gro: ensure frag0 meets IP header alignment
[linux-2.6-microblaze.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 /**
852  *      __dev_get_by_name       - find a device by its name
853  *      @net: the applicable net namespace
854  *      @name: name to find
855  *
856  *      Find an interface by name. Must be called under RTNL semaphore
857  *      or @dev_base_lock. If the name is found a pointer to the device
858  *      is returned. If the name is not found then %NULL is returned. The
859  *      reference counters are not incremented so the caller must be
860  *      careful with locks.
861  */
862
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865         struct netdev_name_node *node_name;
866
867         node_name = netdev_name_node_lookup(net, name);
868         return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871
872 /**
873  * dev_get_by_name_rcu  - find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886         struct netdev_name_node *node_name;
887
888         node_name = netdev_name_node_lookup_rcu(net, name);
889         return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893 /**
894  *      dev_get_by_name         - find a device by its name
895  *      @net: the applicable net namespace
896  *      @name: name to find
897  *
898  *      Find an interface by name. This can be called from any
899  *      context and does its own locking. The returned handle has
900  *      the usage count incremented and the caller must use dev_put() to
901  *      release it when it is no longer needed. %NULL is returned if no
902  *      matching device is found.
903  */
904
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907         struct net_device *dev;
908
909         rcu_read_lock();
910         dev = dev_get_by_name_rcu(net, name);
911         if (dev)
912                 dev_hold(dev);
913         rcu_read_unlock();
914         return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917
918 /**
919  *      __dev_get_by_index - find a device by its ifindex
920  *      @net: the applicable net namespace
921  *      @ifindex: index of device
922  *
923  *      Search for an interface by index. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not
925  *      had its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold either the RTNL semaphore
927  *      or @dev_base_lock.
928  */
929
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932         struct net_device *dev;
933         struct hlist_head *head = dev_index_hash(net, ifindex);
934
935         hlist_for_each_entry(dev, head, index_hlist)
936                 if (dev->ifindex == ifindex)
937                         return dev;
938
939         return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942
943 /**
944  *      dev_get_by_index_rcu - find a device by its ifindex
945  *      @net: the applicable net namespace
946  *      @ifindex: index of device
947  *
948  *      Search for an interface by index. Returns %NULL if the device
949  *      is not found or a pointer to the device. The device has not
950  *      had its reference counter increased so the caller must be careful
951  *      about locking. The caller must hold RCU lock.
952  */
953
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956         struct net_device *dev;
957         struct hlist_head *head = dev_index_hash(net, ifindex);
958
959         hlist_for_each_entry_rcu(dev, head, index_hlist)
960                 if (dev->ifindex == ifindex)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968 /**
969  *      dev_get_by_index - find a device by its ifindex
970  *      @net: the applicable net namespace
971  *      @ifindex: index of device
972  *
973  *      Search for an interface by index. Returns NULL if the device
974  *      is not found or a pointer to the device. The device returned has
975  *      had a reference added and the pointer is safe until the user calls
976  *      dev_put to indicate they have finished with it.
977  */
978
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981         struct net_device *dev;
982
983         rcu_read_lock();
984         dev = dev_get_by_index_rcu(net, ifindex);
985         if (dev)
986                 dev_hold(dev);
987         rcu_read_unlock();
988         return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991
992 /**
993  *      dev_get_by_napi_id - find a device by napi_id
994  *      @napi_id: ID of the NAPI struct
995  *
996  *      Search for an interface by NAPI ID. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not had
998  *      its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004         struct napi_struct *napi;
1005
1006         WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008         if (napi_id < MIN_NAPI_ID)
1009                 return NULL;
1010
1011         napi = napi_by_id(napi_id);
1012
1013         return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017 /**
1018  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *      @net: network namespace
1020  *      @name: a pointer to the buffer where the name will be stored.
1021  *      @ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025         struct net_device *dev;
1026         int ret;
1027
1028         down_read(&devnet_rename_sem);
1029         rcu_read_lock();
1030
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (!dev) {
1033                 ret = -ENODEV;
1034                 goto out;
1035         }
1036
1037         strcpy(name, dev->name);
1038
1039         ret = 0;
1040 out:
1041         rcu_read_unlock();
1042         up_read(&devnet_rename_sem);
1043         return ret;
1044 }
1045
1046 /**
1047  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *      @net: the applicable net namespace
1049  *      @type: media type of device
1050  *      @ha: hardware address
1051  *
1052  *      Search for an interface by MAC address. Returns NULL if the device
1053  *      is not found or a pointer to the device.
1054  *      The caller must hold RCU or RTNL.
1055  *      The returned device has not had its ref count increased
1056  *      and the caller must therefore be careful about locking
1057  *
1058  */
1059
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061                                        const char *ha)
1062 {
1063         struct net_device *dev;
1064
1065         for_each_netdev_rcu(net, dev)
1066                 if (dev->type == type &&
1067                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1068                         return dev;
1069
1070         return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076         struct net_device *dev, *ret = NULL;
1077
1078         rcu_read_lock();
1079         for_each_netdev_rcu(net, dev)
1080                 if (dev->type == type) {
1081                         dev_hold(dev);
1082                         ret = dev;
1083                         break;
1084                 }
1085         rcu_read_unlock();
1086         return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090 /**
1091  *      __dev_get_by_flags - find any device with given flags
1092  *      @net: the applicable net namespace
1093  *      @if_flags: IFF_* values
1094  *      @mask: bitmask of bits in if_flags to check
1095  *
1096  *      Search for any interface with the given flags. Returns NULL if a device
1097  *      is not found or a pointer to the device. Must be called inside
1098  *      rtnl_lock(), and result refcount is unchanged.
1099  */
1100
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102                                       unsigned short mask)
1103 {
1104         struct net_device *dev, *ret;
1105
1106         ASSERT_RTNL();
1107
1108         ret = NULL;
1109         for_each_netdev(net, dev) {
1110                 if (((dev->flags ^ if_flags) & mask) == 0) {
1111                         ret = dev;
1112                         break;
1113                 }
1114         }
1115         return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119 /**
1120  *      dev_valid_name - check if name is okay for network device
1121  *      @name: name string
1122  *
1123  *      Network device names need to be valid file names to
1124  *      allow sysfs to work.  We also disallow any kind of
1125  *      whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129         if (*name == '\0')
1130                 return false;
1131         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132                 return false;
1133         if (!strcmp(name, ".") || !strcmp(name, ".."))
1134                 return false;
1135
1136         while (*name) {
1137                 if (*name == '/' || *name == ':' || isspace(*name))
1138                         return false;
1139                 name++;
1140         }
1141         return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144
1145 /**
1146  *      __dev_alloc_name - allocate a name for a device
1147  *      @net: network namespace to allocate the device name in
1148  *      @name: name format string
1149  *      @buf:  scratch buffer and result name string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162         int i = 0;
1163         const char *p;
1164         const int max_netdevices = 8*PAGE_SIZE;
1165         unsigned long *inuse;
1166         struct net_device *d;
1167
1168         if (!dev_valid_name(name))
1169                 return -EINVAL;
1170
1171         p = strchr(name, '%');
1172         if (p) {
1173                 /*
1174                  * Verify the string as this thing may have come from
1175                  * the user.  There must be either one "%d" and no other "%"
1176                  * characters.
1177                  */
1178                 if (p[1] != 'd' || strchr(p + 2, '%'))
1179                         return -EINVAL;
1180
1181                 /* Use one page as a bit array of possible slots */
1182                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183                 if (!inuse)
1184                         return -ENOMEM;
1185
1186                 for_each_netdev(net, d) {
1187                         struct netdev_name_node *name_node;
1188                         list_for_each_entry(name_node, &d->name_node->list, list) {
1189                                 if (!sscanf(name_node->name, name, &i))
1190                                         continue;
1191                                 if (i < 0 || i >= max_netdevices)
1192                                         continue;
1193
1194                                 /*  avoid cases where sscanf is not exact inverse of printf */
1195                                 snprintf(buf, IFNAMSIZ, name, i);
1196                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1197                                         set_bit(i, inuse);
1198                         }
1199                         if (!sscanf(d->name, name, &i))
1200                                 continue;
1201                         if (i < 0 || i >= max_netdevices)
1202                                 continue;
1203
1204                         /*  avoid cases where sscanf is not exact inverse of printf */
1205                         snprintf(buf, IFNAMSIZ, name, i);
1206                         if (!strncmp(buf, d->name, IFNAMSIZ))
1207                                 set_bit(i, inuse);
1208                 }
1209
1210                 i = find_first_zero_bit(inuse, max_netdevices);
1211                 free_page((unsigned long) inuse);
1212         }
1213
1214         snprintf(buf, IFNAMSIZ, name, i);
1215         if (!__dev_get_by_name(net, buf))
1216                 return i;
1217
1218         /* It is possible to run out of possible slots
1219          * when the name is long and there isn't enough space left
1220          * for the digits, or if all bits are used.
1221          */
1222         return -ENFILE;
1223 }
1224
1225 static int dev_alloc_name_ns(struct net *net,
1226                              struct net_device *dev,
1227                              const char *name)
1228 {
1229         char buf[IFNAMSIZ];
1230         int ret;
1231
1232         BUG_ON(!net);
1233         ret = __dev_alloc_name(net, name, buf);
1234         if (ret >= 0)
1235                 strlcpy(dev->name, buf, IFNAMSIZ);
1236         return ret;
1237 }
1238
1239 /**
1240  *      dev_alloc_name - allocate a name for a device
1241  *      @dev: device
1242  *      @name: name format string
1243  *
1244  *      Passed a format string - eg "lt%d" it will try and find a suitable
1245  *      id. It scans list of devices to build up a free map, then chooses
1246  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1247  *      while allocating the name and adding the device in order to avoid
1248  *      duplicates.
1249  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1250  *      Returns the number of the unit assigned or a negative errno code.
1251  */
1252
1253 int dev_alloc_name(struct net_device *dev, const char *name)
1254 {
1255         return dev_alloc_name_ns(dev_net(dev), dev, name);
1256 }
1257 EXPORT_SYMBOL(dev_alloc_name);
1258
1259 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1260                               const char *name)
1261 {
1262         BUG_ON(!net);
1263
1264         if (!dev_valid_name(name))
1265                 return -EINVAL;
1266
1267         if (strchr(name, '%'))
1268                 return dev_alloc_name_ns(net, dev, name);
1269         else if (__dev_get_by_name(net, name))
1270                 return -EEXIST;
1271         else if (dev->name != name)
1272                 strlcpy(dev->name, name, IFNAMSIZ);
1273
1274         return 0;
1275 }
1276
1277 /**
1278  *      dev_change_name - change name of a device
1279  *      @dev: device
1280  *      @newname: name (or format string) must be at least IFNAMSIZ
1281  *
1282  *      Change name of a device, can pass format strings "eth%d".
1283  *      for wildcarding.
1284  */
1285 int dev_change_name(struct net_device *dev, const char *newname)
1286 {
1287         unsigned char old_assign_type;
1288         char oldname[IFNAMSIZ];
1289         int err = 0;
1290         int ret;
1291         struct net *net;
1292
1293         ASSERT_RTNL();
1294         BUG_ON(!dev_net(dev));
1295
1296         net = dev_net(dev);
1297
1298         /* Some auto-enslaved devices e.g. failover slaves are
1299          * special, as userspace might rename the device after
1300          * the interface had been brought up and running since
1301          * the point kernel initiated auto-enslavement. Allow
1302          * live name change even when these slave devices are
1303          * up and running.
1304          *
1305          * Typically, users of these auto-enslaving devices
1306          * don't actually care about slave name change, as
1307          * they are supposed to operate on master interface
1308          * directly.
1309          */
1310         if (dev->flags & IFF_UP &&
1311             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1312                 return -EBUSY;
1313
1314         down_write(&devnet_rename_sem);
1315
1316         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1317                 up_write(&devnet_rename_sem);
1318                 return 0;
1319         }
1320
1321         memcpy(oldname, dev->name, IFNAMSIZ);
1322
1323         err = dev_get_valid_name(net, dev, newname);
1324         if (err < 0) {
1325                 up_write(&devnet_rename_sem);
1326                 return err;
1327         }
1328
1329         if (oldname[0] && !strchr(oldname, '%'))
1330                 netdev_info(dev, "renamed from %s\n", oldname);
1331
1332         old_assign_type = dev->name_assign_type;
1333         dev->name_assign_type = NET_NAME_RENAMED;
1334
1335 rollback:
1336         ret = device_rename(&dev->dev, dev->name);
1337         if (ret) {
1338                 memcpy(dev->name, oldname, IFNAMSIZ);
1339                 dev->name_assign_type = old_assign_type;
1340                 up_write(&devnet_rename_sem);
1341                 return ret;
1342         }
1343
1344         up_write(&devnet_rename_sem);
1345
1346         netdev_adjacent_rename_links(dev, oldname);
1347
1348         write_lock_bh(&dev_base_lock);
1349         netdev_name_node_del(dev->name_node);
1350         write_unlock_bh(&dev_base_lock);
1351
1352         synchronize_rcu();
1353
1354         write_lock_bh(&dev_base_lock);
1355         netdev_name_node_add(net, dev->name_node);
1356         write_unlock_bh(&dev_base_lock);
1357
1358         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1359         ret = notifier_to_errno(ret);
1360
1361         if (ret) {
1362                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1363                 if (err >= 0) {
1364                         err = ret;
1365                         down_write(&devnet_rename_sem);
1366                         memcpy(dev->name, oldname, IFNAMSIZ);
1367                         memcpy(oldname, newname, IFNAMSIZ);
1368                         dev->name_assign_type = old_assign_type;
1369                         old_assign_type = NET_NAME_RENAMED;
1370                         goto rollback;
1371                 } else {
1372                         pr_err("%s: name change rollback failed: %d\n",
1373                                dev->name, ret);
1374                 }
1375         }
1376
1377         return err;
1378 }
1379
1380 /**
1381  *      dev_set_alias - change ifalias of a device
1382  *      @dev: device
1383  *      @alias: name up to IFALIASZ
1384  *      @len: limit of bytes to copy from info
1385  *
1386  *      Set ifalias for a device,
1387  */
1388 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1389 {
1390         struct dev_ifalias *new_alias = NULL;
1391
1392         if (len >= IFALIASZ)
1393                 return -EINVAL;
1394
1395         if (len) {
1396                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1397                 if (!new_alias)
1398                         return -ENOMEM;
1399
1400                 memcpy(new_alias->ifalias, alias, len);
1401                 new_alias->ifalias[len] = 0;
1402         }
1403
1404         mutex_lock(&ifalias_mutex);
1405         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1406                                         mutex_is_locked(&ifalias_mutex));
1407         mutex_unlock(&ifalias_mutex);
1408
1409         if (new_alias)
1410                 kfree_rcu(new_alias, rcuhead);
1411
1412         return len;
1413 }
1414 EXPORT_SYMBOL(dev_set_alias);
1415
1416 /**
1417  *      dev_get_alias - get ifalias of a device
1418  *      @dev: device
1419  *      @name: buffer to store name of ifalias
1420  *      @len: size of buffer
1421  *
1422  *      get ifalias for a device.  Caller must make sure dev cannot go
1423  *      away,  e.g. rcu read lock or own a reference count to device.
