004          */
3005         if (skb->encapsulation)
3006                 features &= dev->hw_enc_features;
3007
3008         if (skb_vlan_tagged(skb))
3009                 features = netdev_intersect_features(features,
3010                                                      dev->vlan_features |
3011                                                      NETIF_F_HW_VLAN_CTAG_TX |
3012                                                      NETIF_F_HW_VLAN_STAG_TX);
3013
3014         if (dev->netdev_ops->ndo_features_check)
3015                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3016                                                                 features);
3017         else
3018                 features &= dflt_features_check(skb, dev, features);
3019
3020         return harmonize_features(skb, features);
3021 }
3022 EXPORT_SYMBOL(netif_skb_features);
3023
3024 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3025                     struct netdev_queue *txq, bool more)
3026 {
3027         unsigned int len;
3028         int rc;
3029
3030         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3031                 dev_queue_xmit_nit(skb, dev);
3032
3033         len = skb->len;
3034         trace_net_dev_start_xmit(skb, dev);
3035         rc = netdev_start_xmit(skb, dev, txq, more);
3036         trace_net_dev_xmit(skb, rc, dev, len);
3037
3038         return rc;
3039 }
3040
3041 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3042                                     struct netdev_queue *txq, int *ret)
3043 {
3044         struct sk_buff *skb = first;
3045         int rc = NETDEV_TX_OK;
3046
3047         while (skb) {
3048                 struct sk_buff *next = skb->next;
3049
3050                 skb->next = NULL;
3051                 rc = xmit_one(skb, dev, txq, next != NULL);
3052                 if (unlikely(!dev_xmit_complete(rc))) {
3053                         skb->next = next;
3054                         goto out;
3055                 }
3056
3057                 skb = next;
3058                 if (netif_xmit_stopped(txq) && skb) {
3059                         rc = NETDEV_TX_BUSY;
3060                         break;
3061                 }
3062         }
3063
3064 out:
3065         *ret = rc;
3066         return skb;
3067 }
3068
3069 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3070                                           netdev_features_t features)
3071 {
3072         if (skb_vlan_tag_present(skb) &&
3073             !vlan_hw_offload_capable(features, skb->vlan_proto))
3074                 skb = __vlan_hwaccel_push_inside(skb);
3075         return skb;
3076 }
3077
3078 int skb_csum_hwoffload_help(struct sk_buff *skb,
3079                             const netdev_features_t features)
3080 {
3081         if (unlikely(skb->csum_not_inet))
3082                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3083                         skb_crc32c_csum_help(skb);
3084
3085         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3086 }
3087 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3088
3089 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3090 {
3091         netdev_features_t features;
3092
3093         features = netif_skb_features(skb);
3094         skb = validate_xmit_vlan(skb, features);
3095         if (unlikely(!skb))
3096                 goto out_null;
3097
3098         if (netif_needs_gso(skb, features)) {
3099                 struct sk_buff *segs;
3100
3101                 segs = skb_gso_segment(skb, features);
3102                 if (IS_ERR(segs)) {
3103                         goto out_kfree_skb;
3104                 } else if (segs) {
3105                         consume_skb(skb);
3106                         skb = segs;
3107                 }
3108         } else {
3109                 if (skb_needs_linearize(skb, features) &&
3110                     __skb_linearize(skb))
3111                         goto out_kfree_skb;
3112
3113                 /* If packet is not checksummed and device does not
3114                  * support checksumming for this protocol, complete
3115                  * checksumming here.
3116                  */
3117                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3118                         if (skb->encapsulation)
3119                                 skb_set_inner_transport_header(skb,
3120                                                                skb_checksum_start_offset(skb));
3121                         else
3122                                 skb_set_transport_header(skb,
3123                                                          skb_checksum_start_offset(skb));
3124                         if (skb_csum_hwoffload_help(skb, features))
3125                                 goto out_kfree_skb;
3126                 }
3127         }
3128
3129         skb = validate_xmit_xfrm(skb, features, again);
3130
3131         return skb;
3132
3133 out_kfree_skb:
3134         kfree_skb(skb);
3135 out_null:
3136         atomic_long_inc(&dev->tx_dropped);
3137         return NULL;
3138 }
3139
3140 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3141 {
3142         struct sk_buff *next, *head = NULL, *tail;
3143
3144         for (; skb != NULL; skb = next) {
3145                 next = skb->next;
3146                 skb->next = NULL;
3147
3148                 /* in case skb wont be segmented, point to itself */
3149                 skb->prev = skb;
3150
3151                 skb = validate_xmit_skb(skb, dev, again);
3152                 if (!skb)
3153                         continue;
3154
3155                 if (!head)
3156                         head = skb;
3157                 else
3158                         tail->next = skb;
3159                 /* If skb was segmented, skb->prev points to
3160                  * the last segment. If not, it still contains skb.
3161                  */
3162                 tail = skb->prev;
3163         }
3164         return head;
3165 }
3166 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3167
3168 static void qdisc_pkt_len_init(struct sk_buff *skb)
3169 {
3170         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3171
3172         qdisc_skb_cb(skb)->pkt_len = skb->len;
3173
3174         /* To get more precise estimation of bytes sent on wire,
3175          * we add to pkt_len the headers size of all segments
3176          */
3177         if (shinfo->gso_size)  {
3178                 unsigned int hdr_len;
3179                 u16 gso_segs = shinfo->gso_segs;
3180
3181                 /* mac layer + network layer */
3182                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3183
3184                 /* + transport layer */
3185                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3186                         const struct tcphdr *th;
3187                         struct tcphdr _tcphdr;
3188
3189                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3190                                                 sizeof(_tcphdr), &_tcphdr);
3191                         if (likely(th))
3192                                 hdr_len += __tcp_hdrlen(th);
3193                 } else {
3194                         struct udphdr _udphdr;
3195
3196                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3197                                                sizeof(_udphdr), &_udphdr))
3198                                 hdr_len += sizeof(struct udphdr);
3199                 }
3200
3201                 if (shinfo->gso_type & SKB_GSO_DODGY)
3202                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3203                                                 shinfo->gso_size);
3204
3205                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3206         }
3207 }
3208
3209 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3210                                  struct net_device *dev,
3211                                  struct netdev_queue *txq)
3212 {
3213         spinlock_t *root_lock = qdisc_lock(q);
3214         struct sk_buff *to_free = NULL;
3215         bool contended;
3216         int rc;
3217
3218         qdisc_calculate_pkt_len(skb, q);
3219
3220         if (q->flags & TCQ_F_NOLOCK) {
3221                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3222                         __qdisc_drop(skb, &to_free);
3223                         rc = NET_XMIT_DROP;
3224                 } else {
3225                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3226                         __qdisc_run(q);
3227                 }
3228
3229                 if (unlikely(to_free))
3230                         kfree_skb_list(to_free);
3231                 return rc;
3232         }
3233
3234         /*
3235          * Heuristic to force contended enqueues to serialize on a
3236          * separate lock before trying to get qdisc main lock.
3237          * This permits qdisc->running owner to get the lock more
3238          * often and dequeue packets faster.
3239          */
3240         contended = qdisc_is_running(q);
3241         if (unlikely(contended))
3242                 spin_lock(&q->busylock);
3243
3244         spin_lock(root_lock);
3245         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3246                 __qdisc_drop(skb, &to_free);
3247                 rc = NET_XMIT_DROP;
3248         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3249                    qdisc_run_begin(q)) {
3250                 /*
3251                  * This is a work-conserving queue; there are no old skbs
3252                  * waiting to be sent out; and the qdisc is not running -
3253                  * xmit the skb directly.
3254                  */
3255
3256                 qdisc_bstats_update(q, skb);
3257
3258                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3259                         if (unlikely(contended)) {
3260                                 spin_unlock(&q->busylock);
3261                                 contended = false;
3262                         }
3263                         __qdisc_run(q);
3264                 }
3265
3266                 qdisc_run_end(q);
3267                 rc = NET_XMIT_SUCCESS;
3268         } else {
3269                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3270                 if (qdisc_run_begin(q)) {
3271                         if (unlikely(contended)) {
3272                                 spin_unlock(&q->busylock);
3273                                 contended = false;
3274                         }
3275                         __qdisc_run(q);
3276                         qdisc_run_end(q);
3277                 }
3278         }
3279         spin_unlock(root_lock);
3280         if (unlikely(to_free))
3281                 kfree_skb_list(to_free);
3282         if (unlikely(contended))
3283                 spin_unlock(&q->busylock);
3284         return rc;
3285 }
3286
3287 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3288 static void skb_update_prio(struct sk_buff *skb)
3289 {
3290         const struct netprio_map *map;
3291         const struct sock *sk;
3292         unsigned int prioidx;
3293
3294         if (skb->priority)
3295                 return;
3296         map = rcu_dereference_bh(skb->dev->priomap);
3297         if (!map)
3298                 return;
3299         sk = skb_to_full_sk(skb);
3300         if (!sk)
3301                 return;
3302
3303         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3304
3305         if (prioidx < map->priomap_len)
3306                 skb->priority = map->priomap[prioidx];
3307 }
3308 #else
3309 #define skb_update_prio(skb)
3310 #endif
3311
3312 DEFINE_PER_CPU(int, xmit_recursion);
3313 EXPORT_SYMBOL(xmit_recursion);
3314
3315 /**
3316  *      dev_loopback_xmit - loop back @skb
3317  *      @net: network namespace this loopback is happening in
3318  *      @sk:  sk needed to be a netfilter okfn
3319  *      @skb: buffer to transmit
3320  */
3321 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3322 {
3323         skb_reset_mac_header(skb);
3324         __skb_pull(skb, skb_network_offset(skb));
3325         skb->pkt_type = PACKET_LOOPBACK;
3326         skb->ip_summed = CHECKSUM_UNNECESSARY;
3327         WARN_ON(!skb_dst(skb));
3328         skb_dst_force(skb);
3329         netif_rx_ni(skb);
3330         return 0;
3331 }
3332 EXPORT_SYMBOL(dev_loopback_xmit);
3333
3334 #ifdef CONFIG_NET_EGRESS
3335 static struct sk_buff *
3336 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3337 {
3338         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3339         struct tcf_result cl_res;
3340
3341         if (!miniq)
3342                 return skb;
3343
3344         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3345         mini_qdisc_bstats_cpu_update(miniq, skb);
3346
3347         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3348         case TC_ACT_OK:
3349         case TC_ACT_RECLASSIFY:
3350                 skb->tc_index = TC_H_MIN(cl_res.classid);
3351                 break;
3352         case TC_ACT_SHOT:
3353                 mini_qdisc_qstats_cpu_drop(miniq);
3354                 *ret = NET_XMIT_DROP;
3355                 kfree_skb(skb);
3356                 return NULL;
3357         case TC_ACT_STOLEN:
3358         case TC_ACT_QUEUED:
3359         case TC_ACT_TRAP:
3360                 *ret = NET_XMIT_SUCCESS;
3361                 consume_skb(skb);
3362                 return NULL;
3363         case TC_ACT_REDIRECT:
3364                 /* No need to push/pop skb's mac_header here on egress! */
3365                 skb_do_redirect(skb);
3366                 *ret = NET_XMIT_SUCCESS;
3367                 return NULL;
3368         default:
3369                 break;
3370         }
3371
3372         return skb;
3373 }
3374 #endif /* CONFIG_NET_EGRESS */
3375
3376 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3377 {
3378 #ifdef CONFIG_XPS
3379         struct xps_dev_maps *dev_maps;
3380         struct xps_map *map;
3381         int queue_index = -1;
3382
3383         rcu_read_lock();
3384         dev_maps = rcu_dereference(dev->xps_maps);
3385         if (dev_maps) {
3386                 unsigned int tci = skb->sender_cpu - 1;
3387
3388                 if (dev->num_tc) {
3389                         tci *= dev->num_tc;
3390                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3391                 }
3392
3393                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3394                 if (map) {
3395                         if (map->len == 1)
3396                                 queue_index = map->queues[0];
3397                         else
3398                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3399                                                                            map->len)];
3400                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3401                                 queue_index = -1;
3402                 }
3403         }
3404         rcu_read_unlock();
3405
3406         return queue_index;
3407 #else
3408         return -1;
3409 #endif
3410 }
3411
3412 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3413 {
3414         struct sock *sk = skb->sk;
3415         int queue_index = sk_tx_queue_get(sk);
3416
3417         if (queue_index < 0 || skb->ooo_okay ||
3418             queue_index >= dev->real_num_tx_queues) {
3419                 int new_index = get_xps_queue(dev, skb);
3420
3421                 if (new_index < 0)
3422                         new_index = skb_tx_hash(dev, skb);
3423
3424                 if (queue_index != new_index && sk &&
3425                     sk_fullsock(sk) &&
3426                     rcu_access_pointer(sk->sk_dst_cache))
3427                         sk_tx_queue_set(sk, new_index);
3428
3429                 queue_index = new_index;
3430         }
3431
3432         return queue_index;
3433 }
3434
3435 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3436                                     struct sk_buff *skb,
3437                                     void *accel_priv)
3438 {
3439         int queue_index = 0;
3440
3441 #ifdef CONFIG_XPS
3442         u32 sender_cpu = skb->sender_cpu - 1;
3443
3444         if (sender_cpu >= (u32)NR_CPUS)
3445                 skb->sender_cpu = raw_smp_processor_id() + 1;
3446 #endif
3447
3448         if (dev->real_num_tx_queues != 1) {
3449                 const struct net_device_ops *ops = dev->netdev_ops;
3450
3451                 if (ops->ndo_select_queue)
3452                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3453                                                             __netdev_pick_tx);
3454                 else
3455                         queue_index = __netdev_pick_tx(dev, skb);
3456
3457                 queue_index = netdev_cap_txqueue(dev, queue_index);
3458         }
3459
3460         skb_set_queue_mapping(skb, queue_index);
3461         return netdev_get_tx_queue(dev, queue_index);
3462 }
3463
3464 /**
3465  *      __dev_queue_xmit - transmit a buffer
3466  *      @skb: buffer to transmit
3467  *      @accel_priv: private data used for L2 forwarding offload
3468  *
3469  *      Queue a buffer for transmission to a network device. The caller must
3470  *      have set the device and priority and built the buffer before calling
3471  *      this function. The function can be called from an interrupt.
3472  *
3473  *      A negative errno code is returned on a failure. A success does not
3474  *      guarantee the frame will be transmitted as it may be dropped due
3475  *      to congestion or traffic shaping.
3476  *
3477  * -----------------------------------------------------------------------------------
3478  *      I notice this method can also return errors from the queue disciplines,
3479  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3480  *      be positive.
3481  *
3482  *      Regardless of the return value, the skb is consumed, so it is currently
3483  *      difficult to retry a send to this method.  (You can bump the ref count
3484  *      before sending to hold a reference for retry if you are careful.)
3485  *
3486  *      When calling this method, interrupts MUST be enabled.  This is because
3487  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3488  *          --BLG
3489  */
3490 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3491 {
3492         struct net_device *dev = skb->dev;
3493         struct netdev_queue *txq;
3494         struct Qdisc *q;
3495         int rc = -ENOMEM;
3496         bool again = false;
3497
3498         skb_reset_mac_header(skb);
3499
3500         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3501                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3502
3503         /* Disable soft irqs for various locks below. Also
3504          * stops preemption for RCU.
3505          */
3506         rcu_read_lock_bh();
3507
3508         skb_update_prio(skb);
3509
3510         qdisc_pkt_len_init(skb);
3511 #ifdef CONFIG_NET_CLS_ACT
3512         skb->tc_at_ingress = 0;
3513 # ifdef CONFIG_NET_EGRESS
3514         if (static_key_false(&egress_needed)) {
3515                 skb = sch_handle_egress(skb, &rc, dev);
3516                 if (!skb)
3517                         goto out;
3518         }
3519 # endif
3520 #endif
3521         /* If device/qdisc don't need skb->dst, release it right now while
3522          * its hot in this cpu cache.
3523          */
3524         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3525                 skb_dst_drop(skb);
3526         else
3527                 skb_dst_force(skb);
3528
3529         txq = netdev_pick_tx(dev, skb, accel_priv);
3530         q = rcu_dereference_bh(txq->qdisc);
3531
3532         trace_net_dev_queue(skb);
3533         if (q->enqueue) {
3534                 rc = __dev_xmit_skb(skb, q, dev, txq);
3535                 goto out;
3536         }
3537
3538         /* The device has no queue. Common case for software devices:
3539          * loopback, all the sorts of tunnels...
3540
3541          * Really, it is unlikely that netif_tx_lock protection is necessary
3542          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3543          * counters.)
3544          * However, it is possible, that they rely on protection
3545          * made by us here.
3546
3547          * Check this and shot the lock. It is not prone from deadlocks.
3548          *Either shot noqueue qdisc, it is even simpler 8)
3549          */
3550         if (dev->flags & IFF_UP) {
3551                 int cpu = smp_processor_id(); /* ok because BHs are off */
3552
3553                 if (txq->xmit_lock_owner != cpu) {
3554                         if (unlikely(__this_cpu_read(xmit_recursion) >
3555                                      XMIT_RECURSION_LIMIT))
3556                                 goto recursion_alert;
3557
3558                         skb = validate_xmit_skb(skb, dev, &again);
3559                         if (!skb)
3560                                 goto out;
3561
3562                         HARD_TX_LOCK(dev, txq, cpu);
3563
3564                         if (!netif_xmit_stopped(txq)) {
3565                                 __this_cpu_inc(xmit_recursion);
3566                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3567                                 __this_cpu_dec(xmit_recursion);
3568                                 if (dev_xmit_complete(rc)) {
3569                                         HARD_TX_UNLOCK(dev, txq);
3570                                         goto out;
3571                                 }
3572                         }
3573                         HARD_TX_UNLOCK(dev, txq);
3574                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3575                                              dev->name);
3576                 } else {
3577                         /* Recursion is detected! It is possible,
3578                          * unfortunately
3579                          */
3580 recursion_alert:
3581                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3582                                              dev->name);
3583                 }
3584         }
3585
3586         rc = -ENETDOWN;
3587         rcu_read_unlock_bh();
3588
3589         atomic_long_inc(&dev->tx_dropped);
3590         kfree_skb_list(skb);
3591         return rc;
3592 out:
3593         rcu_read_unlock_bh();
3594         return rc;
3595 }
3596
3597 int dev_queue_xmit(struct sk_buff *skb)
3598 {
3599         return __dev_queue_xmit(skb, NULL);
3600 }
3601 EXPORT_SYMBOL(dev_queue_xmit);
3602
3603 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3604 {
3605         return __dev_queue_xmit(skb, accel_priv);
3606 }
3607 EXPORT_SYMBOL(dev_queue_xmit_accel);
3608
3609
3610 /*************************************************************************
3611  *                      Receiver routines
3612  *************************************************************************/
3613
3614 int netdev_max_backlog __read_mostly = 1000;
3615 EXPORT_SYMBOL(netdev_max_backlog);
3616
3617 int netdev_tstamp_prequeue __read_mostly = 1;
3618 int netdev_budget __read_mostly = 300;
3619 unsigned int __read_mostly netdev_budget_usecs = 2000;
3620 int weight_p __read_mostly = 64;           /* old backlog weight */
3621 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3622 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3623 int dev_rx_weight __read_mostly = 64;
3624 int dev_tx_weight __read_mostly = 64;
3625
3626 /* Called with irq disabled */
3627 static inline void ____napi_schedule(struct softnet_data *sd,
3628                                      struct napi_struct *napi)
3629 {
3630         list_add_tail(&napi->poll_list, &sd->poll_list);
3631         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3632 }
3633
3634 #ifdef CONFIG_RPS
3635
3636 /* One global table that all flow-based protocols share. */
3637 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3638 EXPORT_SYMBOL(rps_sock_flow_table);
3639 u32 rps_cpu_mask __read_mostly;
3640 EXPORT_SYMBOL(rps_cpu_mask);
3641
3642 struct static_key rps_needed __read_mostly;
3643 EXPORT_SYMBOL(rps_needed);
3644 struct static_key rfs_needed __read_mostly;
3645 EXPORT_SYMBOL(rfs_needed);
3646
3647 static struct rps_dev_flow *
3648 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3649             struct rps_dev_flow *rflow, u16 next_cpu)
3650 {
3651         if (next_cpu < nr_cpu_ids) {
3652 #ifdef CONFIG_RFS_ACCEL
3653                 struct netdev_rx_queue *rxqueue;
3654                 struct rps_dev_flow_table *flow_table;
3655                 struct rps_dev_flow *old_rflow;
3656                 u32 flow_id;
3657                 u16 rxq_index;
3658                 int rc;
3659
3660                 /* Should we steer this flow to a different hardware queue? */
3661                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3662                     !(dev->features & NETIF_F_NTUPLE))
3663                         goto out;
3664                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3665                 if (rxq_index == skb_get_rx_queue(skb))
3666                         goto out;
3667
3668                 rxqueue = dev->_rx + rxq_index;
3669                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3670                 if (!flow_table)
3671                         goto out;
3672                 flow_id = skb_get_hash(skb) & flow_table->mask;
3673                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3674                                                         rxq_index, flow_id);
3675                 if (rc < 0)
3676                         goto out;
3677                 old_rflow = rflow;
3678                 rflow = &flow_table->flows[flow_id];
3679                 rflow->filter = rc;
3680                 if (old_rflow->filter == rflow->filter)
3681                         old_rflow->filter = RPS_NO_FILTER;
3682         out:
3683 #endif
3684                 rflow->last_qtail =
3685                         per_cpu(softnet_data, next_cpu).input_queue_head;
3686         }
3687
3688         rflow->cpu = next_cpu;
3689         return rflow;
3690 }
3691
3692 /*
3693  * get_rps_cpu is called from netif_receive_skb and returns the target
3694  * CPU from the RPS map of the receiving queue for a given skb.
3695  * rcu_read_lock must be held on entry.
