8637b2b71f3d4751366a2ca5ba46579e6a5fa953
[linux-2.6-microblaze.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0)
196                 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] = {
279          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356  *
357  *              Protocol management and registration routines
358  *
359  *******************************************************************************/
360
361
362 /*
363  *      Add a protocol ID to the list. Now that the input handler is
364  *      smarter we can dispense with all the messy stuff that used to be
365  *      here.
366  *
367  *      BEWARE!!! Protocol handlers, mangling input packets,
368  *      MUST BE last in hash buckets and checking protocol handlers
369  *      MUST start from promiscuous ptype_all chain in net_bh.
370  *      It is true now, do not change it.
371  *      Explanation follows: if protocol handler, mangling packet, will
372  *      be the first on list, it is not able to sense, that packet
373  *      is cloned and should be copied-on-write, so that it will
374  *      change it and subsequent readers will get broken packet.
375  *                                                      --ANK (980803)
376  */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380         if (pt->type == htons(ETH_P_ALL))
381                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382         else
383                 return pt->dev ? &pt->dev->ptype_specific :
384                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388  *      dev_add_pack - add packet handler
389  *      @pt: packet type declaration
390  *
391  *      Add a protocol handler to the networking stack. The passed &packet_type
392  *      is linked into kernel lists and may not be freed until it has been
393  *      removed from the kernel lists.
394  *
395  *      This call does not sleep therefore it can not
396  *      guarantee all CPU's that are in middle of receiving packets
397  *      will see the new packet type (until the next received packet).
398  */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402         struct list_head *head = ptype_head(pt);
403
404         spin_lock(&ptype_lock);
405         list_add_rcu(&pt->list, head);
406         spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411  *      __dev_remove_pack        - remove packet handler
412  *      @pt: packet type declaration
413  *
414  *      Remove a protocol handler that was previously added to the kernel
415  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *      from the kernel lists and can be freed or reused once this function
417  *      returns.
418  *
419  *      The packet type might still be in use by receivers
420  *      and must not be freed until after all the CPU's have gone
421  *      through a quiescent state.
422  */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425         struct list_head *head = ptype_head(pt);
426         struct packet_type *pt1;
427
428         spin_lock(&ptype_lock);
429
430         list_for_each_entry(pt1, head, list) {
431                 if (pt == pt1) {
432                         list_del_rcu(&pt->list);
433                         goto out;
434                 }
435         }
436
437         pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439         spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444  *      dev_remove_pack  - remove packet handler
445  *      @pt: packet type declaration
446  *
447  *      Remove a protocol handler that was previously added to the kernel
448  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
449  *      from the kernel lists and can be freed or reused once this function
450  *      returns.
451  *
452  *      This call sleeps to guarantee that no CPU is looking at the packet
453  *      type after return.
454  */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457         __dev_remove_pack(pt);
458
459         synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465  *      dev_add_offload - register offload handlers
466  *      @po: protocol offload declaration
467  *
468  *      Add protocol offload handlers to the networking stack. The passed
469  *      &proto_offload is linked into kernel lists and may not be freed until
470  *      it has been removed from the kernel lists.
471  *
472  *      This call does not sleep therefore it can not
473  *      guarantee all CPU's that are in middle of receiving packets
474  *      will see the new offload handlers (until the next received packet).
475  */
476 void dev_add_offload(struct packet_offload *po)
477 {
478         struct packet_offload *elem;
479
480         spin_lock(&offload_lock);
481         list_for_each_entry(elem, &offload_base, list) {
482                 if (po->priority < elem->priority)
483                         break;
484         }
485         list_add_rcu(&po->list, elem->list.prev);
486         spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491  *      __dev_remove_offload     - remove offload handler
492  *      @po: packet offload declaration
493  *
494  *      Remove a protocol offload handler that was previously added to the
495  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
496  *      is removed from the kernel lists and can be freed or reused once this
497  *      function returns.
498  *
499  *      The packet type might still be in use by receivers
500  *      and must not be freed until after all the CPU's have gone
501  *      through a quiescent state.
502  */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505         struct list_head *head = &offload_base;
506         struct packet_offload *po1;
507
508         spin_lock(&offload_lock);
509
510         list_for_each_entry(po1, head, list) {
511                 if (po == po1) {
512                         list_del_rcu(&po->list);
513                         goto out;
514                 }
515         }
516
517         pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519         spin_unlock(&offload_lock);
520 }
521
522 /**
523  *      dev_remove_offload       - remove packet offload handler
524  *      @po: packet offload declaration
525  *
526  *      Remove a packet offload handler that was previously added to the kernel
527  *      offload handlers by dev_add_offload(). The passed &offload_type is
528  *      removed from the kernel lists and can be freed or reused once this
529  *      function returns.
530  *
531  *      This call sleeps to guarantee that no CPU is looking at the packet
532  *      type after return.
533  */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536         __dev_remove_offload(po);
537
538         synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543  *
544  *                    Device Boot-time Settings Routines
545  *
546  ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552  *      netdev_boot_setup_add   - add new setup entry
553  *      @name: name of the device
554  *      @map: configured settings for the device
555  *
556  *      Adds new setup entry to the dev_boot_setup list.  The function
557  *      returns 0 on error and 1 on success.  This is a generic routine to
558  *      all netdevices.
559  */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562         struct netdev_boot_setup *s;
563         int i;
564
565         s = dev_boot_setup;
566         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568                         memset(s[i].name, 0, sizeof(s[i].name));
569                         strlcpy(s[i].name, name, IFNAMSIZ);
570                         memcpy(&s[i].map, map, sizeof(s[i].map));
571                         break;
572                 }
573         }
574
575         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579  * netdev_boot_setup_check      - check boot time settings
580  * @dev: the netdevice
581  *
582  * Check boot time settings for the device.
583  * The found settings are set for the device to be used
584  * later in the device probing.
585  * Returns 0 if no settings found, 1 if they are.
586  */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589         struct netdev_boot_setup *s = dev_boot_setup;
590         int i;
591
592         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594                     !strcmp(dev->name, s[i].name)) {
595                         dev->irq = s[i].map.irq;
596                         dev->base_addr = s[i].map.base_addr;
597                         dev->mem_start = s[i].map.mem_start;
598                         dev->mem_end = s[i].map.mem_end;
599                         return 1;
600                 }
601         }
602         return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608  * netdev_boot_base     - get address from boot time settings
609  * @prefix: prefix for network device
610  * @unit: id for network device
611  *
612  * Check boot time settings for the base address of device.
613  * The found settings are set for the device to be used
614  * later in the device probing.
615  * Returns 0 if no settings found.
616  */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619         const struct netdev_boot_setup *s = dev_boot_setup;
620         char name[IFNAMSIZ];
621         int i;
622
623         sprintf(name, "%s%d", prefix, unit);
624
625         /*
626          * If device already registered then return base of 1
627          * to indicate not to probe for this interface
628          */
629         if (__dev_get_by_name(&init_net, name))
630                 return 1;
631
632         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633                 if (!strcmp(name, s[i].name))
634                         return s[i].map.base_addr;
635         return 0;
636 }
637
638 /*
639  * Saves at boot time configured settings for any netdevice.
640  */
641 int __init netdev_boot_setup(char *str)
642 {
643         int ints[5];
644         struct ifmap map;
645
646         str = get_options(str, ARRAY_SIZE(ints), ints);
647         if (!str || !*str)
648                 return 0;
649
650         /* Save settings */
651         memset(&map, 0, sizeof(map));
652         if (ints[0] > 0)
653                 map.irq = ints[1];
654         if (ints[0] > 1)
655                 map.base_addr = ints[2];
656         if (ints[0] > 2)
657                 map.mem_start = ints[3];
658         if (ints[0] > 3)
659                 map.mem_end = ints[4];
660
661         /* Add new entry to the list */
662         return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668  *
669  *                          Device Interface Subroutines
670  *
671  *******************************************************************************/
672
673 /**
674  *      dev_get_iflink  - get 'iflink' value of a interface
675  *      @dev: targeted interface
676  *
677  *      Indicates the ifindex the interface is linked to.
678  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
679  */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684                 return dev->netdev_ops->ndo_get_iflink(dev);
685
686         return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
692  *      @dev: targeted interface
693  *      @skb: The packet.
694  *
695  *      For better visibility of tunnel traffic OVS needs to retrieve
696  *      egress tunnel information for a packet. Following API allows
697  *      user to get this info.
698  */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701         struct ip_tunnel_info *info;
702
703         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
704                 return -EINVAL;
705
706         info = skb_tunnel_info_unclone(skb);
707         if (!info)
708                 return -ENOMEM;
709         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710                 return -EINVAL;
711
712         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717  *      __dev_get_by_name       - find a device by its name
718  *      @net: the applicable net namespace
719  *      @name: name to find
720  *
721  *      Find an interface by name. Must be called under RTNL semaphore
722  *      or @dev_base_lock. If the name is found a pointer to the device
723  *      is returned. If the name is not found then %NULL is returned. The
724  *      reference counters are not incremented so the caller must be
725  *      careful with locks.
726  */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730         struct net_device *dev;
731         struct hlist_head *head = dev_name_hash(net, name);
732
733         hlist_for_each_entry(dev, head, name_hlist)
734                 if (!strncmp(dev->name, name, IFNAMSIZ))
735                         return dev;
736
737         return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742  * dev_get_by_name_rcu  - find a device by its name
743  * @net: the applicable net namespace
744  * @name: name to find
745  *
746  * Find an interface by name.
747  * If the name is found a pointer to the device is returned.
748  * If the name is not found then %NULL is returned.
749  * The reference counters are not incremented so the caller must be
750  * careful with locks. The caller must hold RCU lock.
751  */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755         struct net_device *dev;
756         struct hlist_head *head = dev_name_hash(net, name);
757
758         hlist_for_each_entry_rcu(dev, head, name_hlist)
759                 if (!strncmp(dev->name, name, IFNAMSIZ))
760                         return dev;
761
762         return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767  *      dev_get_by_name         - find a device by its name
768  *      @net: the applicable net namespace
769  *      @name: name to find
770  *
771  *      Find an interface by name. This can be called from any
772  *      context and does its own locking. The returned handle has
773  *      the usage count incremented and the caller must use dev_put() to
774  *      release it when it is no longer needed. %NULL is returned if no
775  *      matching device is found.
776  */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780         struct net_device *dev;
781
782         rcu_read_lock();
783         dev = dev_get_by_name_rcu(net, name);
784         if (dev)
785                 dev_hold(dev);
786         rcu_read_unlock();
787         return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792  *      __dev_get_by_index - find a device by its ifindex
793  *      @net: the applicable net namespace
794  *      @ifindex: index of device
795  *
796  *      Search for an interface by index. Returns %NULL if the device
797  *      is not found or a pointer to the device. The device has not
798  *      had its reference counter increased so the caller must be careful
799  *      about locking. The caller must hold either the RTNL semaphore
800  *      or @dev_base_lock.
801  */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805         struct net_device *dev;
806         struct hlist_head *head = dev_index_hash(net, ifindex);
807
808         hlist_for_each_entry(dev, head, index_hlist)
809                 if (dev->ifindex == ifindex)
810                         return dev;
811
812         return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817  *      dev_get_by_index_rcu - find a device by its ifindex
818  *      @net: the applicable net namespace
819  *      @ifindex: index of device
820  *
821  *      Search for an interface by index. Returns %NULL if the device
822  *      is not found or a pointer to the device. The device has not
823  *      had its reference counter increased so the caller must be careful
824  *      about locking. The caller must hold RCU lock.
825  */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829         struct net_device *dev;
830         struct hlist_head *head = dev_index_hash(net, ifindex);
831
832         hlist_for_each_entry_rcu(dev, head, index_hlist)
833                 if (dev->ifindex == ifindex)
834                         return dev;
835
836         return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842  *      dev_get_by_index - find a device by its ifindex
843  *      @net: the applicable net namespace
844  *      @ifindex: index of device
845  *
846  *      Search for an interface by index. Returns NULL if the device
847  *      is not found or a pointer to the device. The device returned has
848  *      had a reference added and the pointer is safe until the user calls
849  *      dev_put to indicate they have finished with it.
850  */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855
856         rcu_read_lock();
857         dev = dev_get_by_index_rcu(net, ifindex);
858         if (dev)
859                 dev_hold(dev);
860         rcu_read_unlock();
861         return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866  *      netdev_get_name - get a netdevice name, knowing its ifindex.
867  *      @net: network namespace
868  *      @name: a pointer to the buffer where the name will be stored.
869  *      @ifindex: the ifindex of the interface to get the name from.
870  *
871  *      The use of raw_seqcount_begin() and cond_resched() before
872  *      retrying is required as we want to give the writers a chance
873  *      to complete when CONFIG_PREEMPT is not set.
874  */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877         struct net_device *dev;
878         unsigned int seq;
879
880 retry:
881         seq = raw_seqcount_begin(&devnet_rename_seq);
882         rcu_read_lock();
883         dev = dev_get_by_index_rcu(net, ifindex);
884         if (!dev) {
885                 rcu_read_unlock();
886                 return -ENODEV;
887         }
888
889         strcpy(name, dev->name);
890         rcu_read_unlock();
891         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892                 cond_resched();
893                 goto retry;
894         }
895
896         return 0;
897 }
898
899 /**
900  *      dev_getbyhwaddr_rcu - find a device by its hardware address
901  *      @net: the applicable net namespace
902  *      @type: media type of device
903  *      @ha: hardware address
904  *
905  *      Search for an interface by MAC address. Returns NULL if the device
906  *      is not found or a pointer to the device.
907  *      The caller must hold RCU or RTNL.
908  *      The returned device has not had its ref count increased
909  *      and the caller must therefore be careful about locking
910  *
911  */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914                                        const char *ha)
915 {
916         struct net_device *dev;
917
918         for_each_netdev_rcu(net, dev)
919                 if (dev->type == type &&
920                     !memcmp(dev->dev_addr, ha, dev->addr_len))
921                         return dev;
922
923         return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929         struct net_device *dev;
930
931         ASSERT_RTNL();
932         for_each_netdev(net, dev)
933                 if (dev->type == type)
934                         return dev;
935
936         return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942         struct net_device *dev, *ret = NULL;
943
944         rcu_read_lock();
945         for_each_netdev_rcu(net, dev)
946                 if (dev->type == type) {
947                         dev_hold(dev);
948                         ret = dev;
949                         break;
950                 }
951         rcu_read_unlock();
952         return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957  *      __dev_get_by_flags - find any device with given flags
958  *      @net: the applicable net namespace
959  *      @if_flags: IFF_* values
960  *      @mask: bitmask of bits in if_flags to check
961  *
962  *      Search for any interface with the given flags. Returns NULL if a device
963  *      is not found or a pointer to the device. Must be called inside
964  *      rtnl_lock(), and result refcount is unchanged.
965  */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968                                       unsigned short mask)
969 {
970         struct net_device *dev, *ret;
971
972         ASSERT_RTNL();
973
974         ret = NULL;
975         for_each_netdev(net, dev) {
976                 if (((dev->flags ^ if_flags) & mask) == 0) {
977                         ret = dev;
978                         break;
979                 }
980         }
981         return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986  *      dev_valid_name - check if name is okay for network device
987  *      @name: name string
988  *
989  *      Network device names need to be valid file names to
990  *      to allow sysfs to work.  We also disallow any kind of
991  *      whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995         if (*name == '\0')
996                 return false;
997         if (strlen(name) >= IFNAMSIZ)
998                 return false;
999         if (!strcmp(name, ".") || !strcmp(name, ".."))
1000                 return false;
1001
1002         while (*name) {
1003                 if (*name == '/' || *name == ':' || isspace(*name))
1004                         return false;
1005                 name++;
1006         }
1007         return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012  *      __dev_alloc_name - allocate a name for a device
1013  *      @net: network namespace to allocate the device name in
1014  *      @name: name format string
1015  *      @buf:  scratch buffer and result name string
1016  *
1017  *      Passed a format string - eg "lt%d" it will try and find a suitable
1018  *      id. It scans list of devices to build up a free map, then chooses
1019  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *      while allocating the name and adding the device in order to avoid
1021  *      duplicates.
1022  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *      Returns the number of the unit assigned or a negative errno code.
1024  */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028         int i = 0;
1029         const char *p;
1030         const int max_netdevices = 8*PAGE_SIZE;
1031         unsigned long *inuse;
1032         struct net_device *d;
1033
1034         p = strnchr(name, IFNAMSIZ-1, '%');
1035         if (p) {
1036                 /*
1037                  * Verify the string as this thing may have come from
1038                  * the user.  There must be either one "%d" and no other "%"
1039                  * characters.
1040                  */
1041                 if (p[1] != 'd' || strchr(p + 2, '%'))
1042                         return -EINVAL;
1043
1044                 /* Use one page as a bit array of possible slots */
1045                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046                 if (!inuse)
1047                         return -ENOMEM;
1048
1049                 for_each_netdev(net, d) {
1050                         if (!sscanf(d->name, name, &i))
1051                                 continue;
1052                         if (i < 0 || i >= max_netdevices)
1053                                 continue;
1054
1055                         /*  avoid cases where sscanf is not exact inverse of printf */
1056                         snprintf(buf, IFNAMSIZ, name, i);
1057                         if (!strncmp(buf, d->name, IFNAMSIZ))
1058                                 set_bit(i, inuse);
1059                 }
1060
1061                 i = find_first_zero_bit(inuse, max_netdevices);
1062                 free_page((unsigned long) inuse);
1063         }
1064
1065         if (buf != name)
1066                 snprintf(buf, IFNAMSIZ, name, i);
1067         if (!__dev_get_by_name(net, buf))
1068                 return i;
1069
1070         /* It is possible to run out of possible slots
1071          * when the name is long and there isn't enough space left
1072          * for the digits, or if all bits are used.
1073          */
1074         return -ENFILE;
1075 }
1076
1077 /**
1078  *      dev_alloc_name - allocate a name for a device
1079  *      @dev: device
1080  *      @name: name format string
1081  *
1082  *      Passed a format string - eg "lt%d" it will try and find a suitable
1083  *      id. It scans list of devices to build up a free map, then chooses
1084  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1085  *      while allocating the name and adding the device in order to avoid
1086  *      duplicates.
1087  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088  *      Returns the number of the unit assigned or a negative errno code.
1089  */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093         char buf[IFNAMSIZ];
1094         struct net *net;
1095         int ret;
1096
1097         BUG_ON(!dev_net(dev));
1098         net = dev_net(dev);
1099         ret = __dev_alloc_name(net, name, buf);
1100         if (ret >= 0)
1101                 strlcpy(dev->name, buf, IFNAMSIZ);
1102         return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107                              struct net_device *dev,
1108                              const char *name)
1109 {
1110         char buf[IFNAMSIZ];
1111         int ret;
1112
1113         ret = __dev_alloc_name(net, name, buf);
1114         if (ret >= 0)
1115                 strlcpy(dev->name, buf, IFNAMSIZ);
1116         return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120                               struct net_device *dev,
1121                               const char *name)
1122 {
1123         BUG_ON(!net);
1124
1125         if (!dev_valid_name(name))
1126                 return -EINVAL;
1127
1128         if (strchr(name, '%'))
1129                 return dev_alloc_name_ns(net, dev, name);
1130         else if (__dev_get_by_name(net, name))
1131                 return -EEXIST;
1132         else if (dev->name != name)
1133                 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135         return 0;
1136 }
1137
1138 /**
1139  *      dev_change_name - change name of a device
1140  *      @dev: device
1141  *      @newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *      Change name of a device, can pass format strings "eth%d".
1144  *      for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148         unsigned char old_assign_type;
1149         char oldname[IFNAMSIZ];
1150         int err = 0;
1151         int ret;
1152         struct net *net;
1153
1154         ASSERT_RTNL();
1155         BUG_ON(!dev_net(dev));
1156
1157         net = dev_net(dev);
1158         if (dev->flags & IFF_UP)
1159                 return -EBUSY;
1160
1161         write_seqcount_begin(&devnet_rename_seq);
1162
1163         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164                 write_seqcount_end(&devnet_rename_seq);
1165                 return 0;
1166         }
1167
1168         memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170         err = dev_get_valid_name(net, dev, newname);
1171         if (err < 0) {
1172                 write_seqcount_end(&devnet_rename_seq);
1173                 return err;
1174         }
1175
1176         if (oldname[0] && !strchr(oldname, '%'))
1177                 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179         old_assign_type = dev->name_assign_type;
1180         dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183         ret = device_rename(&dev->dev, dev->name);
1184         if (ret) {
1185                 memcpy(dev->name, oldname, IFNAMSIZ);
1186                 dev->name_assign_type = old_assign_type;
1187                 write_seqcount_end(&devnet_rename_seq);
1188                 return ret;
1189         }
1190
1191         write_seqcount_end(&devnet_rename_seq);
1192
1193         netdev_adjacent_rename_links(dev, oldname);
1194
1195         write_lock_bh(&dev_base_lock);
1196         hlist_del_rcu(&dev->name_hlist);
1197         write_unlock_bh(&dev_base_lock);
1198
1199         synchronize_rcu();
1200
1201         write_lock_bh(&dev_base_lock);
1202         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203         write_unlock_bh(&dev_base_lock);
1204
1205         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206         ret = notifier_to_errno(ret);
1207
1208         if (ret) {
1209                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210                 if (err >= 0) {
1211                         err = ret;
1212                         write_seqcount_begin(&devnet_rename_seq);
1213                         memcpy(dev->name, oldname, IFNAMSIZ);
1214                         memcpy(oldname, newname, IFNAMSIZ);
1215                         dev->name_assign_type = old_assign_type;
1216                         old_assign_type = NET_NAME_RENAMED;
1217                         goto rollback;
1218                 } else {
1219                         pr_err("%s: name change rollback failed: %d\n",
1220                                dev->name, ret);
1221                 }
1222         }
1223
1224         return err;
1225 }
1226
1227 /**
1228  *      dev_set_alias - change ifalias of a device
1229  *      @dev: device
1230  *      @alias: name up to IFALIASZ
1231  *      @len: limit of bytes to copy from info
1232  *
1233  *      Set ifalias for a device,
1234  */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237         char *new_ifalias;
1238
1239         ASSERT_RTNL();
1240
1241         if (len >= IFALIASZ)
1242                 return -EINVAL;
1243
1244         if (!len) {
1245                 kfree(dev->ifalias);
1246                 dev->ifalias = NULL;
1247                 return 0;
1248         }
1249
1250         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251         if (!new_ifalias)
1252                 return -ENOMEM;
1253         dev->ifalias = new_ifalias;
1254
1255         strlcpy(dev->ifalias, alias, len+1);
1256         return len;
1257 }
1258
1259
1260 /**
1261  *      netdev_features_change - device changes features
1262  *      @dev: device to cause notification
1263  *
1264  *      Called to indicate a device has changed features.
1265  */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273  *      netdev_state_change - device changes state
1274  *      @dev: device to cause notification
1275  *
1276  *      Called to indicate a device has changed state. This function calls
1277  *      the notifier chains for netdev_chain and sends a NEWLINK message
1278  *      to the routing socket.
1279  */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282         if (dev->flags & IFF_UP) {
1283                 struct netdev_notifier_change_info change_info;
1284
1285                 change_info.flags_changed = 0;
1286                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287                                               &change_info.info);
1288                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289         }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294  * netdev_notify_peers - notify network peers about existence of @dev
1295  * @dev: network device
1296  *
1297  * Generate traffic such that interested network peers are aware of
1298  * @dev, such as by generating a gratuitous ARP. This may be used when
1299  * a device wants to inform the rest of the network about some sort of
1300  * reconfiguration such as a failover event or virtual machine
1301  * migration.
1302  */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305         rtnl_lock();
1306         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307         rtnl_unlock();
1308 }
1309 EXPORT_SYMBOL(netdev_notify_peers);
1310
1311 static int __dev_open(struct net_device *dev)
1312 {
1313         const struct net_device_ops *ops = dev->netdev_ops;
1314         int ret;
1315
1316         ASSERT_RTNL();
1317
1318         if (!netif_device_present(dev))
1319                 return -ENODEV;
1320
1321         /* Block netpoll from trying to do any rx path servicing.
1322          * If we don't do this there is a chance ndo_poll_controller
1323          * or ndo_poll may be running while we open the device
1324          */
1325         netpoll_poll_disable(dev);
1326
1327         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328         ret = notifier_to_errno(ret);
1329         if (ret)
1330                 return ret;
1331
1332         set_bit(__LINK_STATE_START, &dev->state);
1333
1334         if (ops->ndo_validate_addr)
1335                 ret = ops->ndo_validate_addr(dev);
1336
1337         if (!ret && ops->ndo_open)
1338                 ret = ops->ndo_open(dev);
1339
1340         netpoll_poll_enable(dev);
1341
1342         if (ret)
1343                 clear_bit(__LINK_STATE_START, &dev->state);
1344         else {
1345                 dev->flags |= IFF_UP;
1346                 dev_set_rx_mode(dev);
1347                 dev_activate(dev);
1348                 add_device_randomness(dev->dev_addr, dev->addr_len);
1349         }
1350
1351         return ret;
1352 }
1353
1354 /**
1355  *      dev_open        - prepare an interface for use.
1356  *      @dev:   device to open
1357  *
1358  *      Takes a device from down to up state. The device's private open
1359  *      function is invoked and then the multicast lists are loaded. Finally
1360  *      the device is moved into the up state and a %NETDEV_UP message is
1361  *      sent to the netdev notifier chain.
1362  *
1363  *      Calling this function on an active interface is a nop. On a failure
1364  *      a negative errno code is returned.
1365  */
1366 int dev_open(struct net_device *dev)
1367 {
1368         int ret;
1369
1370         if (dev->flags & IFF_UP)
1371                 return 0;
1372
1373         ret = __dev_open(dev);
1374         if (ret < 0)
1375                 return ret;
1376
1377         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1378         call_netdevice_notifiers(NETDEV_UP, dev);
1379
1380         return ret;
1381 }
1382 EXPORT_SYMBOL(dev_open);
1383
1384 static int __dev_close_many(struct list_head *head)
1385 {
1386         struct net_device *dev;
1387
1388         ASSERT_RTNL();
1389         might_sleep();
1390
1391         list_for_each_entry(dev, head, close_list) {
1392                 /* Temporarily disable netpoll until the interface is down */
1393                 netpoll_poll_disable(dev);
1394
1395                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398
1399                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400                  * can be even on different cpu. So just clear netif_running().
1401                  *
1402                  * dev->stop() will invoke napi_disable() on all of it's
1403                  * napi_struct instances on this device.
1404                  */
1405                 smp_mb__after_atomic(); /* Commit netif_running(). */
1406         }
1407
1408         dev_deactivate_many(head);
1409
1410         list_for_each_entry(dev, head, close_list) {
1411                 const struct net_device_ops *ops = dev->netdev_ops;
1412
1413                 /*
1414                  *      Call the device specific close. This cannot fail.
1415                  *      Only if device is UP
1416                  *
1417                  *      We allow it to be called even after a DETACH hot-plug
1418                  *      event.
1419                  */
1420                 if (ops->ndo_stop)
1421                         ops->ndo_stop(dev);
1422
1423                 dev->flags &= ~IFF_UP;
1424                 netpoll_poll_enable(dev);
1425         }
1426
1427         return 0;
1428 }
1429
1430 static int __dev_close(struct net_device *dev)
1431 {
1432         int retval;
1433         LIST_HEAD(single);
1434
1435         list_add(&dev->close_list, &single);
1436         retval = __dev_close_many(&single);
1437         list_del(&single);
1438
1439         return retval;
1440 }
1441
1442 int dev_close_many(struct list_head *head, bool unlink)
1443 {
1444         struct net_device *dev, *tmp;
1445
1446         /* Remove the devices that don't need to be closed */
1447         list_for_each_entry_safe(dev, tmp, head, close_list)
1448                 if (!(dev->flags & IFF_UP))
1449                         list_del_init(&dev->close_list);
1450
1451         __dev_close_many(head);
1452
1453         list_for_each_entry_safe(dev, tmp, head, close_list) {
1454                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1455                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1456                 if (unlink)
1457                         list_del_init(&dev->close_list);
1458         }
1459
1460         return 0;
1461 }
1462 EXPORT_SYMBOL(dev_close_many);
1463
1464 /**
1465  *      dev_close - shutdown an interface.
1466  *      @dev: device to shutdown
1467  *
1468  *      This function moves an active device into down state. A
1469  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471  *      chain.
1472  */
1473 int dev_close(struct net_device *dev)
1474 {
1475         if (dev->flags & IFF_UP) {
1476                 LIST_HEAD(single);
1477
1478                 list_add(&dev->close_list, &single);
1479                 dev_close_many(&single, true);
1480                 list_del(&single);
1481         }
1482         return 0;
1483 }
1484 EXPORT_SYMBOL(dev_close);
1485
1486
1487 /**
1488  *      dev_disable_lro - disable Large Receive Offload on a device
1489  *      @dev: device
1490  *
1491  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1492  *      called under RTNL.  This is needed if received packets may be
1493  *      forwarded to another interface.