1424  */
1425 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1426 {
1427         const struct dev_ifalias *alias;
1428         int ret = 0;
1429
1430         rcu_read_lock();
1431         alias = rcu_dereference(dev->ifalias);
1432         if (alias)
1433                 ret = snprintf(name, len, "%s", alias->ifalias);
1434         rcu_read_unlock();
1435
1436         return ret;
1437 }
1438
1439 /**
1440  *      netdev_features_change - device changes features
1441  *      @dev: device to cause notification
1442  *
1443  *      Called to indicate a device has changed features.
1444  */
1445 void netdev_features_change(struct net_device *dev)
1446 {
1447         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1448 }
1449 EXPORT_SYMBOL(netdev_features_change);
1450
1451 /**
1452  *      netdev_state_change - device changes state
1453  *      @dev: device to cause notification
1454  *
1455  *      Called to indicate a device has changed state. This function calls
1456  *      the notifier chains for netdev_chain and sends a NEWLINK message
1457  *      to the routing socket.
1458  */
1459 void netdev_state_change(struct net_device *dev)
1460 {
1461         if (dev->flags & IFF_UP) {
1462                 struct netdev_notifier_change_info change_info = {
1463                         .info.dev = dev,
1464                 };
1465
1466                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1467                                               &change_info.info);
1468                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1469         }
1470 }
1471 EXPORT_SYMBOL(netdev_state_change);
1472
1473 /**
1474  * __netdev_notify_peers - notify network peers about existence of @dev,
1475  * to be called when rtnl lock is already held.
1476  * @dev: network device
1477  *
1478  * Generate traffic such that interested network peers are aware of
1479  * @dev, such as by generating a gratuitous ARP. This may be used when
1480  * a device wants to inform the rest of the network about some sort of
1481  * reconfiguration such as a failover event or virtual machine
1482  * migration.
1483  */
1484 void __netdev_notify_peers(struct net_device *dev)
1485 {
1486         ASSERT_RTNL();
1487         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1488         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1489 }
1490 EXPORT_SYMBOL(__netdev_notify_peers);
1491
1492 /**
1493  * netdev_notify_peers - notify network peers about existence of @dev
1494  * @dev: network device
1495  *
1496  * Generate traffic such that interested network peers are aware of
1497  * @dev, such as by generating a gratuitous ARP. This may be used when
1498  * a device wants to inform the rest of the network about some sort of
1499  * reconfiguration such as a failover event or virtual machine
1500  * migration.
1501  */
1502 void netdev_notify_peers(struct net_device *dev)
1503 {
1504         rtnl_lock();
1505         __netdev_notify_peers(dev);
1506         rtnl_unlock();
1507 }
1508 EXPORT_SYMBOL(netdev_notify_peers);
1509
1510 static int napi_threaded_poll(void *data);
1511
1512 static int napi_kthread_create(struct napi_struct *n)
1513 {
1514         int err = 0;
1515
1516         /* Create and wake up the kthread once to put it in
1517          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1518          * warning and work with loadavg.
1519          */
1520         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1521                                 n->dev->name, n->napi_id);
1522         if (IS_ERR(n->thread)) {
1523                 err = PTR_ERR(n->thread);
1524                 pr_err("kthread_run failed with err %d\n", err);
1525                 n->thread = NULL;
1526         }
1527
1528         return err;
1529 }
1530
1531 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1532 {
1533         const struct net_device_ops *ops = dev->netdev_ops;
1534         int ret;
1535
1536         ASSERT_RTNL();
1537
1538         if (!netif_device_present(dev)) {
1539                 /* may be detached because parent is runtime-suspended */
1540                 if (dev->dev.parent)
1541                         pm_runtime_resume(dev->dev.parent);
1542                 if (!netif_device_present(dev))
1543                         return -ENODEV;
1544         }
1545
1546         /* Block netpoll from trying to do any rx path servicing.
1547          * If we don't do this there is a chance ndo_poll_controller
1548          * or ndo_poll may be running while we open the device
1549          */
1550         netpoll_poll_disable(dev);
1551
1552         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1553         ret = notifier_to_errno(ret);
1554         if (ret)
1555                 return ret;
1556
1557         set_bit(__LINK_STATE_START, &dev->state);
1558
1559         if (ops->ndo_validate_addr)
1560                 ret = ops->ndo_validate_addr(dev);
1561
1562         if (!ret && ops->ndo_open)
1563                 ret = ops->ndo_open(dev);
1564
1565         netpoll_poll_enable(dev);
1566
1567         if (ret)
1568                 clear_bit(__LINK_STATE_START, &dev->state);
1569         else {
1570                 dev->flags |= IFF_UP;
1571                 dev_set_rx_mode(dev);
1572                 dev_activate(dev);
1573                 add_device_randomness(dev->dev_addr, dev->addr_len);
1574         }
1575
1576         return ret;
1577 }
1578
1579 /**
1580  *      dev_open        - prepare an interface for use.
1581  *      @dev: device to open
1582  *      @extack: netlink extended ack
1583  *
1584  *      Takes a device from down to up state. The device's private open
1585  *      function is invoked and then the multicast lists are loaded. Finally
1586  *      the device is moved into the up state and a %NETDEV_UP message is
1587  *      sent to the netdev notifier chain.
1588  *
1589  *      Calling this function on an active interface is a nop. On a failure
1590  *      a negative errno code is returned.
1591  */
1592 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1593 {
1594         int ret;
1595
1596         if (dev->flags & IFF_UP)
1597                 return 0;
1598
1599         ret = __dev_open(dev, extack);
1600         if (ret < 0)
1601                 return ret;
1602
1603         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1604         call_netdevice_notifiers(NETDEV_UP, dev);
1605
1606         return ret;
1607 }
1608 EXPORT_SYMBOL(dev_open);
1609
1610 static void __dev_close_many(struct list_head *head)
1611 {
1612         struct net_device *dev;
1613
1614         ASSERT_RTNL();
1615         might_sleep();
1616
1617         list_for_each_entry(dev, head, close_list) {
1618                 /* Temporarily disable netpoll until the interface is down */
1619                 netpoll_poll_disable(dev);
1620
1621                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1622
1623                 clear_bit(__LINK_STATE_START, &dev->state);
1624
1625                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1626                  * can be even on different cpu. So just clear netif_running().
1627                  *
1628                  * dev->stop() will invoke napi_disable() on all of it's
1629                  * napi_struct instances on this device.
1630                  */
1631                 smp_mb__after_atomic(); /* Commit netif_running(). */
1632         }
1633
1634         dev_deactivate_many(head);
1635
1636         list_for_each_entry(dev, head, close_list) {
1637                 const struct net_device_ops *ops = dev->netdev_ops;
1638
1639                 /*
1640                  *      Call the device specific close. This cannot fail.
1641                  *      Only if device is UP
1642                  *
1643                  *      We allow it to be called even after a DETACH hot-plug
1644                  *      event.
1645                  */
1646                 if (ops->ndo_stop)
1647                         ops->ndo_stop(dev);
1648
1649                 dev->flags &= ~IFF_UP;
1650                 netpoll_poll_enable(dev);
1651         }
1652 }
1653
1654 static void __dev_close(struct net_device *dev)
1655 {
1656         LIST_HEAD(single);
1657
1658         list_add(&dev->close_list, &single);
1659         __dev_close_many(&single);
1660         list_del(&single);
1661 }
1662
1663 void dev_close_many(struct list_head *head, bool unlink)
1664 {
1665         struct net_device *dev, *tmp;
1666
1667         /* Remove the devices that don't need to be closed */
1668         list_for_each_entry_safe(dev, tmp, head, close_list)
1669                 if (!(dev->flags & IFF_UP))
1670                         list_del_init(&dev->close_list);
1671
1672         __dev_close_many(head);
1673
1674         list_for_each_entry_safe(dev, tmp, head, close_list) {
1675                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1676                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1677                 if (unlink)
1678                         list_del_init(&dev->close_list);
1679         }
1680 }
1681 EXPORT_SYMBOL(dev_close_many);
1682
1683 /**
1684  *      dev_close - shutdown an interface.
1685  *      @dev: device to shutdown
1686  *
1687  *      This function moves an active device into down state. A
1688  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1689  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1690  *      chain.
1691  */
1692 void dev_close(struct net_device *dev)
1693 {
1694         if (dev->flags & IFF_UP) {
1695                 LIST_HEAD(single);
1696
1697                 list_add(&dev->close_list, &single);
1698                 dev_close_many(&single, true);
1699                 list_del(&single);
1700         }
1701 }
1702 EXPORT_SYMBOL(dev_close);
1703
1704
1705 /**
1706  *      dev_disable_lro - disable Large Receive Offload on a device
1707  *      @dev: device
1708  *
1709  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1710  *      called under RTNL.  This is needed if received packets may be
1711  *      forwarded to another interface.
1712  */
1713 void dev_disable_lro(struct net_device *dev)
1714 {
1715         struct net_device *lower_dev;
1716         struct list_head *iter;
1717
1718         dev->wanted_features &= ~NETIF_F_LRO;
1719         netdev_update_features(dev);
1720
1721         if (unlikely(dev->features & NETIF_F_LRO))
1722                 netdev_WARN(dev, "failed to disable LRO!\n");
1723
1724         netdev_for_each_lower_dev(dev, lower_dev, iter)
1725                 dev_disable_lro(lower_dev);
1726 }
1727 EXPORT_SYMBOL(dev_disable_lro);
1728
1729 /**
1730  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1731  *      @dev: device
1732  *
1733  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1734  *      called under RTNL.  This is needed if Generic XDP is installed on
1735  *      the device.
1736  */
1737 static void dev_disable_gro_hw(struct net_device *dev)
1738 {
1739         dev->wanted_features &= ~NETIF_F_GRO_HW;
1740         netdev_update_features(dev);
1741
1742         if (unlikely(dev->features & NETIF_F_GRO_HW))
1743                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1744 }
1745
1746 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1747 {
1748 #define N(val)                                          \
1749         case NETDEV_##val:                              \
1750                 return "NETDEV_" __stringify(val);
1751         switch (cmd) {
1752         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1753         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1754         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1755         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1756         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1757         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1758         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1759         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1760         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1761         N(PRE_CHANGEADDR)
1762         }
1763 #undef N
1764         return "UNKNOWN_NETDEV_EVENT";
1765 }
1766 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1767
1768 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1769                                    struct net_device *dev)
1770 {
1771         struct netdev_notifier_info info = {
1772                 .dev = dev,
1773         };
1774
1775         return nb->notifier_call(nb, val, &info);
1776 }
1777
1778 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1779                                              struct net_device *dev)
1780 {
1781         int err;
1782
1783         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1784         err = notifier_to_errno(err);
1785         if (err)
1786                 return err;
1787
1788         if (!(dev->flags & IFF_UP))
1789                 return 0;
1790
1791         call_netdevice_notifier(nb, NETDEV_UP, dev);
1792         return 0;
1793 }
1794
1795 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1796                                                 struct net_device *dev)
1797 {
1798         if (dev->flags & IFF_UP) {
1799                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1800                                         dev);
1801                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1802         }
1803         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1804 }
1805
1806 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1807                                                  struct net *net)
1808 {
1809         struct net_device *dev;
1810         int err;
1811
1812         for_each_netdev(net, dev) {
1813                 err = call_netdevice_register_notifiers(nb, dev);
1814                 if (err)
1815                         goto rollback;
1816         }
1817         return 0;
1818
1819 rollback:
1820         for_each_netdev_continue_reverse(net, dev)
1821                 call_netdevice_unregister_notifiers(nb, dev);
1822         return err;
1823 }
1824
1825 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1826                                                     struct net *net)
1827 {
1828         struct net_device *dev;
1829
1830         for_each_netdev(net, dev)
1831                 call_netdevice_unregister_notifiers(nb, dev);
1832 }
1833
1834 static int dev_boot_phase = 1;
1835
1836 /**
1837  * register_netdevice_notifier - register a network notifier block
1838  * @nb: notifier
1839  *
1840  * Register a notifier to be called when network device events occur.
1841  * The notifier passed is linked into the kernel structures and must
1842  * not be reused until it has been unregistered. A negative errno code
1843  * is returned on a failure.
1844  *
1845  * When registered all registration and up events are replayed
1846  * to the new notifier to allow device to have a race free
1847  * view of the network device list.
1848  */
1849
1850 int register_netdevice_notifier(struct notifier_block *nb)
1851 {
1852         struct net *net;
1853         int err;
1854
1855         /* Close race with setup_net() and cleanup_net() */
1856         down_write(&pernet_ops_rwsem);
1857         rtnl_lock();
1858         err = raw_notifier_chain_register(&netdev_chain, nb);
1859         if (err)
1860                 goto unlock;
1861         if (dev_boot_phase)
1862                 goto unlock;
1863         for_each_net(net) {
1864                 err = call_netdevice_register_net_notifiers(nb, net);
1865                 if (err)
1866                         goto rollback;
1867         }
1868
1869 unlock:
1870         rtnl_unlock();
1871         up_write(&pernet_ops_rwsem);
1872         return err;
1873
1874 rollback:
1875         for_each_net_continue_reverse(net)
1876                 call_netdevice_unregister_net_notifiers(nb, net);
1877
1878         raw_notifier_chain_unregister(&netdev_chain, nb);
1879         goto unlock;
1880 }
1881 EXPORT_SYMBOL(register_netdevice_notifier);
1882
1883 /**
1884  * unregister_netdevice_notifier - unregister a network notifier block
1885  * @nb: notifier
1886  *
1887  * Unregister a notifier previously registered by
1888  * register_netdevice_notifier(). The notifier is unlinked into the
1889  * kernel structures and may then be reused. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * After unregistering unregister and down device events are synthesized
1893  * for all devices on the device list to the removed notifier to remove
1894  * the need for special case cleanup code.
1895  */
1896
1897 int unregister_netdevice_notifier(struct notifier_block *nb)
1898 {
1899         struct net *net;
1900         int err;
1901
1902         /* Close race with setup_net() and cleanup_net() */
1903         down_write(&pernet_ops_rwsem);
1904         rtnl_lock();
1905         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1906         if (err)
1907                 goto unlock;
1908
1909         for_each_net(net)
1910                 call_netdevice_unregister_net_notifiers(nb, net);
1911
1912 unlock:
1913         rtnl_unlock();
1914         up_write(&pernet_ops_rwsem);
1915         return err;
1916 }
1917 EXPORT_SYMBOL(unregister_netdevice_notifier);
1918
1919 static int __register_netdevice_notifier_net(struct net *net,
1920                                              struct notifier_block *nb,
1921                                              bool ignore_call_fail)
1922 {
1923         int err;
1924
1925         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1926         if (err)
1927                 return err;
1928         if (dev_boot_phase)
1929                 return 0;
1930
1931         err = call_netdevice_register_net_notifiers(nb, net);
1932         if (err && !ignore_call_fail)
1933                 goto chain_unregister;
1934
1935         return 0;
1936
1937 chain_unregister:
1938         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939         return err;
1940 }
1941
1942 static int __unregister_netdevice_notifier_net(struct net *net,
1943                                                struct notifier_block *nb)
1944 {
1945         int err;
1946
1947         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1948         if (err)
1949                 return err;
1950
1951         call_netdevice_unregister_net_notifiers(nb, net);
1952         return 0;
1953 }
1954
1955 /**
1956  * register_netdevice_notifier_net - register a per-netns network notifier block
1957  * @net: network namespace
1958  * @nb: notifier
1959  *
1960  * Register a notifier to be called when network device events occur.