3696  */
3697 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3698                        struct rps_dev_flow **rflowp)
3699 {
3700         const struct rps_sock_flow_table *sock_flow_table;
3701         struct netdev_rx_queue *rxqueue = dev->_rx;
3702         struct rps_dev_flow_table *flow_table;
3703         struct rps_map *map;
3704         int cpu = -1;
3705         u32 tcpu;
3706         u32 hash;
3707
3708         if (skb_rx_queue_recorded(skb)) {
3709                 u16 index = skb_get_rx_queue(skb);
3710
3711                 if (unlikely(index >= dev->real_num_rx_queues)) {
3712                         WARN_ONCE(dev->real_num_rx_queues > 1,
3713                                   "%s received packet on queue %u, but number "
3714                                   "of RX queues is %u\n",
3715                                   dev->name, index, dev->real_num_rx_queues);
3716                         goto done;
3717                 }
3718                 rxqueue += index;
3719         }
3720
3721         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3722
3723         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3724         map = rcu_dereference(rxqueue->rps_map);
3725         if (!flow_table && !map)
3726                 goto done;
3727
3728         skb_reset_network_header(skb);
3729         hash = skb_get_hash(skb);
3730         if (!hash)
3731                 goto done;
3732
3733         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3734         if (flow_table && sock_flow_table) {
3735                 struct rps_dev_flow *rflow;
3736                 u32 next_cpu;
3737                 u32 ident;
3738
3739                 /* First check into global flow table if there is a match */
3740                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3741                 if ((ident ^ hash) & ~rps_cpu_mask)
3742                         goto try_rps;
3743
3744                 next_cpu = ident & rps_cpu_mask;
3745
3746                 /* OK, now we know there is a match,
3747                  * we can look at the local (per receive queue) flow table
3748                  */
3749                 rflow = &flow_table->flows[hash & flow_table->mask];
3750                 tcpu = rflow->cpu;
3751
3752                 /*
3753                  * If the desired CPU (where last recvmsg was done) is
3754                  * different from current CPU (one in the rx-queue flow
3755                  * table entry), switch if one of the following holds:
3756                  *   - Current CPU is unset (>= nr_cpu_ids).
3757                  *   - Current CPU is offline.
3758                  *   - The current CPU's queue tail has advanced beyond the
3759                  *     last packet that was enqueued using this table entry.
3760                  *     This guarantees that all previous packets for the flow
3761                  *     have been dequeued, thus preserving in order delivery.
3762                  */
3763                 if (unlikely(tcpu != next_cpu) &&
3764                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3765                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3766                       rflow->last_qtail)) >= 0)) {
3767                         tcpu = next_cpu;
3768                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3769                 }
3770
3771                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3772                         *rflowp = rflow;
3773                         cpu = tcpu;
3774                         goto done;
3775                 }
3776         }
3777
3778 try_rps:
3779
3780         if (map) {
3781                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3782                 if (cpu_online(tcpu)) {
3783                         cpu = tcpu;
3784                         goto done;
3785                 }
3786         }
3787
3788 done:
3789         return cpu;
3790 }
3791
3792 #ifdef CONFIG_RFS_ACCEL
3793
3794 /**
3795  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3796  * @dev: Device on which the filter was set
3797  * @rxq_index: RX queue index
3798  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3799  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3800  *
3801  * Drivers that implement ndo_rx_flow_steer() should periodically call
3802  * this function for each installed filter and remove the filters for
3803  * which it returns %true.
3804  */
3805 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3806                          u32 flow_id, u16 filter_id)
3807 {
3808         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3809         struct rps_dev_flow_table *flow_table;
3810         struct rps_dev_flow *rflow;
3811         bool expire = true;
3812         unsigned int cpu;
3813
3814         rcu_read_lock();
3815         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3816         if (flow_table && flow_id <= flow_table->mask) {
3817                 rflow = &flow_table->flows[flow_id];
3818                 cpu = READ_ONCE(rflow->cpu);
3819                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3820                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3821                            rflow->last_qtail) <
3822                      (int)(10 * flow_table->mask)))
3823                         expire = false;
3824         }
3825         rcu_read_unlock();
3826         return expire;
3827 }
3828 EXPORT_SYMBOL(rps_may_expire_flow);
3829
3830 #endif /* CONFIG_RFS_ACCEL */
3831
3832 /* Called from hardirq (IPI) context */
3833 static void rps_trigger_softirq(void *data)
3834 {
3835         struct softnet_data *sd = data;
3836
3837         ____napi_schedule(sd, &sd->backlog);
3838         sd->received_rps++;
3839 }
3840
3841 #endif /* CONFIG_RPS */
3842
3843 /*
3844  * Check if this softnet_data structure is another cpu one
3845  * If yes, queue it to our IPI list and return 1
3846  * If no, return 0
3847  */
3848 static int rps_ipi_queued(struct softnet_data *sd)
3849 {
3850 #ifdef CONFIG_RPS
3851         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3852
3853         if (sd != mysd) {
3854                 sd->rps_ipi_next = mysd->rps_ipi_list;
3855                 mysd->rps_ipi_list = sd;
3856
3857                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3858                 return 1;
3859         }
3860 #endif /* CONFIG_RPS */
3861         return 0;
3862 }
3863
3864 #ifdef CONFIG_NET_FLOW_LIMIT
3865 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3866 #endif
3867
3868 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3869 {
3870 #ifdef CONFIG_NET_FLOW_LIMIT
3871         struct sd_flow_limit *fl;
3872         struct softnet_data *sd;
3873         unsigned int old_flow, new_flow;
3874
3875         if (qlen < (netdev_max_backlog >> 1))
3876                 return false;
3877
3878         sd = this_cpu_ptr(&softnet_data);
3879
3880         rcu_read_lock();
3881         fl = rcu_dereference(sd->flow_limit);
3882         if (fl) {
3883                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3884                 old_flow = fl->history[fl->history_head];
3885                 fl->history[fl->history_head] = new_flow;
3886
3887                 fl->history_head++;
3888                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3889
3890                 if (likely(fl->buckets[old_flow]))
3891                         fl->buckets[old_flow]--;
3892
3893                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3894                         fl->count++;
3895                         rcu_read_unlock();
3896                         return true;
3897                 }
3898         }
3899         rcu_read_unlock();
3900 #endif
3901         return false;
3902 }
3903
3904 /*
3905  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3906  * queue (may be a remote CPU queue).
3907  */
3908 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3909                               unsigned int *qtail)
3910 {
3911         struct softnet_data *sd;
3912         unsigned long flags;
3913         unsigned int qlen;
3914
3915         sd = &per_cpu(softnet_data, cpu);
3916
3917         local_irq_save(flags);
3918
3919         rps_lock(sd);
3920         if (!netif_running(skb->dev))
3921                 goto drop;
3922         qlen = skb_queue_len(&sd->input_pkt_queue);
3923         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3924                 if (qlen) {
3925 enqueue:
3926                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3927                         input_queue_tail_incr_save(sd, qtail);
3928                         rps_unlock(sd);
3929                         local_irq_restore(flags);
3930                         return NET_RX_SUCCESS;
3931                 }
3932
3933                 /* Schedule NAPI for backlog device
3934                  * We can use non atomic operation since we own the queue lock
3935                  */
3936                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3937                         if (!rps_ipi_queued(sd))
3938                                 ____napi_schedule(sd, &sd->backlog);
3939                 }
3940                 goto enqueue;
3941         }
3942
3943 drop:
3944         sd->dropped++;
3945         rps_unlock(sd);
3946
3947         local_irq_restore(flags);
3948
3949         atomic_long_inc(&skb->dev->rx_dropped);
3950         kfree_skb(skb);
3951         return NET_RX_DROP;
3952 }
3953
3954 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3955 {
3956         struct net_device *dev = skb->dev;
3957         struct netdev_rx_queue *rxqueue;
3958
3959         rxqueue = dev->_rx;
3960
3961         if (skb_rx_queue_recorded(skb)) {
3962                 u16 index = skb_get_rx_queue(skb);
3963
3964                 if (unlikely(index >= dev->real_num_rx_queues)) {
3965                         WARN_ONCE(dev->real_num_rx_queues > 1,
3966                                   "%s received packet on queue %u, but number "
3967                                   "of RX queues is %u\n",
3968                                   dev->name, index, dev->real_num_rx_queues);
3969
3970                         return rxqueue; /* Return first rxqueue */
3971                 }
3972                 rxqueue += index;
3973         }
3974         return rxqueue;
3975 }
3976
3977 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3978                                      struct bpf_prog *xdp_prog)
3979 {
3980         struct netdev_rx_queue *rxqueue;
3981         u32 metalen, act = XDP_DROP;
3982         struct xdp_buff xdp;
3983         void *orig_data;
3984         int hlen, off;
3985         u32 mac_len;
3986
3987         /* Reinjected packets coming from act_mirred or similar should
3988          * not get XDP generic processing.
3989          */
3990         if (skb_cloned(skb))
3991                 return XDP_PASS;
3992
3993         /* XDP packets must be linear and must have sufficient headroom
3994          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3995          * native XDP provides, thus we need to do it here as well.
3996          */
3997         if (skb_is_nonlinear(skb) ||
3998             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3999                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4000                 int troom = skb->tail + skb->data_len - skb->end;
4001
4002                 /* In case we have to go down the path and also linearize,
4003                  * then lets do the pskb_expand_head() work just once here.
4004                  */
4005                 if (pskb_expand_head(skb,
4006                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4007                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4008                         goto do_drop;
4009                 if (skb_linearize(skb))
4010                         goto do_drop;
4011         }
4012
4013         /* The XDP program wants to see the packet starting at the MAC
4014          * header.
4015          */
4016         mac_len = skb->data - skb_mac_header(skb);
4017         hlen = skb_headlen(skb) + mac_len;
4018         xdp.data = skb->data - mac_len;
4019         xdp.data_meta = xdp.data;
4020         xdp.data_end = xdp.data + hlen;
4021         xdp.data_hard_start = skb->data - skb_headroom(skb);
4022         orig_data = xdp.data;
4023
4024         rxqueue = netif_get_rxqueue(skb);
4025         xdp.rxq = &rxqueue->xdp_rxq;
4026
4027         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4028
4029         off = xdp.data - orig_data;
4030         if (off > 0)
4031                 __skb_pull(skb, off);
4032         else if (off < 0)
4033                 __skb_push(skb, -off);
4034         skb->mac_header += off;
4035
4036         switch (act) {
4037         case XDP_REDIRECT:
4038         case XDP_TX:
4039                 __skb_push(skb, mac_len);
4040                 break;
4041         case XDP_PASS:
4042                 metalen = xdp.data - xdp.data_meta;
4043                 if (metalen)
4044                         skb_metadata_set(skb, metalen);
4045                 break;
4046         default:
4047                 bpf_warn_invalid_xdp_action(act);
4048                 /* fall through */
4049         case XDP_ABORTED:
4050                 trace_xdp_exception(skb->dev, xdp_prog, act);
4051                 /* fall through */
4052         case XDP_DROP:
4053         do_drop:
4054                 kfree_skb(skb);
4055                 break;
4056         }
4057
4058         return act;
4059 }
4060
4061 /* When doing generic XDP we have to bypass the qdisc layer and the
4062  * network taps in order to match in-driver-XDP behavior.
4063  */
4064 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4065 {
4066         struct net_device *dev = skb->dev;
4067         struct netdev_queue *txq;
4068         bool free_skb = true;
4069         int cpu, rc;
4070
4071         txq = netdev_pick_tx(dev, skb, NULL);
4072         cpu = smp_processor_id();
4073         HARD_TX_LOCK(dev, txq, cpu);
4074         if (!netif_xmit_stopped(txq)) {
4075                 rc = netdev_start_xmit(skb, dev, txq, 0);
4076                 if (dev_xmit_complete(rc))
4077                         free_skb = false;
4078         }
4079         HARD_TX_UNLOCK(dev, txq);
4080         if (free_skb) {
4081                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4082                 kfree_skb(skb);
4083         }
4084 }
4085 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4086
4087 static struct static_key generic_xdp_needed __read_mostly;
4088
4089 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4090 {
4091         if (xdp_prog) {
4092                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4093                 int err;
4094
4095                 if (act != XDP_PASS) {
4096                         switch (act) {
4097                         case XDP_REDIRECT:
4098                                 err = xdp_do_generic_redirect(skb->dev, skb,
4099                                                               xdp_prog);
4100                                 if (err)
4101                                         goto out_redir;
4102                         /* fallthru to submit skb */
4103                         case XDP_TX:
4104                                 generic_xdp_tx(skb, xdp_prog);
4105                                 break;
4106                         }
4107                         return XDP_DROP;
4108                 }
4109         }
4110         return XDP_PASS;
4111 out_redir:
4112         kfree_skb(skb);
4113         return XDP_DROP;
4114 }
4115 EXPORT_SYMBOL_GPL(do_xdp_generic);
4116
4117 static int netif_rx_internal(struct sk_buff *skb)
4118 {
4119         int ret;
4120
4121         net_timestamp_check(netdev_tstamp_prequeue, skb);
4122
4123         trace_netif_rx(skb);
4124
4125         if (static_key_false(&generic_xdp_needed)) {
4126                 int ret;
4127
4128                 preempt_disable();
4129                 rcu_read_lock();
4130                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4131                 rcu_read_unlock();
4132                 preempt_enable();
4133
4134                 /* Consider XDP consuming the packet a success from
4135                  * the netdev point of view we do not want to count
4136                  * this as an error.
4137                  */
4138                 if (ret != XDP_PASS)
4139                         return NET_RX_SUCCESS;
4140         }
4141
4142 #ifdef CONFIG_RPS
4143         if (static_key_false(&rps_needed)) {
4144                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4145                 int cpu;
4146
4147                 preempt_disable();
4148                 rcu_read_lock();
4149
4150                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4151                 if (cpu < 0)
4152                         cpu = smp_processor_id();
4153
4154                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4155
4156                 rcu_read_unlock();
4157                 preempt_enable();
4158         } else
4159 #endif
4160         {
4161                 unsigned int qtail;
4162
4163                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4164                 put_cpu();
4165         }
4166         return ret;
4167 }
4168
4169 /**
4170  *      netif_rx        -       post buffer to the network code
4171  *      @skb: buffer to post
4172  *
4173  *      This function receives a packet from a device driver and queues it for
4174  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4175  *      may be dropped during processing for congestion control or by the
4176  *      protocol layers.
4177  *
4178  *      return values:
4179  *      NET_RX_SUCCESS  (no congestion)
4180  *      NET_RX_DROP     (packet was dropped)
4181  *
4182  */
4183
4184 int netif_rx(struct sk_buff *skb)
4185 {
4186         trace_netif_rx_entry(skb);
4187
4188         return netif_rx_internal(skb);
4189 }
4190 EXPORT_SYMBOL(netif_rx);
4191
4192 int netif_rx_ni(struct sk_buff *skb)
4193 {
4194         int err;
4195
4196         trace_netif_rx_ni_entry(skb);
4197
4198         preempt_disable();
4199         err = netif_rx_internal(skb);
4200         if (local_softirq_pending())
4201                 do_softirq();
4202         preempt_enable();
4203
4204         return err;
4205 }
4206 EXPORT_SYMBOL(netif_rx_ni);
4207
4208 static __latent_entropy void net_tx_action(struct softirq_action *h)
4209 {
4210         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4211
4212         if (sd->completion_queue) {
4213                 struct sk_buff *clist;
4214
4215                 local_irq_disable();
4216                 clist = sd->completion_queue;
4217                 sd->completion_queue = NULL;
4218                 local_irq_enable();
4219
4220                 while (clist) {
4221                         struct sk_buff *skb = clist;
4222
4223                         clist = clist->next;
4224
4225                         WARN_ON(refcount_read(&skb->users));
4226                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4227                                 trace_consume_skb(skb);
4228                         else
4229                                 trace_kfree_skb(skb, net_tx_action);
4230
4231                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4232                                 __kfree_skb(skb);
4233                         else
4234                                 __kfree_skb_defer(skb);
4235                 }
4236
4237                 __kfree_skb_flush();
4238         }
4239
4240         if (sd->output_queue) {
4241                 struct Qdisc *head;
4242
4243                 local_irq_disable();
4244                 head = sd->output_queue;
4245                 sd->output_queue = NULL;
4246                 sd->output_queue_tailp = &sd->output_queue;
4247                 local_irq_enable();
4248
4249                 while (head) {
4250                         struct Qdisc *q = head;
4251                         spinlock_t *root_lock = NULL;
4252
4253                         head = head->next_sched;
4254
4255                         if (!(q->flags & TCQ_F_NOLOCK)) {
4256                                 root_lock = qdisc_lock(q);
4257                                 spin_lock(root_lock);
4258                         }
4259                         /* We need to make sure head->next_sched is read
4260                          * before clearing __QDISC_STATE_SCHED
4261                          */
4262                         smp_mb__before_atomic();
4263                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4264                         qdisc_run(q);
4265                         if (root_lock)
4266                                 spin_unlock(root_lock);
4267                 }
4268         }
4269
4270         xfrm_dev_backlog(sd);
4271 }
4272
4273 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4274 /* This hook is defined here for ATM LANE */
4275 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4276                              unsigned char *addr) __read_mostly;
4277 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4278 #endif
4279
4280 static inline struct sk_buff *
4281 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4282                    struct net_device *orig_dev)
4283 {
4284 #ifdef CONFIG_NET_CLS_ACT
4285         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4286         struct tcf_result cl_res;
4287
4288         /* If there's at least one ingress present somewhere (so
4289          * we get here via enabled static key), remaining devices
4290          * that are not configured with an ingress qdisc will bail
4291          * out here.
4292          */
4293         if (!miniq)
4294                 return skb;
4295
4296         if (*pt_prev) {
4297                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4298                 *pt_prev = NULL;
4299         }
4300
4301         qdisc_skb_cb(skb)->pkt_len = skb->len;
4302         skb->tc_at_ingress = 1;
4303         mini_qdisc_bstats_cpu_update(miniq, skb);
4304
4305         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4306         case TC_ACT_OK:
4307         case TC_ACT_RECLASSIFY:
4308                 skb->tc_index = TC_H_MIN(cl_res.classid);
4309                 break;
4310         case TC_ACT_SHOT:
4311                 mini_qdisc_qstats_cpu_drop(miniq);
4312                 kfree_skb(skb);
4313                 return NULL;
4314         case TC_ACT_STOLEN:
4315         case TC_ACT_QUEUED:
4316         case TC_ACT_TRAP:
4317                 consume_skb(skb);
4318                 return NULL;
4319         case TC_ACT_REDIRECT:
4320                 /* skb_mac_header check was done by cls/act_bpf, so
4321                  * we can safely push the L2 header back before
4322                  * redirecting to another netdev
4323                  */
4324                 __skb_push(skb, skb->mac_len);
4325                 skb_do_redirect(skb);
4326                 return NULL;
4327         default:
4328                 break;
4329         }
4330 #endif /* CONFIG_NET_CLS_ACT */
4331         return skb;
4332 }
4333
4334 /**
4335  *      netdev_is_rx_handler_busy - check if receive handler is registered
4336  *      @dev: device to check
4337  *
4338  *      Check if a receive handler is already registered for a given device.
4339  *      Return true if there one.
4340  *
4341  *      The caller must hold the rtnl_mutex.
4342  */
4343 bool netdev_is_rx_handler_busy(struct net_device *dev)
4344 {
4345         ASSERT_RTNL();
4346         return dev && rtnl_dereference(dev->rx_handler);
4347 }
4348 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4349
4350 /**
4351  *      netdev_rx_handler_register - register receive handler
4352  *      @dev: device to register a handler for
4353  *      @rx_handler: receive handler to register
4354  *      @rx_handler_data: data pointer that is used by rx handler
4355  *
4356  *      Register a receive handler for a device. This handler will then be
4357  *      called from __netif_receive_skb. A negative errno code is returned
4358  *      on a failure.
4359  *
4360  *      The caller must hold the rtnl_mutex.
4361  *
4362  *      For a general description of rx_handler, see enum rx_handler_result.
4363  */
4364 int netdev_rx_handler_register(struct net_device *dev,
4365                                rx_handler_func_t *rx_handler,
4366                                void *rx_handler_data)
4367 {
4368         if (netdev_is_rx_handler_busy(dev))
4369                 return -EBUSY;
4370
4371         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4372                 return -EINVAL;
4373
4374         /* Note: rx_handler_data must be set before rx_handler */
4375         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4376         rcu_assign_pointer(dev->rx_handler, rx_handler);
4377
4378         return 0;
4379 }
4380 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4381
4382 /**
4383  *      netdev_rx_handler_unregister - unregister receive handler
4384  *      @dev: device to unregister a handler from
4385  *
4386  *      Unregister a receive handler from a device.
4387  *
4388  *      The caller must hold the rtnl_mutex.
4389  */
4390 void netdev_rx_handler_unregister(struct net_device *dev)
4391 {
4392
4393         ASSERT_RTNL();
4394         RCU_INIT_POINTER(dev->rx_handler, NULL);
4395         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4396          * section has a guarantee to see a non NULL rx_handler_data
4397          * as well.
4398          */
4399         synchronize_net();
4400         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4401 }
4402 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4403
4404 /*
4405  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4406  * the special handling of PFMEMALLOC skbs.