1494  */
1495 void dev_disable_lro(struct net_device *dev)
1496 {
1497         struct net_device *lower_dev;
1498         struct list_head *iter;
1499
1500         dev->wanted_features &= ~NETIF_F_LRO;
1501         netdev_update_features(dev);
1502
1503         if (unlikely(dev->features & NETIF_F_LRO))
1504                 netdev_WARN(dev, "failed to disable LRO!\n");
1505
1506         netdev_for_each_lower_dev(dev, lower_dev, iter)
1507                 dev_disable_lro(lower_dev);
1508 }
1509 EXPORT_SYMBOL(dev_disable_lro);
1510
1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512                                    struct net_device *dev)
1513 {
1514         struct netdev_notifier_info info;
1515
1516         netdev_notifier_info_init(&info, dev);
1517         return nb->notifier_call(nb, val, &info);
1518 }
1519
1520 static int dev_boot_phase = 1;
1521
1522 /**
1523  * register_netdevice_notifier - register a network notifier block
1524  * @nb: notifier
1525  *
1526  * Register a notifier to be called when network device events occur.
1527  * The notifier passed is linked into the kernel structures and must
1528  * not be reused until it has been unregistered. A negative errno code
1529  * is returned on a failure.
1530  *
1531  * When registered all registration and up events are replayed
1532  * to the new notifier to allow device to have a race free
1533  * view of the network device list.
1534  */
1535
1536 int register_netdevice_notifier(struct notifier_block *nb)
1537 {
1538         struct net_device *dev;
1539         struct net_device *last;
1540         struct net *net;
1541         int err;
1542
1543         rtnl_lock();
1544         err = raw_notifier_chain_register(&netdev_chain, nb);
1545         if (err)
1546                 goto unlock;
1547         if (dev_boot_phase)
1548                 goto unlock;
1549         for_each_net(net) {
1550                 for_each_netdev(net, dev) {
1551                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1552                         err = notifier_to_errno(err);
1553                         if (err)
1554                                 goto rollback;
1555
1556                         if (!(dev->flags & IFF_UP))
1557                                 continue;
1558
1559                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1560                 }
1561         }
1562
1563 unlock:
1564         rtnl_unlock();
1565         return err;
1566
1567 rollback:
1568         last = dev;
1569         for_each_net(net) {
1570                 for_each_netdev(net, dev) {
1571                         if (dev == last)
1572                                 goto outroll;
1573
1574                         if (dev->flags & IFF_UP) {
1575                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576                                                         dev);
1577                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578                         }
1579                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580                 }
1581         }
1582
1583 outroll:
1584         raw_notifier_chain_unregister(&netdev_chain, nb);
1585         goto unlock;
1586 }
1587 EXPORT_SYMBOL(register_netdevice_notifier);
1588
1589 /**
1590  * unregister_netdevice_notifier - unregister a network notifier block
1591  * @nb: notifier
1592  *
1593  * Unregister a notifier previously registered by
1594  * register_netdevice_notifier(). The notifier is unlinked into the
1595  * kernel structures and may then be reused. A negative errno code
1596  * is returned on a failure.
1597  *
1598  * After unregistering unregister and down device events are synthesized
1599  * for all devices on the device list to the removed notifier to remove
1600  * the need for special case cleanup code.
1601  */
1602
1603 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 {
1605         struct net_device *dev;
1606         struct net *net;
1607         int err;
1608
1609         rtnl_lock();
1610         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1611         if (err)
1612                 goto unlock;
1613
1614         for_each_net(net) {
1615                 for_each_netdev(net, dev) {
1616                         if (dev->flags & IFF_UP) {
1617                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618                                                         dev);
1619                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620                         }
1621                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622                 }
1623         }
1624 unlock:
1625         rtnl_unlock();
1626         return err;
1627 }
1628 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629
1630 /**
1631  *      call_netdevice_notifiers_info - call all network notifier blocks
1632  *      @val: value passed unmodified to notifier function
1633  *      @dev: net_device pointer passed unmodified to notifier function
1634  *      @info: notifier information data
1635  *
1636  *      Call all network notifier blocks.  Parameters and return value
1637  *      are as for raw_notifier_call_chain().
1638  */
1639
1640 static int call_netdevice_notifiers_info(unsigned long val,
1641                                          struct net_device *dev,
1642                                          struct netdev_notifier_info *info)
1643 {
1644         ASSERT_RTNL();
1645         netdev_notifier_info_init(info, dev);
1646         return raw_notifier_call_chain(&netdev_chain, val, info);
1647 }
1648
1649 /**
1650  *      call_netdevice_notifiers - call all network notifier blocks
1651  *      @val: value passed unmodified to notifier function
1652  *      @dev: net_device pointer passed unmodified to notifier function
1653  *
1654  *      Call all network notifier blocks.  Parameters and return value
1655  *      are as for raw_notifier_call_chain().
1656  */
1657
1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 {
1660         struct netdev_notifier_info info;
1661
1662         return call_netdevice_notifiers_info(val, dev, &info);
1663 }
1664 EXPORT_SYMBOL(call_netdevice_notifiers);
1665
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly;
1668
1669 void net_inc_ingress_queue(void)
1670 {
1671         static_key_slow_inc(&ingress_needed);
1672 }
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674
1675 void net_dec_ingress_queue(void)
1676 {
1677         static_key_slow_dec(&ingress_needed);
1678 }
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #endif
1681
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly;
1684
1685 void net_inc_egress_queue(void)
1686 {
1687         static_key_slow_inc(&egress_needed);
1688 }
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690
1691 void net_dec_egress_queue(void)
1692 {
1693         static_key_slow_dec(&egress_needed);
1694 }
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 #endif
1697
1698 static struct static_key netstamp_needed __read_mostly;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred;
1701 static atomic_t netstamp_wanted;
1702 static void netstamp_clear(struct work_struct *work)
1703 {
1704         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1705         int wanted;
1706
1707         wanted = atomic_add_return(deferred, &netstamp_wanted);
1708         if (wanted > 0)
1709                 static_key_enable(&netstamp_needed);
1710         else
1711                 static_key_disable(&netstamp_needed);
1712 }
1713 static DECLARE_WORK(netstamp_work, netstamp_clear);
1714 #endif
1715
1716 void net_enable_timestamp(void)
1717 {
1718 #ifdef HAVE_JUMP_LABEL
1719         int wanted;
1720
1721         while (1) {
1722                 wanted = atomic_read(&netstamp_wanted);
1723                 if (wanted <= 0)
1724                         break;
1725                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1726                         return;
1727         }
1728         atomic_inc(&netstamp_needed_deferred);
1729         schedule_work(&netstamp_work);
1730 #else
1731         static_key_slow_inc(&netstamp_needed);
1732 #endif
1733 }
1734 EXPORT_SYMBOL(net_enable_timestamp);
1735
1736 void net_disable_timestamp(void)
1737 {
1738 #ifdef HAVE_JUMP_LABEL
1739         int wanted;
1740
1741         while (1) {
1742                 wanted = atomic_read(&netstamp_wanted);
1743                 if (wanted <= 1)
1744                         break;
1745                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1746                         return;
1747         }
1748         atomic_dec(&netstamp_needed_deferred);
1749         schedule_work(&netstamp_work);
1750 #else
1751         static_key_slow_dec(&netstamp_needed);
1752 #endif
1753 }
1754 EXPORT_SYMBOL(net_disable_timestamp);
1755
1756 static inline void net_timestamp_set(struct sk_buff *skb)
1757 {
1758         skb->tstamp = 0;
1759         if (static_key_false(&netstamp_needed))
1760                 __net_timestamp(skb);
1761 }
1762
1763 #define net_timestamp_check(COND, SKB)                  \
1764         if (static_key_false(&netstamp_needed)) {               \
1765                 if ((COND) && !(SKB)->tstamp)   \
1766                         __net_timestamp(SKB);           \
1767         }                                               \
1768
1769 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1770 {
1771         unsigned int len;
1772
1773         if (!(dev->flags & IFF_UP))
1774                 return false;
1775
1776         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1777         if (skb->len <= len)
1778                 return true;
1779
1780         /* if TSO is enabled, we don't care about the length as the packet
1781          * could be forwarded without being segmented before
1782          */
1783         if (skb_is_gso(skb))
1784                 return true;
1785
1786         return false;
1787 }
1788 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1789
1790 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1791 {
1792         int ret = ____dev_forward_skb(dev, skb);
1793
1794         if (likely(!ret)) {
1795                 skb->protocol = eth_type_trans(skb, dev);
1796                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1797         }
1798
1799         return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1802
1803 /**
1804  * dev_forward_skb - loopback an skb to another netif
1805  *
1806  * @dev: destination network device
1807  * @skb: buffer to forward
1808  *
1809  * return values:
1810  *      NET_RX_SUCCESS  (no congestion)
1811  *      NET_RX_DROP     (packet was dropped, but freed)
1812  *
1813  * dev_forward_skb can be used for injecting an skb from the
1814  * start_xmit function of one device into the receive queue
1815  * of another device.
1816  *
1817  * The receiving device may be in another namespace, so
1818  * we have to clear all information in the skb that could
1819  * impact namespace isolation.
1820  */
1821 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822 {
1823         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1824 }
1825 EXPORT_SYMBOL_GPL(dev_forward_skb);
1826
1827 static inline int deliver_skb(struct sk_buff *skb,
1828                               struct packet_type *pt_prev,
1829                               struct net_device *orig_dev)
1830 {
1831         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1832                 return -ENOMEM;
1833         atomic_inc(&skb->users);
1834         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1835 }
1836
1837 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1838                                           struct packet_type **pt,
1839                                           struct net_device *orig_dev,
1840                                           __be16 type,
1841                                           struct list_head *ptype_list)
1842 {
1843         struct packet_type *ptype, *pt_prev = *pt;
1844
1845         list_for_each_entry_rcu(ptype, ptype_list, list) {
1846                 if (ptype->type != type)
1847                         continue;
1848                 if (pt_prev)
1849                         deliver_skb(skb, pt_prev, orig_dev);
1850                 pt_prev = ptype;
1851         }
1852         *pt = pt_prev;
1853 }
1854
1855 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1856 {
1857         if (!ptype->af_packet_priv || !skb->sk)
1858                 return false;
1859
1860         if (ptype->id_match)
1861                 return ptype->id_match(ptype, skb->sk);
1862         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1863                 return true;
1864
1865         return false;
1866 }
1867
1868 /*
1869  *      Support routine. Sends outgoing frames to any network
1870  *      taps currently in use.
1871  */
1872
1873 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1874 {
1875         struct packet_type *ptype;
1876         struct sk_buff *skb2 = NULL;
1877         struct packet_type *pt_prev = NULL;
1878         struct list_head *ptype_list = &ptype_all;
1879
1880         rcu_read_lock();
1881 again:
1882         list_for_each_entry_rcu(ptype, ptype_list, list) {
1883                 /* Never send packets back to the socket
1884                  * they originated from - MvS (miquels@drinkel.ow.org)
1885                  */
1886                 if (skb_loop_sk(ptype, skb))
1887                         continue;
1888
1889                 if (pt_prev) {
1890                         deliver_skb(skb2, pt_prev, skb->dev);
1891                         pt_prev = ptype;
1892                         continue;
1893                 }
1894
1895                 /* need to clone skb, done only once */
1896                 skb2 = skb_clone(skb, GFP_ATOMIC);
1897                 if (!skb2)
1898                         goto out_unlock;
1899
1900                 net_timestamp_set(skb2);
1901
1902                 /* skb->nh should be correctly
1903                  * set by sender, so that the second statement is
1904                  * just protection against buggy protocols.
1905                  */
1906                 skb_reset_mac_header(skb2);
1907
1908                 if (skb_network_header(skb2) < skb2->data ||
1909                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1910                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1911                                              ntohs(skb2->protocol),
1912                                              dev->name);
1913                         skb_reset_network_header(skb2);
1914                 }
1915
1916                 skb2->transport_header = skb2->network_header;
1917                 skb2->pkt_type = PACKET_OUTGOING;
1918                 pt_prev = ptype;
1919         }
1920
1921         if (ptype_list == &ptype_all) {
1922                 ptype_list = &dev->ptype_all;
1923                 goto again;
1924         }
1925 out_unlock:
1926         if (pt_prev)
1927                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1928         rcu_read_unlock();
1929 }
1930 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1931
1932 /**
1933  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1934  * @dev: Network device
1935  * @txq: number of queues available
1936  *
1937  * If real_num_tx_queues is changed the tc mappings may no longer be
1938  * valid. To resolve this verify the tc mapping remains valid and if
1939  * not NULL the mapping. With no priorities mapping to this
1940  * offset/count pair it will no longer be used. In the worst case TC0
1941  * is invalid nothing can be done so disable priority mappings. If is
1942  * expected that drivers will fix this mapping if they can before
1943  * calling netif_set_real_num_tx_queues.
1944  */
1945 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1946 {
1947         int i;
1948         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1949
1950         /* If TC0 is invalidated disable TC mapping */
1951         if (tc->offset + tc->count > txq) {
1952                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1953                 dev->num_tc = 0;
1954                 return;
1955         }
1956
1957         /* Invalidated prio to tc mappings set to TC0 */
1958         for (i = 1; i < TC_BITMASK + 1; i++) {
1959                 int q = netdev_get_prio_tc_map(dev, i);
1960
1961                 tc = &dev->tc_to_txq[q];
1962                 if (tc->offset + tc->count > txq) {
1963                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1964                                 i, q);
1965                         netdev_set_prio_tc_map(dev, i, 0);
1966                 }
1967         }
1968 }
1969
1970 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1971 {
1972         if (dev->num_tc) {
1973                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974                 int i;
1975
1976                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1977                         if ((txq - tc->offset) < tc->count)
1978                                 return i;
1979                 }
1980
1981                 return -1;
1982         }
1983
1984         return 0;
1985 }
1986
1987 #ifdef CONFIG_XPS
1988 static DEFINE_MUTEX(xps_map_mutex);
1989 #define xmap_dereference(P)             \
1990         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1991
1992 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1993                              int tci, u16 index)
1994 {
1995         struct xps_map *map = NULL;
1996         int pos;
1997
1998         if (dev_maps)
1999                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2000         if (!map)
2001                 return false;
2002
2003         for (pos = map->len; pos--;) {
2004                 if (map->queues[pos] != index)
2005                         continue;
2006
2007                 if (map->len > 1) {
2008                         map->queues[pos] = map->queues[--map->len];
2009                         break;
2010                 }
2011
2012                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2013                 kfree_rcu(map, rcu);
2014                 return false;
2015         }
2016
2017         return true;
2018 }
2019
2020 static bool remove_xps_queue_cpu(struct net_device *dev,
2021                                  struct xps_dev_maps *dev_maps,
2022                                  int cpu, u16 offset, u16 count)
2023 {
2024         int num_tc = dev->num_tc ? : 1;
2025         bool active = false;
2026         int tci;
2027
2028         for (tci = cpu * num_tc; num_tc--; tci++) {
2029                 int i, j;
2030
2031                 for (i = count, j = offset; i--; j++) {
2032                         if (!remove_xps_queue(dev_maps, cpu, j))
2033                                 break;
2034                 }
2035
2036                 active |= i < 0;
2037         }
2038
2039         return active;
2040 }
2041
2042 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2043                                    u16 count)
2044 {
2045         struct xps_dev_maps *dev_maps;
2046         int cpu, i;
2047         bool active = false;
2048
2049         mutex_lock(&xps_map_mutex);
2050         dev_maps = xmap_dereference(dev->xps_maps);
2051
2052         if (!dev_maps)
2053                 goto out_no_maps;
2054
2055         for_each_possible_cpu(cpu)
2056                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2057                                                offset, count);
2058
2059         if (!active) {
2060                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2061                 kfree_rcu(dev_maps, rcu);
2062         }
2063
2064         for (i = offset + (count - 1); count--; i--)
2065                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2066                                              NUMA_NO_NODE);
2067
2068 out_no_maps:
2069         mutex_unlock(&xps_map_mutex);
2070 }
2071
2072 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2073 {
2074         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2075 }
2076
2077 static struct xps_map *expand_xps_map(struct xps_map *map,
2078                                       int cpu, u16 index)
2079 {
2080         struct xps_map *new_map;
2081         int alloc_len = XPS_MIN_MAP_ALLOC;
2082         int i, pos;
2083
2084         for (pos = 0; map && pos < map->len; pos++) {
2085                 if (map->queues[pos] != index)
2086                         continue;
2087                 return map;
2088         }
2089
2090         /* Need to add queue to this CPU's existing map */
2091         if (map) {
2092                 if (pos < map->alloc_len)
2093                         return map;
2094
2095                 alloc_len = map->alloc_len * 2;
2096         }
2097
2098         /* Need to allocate new map to store queue on this CPU's map */
2099         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2100                                cpu_to_node(cpu));
2101         if (!new_map)
2102                 return NULL;
2103
2104         for (i = 0; i < pos; i++)
2105                 new_map->queues[i] = map->queues[i];
2106         new_map->alloc_len = alloc_len;
2107         new_map->len = pos;
2108
2109         return new_map;
2110 }
2111
2112 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2113                         u16 index)
2114 {
2115         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2116         int i, cpu, tci, numa_node_id = -2;
2117         int maps_sz, num_tc = 1, tc = 0;
2118         struct xps_map *map, *new_map;
2119         bool active = false;
2120
2121         if (dev->num_tc) {
2122                 num_tc = dev->num_tc;
2123                 tc = netdev_txq_to_tc(dev, index);
2124                 if (tc < 0)
2125                         return -EINVAL;
2126         }
2127
2128         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2129         if (maps_sz < L1_CACHE_BYTES)
2130                 maps_sz = L1_CACHE_BYTES;
2131
2132         mutex_lock(&xps_map_mutex);
2133
2134         dev_maps = xmap_dereference(dev->xps_maps);
2135
2136         /* allocate memory for queue storage */
2137         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2138                 if (!new_dev_maps)
2139                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2140                 if (!new_dev_maps) {
2141                         mutex_unlock(&xps_map_mutex);
2142                         return -ENOMEM;
2143                 }
2144
2145                 tci = cpu * num_tc + tc;
2146                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2147                                  NULL;
2148
2149                 map = expand_xps_map(map, cpu, index);
2150                 if (!map)
2151                         goto error;
2152
2153                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2154         }
2155
2156         if (!new_dev_maps)
2157                 goto out_no_new_maps;
2158
2159         for_each_possible_cpu(cpu) {
2160                 /* copy maps belonging to foreign traffic classes */
2161                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2162                         /* fill in the new device map from the old device map */
2163                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2164                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165                 }
2166
2167                 /* We need to explicitly update tci as prevous loop
2168                  * could break out early if dev_maps is NULL.
2169                  */
2170                 tci = cpu * num_tc + tc;
2171
2172                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2173                         /* add queue to CPU maps */
2174                         int pos = 0;
2175
2176                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2177                         while ((pos < map->len) && (map->queues[pos] != index))
2178                                 pos++;
2179
2180                         if (pos == map->len)
2181                                 map->queues[map->len++] = index;
2182 #ifdef CONFIG_NUMA
2183                         if (numa_node_id == -2)
2184                                 numa_node_id = cpu_to_node(cpu);
2185                         else if (numa_node_id != cpu_to_node(cpu))
2186                                 numa_node_id = -1;
2187 #endif
2188                 } else if (dev_maps) {
2189                         /* fill in the new device map from the old device map */
2190                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2191                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2192                 }
2193
2194                 /* copy maps belonging to foreign traffic classes */
2195                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2196                         /* fill in the new device map from the old device map */
2197                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2198                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2199                 }
2200         }
2201
2202         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2203
2204         /* Cleanup old maps */
2205         if (!dev_maps)
2206                 goto out_no_old_maps;
2207
2208         for_each_possible_cpu(cpu) {
2209                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2210                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2211                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2212                         if (map && map != new_map)
2213                                 kfree_rcu(map, rcu);
2214                 }
2215         }
2216
2217         kfree_rcu(dev_maps, rcu);
2218
2219 out_no_old_maps:
2220         dev_maps = new_dev_maps;
2221         active = true;
2222
2223 out_no_new_maps:
2224         /* update Tx queue numa node */
2225         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2226                                      (numa_node_id >= 0) ? numa_node_id :
2227                                      NUMA_NO_NODE);
2228
2229         if (!dev_maps)
2230                 goto out_no_maps;
2231
2232         /* removes queue from unused CPUs */
2233         for_each_possible_cpu(cpu) {
2234                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2235                         active |= remove_xps_queue(dev_maps, tci, index);
2236                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2237                         active |= remove_xps_queue(dev_maps, tci, index);
2238                 for (i = num_tc - tc, tci++; --i; tci++)
2239                         active |= remove_xps_queue(dev_maps, tci, index);
2240         }
2241
2242         /* free map if not active */
2243         if (!active) {
2244                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2245                 kfree_rcu(dev_maps, rcu);
2246         }
2247
2248 out_no_maps:
2249         mutex_unlock(&xps_map_mutex);
2250
2251         return 0;
2252 error:
2253         /* remove any maps that we added */
2254         for_each_possible_cpu(cpu) {
2255                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2256                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2257                         map = dev_maps ?
2258                               xmap_dereference(dev_maps->cpu_map[tci]) :
2259                               NULL;
2260                         if (new_map && new_map != map)
2261                                 kfree(new_map);
2262                 }
2263         }
2264
2265         mutex_unlock(&xps_map_mutex);
2266
2267         kfree(new_dev_maps);
2268         return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(netif_set_xps_queue);
2271
2272 #endif
2273 void netdev_reset_tc(struct net_device *dev)
2274 {
2275 #ifdef CONFIG_XPS
2276         netif_reset_xps_queues_gt(dev, 0);
2277 #endif
2278         dev->num_tc = 0;
2279         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2280         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2281 }
2282 EXPORT_SYMBOL(netdev_reset_tc);
2283
2284 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2285 {
2286         if (tc >= dev->num_tc)
2287                 return -EINVAL;
2288
2289 #ifdef CONFIG_XPS
2290         netif_reset_xps_queues(dev, offset, count);
2291 #endif
2292         dev->tc_to_txq[tc].count = count;
2293         dev->tc_to_txq[tc].offset = offset;
2294         return 0;
2295 }
2296 EXPORT_SYMBOL(netdev_set_tc_queue);
2297
2298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2299 {
2300         if (num_tc > TC_MAX_QUEUE)
2301                 return -EINVAL;
2302
2303 #ifdef CONFIG_XPS
2304         netif_reset_xps_queues_gt(dev, 0);
2305 #endif
2306         dev->num_tc = num_tc;
2307         return 0;
2308 }
2309 EXPORT_SYMBOL(netdev_set_num_tc);
2310
2311 /*
2312  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2313  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2314  */
2315 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2316 {
2317         int rc;
2318
2319         if (txq < 1 || txq > dev->num_tx_queues)
2320                 return -EINVAL;
2321
2322         if (dev->reg_state == NETREG_REGISTERED ||
2323             dev->reg_state == NETREG_UNREGISTERING) {
2324                 ASSERT_RTNL();
2325
2326                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2327                                                   txq);
2328                 if (rc)
2329                         return rc;
2330
2331                 if (dev->num_tc)
2332                         netif_setup_tc(dev, txq);
2333
2334                 if (txq < dev->real_num_tx_queues) {
2335                         qdisc_reset_all_tx_gt(dev, txq);
2336 #ifdef CONFIG_XPS
2337                         netif_reset_xps_queues_gt(dev, txq);
2338 #endif
2339                 }
2340         }
2341
2342         dev->real_num_tx_queues = txq;
2343         return 0;
2344 }
2345 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2346
2347 #ifdef CONFIG_SYSFS
2348 /**
2349  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2350  *      @dev: Network device
2351  *      @rxq: Actual number of RX queues
2352  *
2353  *      This must be called either with the rtnl_lock held or before
2354  *      registration of the net device.  Returns 0 on success, or a
2355  *      negative error code.  If called before registration, it always
2356  *      succeeds.
2357  */
2358 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2359 {
2360         int rc;
2361
2362         if (rxq < 1 || rxq > dev->num_rx_queues)
2363                 return -EINVAL;
2364
2365         if (dev->reg_state == NETREG_REGISTERED) {
2366                 ASSERT_RTNL();
2367
2368                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2369                                                   rxq);
2370                 if (rc)
2371                         return rc;
2372         }
2373
2374         dev->real_num_rx_queues = rxq;
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2378 #endif
2379
2380 /**
2381  * netif_get_num_default_rss_queues - default number of RSS queues
2382  *
2383  * This routine should set an upper limit on the number of RSS queues
2384  * used by default by multiqueue devices.
2385  */
2386 int netif_get_num_default_rss_queues(void)
2387 {
2388         return is_kdump_kernel() ?
2389                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2390 }
2391 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2392
2393 static void __netif_reschedule(struct Qdisc *q)
2394 {
2395         struct softnet_data *sd;
2396         unsigned long flags;
2397
2398         local_irq_save(flags);
2399         sd = this_cpu_ptr(&softnet_data);
2400         q->next_sched = NULL;
2401         *sd->output_queue_tailp = q;
2402         sd->output_queue_tailp = &q->next_sched;
2403         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2404         local_irq_restore(flags);
2405 }
2406
2407 void __netif_schedule(struct Qdisc *q)
2408 {
2409         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2410                 __netif_reschedule(q);
2411 }
2412 EXPORT_SYMBOL(__netif_schedule);
2413
2414 struct dev_kfree_skb_cb {
2415         enum skb_free_reason reason;
2416 };
2417
2418 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2419 {
2420         return (struct dev_kfree_skb_cb *)skb->cb;
2421 }
2422
2423 void netif_schedule_queue(struct netdev_queue *txq)
2424 {
2425         rcu_read_lock();
2426         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2427                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2428
2429                 __netif_schedule(q);
2430         }
2431         rcu_read_unlock();
2432 }
2433 EXPORT_SYMBOL(netif_schedule_queue);
2434
2435 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2436 {
2437         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2438                 struct Qdisc *q;
2439
2440                 rcu_read_lock();
2441                 q = rcu_dereference(dev_queue->qdisc);
2442                 __netif_schedule(q);
2443                 rcu_read_unlock();
2444         }
2445 }
2446 EXPORT_SYMBOL(netif_tx_wake_queue);
2447
2448 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2449 {
2450         unsigned long flags;
2451
2452         if (likely(atomic_read(&skb->users) == 1)) {
2453                 smp_rmb();
2454                 atomic_set(&skb->users, 0);
2455         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2456                 return;
2457         }
2458         get_kfree_skb_cb(skb)->reason = reason;
2459         local_irq_save(flags);
2460         skb->next = __this_cpu_read(softnet_data.completion_queue);
2461         __this_cpu_write(softnet_data.completion_queue, skb);
2462         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2463         local_irq_restore(flags);
2464 }
2465 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2466
2467 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2468 {
2469         if (in_irq() || irqs_disabled())
2470                 __dev_kfree_skb_irq(skb, reason);
2471         else
2472                 dev_kfree_skb(skb);
2473 }
2474 EXPORT_SYMBOL(__dev_kfree_skb_any);
2475
2476
2477 /**
2478  * netif_device_detach - mark device as removed
2479  * @dev: network device
2480  *
2481  * Mark device as removed from system and therefore no longer available.
2482  */
2483 void netif_device_detach(struct net_device *dev)
2484 {
2485         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2486             netif_running(dev)) {
2487                 netif_tx_stop_all_queues(dev);
2488         }
2489 }
2490 EXPORT_SYMBOL(netif_device_detach);
2491
2492 /**
2493  * netif_device_attach - mark device as attached
2494  * @dev: network device
2495  *
2496  * Mark device as attached from system and restart if needed.
2497  */
2498 void netif_device_attach(struct net_device *dev)
2499 {
2500         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2501             netif_running(dev)) {
2502                 netif_tx_wake_all_queues(dev);
2503                 __netdev_watchdog_up(dev);
2504         }
2505 }
2506 EXPORT_SYMBOL(netif_device_attach);
2507
2508 /*
2509  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2510  * to be used as a distribution range.