1961  * The notifier passed is linked into the kernel structures and must
1962  * not be reused until it has been unregistered. A negative errno code
1963  * is returned on a failure.
1964  *
1965  * When registered all registration and up events are replayed
1966  * to the new notifier to allow device to have a race free
1967  * view of the network device list.
1968  */
1969
1970 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1971 {
1972         int err;
1973
1974         rtnl_lock();
1975         err = __register_netdevice_notifier_net(net, nb, false);
1976         rtnl_unlock();
1977         return err;
1978 }
1979 EXPORT_SYMBOL(register_netdevice_notifier_net);
1980
1981 /**
1982  * unregister_netdevice_notifier_net - unregister a per-netns
1983  *                                     network notifier block
1984  * @net: network namespace
1985  * @nb: notifier
1986  *
1987  * Unregister a notifier previously registered by
1988  * register_netdevice_notifier(). The notifier is unlinked into the
1989  * kernel structures and may then be reused. A negative errno code
1990  * is returned on a failure.
1991  *
1992  * After unregistering unregister and down device events are synthesized
1993  * for all devices on the device list to the removed notifier to remove
1994  * the need for special case cleanup code.
1995  */
1996
1997 int unregister_netdevice_notifier_net(struct net *net,
1998                                       struct notifier_block *nb)
1999 {
2000         int err;
2001
2002         rtnl_lock();
2003         err = __unregister_netdevice_notifier_net(net, nb);
2004         rtnl_unlock();
2005         return err;
2006 }
2007 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2008
2009 int register_netdevice_notifier_dev_net(struct net_device *dev,
2010                                         struct notifier_block *nb,
2011                                         struct netdev_net_notifier *nn)
2012 {
2013         int err;
2014
2015         rtnl_lock();
2016         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2017         if (!err) {
2018                 nn->nb = nb;
2019                 list_add(&nn->list, &dev->net_notifier_list);
2020         }
2021         rtnl_unlock();
2022         return err;
2023 }
2024 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2025
2026 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2027                                           struct notifier_block *nb,
2028                                           struct netdev_net_notifier *nn)
2029 {
2030         int err;
2031
2032         rtnl_lock();
2033         list_del(&nn->list);
2034         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2035         rtnl_unlock();
2036         return err;
2037 }
2038 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2039
2040 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2041                                              struct net *net)
2042 {
2043         struct netdev_net_notifier *nn;
2044
2045         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2046                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2047                 __register_netdevice_notifier_net(net, nn->nb, true);
2048         }
2049 }
2050
2051 /**
2052  *      call_netdevice_notifiers_info - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @info: notifier information data
2055  *
2056  *      Call all network notifier blocks.  Parameters and return value
2057  *      are as for raw_notifier_call_chain().
2058  */
2059
2060 static int call_netdevice_notifiers_info(unsigned long val,
2061                                          struct netdev_notifier_info *info)
2062 {
2063         struct net *net = dev_net(info->dev);
2064         int ret;
2065
2066         ASSERT_RTNL();
2067
2068         /* Run per-netns notifier block chain first, then run the global one.
2069          * Hopefully, one day, the global one is going to be removed after
2070          * all notifier block registrators get converted to be per-netns.
2071          */
2072         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2073         if (ret & NOTIFY_STOP_MASK)
2074                 return ret;
2075         return raw_notifier_call_chain(&netdev_chain, val, info);
2076 }
2077
2078 static int call_netdevice_notifiers_extack(unsigned long val,
2079                                            struct net_device *dev,
2080                                            struct netlink_ext_ack *extack)
2081 {
2082         struct netdev_notifier_info info = {
2083                 .dev = dev,
2084                 .extack = extack,
2085         };
2086
2087         return call_netdevice_notifiers_info(val, &info);
2088 }
2089
2090 /**
2091  *      call_netdevice_notifiers - call all network notifier blocks
2092  *      @val: value passed unmodified to notifier function
2093  *      @dev: net_device pointer passed unmodified to notifier function
2094  *
2095  *      Call all network notifier blocks.  Parameters and return value
2096  *      are as for raw_notifier_call_chain().
2097  */
2098
2099 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2100 {
2101         return call_netdevice_notifiers_extack(val, dev, NULL);
2102 }
2103 EXPORT_SYMBOL(call_netdevice_notifiers);
2104
2105 /**
2106  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2107  *      @val: value passed unmodified to notifier function
2108  *      @dev: net_device pointer passed unmodified to notifier function
2109  *      @arg: additional u32 argument passed to the notifier function
2110  *
2111  *      Call all network notifier blocks.  Parameters and return value
2112  *      are as for raw_notifier_call_chain().
2113  */
2114 static int call_netdevice_notifiers_mtu(unsigned long val,
2115                                         struct net_device *dev, u32 arg)
2116 {
2117         struct netdev_notifier_info_ext info = {
2118                 .info.dev = dev,
2119                 .ext.mtu = arg,
2120         };
2121
2122         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2123
2124         return call_netdevice_notifiers_info(val, &info.info);
2125 }
2126
2127 #ifdef CONFIG_NET_INGRESS
2128 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2129
2130 void net_inc_ingress_queue(void)
2131 {
2132         static_branch_inc(&ingress_needed_key);
2133 }
2134 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2135
2136 void net_dec_ingress_queue(void)
2137 {
2138         static_branch_dec(&ingress_needed_key);
2139 }
2140 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2141 #endif
2142
2143 #ifdef CONFIG_NET_EGRESS
2144 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2145
2146 void net_inc_egress_queue(void)
2147 {
2148         static_branch_inc(&egress_needed_key);
2149 }
2150 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2151
2152 void net_dec_egress_queue(void)
2153 {
2154         static_branch_dec(&egress_needed_key);
2155 }
2156 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2157 #endif
2158
2159 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2160 #ifdef CONFIG_JUMP_LABEL
2161 static atomic_t netstamp_needed_deferred;
2162 static atomic_t netstamp_wanted;
2163 static void netstamp_clear(struct work_struct *work)
2164 {
2165         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2166         int wanted;
2167
2168         wanted = atomic_add_return(deferred, &netstamp_wanted);
2169         if (wanted > 0)
2170                 static_branch_enable(&netstamp_needed_key);
2171         else
2172                 static_branch_disable(&netstamp_needed_key);
2173 }
2174 static DECLARE_WORK(netstamp_work, netstamp_clear);
2175 #endif
2176
2177 void net_enable_timestamp(void)
2178 {
2179 #ifdef CONFIG_JUMP_LABEL
2180         int wanted;
2181
2182         while (1) {
2183                 wanted = atomic_read(&netstamp_wanted);
2184                 if (wanted <= 0)
2185                         break;
2186                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2187                         return;
2188         }
2189         atomic_inc(&netstamp_needed_deferred);
2190         schedule_work(&netstamp_work);
2191 #else
2192         static_branch_inc(&netstamp_needed_key);
2193 #endif
2194 }
2195 EXPORT_SYMBOL(net_enable_timestamp);
2196
2197 void net_disable_timestamp(void)
2198 {
2199 #ifdef CONFIG_JUMP_LABEL
2200         int wanted;
2201
2202         while (1) {
2203                 wanted = atomic_read(&netstamp_wanted);
2204                 if (wanted <= 1)
2205                         break;
2206                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2207                         return;
2208         }
2209         atomic_dec(&netstamp_needed_deferred);
2210         schedule_work(&netstamp_work);
2211 #else
2212         static_branch_dec(&netstamp_needed_key);
2213 #endif
2214 }
2215 EXPORT_SYMBOL(net_disable_timestamp);
2216
2217 static inline void net_timestamp_set(struct sk_buff *skb)
2218 {
2219         skb->tstamp = 0;
2220         if (static_branch_unlikely(&netstamp_needed_key))
2221                 __net_timestamp(skb);
2222 }
2223
2224 #define net_timestamp_check(COND, SKB)                          \
2225         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2226                 if ((COND) && !(SKB)->tstamp)                   \
2227                         __net_timestamp(SKB);                   \
2228         }                                                       \
2229
2230 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2231 {
2232         return __is_skb_forwardable(dev, skb, true);
2233 }
2234 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2235
2236 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2237                               bool check_mtu)
2238 {
2239         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2240
2241         if (likely(!ret)) {
2242                 skb->protocol = eth_type_trans(skb, dev);
2243                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2244         }
2245
2246         return ret;
2247 }
2248
2249 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2250 {
2251         return __dev_forward_skb2(dev, skb, true);
2252 }
2253 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2254
2255 /**
2256  * dev_forward_skb - loopback an skb to another netif
2257  *
2258  * @dev: destination network device
2259  * @skb: buffer to forward
2260  *
2261  * return values:
2262  *      NET_RX_SUCCESS  (no congestion)
2263  *      NET_RX_DROP     (packet was dropped, but freed)
2264  *
2265  * dev_forward_skb can be used for injecting an skb from the
2266  * start_xmit function of one device into the receive queue
2267  * of another device.
2268  *
2269  * The receiving device may be in another namespace, so
2270  * we have to clear all information in the skb that could
2271  * impact namespace isolation.
2272  */
2273 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2274 {
2275         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2276 }
2277 EXPORT_SYMBOL_GPL(dev_forward_skb);
2278
2279 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2280 {
2281         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2282 }
2283
2284 static inline int deliver_skb(struct sk_buff *skb,
2285                               struct packet_type *pt_prev,
2286                               struct net_device *orig_dev)
2287 {
2288         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2289                 return -ENOMEM;
2290         refcount_inc(&skb->users);
2291         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2292 }
2293
2294 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2295                                           struct packet_type **pt,
2296                                           struct net_device *orig_dev,
2297                                           __be16 type,
2298                                           struct list_head *ptype_list)
2299 {
2300         struct packet_type *ptype, *pt_prev = *pt;
2301
2302         list_for_each_entry_rcu(ptype, ptype_list, list) {
2303                 if (ptype->type != type)
2304                         continue;
2305                 if (pt_prev)
2306                         deliver_skb(skb, pt_prev, orig_dev);
2307                 pt_prev = ptype;
2308         }
2309         *pt = pt_prev;
2310 }
2311
2312 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2313 {
2314         if (!ptype->af_packet_priv || !skb->sk)
2315                 return false;
2316
2317         if (ptype->id_match)
2318                 return ptype->id_match(ptype, skb->sk);
2319         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2320                 return true;
2321
2322         return false;
2323 }
2324
2325 /**
2326  * dev_nit_active - return true if any network interface taps are in use
2327  *
2328  * @dev: network device to check for the presence of taps
2329  */
2330 bool dev_nit_active(struct net_device *dev)
2331 {
2332         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2333 }
2334 EXPORT_SYMBOL_GPL(dev_nit_active);
2335
2336 /*
2337  *      Support routine. Sends outgoing frames to any network
2338  *      taps currently in use.
2339  */
2340
2341 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2342 {
2343         struct packet_type *ptype;
2344         struct sk_buff *skb2 = NULL;
2345         struct packet_type *pt_prev = NULL;
2346         struct list_head *ptype_list = &ptype_all;
2347
2348         rcu_read_lock();
2349 again:
2350         list_for_each_entry_rcu(ptype, ptype_list, list) {
2351                 if (ptype->ignore_outgoing)
2352                         continue;
2353
2354                 /* Never send packets back to the socket
2355                  * they originated from - MvS (miquels@drinkel.ow.org)
2356                  */
2357                 if (skb_loop_sk(ptype, skb))
2358                         continue;
2359
2360                 if (pt_prev) {
2361                         deliver_skb(skb2, pt_prev, skb->dev);
2362                         pt_prev = ptype;
2363                         continue;
2364                 }
2365
2366                 /* need to clone skb, done only once */
2367                 skb2 = skb_clone(skb, GFP_ATOMIC);
2368                 if (!skb2)
2369                         goto out_unlock;
2370
2371                 net_timestamp_set(skb2);
2372
2373                 /* skb->nh should be correctly
2374                  * set by sender, so that the second statement is
2375                  * just protection against buggy protocols.
2376                  */
2377                 skb_reset_mac_header(skb2);
2378
2379                 if (skb_network_header(skb2) < skb2->data ||
2380                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2381                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2382                                              ntohs(skb2->protocol),
2383                                              dev->name);
2384                         skb_reset_network_header(skb2);
2385                 }
2386
2387                 skb2->transport_header = skb2->network_header;
2388                 skb2->pkt_type = PACKET_OUTGOING;
2389                 pt_prev = ptype;
2390         }
2391
2392         if (ptype_list == &ptype_all) {
2393                 ptype_list = &dev->ptype_all;
2394                 goto again;
2395         }
2396 out_unlock:
2397         if (pt_prev) {
2398                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2399                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2400                 else
2401                         kfree_skb(skb2);
2402         }
2403         rcu_read_unlock();
2404 }
2405 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2406
2407 /**
2408  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2409  * @dev: Network device
2410  * @txq: number of queues available
2411  *
2412  * If real_num_tx_queues is changed the tc mappings may no longer be
2413  * valid. To resolve this verify the tc mapping remains valid and if
2414  * not NULL the mapping. With no priorities mapping to this
2415  * offset/count pair it will no longer be used. In the worst case TC0
2416  * is invalid nothing can be done so disable priority mappings. If is
2417  * expected that drivers will fix this mapping if they can before
2418  * calling netif_set_real_num_tx_queues.