4407  */
4408 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4409 {
4410         switch (skb->protocol) {
4411         case htons(ETH_P_ARP):
4412         case htons(ETH_P_IP):
4413         case htons(ETH_P_IPV6):
4414         case htons(ETH_P_8021Q):
4415         case htons(ETH_P_8021AD):
4416                 return true;
4417         default:
4418                 return false;
4419         }
4420 }
4421
4422 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4423                              int *ret, struct net_device *orig_dev)
4424 {
4425 #ifdef CONFIG_NETFILTER_INGRESS
4426         if (nf_hook_ingress_active(skb)) {
4427                 int ingress_retval;
4428
4429                 if (*pt_prev) {
4430                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4431                         *pt_prev = NULL;
4432                 }
4433
4434                 rcu_read_lock();
4435                 ingress_retval = nf_hook_ingress(skb);
4436                 rcu_read_unlock();
4437                 return ingress_retval;
4438         }
4439 #endif /* CONFIG_NETFILTER_INGRESS */
4440         return 0;
4441 }
4442
4443 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4444 {
4445         struct packet_type *ptype, *pt_prev;
4446         rx_handler_func_t *rx_handler;
4447         struct net_device *orig_dev;
4448         bool deliver_exact = false;
4449         int ret = NET_RX_DROP;
4450         __be16 type;
4451
4452         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4453
4454         trace_netif_receive_skb(skb);
4455
4456         orig_dev = skb->dev;
4457
4458         skb_reset_network_header(skb);
4459         if (!skb_transport_header_was_set(skb))
4460                 skb_reset_transport_header(skb);
4461         skb_reset_mac_len(skb);
4462
4463         pt_prev = NULL;
4464
4465 another_round:
4466         skb->skb_iif = skb->dev->ifindex;
4467
4468         __this_cpu_inc(softnet_data.processed);
4469
4470         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4471             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4472                 skb = skb_vlan_untag(skb);
4473                 if (unlikely(!skb))
4474                         goto out;
4475         }
4476
4477         if (skb_skip_tc_classify(skb))
4478                 goto skip_classify;
4479
4480         if (pfmemalloc)
4481                 goto skip_taps;
4482
4483         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4484                 if (pt_prev)
4485                         ret = deliver_skb(skb, pt_prev, orig_dev);
4486                 pt_prev = ptype;
4487         }
4488
4489         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4490                 if (pt_prev)
4491                         ret = deliver_skb(skb, pt_prev, orig_dev);
4492                 pt_prev = ptype;
4493         }
4494
4495 skip_taps:
4496 #ifdef CONFIG_NET_INGRESS
4497         if (static_key_false(&ingress_needed)) {
4498                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4499                 if (!skb)
4500                         goto out;
4501
4502                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4503                         goto out;
4504         }
4505 #endif
4506         skb_reset_tc(skb);
4507 skip_classify:
4508         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4509                 goto drop;
4510
4511         if (skb_vlan_tag_present(skb)) {
4512                 if (pt_prev) {
4513                         ret = deliver_skb(skb, pt_prev, orig_dev);
4514                         pt_prev = NULL;
4515                 }
4516                 if (vlan_do_receive(&skb))
4517                         goto another_round;
4518                 else if (unlikely(!skb))
4519                         goto out;
4520         }
4521
4522         rx_handler = rcu_dereference(skb->dev->rx_handler);
4523         if (rx_handler) {
4524                 if (pt_prev) {
4525                         ret = deliver_skb(skb, pt_prev, orig_dev);
4526                         pt_prev = NULL;
4527                 }
4528                 switch (rx_handler(&skb)) {
4529                 case RX_HANDLER_CONSUMED:
4530                         ret = NET_RX_SUCCESS;
4531                         goto out;
4532                 case RX_HANDLER_ANOTHER:
4533                         goto another_round;
4534                 case RX_HANDLER_EXACT:
4535                         deliver_exact = true;
4536                 case RX_HANDLER_PASS:
4537                         break;
4538                 default:
4539                         BUG();
4540                 }
4541         }
4542
4543         if (unlikely(skb_vlan_tag_present(skb))) {
4544                 if (skb_vlan_tag_get_id(skb))
4545                         skb->pkt_type = PACKET_OTHERHOST;
4546                 /* Note: we might in the future use prio bits
4547                  * and set skb->priority like in vlan_do_receive()
4548                  * For the time being, just ignore Priority Code Point
4549                  */
4550                 skb->vlan_tci = 0;
4551         }
4552
4553         type = skb->protocol;
4554
4555         /* deliver only exact match when indicated */
4556         if (likely(!deliver_exact)) {
4557                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4558                                        &ptype_base[ntohs(type) &
4559                                                    PTYPE_HASH_MASK]);
4560         }
4561
4562         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4563                                &orig_dev->ptype_specific);
4564
4565         if (unlikely(skb->dev != orig_dev)) {
4566                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4567                                        &skb->dev->ptype_specific);
4568         }
4569
4570         if (pt_prev) {
4571                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4572                         goto drop;
4573                 else
4574                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4575         } else {
4576 drop:
4577                 if (!deliver_exact)
4578                         atomic_long_inc(&skb->dev->rx_dropped);
4579                 else
4580                         atomic_long_inc(&skb->dev->rx_nohandler);
4581                 kfree_skb(skb);
4582                 /* Jamal, now you will not able to escape explaining
4583                  * me how you were going to use this. :-)
4584                  */
4585                 ret = NET_RX_DROP;
4586         }
4587
4588 out:
4589         return ret;
4590 }
4591
4592 /**
4593  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4594  *      @skb: buffer to process
4595  *
4596  *      More direct receive version of netif_receive_skb().  It should
4597  *      only be used by callers that have a need to skip RPS and Generic XDP.
4598  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4599  *
4600  *      This function may only be called from softirq context and interrupts
4601  *      should be enabled.
4602  *
4603  *      Return values (usually ignored):
4604  *      NET_RX_SUCCESS: no congestion
4605  *      NET_RX_DROP: packet was dropped
4606  */
4607 int netif_receive_skb_core(struct sk_buff *skb)
4608 {
4609         int ret;
4610
4611         rcu_read_lock();
4612         ret = __netif_receive_skb_core(skb, false);
4613         rcu_read_unlock();
4614
4615         return ret;
4616 }
4617 EXPORT_SYMBOL(netif_receive_skb_core);
4618
4619 static int __netif_receive_skb(struct sk_buff *skb)
4620 {
4621         int ret;
4622
4623         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4624                 unsigned int noreclaim_flag;
4625
4626                 /*
4627                  * PFMEMALLOC skbs are special, they should
4628                  * - be delivered to SOCK_MEMALLOC sockets only
4629                  * - stay away from userspace
4630                  * - have bounded memory usage
4631                  *
4632                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4633                  * context down to all allocation sites.
4634                  */
4635                 noreclaim_flag = memalloc_noreclaim_save();
4636                 ret = __netif_receive_skb_core(skb, true);
4637                 memalloc_noreclaim_restore(noreclaim_flag);
4638         } else
4639                 ret = __netif_receive_skb_core(skb, false);
4640
4641         return ret;
4642 }
4643
4644 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4645 {
4646         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4647         struct bpf_prog *new = xdp->prog;
4648         int ret = 0;
4649
4650         switch (xdp->command) {
4651         case XDP_SETUP_PROG:
4652                 rcu_assign_pointer(dev->xdp_prog, new);
4653                 if (old)
4654                         bpf_prog_put(old);
4655
4656                 if (old && !new) {
4657                         static_key_slow_dec(&generic_xdp_needed);
4658                 } else if (new && !old) {
4659                         static_key_slow_inc(&generic_xdp_needed);
4660                         dev_disable_lro(dev);
4661                         dev_disable_gro_hw(dev);
4662                 }
4663                 break;
4664
4665         case XDP_QUERY_PROG:
4666                 xdp->prog_attached = !!old;
4667                 xdp->prog_id = old ? old->aux->id : 0;
4668                 break;
4669
4670         default:
4671                 ret = -EINVAL;
4672                 break;
4673         }
4674
4675         return ret;
4676 }
4677
4678 static int netif_receive_skb_internal(struct sk_buff *skb)
4679 {
4680         int ret;
4681
4682         net_timestamp_check(netdev_tstamp_prequeue, skb);
4683
4684         if (skb_defer_rx_timestamp(skb))
4685                 return NET_RX_SUCCESS;
4686
4687         if (static_key_false(&generic_xdp_needed)) {
4688                 int ret;
4689
4690                 preempt_disable();
4691                 rcu_read_lock();
4692                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4693                 rcu_read_unlock();
4694                 preempt_enable();
4695
4696                 if (ret != XDP_PASS)
4697                         return NET_RX_DROP;
4698         }
4699
4700         rcu_read_lock();
4701 #ifdef CONFIG_RPS
4702         if (static_key_false(&rps_needed)) {
4703                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4704                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4705
4706                 if (cpu >= 0) {
4707                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4708                         rcu_read_unlock();
4709                         return ret;
4710                 }
4711         }
4712 #endif
4713         ret = __netif_receive_skb(skb);
4714         rcu_read_unlock();
4715         return ret;
4716 }
4717
4718 /**
4719  *      netif_receive_skb - process receive buffer from network
4720  *      @skb: buffer to process
4721  *
4722  *      netif_receive_skb() is the main receive data processing function.
4723  *      It always succeeds. The buffer may be dropped during processing
4724  *      for congestion control or by the protocol layers.
4725  *
4726  *      This function may only be called from softirq context and interrupts
4727  *      should be enabled.
4728  *
4729  *      Return values (usually ignored):
4730  *      NET_RX_SUCCESS: no congestion
4731  *      NET_RX_DROP: packet was dropped
4732  */
4733 int netif_receive_skb(struct sk_buff *skb)
4734 {
4735         trace_netif_receive_skb_entry(skb);
4736
4737         return netif_receive_skb_internal(skb);
4738 }
4739 EXPORT_SYMBOL(netif_receive_skb);
4740
4741 DEFINE_PER_CPU(struct work_struct, flush_works);
4742
4743 /* Network device is going away, flush any packets still pending */
4744 static void flush_backlog(struct work_struct *work)
4745 {
4746         struct sk_buff *skb, *tmp;
4747         struct softnet_data *sd;
4748
4749         local_bh_disable();
4750         sd = this_cpu_ptr(&softnet_data);
4751
4752         local_irq_disable();
4753         rps_lock(sd);
4754         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4755                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4756                         __skb_unlink(skb, &sd->input_pkt_queue);
4757                         kfree_skb(skb);
4758                         input_queue_head_incr(sd);
4759                 }
4760         }
4761         rps_unlock(sd);
4762         local_irq_enable();
4763
4764         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4765                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4766                         __skb_unlink(skb, &sd->process_queue);
4767                         kfree_skb(skb);
4768                         input_queue_head_incr(sd);
4769                 }
4770         }
4771         local_bh_enable();
4772 }
4773
4774 static void flush_all_backlogs(void)
4775 {
4776         unsigned int cpu;
4777
4778         get_online_cpus();
4779
4780         for_each_online_cpu(cpu)
4781                 queue_work_on(cpu, system_highpri_wq,
4782                               per_cpu_ptr(&flush_works, cpu));
4783
4784         for_each_online_cpu(cpu)
4785                 flush_work(per_cpu_ptr(&flush_works, cpu));
4786
4787         put_online_cpus();
4788 }
4789
4790 static int napi_gro_complete(struct sk_buff *skb)
4791 {
4792         struct packet_offload *ptype;
4793         __be16 type = skb->protocol;
4794         struct list_head *head = &offload_base;
4795         int err = -ENOENT;
4796
4797         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4798
4799         if (NAPI_GRO_CB(skb)->count == 1) {
4800                 skb_shinfo(skb)->gso_size = 0;
4801                 goto out;
4802         }
4803
4804         rcu_read_lock();
4805         list_for_each_entry_rcu(ptype, head, list) {
4806                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4807                         continue;
4808
4809                 err = ptype->callbacks.gro_complete(skb, 0);
4810                 break;
4811         }
4812         rcu_read_unlock();
4813
4814         if (err) {
4815                 WARN_ON(&ptype->list == head);
4816                 kfree_skb(skb);
4817                 return NET_RX_SUCCESS;
4818         }
4819
4820 out:
4821         return netif_receive_skb_internal(skb);
4822 }
4823
4824 /* napi->gro_list contains packets ordered by age.
4825  * youngest packets at the head of it.
4826  * Complete skbs in reverse order to reduce latencies.
4827  */
4828 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4829 {
4830         struct sk_buff *skb, *prev = NULL;
4831
4832         /* scan list and build reverse chain */
4833         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4834                 skb->prev = prev;
4835                 prev = skb;
4836         }
4837
4838         for (skb = prev; skb; skb = prev) {
4839                 skb->next = NULL;
4840
4841                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4842                         return;
4843
4844                 prev = skb->prev;
4845                 napi_gro_complete(skb);
4846                 napi->gro_count--;
4847         }
4848
4849         napi->gro_list = NULL;
4850 }
4851 EXPORT_SYMBOL(napi_gro_flush);
4852
4853 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4854 {
4855         struct sk_buff *p;
4856         unsigned int maclen = skb->dev->hard_header_len;
4857         u32 hash = skb_get_hash_raw(skb);
4858
4859         for (p = napi->gro_list; p; p = p->next) {
4860                 unsigned long diffs;
4861
4862                 NAPI_GRO_CB(p)->flush = 0;
4863
4864                 if (hash != skb_get_hash_raw(p)) {
4865                         NAPI_GRO_CB(p)->same_flow = 0;
4866                         continue;
4867                 }
4868
4869                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4870                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4871                 diffs |= skb_metadata_dst_cmp(p, skb);
4872                 diffs |= skb_metadata_differs(p, skb);
4873                 if (maclen == ETH_HLEN)
4874                         diffs |= compare_ether_header(skb_mac_header(p),
4875                                                       skb_mac_header(skb));
4876                 else if (!diffs)
4877                         diffs = memcmp(skb_mac_header(p),
4878                                        skb_mac_header(skb),
4879                                        maclen);
4880                 NAPI_GRO_CB(p)->same_flow = !diffs;
4881         }
4882 }
4883
4884 static void skb_gro_reset_offset(struct sk_buff *skb)
4885 {
4886         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4887         const skb_frag_t *frag0 = &pinfo->frags[0];
4888
4889         NAPI_GRO_CB(skb)->data_offset = 0;
4890         NAPI_GRO_CB(skb)->frag0 = NULL;
4891         NAPI_GRO_CB(skb)->frag0_len = 0;
4892
4893         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4894             pinfo->nr_frags &&
4895             !PageHighMem(skb_frag_page(frag0))) {
4896                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4897                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4898                                                     skb_frag_size(frag0),
4899                                                     skb->end - skb->tail);
4900         }
4901 }
4902
4903 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4904 {
4905         struct skb_shared_info *pinfo = skb_shinfo(skb);
4906
4907         BUG_ON(skb->end - skb->tail < grow);
4908
4909         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4910
4911         skb->data_len -= grow;
4912         skb->tail += grow;
4913
4914         pinfo->frags[0].page_offset += grow;
4915         skb_frag_size_sub(&pinfo->frags[0], grow);
4916
4917         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4918                 skb_frag_unref(skb, 0);
4919                 memmove(pinfo->frags, pinfo->frags + 1,
4920                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4921         }
4922 }
4923
4924 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4925 {
4926         struct sk_buff **pp = NULL;
4927         struct packet_offload *ptype;
4928         __be16 type = skb->protocol;
4929         struct list_head *head = &offload_base;
4930         int same_flow;
4931         enum gro_result ret;
4932         int grow;
4933
4934         if (netif_elide_gro(skb->dev))
4935                 goto normal;
4936
4937         gro_list_prepare(napi, skb);
4938
4939         rcu_read_lock();
4940         list_for_each_entry_rcu(ptype, head, list) {
4941                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4942                         continue;
4943
4944                 skb_set_network_header(skb, skb_gro_offset(skb));
4945                 skb_reset_mac_len(skb);
4946                 NAPI_GRO_CB(skb)->same_flow = 0;
4947                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4948                 NAPI_GRO_CB(skb)->free = 0;
4949                 NAPI_GRO_CB(skb)->encap_mark = 0;
4950                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4951                 NAPI_GRO_CB(skb)->is_fou = 0;
4952                 NAPI_GRO_CB(skb)->is_atomic = 1;
4953                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4954
4955                 /* Setup for GRO checksum validation */
4956                 switch (skb->ip_summed) {
4957                 case CHECKSUM_COMPLETE:
4958                         NAPI_GRO_CB(skb)->csum = skb->csum;
4959                         NAPI_GRO_CB(skb)->csum_valid = 1;
4960                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4961                         break;
4962                 case CHECKSUM_UNNECESSARY:
4963                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4964                         NAPI_GRO_CB(skb)->csum_valid = 0;
4965                         break;
4966                 default:
4967                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4968                         NAPI_GRO_CB(skb)->csum_valid = 0;
4969                 }
4970
4971                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4972                 break;
4973         }
4974         rcu_read_unlock();
4975
4976         if (&ptype->list == head)
4977                 goto normal;
4978
4979         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4980                 ret = GRO_CONSUMED;
4981                 goto ok;
4982         }
4983
4984         same_flow = NAPI_GRO_CB(skb)->same_flow;
4985         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4986
4987         if (pp) {
4988                 struct sk_buff *nskb = *pp;
4989
4990                 *pp = nskb->next;
4991                 nskb->next = NULL;
4992                 napi_gro_complete(nskb);
4993                 napi->gro_count--;
4994         }
4995
4996         if (same_flow)
4997                 goto ok;
4998
4999         if (NAPI_GRO_CB(skb)->flush)
5000                 goto normal;
5001
5002         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5003                 struct sk_buff *nskb = napi->gro_list;
5004
5005                 /* locate the end of the list to select the 'oldest' flow */
5006                 while (nskb->next) {
5007                         pp = &nskb->next;
5008                         nskb = *pp;
5009                 }
5010                 *pp = NULL;
5011                 nskb->next = NULL;
5012                 napi_gro_complete(nskb);
5013         } else {
5014                 napi->gro_count++;
5015         }
5016         NAPI_GRO_CB(skb)->count = 1;
5017         NAPI_GRO_CB(skb)->age = jiffies;
5018         NAPI_GRO_CB(skb)->last = skb;
5019         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5020         skb->next = napi->gro_list;
5021         napi->gro_list = skb;
5022         ret = GRO_HELD;
5023
5024 pull:
5025         grow = skb_gro_offset(skb) - skb_headlen(skb);
5026         if (grow > 0)
5027                 gro_pull_from_frag0(skb, grow);
5028 ok:
5029         return ret;
5030
5031 normal:
5032         ret = GRO_NORMAL;
5033         goto pull;
5034 }
5035
5036 struct packet_offload *gro_find_receive_by_type(__be16 type)
5037 {
5038         struct list_head *offload_head = &offload_base;
5039         struct packet_offload *ptype;
5040
5041         list_for_each_entry_rcu(ptype, offload_head, list) {
5042                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5043                         continue;
5044                 return ptype;
5045         }
5046         return NULL;
5047 }
5048 EXPORT_SYMBOL(gro_find_receive_by_type);
5049
5050 struct packet_offload *gro_find_complete_by_type(__be16 type)
5051 {
5052         struct list_head *offload_head = &offload_base;
5053         struct packet_offload *ptype;
5054
5055         list_for_each_entry_rcu(ptype, offload_head, list) {
5056                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5057                         continue;
5058                 return ptype;
5059         }
5060         return NULL;
5061 }
5062 EXPORT_SYMBOL(gro_find_complete_by_type);
5063
5064 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5065 {
5066         skb_dst_drop(skb);
5067         secpath_reset(skb);
5068         kmem_cache_free(skbuff_head_cache, skb);
5069 }
5070
5071 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5072 {
5073         switch (ret) {
5074         case GRO_NORMAL:
5075                 if (netif_receive_skb_internal(skb))
5076                         ret = GRO_DROP;
5077                 break;
5078
5079         case GRO_DROP:
5080                 kfree_skb(skb);
5081                 break;
5082
5083         case GRO_MERGED_FREE:
5084                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5085                         napi_skb_free_stolen_head(skb);
5086                 else
5087                         __kfree_skb(skb);
5088                 break;
5089
5090         case GRO_HELD:
5091         case GRO_MERGED:
5092         case GRO_CONSUMED:
5093                 break;
5094         }
5095
5096         return ret;
5097 }
5098
5099 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5100 {
5101         skb_mark_napi_id(skb, napi);
5102         trace_napi_gro_receive_entry(skb);
5103
5104         skb_gro_reset_offset(skb);
5105
5106         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5107 }
5108 EXPORT_SYMBOL(napi_gro_receive);
5109
5110 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5111 {
5112         if (unlikely(skb->pfmemalloc)) {
5113                 consume_skb(skb);
5114                 return;
5115         }
5116         __skb_pull(skb, skb_headlen(skb));
5117         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5118         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5119         skb->vlan_tci = 0;
5120         skb->dev = napi->dev;
5121         skb->skb_iif = 0;
5122         skb->encapsulation = 0;
5123         skb_shinfo(skb)->gso_type = 0;
5124         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5125         secpath_reset(skb);
5126
5127         napi->skb = skb;
5128 }
5129
5130 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5131 {
5132         struct sk_buff *skb = napi->skb;
5133
5134         if (!skb) {
5135                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5136                 if (skb) {
5137                         napi->skb = skb;
5138                         skb_mark_napi_id(skb, napi);
5139                 }
5140         }
5141         return skb;
5142 }
5143 EXPORT_SYMBOL(napi_get_frags);
5144
5145 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5146                                       struct sk_buff *skb,
5147                                       gro_result_t ret)
5148 {
5149         switch (ret) {
5150         case GRO_NORMAL:
5151         case GRO_HELD:
5152                 __skb_push(skb, ETH_HLEN);
5153                 skb->protocol = eth_type_trans(skb, skb->dev);
5154                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5155                         ret = GRO_DROP;
5156                 break;
5157
5158         case GRO_DROP:
5159                 napi_reuse_skb(napi, skb);
5160                 break;
5161
5162         case GRO_MERGED_FREE:
5163                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5164                         napi_skb_free_stolen_head(skb);
5165                 else
5166                         napi_reuse_skb(napi, skb);
5167                 break;
5168
5169         case GRO_MERGED:
5170         case GRO_CONSUMED:
5171                 break;
5172         }
5173
5174         return ret;
5175 }
5176
5177 /* Upper GRO stack assumes network header starts at gro_offset=0
5178  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5179  * We copy ethernet header into skb->data to have a common layout.
5180  */
5181 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5182 {
5183         struct sk_buff *skb = napi->skb;
5184         const struct ethhdr *eth;
5185         unsigned int hlen = sizeof(*eth);
5186
5187         napi->skb = NULL;
5188
5189         skb_reset_mac_header(skb);
5190         skb_gro_reset_offset(skb);
5191
5192         eth = skb_gro_header_fast(skb, 0);
5193         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5194                 eth = skb_gro_header_slow(skb, hlen, 0);
5195                 if (unlikely(!eth)) {
5196                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5197                                              __func__, napi->dev->name);
5198                         napi_reuse_skb(napi, skb);
5199                         return NULL;
5200                 }
5201         } else {
5202                 gro_pull_from_frag0(skb, hlen);
5203                 NAPI_GRO_CB(skb)->frag0 += hlen;
5204                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5205         }
5206         __skb_pull(skb, hlen);
5207
5208         /*
5209          * This works because the only protocols we care about don't require
5210          * special handling.
5211          * We'll fix it up properly in napi_frags_finish()
5212          */
5213         skb->protocol = eth->h_proto;
5214
5215         return skb;
5216 }
5217
5218 gro_result_t napi_gro_frags(struct napi_struct *napi)
5219 {
5220         struct sk_buff *skb = napi_frags_skb(napi);
5221
5222         if (!skb)
5223                 return GRO_DROP;
5224
5225         trace_napi_gro_frags_entry(skb);
5226
5227         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5228 }
5229 EXPORT_SYMBOL(napi_gro_frags);
5230
5231 /* Compute the checksum from gro_offset and return the folded value
5232  * after adding in any pseudo checksum.
5233  */
5234 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5235 {
5236         __wsum wsum;
5237         __sum16 sum;
5238
5239         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5240
5241         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5242         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5243         if (likely(!sum)) {
5244                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5245                     !skb->csum_complete_sw)
5246                         netdev_rx_csum_fault(skb->dev);
5247         }
5248
5249         NAPI_GRO_CB(skb)->csum = wsum;
5250         NAPI_GRO_CB(skb)->csum_valid = 1;
5251
5252         return sum;
5253 }
5254 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5255
5256 static void net_rps_send_ipi(struct softnet_data *remsd)
5257 {
5258 #ifdef CONFIG_RPS
5259         while (remsd) {
5260                 struct softnet_data *next = remsd->rps_ipi_next;
5261
5262                 if (cpu_online(remsd->cpu))
5263                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5264                 remsd = next;
5265         }
5266 #endif
5267 }
5268
5269 /*
5270  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5271  * Note: called with local irq disabled, but exits with local irq enabled.