2511  */
2512 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2513                   unsigned int num_tx_queues)
2514 {
2515         u32 hash;
2516         u16 qoffset = 0;
2517         u16 qcount = num_tx_queues;
2518
2519         if (skb_rx_queue_recorded(skb)) {
2520                 hash = skb_get_rx_queue(skb);
2521                 while (unlikely(hash >= num_tx_queues))
2522                         hash -= num_tx_queues;
2523                 return hash;
2524         }
2525
2526         if (dev->num_tc) {
2527                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2528
2529                 qoffset = dev->tc_to_txq[tc].offset;
2530                 qcount = dev->tc_to_txq[tc].count;
2531         }
2532
2533         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2534 }
2535 EXPORT_SYMBOL(__skb_tx_hash);
2536
2537 static void skb_warn_bad_offload(const struct sk_buff *skb)
2538 {
2539         static const netdev_features_t null_features;
2540         struct net_device *dev = skb->dev;
2541         const char *name = "";
2542
2543         if (!net_ratelimit())
2544                 return;
2545
2546         if (dev) {
2547                 if (dev->dev.parent)
2548                         name = dev_driver_string(dev->dev.parent);
2549                 else
2550                         name = netdev_name(dev);
2551         }
2552         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2553              "gso_type=%d ip_summed=%d\n",
2554              name, dev ? &dev->features : &null_features,
2555              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2556              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2557              skb_shinfo(skb)->gso_type, skb->ip_summed);
2558 }
2559
2560 /*
2561  * Invalidate hardware checksum when packet is to be mangled, and
2562  * complete checksum manually on outgoing path.
2563  */
2564 int skb_checksum_help(struct sk_buff *skb)
2565 {
2566         __wsum csum;
2567         int ret = 0, offset;
2568
2569         if (skb->ip_summed == CHECKSUM_COMPLETE)
2570                 goto out_set_summed;
2571
2572         if (unlikely(skb_shinfo(skb)->gso_size)) {
2573                 skb_warn_bad_offload(skb);
2574                 return -EINVAL;
2575         }
2576
2577         /* Before computing a checksum, we should make sure no frag could
2578          * be modified by an external entity : checksum could be wrong.
2579          */
2580         if (skb_has_shared_frag(skb)) {
2581                 ret = __skb_linearize(skb);
2582                 if (ret)
2583                         goto out;
2584         }
2585
2586         offset = skb_checksum_start_offset(skb);
2587         BUG_ON(offset >= skb_headlen(skb));
2588         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2589
2590         offset += skb->csum_offset;
2591         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2592
2593         if (skb_cloned(skb) &&
2594             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2595                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596                 if (ret)
2597                         goto out;
2598         }
2599
2600         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2601 out_set_summed:
2602         skb->ip_summed = CHECKSUM_NONE;
2603 out:
2604         return ret;
2605 }
2606 EXPORT_SYMBOL(skb_checksum_help);
2607
2608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2609 {
2610         __be16 type = skb->protocol;
2611
2612         /* Tunnel gso handlers can set protocol to ethernet. */
2613         if (type == htons(ETH_P_TEB)) {
2614                 struct ethhdr *eth;
2615
2616                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2617                         return 0;
2618
2619                 eth = (struct ethhdr *)skb_mac_header(skb);
2620                 type = eth->h_proto;
2621         }
2622
2623         return __vlan_get_protocol(skb, type, depth);
2624 }
2625
2626 /**
2627  *      skb_mac_gso_segment - mac layer segmentation handler.
2628  *      @skb: buffer to segment
2629  *      @features: features for the output path (see dev->features)
2630  */
2631 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2632                                     netdev_features_t features)
2633 {
2634         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2635         struct packet_offload *ptype;
2636         int vlan_depth = skb->mac_len;
2637         __be16 type = skb_network_protocol(skb, &vlan_depth);
2638
2639         if (unlikely(!type))
2640                 return ERR_PTR(-EINVAL);
2641
2642         __skb_pull(skb, vlan_depth);
2643
2644         rcu_read_lock();
2645         list_for_each_entry_rcu(ptype, &offload_base, list) {
2646                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2647                         segs = ptype->callbacks.gso_segment(skb, features);
2648                         break;
2649                 }
2650         }
2651         rcu_read_unlock();
2652
2653         __skb_push(skb, skb->data - skb_mac_header(skb));
2654
2655         return segs;
2656 }
2657 EXPORT_SYMBOL(skb_mac_gso_segment);
2658
2659
2660 /* openvswitch calls this on rx path, so we need a different check.
2661  */
2662 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2663 {
2664         if (tx_path)
2665                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2666                        skb->ip_summed != CHECKSUM_NONE;
2667
2668         return skb->ip_summed == CHECKSUM_NONE;
2669 }
2670
2671 /**
2672  *      __skb_gso_segment - Perform segmentation on skb.
2673  *      @skb: buffer to segment
2674  *      @features: features for the output path (see dev->features)
2675  *      @tx_path: whether it is called in TX path
2676  *
2677  *      This function segments the given skb and returns a list of segments.
2678  *
2679  *      It may return NULL if the skb requires no segmentation.  This is
2680  *      only possible when GSO is used for verifying header integrity.
2681  *
2682  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2683  */
2684 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2685                                   netdev_features_t features, bool tx_path)
2686 {
2687         struct sk_buff *segs;
2688
2689         if (unlikely(skb_needs_check(skb, tx_path))) {
2690                 int err;
2691
2692                 /* We're going to init ->check field in TCP or UDP header */
2693                 err = skb_cow_head(skb, 0);
2694                 if (err < 0)
2695                         return ERR_PTR(err);
2696         }
2697
2698         /* Only report GSO partial support if it will enable us to
2699          * support segmentation on this frame without needing additional
2700          * work.
2701          */
2702         if (features & NETIF_F_GSO_PARTIAL) {
2703                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2704                 struct net_device *dev = skb->dev;
2705
2706                 partial_features |= dev->features & dev->gso_partial_features;
2707                 if (!skb_gso_ok(skb, features | partial_features))
2708                         features &= ~NETIF_F_GSO_PARTIAL;
2709         }
2710
2711         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2712                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2713
2714         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2715         SKB_GSO_CB(skb)->encap_level = 0;
2716
2717         skb_reset_mac_header(skb);
2718         skb_reset_mac_len(skb);
2719
2720         segs = skb_mac_gso_segment(skb, features);
2721
2722         if (unlikely(skb_needs_check(skb, tx_path)))
2723                 skb_warn_bad_offload(skb);
2724
2725         return segs;
2726 }
2727 EXPORT_SYMBOL(__skb_gso_segment);
2728
2729 /* Take action when hardware reception checksum errors are detected. */
2730 #ifdef CONFIG_BUG
2731 void netdev_rx_csum_fault(struct net_device *dev)
2732 {
2733         if (net_ratelimit()) {
2734                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2735                 dump_stack();
2736         }
2737 }
2738 EXPORT_SYMBOL(netdev_rx_csum_fault);
2739 #endif
2740
2741 /* Actually, we should eliminate this check as soon as we know, that:
2742  * 1. IOMMU is present and allows to map all the memory.
2743  * 2. No high memory really exists on this machine.
2744  */
2745
2746 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2747 {
2748 #ifdef CONFIG_HIGHMEM
2749         int i;
2750
2751         if (!(dev->features & NETIF_F_HIGHDMA)) {
2752                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754
2755                         if (PageHighMem(skb_frag_page(frag)))
2756                                 return 1;
2757                 }
2758         }
2759
2760         if (PCI_DMA_BUS_IS_PHYS) {
2761                 struct device *pdev = dev->dev.parent;
2762
2763                 if (!pdev)
2764                         return 0;
2765                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2768
2769                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2770                                 return 1;
2771                 }
2772         }
2773 #endif
2774         return 0;
2775 }
2776
2777 /* If MPLS offload request, verify we are testing hardware MPLS features
2778  * instead of standard features for the netdev.
2779  */
2780 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2781 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2782                                            netdev_features_t features,
2783                                            __be16 type)
2784 {
2785         if (eth_p_mpls(type))
2786                 features &= skb->dev->mpls_features;
2787
2788         return features;
2789 }
2790 #else
2791 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2792                                            netdev_features_t features,
2793                                            __be16 type)
2794 {
2795         return features;
2796 }
2797 #endif
2798
2799 static netdev_features_t harmonize_features(struct sk_buff *skb,
2800         netdev_features_t features)
2801 {
2802         int tmp;
2803         __be16 type;
2804
2805         type = skb_network_protocol(skb, &tmp);
2806         features = net_mpls_features(skb, features, type);
2807
2808         if (skb->ip_summed != CHECKSUM_NONE &&
2809             !can_checksum_protocol(features, type)) {
2810                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2811         }
2812         if (illegal_highdma(skb->dev, skb))
2813                 features &= ~NETIF_F_SG;
2814
2815         return features;
2816 }
2817
2818 netdev_features_t passthru_features_check(struct sk_buff *skb,
2819                                           struct net_device *dev,
2820                                           netdev_features_t features)
2821 {
2822         return features;
2823 }
2824 EXPORT_SYMBOL(passthru_features_check);
2825
2826 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2827                                              struct net_device *dev,
2828                                              netdev_features_t features)
2829 {
2830         return vlan_features_check(skb, features);
2831 }
2832
2833 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2834                                             struct net_device *dev,
2835                                             netdev_features_t features)
2836 {
2837         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2838
2839         if (gso_segs > dev->gso_max_segs)
2840                 return features & ~NETIF_F_GSO_MASK;
2841
2842         /* Support for GSO partial features requires software
2843          * intervention before we can actually process the packets
2844          * so we need to strip support for any partial features now
2845          * and we can pull them back in after we have partially
2846          * segmented the frame.
2847          */
2848         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2849                 features &= ~dev->gso_partial_features;
2850
2851         /* Make sure to clear the IPv4 ID mangling feature if the
2852          * IPv4 header has the potential to be fragmented.
2853          */
2854         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2855                 struct iphdr *iph = skb->encapsulation ?
2856                                     inner_ip_hdr(skb) : ip_hdr(skb);
2857
2858                 if (!(iph->frag_off & htons(IP_DF)))
2859                         features &= ~NETIF_F_TSO_MANGLEID;
2860         }
2861
2862         return features;
2863 }
2864
2865 netdev_features_t netif_skb_features(struct sk_buff *skb)
2866 {
2867         struct net_device *dev = skb->dev;
2868         netdev_features_t features = dev->features;
2869
2870         if (skb_is_gso(skb))
2871                 features = gso_features_check(skb, dev, features);
2872
2873         /* If encapsulation offload request, verify we are testing
2874          * hardware encapsulation features instead of standard
2875          * features for the netdev
2876          */
2877         if (skb->encapsulation)
2878                 features &= dev->hw_enc_features;
2879
2880         if (skb_vlan_tagged(skb))
2881                 features = netdev_intersect_features(features,
2882                                                      dev->vlan_features |
2883                                                      NETIF_F_HW_VLAN_CTAG_TX |
2884                                                      NETIF_F_HW_VLAN_STAG_TX);
2885
2886         if (dev->netdev_ops->ndo_features_check)
2887                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2888                                                                 features);
2889         else
2890                 features &= dflt_features_check(skb, dev, features);
2891
2892         return harmonize_features(skb, features);
2893 }
2894 EXPORT_SYMBOL(netif_skb_features);
2895
2896 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2897                     struct netdev_queue *txq, bool more)
2898 {
2899         unsigned int len;
2900         int rc;
2901
2902         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2903                 dev_queue_xmit_nit(skb, dev);
2904
2905         len = skb->len;
2906         trace_net_dev_start_xmit(skb, dev);
2907         rc = netdev_start_xmit(skb, dev, txq, more);
2908         trace_net_dev_xmit(skb, rc, dev, len);
2909
2910         return rc;
2911 }
2912
2913 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2914                                     struct netdev_queue *txq, int *ret)
2915 {
2916         struct sk_buff *skb = first;
2917         int rc = NETDEV_TX_OK;
2918
2919         while (skb) {
2920                 struct sk_buff *next = skb->next;
2921
2922                 skb->next = NULL;
2923                 rc = xmit_one(skb, dev, txq, next != NULL);
2924                 if (unlikely(!dev_xmit_complete(rc))) {
2925                         skb->next = next;
2926                         goto out;
2927                 }
2928
2929                 skb = next;
2930                 if (netif_xmit_stopped(txq) && skb) {
2931                         rc = NETDEV_TX_BUSY;
2932                         break;
2933                 }
2934         }
2935
2936 out:
2937         *ret = rc;
2938         return skb;
2939 }
2940
2941 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2942                                           netdev_features_t features)
2943 {
2944         if (skb_vlan_tag_present(skb) &&
2945             !vlan_hw_offload_capable(features, skb->vlan_proto))
2946                 skb = __vlan_hwaccel_push_inside(skb);
2947         return skb;
2948 }
2949
2950 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2951 {
2952         netdev_features_t features;
2953
2954         features = netif_skb_features(skb);
2955         skb = validate_xmit_vlan(skb, features);
2956         if (unlikely(!skb))
2957                 goto out_null;
2958
2959         if (netif_needs_gso(skb, features)) {
2960                 struct sk_buff *segs;
2961
2962                 segs = skb_gso_segment(skb, features);
2963                 if (IS_ERR(segs)) {
2964                         goto out_kfree_skb;
2965                 } else if (segs) {
2966                         consume_skb(skb);
2967                         skb = segs;
2968                 }
2969         } else {
2970                 if (skb_needs_linearize(skb, features) &&
2971                     __skb_linearize(skb))
2972                         goto out_kfree_skb;
2973
2974                 /* If packet is not checksummed and device does not
2975                  * support checksumming for this protocol, complete
2976                  * checksumming here.
2977                  */
2978                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2979                         if (skb->encapsulation)
2980                                 skb_set_inner_transport_header(skb,
2981                                                                skb_checksum_start_offset(skb));
2982                         else
2983                                 skb_set_transport_header(skb,
2984                                                          skb_checksum_start_offset(skb));
2985                         if (!(features & NETIF_F_CSUM_MASK) &&
2986                             skb_checksum_help(skb))
2987                                 goto out_kfree_skb;
2988                 }
2989         }
2990
2991         return skb;
2992
2993 out_kfree_skb:
2994         kfree_skb(skb);
2995 out_null:
2996         atomic_long_inc(&dev->tx_dropped);
2997         return NULL;
2998 }
2999
3000 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3001 {
3002         struct sk_buff *next, *head = NULL, *tail;
3003
3004         for (; skb != NULL; skb = next) {
3005                 next = skb->next;
3006                 skb->next = NULL;
3007
3008                 /* in case skb wont be segmented, point to itself */
3009                 skb->prev = skb;
3010
3011                 skb = validate_xmit_skb(skb, dev);
3012                 if (!skb)
3013                         continue;
3014
3015                 if (!head)
3016                         head = skb;
3017                 else
3018                         tail->next = skb;
3019                 /* If skb was segmented, skb->prev points to
3020                  * the last segment. If not, it still contains skb.
3021                  */
3022                 tail = skb->prev;
3023         }
3024         return head;
3025 }
3026 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3027
3028 static void qdisc_pkt_len_init(struct sk_buff *skb)
3029 {
3030         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3031
3032         qdisc_skb_cb(skb)->pkt_len = skb->len;
3033
3034         /* To get more precise estimation of bytes sent on wire,
3035          * we add to pkt_len the headers size of all segments
3036          */
3037         if (shinfo->gso_size)  {
3038                 unsigned int hdr_len;
3039                 u16 gso_segs = shinfo->gso_segs;
3040
3041                 /* mac layer + network layer */
3042                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3043
3044                 /* + transport layer */
3045                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3046                         hdr_len += tcp_hdrlen(skb);
3047                 else
3048                         hdr_len += sizeof(struct udphdr);
3049
3050                 if (shinfo->gso_type & SKB_GSO_DODGY)
3051                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3052                                                 shinfo->gso_size);
3053
3054                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3055         }
3056 }
3057
3058 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3059                                  struct net_device *dev,
3060                                  struct netdev_queue *txq)
3061 {
3062         spinlock_t *root_lock = qdisc_lock(q);
3063         struct sk_buff *to_free = NULL;
3064         bool contended;
3065         int rc;
3066
3067         qdisc_calculate_pkt_len(skb, q);
3068         /*
3069          * Heuristic to force contended enqueues to serialize on a
3070          * separate lock before trying to get qdisc main lock.
3071          * This permits qdisc->running owner to get the lock more
3072          * often and dequeue packets faster.
3073          */
3074         contended = qdisc_is_running(q);
3075         if (unlikely(contended))
3076                 spin_lock(&q->busylock);
3077
3078         spin_lock(root_lock);
3079         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3080                 __qdisc_drop(skb, &to_free);
3081                 rc = NET_XMIT_DROP;
3082         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3083                    qdisc_run_begin(q)) {
3084                 /*
3085                  * This is a work-conserving queue; there are no old skbs
3086                  * waiting to be sent out; and the qdisc is not running -
3087                  * xmit the skb directly.
3088                  */
3089
3090                 qdisc_bstats_update(q, skb);
3091
3092                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3093                         if (unlikely(contended)) {
3094                                 spin_unlock(&q->busylock);
3095                                 contended = false;
3096                         }
3097                         __qdisc_run(q);
3098                 } else
3099                         qdisc_run_end(q);
3100
3101                 rc = NET_XMIT_SUCCESS;
3102         } else {
3103                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3104                 if (qdisc_run_begin(q)) {
3105                         if (unlikely(contended)) {
3106                                 spin_unlock(&q->busylock);
3107                                 contended = false;
3108                         }
3109                         __qdisc_run(q);
3110                 }
3111         }
3112         spin_unlock(root_lock);
3113         if (unlikely(to_free))
3114                 kfree_skb_list(to_free);
3115         if (unlikely(contended))
3116                 spin_unlock(&q->busylock);
3117         return rc;
3118 }
3119
3120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3121 static void skb_update_prio(struct sk_buff *skb)
3122 {
3123         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3124
3125         if (!skb->priority && skb->sk && map) {
3126                 unsigned int prioidx =
3127                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3128
3129                 if (prioidx < map->priomap_len)
3130                         skb->priority = map->priomap[prioidx];
3131         }
3132 }
3133 #else
3134 #define skb_update_prio(skb)
3135 #endif
3136
3137 DEFINE_PER_CPU(int, xmit_recursion);
3138 EXPORT_SYMBOL(xmit_recursion);
3139
3140 /**
3141  *      dev_loopback_xmit - loop back @skb
3142  *      @net: network namespace this loopback is happening in
3143  *      @sk:  sk needed to be a netfilter okfn
3144  *      @skb: buffer to transmit
3145  */
3146 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3147 {
3148         skb_reset_mac_header(skb);
3149         __skb_pull(skb, skb_network_offset(skb));
3150         skb->pkt_type = PACKET_LOOPBACK;
3151         skb->ip_summed = CHECKSUM_UNNECESSARY;
3152         WARN_ON(!skb_dst(skb));
3153         skb_dst_force(skb);
3154         netif_rx_ni(skb);
3155         return 0;
3156 }
3157 EXPORT_SYMBOL(dev_loopback_xmit);
3158
3159 #ifdef CONFIG_NET_EGRESS
3160 static struct sk_buff *
3161 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3162 {
3163         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3164         struct tcf_result cl_res;
3165
3166         if (!cl)
3167                 return skb;
3168
3169         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3170         qdisc_bstats_cpu_update(cl->q, skb);
3171
3172         switch (tc_classify(skb, cl, &cl_res, false)) {
3173         case TC_ACT_OK:
3174         case TC_ACT_RECLASSIFY:
3175                 skb->tc_index = TC_H_MIN(cl_res.classid);
3176                 break;
3177         case TC_ACT_SHOT:
3178                 qdisc_qstats_cpu_drop(cl->q);
3179                 *ret = NET_XMIT_DROP;
3180                 kfree_skb(skb);
3181                 return NULL;
3182         case TC_ACT_STOLEN:
3183         case TC_ACT_QUEUED:
3184                 *ret = NET_XMIT_SUCCESS;
3185                 consume_skb(skb);
3186                 return NULL;
3187         case TC_ACT_REDIRECT:
3188                 /* No need to push/pop skb's mac_header here on egress! */
3189                 skb_do_redirect(skb);
3190                 *ret = NET_XMIT_SUCCESS;
3191                 return NULL;
3192         default:
3193                 break;
3194         }
3195
3196         return skb;
3197 }
3198 #endif /* CONFIG_NET_EGRESS */
3199
3200 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3201 {
3202 #ifdef CONFIG_XPS
3203         struct xps_dev_maps *dev_maps;
3204         struct xps_map *map;
3205         int queue_index = -1;
3206
3207         rcu_read_lock();
3208         dev_maps = rcu_dereference(dev->xps_maps);
3209         if (dev_maps) {
3210                 unsigned int tci = skb->sender_cpu - 1;
3211
3212                 if (dev->num_tc) {
3213                         tci *= dev->num_tc;
3214                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3215                 }
3216
3217                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3218                 if (map) {
3219                         if (map->len == 1)
3220                                 queue_index = map->queues[0];
3221                         else
3222                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3223                                                                            map->len)];
3224                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3225                                 queue_index = -1;
3226                 }
3227         }
3228         rcu_read_unlock();
3229
3230         return queue_index;
3231 #else
3232         return -1;
3233 #endif
3234 }
3235
3236 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3237 {
3238         struct sock *sk = skb->sk;
3239         int queue_index = sk_tx_queue_get(sk);
3240
3241         if (queue_index < 0 || skb->ooo_okay ||
3242             queue_index >= dev->real_num_tx_queues) {
3243                 int new_index = get_xps_queue(dev, skb);
3244
3245                 if (new_index < 0)
3246                         new_index = skb_tx_hash(dev, skb);
3247
3248                 if (queue_index != new_index && sk &&
3249                     sk_fullsock(sk) &&
3250                     rcu_access_pointer(sk->sk_dst_cache))
3251                         sk_tx_queue_set(sk, new_index);
3252
3253                 queue_index = new_index;
3254         }
3255
3256         return queue_index;
3257 }
3258
3259 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3260                                     struct sk_buff *skb,
3261                                     void *accel_priv)
3262 {
3263         int queue_index = 0;
3264
3265 #ifdef CONFIG_XPS
3266         u32 sender_cpu = skb->sender_cpu - 1;
3267
3268         if (sender_cpu >= (u32)NR_CPUS)
3269                 skb->sender_cpu = raw_smp_processor_id() + 1;
3270 #endif
3271
3272         if (dev->real_num_tx_queues != 1) {
3273                 const struct net_device_ops *ops = dev->netdev_ops;
3274
3275                 if (ops->ndo_select_queue)
3276                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277                                                             __netdev_pick_tx);
3278                 else
3279                         queue_index = __netdev_pick_tx(dev, skb);
3280
3281                 if (!accel_priv)
3282                         queue_index = netdev_cap_txqueue(dev, queue_index);
3283         }
3284
3285         skb_set_queue_mapping(skb, queue_index);
3286         return netdev_get_tx_queue(dev, queue_index);
3287 }
3288
3289 /**
3290  *      __dev_queue_xmit - transmit a buffer
3291  *      @skb: buffer to transmit
3292  *      @accel_priv: private data used for L2 forwarding offload
3293  *
3294  *      Queue a buffer for transmission to a network device. The caller must
3295  *      have set the device and priority and built the buffer before calling
3296  *      this function. The function can be called from an interrupt.
3297  *
3298  *      A negative errno code is returned on a failure. A success does not
3299  *      guarantee the frame will be transmitted as it may be dropped due
3300  *      to congestion or traffic shaping.
3301  *
3302  * -----------------------------------------------------------------------------------
3303  *      I notice this method can also return errors from the queue disciplines,
3304  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3305  *      be positive.
3306  *
3307  *      Regardless of the return value, the skb is consumed, so it is currently
3308  *      difficult to retry a send to this method.  (You can bump the ref count
3309  *      before sending to hold a reference for retry if you are careful.)
3310  *
3311  *      When calling this method, interrupts MUST be enabled.  This is because
3312  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3313  *          --BLG
3314  */
3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3316 {
3317         struct net_device *dev = skb->dev;
3318         struct netdev_queue *txq;
3319         struct Qdisc *q;
3320         int rc = -ENOMEM;
3321
3322         skb_reset_mac_header(skb);
3323
3324         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
3327         /* Disable soft irqs for various locks below. Also
3328          * stops preemption for RCU.
3329          */
3330         rcu_read_lock_bh();
3331
3332         skb_update_prio(skb);
3333
3334         qdisc_pkt_len_init(skb);
3335 #ifdef CONFIG_NET_CLS_ACT
3336         skb->tc_at_ingress = 0;
3337 # ifdef CONFIG_NET_EGRESS
3338         if (static_key_false(&egress_needed)) {
3339                 skb = sch_handle_egress(skb, &rc, dev);
3340                 if (!skb)
3341                         goto out;
3342         }
3343 # endif
3344 #endif
3345         /* If device/qdisc don't need skb->dst, release it right now while
3346          * its hot in this cpu cache.
3347          */
3348         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349                 skb_dst_drop(skb);
3350         else
3351                 skb_dst_force(skb);
3352
3353         txq = netdev_pick_tx(dev, skb, accel_priv);
3354         q = rcu_dereference_bh(txq->qdisc);
3355
3356         trace_net_dev_queue(skb);
3357         if (q->enqueue) {
3358                 rc = __dev_xmit_skb(skb, q, dev, txq);
3359                 goto out;
3360         }
3361
3362         /* The device has no queue. Common case for software devices:
3363          * loopback, all the sorts of tunnels...
3364
3365          * Really, it is unlikely that netif_tx_lock protection is necessary
3366          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3367          * counters.)
3368          * However, it is possible, that they rely on protection
3369          * made by us here.
3370
3371          * Check this and shot the lock. It is not prone from deadlocks.
3372          *Either shot noqueue qdisc, it is even simpler 8)
3373          */
3374         if (dev->flags & IFF_UP) {
3375                 int cpu = smp_processor_id(); /* ok because BHs are off */
3376
3377                 if (txq->xmit_lock_owner != cpu) {
3378                         if (unlikely(__this_cpu_read(xmit_recursion) >
3379                                      XMIT_RECURSION_LIMIT))
3380                                 goto recursion_alert;
3381
3382                         skb = validate_xmit_skb(skb, dev);
3383                         if (!skb)
3384                                 goto out;
3385
3386                         HARD_TX_LOCK(dev, txq, cpu);
3387
3388                         if (!netif_xmit_stopped(txq)) {
3389                                 __this_cpu_inc(xmit_recursion);
3390                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3391                                 __this_cpu_dec(xmit_recursion);
3392                                 if (dev_xmit_complete(rc)) {
3393                                         HARD_TX_UNLOCK(dev, txq);
3394                                         goto out;
3395                                 }
3396                         }
3397                         HARD_TX_UNLOCK(dev, txq);
3398                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3399                                              dev->name);
3400                 } else {
3401                         /* Recursion is detected! It is possible,
3402                          * unfortunately
3403                          */
3404 recursion_alert:
3405                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3406                                              dev->name);
3407                 }
3408         }
3409
3410         rc = -ENETDOWN;
3411         rcu_read_unlock_bh();
3412
3413         atomic_long_inc(&dev->tx_dropped);
3414         kfree_skb_list(skb);
3415         return rc;
3416 out:
3417         rcu_read_unlock_bh();
3418         return rc;
3419 }
3420
3421 int dev_queue_xmit(struct sk_buff *skb)
3422 {
3423         return __dev_queue_xmit(skb, NULL);
3424 }
3425 EXPORT_SYMBOL(dev_queue_xmit);
3426
3427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3428 {
3429         return __dev_queue_xmit(skb, accel_priv);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit_accel);
3432
3433
3434 /*************************************************************************
3435  *                      Receiver routines
3436  *************************************************************************/
3437
3438 int netdev_max_backlog __read_mostly = 1000;
3439 EXPORT_SYMBOL(netdev_max_backlog);
3440
3441 int netdev_tstamp_prequeue __read_mostly = 1;
3442 int netdev_budget __read_mostly = 300;
3443 int weight_p __read_mostly = 64;           /* old backlog weight */
3444 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3445 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3446 int dev_rx_weight __read_mostly = 64;
3447 int dev_tx_weight __read_mostly = 64;
3448
3449 /* Called with irq disabled */
3450 static inline void ____napi_schedule(struct softnet_data *sd,
3451                                      struct napi_struct *napi)
3452 {
3453         list_add_tail(&napi->poll_list, &sd->poll_list);
3454         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3455 }
3456
3457 #ifdef CONFIG_RPS
3458
3459 /* One global table that all flow-based protocols share. */
3460 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3461 EXPORT_SYMBOL(rps_sock_flow_table);
3462 u32 rps_cpu_mask __read_mostly;
3463 EXPORT_SYMBOL(rps_cpu_mask);
3464
3465 struct static_key rps_needed __read_mostly;
3466 EXPORT_SYMBOL(rps_needed);
3467 struct static_key rfs_needed __read_mostly;
3468 EXPORT_SYMBOL(rfs_needed);
3469
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472             struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474         if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476                 struct netdev_rx_queue *rxqueue;
3477                 struct rps_dev_flow_table *flow_table;
3478                 struct rps_dev_flow *old_rflow;
3479                 u32 flow_id;
3480                 u16 rxq_index;
3481                 int rc;
3482
3483                 /* Should we steer this flow to a different hardware queue? */
3484                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485                     !(dev->features & NETIF_F_NTUPLE))
3486                         goto out;
3487                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488                 if (rxq_index == skb_get_rx_queue(skb))
3489                         goto out;
3490
3491                 rxqueue = dev->_rx + rxq_index;
3492                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493                 if (!flow_table)
3494                         goto out;
3495                 flow_id = skb_get_hash(skb) & flow_table->mask;
3496                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497                                                         rxq_index, flow_id);
3498                 if (rc < 0)
3499                         goto out;
3500                 old_rflow = rflow;
3501                 rflow = &flow_table->flows[flow_id];
3502                 rflow->filter = rc;
3503                 if (old_rflow->filter == rflow->filter)
3504                         old_rflow->filter = RPS_NO_FILTER;
3505         out:
3506 #endif
3507                 rflow->last_qtail =
3508                         per_cpu(softnet_data, next_cpu).input_queue_head;
3509         }
3510
3511         rflow->cpu = next_cpu;
3512         return rflow;
3513 }
3514
3515 /*
3516  * get_rps_cpu is called from netif_receive_skb and returns the target
3517  * CPU from the RPS map of the receiving queue for a given skb.