2419  */
2420 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2421 {
2422         int i;
2423         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2424
2425         /* If TC0 is invalidated disable TC mapping */
2426         if (tc->offset + tc->count > txq) {
2427                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2428                 dev->num_tc = 0;
2429                 return;
2430         }
2431
2432         /* Invalidated prio to tc mappings set to TC0 */
2433         for (i = 1; i < TC_BITMASK + 1; i++) {
2434                 int q = netdev_get_prio_tc_map(dev, i);
2435
2436                 tc = &dev->tc_to_txq[q];
2437                 if (tc->offset + tc->count > txq) {
2438                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2439                                 i, q);
2440                         netdev_set_prio_tc_map(dev, i, 0);
2441                 }
2442         }
2443 }
2444
2445 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2446 {
2447         if (dev->num_tc) {
2448                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2449                 int i;
2450
2451                 /* walk through the TCs and see if it falls into any of them */
2452                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2453                         if ((txq - tc->offset) < tc->count)
2454                                 return i;
2455                 }
2456
2457                 /* didn't find it, just return -1 to indicate no match */
2458                 return -1;
2459         }
2460
2461         return 0;
2462 }
2463 EXPORT_SYMBOL(netdev_txq_to_tc);
2464
2465 #ifdef CONFIG_XPS
2466 struct static_key xps_needed __read_mostly;
2467 EXPORT_SYMBOL(xps_needed);
2468 struct static_key xps_rxqs_needed __read_mostly;
2469 EXPORT_SYMBOL(xps_rxqs_needed);
2470 static DEFINE_MUTEX(xps_map_mutex);
2471 #define xmap_dereference(P)             \
2472         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2473
2474 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2475                              int tci, u16 index)
2476 {
2477         struct xps_map *map = NULL;
2478         int pos;
2479
2480         if (dev_maps)
2481                 map = xmap_dereference(dev_maps->attr_map[tci]);
2482         if (!map)
2483                 return false;
2484
2485         for (pos = map->len; pos--;) {
2486                 if (map->queues[pos] != index)
2487                         continue;
2488
2489                 if (map->len > 1) {
2490                         map->queues[pos] = map->queues[--map->len];
2491                         break;
2492                 }
2493
2494                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2495                 kfree_rcu(map, rcu);
2496                 return false;
2497         }
2498
2499         return true;
2500 }
2501
2502 static bool remove_xps_queue_cpu(struct net_device *dev,
2503                                  struct xps_dev_maps *dev_maps,
2504                                  int cpu, u16 offset, u16 count)
2505 {
2506         int num_tc = dev->num_tc ? : 1;
2507         bool active = false;
2508         int tci;
2509
2510         for (tci = cpu * num_tc; num_tc--; tci++) {
2511                 int i, j;
2512
2513                 for (i = count, j = offset; i--; j++) {
2514                         if (!remove_xps_queue(dev_maps, tci, j))
2515                                 break;
2516                 }
2517
2518                 active |= i < 0;
2519         }
2520
2521         return active;
2522 }
2523
2524 static void reset_xps_maps(struct net_device *dev,
2525                            struct xps_dev_maps *dev_maps,
2526                            bool is_rxqs_map)
2527 {
2528         if (is_rxqs_map) {
2529                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2530                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2531         } else {
2532                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2533         }
2534         static_key_slow_dec_cpuslocked(&xps_needed);
2535         kfree_rcu(dev_maps, rcu);
2536 }
2537
2538 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2539                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2540                            u16 offset, u16 count, bool is_rxqs_map)
2541 {
2542         bool active = false;
2543         int i, j;
2544
2545         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2546              j < nr_ids;)
2547                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2548                                                count);
2549         if (!active)
2550                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2551
2552         if (!is_rxqs_map) {
2553                 for (i = offset + (count - 1); count--; i--) {
2554                         netdev_queue_numa_node_write(
2555                                 netdev_get_tx_queue(dev, i),
2556                                 NUMA_NO_NODE);
2557                 }
2558         }
2559 }
2560
2561 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2562                                    u16 count)
2563 {
2564         const unsigned long *possible_mask = NULL;
2565         struct xps_dev_maps *dev_maps;
2566         unsigned int nr_ids;
2567
2568         if (!static_key_false(&xps_needed))
2569                 return;
2570
2571         cpus_read_lock();
2572         mutex_lock(&xps_map_mutex);
2573
2574         if (static_key_false(&xps_rxqs_needed)) {
2575                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2576                 if (dev_maps) {
2577                         nr_ids = dev->num_rx_queues;
2578                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2579                                        offset, count, true);
2580                 }
2581         }
2582
2583         dev_maps = xmap_dereference(dev->xps_cpus_map);
2584         if (!dev_maps)
2585                 goto out_no_maps;
2586
2587         if (num_possible_cpus() > 1)
2588                 possible_mask = cpumask_bits(cpu_possible_mask);
2589         nr_ids = nr_cpu_ids;
2590         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2591                        false);
2592
2593 out_no_maps:
2594         mutex_unlock(&xps_map_mutex);
2595         cpus_read_unlock();
2596 }
2597
2598 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2599 {
2600         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2601 }
2602
2603 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2604                                       u16 index, bool is_rxqs_map)
2605 {
2606         struct xps_map *new_map;
2607         int alloc_len = XPS_MIN_MAP_ALLOC;
2608         int i, pos;
2609
2610         for (pos = 0; map && pos < map->len; pos++) {
2611                 if (map->queues[pos] != index)
2612                         continue;
2613                 return map;
2614         }
2615
2616         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2617         if (map) {
2618                 if (pos < map->alloc_len)
2619                         return map;
2620
2621                 alloc_len = map->alloc_len * 2;
2622         }
2623
2624         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2625          *  map
2626          */
2627         if (is_rxqs_map)
2628                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2629         else
2630                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2631                                        cpu_to_node(attr_index));
2632         if (!new_map)
2633                 return NULL;
2634
2635         for (i = 0; i < pos; i++)
2636                 new_map->queues[i] = map->queues[i];
2637         new_map->alloc_len = alloc_len;
2638         new_map->len = pos;
2639
2640         return new_map;
2641 }
2642
2643 /* Must be called under cpus_read_lock */
2644 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2645                           u16 index, bool is_rxqs_map)
2646 {
2647         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2648         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2649         int i, j, tci, numa_node_id = -2;
2650         int maps_sz, num_tc = 1, tc = 0;
2651         struct xps_map *map, *new_map;
2652         bool active = false;
2653         unsigned int nr_ids;
2654
2655         if (dev->num_tc) {
2656                 /* Do not allow XPS on subordinate device directly */
2657                 num_tc = dev->num_tc;
2658                 if (num_tc < 0)
2659                         return -EINVAL;
2660
2661                 /* If queue belongs to subordinate dev use its map */
2662                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2663
2664                 tc = netdev_txq_to_tc(dev, index);
2665                 if (tc < 0)
2666                         return -EINVAL;
2667         }
2668
2669         mutex_lock(&xps_map_mutex);
2670         if (is_rxqs_map) {
2671                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2672                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2673                 nr_ids = dev->num_rx_queues;
2674         } else {
2675                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2676                 if (num_possible_cpus() > 1) {
2677                         online_mask = cpumask_bits(cpu_online_mask);
2678                         possible_mask = cpumask_bits(cpu_possible_mask);
2679                 }
2680                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2681                 nr_ids = nr_cpu_ids;
2682         }
2683
2684         if (maps_sz < L1_CACHE_BYTES)
2685                 maps_sz = L1_CACHE_BYTES;
2686
2687         /* allocate memory for queue storage */
2688         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2689              j < nr_ids;) {
2690                 if (!new_dev_maps)
2691                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2692                 if (!new_dev_maps) {
2693                         mutex_unlock(&xps_map_mutex);
2694                         return -ENOMEM;
2695                 }
2696
2697                 tci = j * num_tc + tc;
2698                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2699                                  NULL;
2700
2701                 map = expand_xps_map(map, j, index, is_rxqs_map);
2702                 if (!map)
2703                         goto error;
2704
2705                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706         }
2707
2708         if (!new_dev_maps)
2709                 goto out_no_new_maps;
2710
2711         if (!dev_maps) {
2712                 /* Increment static keys at most once per type */
2713                 static_key_slow_inc_cpuslocked(&xps_needed);
2714                 if (is_rxqs_map)
2715                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2716         }
2717
2718         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2719              j < nr_ids;) {
2720                 /* copy maps belonging to foreign traffic classes */
2721                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2722                         /* fill in the new device map from the old device map */
2723                         map = xmap_dereference(dev_maps->attr_map[tci]);
2724                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725                 }
2726
2727                 /* We need to explicitly update tci as prevous loop
2728                  * could break out early if dev_maps is NULL.
2729                  */
2730                 tci = j * num_tc + tc;
2731
2732                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2733                     netif_attr_test_online(j, online_mask, nr_ids)) {
2734                         /* add tx-queue to CPU/rx-queue maps */
2735                         int pos = 0;
2736
2737                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2738                         while ((pos < map->len) && (map->queues[pos] != index))
2739                                 pos++;
2740
2741                         if (pos == map->len)
2742                                 map->queues[map->len++] = index;
2743 #ifdef CONFIG_NUMA
2744                         if (!is_rxqs_map) {
2745                                 if (numa_node_id == -2)
2746                                         numa_node_id = cpu_to_node(j);
2747                                 else if (numa_node_id != cpu_to_node(j))
2748                                         numa_node_id = -1;
2749                         }
2750 #endif
2751                 } else if (dev_maps) {
2752                         /* fill in the new device map from the old device map */
2753                         map = xmap_dereference(dev_maps->attr_map[tci]);
2754                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2755                 }
2756
2757                 /* copy maps belonging to foreign traffic classes */
2758                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2759                         /* fill in the new device map from the old device map */
2760                         map = xmap_dereference(dev_maps->attr_map[tci]);
2761                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762                 }
2763         }
2764
2765         if (is_rxqs_map)
2766                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2767         else
2768                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2769
2770         /* Cleanup old maps */
2771         if (!dev_maps)
2772                 goto out_no_old_maps;
2773
2774         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775              j < nr_ids;) {
2776                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778                         map = xmap_dereference(dev_maps->attr_map[tci]);
2779                         if (map && map != new_map)
2780                                 kfree_rcu(map, rcu);
2781                 }
2782         }
2783
2784         kfree_rcu(dev_maps, rcu);
2785
2786 out_no_old_maps:
2787         dev_maps = new_dev_maps;
2788         active = true;
2789
2790 out_no_new_maps:
2791         if (!is_rxqs_map) {
2792                 /* update Tx queue numa node */
2793                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2794                                              (numa_node_id >= 0) ?
2795                                              numa_node_id : NUMA_NO_NODE);
2796         }
2797
2798         if (!dev_maps)
2799                 goto out_no_maps;
2800
2801         /* removes tx-queue from unused CPUs/rx-queues */
2802         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2803              j < nr_ids;) {
2804                 for (i = tc, tci = j * num_tc; i--; tci++)
2805                         active |= remove_xps_queue(dev_maps, tci, index);
2806                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2807                     !netif_attr_test_online(j, online_mask, nr_ids))
2808                         active |= remove_xps_queue(dev_maps, tci, index);
2809                 for (i = num_tc - tc, tci++; --i; tci++)
2810                         active |= remove_xps_queue(dev_maps, tci, index);
2811         }
2812
2813         /* free map if not active */
2814         if (!active)
2815                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2816
2817 out_no_maps:
2818         mutex_unlock(&xps_map_mutex);
2819
2820         return 0;
2821 error:
2822         /* remove any maps that we added */
2823         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2824              j < nr_ids;) {
2825                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2826                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2827                         map = dev_maps ?
2828                               xmap_dereference(dev_maps->attr_map[tci]) :
2829                               NULL;
2830                         if (new_map && new_map != map)
2831                                 kfree(new_map);
2832                 }
2833         }
2834
2835         mutex_unlock(&xps_map_mutex);
2836
2837         kfree(new_dev_maps);
2838         return -ENOMEM;
2839 }
2840 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2841
2842 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2843                         u16 index)
2844 {
2845         int ret;
2846
2847         cpus_read_lock();
2848         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2849         cpus_read_unlock();
2850
2851         return ret;
2852 }
2853 EXPORT_SYMBOL(netif_set_xps_queue);
2854
2855 #endif
2856 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2857 {
2858         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859
2860         /* Unbind any subordinate channels */
2861         while (txq-- != &dev->_tx[0]) {
2862                 if (txq->sb_dev)
2863                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2864         }
2865 }
2866
2867 void netdev_reset_tc(struct net_device *dev)
2868 {
2869 #ifdef CONFIG_XPS
2870         netif_reset_xps_queues_gt(dev, 0);
2871 #endif
2872         netdev_unbind_all_sb_channels(dev);
2873
2874         /* Reset TC configuration of device */
2875         dev->num_tc = 0;
2876         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2877         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2878 }
2879 EXPORT_SYMBOL(netdev_reset_tc);
2880
2881 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2882 {
2883         if (tc >= dev->num_tc)
2884                 return -EINVAL;
2885
2886 #ifdef CONFIG_XPS
2887         netif_reset_xps_queues(dev, offset, count);
2888 #endif
2889         dev->tc_to_txq[tc].count = count;
2890         dev->tc_to_txq[tc].offset = offset;
2891         return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_tc_queue);
2894
2895 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2896 {
2897         if (num_tc > TC_MAX_QUEUE)
2898                 return -EINVAL;
2899
2900 #ifdef CONFIG_XPS
2901         netif_reset_xps_queues_gt(dev, 0);
2902 #endif
2903         netdev_unbind_all_sb_channels(dev);
2904
2905         dev->num_tc = num_tc;
2906         return 0;
2907 }
2908 EXPORT_SYMBOL(netdev_set_num_tc);
2909
2910 void netdev_unbind_sb_channel(struct net_device *dev,
2911                               struct net_device *sb_dev)
2912 {
2913         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2914
2915 #ifdef CONFIG_XPS
2916         netif_reset_xps_queues_gt(sb_dev, 0);
2917 #endif
2918         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2919         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2920
2921         while (txq-- != &dev->_tx[0]) {
2922                 if (txq->sb_dev == sb_dev)
2923                         txq->sb_dev = NULL;
2924         }
2925 }
2926 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2927
2928 int netdev_bind_sb_channel_queue(struct net_device *dev,
2929                                  struct net_device *sb_dev,
2930                                  u8 tc, u16 count, u16 offset)
2931 {
2932         /* Make certain the sb_dev and dev are already configured */
2933         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2934                 return -EINVAL;
2935
2936         /* We cannot hand out queues we don't have */
2937         if ((offset + count) > dev->real_num_tx_queues)
2938                 return -EINVAL;
2939
2940         /* Record the mapping */
2941         sb_dev->tc_to_txq[tc].count = count;
2942         sb_dev->tc_to_txq[tc].offset = offset;
2943
2944         /* Provide a way for Tx queue to find the tc_to_txq map or
2945          * XPS map for itself.
2946          */
2947         while (count--)
2948                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2949
2950         return 0;
2951 }
2952 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2953
2954 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2955 {
2956         /* Do not use a multiqueue device to represent a subordinate channel */
2957         if (netif_is_multiqueue(dev))
2958                 return -ENODEV;
2959
2960         /* We allow channels 1 - 32767 to be used for subordinate channels.
2961          * Channel 0 is meant to be "native" mode and used only to represent
2962          * the main root device. We allow writing 0 to reset the device back
2963          * to normal mode after being used as a subordinate channel.
2964          */
2965         if (channel > S16_MAX)
2966                 return -EINVAL;
2967
2968         dev->num_tc = -channel;
2969
2970         return 0;
2971 }
2972 EXPORT_SYMBOL(netdev_set_sb_channel);
2973
2974 /*
2975  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2976  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2977  */
2978 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2979 {
2980         bool disabling;
2981         int rc;
2982
2983         disabling = txq < dev->real_num_tx_queues;
2984
2985         if (txq < 1 || txq > dev->num_tx_queues)
2986                 return -EINVAL;
2987
2988         if (dev->reg_state == NETREG_REGISTERED ||
2989             dev->reg_state == NETREG_UNREGISTERING) {
2990                 ASSERT_RTNL();
2991
2992                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2993                                                   txq);
2994                 if (rc)
2995                         return rc;
2996
2997                 if (dev->num_tc)
2998                         netif_setup_tc(dev, txq);
2999
3000                 dev->real_num_tx_queues = txq;
3001
3002                 if (disabling) {
3003                         synchronize_net();
3004                         qdisc_reset_all_tx_gt(dev, txq);
3005 #ifdef CONFIG_XPS
3006                         netif_reset_xps_queues_gt(dev, txq);
3007 #endif
3008                 }
3009         } else {
3010                 dev->real_num_tx_queues = txq;
3011         }
3012
3013         return 0;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3016
3017 #ifdef CONFIG_SYSFS
3018 /**
3019  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3020  *      @dev: Network device
3021  *      @rxq: Actual number of RX queues
3022  *
3023  *      This must be called either with the rtnl_lock held or before
3024  *      registration of the net device.  Returns 0 on success, or a
3025  *      negative error code.  If called before registration, it always
3026  *      succeeds.