5272  */
5273 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5274 {
5275 #ifdef CONFIG_RPS
5276         struct softnet_data *remsd = sd->rps_ipi_list;
5277
5278         if (remsd) {
5279                 sd->rps_ipi_list = NULL;
5280
5281                 local_irq_enable();
5282
5283                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5284                 net_rps_send_ipi(remsd);
5285         } else
5286 #endif
5287                 local_irq_enable();
5288 }
5289
5290 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5291 {
5292 #ifdef CONFIG_RPS
5293         return sd->rps_ipi_list != NULL;
5294 #else
5295         return false;
5296 #endif
5297 }
5298
5299 static int process_backlog(struct napi_struct *napi, int quota)
5300 {
5301         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5302         bool again = true;
5303         int work = 0;
5304
5305         /* Check if we have pending ipi, its better to send them now,
5306          * not waiting net_rx_action() end.
5307          */
5308         if (sd_has_rps_ipi_waiting(sd)) {
5309                 local_irq_disable();
5310                 net_rps_action_and_irq_enable(sd);
5311         }
5312
5313         napi->weight = dev_rx_weight;
5314         while (again) {
5315                 struct sk_buff *skb;
5316
5317                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5318                         rcu_read_lock();
5319                         __netif_receive_skb(skb);
5320                         rcu_read_unlock();
5321                         input_queue_head_incr(sd);
5322                         if (++work >= quota)
5323                                 return work;
5324
5325                 }
5326
5327                 local_irq_disable();
5328                 rps_lock(sd);
5329                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5330                         /*
5331                          * Inline a custom version of __napi_complete().
5332                          * only current cpu owns and manipulates this napi,
5333                          * and NAPI_STATE_SCHED is the only possible flag set
5334                          * on backlog.
5335                          * We can use a plain write instead of clear_bit(),
5336                          * and we dont need an smp_mb() memory barrier.
5337                          */
5338                         napi->state = 0;
5339                         again = false;
5340                 } else {
5341                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5342                                                    &sd->process_queue);
5343                 }
5344                 rps_unlock(sd);
5345                 local_irq_enable();
5346         }
5347
5348         return work;
5349 }
5350
5351 /**
5352  * __napi_schedule - schedule for receive
5353  * @n: entry to schedule
5354  *
5355  * The entry's receive function will be scheduled to run.
5356  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5357  */
5358 void __napi_schedule(struct napi_struct *n)
5359 {
5360         unsigned long flags;
5361
5362         local_irq_save(flags);
5363         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5364         local_irq_restore(flags);
5365 }
5366 EXPORT_SYMBOL(__napi_schedule);
5367
5368 /**
5369  *      napi_schedule_prep - check if napi can be scheduled
5370  *      @n: napi context
5371  *
5372  * Test if NAPI routine is already running, and if not mark
5373  * it as running.  This is used as a condition variable
5374  * insure only one NAPI poll instance runs.  We also make
5375  * sure there is no pending NAPI disable.
5376  */
5377 bool napi_schedule_prep(struct napi_struct *n)
5378 {
5379         unsigned long val, new;
5380
5381         do {
5382                 val = READ_ONCE(n->state);
5383                 if (unlikely(val & NAPIF_STATE_DISABLE))
5384                         return false;
5385                 new = val | NAPIF_STATE_SCHED;
5386
5387                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5388                  * This was suggested by Alexander Duyck, as compiler
5389                  * emits better code than :
5390                  * if (val & NAPIF_STATE_SCHED)
5391                  *     new |= NAPIF_STATE_MISSED;
5392                  */
5393                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5394                                                    NAPIF_STATE_MISSED;
5395         } while (cmpxchg(&n->state, val, new) != val);
5396
5397         return !(val & NAPIF_STATE_SCHED);
5398 }
5399 EXPORT_SYMBOL(napi_schedule_prep);
5400
5401 /**
5402  * __napi_schedule_irqoff - schedule for receive
5403  * @n: entry to schedule
5404  *
5405  * Variant of __napi_schedule() assuming hard irqs are masked
5406  */
5407 void __napi_schedule_irqoff(struct napi_struct *n)
5408 {
5409         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5410 }
5411 EXPORT_SYMBOL(__napi_schedule_irqoff);
5412
5413 bool napi_complete_done(struct napi_struct *n, int work_done)
5414 {
5415         unsigned long flags, val, new;
5416
5417         /*
5418          * 1) Don't let napi dequeue from the cpu poll list
5419          *    just in case its running on a different cpu.
5420          * 2) If we are busy polling, do nothing here, we have
5421          *    the guarantee we will be called later.
5422          */
5423         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5424                                  NAPIF_STATE_IN_BUSY_POLL)))
5425                 return false;
5426
5427         if (n->gro_list) {
5428                 unsigned long timeout = 0;
5429
5430                 if (work_done)
5431                         timeout = n->dev->gro_flush_timeout;
5432
5433                 if (timeout)
5434                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5435                                       HRTIMER_MODE_REL_PINNED);
5436                 else
5437                         napi_gro_flush(n, false);
5438         }
5439         if (unlikely(!list_empty(&n->poll_list))) {
5440                 /* If n->poll_list is not empty, we need to mask irqs */
5441                 local_irq_save(flags);
5442                 list_del_init(&n->poll_list);
5443                 local_irq_restore(flags);
5444         }
5445
5446         do {
5447                 val = READ_ONCE(n->state);
5448
5449                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5450
5451                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5452
5453                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5454                  * because we will call napi->poll() one more time.
5455                  * This C code was suggested by Alexander Duyck to help gcc.
5456                  */
5457                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5458                                                     NAPIF_STATE_SCHED;
5459         } while (cmpxchg(&n->state, val, new) != val);
5460
5461         if (unlikely(val & NAPIF_STATE_MISSED)) {
5462                 __napi_schedule(n);
5463                 return false;
5464         }
5465
5466         return true;
5467 }
5468 EXPORT_SYMBOL(napi_complete_done);
5469
5470 /* must be called under rcu_read_lock(), as we dont take a reference */
5471 static struct napi_struct *napi_by_id(unsigned int napi_id)
5472 {
5473         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5474         struct napi_struct *napi;
5475
5476         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5477                 if (napi->napi_id == napi_id)
5478                         return napi;
5479
5480         return NULL;
5481 }
5482
5483 #if defined(CONFIG_NET_RX_BUSY_POLL)
5484
5485 #define BUSY_POLL_BUDGET 8
5486
5487 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5488 {
5489         int rc;
5490
5491         /* Busy polling means there is a high chance device driver hard irq
5492          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5493          * set in napi_schedule_prep().
5494          * Since we are about to call napi->poll() once more, we can safely
5495          * clear NAPI_STATE_MISSED.
5496          *
5497          * Note: x86 could use a single "lock and ..." instruction
5498          * to perform these two clear_bit()
5499          */
5500         clear_bit(NAPI_STATE_MISSED, &napi->state);
5501         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5502
5503         local_bh_disable();
5504
5505         /* All we really want here is to re-enable device interrupts.
5506          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5507          */
5508         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5509         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5510         netpoll_poll_unlock(have_poll_lock);
5511         if (rc == BUSY_POLL_BUDGET)
5512                 __napi_schedule(napi);
5513         local_bh_enable();
5514 }
5515
5516 void napi_busy_loop(unsigned int napi_id,
5517                     bool (*loop_end)(void *, unsigned long),
5518                     void *loop_end_arg)
5519 {
5520         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5521         int (*napi_poll)(struct napi_struct *napi, int budget);
5522         void *have_poll_lock = NULL;
5523         struct napi_struct *napi;
5524
5525 restart:
5526         napi_poll = NULL;
5527
5528         rcu_read_lock();
5529
5530         napi = napi_by_id(napi_id);
5531         if (!napi)
5532                 goto out;
5533
5534         preempt_disable();
5535         for (;;) {
5536                 int work = 0;
5537
5538                 local_bh_disable();
5539                 if (!napi_poll) {
5540                         unsigned long val = READ_ONCE(napi->state);
5541
5542                         /* If multiple threads are competing for this napi,
5543                          * we avoid dirtying napi->state as much as we can.
5544                          */
5545                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5546                                    NAPIF_STATE_IN_BUSY_POLL))
5547                                 goto count;
5548                         if (cmpxchg(&napi->state, val,
5549                                     val | NAPIF_STATE_IN_BUSY_POLL |
5550                                           NAPIF_STATE_SCHED) != val)
5551                                 goto count;
5552                         have_poll_lock = netpoll_poll_lock(napi);
5553                         napi_poll = napi->poll;
5554                 }
5555                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5556                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5557 count:
5558                 if (work > 0)
5559                         __NET_ADD_STATS(dev_net(napi->dev),
5560                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5561                 local_bh_enable();
5562
5563                 if (!loop_end || loop_end(loop_end_arg, start_time))
5564                         break;
5565
5566                 if (unlikely(need_resched())) {
5567                         if (napi_poll)
5568                                 busy_poll_stop(napi, have_poll_lock);
5569                         preempt_enable();
5570                         rcu_read_unlock();
5571                         cond_resched();
5572                         if (loop_end(loop_end_arg, start_time))
5573                                 return;
5574                         goto restart;
5575                 }
5576                 cpu_relax();
5577         }
5578         if (napi_poll)
5579                 busy_poll_stop(napi, have_poll_lock);
5580         preempt_enable();
5581 out:
5582         rcu_read_unlock();
5583 }
5584 EXPORT_SYMBOL(napi_busy_loop);
5585
5586 #endif /* CONFIG_NET_RX_BUSY_POLL */
5587
5588 static void napi_hash_add(struct napi_struct *napi)
5589 {
5590         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5591             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5592                 return;
5593
5594         spin_lock(&napi_hash_lock);
5595
5596         /* 0..NR_CPUS range is reserved for sender_cpu use */
5597         do {
5598                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5599                         napi_gen_id = MIN_NAPI_ID;
5600         } while (napi_by_id(napi_gen_id));
5601         napi->napi_id = napi_gen_id;
5602
5603         hlist_add_head_rcu(&napi->napi_hash_node,
5604                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5605
5606         spin_unlock(&napi_hash_lock);
5607 }
5608
5609 /* Warning : caller is responsible to make sure rcu grace period
5610  * is respected before freeing memory containing @napi
5611  */
5612 bool napi_hash_del(struct napi_struct *napi)
5613 {
5614         bool rcu_sync_needed = false;
5615
5616         spin_lock(&napi_hash_lock);
5617
5618         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5619                 rcu_sync_needed = true;
5620                 hlist_del_rcu(&napi->napi_hash_node);
5621         }
5622         spin_unlock(&napi_hash_lock);
5623         return rcu_sync_needed;
5624 }
5625 EXPORT_SYMBOL_GPL(napi_hash_del);
5626
5627 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5628 {
5629         struct napi_struct *napi;
5630
5631         napi = container_of(timer, struct napi_struct, timer);
5632
5633         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5634          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5635          */
5636         if (napi->gro_list && !napi_disable_pending(napi) &&
5637             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5638                 __napi_schedule_irqoff(napi);
5639
5640         return HRTIMER_NORESTART;
5641 }
5642
5643 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5644                     int (*poll)(struct napi_struct *, int), int weight)
5645 {
5646         INIT_LIST_HEAD(&napi->poll_list);
5647         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5648         napi->timer.function = napi_watchdog;
5649         napi->gro_count = 0;
5650         napi->gro_list = NULL;
5651         napi->skb = NULL;
5652         napi->poll = poll;
5653         if (weight > NAPI_POLL_WEIGHT)
5654                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5655                             weight, dev->name);
5656         napi->weight = weight;
5657         list_add(&napi->dev_list, &dev->napi_list);
5658         napi->dev = dev;
5659 #ifdef CONFIG_NETPOLL
5660         napi->poll_owner = -1;
5661 #endif
5662         set_bit(NAPI_STATE_SCHED, &napi->state);
5663         napi_hash_add(napi);
5664 }
5665 EXPORT_SYMBOL(netif_napi_add);
5666
5667 void napi_disable(struct napi_struct *n)
5668 {
5669         might_sleep();
5670         set_bit(NAPI_STATE_DISABLE, &n->state);
5671
5672         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5673                 msleep(1);
5674         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5675                 msleep(1);
5676
5677         hrtimer_cancel(&n->timer);
5678
5679         clear_bit(NAPI_STATE_DISABLE, &n->state);
5680 }
5681 EXPORT_SYMBOL(napi_disable);
5682
5683 /* Must be called in process context */
5684 void netif_napi_del(struct napi_struct *napi)
5685 {
5686         might_sleep();
5687         if (napi_hash_del(napi))
5688                 synchronize_net();
5689         list_del_init(&napi->dev_list);
5690         napi_free_frags(napi);
5691
5692         kfree_skb_list(napi->gro_list);
5693         napi->gro_list = NULL;
5694         napi->gro_count = 0;
5695 }
5696 EXPORT_SYMBOL(netif_napi_del);
5697
5698 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5699 {
5700         void *have;
5701         int work, weight;
5702
5703         list_del_init(&n->poll_list);
5704
5705         have = netpoll_poll_lock(n);
5706
5707         weight = n->weight;
5708
5709         /* This NAPI_STATE_SCHED test is for avoiding a race
5710          * with netpoll's poll_napi().  Only the entity which
5711          * obtains the lock and sees NAPI_STATE_SCHED set will
5712          * actually make the ->poll() call.  Therefore we avoid
5713          * accidentally calling ->poll() when NAPI is not scheduled.
5714          */
5715         work = 0;
5716         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5717                 work = n->poll(n, weight);
5718                 trace_napi_poll(n, work, weight);
5719         }
5720
5721         WARN_ON_ONCE(work > weight);
5722
5723         if (likely(work < weight))
5724                 goto out_unlock;
5725
5726         /* Drivers must not modify the NAPI state if they
5727          * consume the entire weight.  In such cases this code
5728          * still "owns" the NAPI instance and therefore can
5729          * move the instance around on the list at-will.
5730          */
5731         if (unlikely(napi_disable_pending(n))) {
5732                 napi_complete(n);
5733                 goto out_unlock;
5734         }
5735
5736         if (n->gro_list) {
5737                 /* flush too old packets
5738                  * If HZ < 1000, flush all packets.
5739                  */
5740                 napi_gro_flush(n, HZ >= 1000);
5741         }
5742
5743         /* Some drivers may have called napi_schedule
5744          * prior to exhausting their budget.
5745          */
5746         if (unlikely(!list_empty(&n->poll_list))) {
5747                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5748                              n->dev ? n->dev->name : "backlog");
5749                 goto out_unlock;
5750         }
5751
5752         list_add_tail(&n->poll_list, repoll);
5753
5754 out_unlock:
5755         netpoll_poll_unlock(have);
5756
5757         return work;
5758 }
5759
5760 static __latent_entropy void net_rx_action(struct softirq_action *h)
5761 {
5762         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5763         unsigned long time_limit = jiffies +
5764                 usecs_to_jiffies(netdev_budget_usecs);
5765         int budget = netdev_budget;
5766         LIST_HEAD(list);
5767         LIST_HEAD(repoll);
5768
5769         local_irq_disable();
5770         list_splice_init(&sd->poll_list, &list);
5771         local_irq_enable();
5772
5773         for (;;) {
5774                 struct napi_struct *n;
5775
5776                 if (list_empty(&list)) {
5777                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5778                                 goto out;
5779                         break;
5780                 }
5781
5782                 n = list_first_entry(&list, struct napi_struct, poll_list);
5783                 budget -= napi_poll(n, &repoll);
5784
5785                 /* If softirq window is exhausted then punt.
5786                  * Allow this to run for 2 jiffies since which will allow
5787                  * an average latency of 1.5/HZ.
5788                  */
5789                 if (unlikely(budget <= 0 ||
5790                              time_after_eq(jiffies, time_limit))) {
5791                         sd->time_squeeze++;
5792                         break;
5793                 }
5794         }
5795
5796         local_irq_disable();
5797
5798         list_splice_tail_init(&sd->poll_list, &list);
5799         list_splice_tail(&repoll, &list);
5800         list_splice(&list, &sd->poll_list);
5801         if (!list_empty(&sd->poll_list))
5802                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5803
5804         net_rps_action_and_irq_enable(sd);
5805 out:
5806         __kfree_skb_flush();
5807 }
5808
5809 struct netdev_adjacent {
5810         struct net_device *dev;
5811
5812         /* upper master flag, there can only be one master device per list */
5813         bool master;
5814
5815         /* counter for the number of times this device was added to us */
5816         u16 ref_nr;
5817
5818         /* private field for the users */
5819         void *private;
5820
5821         struct list_head list;
5822         struct rcu_head rcu;
5823 };
5824
5825 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5826                                                  struct list_head *adj_list)
5827 {
5828         struct netdev_adjacent *adj;
5829
5830         list_for_each_entry(adj, adj_list, list) {
5831                 if (adj->dev == adj_dev)
5832                         return adj;
5833         }
5834         return NULL;
5835 }
5836
5837 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5838 {
5839         struct net_device *dev = data;
5840
5841         return upper_dev == dev;
5842 }
5843
5844 /**
5845  * netdev_has_upper_dev - Check if device is linked to an upper device
5846  * @dev: device
5847  * @upper_dev: upper device to check
5848  *
5849  * Find out if a device is linked to specified upper device and return true
5850  * in case it is. Note that this checks only immediate upper device,
5851  * not through a complete stack of devices. The caller must hold the RTNL lock.
5852  */
5853 bool netdev_has_upper_dev(struct net_device *dev,
5854                           struct net_device *upper_dev)
5855 {
5856         ASSERT_RTNL();
5857
5858         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5859                                              upper_dev);
5860 }
5861 EXPORT_SYMBOL(netdev_has_upper_dev);
5862
5863 /**
5864  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5865  * @dev: device
5866  * @upper_dev: upper device to check
5867  *
5868  * Find out if a device is linked to specified upper device and return true
5869  * in case it is. Note that this checks the entire upper device chain.
5870  * The caller must hold rcu lock.
5871  */
5872
5873 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5874                                   struct net_device *upper_dev)
5875 {
5876         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5877                                                upper_dev);
5878 }
5879 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5880
5881 /**
5882  * netdev_has_any_upper_dev - Check if device is linked to some device
5883  * @dev: device
5884  *
5885  * Find out if a device is linked to an upper device and return true in case
5886  * it is. The caller must hold the RTNL lock.
5887  */
5888 bool netdev_has_any_upper_dev(struct net_device *dev)
5889 {
5890         ASSERT_RTNL();
5891
5892         return !list_empty(&dev->adj_list.upper);
5893 }
5894 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5895
5896 /**
5897  * netdev_master_upper_dev_get - Get master upper device
5898  * @dev: device
5899  *
5900  * Find a master upper device and return pointer to it or NULL in case
5901  * it's not there. The caller must hold the RTNL lock.
5902  */
5903 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5904 {
5905         struct netdev_adjacent *upper;
5906
5907         ASSERT_RTNL();
5908
5909         if (list_empty(&dev->adj_list.upper))
5910                 return NULL;
5911
5912         upper = list_first_entry(&dev->adj_list.upper,
5913                                  struct netdev_adjacent, list);
5914         if (likely(upper->master))
5915                 return upper->dev;
5916         return NULL;
5917 }
5918 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5919
5920 /**
5921  * netdev_has_any_lower_dev - Check if device is linked to some device
5922  * @dev: device
5923  *
5924  * Find out if a device is linked to a lower device and return true in case
5925  * it is. The caller must hold the RTNL lock.
5926  */
5927 static bool netdev_has_any_lower_dev(struct net_device *dev)
5928 {
5929         ASSERT_RTNL();
5930
5931         return !list_empty(&dev->adj_list.lower);
5932 }
5933
5934 void *netdev_adjacent_get_private(struct list_head *adj_list)
5935 {
5936         struct netdev_adjacent *adj;
5937
5938         adj = list_entry(adj_list, struct netdev_adjacent, list);
5939
5940         return adj->private;
5941 }
5942 EXPORT_SYMBOL(netdev_adjacent_get_private);
5943
5944 /**
5945  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5946  * @dev: device
5947  * @iter: list_head ** of the current position
5948  *
5949  * Gets the next device from the dev's upper list, starting from iter
5950  * position. The caller must hold RCU read lock.
5951  */
5952 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5953                                                  struct list_head **iter)
5954 {
5955         struct netdev_adjacent *upper;
5956
5957         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5958
5959         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5960
5961         if (&upper->list == &dev->adj_list.upper)
5962                 return NULL;
5963
5964         *iter = &upper->list;
5965
5966         return upper->dev;
5967 }
5968 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5969
5970 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5971                                                     struct list_head **iter)
5972 {
5973         struct netdev_adjacent *upper;
5974
5975         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5976
5977         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5978
5979         if (&upper->list == &dev->adj_list.upper)
5980                 return NULL;
5981
5982         *iter = &upper->list;
5983
5984         return upper->dev;
5985 }
5986
5987 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5988                                   int (*fn)(struct net_device *dev,
5989                                             void *data),
5990                                   void *data)
5991 {
5992         struct net_device *udev;
5993         struct list_head *iter;
5994         int ret;
5995
5996         for (iter = &dev->adj_list.upper,
5997              udev = netdev_next_upper_dev_rcu(dev, &iter);
5998              udev;
5999              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6000                 /* first is the upper device itself */
6001                 ret = fn(udev, data);
6002                 if (ret)
6003                         return ret;
6004
6005                 /* then look at all of its upper devices */
6006                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6007                 if (ret)
6008                         return ret;
6009         }
6010
6011         return 0;
6012 }
6013 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6014
6015 /**
6016  * netdev_lower_get_next_private - Get the next ->private from the
6017  *                                 lower neighbour list
6018  * @dev: device
6019  * @iter: list_head ** of the current position
6020  *
6021  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6022  * list, starting from iter position. The caller must hold either hold the
6023  * RTNL lock or its own locking that guarantees that the neighbour lower
6024  * list will remain unchanged.
6025  */
6026 void *netdev_lower_get_next_private(struct net_device *dev,
6027                                     struct list_head **iter)
6028 {
6029         struct netdev_adjacent *lower;
6030
6031         lower = list_entry(*iter, struct netdev_adjacent, list);
6032
6033         if (&lower->list == &dev->adj_list.lower)
6034                 return NULL;
6035
6036         *iter = lower->list.next;
6037
6038         return lower->private;
6039 }
6040 EXPORT_SYMBOL(netdev_lower_get_next_private);
6041
6042 /**
6043  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6044  *                                     lower neighbour list, RCU
6045  *                                     variant
6046  * @dev: device
6047  * @iter: list_head ** of the current position
6048  *
6049  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6050  * list, starting from iter position. The caller must hold RCU read lock.