3518  * rcu_read_lock must be held on entry.
3519  */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521                        struct rps_dev_flow **rflowp)
3522 {
3523         const struct rps_sock_flow_table *sock_flow_table;
3524         struct netdev_rx_queue *rxqueue = dev->_rx;
3525         struct rps_dev_flow_table *flow_table;
3526         struct rps_map *map;
3527         int cpu = -1;
3528         u32 tcpu;
3529         u32 hash;
3530
3531         if (skb_rx_queue_recorded(skb)) {
3532                 u16 index = skb_get_rx_queue(skb);
3533
3534                 if (unlikely(index >= dev->real_num_rx_queues)) {
3535                         WARN_ONCE(dev->real_num_rx_queues > 1,
3536                                   "%s received packet on queue %u, but number "
3537                                   "of RX queues is %u\n",
3538                                   dev->name, index, dev->real_num_rx_queues);
3539                         goto done;
3540                 }
3541                 rxqueue += index;
3542         }
3543
3544         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547         map = rcu_dereference(rxqueue->rps_map);
3548         if (!flow_table && !map)
3549                 goto done;
3550
3551         skb_reset_network_header(skb);
3552         hash = skb_get_hash(skb);
3553         if (!hash)
3554                 goto done;
3555
3556         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557         if (flow_table && sock_flow_table) {
3558                 struct rps_dev_flow *rflow;
3559                 u32 next_cpu;
3560                 u32 ident;
3561
3562                 /* First check into global flow table if there is a match */
3563                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564                 if ((ident ^ hash) & ~rps_cpu_mask)
3565                         goto try_rps;
3566
3567                 next_cpu = ident & rps_cpu_mask;
3568
3569                 /* OK, now we know there is a match,
3570                  * we can look at the local (per receive queue) flow table
3571                  */
3572                 rflow = &flow_table->flows[hash & flow_table->mask];
3573                 tcpu = rflow->cpu;
3574
3575                 /*
3576                  * If the desired CPU (where last recvmsg was done) is
3577                  * different from current CPU (one in the rx-queue flow
3578                  * table entry), switch if one of the following holds:
3579                  *   - Current CPU is unset (>= nr_cpu_ids).
3580                  *   - Current CPU is offline.
3581                  *   - The current CPU's queue tail has advanced beyond the
3582                  *     last packet that was enqueued using this table entry.
3583                  *     This guarantees that all previous packets for the flow
3584                  *     have been dequeued, thus preserving in order delivery.
3585                  */
3586                 if (unlikely(tcpu != next_cpu) &&
3587                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589                       rflow->last_qtail)) >= 0)) {
3590                         tcpu = next_cpu;
3591                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592                 }
3593
3594                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595                         *rflowp = rflow;
3596                         cpu = tcpu;
3597                         goto done;
3598                 }
3599         }
3600
3601 try_rps:
3602
3603         if (map) {
3604                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605                 if (cpu_online(tcpu)) {
3606                         cpu = tcpu;
3607                         goto done;
3608                 }
3609         }
3610
3611 done:
3612         return cpu;
3613 }
3614
3615 #ifdef CONFIG_RFS_ACCEL
3616
3617 /**
3618  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619  * @dev: Device on which the filter was set
3620  * @rxq_index: RX queue index
3621  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623  *
3624  * Drivers that implement ndo_rx_flow_steer() should periodically call
3625  * this function for each installed filter and remove the filters for
3626  * which it returns %true.
3627  */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629                          u32 flow_id, u16 filter_id)
3630 {
3631         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632         struct rps_dev_flow_table *flow_table;
3633         struct rps_dev_flow *rflow;
3634         bool expire = true;
3635         unsigned int cpu;
3636
3637         rcu_read_lock();
3638         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639         if (flow_table && flow_id <= flow_table->mask) {
3640                 rflow = &flow_table->flows[flow_id];
3641                 cpu = ACCESS_ONCE(rflow->cpu);
3642                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644                            rflow->last_qtail) <
3645                      (int)(10 * flow_table->mask)))
3646                         expire = false;
3647         }
3648         rcu_read_unlock();
3649         return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653 #endif /* CONFIG_RFS_ACCEL */
3654
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658         struct softnet_data *sd = data;
3659
3660         ____napi_schedule(sd, &sd->backlog);
3661         sd->received_rps++;
3662 }
3663
3664 #endif /* CONFIG_RPS */
3665
3666 /*
3667  * Check if this softnet_data structure is another cpu one
3668  * If yes, queue it to our IPI list and return 1
3669  * If no, return 0
3670  */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675
3676         if (sd != mysd) {
3677                 sd->rps_ipi_next = mysd->rps_ipi_list;
3678                 mysd->rps_ipi_list = sd;
3679
3680                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681                 return 1;
3682         }
3683 #endif /* CONFIG_RPS */
3684         return 0;
3685 }
3686
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694         struct sd_flow_limit *fl;
3695         struct softnet_data *sd;
3696         unsigned int old_flow, new_flow;
3697
3698         if (qlen < (netdev_max_backlog >> 1))
3699                 return false;
3700
3701         sd = this_cpu_ptr(&softnet_data);
3702
3703         rcu_read_lock();
3704         fl = rcu_dereference(sd->flow_limit);
3705         if (fl) {
3706                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707                 old_flow = fl->history[fl->history_head];
3708                 fl->history[fl->history_head] = new_flow;
3709
3710                 fl->history_head++;
3711                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713                 if (likely(fl->buckets[old_flow]))
3714                         fl->buckets[old_flow]--;
3715
3716                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717                         fl->count++;
3718                         rcu_read_unlock();
3719                         return true;
3720                 }
3721         }
3722         rcu_read_unlock();
3723 #endif
3724         return false;
3725 }
3726
3727 /*
3728  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729  * queue (may be a remote CPU queue).
3730  */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732                               unsigned int *qtail)
3733 {
3734         struct softnet_data *sd;
3735         unsigned long flags;
3736         unsigned int qlen;
3737
3738         sd = &per_cpu(softnet_data, cpu);
3739
3740         local_irq_save(flags);
3741
3742         rps_lock(sd);
3743         if (!netif_running(skb->dev))
3744                 goto drop;
3745         qlen = skb_queue_len(&sd->input_pkt_queue);
3746         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747                 if (qlen) {
3748 enqueue:
3749                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3750                         input_queue_tail_incr_save(sd, qtail);
3751                         rps_unlock(sd);
3752                         local_irq_restore(flags);
3753                         return NET_RX_SUCCESS;
3754                 }
3755
3756                 /* Schedule NAPI for backlog device
3757                  * We can use non atomic operation since we own the queue lock
3758                  */
3759                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760                         if (!rps_ipi_queued(sd))
3761                                 ____napi_schedule(sd, &sd->backlog);
3762                 }
3763                 goto enqueue;
3764         }
3765
3766 drop:
3767         sd->dropped++;
3768         rps_unlock(sd);
3769
3770         local_irq_restore(flags);
3771
3772         atomic_long_inc(&skb->dev->rx_dropped);
3773         kfree_skb(skb);
3774         return NET_RX_DROP;
3775 }
3776
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779         int ret;
3780
3781         net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783         trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785         if (static_key_false(&rps_needed)) {
3786                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3787                 int cpu;
3788
3789                 preempt_disable();
3790                 rcu_read_lock();
3791
3792                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793                 if (cpu < 0)
3794                         cpu = smp_processor_id();
3795
3796                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
3798                 rcu_read_unlock();
3799                 preempt_enable();
3800         } else
3801 #endif
3802         {
3803                 unsigned int qtail;
3804
3805                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3806                 put_cpu();
3807         }
3808         return ret;
3809 }
3810
3811 /**
3812  *      netif_rx        -       post buffer to the network code
3813  *      @skb: buffer to post
3814  *
3815  *      This function receives a packet from a device driver and queues it for
3816  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3817  *      may be dropped during processing for congestion control or by the
3818  *      protocol layers.
3819  *
3820  *      return values:
3821  *      NET_RX_SUCCESS  (no congestion)
3822  *      NET_RX_DROP     (packet was dropped)
3823  *
3824  */
3825
3826 int netif_rx(struct sk_buff *skb)
3827 {
3828         trace_netif_rx_entry(skb);
3829
3830         return netif_rx_internal(skb);
3831 }
3832 EXPORT_SYMBOL(netif_rx);
3833
3834 int netif_rx_ni(struct sk_buff *skb)
3835 {
3836         int err;
3837
3838         trace_netif_rx_ni_entry(skb);
3839
3840         preempt_disable();
3841         err = netif_rx_internal(skb);
3842         if (local_softirq_pending())
3843                 do_softirq();
3844         preempt_enable();
3845
3846         return err;
3847 }
3848 EXPORT_SYMBOL(netif_rx_ni);
3849
3850 static __latent_entropy void net_tx_action(struct softirq_action *h)
3851 {
3852         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3853
3854         if (sd->completion_queue) {
3855                 struct sk_buff *clist;
3856
3857                 local_irq_disable();
3858                 clist = sd->completion_queue;
3859                 sd->completion_queue = NULL;
3860                 local_irq_enable();
3861
3862                 while (clist) {
3863                         struct sk_buff *skb = clist;
3864
3865                         clist = clist->next;
3866
3867                         WARN_ON(atomic_read(&skb->users));
3868                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3869                                 trace_consume_skb(skb);
3870                         else
3871                                 trace_kfree_skb(skb, net_tx_action);
3872
3873                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3874                                 __kfree_skb(skb);
3875                         else
3876                                 __kfree_skb_defer(skb);
3877                 }
3878
3879                 __kfree_skb_flush();
3880         }
3881
3882         if (sd->output_queue) {
3883                 struct Qdisc *head;
3884
3885                 local_irq_disable();
3886                 head = sd->output_queue;
3887                 sd->output_queue = NULL;
3888                 sd->output_queue_tailp = &sd->output_queue;
3889                 local_irq_enable();
3890
3891                 while (head) {
3892                         struct Qdisc *q = head;
3893                         spinlock_t *root_lock;
3894
3895                         head = head->next_sched;
3896
3897                         root_lock = qdisc_lock(q);
3898                         spin_lock(root_lock);
3899                         /* We need to make sure head->next_sched is read
3900                          * before clearing __QDISC_STATE_SCHED
3901                          */
3902                         smp_mb__before_atomic();
3903                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3904                         qdisc_run(q);
3905                         spin_unlock(root_lock);
3906                 }
3907         }
3908 }
3909
3910 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3911 /* This hook is defined here for ATM LANE */
3912 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3913                              unsigned char *addr) __read_mostly;
3914 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3915 #endif
3916
3917 static inline struct sk_buff *
3918 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3919                    struct net_device *orig_dev)
3920 {
3921 #ifdef CONFIG_NET_CLS_ACT
3922         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3923         struct tcf_result cl_res;
3924
3925         /* If there's at least one ingress present somewhere (so
3926          * we get here via enabled static key), remaining devices
3927          * that are not configured with an ingress qdisc will bail
3928          * out here.
3929          */
3930         if (!cl)
3931                 return skb;
3932         if (*pt_prev) {
3933                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3934                 *pt_prev = NULL;
3935         }
3936
3937         qdisc_skb_cb(skb)->pkt_len = skb->len;
3938         skb->tc_at_ingress = 1;
3939         qdisc_bstats_cpu_update(cl->q, skb);
3940
3941         switch (tc_classify(skb, cl, &cl_res, false)) {
3942         case TC_ACT_OK:
3943         case TC_ACT_RECLASSIFY:
3944                 skb->tc_index = TC_H_MIN(cl_res.classid);
3945                 break;
3946         case TC_ACT_SHOT:
3947                 qdisc_qstats_cpu_drop(cl->q);
3948                 kfree_skb(skb);
3949                 return NULL;
3950         case TC_ACT_STOLEN:
3951         case TC_ACT_QUEUED:
3952                 consume_skb(skb);
3953                 return NULL;
3954         case TC_ACT_REDIRECT:
3955                 /* skb_mac_header check was done by cls/act_bpf, so
3956                  * we can safely push the L2 header back before
3957                  * redirecting to another netdev
3958                  */
3959                 __skb_push(skb, skb->mac_len);
3960                 skb_do_redirect(skb);
3961                 return NULL;
3962         default:
3963                 break;
3964         }
3965 #endif /* CONFIG_NET_CLS_ACT */
3966         return skb;
3967 }
3968
3969 /**
3970  *      netdev_is_rx_handler_busy - check if receive handler is registered
3971  *      @dev: device to check
3972  *
3973  *      Check if a receive handler is already registered for a given device.
3974  *      Return true if there one.
3975  *
3976  *      The caller must hold the rtnl_mutex.
3977  */
3978 bool netdev_is_rx_handler_busy(struct net_device *dev)
3979 {
3980         ASSERT_RTNL();
3981         return dev && rtnl_dereference(dev->rx_handler);
3982 }
3983 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3984
3985 /**
3986  *      netdev_rx_handler_register - register receive handler
3987  *      @dev: device to register a handler for
3988  *      @rx_handler: receive handler to register
3989  *      @rx_handler_data: data pointer that is used by rx handler
3990  *
3991  *      Register a receive handler for a device. This handler will then be
3992  *      called from __netif_receive_skb. A negative errno code is returned
3993  *      on a failure.
3994  *
3995  *      The caller must hold the rtnl_mutex.
3996  *
3997  *      For a general description of rx_handler, see enum rx_handler_result.
3998  */
3999 int netdev_rx_handler_register(struct net_device *dev,
4000                                rx_handler_func_t *rx_handler,
4001                                void *rx_handler_data)
4002 {
4003         if (netdev_is_rx_handler_busy(dev))
4004                 return -EBUSY;
4005
4006         /* Note: rx_handler_data must be set before rx_handler */
4007         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008         rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010         return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014 /**
4015  *      netdev_rx_handler_unregister - unregister receive handler
4016  *      @dev: device to unregister a handler from
4017  *
4018  *      Unregister a receive handler from a device.
4019  *
4020  *      The caller must hold the rtnl_mutex.
4021  */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024
4025         ASSERT_RTNL();
4026         RCU_INIT_POINTER(dev->rx_handler, NULL);
4027         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028          * section has a guarantee to see a non NULL rx_handler_data
4029          * as well.
4030          */
4031         synchronize_net();
4032         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
4036 /*
4037  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038  * the special handling of PFMEMALLOC skbs.
4039  */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042         switch (skb->protocol) {
4043         case htons(ETH_P_ARP):
4044         case htons(ETH_P_IP):
4045         case htons(ETH_P_IPV6):
4046         case htons(ETH_P_8021Q):
4047         case htons(ETH_P_8021AD):
4048                 return true;
4049         default:
4050                 return false;
4051         }
4052 }
4053
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055                              int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058         if (nf_hook_ingress_active(skb)) {
4059                 int ingress_retval;
4060
4061                 if (*pt_prev) {
4062                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063                         *pt_prev = NULL;
4064                 }
4065
4066                 rcu_read_lock();
4067                 ingress_retval = nf_hook_ingress(skb);
4068                 rcu_read_unlock();
4069                 return ingress_retval;
4070         }
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072         return 0;
4073 }
4074
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077         struct packet_type *ptype, *pt_prev;
4078         rx_handler_func_t *rx_handler;
4079         struct net_device *orig_dev;
4080         bool deliver_exact = false;
4081         int ret = NET_RX_DROP;
4082         __be16 type;
4083
4084         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085
4086         trace_netif_receive_skb(skb);
4087
4088         orig_dev = skb->dev;
4089
4090         skb_reset_network_header(skb);
4091         if (!skb_transport_header_was_set(skb))
4092                 skb_reset_transport_header(skb);
4093         skb_reset_mac_len(skb);
4094
4095         pt_prev = NULL;
4096
4097 another_round:
4098         skb->skb_iif = skb->dev->ifindex;
4099
4100         __this_cpu_inc(softnet_data.processed);
4101
4102         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104                 skb = skb_vlan_untag(skb);
4105                 if (unlikely(!skb))
4106                         goto out;
4107         }
4108
4109         if (skb_skip_tc_classify(skb))
4110                 goto skip_classify;
4111
4112         if (pfmemalloc)
4113                 goto skip_taps;
4114
4115         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4116                 if (pt_prev)
4117                         ret = deliver_skb(skb, pt_prev, orig_dev);
4118                 pt_prev = ptype;
4119         }
4120
4121         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4122                 if (pt_prev)
4123                         ret = deliver_skb(skb, pt_prev, orig_dev);
4124                 pt_prev = ptype;
4125         }
4126
4127 skip_taps:
4128 #ifdef CONFIG_NET_INGRESS
4129         if (static_key_false(&ingress_needed)) {
4130                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4131                 if (!skb)
4132                         goto out;
4133
4134                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4135                         goto out;
4136         }
4137 #endif
4138         skb_reset_tc(skb);
4139 skip_classify:
4140         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4141                 goto drop;
4142
4143         if (skb_vlan_tag_present(skb)) {
4144                 if (pt_prev) {
4145                         ret = deliver_skb(skb, pt_prev, orig_dev);
4146                         pt_prev = NULL;
4147                 }
4148                 if (vlan_do_receive(&skb))
4149                         goto another_round;
4150                 else if (unlikely(!skb))
4151                         goto out;
4152         }
4153
4154         rx_handler = rcu_dereference(skb->dev->rx_handler);
4155         if (rx_handler) {
4156                 if (pt_prev) {
4157                         ret = deliver_skb(skb, pt_prev, orig_dev);
4158                         pt_prev = NULL;
4159                 }
4160                 switch (rx_handler(&skb)) {
4161                 case RX_HANDLER_CONSUMED:
4162                         ret = NET_RX_SUCCESS;
4163                         goto out;
4164                 case RX_HANDLER_ANOTHER:
4165                         goto another_round;
4166                 case RX_HANDLER_EXACT:
4167                         deliver_exact = true;
4168                 case RX_HANDLER_PASS:
4169                         break;
4170                 default:
4171                         BUG();
4172                 }
4173         }
4174
4175         if (unlikely(skb_vlan_tag_present(skb))) {
4176                 if (skb_vlan_tag_get_id(skb))
4177                         skb->pkt_type = PACKET_OTHERHOST;
4178                 /* Note: we might in the future use prio bits
4179                  * and set skb->priority like in vlan_do_receive()
4180                  * For the time being, just ignore Priority Code Point
4181                  */
4182                 skb->vlan_tci = 0;
4183         }
4184
4185         type = skb->protocol;
4186
4187         /* deliver only exact match when indicated */
4188         if (likely(!deliver_exact)) {
4189                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190                                        &ptype_base[ntohs(type) &
4191                                                    PTYPE_HASH_MASK]);
4192         }
4193
4194         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195                                &orig_dev->ptype_specific);
4196
4197         if (unlikely(skb->dev != orig_dev)) {
4198                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199                                        &skb->dev->ptype_specific);
4200         }
4201
4202         if (pt_prev) {
4203                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4204                         goto drop;
4205                 else
4206                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4207         } else {
4208 drop:
4209                 if (!deliver_exact)
4210                         atomic_long_inc(&skb->dev->rx_dropped);
4211                 else
4212                         atomic_long_inc(&skb->dev->rx_nohandler);
4213                 kfree_skb(skb);
4214                 /* Jamal, now you will not able to escape explaining
4215                  * me how you were going to use this. :-)
4216                  */
4217                 ret = NET_RX_DROP;
4218         }
4219
4220 out:
4221         return ret;
4222 }
4223
4224 static int __netif_receive_skb(struct sk_buff *skb)
4225 {
4226         int ret;
4227
4228         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229                 unsigned long pflags = current->flags;
4230
4231                 /*
4232                  * PFMEMALLOC skbs are special, they should
4233                  * - be delivered to SOCK_MEMALLOC sockets only
4234                  * - stay away from userspace
4235                  * - have bounded memory usage
4236                  *
4237                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4238                  * context down to all allocation sites.
4239                  */
4240                 current->flags |= PF_MEMALLOC;
4241                 ret = __netif_receive_skb_core(skb, true);
4242                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243         } else
4244                 ret = __netif_receive_skb_core(skb, false);
4245
4246         return ret;
4247 }
4248
4249 static int netif_receive_skb_internal(struct sk_buff *skb)
4250 {
4251         int ret;
4252
4253         net_timestamp_check(netdev_tstamp_prequeue, skb);
4254
4255         if (skb_defer_rx_timestamp(skb))
4256                 return NET_RX_SUCCESS;
4257
4258         rcu_read_lock();
4259
4260 #ifdef CONFIG_RPS
4261         if (static_key_false(&rps_needed)) {
4262                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4263                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4264
4265                 if (cpu >= 0) {
4266                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267                         rcu_read_unlock();
4268                         return ret;
4269                 }
4270         }
4271 #endif
4272         ret = __netif_receive_skb(skb);
4273         rcu_read_unlock();
4274         return ret;
4275 }
4276
4277 /**
4278  *      netif_receive_skb - process receive buffer from network
4279  *      @skb: buffer to process
4280  *
4281  *      netif_receive_skb() is the main receive data processing function.
4282  *      It always succeeds. The buffer may be dropped during processing
4283  *      for congestion control or by the protocol layers.
4284  *
4285  *      This function may only be called from softirq context and interrupts
4286  *      should be enabled.
4287  *
4288  *      Return values (usually ignored):
4289  *      NET_RX_SUCCESS: no congestion
4290  *      NET_RX_DROP: packet was dropped
4291  */
4292 int netif_receive_skb(struct sk_buff *skb)
4293 {
4294         trace_netif_receive_skb_entry(skb);
4295
4296         return netif_receive_skb_internal(skb);
4297 }
4298 EXPORT_SYMBOL(netif_receive_skb);
4299
4300 DEFINE_PER_CPU(struct work_struct, flush_works);
4301
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct *work)
4304 {
4305         struct sk_buff *skb, *tmp;
4306         struct softnet_data *sd;
4307
4308         local_bh_disable();
4309         sd = this_cpu_ptr(&softnet_data);
4310
4311         local_irq_disable();
4312         rps_lock(sd);
4313         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4314                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4315                         __skb_unlink(skb, &sd->input_pkt_queue);
4316                         kfree_skb(skb);
4317                         input_queue_head_incr(sd);
4318                 }
4319         }
4320         rps_unlock(sd);
4321         local_irq_enable();
4322
4323         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4324                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4325                         __skb_unlink(skb, &sd->process_queue);
4326                         kfree_skb(skb);
4327                         input_queue_head_incr(sd);
4328                 }
4329         }
4330         local_bh_enable();
4331 }
4332
4333 static void flush_all_backlogs(void)
4334 {
4335         unsigned int cpu;
4336
4337         get_online_cpus();
4338
4339         for_each_online_cpu(cpu)
4340                 queue_work_on(cpu, system_highpri_wq,
4341                               per_cpu_ptr(&flush_works, cpu));
4342
4343         for_each_online_cpu(cpu)
4344                 flush_work(per_cpu_ptr(&flush_works, cpu));
4345
4346         put_online_cpus();
4347 }
4348
4349 static int napi_gro_complete(struct sk_buff *skb)
4350 {
4351         struct packet_offload *ptype;
4352         __be16 type = skb->protocol;
4353         struct list_head *head = &offload_base;
4354         int err = -ENOENT;
4355
4356         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
4358         if (NAPI_GRO_CB(skb)->count == 1) {
4359                 skb_shinfo(skb)->gso_size = 0;
4360                 goto out;
4361         }
4362
4363         rcu_read_lock();
4364         list_for_each_entry_rcu(ptype, head, list) {
4365                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4366                         continue;
4367
4368                 err = ptype->callbacks.gro_complete(skb, 0);
4369                 break;
4370         }
4371         rcu_read_unlock();
4372
4373         if (err) {
4374                 WARN_ON(&ptype->list == head);
4375                 kfree_skb(skb);
4376                 return NET_RX_SUCCESS;
4377         }
4378
4379 out:
4380         return netif_receive_skb_internal(skb);
4381 }
4382
4383 /* napi->gro_list contains packets ordered by age.
4384  * youngest packets at the head of it.
4385  * Complete skbs in reverse order to reduce latencies.