3027  */
3028 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3029 {
3030         int rc;
3031
3032         if (rxq < 1 || rxq > dev->num_rx_queues)
3033                 return -EINVAL;
3034
3035         if (dev->reg_state == NETREG_REGISTERED) {
3036                 ASSERT_RTNL();
3037
3038                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3039                                                   rxq);
3040                 if (rc)
3041                         return rc;
3042         }
3043
3044         dev->real_num_rx_queues = rxq;
3045         return 0;
3046 }
3047 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3048 #endif
3049
3050 /**
3051  * netif_get_num_default_rss_queues - default number of RSS queues
3052  *
3053  * This routine should set an upper limit on the number of RSS queues
3054  * used by default by multiqueue devices.
3055  */
3056 int netif_get_num_default_rss_queues(void)
3057 {
3058         return is_kdump_kernel() ?
3059                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3060 }
3061 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062
3063 static void __netif_reschedule(struct Qdisc *q)
3064 {
3065         struct softnet_data *sd;
3066         unsigned long flags;
3067
3068         local_irq_save(flags);
3069         sd = this_cpu_ptr(&softnet_data);
3070         q->next_sched = NULL;
3071         *sd->output_queue_tailp = q;
3072         sd->output_queue_tailp = &q->next_sched;
3073         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074         local_irq_restore(flags);
3075 }
3076
3077 void __netif_schedule(struct Qdisc *q)
3078 {
3079         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080                 __netif_reschedule(q);
3081 }
3082 EXPORT_SYMBOL(__netif_schedule);
3083
3084 struct dev_kfree_skb_cb {
3085         enum skb_free_reason reason;
3086 };
3087
3088 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089 {
3090         return (struct dev_kfree_skb_cb *)skb->cb;
3091 }
3092
3093 void netif_schedule_queue(struct netdev_queue *txq)
3094 {
3095         rcu_read_lock();
3096         if (!netif_xmit_stopped(txq)) {
3097                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3098
3099                 __netif_schedule(q);
3100         }
3101         rcu_read_unlock();
3102 }
3103 EXPORT_SYMBOL(netif_schedule_queue);
3104
3105 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106 {
3107         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108                 struct Qdisc *q;
3109
3110                 rcu_read_lock();
3111                 q = rcu_dereference(dev_queue->qdisc);
3112                 __netif_schedule(q);
3113                 rcu_read_unlock();
3114         }
3115 }
3116 EXPORT_SYMBOL(netif_tx_wake_queue);
3117
3118 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120         unsigned long flags;
3121
3122         if (unlikely(!skb))
3123                 return;
3124
3125         if (likely(refcount_read(&skb->users) == 1)) {
3126                 smp_rmb();
3127                 refcount_set(&skb->users, 0);
3128         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129                 return;
3130         }
3131         get_kfree_skb_cb(skb)->reason = reason;
3132         local_irq_save(flags);
3133         skb->next = __this_cpu_read(softnet_data.completion_queue);
3134         __this_cpu_write(softnet_data.completion_queue, skb);
3135         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136         local_irq_restore(flags);
3137 }
3138 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139
3140 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141 {
3142         if (in_irq() || irqs_disabled())
3143                 __dev_kfree_skb_irq(skb, reason);
3144         else
3145                 dev_kfree_skb(skb);
3146 }
3147 EXPORT_SYMBOL(__dev_kfree_skb_any);
3148
3149
3150 /**
3151  * netif_device_detach - mark device as removed
3152  * @dev: network device
3153  *
3154  * Mark device as removed from system and therefore no longer available.
3155  */
3156 void netif_device_detach(struct net_device *dev)
3157 {
3158         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159             netif_running(dev)) {
3160                 netif_tx_stop_all_queues(dev);
3161         }
3162 }
3163 EXPORT_SYMBOL(netif_device_detach);
3164
3165 /**
3166  * netif_device_attach - mark device as attached
3167  * @dev: network device
3168  *
3169  * Mark device as attached from system and restart if needed.
3170  */
3171 void netif_device_attach(struct net_device *dev)
3172 {
3173         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174             netif_running(dev)) {
3175                 netif_tx_wake_all_queues(dev);
3176                 __netdev_watchdog_up(dev);
3177         }
3178 }
3179 EXPORT_SYMBOL(netif_device_attach);
3180
3181 /*
3182  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183  * to be used as a distribution range.
3184  */
3185 static u16 skb_tx_hash(const struct net_device *dev,
3186                        const struct net_device *sb_dev,
3187                        struct sk_buff *skb)
3188 {
3189         u32 hash;
3190         u16 qoffset = 0;
3191         u16 qcount = dev->real_num_tx_queues;
3192
3193         if (dev->num_tc) {
3194                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195
3196                 qoffset = sb_dev->tc_to_txq[tc].offset;
3197                 qcount = sb_dev->tc_to_txq[tc].count;
3198         }
3199
3200         if (skb_rx_queue_recorded(skb)) {
3201                 hash = skb_get_rx_queue(skb);
3202                 if (hash >= qoffset)
3203                         hash -= qoffset;
3204                 while (unlikely(hash >= qcount))
3205                         hash -= qcount;
3206                 return hash + qoffset;
3207         }
3208
3209         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210 }
3211
3212 static void skb_warn_bad_offload(const struct sk_buff *skb)
3213 {
3214         static const netdev_features_t null_features;
3215         struct net_device *dev = skb->dev;
3216         const char *name = "";
3217
3218         if (!net_ratelimit())
3219                 return;
3220
3221         if (dev) {
3222                 if (dev->dev.parent)
3223                         name = dev_driver_string(dev->dev.parent);
3224                 else
3225                         name = netdev_name(dev);
3226         }
3227         skb_dump(KERN_WARNING, skb, false);
3228         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229              name, dev ? &dev->features : &null_features,
3230              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231 }
3232
3233 /*
3234  * Invalidate hardware checksum when packet is to be mangled, and
3235  * complete checksum manually on outgoing path.
3236  */
3237 int skb_checksum_help(struct sk_buff *skb)
3238 {
3239         __wsum csum;
3240         int ret = 0, offset;
3241
3242         if (skb->ip_summed == CHECKSUM_COMPLETE)
3243                 goto out_set_summed;
3244
3245         if (unlikely(skb_is_gso(skb))) {
3246                 skb_warn_bad_offload(skb);
3247                 return -EINVAL;
3248         }
3249
3250         /* Before computing a checksum, we should make sure no frag could
3251          * be modified by an external entity : checksum could be wrong.
3252          */
3253         if (skb_has_shared_frag(skb)) {
3254                 ret = __skb_linearize(skb);
3255                 if (ret)
3256                         goto out;
3257         }
3258
3259         offset = skb_checksum_start_offset(skb);
3260         BUG_ON(offset >= skb_headlen(skb));
3261         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3262
3263         offset += skb->csum_offset;
3264         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3265
3266         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3267         if (ret)
3268                 goto out;
3269
3270         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3271 out_set_summed:
3272         skb->ip_summed = CHECKSUM_NONE;
3273 out:
3274         return ret;
3275 }
3276 EXPORT_SYMBOL(skb_checksum_help);
3277
3278 int skb_crc32c_csum_help(struct sk_buff *skb)
3279 {
3280         __le32 crc32c_csum;
3281         int ret = 0, offset, start;
3282
3283         if (skb->ip_summed != CHECKSUM_PARTIAL)
3284                 goto out;
3285
3286         if (unlikely(skb_is_gso(skb)))
3287                 goto out;
3288
3289         /* Before computing a checksum, we should make sure no frag could
3290          * be modified by an external entity : checksum could be wrong.
3291          */
3292         if (unlikely(skb_has_shared_frag(skb))) {
3293                 ret = __skb_linearize(skb);
3294                 if (ret)
3295                         goto out;
3296         }
3297         start = skb_checksum_start_offset(skb);
3298         offset = start + offsetof(struct sctphdr, checksum);
3299         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3300                 ret = -EINVAL;
3301                 goto out;
3302         }
3303
3304         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3305         if (ret)
3306                 goto out;
3307
3308         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3309                                                   skb->len - start, ~(__u32)0,
3310                                                   crc32c_csum_stub));
3311         *(__le32 *)(skb->data + offset) = crc32c_csum;
3312         skb->ip_summed = CHECKSUM_NONE;
3313         skb->csum_not_inet = 0;
3314 out:
3315         return ret;
3316 }
3317
3318 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3319 {
3320         __be16 type = skb->protocol;
3321
3322         /* Tunnel gso handlers can set protocol to ethernet. */
3323         if (type == htons(ETH_P_TEB)) {
3324                 struct ethhdr *eth;
3325
3326                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3327                         return 0;
3328
3329                 eth = (struct ethhdr *)skb->data;
3330                 type = eth->h_proto;
3331         }
3332
3333         return __vlan_get_protocol(skb, type, depth);
3334 }
3335
3336 /**
3337  *      skb_mac_gso_segment - mac layer segmentation handler.
3338  *      @skb: buffer to segment
3339  *      @features: features for the output path (see dev->features)
3340  */
3341 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3342                                     netdev_features_t features)
3343 {
3344         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3345         struct packet_offload *ptype;
3346         int vlan_depth = skb->mac_len;
3347         __be16 type = skb_network_protocol(skb, &vlan_depth);
3348
3349         if (unlikely(!type))
3350                 return ERR_PTR(-EINVAL);
3351
3352         __skb_pull(skb, vlan_depth);
3353
3354         rcu_read_lock();
3355         list_for_each_entry_rcu(ptype, &offload_base, list) {
3356                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3357                         segs = ptype->callbacks.gso_segment(skb, features);
3358                         break;
3359                 }
3360         }
3361         rcu_read_unlock();
3362
3363         __skb_push(skb, skb->data - skb_mac_header(skb));
3364
3365         return segs;
3366 }
3367 EXPORT_SYMBOL(skb_mac_gso_segment);
3368
3369
3370 /* openvswitch calls this on rx path, so we need a different check.
3371  */
3372 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3373 {
3374         if (tx_path)
3375                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3376                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3377
3378         return skb->ip_summed == CHECKSUM_NONE;
3379 }
3380
3381 /**
3382  *      __skb_gso_segment - Perform segmentation on skb.
3383  *      @skb: buffer to segment
3384  *      @features: features for the output path (see dev->features)
3385  *      @tx_path: whether it is called in TX path
3386  *
3387  *      This function segments the given skb and returns a list of segments.
3388  *
3389  *      It may return NULL if the skb requires no segmentation.  This is
3390  *      only possible when GSO is used for verifying header integrity.
3391  *
3392  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3393  */
3394 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3395                                   netdev_features_t features, bool tx_path)
3396 {
3397         struct sk_buff *segs;
3398
3399         if (unlikely(skb_needs_check(skb, tx_path))) {
3400                 int err;
3401
3402                 /* We're going to init ->check field in TCP or UDP header */
3403                 err = skb_cow_head(skb, 0);
3404                 if (err < 0)
3405                         return ERR_PTR(err);
3406         }
3407
3408         /* Only report GSO partial support if it will enable us to
3409          * support segmentation on this frame without needing additional
3410          * work.
3411          */
3412         if (features & NETIF_F_GSO_PARTIAL) {
3413                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3414                 struct net_device *dev = skb->dev;
3415
3416                 partial_features |= dev->features & dev->gso_partial_features;
3417                 if (!skb_gso_ok(skb, features | partial_features))
3418                         features &= ~NETIF_F_GSO_PARTIAL;
3419         }
3420
3421         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3422                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3423
3424         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3425         SKB_GSO_CB(skb)->encap_level = 0;
3426
3427         skb_reset_mac_header(skb);
3428         skb_reset_mac_len(skb);
3429
3430         segs = skb_mac_gso_segment(skb, features);
3431
3432         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3433                 skb_warn_bad_offload(skb);
3434
3435         return segs;
3436 }
3437 EXPORT_SYMBOL(__skb_gso_segment);
3438
3439 /* Take action when hardware reception checksum errors are detected. */
3440 #ifdef CONFIG_BUG
3441 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3442 {
3443         if (net_ratelimit()) {
3444                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3445                 skb_dump(KERN_ERR, skb, true);
3446                 dump_stack();
3447         }
3448 }
3449 EXPORT_SYMBOL(netdev_rx_csum_fault);
3450 #endif
3451
3452 /* XXX: check that highmem exists at all on the given machine. */
3453 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3454 {
3455 #ifdef CONFIG_HIGHMEM
3456         int i;
3457
3458         if (!(dev->features & NETIF_F_HIGHDMA)) {
3459                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3460                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461
3462                         if (PageHighMem(skb_frag_page(frag)))
3463                                 return 1;
3464                 }
3465         }
3466 #endif
3467         return 0;
3468 }
3469
3470 /* If MPLS offload request, verify we are testing hardware MPLS features
3471  * instead of standard features for the netdev.
3472  */
3473 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3474 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3475                                            netdev_features_t features,
3476                                            __be16 type)
3477 {
3478         if (eth_p_mpls(type))
3479                 features &= skb->dev->mpls_features;
3480
3481         return features;
3482 }
3483 #else
3484 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3485                                            netdev_features_t features,
3486                                            __be16 type)
3487 {
3488         return features;
3489 }
3490 #endif
3491
3492 static netdev_features_t harmonize_features(struct sk_buff *skb,
3493         netdev_features_t features)
3494 {
3495         __be16 type;
3496
3497         type = skb_network_protocol(skb, NULL);
3498         features = net_mpls_features(skb, features, type);
3499
3500         if (skb->ip_summed != CHECKSUM_NONE &&
3501             !can_checksum_protocol(features, type)) {
3502                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3503         }
3504         if (illegal_highdma(skb->dev, skb))
3505                 features &= ~NETIF_F_SG;
3506
3507         return features;
3508 }
3509
3510 netdev_features_t passthru_features_check(struct sk_buff *skb,
3511                                           struct net_device *dev,
3512                                           netdev_features_t features)
3513 {
3514         return features;
3515 }
3516 EXPORT_SYMBOL(passthru_features_check);
3517
3518 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3519                                              struct net_device *dev,
3520                                              netdev_features_t features)
3521 {
3522         return vlan_features_check(skb, features);
3523 }
3524
3525 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3526                                             struct net_device *dev,
3527                                             netdev_features_t features)
3528 {
3529         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3530
3531         if (gso_segs > dev->gso_max_segs)
3532                 return features & ~NETIF_F_GSO_MASK;
3533
3534         if (!skb_shinfo(skb)->gso_type) {
3535                 skb_warn_bad_offload(skb);
3536                 return features & ~NETIF_F_GSO_MASK;
3537         }
3538
3539         /* Support for GSO partial features requires software
3540          * intervention before we can actually process the packets
3541          * so we need to strip support for any partial features now
3542          * and we can pull them back in after we have partially
3543          * segmented the frame.