6051  */
6052 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6053                                         struct list_head **iter)
6054 {
6055         struct netdev_adjacent *lower;
6056
6057         WARN_ON_ONCE(!rcu_read_lock_held());
6058
6059         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6060
6061         if (&lower->list == &dev->adj_list.lower)
6062                 return NULL;
6063
6064         *iter = &lower->list;
6065
6066         return lower->private;
6067 }
6068 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6069
6070 /**
6071  * netdev_lower_get_next - Get the next device from the lower neighbour
6072  *                         list
6073  * @dev: device
6074  * @iter: list_head ** of the current position
6075  *
6076  * Gets the next netdev_adjacent from the dev's lower neighbour
6077  * list, starting from iter position. The caller must hold RTNL lock or
6078  * its own locking that guarantees that the neighbour lower
6079  * list will remain unchanged.
6080  */
6081 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6082 {
6083         struct netdev_adjacent *lower;
6084
6085         lower = list_entry(*iter, struct netdev_adjacent, list);
6086
6087         if (&lower->list == &dev->adj_list.lower)
6088                 return NULL;
6089
6090         *iter = lower->list.next;
6091
6092         return lower->dev;
6093 }
6094 EXPORT_SYMBOL(netdev_lower_get_next);
6095
6096 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6097                                                 struct list_head **iter)
6098 {
6099         struct netdev_adjacent *lower;
6100
6101         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6102
6103         if (&lower->list == &dev->adj_list.lower)
6104                 return NULL;
6105
6106         *iter = &lower->list;
6107
6108         return lower->dev;
6109 }
6110
6111 int netdev_walk_all_lower_dev(struct net_device *dev,
6112                               int (*fn)(struct net_device *dev,
6113                                         void *data),
6114                               void *data)
6115 {
6116         struct net_device *ldev;
6117         struct list_head *iter;
6118         int ret;
6119
6120         for (iter = &dev->adj_list.lower,
6121              ldev = netdev_next_lower_dev(dev, &iter);
6122              ldev;
6123              ldev = netdev_next_lower_dev(dev, &iter)) {
6124                 /* first is the lower device itself */
6125                 ret = fn(ldev, data);
6126                 if (ret)
6127                         return ret;
6128
6129                 /* then look at all of its lower devices */
6130                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6131                 if (ret)
6132                         return ret;
6133         }
6134
6135         return 0;
6136 }
6137 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6138
6139 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6140                                                     struct list_head **iter)
6141 {
6142         struct netdev_adjacent *lower;
6143
6144         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6145         if (&lower->list == &dev->adj_list.lower)
6146                 return NULL;
6147
6148         *iter = &lower->list;
6149
6150         return lower->dev;
6151 }
6152
6153 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6154                                   int (*fn)(struct net_device *dev,
6155                                             void *data),
6156                                   void *data)
6157 {
6158         struct net_device *ldev;
6159         struct list_head *iter;
6160         int ret;
6161
6162         for (iter = &dev->adj_list.lower,
6163              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6164              ldev;
6165              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6166                 /* first is the lower device itself */
6167                 ret = fn(ldev, data);
6168                 if (ret)
6169                         return ret;
6170
6171                 /* then look at all of its lower devices */
6172                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6173                 if (ret)
6174                         return ret;
6175         }
6176
6177         return 0;
6178 }
6179 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6180
6181 /**
6182  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6183  *                                     lower neighbour list, RCU
6184  *                                     variant
6185  * @dev: device
6186  *
6187  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6188  * list. The caller must hold RCU read lock.
6189  */
6190 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6191 {
6192         struct netdev_adjacent *lower;
6193
6194         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6195                         struct netdev_adjacent, list);
6196         if (lower)
6197                 return lower->private;
6198         return NULL;
6199 }
6200 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6201
6202 /**
6203  * netdev_master_upper_dev_get_rcu - Get master upper device
6204  * @dev: device
6205  *
6206  * Find a master upper device and return pointer to it or NULL in case
6207  * it's not there. The caller must hold the RCU read lock.
6208  */
6209 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6210 {
6211         struct netdev_adjacent *upper;
6212
6213         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6214                                        struct netdev_adjacent, list);
6215         if (upper && likely(upper->master))
6216                 return upper->dev;
6217         return NULL;
6218 }
6219 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6220
6221 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6222                               struct net_device *adj_dev,
6223                               struct list_head *dev_list)
6224 {
6225         char linkname[IFNAMSIZ+7];
6226
6227         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6228                 "upper_%s" : "lower_%s", adj_dev->name);
6229         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6230                                  linkname);
6231 }
6232 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6233                                char *name,
6234                                struct list_head *dev_list)
6235 {
6236         char linkname[IFNAMSIZ+7];
6237
6238         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6239                 "upper_%s" : "lower_%s", name);
6240         sysfs_remove_link(&(dev->dev.kobj), linkname);
6241 }
6242
6243 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6244                                                  struct net_device *adj_dev,
6245                                                  struct list_head *dev_list)
6246 {
6247         return (dev_list == &dev->adj_list.upper ||
6248                 dev_list == &dev->adj_list.lower) &&
6249                 net_eq(dev_net(dev), dev_net(adj_dev));
6250 }
6251
6252 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6253                                         struct net_device *adj_dev,
6254                                         struct list_head *dev_list,
6255                                         void *private, bool master)
6256 {
6257         struct netdev_adjacent *adj;
6258         int ret;
6259
6260         adj = __netdev_find_adj(adj_dev, dev_list);
6261
6262         if (adj) {
6263                 adj->ref_nr += 1;
6264                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6265                          dev->name, adj_dev->name, adj->ref_nr);
6266
6267                 return 0;
6268         }
6269
6270         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6271         if (!adj)
6272                 return -ENOMEM;
6273
6274         adj->dev = adj_dev;
6275         adj->master = master;
6276         adj->ref_nr = 1;
6277         adj->private = private;
6278         dev_hold(adj_dev);
6279
6280         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6281                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6282
6283         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6284                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6285                 if (ret)
6286                         goto free_adj;
6287         }
6288
6289         /* Ensure that master link is always the first item in list. */
6290         if (master) {
6291                 ret = sysfs_create_link(&(dev->dev.kobj),
6292                                         &(adj_dev->dev.kobj), "master");
6293                 if (ret)
6294                         goto remove_symlinks;
6295
6296                 list_add_rcu(&adj->list, dev_list);
6297         } else {
6298                 list_add_tail_rcu(&adj->list, dev_list);
6299         }
6300
6301         return 0;
6302
6303 remove_symlinks:
6304         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6305                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6306 free_adj:
6307         kfree(adj);
6308         dev_put(adj_dev);
6309
6310         return ret;
6311 }
6312
6313 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6314                                          struct net_device *adj_dev,
6315                                          u16 ref_nr,
6316                                          struct list_head *dev_list)
6317 {
6318         struct netdev_adjacent *adj;
6319
6320         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6321                  dev->name, adj_dev->name, ref_nr);
6322
6323         adj = __netdev_find_adj(adj_dev, dev_list);
6324
6325         if (!adj) {
6326                 pr_err("Adjacency does not exist for device %s from %s\n",
6327                        dev->name, adj_dev->name);
6328                 WARN_ON(1);
6329                 return;
6330         }
6331
6332         if (adj->ref_nr > ref_nr) {
6333                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6334                          dev->name, adj_dev->name, ref_nr,
6335                          adj->ref_nr - ref_nr);
6336                 adj->ref_nr -= ref_nr;
6337                 return;
6338         }
6339
6340         if (adj->master)
6341                 sysfs_remove_link(&(dev->dev.kobj), "master");
6342
6343         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6344                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6345
6346         list_del_rcu(&adj->list);
6347         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6348                  adj_dev->name, dev->name, adj_dev->name);
6349         dev_put(adj_dev);
6350         kfree_rcu(adj, rcu);
6351 }
6352
6353 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6354                                             struct net_device *upper_dev,
6355                                             struct list_head *up_list,
6356                                             struct list_head *down_list,
6357                                             void *private, bool master)
6358 {
6359         int ret;
6360
6361         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6362                                            private, master);
6363         if (ret)
6364                 return ret;
6365
6366         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6367                                            private, false);
6368         if (ret) {
6369                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6370                 return ret;
6371         }
6372
6373         return 0;
6374 }
6375
6376 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6377                                                struct net_device *upper_dev,
6378                                                u16 ref_nr,
6379                                                struct list_head *up_list,
6380                                                struct list_head *down_list)
6381 {
6382         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6383         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6384 }
6385
6386 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6387                                                 struct net_device *upper_dev,
6388                                                 void *private, bool master)
6389 {
6390         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6391                                                 &dev->adj_list.upper,
6392                                                 &upper_dev->adj_list.lower,
6393                                                 private, master);
6394 }
6395
6396 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6397                                                    struct net_device *upper_dev)
6398 {
6399         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6400                                            &dev->adj_list.upper,
6401                                            &upper_dev->adj_list.lower);
6402 }
6403
6404 static int __netdev_upper_dev_link(struct net_device *dev,
6405                                    struct net_device *upper_dev, bool master,
6406                                    void *upper_priv, void *upper_info,
6407                                    struct netlink_ext_ack *extack)
6408 {
6409         struct netdev_notifier_changeupper_info changeupper_info = {
6410                 .info = {
6411                         .dev = dev,
6412                         .extack = extack,
6413                 },
6414                 .upper_dev = upper_dev,
6415                 .master = master,
6416                 .linking = true,
6417                 .upper_info = upper_info,
6418         };
6419         struct net_device *master_dev;
6420         int ret = 0;
6421
6422         ASSERT_RTNL();
6423
6424         if (dev == upper_dev)
6425                 return -EBUSY;
6426
6427         /* To prevent loops, check if dev is not upper device to upper_dev. */
6428         if (netdev_has_upper_dev(upper_dev, dev))
6429                 return -EBUSY;
6430
6431         if (!master) {
6432                 if (netdev_has_upper_dev(dev, upper_dev))
6433                         return -EEXIST;
6434         } else {
6435                 master_dev = netdev_master_upper_dev_get(dev);
6436                 if (master_dev)
6437                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6438         }
6439
6440         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6441                                             &changeupper_info.info);
6442         ret = notifier_to_errno(ret);
6443         if (ret)
6444                 return ret;
6445
6446         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6447                                                    master);
6448         if (ret)
6449                 return ret;
6450
6451         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6452                                             &changeupper_info.info);
6453         ret = notifier_to_errno(ret);
6454         if (ret)
6455                 goto rollback;
6456
6457         return 0;
6458
6459 rollback:
6460         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6461
6462         return ret;
6463 }
6464
6465 /**
6466  * netdev_upper_dev_link - Add a link to the upper device
6467  * @dev: device
6468  * @upper_dev: new upper device
6469  * @extack: netlink extended ack
6470  *
6471  * Adds a link to device which is upper to this one. The caller must hold
6472  * the RTNL lock. On a failure a negative errno code is returned.
6473  * On success the reference counts are adjusted and the function
6474  * returns zero.
6475  */
6476 int netdev_upper_dev_link(struct net_device *dev,
6477                           struct net_device *upper_dev,
6478                           struct netlink_ext_ack *extack)
6479 {
6480         return __netdev_upper_dev_link(dev, upper_dev, false,
6481                                        NULL, NULL, extack);
6482 }
6483 EXPORT_SYMBOL(netdev_upper_dev_link);
6484
6485 /**
6486  * netdev_master_upper_dev_link - Add a master link to the upper device
6487  * @dev: device
6488  * @upper_dev: new upper device
6489  * @upper_priv: upper device private
6490  * @upper_info: upper info to be passed down via notifier
6491  * @extack: netlink extended ack
6492  *
6493  * Adds a link to device which is upper to this one. In this case, only
6494  * one master upper device can be linked, although other non-master devices
6495  * might be linked as well. The caller must hold the RTNL lock.
6496  * On a failure a negative errno code is returned. On success the reference
6497  * counts are adjusted and the function returns zero.
6498  */
6499 int netdev_master_upper_dev_link(struct net_device *dev,
6500                                  struct net_device *upper_dev,
6501                                  void *upper_priv, void *upper_info,
6502                                  struct netlink_ext_ack *extack)
6503 {
6504         return __netdev_upper_dev_link(dev, upper_dev, true,
6505                                        upper_priv, upper_info, extack);
6506 }
6507 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6508
6509 /**
6510  * netdev_upper_dev_unlink - Removes a link to upper device
6511  * @dev: device
6512  * @upper_dev: new upper device
6513  *
6514  * Removes a link to device which is upper to this one. The caller must hold
6515  * the RTNL lock.
6516  */
6517 void netdev_upper_dev_unlink(struct net_device *dev,
6518                              struct net_device *upper_dev)
6519 {
6520         struct netdev_notifier_changeupper_info changeupper_info = {
6521                 .info = {
6522                         .dev = dev,
6523                 },
6524                 .upper_dev = upper_dev,
6525                 .linking = false,
6526         };
6527
6528         ASSERT_RTNL();
6529
6530         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6531
6532         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6533                                       &changeupper_info.info);
6534
6535         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6536
6537         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6538                                       &changeupper_info.info);
6539 }
6540 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6541
6542 /**
6543  * netdev_bonding_info_change - Dispatch event about slave change
6544  * @dev: device
6545  * @bonding_info: info to dispatch
6546  *
6547  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6548  * The caller must hold the RTNL lock.
6549  */
6550 void netdev_bonding_info_change(struct net_device *dev,
6551                                 struct netdev_bonding_info *bonding_info)
6552 {
6553         struct netdev_notifier_bonding_info info = {
6554                 .info.dev = dev,
6555         };
6556
6557         memcpy(&info.bonding_info, bonding_info,
6558                sizeof(struct netdev_bonding_info));
6559         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6560                                       &info.info);
6561 }
6562 EXPORT_SYMBOL(netdev_bonding_info_change);
6563
6564 static void netdev_adjacent_add_links(struct net_device *dev)
6565 {
6566         struct netdev_adjacent *iter;
6567
6568         struct net *net = dev_net(dev);
6569
6570         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6571                 if (!net_eq(net, dev_net(iter->dev)))
6572                         continue;
6573                 netdev_adjacent_sysfs_add(iter->dev, dev,
6574                                           &iter->dev->adj_list.lower);
6575                 netdev_adjacent_sysfs_add(dev, iter->dev,
6576                                           &dev->adj_list.upper);
6577         }
6578
6579         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6580                 if (!net_eq(net, dev_net(iter->dev)))
6581                         continue;
6582                 netdev_adjacent_sysfs_add(iter->dev, dev,
6583                                           &iter->dev->adj_list.upper);
6584                 netdev_adjacent_sysfs_add(dev, iter->dev,
6585                                           &dev->adj_list.lower);
6586         }
6587 }
6588
6589 static void netdev_adjacent_del_links(struct net_device *dev)
6590 {
6591         struct netdev_adjacent *iter;
6592
6593         struct net *net = dev_net(dev);
6594
6595         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6596                 if (!net_eq(net, dev_net(iter->dev)))
6597                         continue;
6598                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6599                                           &iter->dev->adj_list.lower);
6600                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6601                                           &dev->adj_list.upper);
6602         }
6603
6604         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6605                 if (!net_eq(net, dev_net(iter->dev)))
6606                         continue;
6607                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6608                                           &iter->dev->adj_list.upper);
6609                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6610                                           &dev->adj_list.lower);
6611         }
6612 }
6613
6614 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6615 {
6616         struct netdev_adjacent *iter;
6617
6618         struct net *net = dev_net(dev);
6619
6620         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6621                 if (!net_eq(net, dev_net(iter->dev)))
6622                         continue;
6623                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6624                                           &iter->dev->adj_list.lower);
6625                 netdev_adjacent_sysfs_add(iter->dev, dev,
6626                                           &iter->dev->adj_list.lower);
6627         }
6628
6629         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6630                 if (!net_eq(net, dev_net(iter->dev)))
6631                         continue;
6632                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6633                                           &iter->dev->adj_list.upper);
6634                 netdev_adjacent_sysfs_add(iter->dev, dev,
6635                                           &iter->dev->adj_list.upper);
6636         }
6637 }
6638
6639 void *netdev_lower_dev_get_private(struct net_device *dev,
6640                                    struct net_device *lower_dev)
6641 {
6642         struct netdev_adjacent *lower;
6643
6644         if (!lower_dev)
6645                 return NULL;
6646         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6647         if (!lower)
6648                 return NULL;
6649
6650         return lower->private;
6651 }
6652 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6653
6654
6655 int dev_get_nest_level(struct net_device *dev)
6656 {
6657         struct net_device *lower = NULL;
6658         struct list_head *iter;
6659         int max_nest = -1;
6660         int nest;
6661
6662         ASSERT_RTNL();
6663
6664         netdev_for_each_lower_dev(dev, lower, iter) {
6665                 nest = dev_get_nest_level(lower);
6666                 if (max_nest < nest)
6667                         max_nest = nest;
6668         }
6669
6670         return max_nest + 1;
6671 }
6672 EXPORT_SYMBOL(dev_get_nest_level);
6673
6674 /**
6675  * netdev_lower_change - Dispatch event about lower device state change
6676  * @lower_dev: device
6677  * @lower_state_info: state to dispatch
6678  *
6679  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6680  * The caller must hold the RTNL lock.
6681  */
6682 void netdev_lower_state_changed(struct net_device *lower_dev,
6683                                 void *lower_state_info)
6684 {
6685         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6686                 .info.dev = lower_dev,
6687         };
6688
6689         ASSERT_RTNL();
6690         changelowerstate_info.lower_state_info = lower_state_info;
6691         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6692                                       &changelowerstate_info.info);
6693 }
6694 EXPORT_SYMBOL(netdev_lower_state_changed);
6695
6696 static void dev_change_rx_flags(struct net_device *dev, int flags)
6697 {
6698         const struct net_device_ops *ops = dev->netdev_ops;
6699
6700         if (ops->ndo_change_rx_flags)
6701                 ops->ndo_change_rx_flags(dev, flags);
6702 }
6703
6704 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6705 {
6706         unsigned int old_flags = dev->flags;
6707         kuid_t uid;
6708         kgid_t gid;
6709
6710         ASSERT_RTNL();
6711
6712         dev->flags |= IFF_PROMISC;
6713         dev->promiscuity += inc;
6714         if (dev->promiscuity == 0) {
6715                 /*
6716                  * Avoid overflow.
6717                  * If inc causes overflow, untouch promisc and return error.
6718                  */
6719                 if (inc < 0)
6720                         dev->flags &= ~IFF_PROMISC;
6721                 else {
6722                         dev->promiscuity -= inc;
6723                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6724                                 dev->name);
6725                         return -EOVERFLOW;
6726                 }
6727         }
6728         if (dev->flags != old_flags) {
6729                 pr_info("device %s %s promiscuous mode\n",
6730                         dev->name,
6731                         dev->flags & IFF_PROMISC ? "entered" : "left");
6732                 if (audit_enabled) {
6733                         current_uid_gid(&uid, &gid);
6734                         audit_log(audit_context(), GFP_ATOMIC,
6735                                   AUDIT_ANOM_PROMISCUOUS,
6736                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6737                                   dev->name, (dev->flags & IFF_PROMISC),
6738                                   (old_flags & IFF_PROMISC),
6739                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
6740                                   from_kuid(&init_user_ns, uid),
6741                                   from_kgid(&init_user_ns, gid),
6742                                   audit_get_sessionid(current));
6743                 }
6744
6745                 dev_change_rx_flags(dev, IFF_PROMISC);
6746         }
6747         if (notify)
6748                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6749         return 0;
6750 }
6751
6752 /**
6753  *      dev_set_promiscuity     - update promiscuity count on a device
6754  *      @dev: device
6755  *      @inc: modifier
6756  *
6757  *      Add or remove promiscuity from a device. While the count in the device
6758  *      remains above zero the interface remains promiscuous. Once it hits zero
6759  *      the device reverts back to normal filtering operation. A negative inc
6760  *      value is used to drop promiscuity on the device.
6761  *      Return 0 if successful or a negative errno code on error.
6762  */
6763 int dev_set_promiscuity(struct net_device *dev, int inc)
6764 {
6765         unsigned int old_flags = dev->flags;
6766         int err;
6767
6768         err = __dev_set_promiscuity(dev, inc, true);
6769         if (err < 0)
6770                 return err;
6771         if (dev->flags != old_flags)
6772                 dev_set_rx_mode(dev);
6773         return err;
6774 }
6775 EXPORT_SYMBOL(dev_set_promiscuity);
6776
6777 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6778 {
6779         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6780
6781         ASSERT_RTNL();
6782
6783         dev->flags |= IFF_ALLMULTI;
6784         dev->allmulti += inc;
6785         if (dev->allmulti == 0) {
6786                 /*
6787                  * Avoid overflow.
6788                  * If inc causes overflow, untouch allmulti and return error.
6789                  */
6790                 if (inc < 0)
6791                         dev->flags &= ~IFF_ALLMULTI;
6792                 else {
6793                         dev->allmulti -= inc;
6794                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6795                                 dev->name);
6796                         return -EOVERFLOW;
6797                 }
6798         }
6799         if (dev->flags ^ old_flags) {
6800                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6801                 dev_set_rx_mode(dev);
6802                 if (notify)
6803                         __dev_notify_flags(dev, old_flags,
6804                                            dev->gflags ^ old_gflags);
6805         }
6806         return 0;
6807 }
6808
6809 /**
6810  *      dev_set_allmulti        - update allmulti count on a device
6811  *      @dev: device
6812  *      @inc: modifier
6813  *
6814  *      Add or remove reception of all multicast frames to a device. While the
6815  *      count in the device remains above zero the interface remains listening
6816  *      to all interfaces. Once it hits zero the device reverts back to normal
6817  *      filtering operation. A negative @inc value is used to drop the counter
6818  *      when releasing a resource needing all multicasts.
6819  *      Return 0 if successful or a negative errno code on error.
6820  */
6821
6822 int dev_set_allmulti(struct net_device *dev, int inc)
6823 {
6824         return __dev_set_allmulti(dev, inc, true);
6825 }
6826 EXPORT_SYMBOL(dev_set_allmulti);
6827
6828 /*
6829  *      Upload unicast and multicast address lists to device and
6830  *      configure RX filtering. When the device doesn't support unicast
6831  *      filtering it is put in promiscuous mode while unicast addresses
6832  *      are present.
6833  */
6834 void __dev_set_rx_mode(struct net_device *dev)
6835 {
6836         const struct net_device_ops *ops = dev->netdev_ops;
6837
6838         /* dev_open will call this function so the list will stay sane. */
6839         if (!(dev->flags&IFF_UP))
6840                 return;
6841
6842         if (!netif_device_present(dev))
6843                 return;
6844
6845         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6846                 /* Unicast addresses changes may only happen under the rtnl,
6847                  * therefore calling __dev_set_promiscuity here is safe.