4386  */
4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4388 {
4389         struct sk_buff *skb, *prev = NULL;
4390
4391         /* scan list and build reverse chain */
4392         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393                 skb->prev = prev;
4394                 prev = skb;
4395         }
4396
4397         for (skb = prev; skb; skb = prev) {
4398                 skb->next = NULL;
4399
4400                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401                         return;
4402
4403                 prev = skb->prev;
4404                 napi_gro_complete(skb);
4405                 napi->gro_count--;
4406         }
4407
4408         napi->gro_list = NULL;
4409 }
4410 EXPORT_SYMBOL(napi_gro_flush);
4411
4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413 {
4414         struct sk_buff *p;
4415         unsigned int maclen = skb->dev->hard_header_len;
4416         u32 hash = skb_get_hash_raw(skb);
4417
4418         for (p = napi->gro_list; p; p = p->next) {
4419                 unsigned long diffs;
4420
4421                 NAPI_GRO_CB(p)->flush = 0;
4422
4423                 if (hash != skb_get_hash_raw(p)) {
4424                         NAPI_GRO_CB(p)->same_flow = 0;
4425                         continue;
4426                 }
4427
4428                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4430                 diffs |= skb_metadata_dst_cmp(p, skb);
4431                 if (maclen == ETH_HLEN)
4432                         diffs |= compare_ether_header(skb_mac_header(p),
4433                                                       skb_mac_header(skb));
4434                 else if (!diffs)
4435                         diffs = memcmp(skb_mac_header(p),
4436                                        skb_mac_header(skb),
4437                                        maclen);
4438                 NAPI_GRO_CB(p)->same_flow = !diffs;
4439         }
4440 }
4441
4442 static void skb_gro_reset_offset(struct sk_buff *skb)
4443 {
4444         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445         const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447         NAPI_GRO_CB(skb)->data_offset = 0;
4448         NAPI_GRO_CB(skb)->frag0 = NULL;
4449         NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452             pinfo->nr_frags &&
4453             !PageHighMem(skb_frag_page(frag0))) {
4454                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4456                                                     skb_frag_size(frag0),
4457                                                     skb->end - skb->tail);
4458         }
4459 }
4460
4461 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4462 {
4463         struct skb_shared_info *pinfo = skb_shinfo(skb);
4464
4465         BUG_ON(skb->end - skb->tail < grow);
4466
4467         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4468
4469         skb->data_len -= grow;
4470         skb->tail += grow;
4471
4472         pinfo->frags[0].page_offset += grow;
4473         skb_frag_size_sub(&pinfo->frags[0], grow);
4474
4475         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4476                 skb_frag_unref(skb, 0);
4477                 memmove(pinfo->frags, pinfo->frags + 1,
4478                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4479         }
4480 }
4481
4482 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4483 {
4484         struct sk_buff **pp = NULL;
4485         struct packet_offload *ptype;
4486         __be16 type = skb->protocol;
4487         struct list_head *head = &offload_base;
4488         int same_flow;
4489         enum gro_result ret;
4490         int grow;
4491
4492         if (!(skb->dev->features & NETIF_F_GRO))
4493                 goto normal;
4494
4495         if (skb->csum_bad)
4496                 goto normal;
4497
4498         gro_list_prepare(napi, skb);
4499
4500         rcu_read_lock();
4501         list_for_each_entry_rcu(ptype, head, list) {
4502                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4503                         continue;
4504
4505                 skb_set_network_header(skb, skb_gro_offset(skb));
4506                 skb_reset_mac_len(skb);
4507                 NAPI_GRO_CB(skb)->same_flow = 0;
4508                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4509                 NAPI_GRO_CB(skb)->free = 0;
4510                 NAPI_GRO_CB(skb)->encap_mark = 0;
4511                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4512                 NAPI_GRO_CB(skb)->is_fou = 0;
4513                 NAPI_GRO_CB(skb)->is_atomic = 1;
4514                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4515
4516                 /* Setup for GRO checksum validation */
4517                 switch (skb->ip_summed) {
4518                 case CHECKSUM_COMPLETE:
4519                         NAPI_GRO_CB(skb)->csum = skb->csum;
4520                         NAPI_GRO_CB(skb)->csum_valid = 1;
4521                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4522                         break;
4523                 case CHECKSUM_UNNECESSARY:
4524                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4525                         NAPI_GRO_CB(skb)->csum_valid = 0;
4526                         break;
4527                 default:
4528                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4529                         NAPI_GRO_CB(skb)->csum_valid = 0;
4530                 }
4531
4532                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4533                 break;
4534         }
4535         rcu_read_unlock();
4536
4537         if (&ptype->list == head)
4538                 goto normal;
4539
4540         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4541                 ret = GRO_CONSUMED;
4542                 goto ok;
4543         }
4544
4545         same_flow = NAPI_GRO_CB(skb)->same_flow;
4546         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4547
4548         if (pp) {
4549                 struct sk_buff *nskb = *pp;
4550
4551                 *pp = nskb->next;
4552                 nskb->next = NULL;
4553                 napi_gro_complete(nskb);
4554                 napi->gro_count--;
4555         }
4556
4557         if (same_flow)
4558                 goto ok;
4559
4560         if (NAPI_GRO_CB(skb)->flush)
4561                 goto normal;
4562
4563         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4564                 struct sk_buff *nskb = napi->gro_list;
4565
4566                 /* locate the end of the list to select the 'oldest' flow */
4567                 while (nskb->next) {
4568                         pp = &nskb->next;
4569                         nskb = *pp;
4570                 }
4571                 *pp = NULL;
4572                 nskb->next = NULL;
4573                 napi_gro_complete(nskb);
4574         } else {
4575                 napi->gro_count++;
4576         }
4577         NAPI_GRO_CB(skb)->count = 1;
4578         NAPI_GRO_CB(skb)->age = jiffies;
4579         NAPI_GRO_CB(skb)->last = skb;
4580         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4581         skb->next = napi->gro_list;
4582         napi->gro_list = skb;
4583         ret = GRO_HELD;
4584
4585 pull:
4586         grow = skb_gro_offset(skb) - skb_headlen(skb);
4587         if (grow > 0)
4588                 gro_pull_from_frag0(skb, grow);
4589 ok:
4590         return ret;
4591
4592 normal:
4593         ret = GRO_NORMAL;
4594         goto pull;
4595 }
4596
4597 struct packet_offload *gro_find_receive_by_type(__be16 type)
4598 {
4599         struct list_head *offload_head = &offload_base;
4600         struct packet_offload *ptype;
4601
4602         list_for_each_entry_rcu(ptype, offload_head, list) {
4603                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4604                         continue;
4605                 return ptype;
4606         }
4607         return NULL;
4608 }
4609 EXPORT_SYMBOL(gro_find_receive_by_type);
4610
4611 struct packet_offload *gro_find_complete_by_type(__be16 type)
4612 {
4613         struct list_head *offload_head = &offload_base;
4614         struct packet_offload *ptype;
4615
4616         list_for_each_entry_rcu(ptype, offload_head, list) {
4617                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4618                         continue;
4619                 return ptype;
4620         }
4621         return NULL;
4622 }
4623 EXPORT_SYMBOL(gro_find_complete_by_type);
4624
4625 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4626 {
4627         switch (ret) {
4628         case GRO_NORMAL:
4629                 if (netif_receive_skb_internal(skb))
4630                         ret = GRO_DROP;
4631                 break;
4632
4633         case GRO_DROP:
4634                 kfree_skb(skb);
4635                 break;
4636
4637         case GRO_MERGED_FREE:
4638                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4639                         skb_dst_drop(skb);
4640                         secpath_reset(skb);
4641                         kmem_cache_free(skbuff_head_cache, skb);
4642                 } else {
4643                         __kfree_skb(skb);
4644                 }
4645                 break;
4646
4647         case GRO_HELD:
4648         case GRO_MERGED:
4649         case GRO_CONSUMED:
4650                 break;
4651         }
4652
4653         return ret;
4654 }
4655
4656 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4657 {
4658         skb_mark_napi_id(skb, napi);
4659         trace_napi_gro_receive_entry(skb);
4660
4661         skb_gro_reset_offset(skb);
4662
4663         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4664 }
4665 EXPORT_SYMBOL(napi_gro_receive);
4666
4667 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4668 {
4669         if (unlikely(skb->pfmemalloc)) {
4670                 consume_skb(skb);
4671                 return;
4672         }
4673         __skb_pull(skb, skb_headlen(skb));
4674         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4675         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4676         skb->vlan_tci = 0;
4677         skb->dev = napi->dev;
4678         skb->skb_iif = 0;
4679         skb->encapsulation = 0;
4680         skb_shinfo(skb)->gso_type = 0;
4681         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4682         secpath_reset(skb);
4683
4684         napi->skb = skb;
4685 }
4686
4687 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4688 {
4689         struct sk_buff *skb = napi->skb;
4690
4691         if (!skb) {
4692                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4693                 if (skb) {
4694                         napi->skb = skb;
4695                         skb_mark_napi_id(skb, napi);
4696                 }
4697         }
4698         return skb;
4699 }
4700 EXPORT_SYMBOL(napi_get_frags);
4701
4702 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4703                                       struct sk_buff *skb,
4704                                       gro_result_t ret)
4705 {
4706         switch (ret) {
4707         case GRO_NORMAL:
4708         case GRO_HELD:
4709                 __skb_push(skb, ETH_HLEN);
4710                 skb->protocol = eth_type_trans(skb, skb->dev);
4711                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4712                         ret = GRO_DROP;
4713                 break;
4714
4715         case GRO_DROP:
4716         case GRO_MERGED_FREE:
4717                 napi_reuse_skb(napi, skb);
4718                 break;
4719
4720         case GRO_MERGED:
4721         case GRO_CONSUMED:
4722                 break;
4723         }
4724
4725         return ret;
4726 }
4727
4728 /* Upper GRO stack assumes network header starts at gro_offset=0
4729  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4730  * We copy ethernet header into skb->data to have a common layout.
4731  */
4732 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4733 {
4734         struct sk_buff *skb = napi->skb;
4735         const struct ethhdr *eth;
4736         unsigned int hlen = sizeof(*eth);
4737
4738         napi->skb = NULL;
4739
4740         skb_reset_mac_header(skb);
4741         skb_gro_reset_offset(skb);
4742
4743         eth = skb_gro_header_fast(skb, 0);
4744         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4745                 eth = skb_gro_header_slow(skb, hlen, 0);
4746                 if (unlikely(!eth)) {
4747                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4748                                              __func__, napi->dev->name);
4749                         napi_reuse_skb(napi, skb);
4750                         return NULL;
4751                 }
4752         } else {
4753                 gro_pull_from_frag0(skb, hlen);
4754                 NAPI_GRO_CB(skb)->frag0 += hlen;
4755                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4756         }
4757         __skb_pull(skb, hlen);
4758
4759         /*
4760          * This works because the only protocols we care about don't require
4761          * special handling.
4762          * We'll fix it up properly in napi_frags_finish()
4763          */
4764         skb->protocol = eth->h_proto;
4765
4766         return skb;
4767 }
4768
4769 gro_result_t napi_gro_frags(struct napi_struct *napi)
4770 {
4771         struct sk_buff *skb = napi_frags_skb(napi);
4772
4773         if (!skb)
4774                 return GRO_DROP;
4775
4776         trace_napi_gro_frags_entry(skb);
4777
4778         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4779 }
4780 EXPORT_SYMBOL(napi_gro_frags);
4781
4782 /* Compute the checksum from gro_offset and return the folded value
4783  * after adding in any pseudo checksum.
4784  */
4785 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4786 {
4787         __wsum wsum;
4788         __sum16 sum;
4789
4790         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4791
4792         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4793         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4794         if (likely(!sum)) {
4795                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4796                     !skb->csum_complete_sw)
4797                         netdev_rx_csum_fault(skb->dev);
4798         }
4799
4800         NAPI_GRO_CB(skb)->csum = wsum;
4801         NAPI_GRO_CB(skb)->csum_valid = 1;
4802
4803         return sum;
4804 }
4805 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4806
4807 /*
4808  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4809  * Note: called with local irq disabled, but exits with local irq enabled.
4810  */
4811 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814         struct softnet_data *remsd = sd->rps_ipi_list;
4815
4816         if (remsd) {
4817                 sd->rps_ipi_list = NULL;
4818
4819                 local_irq_enable();
4820
4821                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4822                 while (remsd) {
4823                         struct softnet_data *next = remsd->rps_ipi_next;
4824
4825                         if (cpu_online(remsd->cpu))
4826                                 smp_call_function_single_async(remsd->cpu,
4827                                                            &remsd->csd);
4828                         remsd = next;
4829                 }
4830         } else
4831 #endif
4832                 local_irq_enable();
4833 }
4834
4835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4836 {
4837 #ifdef CONFIG_RPS
4838         return sd->rps_ipi_list != NULL;
4839 #else
4840         return false;
4841 #endif
4842 }
4843
4844 static int process_backlog(struct napi_struct *napi, int quota)
4845 {
4846         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4847         bool again = true;
4848         int work = 0;
4849
4850         /* Check if we have pending ipi, its better to send them now,
4851          * not waiting net_rx_action() end.
4852          */
4853         if (sd_has_rps_ipi_waiting(sd)) {
4854                 local_irq_disable();
4855                 net_rps_action_and_irq_enable(sd);
4856         }
4857
4858         napi->weight = dev_rx_weight;
4859         while (again) {
4860                 struct sk_buff *skb;
4861
4862                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4863                         rcu_read_lock();
4864                         __netif_receive_skb(skb);
4865                         rcu_read_unlock();
4866                         input_queue_head_incr(sd);
4867                         if (++work >= quota)
4868                                 return work;
4869
4870                 }
4871
4872                 local_irq_disable();
4873                 rps_lock(sd);
4874                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4875                         /*
4876                          * Inline a custom version of __napi_complete().
4877                          * only current cpu owns and manipulates this napi,
4878                          * and NAPI_STATE_SCHED is the only possible flag set
4879                          * on backlog.
4880                          * We can use a plain write instead of clear_bit(),
4881                          * and we dont need an smp_mb() memory barrier.
4882                          */
4883                         napi->state = 0;
4884                         again = false;
4885                 } else {
4886                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4887                                                    &sd->process_queue);
4888                 }
4889                 rps_unlock(sd);
4890                 local_irq_enable();
4891         }
4892
4893         return work;
4894 }
4895
4896 /**
4897  * __napi_schedule - schedule for receive
4898  * @n: entry to schedule
4899  *
4900  * The entry's receive function will be scheduled to run.
4901  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4902  */
4903 void __napi_schedule(struct napi_struct *n)
4904 {
4905         unsigned long flags;
4906
4907         local_irq_save(flags);
4908         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4909         local_irq_restore(flags);
4910 }
4911 EXPORT_SYMBOL(__napi_schedule);
4912
4913 /**
4914  *      napi_schedule_prep - check if napi can be scheduled
4915  *      @n: napi context
4916  *
4917  * Test if NAPI routine is already running, and if not mark
4918  * it as running.  This is used as a condition variable
4919  * insure only one NAPI poll instance runs.  We also make
4920  * sure there is no pending NAPI disable.
4921  */
4922 bool napi_schedule_prep(struct napi_struct *n)
4923 {
4924         unsigned long val, new;
4925
4926         do {
4927                 val = READ_ONCE(n->state);
4928                 if (unlikely(val & NAPIF_STATE_DISABLE))
4929                         return false;
4930                 new = val | NAPIF_STATE_SCHED;
4931
4932                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4933                  * This was suggested by Alexander Duyck, as compiler
4934                  * emits better code than :
4935                  * if (val & NAPIF_STATE_SCHED)
4936                  *     new |= NAPIF_STATE_MISSED;
4937                  */
4938                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4939                                                    NAPIF_STATE_MISSED;
4940         } while (cmpxchg(&n->state, val, new) != val);
4941
4942         return !(val & NAPIF_STATE_SCHED);
4943 }
4944 EXPORT_SYMBOL(napi_schedule_prep);
4945
4946 /**
4947  * __napi_schedule_irqoff - schedule for receive
4948  * @n: entry to schedule
4949  *
4950  * Variant of __napi_schedule() assuming hard irqs are masked
4951  */
4952 void __napi_schedule_irqoff(struct napi_struct *n)
4953 {
4954         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4955 }
4956 EXPORT_SYMBOL(__napi_schedule_irqoff);
4957
4958 bool napi_complete_done(struct napi_struct *n, int work_done)
4959 {
4960         unsigned long flags, val, new;
4961
4962         /*
4963          * 1) Don't let napi dequeue from the cpu poll list
4964          *    just in case its running on a different cpu.
4965          * 2) If we are busy polling, do nothing here, we have
4966          *    the guarantee we will be called later.
4967          */
4968         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4969                                  NAPIF_STATE_IN_BUSY_POLL)))
4970                 return false;
4971
4972         if (n->gro_list) {
4973                 unsigned long timeout = 0;
4974
4975                 if (work_done)
4976                         timeout = n->dev->gro_flush_timeout;
4977
4978                 if (timeout)
4979                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4980                                       HRTIMER_MODE_REL_PINNED);
4981                 else
4982                         napi_gro_flush(n, false);
4983         }
4984         if (unlikely(!list_empty(&n->poll_list))) {
4985                 /* If n->poll_list is not empty, we need to mask irqs */
4986                 local_irq_save(flags);
4987                 list_del_init(&n->poll_list);
4988                 local_irq_restore(flags);
4989         }
4990
4991         do {
4992                 val = READ_ONCE(n->state);
4993
4994                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4995
4996                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4997
4998                 /* If STATE_MISSED was set, leave STATE_SCHED set,
4999                  * because we will call napi->poll() one more time.
5000                  * This C code was suggested by Alexander Duyck to help gcc.
5001                  */
5002                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5003                                                     NAPIF_STATE_SCHED;
5004         } while (cmpxchg(&n->state, val, new) != val);
5005
5006         if (unlikely(val & NAPIF_STATE_MISSED)) {
5007                 __napi_schedule(n);
5008                 return false;
5009         }
5010
5011         return true;
5012 }
5013 EXPORT_SYMBOL(napi_complete_done);
5014
5015 /* must be called under rcu_read_lock(), as we dont take a reference */
5016 static struct napi_struct *napi_by_id(unsigned int napi_id)
5017 {
5018         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5019         struct napi_struct *napi;
5020
5021         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5022                 if (napi->napi_id == napi_id)
5023                         return napi;
5024
5025         return NULL;
5026 }
5027
5028 #if defined(CONFIG_NET_RX_BUSY_POLL)
5029
5030 #define BUSY_POLL_BUDGET 8
5031
5032 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5033 {
5034         int rc;
5035
5036         /* Busy polling means there is a high chance device driver hard irq
5037          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5038          * set in napi_schedule_prep().
5039          * Since we are about to call napi->poll() once more, we can safely
5040          * clear NAPI_STATE_MISSED.
5041          *
5042          * Note: x86 could use a single "lock and ..." instruction
5043          * to perform these two clear_bit()
5044          */
5045         clear_bit(NAPI_STATE_MISSED, &napi->state);
5046         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5047
5048         local_bh_disable();
5049
5050         /* All we really want here is to re-enable device interrupts.
5051          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5052          */
5053         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5054         netpoll_poll_unlock(have_poll_lock);
5055         if (rc == BUSY_POLL_BUDGET)
5056                 __napi_schedule(napi);
5057         local_bh_enable();
5058         if (local_softirq_pending())
5059                 do_softirq();
5060 }
5061
5062 bool sk_busy_loop(struct sock *sk, int nonblock)
5063 {
5064         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5065         int (*napi_poll)(struct napi_struct *napi, int budget);
5066         void *have_poll_lock = NULL;
5067         struct napi_struct *napi;
5068         int rc;
5069
5070 restart:
5071         rc = false;
5072         napi_poll = NULL;
5073
5074         rcu_read_lock();
5075
5076         napi = napi_by_id(sk->sk_napi_id);
5077         if (!napi)
5078                 goto out;
5079
5080         preempt_disable();
5081         for (;;) {
5082                 rc = 0;
5083                 local_bh_disable();
5084                 if (!napi_poll) {
5085                         unsigned long val = READ_ONCE(napi->state);
5086
5087                         /* If multiple threads are competing for this napi,
5088                          * we avoid dirtying napi->state as much as we can.
5089                          */
5090                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5091                                    NAPIF_STATE_IN_BUSY_POLL))
5092                                 goto count;
5093                         if (cmpxchg(&napi->state, val,
5094                                     val | NAPIF_STATE_IN_BUSY_POLL |
5095                                           NAPIF_STATE_SCHED) != val)
5096                                 goto count;
5097                         have_poll_lock = netpoll_poll_lock(napi);
5098                         napi_poll = napi->poll;
5099                 }
5100                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5101                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5102 count:
5103                 if (rc > 0)
5104                         __NET_ADD_STATS(sock_net(sk),
5105                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5106                 local_bh_enable();
5107
5108                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5109                     busy_loop_timeout(end_time))
5110                         break;
5111
5112                 if (unlikely(need_resched())) {
5113                         if (napi_poll)
5114                                 busy_poll_stop(napi, have_poll_lock);
5115                         preempt_enable();
5116                         rcu_read_unlock();
5117                         cond_resched();
5118                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5119                         if (rc || busy_loop_timeout(end_time))
5120                                 return rc;
5121                         goto restart;
5122                 }
5123                 cpu_relax();
5124         }
5125         if (napi_poll)
5126                 busy_poll_stop(napi, have_poll_lock);
5127         preempt_enable();
5128         rc = !skb_queue_empty(&sk->sk_receive_queue);
5129 out:
5130         rcu_read_unlock();
5131         return rc;
5132 }
5133 EXPORT_SYMBOL(sk_busy_loop);
5134
5135 #endif /* CONFIG_NET_RX_BUSY_POLL */
5136
5137 static void napi_hash_add(struct napi_struct *napi)
5138 {
5139         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5140             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5141                 return;
5142
5143         spin_lock(&napi_hash_lock);
5144
5145         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5146         do {
5147                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5148                         napi_gen_id = NR_CPUS + 1;
5149         } while (napi_by_id(napi_gen_id));
5150         napi->napi_id = napi_gen_id;
5151
5152         hlist_add_head_rcu(&napi->napi_hash_node,
5153                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5154
5155         spin_unlock(&napi_hash_lock);
5156 }
5157
5158 /* Warning : caller is responsible to make sure rcu grace period
5159  * is respected before freeing memory containing @napi
5160  */
5161 bool napi_hash_del(struct napi_struct *napi)
5162 {
5163         bool rcu_sync_needed = false;
5164
5165         spin_lock(&napi_hash_lock);
5166
5167         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5168                 rcu_sync_needed = true;
5169                 hlist_del_rcu(&napi->napi_hash_node);
5170         }
5171         spin_unlock(&napi_hash_lock);
5172         return rcu_sync_needed;
5173 }
5174 EXPORT_SYMBOL_GPL(napi_hash_del);
5175
5176 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5177 {
5178         struct napi_struct *napi;
5179
5180         napi = container_of(timer, struct napi_struct, timer);
5181
5182         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5183          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5184          */
5185         if (napi->gro_list && !napi_disable_pending(napi) &&
5186             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5187                 __napi_schedule_irqoff(napi);
5188
5189         return HRTIMER_NORESTART;
5190 }
5191
5192 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5193                     int (*poll)(struct napi_struct *, int), int weight)
5194 {
5195         INIT_LIST_HEAD(&napi->poll_list);
5196         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5197         napi->timer.function = napi_watchdog;
5198         napi->gro_count = 0;
5199         napi->gro_list = NULL;
5200         napi->skb = NULL;
5201         napi->poll = poll;
5202         if (weight > NAPI_POLL_WEIGHT)
5203                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5204                             weight, dev->name);
5205         napi->weight = weight;
5206         list_add(&napi->dev_list, &dev->napi_list);
5207         napi->dev = dev;
5208 #ifdef CONFIG_NETPOLL
5209         napi->poll_owner = -1;
5210 #endif
5211         set_bit(NAPI_STATE_SCHED, &napi->state);
5212         napi_hash_add(napi);
5213 }
5214 EXPORT_SYMBOL(netif_napi_add);
5215
5216 void napi_disable(struct napi_struct *n)
5217 {
5218         might_sleep();
5219         set_bit(NAPI_STATE_DISABLE, &n->state);
5220
5221         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5222                 msleep(1);
5223         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5224                 msleep(1);
5225
5226         hrtimer_cancel(&n->timer);
5227
5228         clear_bit(NAPI_STATE_DISABLE, &n->state);
5229 }
5230 EXPORT_SYMBOL(napi_disable);
5231
5232 /* Must be called in process context */
5233 void netif_napi_del(struct napi_struct *napi)
5234 {
5235         might_sleep();
5236         if (napi_hash_del(napi))
5237                 synchronize_net();
5238         list_del_init(&napi->dev_list);
5239         napi_free_frags(napi);
5240
5241         kfree_skb_list(napi->gro_list);
5242         napi->gro_list = NULL;
5243         napi->gro_count = 0;
5244 }
5245 EXPORT_SYMBOL(netif_napi_del);
5246
5247 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5248 {
5249         void *have;
5250         int work, weight;
5251
5252         list_del_init(&n->poll_list);
5253
5254         have = netpoll_poll_lock(n);
5255
5256         weight = n->weight;
5257
5258         /* This NAPI_STATE_SCHED test is for avoiding a race
5259          * with netpoll's poll_napi().  Only the entity which
5260          * obtains the lock and sees NAPI_STATE_SCHED set will
5261          * actually make the ->poll() call.  Therefore we avoid
5262          * accidentally calling ->poll() when NAPI is not scheduled.
5263          */
5264         work = 0;
5265         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5266                 work = n->poll(n, weight);
5267                 trace_napi_poll(n, work, weight);
5268         }
5269
5270         WARN_ON_ONCE(work > weight);
5271
5272         if (likely(work < weight))
5273                 goto out_unlock;
5274
5275         /* Drivers must not modify the NAPI state if they
5276          * consume the entire weight.  In such cases this code
5277          * still "owns" the NAPI instance and therefore can
5278          * move the instance around on the list at-will.
5279          */
5280         if (unlikely(napi_disable_pending(n))) {
5281                 napi_complete(n);
5282                 goto out_unlock;
5283         }
5284
5285         if (n->gro_list) {
5286                 /* flush too old packets
5287                  * If HZ < 1000, flush all packets.
5288                  */
5289                 napi_gro_flush(n, HZ >= 1000);
5290         }
5291
5292         /* Some drivers may have called napi_schedule
5293          * prior to exhausting their budget.
5294          */
5295         if (unlikely(!list_empty(&n->poll_list))) {
5296                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5297                              n->dev ? n->dev->name : "backlog");
5298                 goto out_unlock;
5299         }
5300
5301         list_add_tail(&n->poll_list, repoll);
5302
5303 out_unlock:
5304         netpoll_poll_unlock(have);
5305
5306         return work;
5307 }
5308
5309 static __latent_entropy void net_rx_action(struct softirq_action *h)
5310 {
5311         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5312         unsigned long time_limit = jiffies + 2;
5313         int budget = netdev_budget;
5314         LIST_HEAD(list);
5315         LIST_HEAD(repoll);
5316
5317         local_irq_disable();
5318         list_splice_init(&sd->poll_list, &list);
5319         local_irq_enable();
5320
5321         for (;;) {
5322                 struct napi_struct *n;
5323
5324                 if (list_empty(&list)) {
5325                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5326                                 goto out;
5327                         break;
5328                 }
5329
5330                 n = list_first_entry(&list, struct napi_struct, poll_list);
5331                 budget -= napi_poll(n, &repoll);
5332
5333                 /* If softirq window is exhausted then punt.
5334                  * Allow this to run for 2 jiffies since which will allow
5335                  * an average latency of 1.5/HZ.
5336                  */
5337                 if (unlikely(budget <= 0 ||
5338                              time_after_eq(jiffies, time_limit))) {
5339                         sd->time_squeeze++;
5340                         break;
5341                 }
5342         }
5343
5344         local_irq_disable();
5345
5346         list_splice_tail_init(&sd->poll_list, &list);
5347         list_splice_tail(&repoll, &list);
5348         list_splice(&list, &sd->poll_list);
5349         if (!list_empty(&sd->poll_list))
5350                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5351
5352         net_rps_action_and_irq_enable(sd);
5353 out:
5354         __kfree_skb_flush();
5355 }
5356
5357 struct netdev_adjacent {
5358         struct net_device *dev;
5359
5360         /* upper master flag, there can only be one master device per list */
5361         bool master;
5362
5363         /* counter for the number of times this device was added to us */
5364         u16 ref_nr;
5365
5366         /* private field for the users */
5367         void *private;
5368
5369         struct list_head list;
5370         struct rcu_head rcu;
5371 };
5372
5373 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5374                                                  struct list_head *adj_list)
5375 {
5376         struct netdev_adjacent *adj;
5377
5378         list_for_each_entry(adj, adj_list, list) {
5379                 if (adj->dev == adj_dev)
5380                         return adj;
5381         }
5382         return NULL;
5383 }
5384
5385 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5386 {
5387         struct net_device *dev = data;
5388
5389         return upper_dev == dev;
5390 }
5391
5392 /**
5393  * netdev_has_upper_dev - Check if device is linked to an upper device
5394  * @dev: device
5395  * @upper_dev: upper device to check
5396  *
5397  * Find out if a device is linked to specified upper device and return true
5398  * in case it is. Note that this checks only immediate upper device,
5399  * not through a complete stack of devices. The caller must hold the RTNL lock.
5400  */
5401 bool netdev_has_upper_dev(struct net_device *dev,
5402                           struct net_device *upper_dev)
5403 {
5404         ASSERT_RTNL();
5405
5406         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5407                                              upper_dev);
5408 }
5409 EXPORT_SYMBOL(netdev_has_upper_dev);
5410
5411 /**
5412  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5413  * @dev: device
5414  * @upper_dev: upper device to check
5415  *
5416  * Find out if a device is linked to specified upper device and return true
5417  * in case it is. Note that this checks the entire upper device chain.
5418  * The caller must hold rcu lock.
5419  */
5420
5421 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5422                                   struct net_device *upper_dev)
5423 {
5424         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5425                                                upper_dev);
5426 }
5427 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5428
5429 /**
5430  * netdev_has_any_upper_dev - Check if device is linked to some device
5431  * @dev: device
5432  *
5433  * Find out if a device is linked to an upper device and return true in case
5434  * it is. The caller must hold the RTNL lock.
5435  */
5436 static bool netdev_has_any_upper_dev(struct net_device *dev)
5437 {
5438         ASSERT_RTNL();
5439
5440         return !list_empty(&dev->adj_list.upper);
5441 }
5442
5443 /**
5444  * netdev_master_upper_dev_get - Get master upper device
5445  * @dev: device
5446  *
5447  * Find a master upper device and return pointer to it or NULL in case
5448  * it's not there. The caller must hold the RTNL lock.
5449  */
5450 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5451 {
5452         struct netdev_adjacent *upper;
5453
5454         ASSERT_RTNL();
5455
5456         if (list_empty(&dev->adj_list.upper))
5457                 return NULL;
5458
5459         upper = list_first_entry(&dev->adj_list.upper,
5460                                  struct netdev_adjacent, list);
5461         if (likely(upper->master))
5462                 return upper->dev;
5463         return NULL;
5464 }
5465 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5466
5467 /**
5468  * netdev_has_any_lower_dev - Check if device is linked to some device
5469  * @dev: device
5470  *
5471  * Find out if a device is linked to a lower device and return true in case
5472  * it is. The caller must hold the RTNL lock.
5473  */
5474 static bool netdev_has_any_lower_dev(struct net_device *dev)
5475 {
5476         ASSERT_RTNL();
5477
5478         return !list_empty(&dev->adj_list.lower);
5479 }
5480
5481 void *netdev_adjacent_get_private(struct list_head *adj_list)
5482 {
5483         struct netdev_adjacent *adj;
5484
5485         adj = list_entry(adj_list, struct netdev_adjacent, list);
5486
5487         return adj->private;
5488 }
5489 EXPORT_SYMBOL(netdev_adjacent_get_private);
5490
5491 /**
5492  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5493  * @dev: device
5494  * @iter: list_head ** of the current position
5495  *
5496  * Gets the next device from the dev's upper list, starting from iter
5497  * position. The caller must hold RCU read lock.