3544          */
3545         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3546                 features &= ~dev->gso_partial_features;
3547
3548         /* Make sure to clear the IPv4 ID mangling feature if the
3549          * IPv4 header has the potential to be fragmented.
3550          */
3551         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3552                 struct iphdr *iph = skb->encapsulation ?
3553                                     inner_ip_hdr(skb) : ip_hdr(skb);
3554
3555                 if (!(iph->frag_off & htons(IP_DF)))
3556                         features &= ~NETIF_F_TSO_MANGLEID;
3557         }
3558
3559         return features;
3560 }
3561
3562 netdev_features_t netif_skb_features(struct sk_buff *skb)
3563 {
3564         struct net_device *dev = skb->dev;
3565         netdev_features_t features = dev->features;
3566
3567         if (skb_is_gso(skb))
3568                 features = gso_features_check(skb, dev, features);
3569
3570         /* If encapsulation offload request, verify we are testing
3571          * hardware encapsulation features instead of standard
3572          * features for the netdev
3573          */
3574         if (skb->encapsulation)
3575                 features &= dev->hw_enc_features;
3576
3577         if (skb_vlan_tagged(skb))
3578                 features = netdev_intersect_features(features,
3579                                                      dev->vlan_features |
3580                                                      NETIF_F_HW_VLAN_CTAG_TX |
3581                                                      NETIF_F_HW_VLAN_STAG_TX);
3582
3583         if (dev->netdev_ops->ndo_features_check)
3584                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3585                                                                 features);
3586         else
3587                 features &= dflt_features_check(skb, dev, features);
3588
3589         return harmonize_features(skb, features);
3590 }
3591 EXPORT_SYMBOL(netif_skb_features);
3592
3593 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3594                     struct netdev_queue *txq, bool more)
3595 {
3596         unsigned int len;
3597         int rc;
3598
3599         if (dev_nit_active(dev))
3600                 dev_queue_xmit_nit(skb, dev);
3601
3602         len = skb->len;
3603         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3604         trace_net_dev_start_xmit(skb, dev);
3605         rc = netdev_start_xmit(skb, dev, txq, more);
3606         trace_net_dev_xmit(skb, rc, dev, len);
3607
3608         return rc;
3609 }
3610
3611 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3612                                     struct netdev_queue *txq, int *ret)
3613 {
3614         struct sk_buff *skb = first;
3615         int rc = NETDEV_TX_OK;
3616
3617         while (skb) {
3618                 struct sk_buff *next = skb->next;
3619
3620                 skb_mark_not_on_list(skb);
3621                 rc = xmit_one(skb, dev, txq, next != NULL);
3622                 if (unlikely(!dev_xmit_complete(rc))) {
3623                         skb->next = next;
3624                         goto out;
3625                 }
3626
3627                 skb = next;
3628                 if (netif_tx_queue_stopped(txq) && skb) {
3629                         rc = NETDEV_TX_BUSY;
3630                         break;
3631                 }
3632         }
3633
3634 out:
3635         *ret = rc;
3636         return skb;
3637 }
3638
3639 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3640                                           netdev_features_t features)
3641 {
3642         if (skb_vlan_tag_present(skb) &&
3643             !vlan_hw_offload_capable(features, skb->vlan_proto))
3644                 skb = __vlan_hwaccel_push_inside(skb);
3645         return skb;
3646 }
3647
3648 int skb_csum_hwoffload_help(struct sk_buff *skb,
3649                             const netdev_features_t features)
3650 {
3651         if (unlikely(skb_csum_is_sctp(skb)))
3652                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3653                         skb_crc32c_csum_help(skb);
3654
3655         if (features & NETIF_F_HW_CSUM)
3656                 return 0;
3657
3658         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3659                 switch (skb->csum_offset) {
3660                 case offsetof(struct tcphdr, check):
3661                 case offsetof(struct udphdr, check):
3662                         return 0;
3663                 }
3664         }
3665
3666         return skb_checksum_help(skb);
3667 }
3668 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3669
3670 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3671 {
3672         netdev_features_t features;
3673
3674         features = netif_skb_features(skb);
3675         skb = validate_xmit_vlan(skb, features);
3676         if (unlikely(!skb))
3677                 goto out_null;
3678
3679         skb = sk_validate_xmit_skb(skb, dev);
3680         if (unlikely(!skb))
3681                 goto out_null;
3682
3683         if (netif_needs_gso(skb, features)) {
3684                 struct sk_buff *segs;
3685
3686                 segs = skb_gso_segment(skb, features);
3687                 if (IS_ERR(segs)) {
3688                         goto out_kfree_skb;
3689                 } else if (segs) {
3690                         consume_skb(skb);
3691                         skb = segs;
3692                 }
3693         } else {
3694                 if (skb_needs_linearize(skb, features) &&
3695                     __skb_linearize(skb))
3696                         goto out_kfree_skb;
3697
3698                 /* If packet is not checksummed and device does not
3699                  * support checksumming for this protocol, complete
3700                  * checksumming here.
3701                  */
3702                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3703                         if (skb->encapsulation)
3704                                 skb_set_inner_transport_header(skb,
3705                                                                skb_checksum_start_offset(skb));
3706                         else
3707                                 skb_set_transport_header(skb,
3708                                                          skb_checksum_start_offset(skb));
3709                         if (skb_csum_hwoffload_help(skb, features))
3710                                 goto out_kfree_skb;
3711                 }
3712         }
3713
3714         skb = validate_xmit_xfrm(skb, features, again);
3715
3716         return skb;
3717
3718 out_kfree_skb:
3719         kfree_skb(skb);
3720 out_null:
3721         atomic_long_inc(&dev->tx_dropped);
3722         return NULL;
3723 }
3724
3725 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3726 {
3727         struct sk_buff *next, *head = NULL, *tail;
3728
3729         for (; skb != NULL; skb = next) {
3730                 next = skb->next;
3731                 skb_mark_not_on_list(skb);
3732
3733                 /* in case skb wont be segmented, point to itself */
3734                 skb->prev = skb;
3735
3736                 skb = validate_xmit_skb(skb, dev, again);
3737                 if (!skb)
3738                         continue;
3739
3740                 if (!head)
3741                         head = skb;
3742                 else
3743                         tail->next = skb;
3744                 /* If skb was segmented, skb->prev points to
3745                  * the last segment. If not, it still contains skb.
3746                  */
3747                 tail = skb->prev;
3748         }
3749         return head;
3750 }
3751 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3752
3753 static void qdisc_pkt_len_init(struct sk_buff *skb)
3754 {
3755         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3756
3757         qdisc_skb_cb(skb)->pkt_len = skb->len;
3758
3759         /* To get more precise estimation of bytes sent on wire,
3760          * we add to pkt_len the headers size of all segments
3761          */
3762         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3763                 unsigned int hdr_len;
3764                 u16 gso_segs = shinfo->gso_segs;
3765
3766                 /* mac layer + network layer */
3767                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3768
3769                 /* + transport layer */
3770                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3771                         const struct tcphdr *th;
3772                         struct tcphdr _tcphdr;
3773
3774                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3775                                                 sizeof(_tcphdr), &_tcphdr);
3776                         if (likely(th))
3777                                 hdr_len += __tcp_hdrlen(th);
3778                 } else {
3779                         struct udphdr _udphdr;
3780
3781                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3782                                                sizeof(_udphdr), &_udphdr))
3783                                 hdr_len += sizeof(struct udphdr);
3784                 }
3785
3786                 if (shinfo->gso_type & SKB_GSO_DODGY)
3787                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3788                                                 shinfo->gso_size);
3789
3790                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3791         }
3792 }
3793
3794 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3795                                  struct net_device *dev,
3796                                  struct netdev_queue *txq)
3797 {
3798         spinlock_t *root_lock = qdisc_lock(q);
3799         struct sk_buff *to_free = NULL;
3800         bool contended;
3801         int rc;
3802
3803         qdisc_calculate_pkt_len(skb, q);
3804
3805         if (q->flags & TCQ_F_NOLOCK) {
3806                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3807                 qdisc_run(q);
3808
3809                 if (unlikely(to_free))
3810                         kfree_skb_list(to_free);
3811                 return rc;
3812         }
3813
3814         /*
3815          * Heuristic to force contended enqueues to serialize on a
3816          * separate lock before trying to get qdisc main lock.
3817          * This permits qdisc->running owner to get the lock more
3818          * often and dequeue packets faster.
3819          */
3820         contended = qdisc_is_running(q);
3821         if (unlikely(contended))
3822                 spin_lock(&q->busylock);
3823
3824         spin_lock(root_lock);
3825         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3826                 __qdisc_drop(skb, &to_free);
3827                 rc = NET_XMIT_DROP;
3828         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3829                    qdisc_run_begin(q)) {
3830                 /*
3831                  * This is a work-conserving queue; there are no old skbs
3832                  * waiting to be sent out; and the qdisc is not running -
3833                  * xmit the skb directly.
3834                  */
3835
3836                 qdisc_bstats_update(q, skb);
3837
3838                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3839                         if (unlikely(contended)) {
3840                                 spin_unlock(&q->busylock);
3841                                 contended = false;
3842                         }
3843                         __qdisc_run(q);
3844                 }
3845
3846                 qdisc_run_end(q);
3847                 rc = NET_XMIT_SUCCESS;
3848         } else {
3849                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3850                 if (qdisc_run_begin(q)) {
3851                         if (unlikely(contended)) {
3852                                 spin_unlock(&q->busylock);
3853                                 contended = false;
3854                         }
3855                         __qdisc_run(q);
3856                         qdisc_run_end(q);
3857                 }
3858         }
3859         spin_unlock(root_lock);
3860         if (unlikely(to_free))
3861                 kfree_skb_list(to_free);
3862         if (unlikely(contended))
3863                 spin_unlock(&q->busylock);
3864         return rc;
3865 }
3866
3867 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3868 static void skb_update_prio(struct sk_buff *skb)
3869 {
3870         const struct netprio_map *map;
3871         const struct sock *sk;
3872         unsigned int prioidx;
3873
3874         if (skb->priority)
3875                 return;
3876         map = rcu_dereference_bh(skb->dev->priomap);
3877         if (!map)
3878                 return;
3879         sk = skb_to_full_sk(skb);
3880         if (!sk)
3881                 return;
3882
3883         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3884
3885         if (prioidx < map->priomap_len)
3886                 skb->priority = map->priomap[prioidx];
3887 }
3888 #else
3889 #define skb_update_prio(skb)
3890 #endif
3891
3892 /**
3893  *      dev_loopback_xmit - loop back @skb
3894  *      @net: network namespace this loopback is happening in
3895  *      @sk:  sk needed to be a netfilter okfn
3896  *      @skb: buffer to transmit
3897  */
3898 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3899 {
3900         skb_reset_mac_header(skb);
3901         __skb_pull(skb, skb_network_offset(skb));
3902         skb->pkt_type = PACKET_LOOPBACK;
3903         skb->ip_summed = CHECKSUM_UNNECESSARY;
3904         WARN_ON(!skb_dst(skb));
3905         skb_dst_force(skb);
3906         netif_rx_ni(skb);
3907         return 0;
3908 }
3909 EXPORT_SYMBOL(dev_loopback_xmit);
3910
3911 #ifdef CONFIG_NET_EGRESS
3912 static struct sk_buff *
3913 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3914 {
3915         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3916         struct tcf_result cl_res;
3917
3918         if (!miniq)
3919                 return skb;
3920
3921         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3922         qdisc_skb_cb(skb)->mru = 0;
3923         qdisc_skb_cb(skb)->post_ct = false;
3924         mini_qdisc_bstats_cpu_update(miniq, skb);
3925
3926         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3927         case TC_ACT_OK:
3928         case TC_ACT_RECLASSIFY:
3929                 skb->tc_index = TC_H_MIN(cl_res.classid);
3930                 break;
3931         case TC_ACT_SHOT:
3932                 mini_qdisc_qstats_cpu_drop(miniq);
3933                 *ret = NET_XMIT_DROP;
3934                 kfree_skb(skb);
3935                 return NULL;
3936         case TC_ACT_STOLEN:
3937         case TC_ACT_QUEUED:
3938         case TC_ACT_TRAP:
3939                 *ret = NET_XMIT_SUCCESS;
3940                 consume_skb(skb);
3941                 return NULL;
3942         case TC_ACT_REDIRECT:
3943                 /* No need to push/pop skb's mac_header here on egress! */
3944                 skb_do_redirect(skb);
3945                 *ret = NET_XMIT_SUCCESS;
3946                 return NULL;
3947         default:
3948                 break;
3949         }
3950
3951         return skb;
3952 }
3953 #endif /* CONFIG_NET_EGRESS */
3954
3955 #ifdef CONFIG_XPS
3956 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3957                                struct xps_dev_maps *dev_maps, unsigned int tci)
3958 {
3959         struct xps_map *map;
3960         int queue_index = -1;
3961
3962         if (dev->num_tc) {
3963                 tci *= dev->num_tc;
3964                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3965         }
3966
3967         map = rcu_dereference(dev_maps->attr_map[tci]);
3968         if (map) {
3969                 if (map->len == 1)
3970                         queue_index = map->queues[0];
3971                 else
3972                         queue_index = map->queues[reciprocal_scale(
3973                                                 skb_get_hash(skb), map->len)];
3974                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3975                         queue_index = -1;
3976         }
3977         return queue_index;
3978 }
3979 #endif
3980
3981 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3982                          struct sk_buff *skb)
3983 {
3984 #ifdef CONFIG_XPS
3985         struct xps_dev_maps *dev_maps;
3986         struct sock *sk = skb->sk;
3987         int queue_index = -1;
3988
3989         if (!static_key_false(&xps_needed))
3990                 return -1;
3991
3992         rcu_read_lock();
3993         if (!static_key_false(&xps_rxqs_needed))
3994                 goto get_cpus_map;
3995
3996         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3997         if (dev_maps) {
3998                 int tci = sk_rx_queue_get(sk);
3999
4000                 if (tci >= 0 && tci < dev->num_rx_queues)
4001                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4002                                                           tci);
4003         }
4004
4005 get_cpus_map:
4006         if (queue_index < 0) {
4007                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4008                 if (dev_maps) {
4009                         unsigned int tci = skb->sender_cpu - 1;
4010
4011                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012                                                           tci);
4013                 }
4014         }
4015         rcu_read_unlock();
4016
4017         return queue_index;
4018 #else
4019         return -1;
4020 #endif
4021 }
4022
4023 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4024                      struct net_device *sb_dev)
4025 {
4026         return 0;
4027 }
4028 EXPORT_SYMBOL(dev_pick_tx_zero);
4029
4030 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4031                        struct net_device *sb_dev)
4032 {
4033         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4034 }
4035 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4036
4037 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4038                      struct net_device *sb_dev)
4039 {
4040         struct sock *sk = skb->sk;
4041         int queue_index = sk_tx_queue_get(sk);
4042
4043         sb_dev = sb_dev ? : dev;
4044
4045         if (queue_index < 0 || skb->ooo_okay ||
4046             queue_index >= dev->real_num_tx_queues) {
4047                 int new_index = get_xps_queue(dev, sb_dev, skb);
4048
4049                 if (new_index < 0)
4050                         new_index = skb_tx_hash(dev, sb_dev, skb);
4051
4052                 if (queue_index != new_index && sk &&
4053                     sk_fullsock(sk) &&
4054                     rcu_access_pointer(sk->sk_dst_cache))
4055                         sk_tx_queue_set(sk, new_index);
4056
4057                 queue_index = new_index;
4058         }
4059
4060         return queue_index;
4061 }
4062 EXPORT_SYMBOL(netdev_pick_tx);
4063
4064 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4065                                          struct sk_buff *skb,
4066                                          struct net_device *sb_dev)
4067 {
4068         int queue_index = 0;
4069
4070 #ifdef CONFIG_XPS
4071         u32 sender_cpu = skb->sender_cpu - 1;
4072
4073         if (sender_cpu >= (u32)NR_CPUS)
4074                 skb->sender_cpu = raw_smp_processor_id() + 1;
4075 #endif
4076
4077         if (dev->real_num_tx_queues != 1) {
4078                 const struct net_device_ops *ops = dev->netdev_ops;
4079
4080                 if (ops->ndo_select_queue)
4081                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4082                 else
4083                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4084
4085                 queue_index = netdev_cap_txqueue(dev, queue_index);
4086         }
4087
4088         skb_set_queue_mapping(skb, queue_index);
4089         return netdev_get_tx_queue(dev, queue_index);
4090 }
4091
4092 /**
4093  *      __dev_queue_xmit - transmit a buffer
4094  *      @skb: buffer to transmit
4095  *      @sb_dev: suboordinate device used for L2 forwarding offload
4096  *
4097  *      Queue a buffer for transmission to a network device. The caller must
4098  *      have set the device and priority and built the buffer before calling
4099  *      this function. The function can be called from an interrupt.