6848                  */
6849                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6850                         __dev_set_promiscuity(dev, 1, false);
6851                         dev->uc_promisc = true;
6852                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6853                         __dev_set_promiscuity(dev, -1, false);
6854                         dev->uc_promisc = false;
6855                 }
6856         }
6857
6858         if (ops->ndo_set_rx_mode)
6859                 ops->ndo_set_rx_mode(dev);
6860 }
6861
6862 void dev_set_rx_mode(struct net_device *dev)
6863 {
6864         netif_addr_lock_bh(dev);
6865         __dev_set_rx_mode(dev);
6866         netif_addr_unlock_bh(dev);
6867 }
6868
6869 /**
6870  *      dev_get_flags - get flags reported to userspace
6871  *      @dev: device
6872  *
6873  *      Get the combination of flag bits exported through APIs to userspace.
6874  */
6875 unsigned int dev_get_flags(const struct net_device *dev)
6876 {
6877         unsigned int flags;
6878
6879         flags = (dev->flags & ~(IFF_PROMISC |
6880                                 IFF_ALLMULTI |
6881                                 IFF_RUNNING |
6882                                 IFF_LOWER_UP |
6883                                 IFF_DORMANT)) |
6884                 (dev->gflags & (IFF_PROMISC |
6885                                 IFF_ALLMULTI));
6886
6887         if (netif_running(dev)) {
6888                 if (netif_oper_up(dev))
6889                         flags |= IFF_RUNNING;
6890                 if (netif_carrier_ok(dev))
6891                         flags |= IFF_LOWER_UP;
6892                 if (netif_dormant(dev))
6893                         flags |= IFF_DORMANT;
6894         }
6895
6896         return flags;
6897 }
6898 EXPORT_SYMBOL(dev_get_flags);
6899
6900 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6901 {
6902         unsigned int old_flags = dev->flags;
6903         int ret;
6904
6905         ASSERT_RTNL();
6906
6907         /*
6908          *      Set the flags on our device.
6909          */
6910
6911         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6912                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6913                                IFF_AUTOMEDIA)) |
6914                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6915                                     IFF_ALLMULTI));
6916
6917         /*
6918          *      Load in the correct multicast list now the flags have changed.
6919          */
6920
6921         if ((old_flags ^ flags) & IFF_MULTICAST)
6922                 dev_change_rx_flags(dev, IFF_MULTICAST);
6923
6924         dev_set_rx_mode(dev);
6925
6926         /*
6927          *      Have we downed the interface. We handle IFF_UP ourselves
6928          *      according to user attempts to set it, rather than blindly
6929          *      setting it.
6930          */
6931
6932         ret = 0;
6933         if ((old_flags ^ flags) & IFF_UP) {
6934                 if (old_flags & IFF_UP)
6935                         __dev_close(dev);
6936                 else
6937                         ret = __dev_open(dev);
6938         }
6939
6940         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6941                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6942                 unsigned int old_flags = dev->flags;
6943
6944                 dev->gflags ^= IFF_PROMISC;
6945
6946                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6947                         if (dev->flags != old_flags)
6948                                 dev_set_rx_mode(dev);
6949         }
6950
6951         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6952          * is important. Some (broken) drivers set IFF_PROMISC, when
6953          * IFF_ALLMULTI is requested not asking us and not reporting.
6954          */
6955         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6956                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6957
6958                 dev->gflags ^= IFF_ALLMULTI;
6959                 __dev_set_allmulti(dev, inc, false);
6960         }
6961
6962         return ret;
6963 }
6964
6965 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6966                         unsigned int gchanges)
6967 {
6968         unsigned int changes = dev->flags ^ old_flags;
6969
6970         if (gchanges)
6971                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6972
6973         if (changes & IFF_UP) {
6974                 if (dev->flags & IFF_UP)
6975                         call_netdevice_notifiers(NETDEV_UP, dev);
6976                 else
6977                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6978         }
6979
6980         if (dev->flags & IFF_UP &&
6981             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6982                 struct netdev_notifier_change_info change_info = {
6983                         .info = {
6984                                 .dev = dev,
6985                         },
6986                         .flags_changed = changes,
6987                 };
6988
6989                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6990         }
6991 }
6992
6993 /**
6994  *      dev_change_flags - change device settings
6995  *      @dev: device
6996  *      @flags: device state flags
6997  *
6998  *      Change settings on device based state flags. The flags are
6999  *      in the userspace exported format.
7000  */
7001 int dev_change_flags(struct net_device *dev, unsigned int flags)
7002 {
7003         int ret;
7004         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7005
7006         ret = __dev_change_flags(dev, flags);
7007         if (ret < 0)
7008                 return ret;
7009
7010         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7011         __dev_notify_flags(dev, old_flags, changes);
7012         return ret;
7013 }
7014 EXPORT_SYMBOL(dev_change_flags);
7015
7016 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7017 {
7018         const struct net_device_ops *ops = dev->netdev_ops;
7019
7020         if (ops->ndo_change_mtu)
7021                 return ops->ndo_change_mtu(dev, new_mtu);
7022
7023         dev->mtu = new_mtu;
7024         return 0;
7025 }
7026 EXPORT_SYMBOL(__dev_set_mtu);
7027
7028 /**
7029  *      dev_set_mtu - Change maximum transfer unit
7030  *      @dev: device
7031  *      @new_mtu: new transfer unit
7032  *
7033  *      Change the maximum transfer size of the network device.
7034  */
7035 int dev_set_mtu(struct net_device *dev, int new_mtu)
7036 {
7037         int err, orig_mtu;
7038
7039         if (new_mtu == dev->mtu)
7040                 return 0;
7041
7042         /* MTU must be positive, and in range */
7043         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7044                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7045                                     dev->name, new_mtu, dev->min_mtu);
7046                 return -EINVAL;
7047         }
7048
7049         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7050                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7051                                     dev->name, new_mtu, dev->max_mtu);
7052                 return -EINVAL;
7053         }
7054
7055         if (!netif_device_present(dev))
7056                 return -ENODEV;
7057
7058         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7059         err = notifier_to_errno(err);
7060         if (err)
7061                 return err;
7062
7063         orig_mtu = dev->mtu;
7064         err = __dev_set_mtu(dev, new_mtu);
7065
7066         if (!err) {
7067                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7068                 err = notifier_to_errno(err);
7069                 if (err) {
7070                         /* setting mtu back and notifying everyone again,
7071                          * so that they have a chance to revert changes.
7072                          */
7073                         __dev_set_mtu(dev, orig_mtu);
7074                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7075                 }
7076         }
7077         return err;
7078 }
7079 EXPORT_SYMBOL(dev_set_mtu);
7080
7081 /**
7082  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7083  *      @dev: device
7084  *      @new_len: new tx queue length
7085  */
7086 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7087 {
7088         unsigned int orig_len = dev->tx_queue_len;
7089         int res;
7090
7091         if (new_len != (unsigned int)new_len)
7092                 return -ERANGE;
7093
7094         if (new_len != orig_len) {
7095                 dev->tx_queue_len = new_len;
7096                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7097                 res = notifier_to_errno(res);
7098                 if (res) {
7099                         netdev_err(dev,
7100                                    "refused to change device tx_queue_len\n");
7101                         dev->tx_queue_len = orig_len;
7102                         return res;
7103                 }
7104                 return dev_qdisc_change_tx_queue_len(dev);
7105         }
7106
7107         return 0;
7108 }
7109
7110 /**
7111  *      dev_set_group - Change group this device belongs to
7112  *      @dev: device
7113  *      @new_group: group this device should belong to
7114  */
7115 void dev_set_group(struct net_device *dev, int new_group)
7116 {
7117         dev->group = new_group;
7118 }
7119 EXPORT_SYMBOL(dev_set_group);
7120
7121 /**
7122  *      dev_set_mac_address - Change Media Access Control Address
7123  *      @dev: device
7124  *      @sa: new address
7125  *
7126  *      Change the hardware (MAC) address of the device
7127  */
7128 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7129 {
7130         const struct net_device_ops *ops = dev->netdev_ops;
7131         int err;
7132
7133         if (!ops->ndo_set_mac_address)
7134                 return -EOPNOTSUPP;
7135         if (sa->sa_family != dev->type)
7136                 return -EINVAL;
7137         if (!netif_device_present(dev))
7138                 return -ENODEV;
7139         err = ops->ndo_set_mac_address(dev, sa);
7140         if (err)
7141                 return err;
7142         dev->addr_assign_type = NET_ADDR_SET;
7143         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7144         add_device_randomness(dev->dev_addr, dev->addr_len);
7145         return 0;
7146 }
7147 EXPORT_SYMBOL(dev_set_mac_address);
7148
7149 /**
7150  *      dev_change_carrier - Change device carrier
7151  *      @dev: device
7152  *      @new_carrier: new value
7153  *
7154  *      Change device carrier
7155  */
7156 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7157 {
7158         const struct net_device_ops *ops = dev->netdev_ops;
7159
7160         if (!ops->ndo_change_carrier)
7161                 return -EOPNOTSUPP;
7162         if (!netif_device_present(dev))
7163                 return -ENODEV;
7164         return ops->ndo_change_carrier(dev, new_carrier);
7165 }
7166 EXPORT_SYMBOL(dev_change_carrier);
7167
7168 /**
7169  *      dev_get_phys_port_id - Get device physical port ID
7170  *      @dev: device
7171  *      @ppid: port ID
7172  *
7173  *      Get device physical port ID
7174  */
7175 int dev_get_phys_port_id(struct net_device *dev,
7176                          struct netdev_phys_item_id *ppid)
7177 {
7178         const struct net_device_ops *ops = dev->netdev_ops;
7179
7180         if (!ops->ndo_get_phys_port_id)
7181                 return -EOPNOTSUPP;
7182         return ops->ndo_get_phys_port_id(dev, ppid);
7183 }
7184 EXPORT_SYMBOL(dev_get_phys_port_id);
7185
7186 /**
7187  *      dev_get_phys_port_name - Get device physical port name
7188  *      @dev: device
7189  *      @name: port name
7190  *      @len: limit of bytes to copy to name
7191  *
7192  *      Get device physical port name
7193  */
7194 int dev_get_phys_port_name(struct net_device *dev,
7195                            char *name, size_t len)
7196 {
7197         const struct net_device_ops *ops = dev->netdev_ops;
7198
7199         if (!ops->ndo_get_phys_port_name)
7200                 return -EOPNOTSUPP;
7201         return ops->ndo_get_phys_port_name(dev, name, len);
7202 }
7203 EXPORT_SYMBOL(dev_get_phys_port_name);
7204
7205 /**
7206  *      dev_change_proto_down - update protocol port state information
7207  *      @dev: device
7208  *      @proto_down: new value
7209  *
7210  *      This info can be used by switch drivers to set the phys state of the
7211  *      port.
7212  */
7213 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7214 {
7215         const struct net_device_ops *ops = dev->netdev_ops;
7216
7217         if (!ops->ndo_change_proto_down)
7218                 return -EOPNOTSUPP;
7219         if (!netif_device_present(dev))
7220                 return -ENODEV;
7221         return ops->ndo_change_proto_down(dev, proto_down);
7222 }
7223 EXPORT_SYMBOL(dev_change_proto_down);
7224
7225 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7226                      struct netdev_bpf *xdp)
7227 {
7228         memset(xdp, 0, sizeof(*xdp));
7229         xdp->command = XDP_QUERY_PROG;
7230
7231         /* Query must always succeed. */
7232         WARN_ON(bpf_op(dev, xdp) < 0);
7233 }
7234
7235 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7236 {
7237         struct netdev_bpf xdp;
7238
7239         __dev_xdp_query(dev, bpf_op, &xdp);
7240
7241         return xdp.prog_attached;
7242 }
7243
7244 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7245                            struct netlink_ext_ack *extack, u32 flags,
7246                            struct bpf_prog *prog)
7247 {
7248         struct netdev_bpf xdp;
7249
7250         memset(&xdp, 0, sizeof(xdp));
7251         if (flags & XDP_FLAGS_HW_MODE)
7252                 xdp.command = XDP_SETUP_PROG_HW;
7253         else
7254                 xdp.command = XDP_SETUP_PROG;
7255         xdp.extack = extack;
7256         xdp.flags = flags;
7257         xdp.prog = prog;
7258
7259         return bpf_op(dev, &xdp);
7260 }
7261
7262 static void dev_xdp_uninstall(struct net_device *dev)
7263 {
7264         struct netdev_bpf xdp;
7265         bpf_op_t ndo_bpf;
7266
7267         /* Remove generic XDP */
7268         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7269
7270         /* Remove from the driver */
7271         ndo_bpf = dev->netdev_ops->ndo_bpf;
7272         if (!ndo_bpf)
7273                 return;
7274
7275         __dev_xdp_query(dev, ndo_bpf, &xdp);
7276         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7277                 return;
7278
7279         /* Program removal should always succeed */
7280         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7281 }
7282
7283 /**
7284  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7285  *      @dev: device
7286  *      @extack: netlink extended ack
7287  *      @fd: new program fd or negative value to clear
7288  *      @flags: xdp-related flags
7289  *
7290  *      Set or clear a bpf program for a device
7291  */
7292 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7293                       int fd, u32 flags)
7294 {
7295         const struct net_device_ops *ops = dev->netdev_ops;
7296         struct bpf_prog *prog = NULL;
7297         bpf_op_t bpf_op, bpf_chk;
7298         int err;
7299
7300         ASSERT_RTNL();
7301
7302         bpf_op = bpf_chk = ops->ndo_bpf;
7303         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7304                 return -EOPNOTSUPP;
7305         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7306                 bpf_op = generic_xdp_install;
7307         if (bpf_op == bpf_chk)
7308                 bpf_chk = generic_xdp_install;
7309
7310         if (fd >= 0) {
7311                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7312                         return -EEXIST;
7313                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7314                     __dev_xdp_attached(dev, bpf_op))
7315                         return -EBUSY;
7316
7317                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7318                                              bpf_op == ops->ndo_bpf);
7319                 if (IS_ERR(prog))
7320                         return PTR_ERR(prog);
7321
7322                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7323                     bpf_prog_is_dev_bound(prog->aux)) {
7324                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7325                         bpf_prog_put(prog);
7326                         return -EINVAL;
7327                 }
7328         }
7329
7330         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7331         if (err < 0 && prog)
7332                 bpf_prog_put(prog);
7333
7334         return err;
7335 }
7336
7337 /**
7338  *      dev_new_index   -       allocate an ifindex
7339  *      @net: the applicable net namespace
7340  *
7341  *      Returns a suitable unique value for a new device interface
7342  *      number.  The caller must hold the rtnl semaphore or the
7343  *      dev_base_lock to be sure it remains unique.
7344  */
7345 static int dev_new_index(struct net *net)
7346 {
7347         int ifindex = net->ifindex;
7348
7349         for (;;) {
7350                 if (++ifindex <= 0)
7351                         ifindex = 1;
7352                 if (!__dev_get_by_index(net, ifindex))
7353                         return net->ifindex = ifindex;
7354         }
7355 }
7356
7357 /* Delayed registration/unregisteration */
7358 static LIST_HEAD(net_todo_list);
7359 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7360
7361 static void net_set_todo(struct net_device *dev)
7362 {
7363         list_add_tail(&dev->todo_list, &net_todo_list);
7364         dev_net(dev)->dev_unreg_count++;
7365 }
7366
7367 static void rollback_registered_many(struct list_head *head)
7368 {
7369         struct net_device *dev, *tmp;
7370         LIST_HEAD(close_head);
7371
7372         BUG_ON(dev_boot_phase);
7373         ASSERT_RTNL();
7374
7375         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7376                 /* Some devices call without registering
7377                  * for initialization unwind. Remove those
7378                  * devices and proceed with the remaining.
7379                  */
7380                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7381                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7382                                  dev->name, dev);
7383
7384                         WARN_ON(1);
7385                         list_del(&dev->unreg_list);
7386                         continue;
7387                 }
7388                 dev->dismantle = true;
7389                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7390         }
7391
7392         /* If device is running, close it first. */
7393         list_for_each_entry(dev, head, unreg_list)
7394                 list_add_tail(&dev->close_list, &close_head);
7395         dev_close_many(&close_head, true);
7396
7397         list_for_each_entry(dev, head, unreg_list) {
7398                 /* And unlink it from device chain. */
7399                 unlist_netdevice(dev);
7400
7401                 dev->reg_state = NETREG_UNREGISTERING;
7402         }
7403         flush_all_backlogs();
7404
7405         synchronize_net();
7406
7407         list_for_each_entry(dev, head, unreg_list) {
7408                 struct sk_buff *skb = NULL;
7409
7410                 /* Shutdown queueing discipline. */
7411                 dev_shutdown(dev);
7412
7413                 dev_xdp_uninstall(dev);
7414
7415                 /* Notify protocols, that we are about to destroy
7416                  * this device. They should clean all the things.
7417                  */
7418                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7419
7420                 if (!dev->rtnl_link_ops ||
7421                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7422                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7423                                                      GFP_KERNEL, NULL, 0);
7424
7425                 /*
7426                  *      Flush the unicast and multicast chains
7427                  */
7428                 dev_uc_flush(dev);
7429                 dev_mc_flush(dev);
7430
7431                 if (dev->netdev_ops->ndo_uninit)
7432                         dev->netdev_ops->ndo_uninit(dev);
7433
7434                 if (skb)
7435                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7436
7437                 /* Notifier chain MUST detach us all upper devices. */
7438                 WARN_ON(netdev_has_any_upper_dev(dev));
7439                 WARN_ON(netdev_has_any_lower_dev(dev));
7440
7441                 /* Remove entries from kobject tree */
7442                 netdev_unregister_kobject(dev);
7443 #ifdef CONFIG_XPS
7444                 /* Remove XPS queueing entries */
7445                 netif_reset_xps_queues_gt(dev, 0);
7446 #endif
7447         }
7448
7449         synchronize_net();
7450
7451         list_for_each_entry(dev, head, unreg_list)
7452                 dev_put(dev);
7453 }
7454
7455 static void rollback_registered(struct net_device *dev)
7456 {
7457         LIST_HEAD(single);
7458
7459         list_add(&dev->unreg_list, &single);
7460         rollback_registered_many(&single);
7461         list_del(&single);
7462 }
7463
7464 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7465         struct net_device *upper, netdev_features_t features)
7466 {
7467         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7468         netdev_features_t feature;
7469         int feature_bit;
7470
7471         for_each_netdev_feature(&upper_disables, feature_bit) {
7472                 feature = __NETIF_F_BIT(feature_bit);
7473                 if (!(upper->wanted_features & feature)
7474                     && (features & feature)) {
7475                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7476                                    &feature, upper->name);
7477                         features &= ~feature;
7478                 }
7479         }
7480
7481         return features;
7482 }
7483
7484 static void netdev_sync_lower_features(struct net_device *upper,
7485         struct net_device *lower, netdev_features_t features)
7486 {
7487         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7488         netdev_features_t feature;
7489         int feature_bit;
7490
7491         for_each_netdev_feature(&upper_disables, feature_bit) {
7492                 feature = __NETIF_F_BIT(feature_bit);
7493                 if (!(features & feature) && (lower->features & feature)) {
7494                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7495                                    &feature, lower->name);
7496                         lower->wanted_features &= ~feature;
7497                         netdev_update_features(lower);
7498
7499                         if (unlikely(lower->features & feature))
7500                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7501                                             &feature, lower->name);
7502                 }
7503         }
7504 }
7505
7506 static netdev_features_t netdev_fix_features(struct net_device *dev,
7507         netdev_features_t features)
7508 {
7509         /* Fix illegal checksum combinations */
7510         if ((features & NETIF_F_HW_CSUM) &&
7511             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7512                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7513                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7514         }
7515
7516         /* TSO requires that SG is present as well. */
7517         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7518                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7519                 features &= ~NETIF_F_ALL_TSO;
7520         }
7521
7522         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7523                                         !(features & NETIF_F_IP_CSUM)) {
7524                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7525                 features &= ~NETIF_F_TSO;
7526                 features &= ~NETIF_F_TSO_ECN;
7527         }
7528
7529         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7530                                          !(features & NETIF_F_IPV6_CSUM)) {
7531                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7532                 features &= ~NETIF_F_TSO6;
7533         }
7534
7535         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7536         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7537                 features &= ~NETIF_F_TSO_MANGLEID;
7538
7539         /* TSO ECN requires that TSO is present as well. */
7540         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7541                 features &= ~NETIF_F_TSO_ECN;
7542
7543         /* Software GSO depends on SG. */
7544         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7545                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7546                 features &= ~NETIF_F_GSO;
7547         }
7548
7549         /* GSO partial features require GSO partial be set */
7550         if ((features & dev->gso_partial_features) &&
7551             !(features & NETIF_F_GSO_PARTIAL)) {
7552                 netdev_dbg(dev,
7553                            "Dropping partially supported GSO features since no GSO partial.\n");
7554                 features &= ~dev->gso_partial_features;
7555         }
7556
7557         if (!(features & NETIF_F_RXCSUM)) {
7558                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7559                  * successfully merged by hardware must also have the
7560                  * checksum verified by hardware.  If the user does not
7561                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7562                  */
7563                 if (features & NETIF_F_GRO_HW) {
7564                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7565                         features &= ~NETIF_F_GRO_HW;
7566                 }
7567         }
7568
7569         /* LRO/HW-GRO features cannot be combined with RX-FCS */
7570         if (features & NETIF_F_RXFCS) {
7571                 if (features & NETIF_F_LRO) {
7572                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7573                         features &= ~NETIF_F_LRO;
7574                 }
7575
7576                 if (features & NETIF_F_GRO_HW) {
7577                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7578                         features &= ~NETIF_F_GRO_HW;
7579                 }
7580         }
7581
7582         return features;
7583 }
7584
7585 int __netdev_update_features(struct net_device *dev)
7586 {
7587         struct net_device *upper, *lower;
7588         netdev_features_t features;
7589         struct list_head *iter;
7590         int err = -1;
7591
7592         ASSERT_RTNL();
7593
7594         features = netdev_get_wanted_features(dev);
7595
7596         if (dev->netdev_ops->ndo_fix_features)
7597                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7598
7599         /* driver might be less strict about feature dependencies */
7600         features = netdev_fix_features(dev, features);
7601
7602         /* some features can't be enabled if they're off an an upper device */
7603         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7604                 features = netdev_sync_upper_features(dev, upper, features);
7605
7606         if (dev->features == features)
7607                 goto sync_lower;
7608
7609         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7610                 &dev->features, &features);
7611
7612         if (dev->netdev_ops->ndo_set_features)
7613                 err = dev->netdev_ops->ndo_set_features(dev, features);
7614         else
7615                 err = 0;
7616
7617         if (unlikely(err < 0)) {
7618                 netdev_err(dev,
7619                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7620                         err, &features, &dev->features);
7621                 /* return non-0 since some features might have changed and
7622                  * it's better to fire a spurious notification than miss it
7623                  */
7624                 return -1;
7625         }
7626
7627 sync_lower:
7628         /* some features must be disabled on lower devices when disabled
7629          * on an upper device (think: bonding master or bridge)
7630          */
7631         netdev_for_each_lower_dev(dev, lower, iter)
7632                 netdev_sync_lower_features(dev, lower, features);
7633
7634         if (!err) {
7635                 netdev_features_t diff = features ^ dev->features;
7636
7637                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7638                         /* udp_tunnel_{get,drop}_rx_info both need
7639                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7640                          * device, or they won't do anything.