5498  */
5499 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5500                                                  struct list_head **iter)
5501 {
5502         struct netdev_adjacent *upper;
5503
5504         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5505
5506         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5507
5508         if (&upper->list == &dev->adj_list.upper)
5509                 return NULL;
5510
5511         *iter = &upper->list;
5512
5513         return upper->dev;
5514 }
5515 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5516
5517 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5518                                                     struct list_head **iter)
5519 {
5520         struct netdev_adjacent *upper;
5521
5522         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5523
5524         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5525
5526         if (&upper->list == &dev->adj_list.upper)
5527                 return NULL;
5528
5529         *iter = &upper->list;
5530
5531         return upper->dev;
5532 }
5533
5534 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5535                                   int (*fn)(struct net_device *dev,
5536                                             void *data),
5537                                   void *data)
5538 {
5539         struct net_device *udev;
5540         struct list_head *iter;
5541         int ret;
5542
5543         for (iter = &dev->adj_list.upper,
5544              udev = netdev_next_upper_dev_rcu(dev, &iter);
5545              udev;
5546              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5547                 /* first is the upper device itself */
5548                 ret = fn(udev, data);
5549                 if (ret)
5550                         return ret;
5551
5552                 /* then look at all of its upper devices */
5553                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5554                 if (ret)
5555                         return ret;
5556         }
5557
5558         return 0;
5559 }
5560 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5561
5562 /**
5563  * netdev_lower_get_next_private - Get the next ->private from the
5564  *                                 lower neighbour list
5565  * @dev: device
5566  * @iter: list_head ** of the current position
5567  *
5568  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5569  * list, starting from iter position. The caller must hold either hold the
5570  * RTNL lock or its own locking that guarantees that the neighbour lower
5571  * list will remain unchanged.
5572  */
5573 void *netdev_lower_get_next_private(struct net_device *dev,
5574                                     struct list_head **iter)
5575 {
5576         struct netdev_adjacent *lower;
5577
5578         lower = list_entry(*iter, struct netdev_adjacent, list);
5579
5580         if (&lower->list == &dev->adj_list.lower)
5581                 return NULL;
5582
5583         *iter = lower->list.next;
5584
5585         return lower->private;
5586 }
5587 EXPORT_SYMBOL(netdev_lower_get_next_private);
5588
5589 /**
5590  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5591  *                                     lower neighbour list, RCU
5592  *                                     variant
5593  * @dev: device
5594  * @iter: list_head ** of the current position
5595  *
5596  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5597  * list, starting from iter position. The caller must hold RCU read lock.
5598  */
5599 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5600                                         struct list_head **iter)
5601 {
5602         struct netdev_adjacent *lower;
5603
5604         WARN_ON_ONCE(!rcu_read_lock_held());
5605
5606         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5607
5608         if (&lower->list == &dev->adj_list.lower)
5609                 return NULL;
5610
5611         *iter = &lower->list;
5612
5613         return lower->private;
5614 }
5615 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5616
5617 /**
5618  * netdev_lower_get_next - Get the next device from the lower neighbour
5619  *                         list
5620  * @dev: device
5621  * @iter: list_head ** of the current position
5622  *
5623  * Gets the next netdev_adjacent from the dev's lower neighbour
5624  * list, starting from iter position. The caller must hold RTNL lock or
5625  * its own locking that guarantees that the neighbour lower
5626  * list will remain unchanged.
5627  */
5628 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5629 {
5630         struct netdev_adjacent *lower;
5631
5632         lower = list_entry(*iter, struct netdev_adjacent, list);
5633
5634         if (&lower->list == &dev->adj_list.lower)
5635                 return NULL;
5636
5637         *iter = lower->list.next;
5638
5639         return lower->dev;
5640 }
5641 EXPORT_SYMBOL(netdev_lower_get_next);
5642
5643 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5644                                                 struct list_head **iter)
5645 {
5646         struct netdev_adjacent *lower;
5647
5648         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5649
5650         if (&lower->list == &dev->adj_list.lower)
5651                 return NULL;
5652
5653         *iter = &lower->list;
5654
5655         return lower->dev;
5656 }
5657
5658 int netdev_walk_all_lower_dev(struct net_device *dev,
5659                               int (*fn)(struct net_device *dev,
5660                                         void *data),
5661                               void *data)
5662 {
5663         struct net_device *ldev;
5664         struct list_head *iter;
5665         int ret;
5666
5667         for (iter = &dev->adj_list.lower,
5668              ldev = netdev_next_lower_dev(dev, &iter);
5669              ldev;
5670              ldev = netdev_next_lower_dev(dev, &iter)) {
5671                 /* first is the lower device itself */
5672                 ret = fn(ldev, data);
5673                 if (ret)
5674                         return ret;
5675
5676                 /* then look at all of its lower devices */
5677                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5678                 if (ret)
5679                         return ret;
5680         }
5681
5682         return 0;
5683 }
5684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5685
5686 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5687                                                     struct list_head **iter)
5688 {
5689         struct netdev_adjacent *lower;
5690
5691         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5692         if (&lower->list == &dev->adj_list.lower)
5693                 return NULL;
5694
5695         *iter = &lower->list;
5696
5697         return lower->dev;
5698 }
5699
5700 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5701                                   int (*fn)(struct net_device *dev,
5702                                             void *data),
5703                                   void *data)
5704 {
5705         struct net_device *ldev;
5706         struct list_head *iter;
5707         int ret;
5708
5709         for (iter = &dev->adj_list.lower,
5710              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5711              ldev;
5712              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5713                 /* first is the lower device itself */
5714                 ret = fn(ldev, data);
5715                 if (ret)
5716                         return ret;
5717
5718                 /* then look at all of its lower devices */
5719                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5720                 if (ret)
5721                         return ret;
5722         }
5723
5724         return 0;
5725 }
5726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5727
5728 /**
5729  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5730  *                                     lower neighbour list, RCU
5731  *                                     variant
5732  * @dev: device
5733  *
5734  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5735  * list. The caller must hold RCU read lock.
5736  */
5737 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5738 {
5739         struct netdev_adjacent *lower;
5740
5741         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5742                         struct netdev_adjacent, list);
5743         if (lower)
5744                 return lower->private;
5745         return NULL;
5746 }
5747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5748
5749 /**
5750  * netdev_master_upper_dev_get_rcu - Get master upper device
5751  * @dev: device
5752  *
5753  * Find a master upper device and return pointer to it or NULL in case
5754  * it's not there. The caller must hold the RCU read lock.
5755  */
5756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5757 {
5758         struct netdev_adjacent *upper;
5759
5760         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5761                                        struct netdev_adjacent, list);
5762         if (upper && likely(upper->master))
5763                 return upper->dev;
5764         return NULL;
5765 }
5766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5767
5768 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5769                               struct net_device *adj_dev,
5770                               struct list_head *dev_list)
5771 {
5772         char linkname[IFNAMSIZ+7];
5773
5774         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5775                 "upper_%s" : "lower_%s", adj_dev->name);
5776         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5777                                  linkname);
5778 }
5779 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5780                                char *name,
5781                                struct list_head *dev_list)
5782 {
5783         char linkname[IFNAMSIZ+7];
5784
5785         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5786                 "upper_%s" : "lower_%s", name);
5787         sysfs_remove_link(&(dev->dev.kobj), linkname);
5788 }
5789
5790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5791                                                  struct net_device *adj_dev,
5792                                                  struct list_head *dev_list)
5793 {
5794         return (dev_list == &dev->adj_list.upper ||
5795                 dev_list == &dev->adj_list.lower) &&
5796                 net_eq(dev_net(dev), dev_net(adj_dev));
5797 }
5798
5799 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5800                                         struct net_device *adj_dev,
5801                                         struct list_head *dev_list,
5802                                         void *private, bool master)
5803 {
5804         struct netdev_adjacent *adj;
5805         int ret;
5806
5807         adj = __netdev_find_adj(adj_dev, dev_list);
5808
5809         if (adj) {
5810                 adj->ref_nr += 1;
5811                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5812                          dev->name, adj_dev->name, adj->ref_nr);
5813
5814                 return 0;
5815         }
5816
5817         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5818         if (!adj)
5819                 return -ENOMEM;
5820
5821         adj->dev = adj_dev;
5822         adj->master = master;
5823         adj->ref_nr = 1;
5824         adj->private = private;
5825         dev_hold(adj_dev);
5826
5827         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5828                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5829
5830         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5831                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5832                 if (ret)
5833                         goto free_adj;
5834         }
5835
5836         /* Ensure that master link is always the first item in list. */
5837         if (master) {
5838                 ret = sysfs_create_link(&(dev->dev.kobj),
5839                                         &(adj_dev->dev.kobj), "master");
5840                 if (ret)
5841                         goto remove_symlinks;
5842
5843                 list_add_rcu(&adj->list, dev_list);
5844         } else {
5845                 list_add_tail_rcu(&adj->list, dev_list);
5846         }
5847
5848         return 0;
5849
5850 remove_symlinks:
5851         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5852                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5853 free_adj:
5854         kfree(adj);
5855         dev_put(adj_dev);
5856
5857         return ret;
5858 }
5859
5860 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5861                                          struct net_device *adj_dev,
5862                                          u16 ref_nr,
5863                                          struct list_head *dev_list)
5864 {
5865         struct netdev_adjacent *adj;
5866
5867         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5868                  dev->name, adj_dev->name, ref_nr);
5869
5870         adj = __netdev_find_adj(adj_dev, dev_list);
5871
5872         if (!adj) {
5873                 pr_err("Adjacency does not exist for device %s from %s\n",
5874                        dev->name, adj_dev->name);
5875                 WARN_ON(1);
5876                 return;
5877         }
5878
5879         if (adj->ref_nr > ref_nr) {
5880                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5881                          dev->name, adj_dev->name, ref_nr,
5882                          adj->ref_nr - ref_nr);
5883                 adj->ref_nr -= ref_nr;
5884                 return;
5885         }
5886
5887         if (adj->master)
5888                 sysfs_remove_link(&(dev->dev.kobj), "master");
5889
5890         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5891                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5892
5893         list_del_rcu(&adj->list);
5894         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5895                  adj_dev->name, dev->name, adj_dev->name);
5896         dev_put(adj_dev);
5897         kfree_rcu(adj, rcu);
5898 }
5899
5900 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5901                                             struct net_device *upper_dev,
5902                                             struct list_head *up_list,
5903                                             struct list_head *down_list,
5904                                             void *private, bool master)
5905 {
5906         int ret;
5907
5908         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5909                                            private, master);
5910         if (ret)
5911                 return ret;
5912
5913         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5914                                            private, false);
5915         if (ret) {
5916                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5917                 return ret;
5918         }
5919
5920         return 0;
5921 }
5922
5923 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5924                                                struct net_device *upper_dev,
5925                                                u16 ref_nr,
5926                                                struct list_head *up_list,
5927                                                struct list_head *down_list)
5928 {
5929         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5930         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5931 }
5932
5933 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5934                                                 struct net_device *upper_dev,
5935                                                 void *private, bool master)
5936 {
5937         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5938                                                 &dev->adj_list.upper,
5939                                                 &upper_dev->adj_list.lower,
5940                                                 private, master);
5941 }
5942
5943 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5944                                                    struct net_device *upper_dev)
5945 {
5946         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5947                                            &dev->adj_list.upper,
5948                                            &upper_dev->adj_list.lower);
5949 }
5950
5951 static int __netdev_upper_dev_link(struct net_device *dev,
5952                                    struct net_device *upper_dev, bool master,
5953                                    void *upper_priv, void *upper_info)
5954 {
5955         struct netdev_notifier_changeupper_info changeupper_info;
5956         int ret = 0;
5957
5958         ASSERT_RTNL();
5959
5960         if (dev == upper_dev)
5961                 return -EBUSY;
5962
5963         /* To prevent loops, check if dev is not upper device to upper_dev. */
5964         if (netdev_has_upper_dev(upper_dev, dev))
5965                 return -EBUSY;
5966
5967         if (netdev_has_upper_dev(dev, upper_dev))
5968                 return -EEXIST;
5969
5970         if (master && netdev_master_upper_dev_get(dev))
5971                 return -EBUSY;
5972
5973         changeupper_info.upper_dev = upper_dev;
5974         changeupper_info.master = master;
5975         changeupper_info.linking = true;
5976         changeupper_info.upper_info = upper_info;
5977
5978         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5979                                             &changeupper_info.info);
5980         ret = notifier_to_errno(ret);
5981         if (ret)
5982                 return ret;
5983
5984         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5985                                                    master);
5986         if (ret)
5987                 return ret;
5988
5989         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5990                                             &changeupper_info.info);
5991         ret = notifier_to_errno(ret);
5992         if (ret)
5993                 goto rollback;
5994
5995         return 0;
5996
5997 rollback:
5998         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999
6000         return ret;
6001 }
6002
6003 /**
6004  * netdev_upper_dev_link - Add a link to the upper device
6005  * @dev: device
6006  * @upper_dev: new upper device
6007  *
6008  * Adds a link to device which is upper to this one. The caller must hold
6009  * the RTNL lock. On a failure a negative errno code is returned.
6010  * On success the reference counts are adjusted and the function
6011  * returns zero.
6012  */
6013 int netdev_upper_dev_link(struct net_device *dev,
6014                           struct net_device *upper_dev)
6015 {
6016         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6017 }
6018 EXPORT_SYMBOL(netdev_upper_dev_link);
6019
6020 /**
6021  * netdev_master_upper_dev_link - Add a master link to the upper device
6022  * @dev: device
6023  * @upper_dev: new upper device
6024  * @upper_priv: upper device private
6025  * @upper_info: upper info to be passed down via notifier
6026  *
6027  * Adds a link to device which is upper to this one. In this case, only
6028  * one master upper device can be linked, although other non-master devices
6029  * might be linked as well. The caller must hold the RTNL lock.
6030  * On a failure a negative errno code is returned. On success the reference
6031  * counts are adjusted and the function returns zero.
6032  */
6033 int netdev_master_upper_dev_link(struct net_device *dev,
6034                                  struct net_device *upper_dev,
6035                                  void *upper_priv, void *upper_info)
6036 {
6037         return __netdev_upper_dev_link(dev, upper_dev, true,
6038                                        upper_priv, upper_info);
6039 }
6040 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6041
6042 /**
6043  * netdev_upper_dev_unlink - Removes a link to upper device
6044  * @dev: device
6045  * @upper_dev: new upper device
6046  *
6047  * Removes a link to device which is upper to this one. The caller must hold
6048  * the RTNL lock.
6049  */
6050 void netdev_upper_dev_unlink(struct net_device *dev,
6051                              struct net_device *upper_dev)
6052 {
6053         struct netdev_notifier_changeupper_info changeupper_info;
6054
6055         ASSERT_RTNL();
6056
6057         changeupper_info.upper_dev = upper_dev;
6058         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6059         changeupper_info.linking = false;
6060
6061         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6062                                       &changeupper_info.info);
6063
6064         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6065
6066         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6067                                       &changeupper_info.info);
6068 }
6069 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6070
6071 /**
6072  * netdev_bonding_info_change - Dispatch event about slave change
6073  * @dev: device
6074  * @bonding_info: info to dispatch
6075  *
6076  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6077  * The caller must hold the RTNL lock.
6078  */
6079 void netdev_bonding_info_change(struct net_device *dev,
6080                                 struct netdev_bonding_info *bonding_info)
6081 {
6082         struct netdev_notifier_bonding_info     info;
6083
6084         memcpy(&info.bonding_info, bonding_info,
6085                sizeof(struct netdev_bonding_info));
6086         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6087                                       &info.info);
6088 }
6089 EXPORT_SYMBOL(netdev_bonding_info_change);
6090
6091 static void netdev_adjacent_add_links(struct net_device *dev)
6092 {
6093         struct netdev_adjacent *iter;
6094
6095         struct net *net = dev_net(dev);
6096
6097         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6098                 if (!net_eq(net, dev_net(iter->dev)))
6099                         continue;
6100                 netdev_adjacent_sysfs_add(iter->dev, dev,
6101                                           &iter->dev->adj_list.lower);
6102                 netdev_adjacent_sysfs_add(dev, iter->dev,
6103                                           &dev->adj_list.upper);
6104         }
6105
6106         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6107                 if (!net_eq(net, dev_net(iter->dev)))
6108                         continue;
6109                 netdev_adjacent_sysfs_add(iter->dev, dev,
6110                                           &iter->dev->adj_list.upper);
6111                 netdev_adjacent_sysfs_add(dev, iter->dev,
6112                                           &dev->adj_list.lower);
6113         }
6114 }
6115
6116 static void netdev_adjacent_del_links(struct net_device *dev)
6117 {
6118         struct netdev_adjacent *iter;
6119
6120         struct net *net = dev_net(dev);
6121
6122         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6123                 if (!net_eq(net, dev_net(iter->dev)))
6124                         continue;
6125                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6126                                           &iter->dev->adj_list.lower);
6127                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6128                                           &dev->adj_list.upper);
6129         }
6130
6131         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6132                 if (!net_eq(net, dev_net(iter->dev)))
6133                         continue;
6134                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6135                                           &iter->dev->adj_list.upper);
6136                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6137                                           &dev->adj_list.lower);
6138         }
6139 }
6140
6141 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6142 {
6143         struct netdev_adjacent *iter;
6144
6145         struct net *net = dev_net(dev);
6146
6147         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6148                 if (!net_eq(net, dev_net(iter->dev)))
6149                         continue;
6150                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6151                                           &iter->dev->adj_list.lower);
6152                 netdev_adjacent_sysfs_add(iter->dev, dev,
6153                                           &iter->dev->adj_list.lower);
6154         }
6155
6156         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6157                 if (!net_eq(net, dev_net(iter->dev)))
6158                         continue;
6159                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6160                                           &iter->dev->adj_list.upper);
6161                 netdev_adjacent_sysfs_add(iter->dev, dev,
6162                                           &iter->dev->adj_list.upper);
6163         }
6164 }
6165
6166 void *netdev_lower_dev_get_private(struct net_device *dev,
6167                                    struct net_device *lower_dev)
6168 {
6169         struct netdev_adjacent *lower;
6170
6171         if (!lower_dev)
6172                 return NULL;
6173         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6174         if (!lower)
6175                 return NULL;
6176
6177         return lower->private;
6178 }
6179 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6180
6181
6182 int dev_get_nest_level(struct net_device *dev)
6183 {
6184         struct net_device *lower = NULL;
6185         struct list_head *iter;
6186         int max_nest = -1;
6187         int nest;
6188
6189         ASSERT_RTNL();
6190
6191         netdev_for_each_lower_dev(dev, lower, iter) {
6192                 nest = dev_get_nest_level(lower);
6193                 if (max_nest < nest)
6194                         max_nest = nest;
6195         }
6196
6197         return max_nest + 1;
6198 }
6199 EXPORT_SYMBOL(dev_get_nest_level);
6200
6201 /**
6202  * netdev_lower_change - Dispatch event about lower device state change
6203  * @lower_dev: device
6204  * @lower_state_info: state to dispatch
6205  *
6206  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6207  * The caller must hold the RTNL lock.
6208  */
6209 void netdev_lower_state_changed(struct net_device *lower_dev,
6210                                 void *lower_state_info)
6211 {
6212         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6213
6214         ASSERT_RTNL();
6215         changelowerstate_info.lower_state_info = lower_state_info;
6216         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6217                                       &changelowerstate_info.info);
6218 }
6219 EXPORT_SYMBOL(netdev_lower_state_changed);
6220
6221 static void dev_change_rx_flags(struct net_device *dev, int flags)
6222 {
6223         const struct net_device_ops *ops = dev->netdev_ops;
6224
6225         if (ops->ndo_change_rx_flags)
6226                 ops->ndo_change_rx_flags(dev, flags);
6227 }
6228
6229 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6230 {
6231         unsigned int old_flags = dev->flags;
6232         kuid_t uid;
6233         kgid_t gid;
6234
6235         ASSERT_RTNL();
6236
6237         dev->flags |= IFF_PROMISC;
6238         dev->promiscuity += inc;
6239         if (dev->promiscuity == 0) {
6240                 /*
6241                  * Avoid overflow.
6242                  * If inc causes overflow, untouch promisc and return error.
6243                  */
6244                 if (inc < 0)
6245                         dev->flags &= ~IFF_PROMISC;
6246                 else {
6247                         dev->promiscuity -= inc;
6248                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6249                                 dev->name);
6250                         return -EOVERFLOW;
6251                 }
6252         }
6253         if (dev->flags != old_flags) {
6254                 pr_info("device %s %s promiscuous mode\n",
6255                         dev->name,
6256                         dev->flags & IFF_PROMISC ? "entered" : "left");
6257                 if (audit_enabled) {
6258                         current_uid_gid(&uid, &gid);
6259                         audit_log(current->audit_context, GFP_ATOMIC,
6260                                 AUDIT_ANOM_PROMISCUOUS,
6261                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6262                                 dev->name, (dev->flags & IFF_PROMISC),
6263                                 (old_flags & IFF_PROMISC),
6264                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6265                                 from_kuid(&init_user_ns, uid),
6266                                 from_kgid(&init_user_ns, gid),
6267                                 audit_get_sessionid(current));
6268                 }
6269
6270                 dev_change_rx_flags(dev, IFF_PROMISC);
6271         }
6272         if (notify)
6273                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6274         return 0;
6275 }
6276
6277 /**
6278  *      dev_set_promiscuity     - update promiscuity count on a device
6279  *      @dev: device
6280  *      @inc: modifier
6281  *
6282  *      Add or remove promiscuity from a device. While the count in the device
6283  *      remains above zero the interface remains promiscuous. Once it hits zero
6284  *      the device reverts back to normal filtering operation. A negative inc
6285  *      value is used to drop promiscuity on the device.
6286  *      Return 0 if successful or a negative errno code on error.
6287  */
6288 int dev_set_promiscuity(struct net_device *dev, int inc)
6289 {
6290         unsigned int old_flags = dev->flags;
6291         int err;
6292
6293         err = __dev_set_promiscuity(dev, inc, true);
6294         if (err < 0)
6295                 return err;
6296         if (dev->flags != old_flags)
6297                 dev_set_rx_mode(dev);
6298         return err;
6299 }
6300 EXPORT_SYMBOL(dev_set_promiscuity);
6301
6302 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6303 {
6304         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6305
6306         ASSERT_RTNL();
6307
6308         dev->flags |= IFF_ALLMULTI;
6309         dev->allmulti += inc;
6310         if (dev->allmulti == 0) {
6311                 /*
6312                  * Avoid overflow.
6313                  * If inc causes overflow, untouch allmulti and return error.
6314                  */
6315                 if (inc < 0)
6316                         dev->flags &= ~IFF_ALLMULTI;
6317                 else {
6318                         dev->allmulti -= inc;
6319                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6320                                 dev->name);
6321                         return -EOVERFLOW;
6322                 }
6323         }
6324         if (dev->flags ^ old_flags) {
6325                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6326                 dev_set_rx_mode(dev);
6327                 if (notify)
6328                         __dev_notify_flags(dev, old_flags,
6329                                            dev->gflags ^ old_gflags);
6330         }
6331         return 0;
6332 }
6333
6334 /**
6335  *      dev_set_allmulti        - update allmulti count on a device
6336  *      @dev: device
6337  *      @inc: modifier
6338  *
6339  *      Add or remove reception of all multicast frames to a device. While the
6340  *      count in the device remains above zero the interface remains listening
6341  *      to all interfaces. Once it hits zero the device reverts back to normal
6342  *      filtering operation. A negative @inc value is used to drop the counter
6343  *      when releasing a resource needing all multicasts.
6344  *      Return 0 if successful or a negative errno code on error.
6345  */
6346
6347 int dev_set_allmulti(struct net_device *dev, int inc)
6348 {
6349         return __dev_set_allmulti(dev, inc, true);
6350 }
6351 EXPORT_SYMBOL(dev_set_allmulti);
6352
6353 /*
6354  *      Upload unicast and multicast address lists to device and
6355  *      configure RX filtering. When the device doesn't support unicast
6356  *      filtering it is put in promiscuous mode while unicast addresses
6357  *      are present.
6358  */
6359 void __dev_set_rx_mode(struct net_device *dev)
6360 {
6361         const struct net_device_ops *ops = dev->netdev_ops;
6362
6363         /* dev_open will call this function so the list will stay sane. */
6364         if (!(dev->flags&IFF_UP))
6365                 return;
6366
6367         if (!netif_device_present(dev))
6368                 return;
6369
6370         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6371                 /* Unicast addresses changes may only happen under the rtnl,
6372                  * therefore calling __dev_set_promiscuity here is safe.
6373                  */
6374                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6375                         __dev_set_promiscuity(dev, 1, false);
6376                         dev->uc_promisc = true;
6377                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6378                         __dev_set_promiscuity(dev, -1, false);
6379                         dev->uc_promisc = false;
6380                 }
6381         }
6382
6383         if (ops->ndo_set_rx_mode)
6384                 ops->ndo_set_rx_mode(dev);
6385 }
6386
6387 void dev_set_rx_mode(struct net_device *dev)
6388 {
6389         netif_addr_lock_bh(dev);
6390         __dev_set_rx_mode(dev);
6391         netif_addr_unlock_bh(dev);
6392 }
6393
6394 /**
6395  *      dev_get_flags - get flags reported to userspace
6396  *      @dev: device
6397  *
6398  *      Get the combination of flag bits exported through APIs to userspace.
6399  */
6400 unsigned int dev_get_flags(const struct net_device *dev)
6401 {
6402         unsigned int flags;
6403
6404         flags = (dev->flags & ~(IFF_PROMISC |
6405                                 IFF_ALLMULTI |
6406                                 IFF_RUNNING |
6407                                 IFF_LOWER_UP |
6408                                 IFF_DORMANT)) |
6409                 (dev->gflags & (IFF_PROMISC |
6410                                 IFF_ALLMULTI));
6411
6412         if (netif_running(dev)) {
6413                 if (netif_oper_up(dev))
6414                         flags |= IFF_RUNNING;
6415                 if (netif_carrier_ok(dev))
6416                         flags |= IFF_LOWER_UP;
6417                 if (netif_dormant(dev))
6418                         flags |= IFF_DORMANT;
6419         }
6420
6421         return flags;
6422 }
6423 EXPORT_SYMBOL(dev_get_flags);
6424
6425 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6426 {
6427         unsigned int old_flags = dev->flags;
6428         int ret;
6429
6430         ASSERT_RTNL();
6431
6432         /*
6433          *      Set the flags on our device.
6434          */
6435
6436         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6437                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6438                                IFF_AUTOMEDIA)) |
6439                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6440                                     IFF_ALLMULTI));
6441
6442         /*
6443          *      Load in the correct multicast list now the flags have changed.
6444          */
6445
6446         if ((old_flags ^ flags) & IFF_MULTICAST)
6447                 dev_change_rx_flags(dev, IFF_MULTICAST);
6448
6449         dev_set_rx_mode(dev);
6450
6451         /*
6452          *      Have we downed the interface. We handle IFF_UP ourselves
6453          *      according to user attempts to set it, rather than blindly
6454          *      setting it.
6455          */
6456
6457         ret = 0;
6458         if ((old_flags ^ flags) & IFF_UP)
6459                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6460
6461         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6462                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6463                 unsigned int old_flags = dev->flags;
6464
6465                 dev->gflags ^= IFF_PROMISC;
6466
6467                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6468                         if (dev->flags != old_flags)
6469                                 dev_set_rx_mode(dev);
6470         }
6471
6472         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6473          * is important. Some (broken) drivers set IFF_PROMISC, when
6474          * IFF_ALLMULTI is requested not asking us and not reporting.
6475          */
6476         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6477                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6478
6479                 dev->gflags ^= IFF_ALLMULTI;
6480                 __dev_set_allmulti(dev, inc, false);
6481         }
6482
6483         return ret;
6484 }
6485
6486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6487                         unsigned int gchanges)
6488 {
6489         unsigned int changes = dev->flags ^ old_flags;
6490
6491         if (gchanges)
6492                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6493
6494         if (changes & IFF_UP) {
6495                 if (dev->flags & IFF_UP)
6496                         call_netdevice_notifiers(NETDEV_UP, dev);
6497                 else
6498                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6499         }
6500
6501         if (dev->flags & IFF_UP &&
6502             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6503                 struct netdev_notifier_change_info change_info;
6504
6505                 change_info.flags_changed = changes;
6506                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6507                                               &change_info.info);
6508         }
6509 }
6510
6511 /**
6512  *      dev_change_flags - change device settings
6513  *      @dev: device
6514  *      @flags: device state flags
6515  *
6516  *      Change settings on device based state flags. The flags are
6517  *      in the userspace exported format.
6518  */
6519 int dev_change_flags(struct net_device *dev, unsigned int flags)
6520 {
6521         int ret;
6522         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6523
6524         ret = __dev_change_flags(dev, flags);
6525         if (ret < 0)
6526                 return ret;
6527
6528         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6529         __dev_notify_flags(dev, old_flags, changes);
6530         return ret;
6531 }
6532 EXPORT_SYMBOL(dev_change_flags);
6533
6534 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6535 {
6536         const struct net_device_ops *ops = dev->netdev_ops;
6537
6538         if (ops->ndo_change_mtu)
6539                 return ops->ndo_change_mtu(dev, new_mtu);
6540
6541         dev->mtu = new_mtu;
6542         return 0;
6543 }
6544
6545 /**
6546  *      dev_set_mtu - Change maximum transfer unit
6547  *      @dev: device
6548  *      @new_mtu: new transfer unit
6549  *
6550  *      Change the maximum transfer size of the network device.