4100  *
4101  *      A negative errno code is returned on a failure. A success does not
4102  *      guarantee the frame will be transmitted as it may be dropped due
4103  *      to congestion or traffic shaping.
4104  *
4105  * -----------------------------------------------------------------------------------
4106  *      I notice this method can also return errors from the queue disciplines,
4107  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4108  *      be positive.
4109  *
4110  *      Regardless of the return value, the skb is consumed, so it is currently
4111  *      difficult to retry a send to this method.  (You can bump the ref count
4112  *      before sending to hold a reference for retry if you are careful.)
4113  *
4114  *      When calling this method, interrupts MUST be enabled.  This is because
4115  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4116  *          --BLG
4117  */
4118 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4119 {
4120         struct net_device *dev = skb->dev;
4121         struct netdev_queue *txq;
4122         struct Qdisc *q;
4123         int rc = -ENOMEM;
4124         bool again = false;
4125
4126         skb_reset_mac_header(skb);
4127
4128         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4129                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4130
4131         /* Disable soft irqs for various locks below. Also
4132          * stops preemption for RCU.
4133          */
4134         rcu_read_lock_bh();
4135
4136         skb_update_prio(skb);
4137
4138         qdisc_pkt_len_init(skb);
4139 #ifdef CONFIG_NET_CLS_ACT
4140         skb->tc_at_ingress = 0;
4141 # ifdef CONFIG_NET_EGRESS
4142         if (static_branch_unlikely(&egress_needed_key)) {
4143                 skb = sch_handle_egress(skb, &rc, dev);
4144                 if (!skb)
4145                         goto out;
4146         }
4147 # endif
4148 #endif
4149         /* If device/qdisc don't need skb->dst, release it right now while
4150          * its hot in this cpu cache.
4151          */
4152         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4153                 skb_dst_drop(skb);
4154         else
4155                 skb_dst_force(skb);
4156
4157         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4158         q = rcu_dereference_bh(txq->qdisc);
4159
4160         trace_net_dev_queue(skb);
4161         if (q->enqueue) {
4162                 rc = __dev_xmit_skb(skb, q, dev, txq);
4163                 goto out;
4164         }
4165
4166         /* The device has no queue. Common case for software devices:
4167          * loopback, all the sorts of tunnels...
4168
4169          * Really, it is unlikely that netif_tx_lock protection is necessary
4170          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4171          * counters.)
4172          * However, it is possible, that they rely on protection
4173          * made by us here.
4174
4175          * Check this and shot the lock. It is not prone from deadlocks.
4176          *Either shot noqueue qdisc, it is even simpler 8)
4177          */
4178         if (dev->flags & IFF_UP) {
4179                 int cpu = smp_processor_id(); /* ok because BHs are off */
4180
4181                 if (txq->xmit_lock_owner != cpu) {
4182                         if (dev_xmit_recursion())
4183                                 goto recursion_alert;
4184
4185                         skb = validate_xmit_skb(skb, dev, &again);
4186                         if (!skb)
4187                                 goto out;
4188
4189                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4190                         HARD_TX_LOCK(dev, txq, cpu);
4191
4192                         if (!netif_xmit_stopped(txq)) {
4193                                 dev_xmit_recursion_inc();
4194                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4195                                 dev_xmit_recursion_dec();
4196                                 if (dev_xmit_complete(rc)) {
4197                                         HARD_TX_UNLOCK(dev, txq);
4198                                         goto out;
4199                                 }
4200                         }
4201                         HARD_TX_UNLOCK(dev, txq);
4202                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4203                                              dev->name);
4204                 } else {
4205                         /* Recursion is detected! It is possible,
4206                          * unfortunately
4207                          */
4208 recursion_alert:
4209                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4210                                              dev->name);
4211                 }
4212         }
4213
4214         rc = -ENETDOWN;
4215         rcu_read_unlock_bh();
4216
4217         atomic_long_inc(&dev->tx_dropped);
4218         kfree_skb_list(skb);
4219         return rc;
4220 out:
4221         rcu_read_unlock_bh();
4222         return rc;
4223 }
4224
4225 int dev_queue_xmit(struct sk_buff *skb)
4226 {
4227         return __dev_queue_xmit(skb, NULL);
4228 }
4229 EXPORT_SYMBOL(dev_queue_xmit);
4230
4231 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4232 {
4233         return __dev_queue_xmit(skb, sb_dev);
4234 }
4235 EXPORT_SYMBOL(dev_queue_xmit_accel);
4236
4237 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4238 {
4239         struct net_device *dev = skb->dev;
4240         struct sk_buff *orig_skb = skb;
4241         struct netdev_queue *txq;
4242         int ret = NETDEV_TX_BUSY;
4243         bool again = false;
4244
4245         if (unlikely(!netif_running(dev) ||
4246                      !netif_carrier_ok(dev)))
4247                 goto drop;
4248
4249         skb = validate_xmit_skb_list(skb, dev, &again);
4250         if (skb != orig_skb)
4251                 goto drop;
4252
4253         skb_set_queue_mapping(skb, queue_id);
4254         txq = skb_get_tx_queue(dev, skb);
4255         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4256
4257         local_bh_disable();
4258
4259         dev_xmit_recursion_inc();
4260         HARD_TX_LOCK(dev, txq, smp_processor_id());
4261         if (!netif_xmit_frozen_or_drv_stopped(txq))
4262                 ret = netdev_start_xmit(skb, dev, txq, false);
4263         HARD_TX_UNLOCK(dev, txq);
4264         dev_xmit_recursion_dec();
4265
4266         local_bh_enable();
4267         return ret;
4268 drop:
4269         atomic_long_inc(&dev->tx_dropped);
4270         kfree_skb_list(skb);
4271         return NET_XMIT_DROP;
4272 }
4273 EXPORT_SYMBOL(__dev_direct_xmit);
4274
4275 /*************************************************************************
4276  *                      Receiver routines
4277  *************************************************************************/
4278
4279 int netdev_max_backlog __read_mostly = 1000;
4280 EXPORT_SYMBOL(netdev_max_backlog);
4281
4282 int netdev_tstamp_prequeue __read_mostly = 1;
4283 int netdev_budget __read_mostly = 300;
4284 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4285 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4286 int weight_p __read_mostly = 64;           /* old backlog weight */
4287 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4288 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4289 int dev_rx_weight __read_mostly = 64;
4290 int dev_tx_weight __read_mostly = 64;
4291 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4292 int gro_normal_batch __read_mostly = 8;
4293
4294 /* Called with irq disabled */
4295 static inline void ____napi_schedule(struct softnet_data *sd,
4296                                      struct napi_struct *napi)
4297 {
4298         struct task_struct *thread;
4299
4300         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4301                 /* Paired with smp_mb__before_atomic() in
4302                  * napi_enable()/dev_set_threaded().
4303                  * Use READ_ONCE() to guarantee a complete
4304                  * read on napi->thread. Only call
4305                  * wake_up_process() when it's not NULL.
4306                  */
4307                 thread = READ_ONCE(napi->thread);
4308                 if (thread) {
4309                         /* Avoid doing set_bit() if the thread is in
4310                          * INTERRUPTIBLE state, cause napi_thread_wait()
4311                          * makes sure to proceed with napi polling
4312                          * if the thread is explicitly woken from here.
4313                          */
4314                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4315                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4316                         wake_up_process(thread);
4317                         return;
4318                 }
4319         }
4320
4321         list_add_tail(&napi->poll_list, &sd->poll_list);
4322         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4323 }
4324
4325 #ifdef CONFIG_RPS
4326
4327 /* One global table that all flow-based protocols share. */
4328 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4329 EXPORT_SYMBOL(rps_sock_flow_table);
4330 u32 rps_cpu_mask __read_mostly;
4331 EXPORT_SYMBOL(rps_cpu_mask);
4332
4333 struct static_key_false rps_needed __read_mostly;
4334 EXPORT_SYMBOL(rps_needed);
4335 struct static_key_false rfs_needed __read_mostly;
4336 EXPORT_SYMBOL(rfs_needed);
4337
4338 static struct rps_dev_flow *
4339 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4340             struct rps_dev_flow *rflow, u16 next_cpu)
4341 {
4342         if (next_cpu < nr_cpu_ids) {
4343 #ifdef CONFIG_RFS_ACCEL
4344                 struct netdev_rx_queue *rxqueue;
4345                 struct rps_dev_flow_table *flow_table;
4346                 struct rps_dev_flow *old_rflow;
4347                 u32 flow_id;
4348                 u16 rxq_index;
4349                 int rc;
4350
4351                 /* Should we steer this flow to a different hardware queue? */
4352                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4353                     !(dev->features & NETIF_F_NTUPLE))
4354                         goto out;
4355                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4356                 if (rxq_index == skb_get_rx_queue(skb))
4357                         goto out;
4358
4359                 rxqueue = dev->_rx + rxq_index;
4360                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4361                 if (!flow_table)
4362                         goto out;
4363                 flow_id = skb_get_hash(skb) & flow_table->mask;
4364                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4365                                                         rxq_index, flow_id);
4366                 if (rc < 0)
4367                         goto out;
4368                 old_rflow = rflow;
4369                 rflow = &flow_table->flows[flow_id];
4370                 rflow->filter = rc;
4371                 if (old_rflow->filter == rflow->filter)
4372                         old_rflow->filter = RPS_NO_FILTER;
4373         out:
4374 #endif
4375                 rflow->last_qtail =
4376                         per_cpu(softnet_data, next_cpu).input_queue_head;
4377         }
4378
4379         rflow->cpu = next_cpu;
4380         return rflow;
4381 }
4382
4383 /*
4384  * get_rps_cpu is called from netif_receive_skb and returns the target
4385  * CPU from the RPS map of the receiving queue for a given skb.
4386  * rcu_read_lock must be held on entry.
4387  */
4388 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4389                        struct rps_dev_flow **rflowp)
4390 {
4391         const struct rps_sock_flow_table *sock_flow_table;
4392         struct netdev_rx_queue *rxqueue = dev->_rx;
4393         struct rps_dev_flow_table *flow_table;
4394         struct rps_map *map;
4395         int cpu = -1;
4396         u32 tcpu;
4397         u32 hash;
4398
4399         if (skb_rx_queue_recorded(skb)) {
4400                 u16 index = skb_get_rx_queue(skb);
4401
4402                 if (unlikely(index >= dev->real_num_rx_queues)) {
4403                         WARN_ONCE(dev->real_num_rx_queues > 1,
4404                                   "%s received packet on queue %u, but number "
4405                                   "of RX queues is %u\n",
4406                                   dev->name, index, dev->real_num_rx_queues);
4407                         goto done;
4408                 }
4409                 rxqueue += index;
4410         }
4411
4412         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4413
4414         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415         map = rcu_dereference(rxqueue->rps_map);
4416         if (!flow_table && !map)
4417                 goto done;
4418
4419         skb_reset_network_header(skb);
4420         hash = skb_get_hash(skb);
4421         if (!hash)
4422                 goto done;
4423
4424         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4425         if (flow_table && sock_flow_table) {
4426                 struct rps_dev_flow *rflow;
4427                 u32 next_cpu;
4428                 u32 ident;
4429
4430                 /* First check into global flow table if there is a match */
4431                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4432                 if ((ident ^ hash) & ~rps_cpu_mask)
4433                         goto try_rps;
4434
4435                 next_cpu = ident & rps_cpu_mask;
4436
4437                 /* OK, now we know there is a match,
4438                  * we can look at the local (per receive queue) flow table
4439                  */
4440                 rflow = &flow_table->flows[hash & flow_table->mask];
4441                 tcpu = rflow->cpu;
4442
4443                 /*
4444                  * If the desired CPU (where last recvmsg was done) is
4445                  * different from current CPU (one in the rx-queue flow
4446                  * table entry), switch if one of the following holds:
4447                  *   - Current CPU is unset (>= nr_cpu_ids).
4448                  *   - Current CPU is offline.
4449                  *   - The current CPU's queue tail has advanced beyond the
4450                  *     last packet that was enqueued using this table entry.
4451                  *     This guarantees that all previous packets for the flow
4452                  *     have been dequeued, thus preserving in order delivery.
4453                  */
4454                 if (unlikely(tcpu != next_cpu) &&
4455                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4456                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4457                       rflow->last_qtail)) >= 0)) {
4458                         tcpu = next_cpu;
4459                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4460                 }
4461
4462                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4463                         *rflowp = rflow;
4464                         cpu = tcpu;
4465                         goto done;
4466                 }
4467         }
4468
4469 try_rps:
4470
4471         if (map) {
4472                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4473                 if (cpu_online(tcpu)) {
4474                         cpu = tcpu;
4475                         goto done;
4476                 }
4477         }
4478
4479 done:
4480         return cpu;
4481 }
4482
4483 #ifdef CONFIG_RFS_ACCEL
4484
4485 /**
4486  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4487  * @dev: Device on which the filter was set
4488  * @rxq_index: RX queue index
4489  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4490  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4491  *
4492  * Drivers that implement ndo_rx_flow_steer() should periodically call
4493  * this function for each installed filter and remove the filters for
4494  * which it returns %true.