7641                          * Thus we need to update dev->features
7642                          * *before* calling udp_tunnel_get_rx_info,
7643                          * but *after* calling udp_tunnel_drop_rx_info.
7644                          */
7645                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7646                                 dev->features = features;
7647                                 udp_tunnel_get_rx_info(dev);
7648                         } else {
7649                                 udp_tunnel_drop_rx_info(dev);
7650                         }
7651                 }
7652
7653                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7654                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7655                                 dev->features = features;
7656                                 err |= vlan_get_rx_ctag_filter_info(dev);
7657                         } else {
7658                                 vlan_drop_rx_ctag_filter_info(dev);
7659                         }
7660                 }
7661
7662                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7663                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7664                                 dev->features = features;
7665                                 err |= vlan_get_rx_stag_filter_info(dev);
7666                         } else {
7667                                 vlan_drop_rx_stag_filter_info(dev);
7668                         }
7669                 }
7670
7671                 dev->features = features;
7672         }
7673
7674         return err < 0 ? 0 : 1;
7675 }
7676
7677 /**
7678  *      netdev_update_features - recalculate device features
7679  *      @dev: the device to check
7680  *
7681  *      Recalculate dev->features set and send notifications if it
7682  *      has changed. Should be called after driver or hardware dependent
7683  *      conditions might have changed that influence the features.
7684  */
7685 void netdev_update_features(struct net_device *dev)
7686 {
7687         if (__netdev_update_features(dev))
7688                 netdev_features_change(dev);
7689 }
7690 EXPORT_SYMBOL(netdev_update_features);
7691
7692 /**
7693  *      netdev_change_features - recalculate device features
7694  *      @dev: the device to check
7695  *
7696  *      Recalculate dev->features set and send notifications even
7697  *      if they have not changed. Should be called instead of
7698  *      netdev_update_features() if also dev->vlan_features might
7699  *      have changed to allow the changes to be propagated to stacked
7700  *      VLAN devices.
7701  */
7702 void netdev_change_features(struct net_device *dev)
7703 {
7704         __netdev_update_features(dev);
7705         netdev_features_change(dev);
7706 }
7707 EXPORT_SYMBOL(netdev_change_features);
7708
7709 /**
7710  *      netif_stacked_transfer_operstate -      transfer operstate
7711  *      @rootdev: the root or lower level device to transfer state from
7712  *      @dev: the device to transfer operstate to
7713  *
7714  *      Transfer operational state from root to device. This is normally
7715  *      called when a stacking relationship exists between the root
7716  *      device and the device(a leaf device).
7717  */
7718 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7719                                         struct net_device *dev)
7720 {
7721         if (rootdev->operstate == IF_OPER_DORMANT)
7722                 netif_dormant_on(dev);
7723         else
7724                 netif_dormant_off(dev);
7725
7726         if (netif_carrier_ok(rootdev))
7727                 netif_carrier_on(dev);
7728         else
7729                 netif_carrier_off(dev);
7730 }
7731 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7732
7733 static int netif_alloc_rx_queues(struct net_device *dev)
7734 {
7735         unsigned int i, count = dev->num_rx_queues;
7736         struct netdev_rx_queue *rx;
7737         size_t sz = count * sizeof(*rx);
7738         int err = 0;
7739
7740         BUG_ON(count < 1);
7741
7742         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7743         if (!rx)
7744                 return -ENOMEM;
7745
7746         dev->_rx = rx;
7747
7748         for (i = 0; i < count; i++) {
7749                 rx[i].dev = dev;
7750
7751                 /* XDP RX-queue setup */
7752                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7753                 if (err < 0)
7754                         goto err_rxq_info;
7755         }
7756         return 0;
7757
7758 err_rxq_info:
7759         /* Rollback successful reg's and free other resources */
7760         while (i--)
7761                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7762         kvfree(dev->_rx);
7763         dev->_rx = NULL;
7764         return err;
7765 }
7766
7767 static void netif_free_rx_queues(struct net_device *dev)
7768 {
7769         unsigned int i, count = dev->num_rx_queues;
7770
7771         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7772         if (!dev->_rx)
7773                 return;
7774
7775         for (i = 0; i < count; i++)
7776                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7777
7778         kvfree(dev->_rx);
7779 }
7780
7781 static void netdev_init_one_queue(struct net_device *dev,
7782                                   struct netdev_queue *queue, void *_unused)
7783 {
7784         /* Initialize queue lock */
7785         spin_lock_init(&queue->_xmit_lock);
7786         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7787         queue->xmit_lock_owner = -1;
7788         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7789         queue->dev = dev;
7790 #ifdef CONFIG_BQL
7791         dql_init(&queue->dql, HZ);
7792 #endif
7793 }
7794
7795 static void netif_free_tx_queues(struct net_device *dev)
7796 {
7797         kvfree(dev->_tx);
7798 }
7799
7800 static int netif_alloc_netdev_queues(struct net_device *dev)
7801 {
7802         unsigned int count = dev->num_tx_queues;
7803         struct netdev_queue *tx;
7804         size_t sz = count * sizeof(*tx);
7805
7806         if (count < 1 || count > 0xffff)
7807                 return -EINVAL;
7808
7809         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7810         if (!tx)
7811                 return -ENOMEM;
7812
7813         dev->_tx = tx;
7814
7815         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7816         spin_lock_init(&dev->tx_global_lock);
7817
7818         return 0;
7819 }
7820
7821 void netif_tx_stop_all_queues(struct net_device *dev)
7822 {
7823         unsigned int i;
7824
7825         for (i = 0; i < dev->num_tx_queues; i++) {
7826                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7827
7828                 netif_tx_stop_queue(txq);
7829         }
7830 }
7831 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7832
7833 /**
7834  *      register_netdevice      - register a network device
7835  *      @dev: device to register
7836  *
7837  *      Take a completed network device structure and add it to the kernel
7838  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7839  *      chain. 0 is returned on success. A negative errno code is returned
7840  *      on a failure to set up the device, or if the name is a duplicate.
7841  *
7842  *      Callers must hold the rtnl semaphore. You may want
7843  *      register_netdev() instead of this.
7844  *
7845  *      BUGS:
7846  *      The locking appears insufficient to guarantee two parallel registers
7847  *      will not get the same name.
7848  */
7849
7850 int register_netdevice(struct net_device *dev)
7851 {
7852         int ret;
7853         struct net *net = dev_net(dev);
7854
7855         BUG_ON(dev_boot_phase);
7856         ASSERT_RTNL();
7857
7858         might_sleep();
7859
7860         /* When net_device's are persistent, this will be fatal. */
7861         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7862         BUG_ON(!net);
7863
7864         spin_lock_init(&dev->addr_list_lock);
7865         netdev_set_addr_lockdep_class(dev);
7866
7867         ret = dev_get_valid_name(net, dev, dev->name);
7868         if (ret < 0)
7869                 goto out;
7870
7871         /* Init, if this function is available */
7872         if (dev->netdev_ops->ndo_init) {
7873                 ret = dev->netdev_ops->ndo_init(dev);
7874                 if (ret) {
7875                         if (ret > 0)
7876                                 ret = -EIO;
7877                         goto out;
7878                 }
7879         }
7880
7881         if (((dev->hw_features | dev->features) &
7882              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7883             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7884              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7885                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7886                 ret = -EINVAL;
7887                 goto err_uninit;
7888         }
7889
7890         ret = -EBUSY;
7891         if (!dev->ifindex)
7892                 dev->ifindex = dev_new_index(net);
7893         else if (__dev_get_by_index(net, dev->ifindex))
7894                 goto err_uninit;
7895
7896         /* Transfer changeable features to wanted_features and enable
7897          * software offloads (GSO and GRO).
7898          */
7899         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7900         dev->features |= NETIF_F_SOFT_FEATURES;
7901
7902         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7903                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7904                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7905         }
7906
7907         dev->wanted_features = dev->features & dev->hw_features;
7908
7909         if (!(dev->flags & IFF_LOOPBACK))
7910                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7911
7912         /* If IPv4 TCP segmentation offload is supported we should also
7913          * allow the device to enable segmenting the frame with the option
7914          * of ignoring a static IP ID value.  This doesn't enable the
7915          * feature itself but allows the user to enable it later.
7916          */
7917         if (dev->hw_features & NETIF_F_TSO)
7918                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7919         if (dev->vlan_features & NETIF_F_TSO)
7920                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7921         if (dev->mpls_features & NETIF_F_TSO)
7922                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7923         if (dev->hw_enc_features & NETIF_F_TSO)
7924                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7925
7926         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7927          */
7928         dev->vlan_features |= NETIF_F_HIGHDMA;
7929
7930         /* Make NETIF_F_SG inheritable to tunnel devices.
7931          */
7932         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7933
7934         /* Make NETIF_F_SG inheritable to MPLS.
7935          */
7936         dev->mpls_features |= NETIF_F_SG;
7937
7938         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7939         ret = notifier_to_errno(ret);
7940         if (ret)
7941                 goto err_uninit;
7942
7943         ret = netdev_register_kobject(dev);
7944         if (ret)
7945                 goto err_uninit;
7946         dev->reg_state = NETREG_REGISTERED;
7947
7948         __netdev_update_features(dev);
7949
7950         /*
7951          *      Default initial state at registry is that the
7952          *      device is present.
7953          */
7954
7955         set_bit(__LINK_STATE_PRESENT, &dev->state);
7956
7957         linkwatch_init_dev(dev);
7958
7959         dev_init_scheduler(dev);
7960         dev_hold(dev);
7961         list_netdevice(dev);
7962         add_device_randomness(dev->dev_addr, dev->addr_len);
7963
7964         /* If the device has permanent device address, driver should
7965          * set dev_addr and also addr_assign_type should be set to
7966          * NET_ADDR_PERM (default value).
7967          */
7968         if (dev->addr_assign_type == NET_ADDR_PERM)
7969                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7970
7971         /* Notify protocols, that a new device appeared. */
7972         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7973         ret = notifier_to_errno(ret);
7974         if (ret) {
7975                 rollback_registered(dev);
7976                 dev->reg_state = NETREG_UNREGISTERED;
7977         }
7978         /*
7979          *      Prevent userspace races by waiting until the network
7980          *      device is fully setup before sending notifications.
7981          */
7982         if (!dev->rtnl_link_ops ||
7983             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7984                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7985
7986 out:
7987         return ret;
7988
7989 err_uninit:
7990         if (dev->netdev_ops->ndo_uninit)
7991                 dev->netdev_ops->ndo_uninit(dev);
7992         if (dev->priv_destructor)
7993                 dev->priv_destructor(dev);
7994         goto out;
7995 }
7996 EXPORT_SYMBOL(register_netdevice);
7997
7998 /**
7999  *      init_dummy_netdev       - init a dummy network device for NAPI
8000  *      @dev: device to init
8001  *
8002  *      This takes a network device structure and initialize the minimum
8003  *      amount of fields so it can be used to schedule NAPI polls without
8004  *      registering a full blown interface. This is to be used by drivers
8005  *      that need to tie several hardware interfaces to a single NAPI
8006  *      poll scheduler due to HW limitations.
8007  */
8008 int init_dummy_netdev(struct net_device *dev)
8009 {
8010         /* Clear everything. Note we don't initialize spinlocks
8011          * are they aren't supposed to be taken by any of the
8012          * NAPI code and this dummy netdev is supposed to be
8013          * only ever used for NAPI polls
8014          */
8015         memset(dev, 0, sizeof(struct net_device));
8016
8017         /* make sure we BUG if trying to hit standard
8018          * register/unregister code path
8019          */
8020         dev->reg_state = NETREG_DUMMY;
8021
8022         /* NAPI wants this */
8023         INIT_LIST_HEAD(&dev->napi_list);
8024
8025         /* a dummy interface is started by default */
8026         set_bit(__LINK_STATE_PRESENT, &dev->state);
8027         set_bit(__LINK_STATE_START, &dev->state);
8028
8029         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8030          * because users of this 'device' dont need to change
8031          * its refcount.
8032          */
8033
8034         return 0;
8035 }
8036 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8037
8038
8039 /**
8040  *      register_netdev - register a network device
8041  *      @dev: device to register
8042  *
8043  *      Take a completed network device structure and add it to the kernel
8044  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8045  *      chain. 0 is returned on success. A negative errno code is returned
8046  *      on a failure to set up the device, or if the name is a duplicate.
8047  *
8048  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8049  *      and expands the device name if you passed a format string to
8050  *      alloc_netdev.
8051  */
8052 int register_netdev(struct net_device *dev)
8053 {
8054         int err;
8055
8056         if (rtnl_lock_killable())
8057                 return -EINTR;
8058         err = register_netdevice(dev);
8059         rtnl_unlock();
8060         return err;
8061 }
8062 EXPORT_SYMBOL(register_netdev);
8063
8064 int netdev_refcnt_read(const struct net_device *dev)
8065 {
8066         int i, refcnt = 0;
8067
8068         for_each_possible_cpu(i)
8069                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8070         return refcnt;
8071 }
8072 EXPORT_SYMBOL(netdev_refcnt_read);
8073
8074 /**
8075  * netdev_wait_allrefs - wait until all references are gone.
8076  * @dev: target net_device
8077  *
8078  * This is called when unregistering network devices.
8079  *
8080  * Any protocol or device that holds a reference should register
8081  * for netdevice notification, and cleanup and put back the
8082  * reference if they receive an UNREGISTER event.
8083  * We can get stuck here if buggy protocols don't correctly
8084  * call dev_put.
8085  */
8086 static void netdev_wait_allrefs(struct net_device *dev)
8087 {
8088         unsigned long rebroadcast_time, warning_time;
8089         int refcnt;
8090
8091         linkwatch_forget_dev(dev);
8092
8093         rebroadcast_time = warning_time = jiffies;
8094         refcnt = netdev_refcnt_read(dev);
8095
8096         while (refcnt != 0) {
8097                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8098                         rtnl_lock();
8099
8100                         /* Rebroadcast unregister notification */
8101                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8102
8103                         __rtnl_unlock();
8104                         rcu_barrier();
8105                         rtnl_lock();
8106
8107                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8108                                      &dev->state)) {
8109                                 /* We must not have linkwatch events
8110                                  * pending on unregister. If this
8111                                  * happens, we simply run the queue
8112                                  * unscheduled, resulting in a noop
8113                                  * for this device.
8114                                  */
8115                                 linkwatch_run_queue();
8116                         }
8117
8118                         __rtnl_unlock();
8119
8120                         rebroadcast_time = jiffies;
8121                 }
8122
8123                 msleep(250);
8124
8125                 refcnt = netdev_refcnt_read(dev);
8126
8127                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8128                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8129                                  dev->name, refcnt);
8130                         warning_time = jiffies;
8131                 }
8132         }
8133 }
8134
8135 /* The sequence is:
8136  *
8137  *      rtnl_lock();
8138  *      ...
8139  *      register_netdevice(x1);
8140  *      register_netdevice(x2);
8141  *      ...
8142  *      unregister_netdevice(y1);
8143  *      unregister_netdevice(y2);
8144  *      ...
8145  *      rtnl_unlock();
8146  *      free_netdev(y1);
8147  *      free_netdev(y2);
8148  *
8149  * We are invoked by rtnl_unlock().
8150  * This allows us to deal with problems:
8151  * 1) We can delete sysfs objects which invoke hotplug
8152  *    without deadlocking with linkwatch via keventd.
8153  * 2) Since we run with the RTNL semaphore not held, we can sleep
8154  *    safely in order to wait for the netdev refcnt to drop to zero.
8155  *
8156  * We must not return until all unregister events added during
8157  * the interval the lock was held have been completed.
8158  */
8159 void netdev_run_todo(void)
8160 {
8161         struct list_head list;
8162
8163         /* Snapshot list, allow later requests */
8164         list_replace_init(&net_todo_list, &list);
8165
8166         __rtnl_unlock();
8167
8168
8169         /* Wait for rcu callbacks to finish before next phase */
8170         if (!list_empty(&list))
8171                 rcu_barrier();
8172
8173         while (!list_empty(&list)) {
8174                 struct net_device *dev
8175                         = list_first_entry(&list, struct net_device, todo_list);
8176                 list_del(&dev->todo_list);
8177
8178                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8179                         pr_err("network todo '%s' but state %d\n",
8180                                dev->name, dev->reg_state);
8181                         dump_stack();
8182                         continue;
8183                 }
8184
8185                 dev->reg_state = NETREG_UNREGISTERED;
8186
8187                 netdev_wait_allrefs(dev);
8188
8189                 /* paranoia */
8190                 BUG_ON(netdev_refcnt_read(dev));
8191                 BUG_ON(!list_empty(&dev->ptype_all));
8192                 BUG_ON(!list_empty(&dev->ptype_specific));
8193                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8194                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8195 #if IS_ENABLED(CONFIG_DECNET)
8196                 WARN_ON(dev->dn_ptr);
8197 #endif
8198                 if (dev->priv_destructor)
8199                         dev->priv_destructor(dev);
8200                 if (dev->needs_free_netdev)
8201                         free_netdev(dev);
8202
8203                 /* Report a network device has been unregistered */
8204                 rtnl_lock();
8205                 dev_net(dev)->dev_unreg_count--;
8206                 __rtnl_unlock();
8207                 wake_up(&netdev_unregistering_wq);
8208
8209                 /* Free network device */
8210                 kobject_put(&dev->dev.kobj);
8211         }
8212 }
8213
8214 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8215  * all the same fields in the same order as net_device_stats, with only
8216  * the type differing, but rtnl_link_stats64 may have additional fields
8217  * at the end for newer counters.
8218  */
8219 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8220                              const struct net_device_stats *netdev_stats)
8221 {
8222 #if BITS_PER_LONG == 64
8223         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8224         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8225         /* zero out counters that only exist in rtnl_link_stats64 */
8226         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8227                sizeof(*stats64) - sizeof(*netdev_stats));
8228 #else
8229         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8230         const unsigned long *src = (const unsigned long *)netdev_stats;
8231         u64 *dst = (u64 *)stats64;
8232
8233         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8234         for (i = 0; i < n; i++)
8235                 dst[i] = src[i];
8236         /* zero out counters that only exist in rtnl_link_stats64 */
8237         memset((char *)stats64 + n * sizeof(u64), 0,
8238                sizeof(*stats64) - n * sizeof(u64));
8239 #endif
8240 }
8241 EXPORT_SYMBOL(netdev_stats_to_stats64);
8242
8243 /**
8244  *      dev_get_stats   - get network device statistics
8245  *      @dev: device to get statistics from
8246  *      @storage: place to store stats
8247  *
8248  *      Get network statistics from device. Return @storage.
8249  *      The device driver may provide its own method by setting
8250  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8251  *      otherwise the internal statistics structure is used.
8252  */
8253 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8254                                         struct rtnl_link_stats64 *storage)
8255 {
8256         const struct net_device_ops *ops = dev->netdev_ops;
8257
8258         if (ops->ndo_get_stats64) {
8259                 memset(storage, 0, sizeof(*storage));
8260                 ops->ndo_get_stats64(dev, storage);
8261         } else if (ops->ndo_get_stats) {
8262                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8263         } else {
8264                 netdev_stats_to_stats64(storage, &dev->stats);
8265         }
8266         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8267         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8268         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8269         return storage;
8270 }
8271 EXPORT_SYMBOL(dev_get_stats);
8272
8273 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8274 {
8275         struct netdev_queue *queue = dev_ingress_queue(dev);
8276
8277 #ifdef CONFIG_NET_CLS_ACT
8278         if (queue)
8279                 return queue;
8280         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8281         if (!queue)
8282                 return NULL;
8283         netdev_init_one_queue(dev, queue, NULL);
8284         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8285         queue->qdisc_sleeping = &noop_qdisc;
8286         rcu_assign_pointer(dev->ingress_queue, queue);
8287 #endif
8288         return queue;
8289 }
8290
8291 static const struct ethtool_ops default_ethtool_ops;
8292
8293 void netdev_set_default_ethtool_ops(struct net_device *dev,
8294                                     const struct ethtool_ops *ops)
8295 {
8296         if (dev->ethtool_ops == &default_ethtool_ops)
8297                 dev->ethtool_ops = ops;
8298 }
8299 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8300
8301 void netdev_freemem(struct net_device *dev)
8302 {
8303         char *addr = (char *)dev - dev->padded;
8304
8305         kvfree(addr);
8306 }
8307
8308 /**
8309  * alloc_netdev_mqs - allocate network device
8310  * @sizeof_priv: size of private data to allocate space for
8311  * @name: device name format string
8312  * @name_assign_type: origin of device name
8313  * @setup: callback to initialize device
8314  * @txqs: the number of TX subqueues to allocate
8315  * @rxqs: the number of RX subqueues to allocate
8316  *
8317  * Allocates a struct net_device with private data area for driver use
8318  * and performs basic initialization.  Also allocates subqueue structs
8319  * for each queue on the device.