6551  */
6552 int dev_set_mtu(struct net_device *dev, int new_mtu)
6553 {
6554         int err, orig_mtu;
6555
6556         if (new_mtu == dev->mtu)
6557                 return 0;
6558
6559         /* MTU must be positive, and in range */
6560         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6561                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6562                                     dev->name, new_mtu, dev->min_mtu);
6563                 return -EINVAL;
6564         }
6565
6566         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6567                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6568                                     dev->name, new_mtu, dev->max_mtu);
6569                 return -EINVAL;
6570         }
6571
6572         if (!netif_device_present(dev))
6573                 return -ENODEV;
6574
6575         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6576         err = notifier_to_errno(err);
6577         if (err)
6578                 return err;
6579
6580         orig_mtu = dev->mtu;
6581         err = __dev_set_mtu(dev, new_mtu);
6582
6583         if (!err) {
6584                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6585                 err = notifier_to_errno(err);
6586                 if (err) {
6587                         /* setting mtu back and notifying everyone again,
6588                          * so that they have a chance to revert changes.
6589                          */
6590                         __dev_set_mtu(dev, orig_mtu);
6591                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6592                 }
6593         }
6594         return err;
6595 }
6596 EXPORT_SYMBOL(dev_set_mtu);
6597
6598 /**
6599  *      dev_set_group - Change group this device belongs to
6600  *      @dev: device
6601  *      @new_group: group this device should belong to
6602  */
6603 void dev_set_group(struct net_device *dev, int new_group)
6604 {
6605         dev->group = new_group;
6606 }
6607 EXPORT_SYMBOL(dev_set_group);
6608
6609 /**
6610  *      dev_set_mac_address - Change Media Access Control Address
6611  *      @dev: device
6612  *      @sa: new address
6613  *
6614  *      Change the hardware (MAC) address of the device
6615  */
6616 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6617 {
6618         const struct net_device_ops *ops = dev->netdev_ops;
6619         int err;
6620
6621         if (!ops->ndo_set_mac_address)
6622                 return -EOPNOTSUPP;
6623         if (sa->sa_family != dev->type)
6624                 return -EINVAL;
6625         if (!netif_device_present(dev))
6626                 return -ENODEV;
6627         err = ops->ndo_set_mac_address(dev, sa);
6628         if (err)
6629                 return err;
6630         dev->addr_assign_type = NET_ADDR_SET;
6631         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6632         add_device_randomness(dev->dev_addr, dev->addr_len);
6633         return 0;
6634 }
6635 EXPORT_SYMBOL(dev_set_mac_address);
6636
6637 /**
6638  *      dev_change_carrier - Change device carrier
6639  *      @dev: device
6640  *      @new_carrier: new value
6641  *
6642  *      Change device carrier
6643  */
6644 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6645 {
6646         const struct net_device_ops *ops = dev->netdev_ops;
6647
6648         if (!ops->ndo_change_carrier)
6649                 return -EOPNOTSUPP;
6650         if (!netif_device_present(dev))
6651                 return -ENODEV;
6652         return ops->ndo_change_carrier(dev, new_carrier);
6653 }
6654 EXPORT_SYMBOL(dev_change_carrier);
6655
6656 /**
6657  *      dev_get_phys_port_id - Get device physical port ID
6658  *      @dev: device
6659  *      @ppid: port ID
6660  *
6661  *      Get device physical port ID
6662  */
6663 int dev_get_phys_port_id(struct net_device *dev,
6664                          struct netdev_phys_item_id *ppid)
6665 {
6666         const struct net_device_ops *ops = dev->netdev_ops;
6667
6668         if (!ops->ndo_get_phys_port_id)
6669                 return -EOPNOTSUPP;
6670         return ops->ndo_get_phys_port_id(dev, ppid);
6671 }
6672 EXPORT_SYMBOL(dev_get_phys_port_id);
6673
6674 /**
6675  *      dev_get_phys_port_name - Get device physical port name
6676  *      @dev: device
6677  *      @name: port name
6678  *      @len: limit of bytes to copy to name
6679  *
6680  *      Get device physical port name
6681  */
6682 int dev_get_phys_port_name(struct net_device *dev,
6683                            char *name, size_t len)
6684 {
6685         const struct net_device_ops *ops = dev->netdev_ops;
6686
6687         if (!ops->ndo_get_phys_port_name)
6688                 return -EOPNOTSUPP;
6689         return ops->ndo_get_phys_port_name(dev, name, len);
6690 }
6691 EXPORT_SYMBOL(dev_get_phys_port_name);
6692
6693 /**
6694  *      dev_change_proto_down - update protocol port state information
6695  *      @dev: device
6696  *      @proto_down: new value
6697  *
6698  *      This info can be used by switch drivers to set the phys state of the
6699  *      port.
6700  */
6701 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6702 {
6703         const struct net_device_ops *ops = dev->netdev_ops;
6704
6705         if (!ops->ndo_change_proto_down)
6706                 return -EOPNOTSUPP;
6707         if (!netif_device_present(dev))
6708                 return -ENODEV;
6709         return ops->ndo_change_proto_down(dev, proto_down);
6710 }
6711 EXPORT_SYMBOL(dev_change_proto_down);
6712
6713 /**
6714  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6715  *      @dev: device
6716  *      @fd: new program fd or negative value to clear
6717  *      @flags: xdp-related flags
6718  *
6719  *      Set or clear a bpf program for a device
6720  */
6721 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6722 {
6723         const struct net_device_ops *ops = dev->netdev_ops;
6724         struct bpf_prog *prog = NULL;
6725         struct netdev_xdp xdp;
6726         int err;
6727
6728         ASSERT_RTNL();
6729
6730         if (!ops->ndo_xdp)
6731                 return -EOPNOTSUPP;
6732         if (fd >= 0) {
6733                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6734                         memset(&xdp, 0, sizeof(xdp));
6735                         xdp.command = XDP_QUERY_PROG;
6736
6737                         err = ops->ndo_xdp(dev, &xdp);
6738                         if (err < 0)
6739                                 return err;
6740                         if (xdp.prog_attached)
6741                                 return -EBUSY;
6742                 }
6743
6744                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6745                 if (IS_ERR(prog))
6746                         return PTR_ERR(prog);
6747         }
6748
6749         memset(&xdp, 0, sizeof(xdp));
6750         xdp.command = XDP_SETUP_PROG;
6751         xdp.prog = prog;
6752
6753         err = ops->ndo_xdp(dev, &xdp);
6754         if (err < 0 && prog)
6755                 bpf_prog_put(prog);
6756
6757         return err;
6758 }
6759 EXPORT_SYMBOL(dev_change_xdp_fd);
6760
6761 /**
6762  *      dev_new_index   -       allocate an ifindex
6763  *      @net: the applicable net namespace
6764  *
6765  *      Returns a suitable unique value for a new device interface
6766  *      number.  The caller must hold the rtnl semaphore or the
6767  *      dev_base_lock to be sure it remains unique.
6768  */
6769 static int dev_new_index(struct net *net)
6770 {
6771         int ifindex = net->ifindex;
6772
6773         for (;;) {
6774                 if (++ifindex <= 0)
6775                         ifindex = 1;
6776                 if (!__dev_get_by_index(net, ifindex))
6777                         return net->ifindex = ifindex;
6778         }
6779 }
6780
6781 /* Delayed registration/unregisteration */
6782 static LIST_HEAD(net_todo_list);
6783 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6784
6785 static void net_set_todo(struct net_device *dev)
6786 {
6787         list_add_tail(&dev->todo_list, &net_todo_list);
6788         dev_net(dev)->dev_unreg_count++;
6789 }
6790
6791 static void rollback_registered_many(struct list_head *head)
6792 {
6793         struct net_device *dev, *tmp;
6794         LIST_HEAD(close_head);
6795
6796         BUG_ON(dev_boot_phase);
6797         ASSERT_RTNL();
6798
6799         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6800                 /* Some devices call without registering
6801                  * for initialization unwind. Remove those
6802                  * devices and proceed with the remaining.
6803                  */
6804                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6805                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6806                                  dev->name, dev);
6807
6808                         WARN_ON(1);
6809                         list_del(&dev->unreg_list);
6810                         continue;
6811                 }
6812                 dev->dismantle = true;
6813                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6814         }
6815
6816         /* If device is running, close it first. */
6817         list_for_each_entry(dev, head, unreg_list)
6818                 list_add_tail(&dev->close_list, &close_head);
6819         dev_close_many(&close_head, true);
6820
6821         list_for_each_entry(dev, head, unreg_list) {
6822                 /* And unlink it from device chain. */
6823                 unlist_netdevice(dev);
6824
6825                 dev->reg_state = NETREG_UNREGISTERING;
6826         }
6827         flush_all_backlogs();
6828
6829         synchronize_net();
6830
6831         list_for_each_entry(dev, head, unreg_list) {
6832                 struct sk_buff *skb = NULL;
6833
6834                 /* Shutdown queueing discipline. */
6835                 dev_shutdown(dev);
6836
6837
6838                 /* Notify protocols, that we are about to destroy
6839                  * this device. They should clean all the things.
6840                  */
6841                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6842
6843                 if (!dev->rtnl_link_ops ||
6844                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6845                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6846                                                      GFP_KERNEL);
6847
6848                 /*
6849                  *      Flush the unicast and multicast chains
6850                  */
6851                 dev_uc_flush(dev);
6852                 dev_mc_flush(dev);
6853
6854                 if (dev->netdev_ops->ndo_uninit)
6855                         dev->netdev_ops->ndo_uninit(dev);
6856
6857                 if (skb)
6858                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6859
6860                 /* Notifier chain MUST detach us all upper devices. */
6861                 WARN_ON(netdev_has_any_upper_dev(dev));
6862                 WARN_ON(netdev_has_any_lower_dev(dev));
6863
6864                 /* Remove entries from kobject tree */
6865                 netdev_unregister_kobject(dev);
6866 #ifdef CONFIG_XPS
6867                 /* Remove XPS queueing entries */
6868                 netif_reset_xps_queues_gt(dev, 0);
6869 #endif
6870         }
6871
6872         synchronize_net();
6873
6874         list_for_each_entry(dev, head, unreg_list)
6875                 dev_put(dev);
6876 }
6877
6878 static void rollback_registered(struct net_device *dev)
6879 {
6880         LIST_HEAD(single);
6881
6882         list_add(&dev->unreg_list, &single);
6883         rollback_registered_many(&single);
6884         list_del(&single);
6885 }
6886
6887 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6888         struct net_device *upper, netdev_features_t features)
6889 {
6890         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6891         netdev_features_t feature;
6892         int feature_bit;
6893
6894         for_each_netdev_feature(&upper_disables, feature_bit) {
6895                 feature = __NETIF_F_BIT(feature_bit);
6896                 if (!(upper->wanted_features & feature)
6897                     && (features & feature)) {
6898                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6899                                    &feature, upper->name);
6900                         features &= ~feature;
6901                 }
6902         }
6903
6904         return features;
6905 }
6906
6907 static void netdev_sync_lower_features(struct net_device *upper,
6908         struct net_device *lower, netdev_features_t features)
6909 {
6910         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6911         netdev_features_t feature;
6912         int feature_bit;
6913
6914         for_each_netdev_feature(&upper_disables, feature_bit) {
6915                 feature = __NETIF_F_BIT(feature_bit);
6916                 if (!(features & feature) && (lower->features & feature)) {
6917                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6918                                    &feature, lower->name);
6919                         lower->wanted_features &= ~feature;
6920                         netdev_update_features(lower);
6921
6922                         if (unlikely(lower->features & feature))
6923                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6924                                             &feature, lower->name);
6925                 }
6926         }
6927 }
6928
6929 static netdev_features_t netdev_fix_features(struct net_device *dev,
6930         netdev_features_t features)
6931 {
6932         /* Fix illegal checksum combinations */
6933         if ((features & NETIF_F_HW_CSUM) &&
6934             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6935                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6936                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6937         }
6938
6939         /* TSO requires that SG is present as well. */
6940         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6941                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6942                 features &= ~NETIF_F_ALL_TSO;
6943         }
6944
6945         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6946                                         !(features & NETIF_F_IP_CSUM)) {
6947                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6948                 features &= ~NETIF_F_TSO;
6949                 features &= ~NETIF_F_TSO_ECN;
6950         }
6951
6952         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6953                                          !(features & NETIF_F_IPV6_CSUM)) {
6954                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6955                 features &= ~NETIF_F_TSO6;
6956         }
6957
6958         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6959         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6960                 features &= ~NETIF_F_TSO_MANGLEID;
6961
6962         /* TSO ECN requires that TSO is present as well. */
6963         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6964                 features &= ~NETIF_F_TSO_ECN;
6965
6966         /* Software GSO depends on SG. */
6967         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6968                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6969                 features &= ~NETIF_F_GSO;
6970         }
6971
6972         /* UFO needs SG and checksumming */
6973         if (features & NETIF_F_UFO) {
6974                 /* maybe split UFO into V4 and V6? */
6975                 if (!(features & NETIF_F_HW_CSUM) &&
6976                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6977                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6978                         netdev_dbg(dev,
6979                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6980                         features &= ~NETIF_F_UFO;
6981                 }
6982
6983                 if (!(features & NETIF_F_SG)) {
6984                         netdev_dbg(dev,
6985                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6986                         features &= ~NETIF_F_UFO;
6987                 }
6988         }
6989
6990         /* GSO partial features require GSO partial be set */
6991         if ((features & dev->gso_partial_features) &&
6992             !(features & NETIF_F_GSO_PARTIAL)) {
6993                 netdev_dbg(dev,
6994                            "Dropping partially supported GSO features since no GSO partial.\n");
6995                 features &= ~dev->gso_partial_features;
6996         }
6997
6998         return features;
6999 }
7000
7001 int __netdev_update_features(struct net_device *dev)
7002 {
7003         struct net_device *upper, *lower;
7004         netdev_features_t features;
7005         struct list_head *iter;
7006         int err = -1;
7007
7008         ASSERT_RTNL();
7009
7010         features = netdev_get_wanted_features(dev);
7011
7012         if (dev->netdev_ops->ndo_fix_features)
7013                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7014
7015         /* driver might be less strict about feature dependencies */
7016         features = netdev_fix_features(dev, features);
7017
7018         /* some features can't be enabled if they're off an an upper device */
7019         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7020                 features = netdev_sync_upper_features(dev, upper, features);
7021
7022         if (dev->features == features)
7023                 goto sync_lower;
7024
7025         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7026                 &dev->features, &features);
7027
7028         if (dev->netdev_ops->ndo_set_features)
7029                 err = dev->netdev_ops->ndo_set_features(dev, features);
7030         else
7031                 err = 0;
7032
7033         if (unlikely(err < 0)) {
7034                 netdev_err(dev,
7035                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7036                         err, &features, &dev->features);
7037                 /* return non-0 since some features might have changed and
7038                  * it's better to fire a spurious notification than miss it
7039                  */
7040                 return -1;
7041         }
7042
7043 sync_lower:
7044         /* some features must be disabled on lower devices when disabled
7045          * on an upper device (think: bonding master or bridge)
7046          */
7047         netdev_for_each_lower_dev(dev, lower, iter)
7048                 netdev_sync_lower_features(dev, lower, features);
7049
7050         if (!err)
7051                 dev->features = features;
7052
7053         return err < 0 ? 0 : 1;
7054 }
7055
7056 /**
7057  *      netdev_update_features - recalculate device features
7058  *      @dev: the device to check
7059  *
7060  *      Recalculate dev->features set and send notifications if it
7061  *      has changed. Should be called after driver or hardware dependent
7062  *      conditions might have changed that influence the features.
7063  */
7064 void netdev_update_features(struct net_device *dev)
7065 {
7066         if (__netdev_update_features(dev))
7067                 netdev_features_change(dev);
7068 }
7069 EXPORT_SYMBOL(netdev_update_features);
7070
7071 /**
7072  *      netdev_change_features - recalculate device features
7073  *      @dev: the device to check
7074  *
7075  *      Recalculate dev->features set and send notifications even
7076  *      if they have not changed. Should be called instead of
7077  *      netdev_update_features() if also dev->vlan_features might
7078  *      have changed to allow the changes to be propagated to stacked
7079  *      VLAN devices.
7080  */
7081 void netdev_change_features(struct net_device *dev)
7082 {
7083         __netdev_update_features(dev);
7084         netdev_features_change(dev);
7085 }
7086 EXPORT_SYMBOL(netdev_change_features);
7087
7088 /**
7089  *      netif_stacked_transfer_operstate -      transfer operstate
7090  *      @rootdev: the root or lower level device to transfer state from
7091  *      @dev: the device to transfer operstate to
7092  *
7093  *      Transfer operational state from root to device. This is normally
7094  *      called when a stacking relationship exists between the root
7095  *      device and the device(a leaf device).
7096  */
7097 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7098                                         struct net_device *dev)
7099 {
7100         if (rootdev->operstate == IF_OPER_DORMANT)
7101                 netif_dormant_on(dev);
7102         else
7103                 netif_dormant_off(dev);
7104
7105         if (netif_carrier_ok(rootdev)) {
7106                 if (!netif_carrier_ok(dev))
7107                         netif_carrier_on(dev);
7108         } else {
7109                 if (netif_carrier_ok(dev))
7110                         netif_carrier_off(dev);
7111         }
7112 }
7113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7114
7115 #ifdef CONFIG_SYSFS
7116 static int netif_alloc_rx_queues(struct net_device *dev)
7117 {
7118         unsigned int i, count = dev->num_rx_queues;
7119         struct netdev_rx_queue *rx;
7120         size_t sz = count * sizeof(*rx);
7121
7122         BUG_ON(count < 1);
7123
7124         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7125         if (!rx) {
7126                 rx = vzalloc(sz);
7127                 if (!rx)
7128                         return -ENOMEM;
7129         }
7130         dev->_rx = rx;
7131
7132         for (i = 0; i < count; i++)
7133                 rx[i].dev = dev;
7134         return 0;
7135 }
7136 #endif
7137
7138 static void netdev_init_one_queue(struct net_device *dev,
7139                                   struct netdev_queue *queue, void *_unused)
7140 {
7141         /* Initialize queue lock */
7142         spin_lock_init(&queue->_xmit_lock);
7143         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7144         queue->xmit_lock_owner = -1;
7145         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7146         queue->dev = dev;
7147 #ifdef CONFIG_BQL
7148         dql_init(&queue->dql, HZ);
7149 #endif
7150 }
7151
7152 static void netif_free_tx_queues(struct net_device *dev)
7153 {
7154         kvfree(dev->_tx);
7155 }
7156
7157 static int netif_alloc_netdev_queues(struct net_device *dev)
7158 {
7159         unsigned int count = dev->num_tx_queues;
7160         struct netdev_queue *tx;
7161         size_t sz = count * sizeof(*tx);
7162
7163         if (count < 1 || count > 0xffff)
7164                 return -EINVAL;
7165
7166         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7167         if (!tx) {
7168                 tx = vzalloc(sz);
7169                 if (!tx)
7170                         return -ENOMEM;
7171         }
7172         dev->_tx = tx;
7173
7174         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7175         spin_lock_init(&dev->tx_global_lock);
7176
7177         return 0;
7178 }
7179
7180 void netif_tx_stop_all_queues(struct net_device *dev)
7181 {
7182         unsigned int i;
7183
7184         for (i = 0; i < dev->num_tx_queues; i++) {
7185                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7186
7187                 netif_tx_stop_queue(txq);
7188         }
7189 }
7190 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7191
7192 /**
7193  *      register_netdevice      - register a network device
7194  *      @dev: device to register
7195  *
7196  *      Take a completed network device structure and add it to the kernel
7197  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7198  *      chain. 0 is returned on success. A negative errno code is returned
7199  *      on a failure to set up the device, or if the name is a duplicate.
7200  *
7201  *      Callers must hold the rtnl semaphore. You may want
7202  *      register_netdev() instead of this.
7203  *
7204  *      BUGS:
7205  *      The locking appears insufficient to guarantee two parallel registers
7206  *      will not get the same name.
7207  */
7208
7209 int register_netdevice(struct net_device *dev)
7210 {
7211         int ret;
7212         struct net *net = dev_net(dev);
7213
7214         BUG_ON(dev_boot_phase);
7215         ASSERT_RTNL();
7216
7217         might_sleep();
7218
7219         /* When net_device's are persistent, this will be fatal. */
7220         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7221         BUG_ON(!net);
7222
7223         spin_lock_init(&dev->addr_list_lock);
7224         netdev_set_addr_lockdep_class(dev);
7225
7226         ret = dev_get_valid_name(net, dev, dev->name);
7227         if (ret < 0)
7228                 goto out;
7229
7230         /* Init, if this function is available */
7231         if (dev->netdev_ops->ndo_init) {
7232                 ret = dev->netdev_ops->ndo_init(dev);
7233                 if (ret) {
7234                         if (ret > 0)
7235                                 ret = -EIO;
7236                         goto out;
7237                 }
7238         }
7239
7240         if (((dev->hw_features | dev->features) &
7241              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7242             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7243              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7244                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7245                 ret = -EINVAL;
7246                 goto err_uninit;
7247         }
7248
7249         ret = -EBUSY;
7250         if (!dev->ifindex)
7251                 dev->ifindex = dev_new_index(net);
7252         else if (__dev_get_by_index(net, dev->ifindex))
7253                 goto err_uninit;
7254
7255         /* Transfer changeable features to wanted_features and enable
7256          * software offloads (GSO and GRO).
7257          */
7258         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7259         dev->features |= NETIF_F_SOFT_FEATURES;
7260         dev->wanted_features = dev->features & dev->hw_features;
7261
7262         if (!(dev->flags & IFF_LOOPBACK))
7263                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7264
7265         /* If IPv4 TCP segmentation offload is supported we should also
7266          * allow the device to enable segmenting the frame with the option
7267          * of ignoring a static IP ID value.  This doesn't enable the
7268          * feature itself but allows the user to enable it later.
7269          */
7270         if (dev->hw_features & NETIF_F_TSO)
7271                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7272         if (dev->vlan_features & NETIF_F_TSO)
7273                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7274         if (dev->mpls_features & NETIF_F_TSO)
7275                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7276         if (dev->hw_enc_features & NETIF_F_TSO)
7277                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7278
7279         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7280          */
7281         dev->vlan_features |= NETIF_F_HIGHDMA;
7282
7283         /* Make NETIF_F_SG inheritable to tunnel devices.
7284          */
7285         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7286
7287         /* Make NETIF_F_SG inheritable to MPLS.
7288          */
7289         dev->mpls_features |= NETIF_F_SG;
7290
7291         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7292         ret = notifier_to_errno(ret);
7293         if (ret)
7294                 goto err_uninit;
7295
7296         ret = netdev_register_kobject(dev);
7297         if (ret)
7298                 goto err_uninit;
7299         dev->reg_state = NETREG_REGISTERED;
7300
7301         __netdev_update_features(dev);
7302
7303         /*
7304          *      Default initial state at registry is that the
7305          *      device is present.
7306          */
7307
7308         set_bit(__LINK_STATE_PRESENT, &dev->state);
7309
7310         linkwatch_init_dev(dev);
7311
7312         dev_init_scheduler(dev);
7313         dev_hold(dev);
7314         list_netdevice(dev);
7315         add_device_randomness(dev->dev_addr, dev->addr_len);
7316
7317         /* If the device has permanent device address, driver should
7318          * set dev_addr and also addr_assign_type should be set to
7319          * NET_ADDR_PERM (default value).
7320          */
7321         if (dev->addr_assign_type == NET_ADDR_PERM)
7322                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7323
7324         /* Notify protocols, that a new device appeared. */
7325         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7326         ret = notifier_to_errno(ret);
7327         if (ret) {
7328                 rollback_registered(dev);
7329                 dev->reg_state = NETREG_UNREGISTERED;
7330         }
7331         /*
7332          *      Prevent userspace races by waiting until the network
7333          *      device is fully setup before sending notifications.
7334          */
7335         if (!dev->rtnl_link_ops ||
7336             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7337                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7338
7339 out:
7340         return ret;
7341
7342 err_uninit:
7343         if (dev->netdev_ops->ndo_uninit)
7344                 dev->netdev_ops->ndo_uninit(dev);
7345         goto out;
7346 }
7347 EXPORT_SYMBOL(register_netdevice);
7348
7349 /**
7350  *      init_dummy_netdev       - init a dummy network device for NAPI
7351  *      @dev: device to init
7352  *
7353  *      This takes a network device structure and initialize the minimum
7354  *      amount of fields so it can be used to schedule NAPI polls without
7355  *      registering a full blown interface. This is to be used by drivers
7356  *      that need to tie several hardware interfaces to a single NAPI
7357  *      poll scheduler due to HW limitations.
7358  */
7359 int init_dummy_netdev(struct net_device *dev)
7360 {
7361         /* Clear everything. Note we don't initialize spinlocks
7362          * are they aren't supposed to be taken by any of the
7363          * NAPI code and this dummy netdev is supposed to be
7364          * only ever used for NAPI polls
7365          */
7366         memset(dev, 0, sizeof(struct net_device));
7367
7368         /* make sure we BUG if trying to hit standard
7369          * register/unregister code path
7370          */
7371         dev->reg_state = NETREG_DUMMY;
7372
7373         /* NAPI wants this */
7374         INIT_LIST_HEAD(&dev->napi_list);
7375
7376         /* a dummy interface is started by default */
7377         set_bit(__LINK_STATE_PRESENT, &dev->state);
7378         set_bit(__LINK_STATE_START, &dev->state);
7379
7380         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7381          * because users of this 'device' dont need to change
7382          * its refcount.
7383          */
7384
7385         return 0;
7386 }
7387 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7388
7389
7390 /**
7391  *      register_netdev - register a network device
7392  *      @dev: device to register
7393  *
7394  *      Take a completed network device structure and add it to the kernel
7395  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7396  *      chain. 0 is returned on success. A negative errno code is returned
7397  *      on a failure to set up the device, or if the name is a duplicate.
7398  *
7399  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7400  *      and expands the device name if you passed a format string to
7401  *      alloc_netdev.
7402  */
7403 int register_netdev(struct net_device *dev)
7404 {
7405         int err;
7406
7407         rtnl_lock();
7408         err = register_netdevice(dev);
7409         rtnl_unlock();
7410         return err;
7411 }
7412 EXPORT_SYMBOL(register_netdev);
7413
7414 int netdev_refcnt_read(const struct net_device *dev)
7415 {
7416         int i, refcnt = 0;
7417
7418         for_each_possible_cpu(i)
7419                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7420         return refcnt;
7421 }
7422 EXPORT_SYMBOL(netdev_refcnt_read);
7423
7424 /**
7425  * netdev_wait_allrefs - wait until all references are gone.
7426  * @dev: target net_device
7427  *
7428  * This is called when unregistering network devices.
7429  *
7430  * Any protocol or device that holds a reference should register
7431  * for netdevice notification, and cleanup and put back the
7432  * reference if they receive an UNREGISTER event.
7433  * We can get stuck here if buggy protocols don't correctly
7434  * call dev_put.
7435  */
7436 static void netdev_wait_allrefs(struct net_device *dev)
7437 {
7438         unsigned long rebroadcast_time, warning_time;
7439         int refcnt;
7440
7441         linkwatch_forget_dev(dev);
7442
7443         rebroadcast_time = warning_time = jiffies;
7444         refcnt = netdev_refcnt_read(dev);
7445
7446         while (refcnt != 0) {
7447                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7448                         rtnl_lock();
7449
7450                         /* Rebroadcast unregister notification */
7451                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7452
7453                         __rtnl_unlock();
7454                         rcu_barrier();
7455                         rtnl_lock();
7456
7457                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7458                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7459                                      &dev->state)) {
7460                                 /* We must not have linkwatch events
7461                                  * pending on unregister. If this
7462                                  * happens, we simply run the queue
7463                                  * unscheduled, resulting in a noop
7464                                  * for this device.
7465                                  */
7466                                 linkwatch_run_queue();
7467                         }
7468
7469                         __rtnl_unlock();
7470
7471                         rebroadcast_time = jiffies;
7472                 }
7473
7474                 msleep(250);
7475
7476                 refcnt = netdev_refcnt_read(dev);
7477
7478                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7479                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7480                                  dev->name, refcnt);
7481                         warning_time = jiffies;
7482                 }
7483         }
7484 }
7485
7486 /* The sequence is:
7487  *
7488  *      rtnl_lock();
7489  *      ...
7490  *      register_netdevice(x1);
7491  *      register_netdevice(x2);
7492  *      ...
7493  *      unregister_netdevice(y1);
7494  *      unregister_netdevice(y2);
7495  *      ...
7496  *      rtnl_unlock();
7497  *      free_netdev(y1);
7498  *      free_netdev(y2);
7499  *
7500  * We are invoked by rtnl_unlock().