8320  */
8321 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8322                 unsigned char name_assign_type,
8323                 void (*setup)(struct net_device *),
8324                 unsigned int txqs, unsigned int rxqs)
8325 {
8326         struct net_device *dev;
8327         unsigned int alloc_size;
8328         struct net_device *p;
8329
8330         BUG_ON(strlen(name) >= sizeof(dev->name));
8331
8332         if (txqs < 1) {
8333                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8334                 return NULL;
8335         }
8336
8337         if (rxqs < 1) {
8338                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8339                 return NULL;
8340         }
8341
8342         alloc_size = sizeof(struct net_device);
8343         if (sizeof_priv) {
8344                 /* ensure 32-byte alignment of private area */
8345                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8346                 alloc_size += sizeof_priv;
8347         }
8348         /* ensure 32-byte alignment of whole construct */
8349         alloc_size += NETDEV_ALIGN - 1;
8350
8351         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8352         if (!p)
8353                 return NULL;
8354
8355         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8356         dev->padded = (char *)dev - (char *)p;
8357
8358         dev->pcpu_refcnt = alloc_percpu(int);
8359         if (!dev->pcpu_refcnt)
8360                 goto free_dev;
8361
8362         if (dev_addr_init(dev))
8363                 goto free_pcpu;
8364
8365         dev_mc_init(dev);
8366         dev_uc_init(dev);
8367
8368         dev_net_set(dev, &init_net);
8369
8370         dev->gso_max_size = GSO_MAX_SIZE;
8371         dev->gso_max_segs = GSO_MAX_SEGS;
8372
8373         INIT_LIST_HEAD(&dev->napi_list);
8374         INIT_LIST_HEAD(&dev->unreg_list);
8375         INIT_LIST_HEAD(&dev->close_list);
8376         INIT_LIST_HEAD(&dev->link_watch_list);
8377         INIT_LIST_HEAD(&dev->adj_list.upper);
8378         INIT_LIST_HEAD(&dev->adj_list.lower);
8379         INIT_LIST_HEAD(&dev->ptype_all);
8380         INIT_LIST_HEAD(&dev->ptype_specific);
8381 #ifdef CONFIG_NET_SCHED
8382         hash_init(dev->qdisc_hash);
8383 #endif
8384         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8385         setup(dev);
8386
8387         if (!dev->tx_queue_len) {
8388                 dev->priv_flags |= IFF_NO_QUEUE;
8389                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8390         }
8391
8392         dev->num_tx_queues = txqs;
8393         dev->real_num_tx_queues = txqs;
8394         if (netif_alloc_netdev_queues(dev))
8395                 goto free_all;
8396
8397         dev->num_rx_queues = rxqs;
8398         dev->real_num_rx_queues = rxqs;
8399         if (netif_alloc_rx_queues(dev))
8400                 goto free_all;
8401
8402         strcpy(dev->name, name);
8403         dev->name_assign_type = name_assign_type;
8404         dev->group = INIT_NETDEV_GROUP;
8405         if (!dev->ethtool_ops)
8406                 dev->ethtool_ops = &default_ethtool_ops;
8407
8408         nf_hook_ingress_init(dev);
8409
8410         return dev;
8411
8412 free_all:
8413         free_netdev(dev);
8414         return NULL;
8415
8416 free_pcpu:
8417         free_percpu(dev->pcpu_refcnt);
8418 free_dev:
8419         netdev_freemem(dev);
8420         return NULL;
8421 }
8422 EXPORT_SYMBOL(alloc_netdev_mqs);
8423
8424 /**
8425  * free_netdev - free network device
8426  * @dev: device
8427  *
8428  * This function does the last stage of destroying an allocated device
8429  * interface. The reference to the device object is released. If this
8430  * is the last reference then it will be freed.Must be called in process
8431  * context.
8432  */
8433 void free_netdev(struct net_device *dev)
8434 {
8435         struct napi_struct *p, *n;
8436
8437         might_sleep();
8438         netif_free_tx_queues(dev);
8439         netif_free_rx_queues(dev);
8440
8441         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8442
8443         /* Flush device addresses */
8444         dev_addr_flush(dev);
8445
8446         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8447                 netif_napi_del(p);
8448
8449         free_percpu(dev->pcpu_refcnt);
8450         dev->pcpu_refcnt = NULL;
8451
8452         /*  Compatibility with error handling in drivers */
8453         if (dev->reg_state == NETREG_UNINITIALIZED) {
8454                 netdev_freemem(dev);
8455                 return;
8456         }
8457
8458         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8459         dev->reg_state = NETREG_RELEASED;
8460
8461         /* will free via device release */
8462         put_device(&dev->dev);
8463 }
8464 EXPORT_SYMBOL(free_netdev);
8465
8466 /**
8467  *      synchronize_net -  Synchronize with packet receive processing
8468  *
8469  *      Wait for packets currently being received to be done.
8470  *      Does not block later packets from starting.
8471  */
8472 void synchronize_net(void)
8473 {
8474         might_sleep();
8475         if (rtnl_is_locked())
8476                 synchronize_rcu_expedited();
8477         else
8478                 synchronize_rcu();
8479 }
8480 EXPORT_SYMBOL(synchronize_net);
8481
8482 /**
8483  *      unregister_netdevice_queue - remove device from the kernel
8484  *      @dev: device
8485  *      @head: list
8486  *
8487  *      This function shuts down a device interface and removes it
8488  *      from the kernel tables.
8489  *      If head not NULL, device is queued to be unregistered later.
8490  *
8491  *      Callers must hold the rtnl semaphore.  You may want
8492  *      unregister_netdev() instead of this.
8493  */
8494
8495 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8496 {
8497         ASSERT_RTNL();
8498
8499         if (head) {
8500                 list_move_tail(&dev->unreg_list, head);
8501         } else {
8502                 rollback_registered(dev);
8503                 /* Finish processing unregister after unlock */
8504                 net_set_todo(dev);
8505         }
8506 }
8507 EXPORT_SYMBOL(unregister_netdevice_queue);
8508
8509 /**
8510  *      unregister_netdevice_many - unregister many devices
8511  *      @head: list of devices
8512  *
8513  *  Note: As most callers use a stack allocated list_head,
8514  *  we force a list_del() to make sure stack wont be corrupted later.
8515  */
8516 void unregister_netdevice_many(struct list_head *head)
8517 {
8518         struct net_device *dev;
8519
8520         if (!list_empty(head)) {
8521                 rollback_registered_many(head);
8522                 list_for_each_entry(dev, head, unreg_list)
8523                         net_set_todo(dev);
8524                 list_del(head);
8525         }
8526 }
8527 EXPORT_SYMBOL(unregister_netdevice_many);
8528
8529 /**
8530  *      unregister_netdev - remove device from the kernel
8531  *      @dev: device
8532  *
8533  *      This function shuts down a device interface and removes it
8534  *      from the kernel tables.
8535  *
8536  *      This is just a wrapper for unregister_netdevice that takes
8537  *      the rtnl semaphore.  In general you want to use this and not
8538  *      unregister_netdevice.
8539  */
8540 void unregister_netdev(struct net_device *dev)
8541 {
8542         rtnl_lock();
8543         unregister_netdevice(dev);
8544         rtnl_unlock();
8545 }
8546 EXPORT_SYMBOL(unregister_netdev);
8547
8548 /**
8549  *      dev_change_net_namespace - move device to different nethost namespace
8550  *      @dev: device
8551  *      @net: network namespace
8552  *      @pat: If not NULL name pattern to try if the current device name
8553  *            is already taken in the destination network namespace.
8554  *
8555  *      This function shuts down a device interface and moves it
8556  *      to a new network namespace. On success 0 is returned, on
8557  *      a failure a netagive errno code is returned.
8558  *
8559  *      Callers must hold the rtnl semaphore.
8560  */
8561
8562 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8563 {
8564         int err, new_nsid, new_ifindex;
8565
8566         ASSERT_RTNL();
8567
8568         /* Don't allow namespace local devices to be moved. */
8569         err = -EINVAL;
8570         if (dev->features & NETIF_F_NETNS_LOCAL)
8571                 goto out;
8572
8573         /* Ensure the device has been registrered */
8574         if (dev->reg_state != NETREG_REGISTERED)
8575                 goto out;
8576
8577         /* Get out if there is nothing todo */
8578         err = 0;
8579         if (net_eq(dev_net(dev), net))
8580                 goto out;
8581
8582         /* Pick the destination device name, and ensure
8583          * we can use it in the destination network namespace.
8584          */
8585         err = -EEXIST;
8586         if (__dev_get_by_name(net, dev->name)) {
8587                 /* We get here if we can't use the current device name */
8588                 if (!pat)
8589                         goto out;
8590                 if (dev_get_valid_name(net, dev, pat) < 0)
8591                         goto out;
8592         }
8593
8594         /*
8595          * And now a mini version of register_netdevice unregister_netdevice.
8596          */
8597
8598         /* If device is running close it first. */
8599         dev_close(dev);
8600
8601         /* And unlink it from device chain */
8602         err = -ENODEV;
8603         unlist_netdevice(dev);
8604
8605         synchronize_net();
8606
8607         /* Shutdown queueing discipline. */
8608         dev_shutdown(dev);
8609
8610         /* Notify protocols, that we are about to destroy
8611          * this device. They should clean all the things.
8612          *
8613          * Note that dev->reg_state stays at NETREG_REGISTERED.
8614          * This is wanted because this way 8021q and macvlan know
8615          * the device is just moving and can keep their slaves up.
8616          */
8617         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8618         rcu_barrier();
8619
8620         new_nsid = peernet2id_alloc(dev_net(dev), net);
8621         /* If there is an ifindex conflict assign a new one */
8622         if (__dev_get_by_index(net, dev->ifindex))
8623                 new_ifindex = dev_new_index(net);
8624         else
8625                 new_ifindex = dev->ifindex;
8626
8627         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8628                             new_ifindex);
8629
8630         /*
8631          *      Flush the unicast and multicast chains
8632          */
8633         dev_uc_flush(dev);
8634         dev_mc_flush(dev);
8635
8636         /* Send a netdev-removed uevent to the old namespace */
8637         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8638         netdev_adjacent_del_links(dev);
8639
8640         /* Actually switch the network namespace */
8641         dev_net_set(dev, net);
8642         dev->ifindex = new_ifindex;
8643
8644         /* Send a netdev-add uevent to the new namespace */
8645         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8646         netdev_adjacent_add_links(dev);
8647
8648         /* Fixup kobjects */
8649         err = device_rename(&dev->dev, dev->name);
8650         WARN_ON(err);
8651
8652         /* Add the device back in the hashes */
8653         list_netdevice(dev);
8654
8655         /* Notify protocols, that a new device appeared. */
8656         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8657
8658         /*
8659          *      Prevent userspace races by waiting until the network
8660          *      device is fully setup before sending notifications.
8661          */
8662         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8663
8664         synchronize_net();
8665         err = 0;
8666 out:
8667         return err;
8668 }
8669 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8670
8671 static int dev_cpu_dead(unsigned int oldcpu)
8672 {
8673         struct sk_buff **list_skb;
8674         struct sk_buff *skb;
8675         unsigned int cpu;
8676         struct softnet_data *sd, *oldsd, *remsd = NULL;
8677
8678         local_irq_disable();
8679         cpu = smp_processor_id();
8680         sd = &per_cpu(softnet_data, cpu);
8681         oldsd = &per_cpu(softnet_data, oldcpu);
8682
8683         /* Find end of our completion_queue. */
8684         list_skb = &sd->completion_queue;
8685         while (*list_skb)
8686                 list_skb = &(*list_skb)->next;
8687         /* Append completion queue from offline CPU. */
8688         *list_skb = oldsd->completion_queue;
8689         oldsd->completion_queue = NULL;
8690
8691         /* Append output queue from offline CPU. */
8692         if (oldsd->output_queue) {
8693                 *sd->output_queue_tailp = oldsd->output_queue;
8694                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8695                 oldsd->output_queue = NULL;
8696                 oldsd->output_queue_tailp = &oldsd->output_queue;
8697         }
8698         /* Append NAPI poll list from offline CPU, with one exception :
8699          * process_backlog() must be called by cpu owning percpu backlog.
8700          * We properly handle process_queue & input_pkt_queue later.
8701          */
8702         while (!list_empty(&oldsd->poll_list)) {
8703                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8704                                                             struct napi_struct,
8705                                                             poll_list);
8706
8707                 list_del_init(&napi->poll_list);
8708                 if (napi->poll == process_backlog)
8709                         napi->state = 0;
8710                 else
8711                         ____napi_schedule(sd, napi);
8712         }
8713
8714         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8715         local_irq_enable();
8716
8717 #ifdef CONFIG_RPS
8718         remsd = oldsd->rps_ipi_list;
8719         oldsd->rps_ipi_list = NULL;
8720 #endif
8721         /* send out pending IPI's on offline CPU */
8722         net_rps_send_ipi(remsd);
8723
8724         /* Process offline CPU's input_pkt_queue */
8725         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8726                 netif_rx_ni(skb);
8727                 input_queue_head_incr(oldsd);
8728         }
8729         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8730                 netif_rx_ni(skb);
8731                 input_queue_head_incr(oldsd);
8732         }
8733
8734         return 0;
8735 }
8736
8737 /**
8738  *      netdev_increment_features - increment feature set by one
8739  *      @all: current feature set
8740  *      @one: new feature set
8741  *      @mask: mask feature set
8742  *
8743  *      Computes a new feature set after adding a device with feature set
8744  *      @one to the master device with current feature set @all.  Will not
8745  *      enable anything that is off in @mask. Returns the new feature set.
8746  */
8747 netdev_features_t netdev_increment_features(netdev_features_t all,
8748         netdev_features_t one, netdev_features_t mask)
8749 {
8750         if (mask & NETIF_F_HW_CSUM)
8751                 mask |= NETIF_F_CSUM_MASK;
8752         mask |= NETIF_F_VLAN_CHALLENGED;
8753
8754         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8755         all &= one | ~NETIF_F_ALL_FOR_ALL;
8756
8757         /* If one device supports hw checksumming, set for all. */
8758         if (all & NETIF_F_HW_CSUM)
8759                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8760
8761         return all;
8762 }
8763 EXPORT_SYMBOL(netdev_increment_features);
8764
8765 static struct hlist_head * __net_init netdev_create_hash(void)
8766 {
8767         int i;
8768         struct hlist_head *hash;
8769
8770         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8771         if (hash != NULL)
8772                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8773                         INIT_HLIST_HEAD(&hash[i]);
8774
8775         return hash;
8776 }
8777
8778 /* Initialize per network namespace state */
8779 static int __net_init netdev_init(struct net *net)
8780 {
8781         if (net != &init_net)
8782                 INIT_LIST_HEAD(&net->dev_base_head);
8783
8784         net->dev_name_head = netdev_create_hash();
8785         if (net->dev_name_head == NULL)
8786                 goto err_name;
8787
8788         net->dev_index_head = netdev_create_hash();
8789         if (net->dev_index_head == NULL)
8790                 goto err_idx;
8791
8792         return 0;
8793
8794 err_idx:
8795         kfree(net->dev_name_head);
8796 err_name:
8797         return -ENOMEM;
8798 }
8799
8800 /**
8801  *      netdev_drivername - network driver for the device
8802  *      @dev: network device
8803  *
8804  *      Determine network driver for device.
8805  */
8806 const char *netdev_drivername(const struct net_device *dev)
8807 {
8808         const struct device_driver *driver;
8809         const struct device *parent;
8810         const char *empty = "";
8811
8812         parent = dev->dev.parent;
8813         if (!parent)
8814                 return empty;
8815
8816         driver = parent->driver;
8817         if (driver && driver->name)
8818                 return driver->name;
8819         return empty;
8820 }
8821
8822 static void __netdev_printk(const char *level, const struct net_device *dev,
8823                             struct va_format *vaf)
8824 {
8825         if (dev && dev->dev.parent) {
8826                 dev_printk_emit(level[1] - '0',
8827                                 dev->dev.parent,
8828                                 "%s %s %s%s: %pV",
8829                                 dev_driver_string(dev->dev.parent),
8830                                 dev_name(dev->dev.parent),
8831                                 netdev_name(dev), netdev_reg_state(dev),
8832                                 vaf);
8833         } else if (dev) {
8834                 printk("%s%s%s: %pV",
8835                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8836         } else {
8837                 printk("%s(NULL net_device): %pV", level, vaf);
8838         }
8839 }
8840
8841 void netdev_printk(const char *level, const struct net_device *dev,
8842                    const char *format, ...)
8843 {
8844         struct va_format vaf;
8845         va_list args;
8846
8847         va_start(args, format);
8848
8849         vaf.fmt = format;
8850         vaf.va = &args;
8851
8852         __netdev_printk(level, dev, &vaf);
8853
8854         va_end(args);
8855 }
8856 EXPORT_SYMBOL(netdev_printk);
8857
8858 #define define_netdev_printk_level(func, level)                 \
8859 void func(const struct net_device *dev, const char *fmt, ...)   \
8860 {                                                               \
8861         struct va_format vaf;                                   \
8862         va_list args;                                           \
8863                                                                 \
8864         va_start(args, fmt);                                    \
8865                                                                 \
8866         vaf.fmt = fmt;                                          \
8867         vaf.va = &args;                                         \
8868                                                                 \
8869         __netdev_printk(level, dev, &vaf);                      \
8870                                                                 \
8871         va_end(args);                                           \
8872 }                                                               \
8873 EXPORT_SYMBOL(func);
8874
8875 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8876 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8877 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8878 define_netdev_printk_level(netdev_err, KERN_ERR);
8879 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8880 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8881 define_netdev_printk_level(netdev_info, KERN_INFO);
8882
8883 static void __net_exit netdev_exit(struct net *net)
8884 {
8885         kfree(net->dev_name_head);
8886         kfree(net->dev_index_head);
8887         if (net != &init_net)
8888                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8889 }
8890
8891 static struct pernet_operations __net_initdata netdev_net_ops = {
8892         .init = netdev_init,
8893         .exit = netdev_exit,
8894 };
8895
8896 static void __net_exit default_device_exit(struct net *net)
8897 {
8898         struct net_device *dev, *aux;
8899         /*
8900          * Push all migratable network devices back to the
8901          * initial network namespace
8902          */
8903         rtnl_lock();
8904         for_each_netdev_safe(net, dev, aux) {
8905                 int err;
8906                 char fb_name[IFNAMSIZ];
8907
8908                 /* Ignore unmoveable devices (i.e. loopback) */
8909                 if (dev->features & NETIF_F_NETNS_LOCAL)
8910                         continue;
8911
8912                 /* Leave virtual devices for the generic cleanup */
8913                 if (dev->rtnl_link_ops)
8914                         continue;
8915
8916                 /* Push remaining network devices to init_net */
8917                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8918                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8919                 if (err) {
8920                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8921                                  __func__, dev->name, err);
8922                         BUG();
8923                 }
8924         }
8925         rtnl_unlock();
8926 }
8927
8928 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8929 {
8930         /* Return with the rtnl_lock held when there are no network
8931          * devices unregistering in any network namespace in net_list.
8932          */
8933         struct net *net;
8934         bool unregistering;
8935         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8936
8937         add_wait_queue(&netdev_unregistering_wq, &wait);
8938         for (;;) {
8939                 unregistering = false;
8940                 rtnl_lock();
8941                 list_for_each_entry(net, net_list, exit_list) {
8942                         if (net->dev_unreg_count > 0) {
8943                                 unregistering = true;
8944                                 break;
8945                         }
8946                 }
8947                 if (!unregistering)
8948                         break;
8949                 __rtnl_unlock();
8950
8951                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8952         }
8953         remove_wait_queue(&netdev_unregistering_wq, &wait);
8954 }
8955
8956 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8957 {
8958         /* At exit all network devices most be removed from a network
8959          * namespace.  Do this in the reverse order of registration.
8960          * Do this across as many network namespaces as possible to
8961          * improve batching efficiency.
8962          */
8963         struct net_device *dev;
8964         struct net *net;
8965         LIST_HEAD(dev_kill_list);
8966
8967         /* To prevent network device cleanup code from dereferencing
8968          * loopback devices or network devices that have been freed
8969          * wait here for all pending unregistrations to complete,
8970          * before unregistring the loopback device and allowing the
8971          * network namespace be freed.
8972          *
8973          * The netdev todo list containing all network devices
8974          * unregistrations that happen in default_device_exit_batch
8975          * will run in the rtnl_unlock() at the end of
8976          * default_device_exit_batch.
8977          */
8978         rtnl_lock_unregistering(net_list);
8979         list_for_each_entry(net, net_list, exit_list) {
8980                 for_each_netdev_reverse(net, dev) {
8981                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8982                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8983                         else
8984                                 unregister_netdevice_queue(dev, &dev_kill_list);
8985                 }
8986         }
8987         unregister_netdevice_many(&dev_kill_list);
8988         rtnl_unlock();
8989 }
8990
8991 static struct pernet_operations __net_initdata default_device_ops = {
8992         .exit = default_device_exit,
8993         .exit_batch = default_device_exit_batch,
8994 };
8995
8996 /*
8997  *      Initialize the DEV module. At boot time this walks the device list and
8998  *      unhooks any devices that fail to initialise (normally hardware not
8999  *      present) and leaves us with a valid list of present and active devices.
9000  *
9001  */
9002
9003 /*
9004  *       This is called single threaded during boot, so no need
9005  *       to take the rtnl semaphore.
9006  */
9007 static int __init net_dev_init(void)
9008 {
9009         int i, rc = -ENOMEM;
9010
9011         BUG_ON(!dev_boot_phase);
9012
9013         if (dev_proc_init())
9014                 goto out;
9015
9016         if (netdev_kobject_init())
9017                 goto out;
9018
9019         INIT_LIST_HEAD(&ptype_all);
9020         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9021                 INIT_LIST_HEAD(&ptype_base[i]);
9022
9023         INIT_LIST_HEAD(&offload_base);
9024
9025         if (register_pernet_subsys(&netdev_net_ops))
9026                 goto out;
9027
9028         /*
9029          *      Initialise the packet receive queues.
9030          */
9031
9032         for_each_possible_cpu(i) {
9033                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9034                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9035
9036                 INIT_WORK(flush, flush_backlog);
9037
9038                 skb_queue_head_init(&sd->input_pkt_queue);
9039                 skb_queue_head_init(&sd->process_queue);
9040 #ifdef CONFIG_XFRM_OFFLOAD
9041                 skb_queue_head_init(&sd->xfrm_backlog);
9042 #endif
9043                 INIT_LIST_HEAD(&sd->poll_list);
9044                 sd->output_queue_tailp = &sd->output_queue;
9045 #ifdef CONFIG_RPS
9046                 sd->csd.func = rps_trigger_softirq;
9047                 sd->csd.info = sd;
9048                 sd->cpu = i;
9049 #endif
9050
9051                 sd->backlog.poll = process_backlog;
9052                 sd->backlog.weight = weight_p;
9053         }
9054
9055         dev_boot_phase = 0;
9056
9057         /* The loopback device is special if any other network devices
9058          * is present in a network namespace the loopback device must
9059          * be present. Since we now dynamically allocate and free the
9060          * loopback device ensure this invariant is maintained by
9061          * keeping the loopback device as the first device on the
9062          * list of network devices.  Ensuring the loopback devices
9063          * is the first device that appears and the last network device
9064          * that disappears.
9065          */
9066         if (register_pernet_device(&loopback_net_ops))
9067                 goto out;
9068
9069         if (register_pernet_device(&default_device_ops))
9070                 goto out;
9071
9072         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9073         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9074
9075         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9076                                        NULL, dev_cpu_dead);
9077         WARN_ON(rc < 0);
9078         rc = 0;
9079 out:
9080         return rc;
9081 }
9082
9083 subsys_initcall(net_dev_init);