7501  * This allows us to deal with problems:
7502  * 1) We can delete sysfs objects which invoke hotplug
7503  *    without deadlocking with linkwatch via keventd.
7504  * 2) Since we run with the RTNL semaphore not held, we can sleep
7505  *    safely in order to wait for the netdev refcnt to drop to zero.
7506  *
7507  * We must not return until all unregister events added during
7508  * the interval the lock was held have been completed.
7509  */
7510 void netdev_run_todo(void)
7511 {
7512         struct list_head list;
7513
7514         /* Snapshot list, allow later requests */
7515         list_replace_init(&net_todo_list, &list);
7516
7517         __rtnl_unlock();
7518
7519
7520         /* Wait for rcu callbacks to finish before next phase */
7521         if (!list_empty(&list))
7522                 rcu_barrier();
7523
7524         while (!list_empty(&list)) {
7525                 struct net_device *dev
7526                         = list_first_entry(&list, struct net_device, todo_list);
7527                 list_del(&dev->todo_list);
7528
7529                 rtnl_lock();
7530                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7531                 __rtnl_unlock();
7532
7533                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7534                         pr_err("network todo '%s' but state %d\n",
7535                                dev->name, dev->reg_state);
7536                         dump_stack();
7537                         continue;
7538                 }
7539
7540                 dev->reg_state = NETREG_UNREGISTERED;
7541
7542                 netdev_wait_allrefs(dev);
7543
7544                 /* paranoia */
7545                 BUG_ON(netdev_refcnt_read(dev));
7546                 BUG_ON(!list_empty(&dev->ptype_all));
7547                 BUG_ON(!list_empty(&dev->ptype_specific));
7548                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7549                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7550                 WARN_ON(dev->dn_ptr);
7551
7552                 if (dev->destructor)
7553                         dev->destructor(dev);
7554
7555                 /* Report a network device has been unregistered */
7556                 rtnl_lock();
7557                 dev_net(dev)->dev_unreg_count--;
7558                 __rtnl_unlock();
7559                 wake_up(&netdev_unregistering_wq);
7560
7561                 /* Free network device */
7562                 kobject_put(&dev->dev.kobj);
7563         }
7564 }
7565
7566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7567  * all the same fields in the same order as net_device_stats, with only
7568  * the type differing, but rtnl_link_stats64 may have additional fields
7569  * at the end for newer counters.
7570  */
7571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7572                              const struct net_device_stats *netdev_stats)
7573 {
7574 #if BITS_PER_LONG == 64
7575         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7576         memcpy(stats64, netdev_stats, sizeof(*stats64));
7577         /* zero out counters that only exist in rtnl_link_stats64 */
7578         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7579                sizeof(*stats64) - sizeof(*netdev_stats));
7580 #else
7581         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7582         const unsigned long *src = (const unsigned long *)netdev_stats;
7583         u64 *dst = (u64 *)stats64;
7584
7585         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7586         for (i = 0; i < n; i++)
7587                 dst[i] = src[i];
7588         /* zero out counters that only exist in rtnl_link_stats64 */
7589         memset((char *)stats64 + n * sizeof(u64), 0,
7590                sizeof(*stats64) - n * sizeof(u64));
7591 #endif
7592 }
7593 EXPORT_SYMBOL(netdev_stats_to_stats64);
7594
7595 /**
7596  *      dev_get_stats   - get network device statistics
7597  *      @dev: device to get statistics from
7598  *      @storage: place to store stats
7599  *
7600  *      Get network statistics from device. Return @storage.
7601  *      The device driver may provide its own method by setting
7602  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7603  *      otherwise the internal statistics structure is used.
7604  */
7605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7606                                         struct rtnl_link_stats64 *storage)
7607 {
7608         const struct net_device_ops *ops = dev->netdev_ops;
7609
7610         if (ops->ndo_get_stats64) {
7611                 memset(storage, 0, sizeof(*storage));
7612                 ops->ndo_get_stats64(dev, storage);
7613         } else if (ops->ndo_get_stats) {
7614                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7615         } else {
7616                 netdev_stats_to_stats64(storage, &dev->stats);
7617         }
7618         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7619         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7620         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7621         return storage;
7622 }
7623 EXPORT_SYMBOL(dev_get_stats);
7624
7625 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7626 {
7627         struct netdev_queue *queue = dev_ingress_queue(dev);
7628
7629 #ifdef CONFIG_NET_CLS_ACT
7630         if (queue)
7631                 return queue;
7632         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7633         if (!queue)
7634                 return NULL;
7635         netdev_init_one_queue(dev, queue, NULL);
7636         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7637         queue->qdisc_sleeping = &noop_qdisc;
7638         rcu_assign_pointer(dev->ingress_queue, queue);
7639 #endif
7640         return queue;
7641 }
7642
7643 static const struct ethtool_ops default_ethtool_ops;
7644
7645 void netdev_set_default_ethtool_ops(struct net_device *dev,
7646                                     const struct ethtool_ops *ops)
7647 {
7648         if (dev->ethtool_ops == &default_ethtool_ops)
7649                 dev->ethtool_ops = ops;
7650 }
7651 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7652
7653 void netdev_freemem(struct net_device *dev)
7654 {
7655         char *addr = (char *)dev - dev->padded;
7656
7657         kvfree(addr);
7658 }
7659
7660 /**
7661  * alloc_netdev_mqs - allocate network device
7662  * @sizeof_priv: size of private data to allocate space for
7663  * @name: device name format string
7664  * @name_assign_type: origin of device name
7665  * @setup: callback to initialize device
7666  * @txqs: the number of TX subqueues to allocate
7667  * @rxqs: the number of RX subqueues to allocate
7668  *
7669  * Allocates a struct net_device with private data area for driver use
7670  * and performs basic initialization.  Also allocates subqueue structs
7671  * for each queue on the device.
7672  */
7673 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7674                 unsigned char name_assign_type,
7675                 void (*setup)(struct net_device *),
7676                 unsigned int txqs, unsigned int rxqs)
7677 {
7678         struct net_device *dev;
7679         size_t alloc_size;
7680         struct net_device *p;
7681
7682         BUG_ON(strlen(name) >= sizeof(dev->name));
7683
7684         if (txqs < 1) {
7685                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7686                 return NULL;
7687         }
7688
7689 #ifdef CONFIG_SYSFS
7690         if (rxqs < 1) {
7691                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7692                 return NULL;
7693         }
7694 #endif
7695
7696         alloc_size = sizeof(struct net_device);
7697         if (sizeof_priv) {
7698                 /* ensure 32-byte alignment of private area */
7699                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7700                 alloc_size += sizeof_priv;
7701         }
7702         /* ensure 32-byte alignment of whole construct */
7703         alloc_size += NETDEV_ALIGN - 1;
7704
7705         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7706         if (!p)
7707                 p = vzalloc(alloc_size);
7708         if (!p)
7709                 return NULL;
7710
7711         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7712         dev->padded = (char *)dev - (char *)p;
7713
7714         dev->pcpu_refcnt = alloc_percpu(int);
7715         if (!dev->pcpu_refcnt)
7716                 goto free_dev;
7717
7718         if (dev_addr_init(dev))
7719                 goto free_pcpu;
7720
7721         dev_mc_init(dev);
7722         dev_uc_init(dev);
7723
7724         dev_net_set(dev, &init_net);
7725
7726         dev->gso_max_size = GSO_MAX_SIZE;
7727         dev->gso_max_segs = GSO_MAX_SEGS;
7728
7729         INIT_LIST_HEAD(&dev->napi_list);
7730         INIT_LIST_HEAD(&dev->unreg_list);
7731         INIT_LIST_HEAD(&dev->close_list);
7732         INIT_LIST_HEAD(&dev->link_watch_list);
7733         INIT_LIST_HEAD(&dev->adj_list.upper);
7734         INIT_LIST_HEAD(&dev->adj_list.lower);
7735         INIT_LIST_HEAD(&dev->ptype_all);
7736         INIT_LIST_HEAD(&dev->ptype_specific);
7737 #ifdef CONFIG_NET_SCHED
7738         hash_init(dev->qdisc_hash);
7739 #endif
7740         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7741         setup(dev);
7742
7743         if (!dev->tx_queue_len) {
7744                 dev->priv_flags |= IFF_NO_QUEUE;
7745                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7746         }
7747
7748         dev->num_tx_queues = txqs;
7749         dev->real_num_tx_queues = txqs;
7750         if (netif_alloc_netdev_queues(dev))
7751                 goto free_all;
7752
7753 #ifdef CONFIG_SYSFS
7754         dev->num_rx_queues = rxqs;
7755         dev->real_num_rx_queues = rxqs;
7756         if (netif_alloc_rx_queues(dev))
7757                 goto free_all;
7758 #endif
7759
7760         strcpy(dev->name, name);
7761         dev->name_assign_type = name_assign_type;
7762         dev->group = INIT_NETDEV_GROUP;
7763         if (!dev->ethtool_ops)
7764                 dev->ethtool_ops = &default_ethtool_ops;
7765
7766         nf_hook_ingress_init(dev);
7767
7768         return dev;
7769
7770 free_all:
7771         free_netdev(dev);
7772         return NULL;
7773
7774 free_pcpu:
7775         free_percpu(dev->pcpu_refcnt);
7776 free_dev:
7777         netdev_freemem(dev);
7778         return NULL;
7779 }
7780 EXPORT_SYMBOL(alloc_netdev_mqs);
7781
7782 /**
7783  * free_netdev - free network device
7784  * @dev: device
7785  *
7786  * This function does the last stage of destroying an allocated device
7787  * interface. The reference to the device object is released. If this
7788  * is the last reference then it will be freed.Must be called in process
7789  * context.
7790  */
7791 void free_netdev(struct net_device *dev)
7792 {
7793         struct napi_struct *p, *n;
7794
7795         might_sleep();
7796         netif_free_tx_queues(dev);
7797 #ifdef CONFIG_SYSFS
7798         kvfree(dev->_rx);
7799 #endif
7800
7801         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7802
7803         /* Flush device addresses */
7804         dev_addr_flush(dev);
7805
7806         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7807                 netif_napi_del(p);
7808
7809         free_percpu(dev->pcpu_refcnt);
7810         dev->pcpu_refcnt = NULL;
7811
7812         /*  Compatibility with error handling in drivers */
7813         if (dev->reg_state == NETREG_UNINITIALIZED) {
7814                 netdev_freemem(dev);
7815                 return;
7816         }
7817
7818         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7819         dev->reg_state = NETREG_RELEASED;
7820
7821         /* will free via device release */
7822         put_device(&dev->dev);
7823 }
7824 EXPORT_SYMBOL(free_netdev);
7825
7826 /**
7827  *      synchronize_net -  Synchronize with packet receive processing
7828  *
7829  *      Wait for packets currently being received to be done.
7830  *      Does not block later packets from starting.
7831  */
7832 void synchronize_net(void)
7833 {
7834         might_sleep();
7835         if (rtnl_is_locked())
7836                 synchronize_rcu_expedited();
7837         else
7838                 synchronize_rcu();
7839 }
7840 EXPORT_SYMBOL(synchronize_net);
7841
7842 /**
7843  *      unregister_netdevice_queue - remove device from the kernel
7844  *      @dev: device
7845  *      @head: list
7846  *
7847  *      This function shuts down a device interface and removes it
7848  *      from the kernel tables.
7849  *      If head not NULL, device is queued to be unregistered later.
7850  *
7851  *      Callers must hold the rtnl semaphore.  You may want
7852  *      unregister_netdev() instead of this.
7853  */
7854
7855 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7856 {
7857         ASSERT_RTNL();
7858
7859         if (head) {
7860                 list_move_tail(&dev->unreg_list, head);
7861         } else {
7862                 rollback_registered(dev);
7863                 /* Finish processing unregister after unlock */
7864                 net_set_todo(dev);
7865         }
7866 }
7867 EXPORT_SYMBOL(unregister_netdevice_queue);
7868
7869 /**
7870  *      unregister_netdevice_many - unregister many devices
7871  *      @head: list of devices
7872  *
7873  *  Note: As most callers use a stack allocated list_head,
7874  *  we force a list_del() to make sure stack wont be corrupted later.
7875  */
7876 void unregister_netdevice_many(struct list_head *head)
7877 {
7878         struct net_device *dev;
7879
7880         if (!list_empty(head)) {
7881                 rollback_registered_many(head);
7882                 list_for_each_entry(dev, head, unreg_list)
7883                         net_set_todo(dev);
7884                 list_del(head);
7885         }
7886 }
7887 EXPORT_SYMBOL(unregister_netdevice_many);
7888
7889 /**
7890  *      unregister_netdev - remove device from the kernel
7891  *      @dev: device
7892  *
7893  *      This function shuts down a device interface and removes it
7894  *      from the kernel tables.
7895  *
7896  *      This is just a wrapper for unregister_netdevice that takes
7897  *      the rtnl semaphore.  In general you want to use this and not
7898  *      unregister_netdevice.
7899  */
7900 void unregister_netdev(struct net_device *dev)
7901 {
7902         rtnl_lock();
7903         unregister_netdevice(dev);
7904         rtnl_unlock();
7905 }
7906 EXPORT_SYMBOL(unregister_netdev);
7907
7908 /**
7909  *      dev_change_net_namespace - move device to different nethost namespace
7910  *      @dev: device
7911  *      @net: network namespace
7912  *      @pat: If not NULL name pattern to try if the current device name
7913  *            is already taken in the destination network namespace.
7914  *
7915  *      This function shuts down a device interface and moves it
7916  *      to a new network namespace. On success 0 is returned, on
7917  *      a failure a netagive errno code is returned.
7918  *
7919  *      Callers must hold the rtnl semaphore.
7920  */
7921
7922 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7923 {
7924         int err;
7925
7926         ASSERT_RTNL();
7927
7928         /* Don't allow namespace local devices to be moved. */
7929         err = -EINVAL;
7930         if (dev->features & NETIF_F_NETNS_LOCAL)
7931                 goto out;
7932
7933         /* Ensure the device has been registrered */
7934         if (dev->reg_state != NETREG_REGISTERED)
7935                 goto out;
7936
7937         /* Get out if there is nothing todo */
7938         err = 0;
7939         if (net_eq(dev_net(dev), net))
7940                 goto out;
7941
7942         /* Pick the destination device name, and ensure
7943          * we can use it in the destination network namespace.
7944          */
7945         err = -EEXIST;
7946         if (__dev_get_by_name(net, dev->name)) {
7947                 /* We get here if we can't use the current device name */
7948                 if (!pat)
7949                         goto out;
7950                 if (dev_get_valid_name(net, dev, pat) < 0)
7951                         goto out;
7952         }
7953
7954         /*
7955          * And now a mini version of register_netdevice unregister_netdevice.
7956          */
7957
7958         /* If device is running close it first. */
7959         dev_close(dev);
7960
7961         /* And unlink it from device chain */
7962         err = -ENODEV;
7963         unlist_netdevice(dev);
7964
7965         synchronize_net();
7966
7967         /* Shutdown queueing discipline. */
7968         dev_shutdown(dev);
7969
7970         /* Notify protocols, that we are about to destroy
7971          * this device. They should clean all the things.
7972          *
7973          * Note that dev->reg_state stays at NETREG_REGISTERED.
7974          * This is wanted because this way 8021q and macvlan know
7975          * the device is just moving and can keep their slaves up.
7976          */
7977         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7978         rcu_barrier();
7979         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7980         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7981
7982         /*
7983          *      Flush the unicast and multicast chains
7984          */
7985         dev_uc_flush(dev);
7986         dev_mc_flush(dev);
7987
7988         /* Send a netdev-removed uevent to the old namespace */
7989         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7990         netdev_adjacent_del_links(dev);
7991
7992         /* Actually switch the network namespace */
7993         dev_net_set(dev, net);
7994
7995         /* If there is an ifindex conflict assign a new one */
7996         if (__dev_get_by_index(net, dev->ifindex))
7997                 dev->ifindex = dev_new_index(net);
7998
7999         /* Send a netdev-add uevent to the new namespace */
8000         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8001         netdev_adjacent_add_links(dev);
8002
8003         /* Fixup kobjects */
8004         err = device_rename(&dev->dev, dev->name);
8005         WARN_ON(err);
8006
8007         /* Add the device back in the hashes */
8008         list_netdevice(dev);
8009
8010         /* Notify protocols, that a new device appeared. */
8011         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8012
8013         /*
8014          *      Prevent userspace races by waiting until the network
8015          *      device is fully setup before sending notifications.
8016          */
8017         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8018
8019         synchronize_net();
8020         err = 0;
8021 out:
8022         return err;
8023 }
8024 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8025
8026 static int dev_cpu_dead(unsigned int oldcpu)
8027 {
8028         struct sk_buff **list_skb;
8029         struct sk_buff *skb;
8030         unsigned int cpu;
8031         struct softnet_data *sd, *oldsd;
8032
8033         local_irq_disable();
8034         cpu = smp_processor_id();
8035         sd = &per_cpu(softnet_data, cpu);
8036         oldsd = &per_cpu(softnet_data, oldcpu);
8037
8038         /* Find end of our completion_queue. */
8039         list_skb = &sd->completion_queue;
8040         while (*list_skb)
8041                 list_skb = &(*list_skb)->next;
8042         /* Append completion queue from offline CPU. */
8043         *list_skb = oldsd->completion_queue;
8044         oldsd->completion_queue = NULL;
8045
8046         /* Append output queue from offline CPU. */
8047         if (oldsd->output_queue) {
8048                 *sd->output_queue_tailp = oldsd->output_queue;
8049                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8050                 oldsd->output_queue = NULL;
8051                 oldsd->output_queue_tailp = &oldsd->output_queue;
8052         }
8053         /* Append NAPI poll list from offline CPU, with one exception :
8054          * process_backlog() must be called by cpu owning percpu backlog.
8055          * We properly handle process_queue & input_pkt_queue later.
8056          */
8057         while (!list_empty(&oldsd->poll_list)) {
8058                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8059                                                             struct napi_struct,
8060                                                             poll_list);
8061
8062                 list_del_init(&napi->poll_list);
8063                 if (napi->poll == process_backlog)
8064                         napi->state = 0;
8065                 else
8066                         ____napi_schedule(sd, napi);
8067         }
8068
8069         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8070         local_irq_enable();
8071
8072         /* Process offline CPU's input_pkt_queue */
8073         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8074                 netif_rx_ni(skb);
8075                 input_queue_head_incr(oldsd);
8076         }
8077         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8078                 netif_rx_ni(skb);
8079                 input_queue_head_incr(oldsd);
8080         }
8081
8082         return 0;
8083 }
8084
8085 /**
8086  *      netdev_increment_features - increment feature set by one
8087  *      @all: current feature set
8088  *      @one: new feature set
8089  *      @mask: mask feature set
8090  *
8091  *      Computes a new feature set after adding a device with feature set
8092  *      @one to the master device with current feature set @all.  Will not
8093  *      enable anything that is off in @mask. Returns the new feature set.
8094  */
8095 netdev_features_t netdev_increment_features(netdev_features_t all,
8096         netdev_features_t one, netdev_features_t mask)
8097 {
8098         if (mask & NETIF_F_HW_CSUM)
8099                 mask |= NETIF_F_CSUM_MASK;
8100         mask |= NETIF_F_VLAN_CHALLENGED;
8101
8102         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8103         all &= one | ~NETIF_F_ALL_FOR_ALL;
8104
8105         /* If one device supports hw checksumming, set for all. */
8106         if (all & NETIF_F_HW_CSUM)
8107                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8108
8109         return all;
8110 }
8111 EXPORT_SYMBOL(netdev_increment_features);
8112
8113 static struct hlist_head * __net_init netdev_create_hash(void)
8114 {
8115         int i;
8116         struct hlist_head *hash;
8117
8118         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8119         if (hash != NULL)
8120                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8121                         INIT_HLIST_HEAD(&hash[i]);
8122
8123         return hash;
8124 }
8125
8126 /* Initialize per network namespace state */
8127 static int __net_init netdev_init(struct net *net)
8128 {
8129         if (net != &init_net)
8130                 INIT_LIST_HEAD(&net->dev_base_head);
8131
8132         net->dev_name_head = netdev_create_hash();
8133         if (net->dev_name_head == NULL)
8134                 goto err_name;
8135
8136         net->dev_index_head = netdev_create_hash();
8137         if (net->dev_index_head == NULL)
8138                 goto err_idx;
8139
8140         return 0;
8141
8142 err_idx:
8143         kfree(net->dev_name_head);
8144 err_name:
8145         return -ENOMEM;
8146 }
8147
8148 /**
8149  *      netdev_drivername - network driver for the device
8150  *      @dev: network device
8151  *
8152  *      Determine network driver for device.
8153  */
8154 const char *netdev_drivername(const struct net_device *dev)
8155 {
8156         const struct device_driver *driver;
8157         const struct device *parent;
8158         const char *empty = "";
8159
8160         parent = dev->dev.parent;
8161         if (!parent)
8162                 return empty;
8163
8164         driver = parent->driver;
8165         if (driver && driver->name)
8166                 return driver->name;
8167         return empty;
8168 }
8169
8170 static void __netdev_printk(const char *level, const struct net_device *dev,
8171                             struct va_format *vaf)
8172 {
8173         if (dev && dev->dev.parent) {
8174                 dev_printk_emit(level[1] - '0',
8175                                 dev->dev.parent,
8176                                 "%s %s %s%s: %pV",
8177                                 dev_driver_string(dev->dev.parent),
8178                                 dev_name(dev->dev.parent),
8179                                 netdev_name(dev), netdev_reg_state(dev),
8180                                 vaf);
8181         } else if (dev) {
8182                 printk("%s%s%s: %pV",
8183                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8184         } else {
8185                 printk("%s(NULL net_device): %pV", level, vaf);
8186         }
8187 }
8188
8189 void netdev_printk(const char *level, const struct net_device *dev,
8190                    const char *format, ...)
8191 {
8192         struct va_format vaf;
8193         va_list args;
8194
8195         va_start(args, format);
8196
8197         vaf.fmt = format;
8198         vaf.va = &args;
8199
8200         __netdev_printk(level, dev, &vaf);
8201
8202         va_end(args);
8203 }
8204 EXPORT_SYMBOL(netdev_printk);
8205
8206 #define define_netdev_printk_level(func, level)                 \
8207 void func(const struct net_device *dev, const char *fmt, ...)   \
8208 {                                                               \
8209         struct va_format vaf;                                   \
8210         va_list args;                                           \
8211                                                                 \
8212         va_start(args, fmt);                                    \
8213                                                                 \
8214         vaf.fmt = fmt;                                          \
8215         vaf.va = &args;                                         \
8216                                                                 \
8217         __netdev_printk(level, dev, &vaf);                      \
8218                                                                 \
8219         va_end(args);                                           \
8220 }                                                               \
8221 EXPORT_SYMBOL(func);
8222
8223 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8224 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8225 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8226 define_netdev_printk_level(netdev_err, KERN_ERR);
8227 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8228 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8229 define_netdev_printk_level(netdev_info, KERN_INFO);
8230
8231 static void __net_exit netdev_exit(struct net *net)
8232 {
8233         kfree(net->dev_name_head);
8234         kfree(net->dev_index_head);
8235 }
8236
8237 static struct pernet_operations __net_initdata netdev_net_ops = {
8238         .init = netdev_init,
8239         .exit = netdev_exit,
8240 };
8241
8242 static void __net_exit default_device_exit(struct net *net)
8243 {
8244         struct net_device *dev, *aux;
8245         /*
8246          * Push all migratable network devices back to the
8247          * initial network namespace
8248          */
8249         rtnl_lock();
8250         for_each_netdev_safe(net, dev, aux) {
8251                 int err;
8252                 char fb_name[IFNAMSIZ];
8253
8254                 /* Ignore unmoveable devices (i.e. loopback) */
8255                 if (dev->features & NETIF_F_NETNS_LOCAL)
8256                         continue;
8257
8258                 /* Leave virtual devices for the generic cleanup */
8259                 if (dev->rtnl_link_ops)
8260                         continue;
8261
8262                 /* Push remaining network devices to init_net */
8263                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8264                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8265                 if (err) {
8266                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8267                                  __func__, dev->name, err);
8268                         BUG();
8269                 }
8270         }
8271         rtnl_unlock();
8272 }
8273
8274 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8275 {
8276         /* Return with the rtnl_lock held when there are no network
8277          * devices unregistering in any network namespace in net_list.
8278          */
8279         struct net *net;
8280         bool unregistering;
8281         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8282
8283         add_wait_queue(&netdev_unregistering_wq, &wait);
8284         for (;;) {
8285                 unregistering = false;
8286                 rtnl_lock();
8287                 list_for_each_entry(net, net_list, exit_list) {
8288                         if (net->dev_unreg_count > 0) {
8289                                 unregistering = true;
8290                                 break;
8291                         }
8292                 }
8293                 if (!unregistering)
8294                         break;
8295                 __rtnl_unlock();
8296
8297                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8298         }
8299         remove_wait_queue(&netdev_unregistering_wq, &wait);
8300 }
8301
8302 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8303 {
8304         /* At exit all network devices most be removed from a network
8305          * namespace.  Do this in the reverse order of registration.
8306          * Do this across as many network namespaces as possible to
8307          * improve batching efficiency.
8308          */
8309         struct net_device *dev;
8310         struct net *net;
8311         LIST_HEAD(dev_kill_list);
8312
8313         /* To prevent network device cleanup code from dereferencing
8314          * loopback devices or network devices that have been freed
8315          * wait here for all pending unregistrations to complete,
8316          * before unregistring the loopback device and allowing the
8317          * network namespace be freed.
8318          *
8319          * The netdev todo list containing all network devices
8320          * unregistrations that happen in default_device_exit_batch
8321          * will run in the rtnl_unlock() at the end of
8322          * default_device_exit_batch.
8323          */
8324         rtnl_lock_unregistering(net_list);
8325         list_for_each_entry(net, net_list, exit_list) {
8326                 for_each_netdev_reverse(net, dev) {
8327                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8328                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8329                         else
8330                                 unregister_netdevice_queue(dev, &dev_kill_list);
8331                 }
8332         }
8333         unregister_netdevice_many(&dev_kill_list);
8334         rtnl_unlock();
8335 }
8336
8337 static struct pernet_operations __net_initdata default_device_ops = {
8338         .exit = default_device_exit,
8339         .exit_batch = default_device_exit_batch,
8340 };
8341
8342 /*
8343  *      Initialize the DEV module. At boot time this walks the device list and
8344  *      unhooks any devices that fail to initialise (normally hardware not
8345  *      present) and leaves us with a valid list of present and active devices.
8346  *
8347  */
8348
8349 /*
8350  *       This is called single threaded during boot, so no need
8351  *       to take the rtnl semaphore.
8352  */
8353 static int __init net_dev_init(void)
8354 {
8355         int i, rc = -ENOMEM;
8356
8357         BUG_ON(!dev_boot_phase);
8358
8359         if (dev_proc_init())
8360                 goto out;
8361
8362         if (netdev_kobject_init())
8363                 goto out;
8364
8365         INIT_LIST_HEAD(&ptype_all);
8366         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8367                 INIT_LIST_HEAD(&ptype_base[i]);
8368
8369         INIT_LIST_HEAD(&offload_base);
8370
8371         if (register_pernet_subsys(&netdev_net_ops))
8372                 goto out;
8373
8374         /*
8375          *      Initialise the packet receive queues.
8376          */
8377
8378         for_each_possible_cpu(i) {
8379                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8380                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8381
8382                 INIT_WORK(flush, flush_backlog);
8383
8384                 skb_queue_head_init(&sd->input_pkt_queue);
8385                 skb_queue_head_init(&sd->process_queue);
8386                 INIT_LIST_HEAD(&sd->poll_list);
8387                 sd->output_queue_tailp = &sd->output_queue;
8388 #ifdef CONFIG_RPS
8389                 sd->csd.func = rps_trigger_softirq;
8390                 sd->csd.info = sd;
8391                 sd->cpu = i;
8392 #endif
8393
8394                 sd->backlog.poll = process_backlog;
8395                 sd->backlog.weight = weight_p;
8396         }
8397
8398         dev_boot_phase = 0;
8399
8400         /* The loopback device is special if any other network devices
8401          * is present in a network namespace the loopback device must
8402          * be present. Since we now dynamically allocate and free the
8403          * loopback device ensure this invariant is maintained by
8404          * keeping the loopback device as the first device on the
8405          * list of network devices.  Ensuring the loopback devices
8406          * is the first device that appears and the last network device
8407          * that disappears.
8408          */
8409         if (register_pernet_device(&loopback_net_ops))
8410                 goto out;
8411
8412         if (register_pernet_device(&default_device_ops))
8413                 goto out;
8414
8415         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8416         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8417
8418         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8419                                        NULL, dev_cpu_dead);
8420         WARN_ON(rc < 0);
8421         dst_subsys_init();
8422         rc = 0;
8423 out:
8424         return rc;
8425 }
8426
8427 subsys_initcall(net_dev_init);