4495  */
4496 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4497                          u32 flow_id, u16 filter_id)
4498 {
4499         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4500         struct rps_dev_flow_table *flow_table;
4501         struct rps_dev_flow *rflow;
4502         bool expire = true;
4503         unsigned int cpu;
4504
4505         rcu_read_lock();
4506         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507         if (flow_table && flow_id <= flow_table->mask) {
4508                 rflow = &flow_table->flows[flow_id];
4509                 cpu = READ_ONCE(rflow->cpu);
4510                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4511                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4512                            rflow->last_qtail) <
4513                      (int)(10 * flow_table->mask)))
4514                         expire = false;
4515         }
4516         rcu_read_unlock();
4517         return expire;
4518 }
4519 EXPORT_SYMBOL(rps_may_expire_flow);
4520
4521 #endif /* CONFIG_RFS_ACCEL */
4522
4523 /* Called from hardirq (IPI) context */
4524 static void rps_trigger_softirq(void *data)
4525 {
4526         struct softnet_data *sd = data;
4527
4528         ____napi_schedule(sd, &sd->backlog);
4529         sd->received_rps++;
4530 }
4531
4532 #endif /* CONFIG_RPS */
4533
4534 /*
4535  * Check if this softnet_data structure is another cpu one
4536  * If yes, queue it to our IPI list and return 1
4537  * If no, return 0
4538  */
4539 static int rps_ipi_queued(struct softnet_data *sd)
4540 {
4541 #ifdef CONFIG_RPS
4542         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4543
4544         if (sd != mysd) {
4545                 sd->rps_ipi_next = mysd->rps_ipi_list;
4546                 mysd->rps_ipi_list = sd;
4547
4548                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4549                 return 1;
4550         }
4551 #endif /* CONFIG_RPS */
4552         return 0;
4553 }
4554
4555 #ifdef CONFIG_NET_FLOW_LIMIT
4556 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4557 #endif
4558
4559 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4560 {
4561 #ifdef CONFIG_NET_FLOW_LIMIT
4562         struct sd_flow_limit *fl;
4563         struct softnet_data *sd;
4564         unsigned int old_flow, new_flow;
4565
4566         if (qlen < (netdev_max_backlog >> 1))
4567                 return false;
4568
4569         sd = this_cpu_ptr(&softnet_data);
4570
4571         rcu_read_lock();
4572         fl = rcu_dereference(sd->flow_limit);
4573         if (fl) {
4574                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4575                 old_flow = fl->history[fl->history_head];
4576                 fl->history[fl->history_head] = new_flow;
4577
4578                 fl->history_head++;
4579                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4580
4581                 if (likely(fl->buckets[old_flow]))
4582                         fl->buckets[old_flow]--;
4583
4584                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4585                         fl->count++;
4586                         rcu_read_unlock();
4587                         return true;
4588                 }
4589         }
4590         rcu_read_unlock();
4591 #endif
4592         return false;
4593 }
4594
4595 /*
4596  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4597  * queue (may be a remote CPU queue).
4598  */
4599 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4600                               unsigned int *qtail)
4601 {
4602         struct softnet_data *sd;
4603         unsigned long flags;
4604         unsigned int qlen;
4605
4606         sd = &per_cpu(softnet_data, cpu);
4607
4608         local_irq_save(flags);
4609
4610         rps_lock(sd);
4611         if (!netif_running(skb->dev))
4612                 goto drop;
4613         qlen = skb_queue_len(&sd->input_pkt_queue);
4614         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4615                 if (qlen) {
4616 enqueue:
4617                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4618                         input_queue_tail_incr_save(sd, qtail);
4619                         rps_unlock(sd);
4620                         local_irq_restore(flags);
4621                         return NET_RX_SUCCESS;
4622                 }
4623
4624                 /* Schedule NAPI for backlog device
4625                  * We can use non atomic operation since we own the queue lock
4626                  */
4627                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4628                         if (!rps_ipi_queued(sd))
4629                                 ____napi_schedule(sd, &sd->backlog);
4630                 }
4631                 goto enqueue;
4632         }
4633
4634 drop:
4635         sd->dropped++;
4636         rps_unlock(sd);
4637
4638         local_irq_restore(flags);
4639
4640         atomic_long_inc(&skb->dev->rx_dropped);
4641         kfree_skb(skb);
4642         return NET_RX_DROP;
4643 }
4644
4645 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4646 {
4647         struct net_device *dev = skb->dev;
4648         struct netdev_rx_queue *rxqueue;
4649
4650         rxqueue = dev->_rx;
4651
4652         if (skb_rx_queue_recorded(skb)) {
4653                 u16 index = skb_get_rx_queue(skb);
4654
4655                 if (unlikely(index >= dev->real_num_rx_queues)) {
4656                         WARN_ONCE(dev->real_num_rx_queues > 1,
4657                                   "%s received packet on queue %u, but number "
4658                                   "of RX queues is %u\n",
4659                                   dev->name, index, dev->real_num_rx_queues);
4660
4661                         return rxqueue; /* Return first rxqueue */
4662                 }
4663                 rxqueue += index;
4664         }
4665         return rxqueue;
4666 }
4667
4668 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4669                                      struct xdp_buff *xdp,
4670                                      struct bpf_prog *xdp_prog)
4671 {
4672         void *orig_data, *orig_data_end, *hard_start;
4673         struct netdev_rx_queue *rxqueue;
4674         u32 metalen, act = XDP_DROP;
4675         u32 mac_len, frame_sz;
4676         __be16 orig_eth_type;
4677         struct ethhdr *eth;
4678         bool orig_bcast;
4679         int off;
4680
4681         /* Reinjected packets coming from act_mirred or similar should
4682          * not get XDP generic processing.
4683          */
4684         if (skb_is_redirected(skb))
4685                 return XDP_PASS;
4686
4687         /* XDP packets must be linear and must have sufficient headroom
4688          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4689          * native XDP provides, thus we need to do it here as well.
4690          */
4691         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4692             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4693                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4694                 int troom = skb->tail + skb->data_len - skb->end;
4695
4696                 /* In case we have to go down the path and also linearize,
4697                  * then lets do the pskb_expand_head() work just once here.
4698                  */
4699                 if (pskb_expand_head(skb,
4700                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4701                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4702                         goto do_drop;
4703                 if (skb_linearize(skb))
4704                         goto do_drop;
4705         }
4706
4707         /* The XDP program wants to see the packet starting at the MAC
4708          * header.
4709          */
4710         mac_len = skb->data - skb_mac_header(skb);
4711         hard_start = skb->data - skb_headroom(skb);
4712
4713         /* SKB "head" area always have tailroom for skb_shared_info */
4714         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4715         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4716
4717         rxqueue = netif_get_rxqueue(skb);
4718         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4719         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4720                          skb_headlen(skb) + mac_len, true);
4721
4722         orig_data_end = xdp->data_end;
4723         orig_data = xdp->data;
4724         eth = (struct ethhdr *)xdp->data;
4725         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726         orig_eth_type = eth->h_proto;
4727
4728         act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730         /* check if bpf_xdp_adjust_head was used */
4731         off = xdp->data - orig_data;
4732         if (off) {
4733                 if (off > 0)
4734                         __skb_pull(skb, off);
4735                 else if (off < 0)
4736                         __skb_push(skb, -off);
4737
4738                 skb->mac_header += off;
4739                 skb_reset_network_header(skb);
4740         }
4741
4742         /* check if bpf_xdp_adjust_tail was used */
4743         off = xdp->data_end - orig_data_end;
4744         if (off != 0) {
4745                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746                 skb->len += off; /* positive on grow, negative on shrink */
4747         }
4748
4749         /* check if XDP changed eth hdr such SKB needs update */
4750         eth = (struct ethhdr *)xdp->data;
4751         if ((orig_eth_type != eth->h_proto) ||
4752             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4753                 __skb_push(skb, ETH_HLEN);
4754                 skb->protocol = eth_type_trans(skb, skb->dev);
4755         }
4756
4757         switch (act) {
4758         case XDP_REDIRECT:
4759         case XDP_TX:
4760                 __skb_push(skb, mac_len);
4761                 break;
4762         case XDP_PASS:
4763                 metalen = xdp->data - xdp->data_meta;
4764                 if (metalen)
4765                         skb_metadata_set(skb, metalen);
4766                 break;
4767         default:
4768                 bpf_warn_invalid_xdp_action(act);
4769                 fallthrough;
4770         case XDP_ABORTED:
4771                 trace_xdp_exception(skb->dev, xdp_prog, act);
4772                 fallthrough;
4773         case XDP_DROP:
4774         do_drop:
4775                 kfree_skb(skb);
4776                 break;
4777         }
4778
4779         return act;
4780 }
4781
4782 /* When doing generic XDP we have to bypass the qdisc layer and the
4783  * network taps in order to match in-driver-XDP behavior.
4784  */
4785 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4786 {
4787         struct net_device *dev = skb->dev;
4788         struct netdev_queue *txq;
4789         bool free_skb = true;
4790         int cpu, rc;
4791
4792         txq = netdev_core_pick_tx(dev, skb, NULL);
4793         cpu = smp_processor_id();
4794         HARD_TX_LOCK(dev, txq, cpu);
4795         if (!netif_xmit_stopped(txq)) {
4796                 rc = netdev_start_xmit(skb, dev, txq, 0);
4797                 if (dev_xmit_complete(rc))
4798                         free_skb = false;
4799         }
4800         HARD_TX_UNLOCK(dev, txq);
4801         if (free_skb) {
4802                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4803                 kfree_skb(skb);
4804         }
4805 }
4806
4807 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4808
4809 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4810 {
4811         if (xdp_prog) {
4812                 struct xdp_buff xdp;
4813                 u32 act;
4814                 int err;
4815
4816                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4817                 if (act != XDP_PASS) {
4818                         switch (act) {
4819                         case XDP_REDIRECT:
4820                                 err = xdp_do_generic_redirect(skb->dev, skb,
4821                                                               &xdp, xdp_prog);
4822                                 if (err)
4823                                         goto out_redir;
4824                                 break;
4825                         case XDP_TX:
4826                                 generic_xdp_tx(skb, xdp_prog);
4827                                 break;
4828                         }
4829                         return XDP_DROP;
4830                 }
4831         }
4832         return XDP_PASS;
4833 out_redir:
4834         kfree_skb(skb);
4835         return XDP_DROP;
4836 }
4837 EXPORT_SYMBOL_GPL(do_xdp_generic);
4838
4839 static int netif_rx_internal(struct sk_buff *skb)
4840 {
4841         int ret;
4842
4843         net_timestamp_check(netdev_tstamp_prequeue, skb);
4844
4845         trace_netif_rx(skb);
4846
4847 #ifdef CONFIG_RPS
4848         if (static_branch_unlikely(&rps_needed)) {
4849                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4850                 int cpu;
4851
4852                 preempt_disable();
4853                 rcu_read_lock();
4854
4855                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4856                 if (cpu < 0)
4857                         cpu = smp_processor_id();
4858
4859                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4860
4861                 rcu_read_unlock();
4862                 preempt_enable();
4863         } else
4864 #endif
4865         {
4866                 unsigned int qtail;
4867
4868                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4869                 put_cpu();
4870         }
4871         return ret;
4872 }
4873
4874 /**
4875  *      netif_rx        -       post buffer to the network code
4876  *      @skb: buffer to post
4877  *
4878  *      This function receives a packet from a device driver and queues it for
4879  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4880  *      may be dropped during processing for congestion control or by the
4881  *      protocol layers.
4882  *
4883  *      return values:
4884  *      NET_RX_SUCCESS  (no congestion)
4885  *      NET_RX_DROP     (packet was dropped)
4886  *
4887  */
4888
4889 int netif_rx(struct sk_buff *skb)
4890 {
4891         int ret;
4892
4893         trace_netif_rx_entry(skb);
4894
4895         ret = netif_rx_internal(skb);
4896         trace_netif_rx_exit(ret);
4897
4898         return ret;
4899 }
4900 EXPORT_SYMBOL(netif_rx);
4901
4902 int netif_rx_ni(struct sk_buff *skb)
4903 {
4904         int err;
4905
4906         trace_netif_rx_ni_entry(skb);
4907
4908         preempt_disable();
4909         err = netif_rx_internal(skb);
4910         if (local_softirq_pending())
4911                 do_softirq();
4912         preempt_enable();
4913         trace_netif_rx_ni_exit(err);
4914
4915         return err;
4916 }
4917 EXPORT_SYMBOL(netif_rx_ni);
4918
4919 int netif_rx_any_context(struct sk_buff *skb)
4920 {
4921         /*
4922          * If invoked from contexts which do not invoke bottom half
4923          * processing either at return from interrupt or when softrqs are
4924          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4925          * directly.
4926          */
4927         if (in_interrupt())
4928                 return netif_rx(skb);
4929         else
4930                 return netif_rx_ni(skb);
4931 }
4932 EXPORT_SYMBOL(netif_rx_any_context);
4933
4934 static __latent_entropy void net_tx_action(struct softirq_action *h)
4935 {
4936         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4937
4938         if (sd->completion_queue) {
4939                 struct sk_buff *clist;
4940
4941                 local_irq_disable();
4942                 clist = sd->completion_queue;
4943                 sd->completion_queue = NULL;
4944                 local_irq_enable();
4945
4946                 while (clist) {
4947                         struct sk_buff *skb = clist;
4948
4949                         clist = clist->next;
4950
4951                         WARN_ON(refcount_read(&skb->users));
4952                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4953                                 trace_consume_skb(skb);
4954                         else
4955                                 trace_kfree_skb(skb, net_tx_action);
4956
4957                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958                                 __kfree_skb(skb);
4959                         else
4960                                 __kfree_skb_defer(skb);
4961                 }
4962         }
4963
4964         if (sd->output_queue) {
4965                 struct Qdisc *head;
4966
4967                 local_irq_disable();
4968                 head = sd->output_queue;
4969                 sd->output_queue = NULL;
4970                 sd->output_queue_tailp = &sd->output_queue;
4971                 local_irq_enable();
4972
4973                 while (head) {
4974                         struct Qdisc *q = head;
4975                         spinlock_t *root_lock = NULL;
4976
4977                         head = head->next_sched;
4978
4979                         if (!(q->flags & TCQ_F_NOLOCK)) {
4980                                 root_lock = qdisc_lock(q);
4981                                 spin_lock(root_lock);
4982                         }
4983                         /* We need to make sure head->next_sched is read
4984                          * before clearing __QDISC_STATE_SCHED
4985                          */
4986                         smp_mb__before_atomic();
4987                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4988                         qdisc_run(q);
4989                         if (root_lock)
4990                                 spin_unlock(root_lock);
4991                 }
4992         }
4993
4994         xfrm_dev_backlog(sd);
4995 }
4996
4997 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4998 /* This hook is defined here for ATM LANE */
4999 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5000                              unsigned char *addr) __read_mostly;
5001 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5002 #endif
5003
5004 static inline struct sk_buff *
5005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5006                    struct net_device *orig_dev, bool *another)
5007 {
5008 #ifdef CONFIG_NET_CLS_ACT
5009         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5010         struct tcf_result cl_res;
5011
5012         /* If there's at least one ingress present somewhere (so
5013          * we get here via enabled static key), remaining devices
5014          * that are not configured with an ingress qdisc will bail
5015          * out here.
5016          */
5017         if (!miniq)
5018                 return skb;
5019
5020         if (*pt_prev) {
5021                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5022                 *pt_prev = NULL;
5023         }
5024
5025         qdisc_skb_cb(skb)->pkt_len = skb->len;
5026         qdisc_skb_cb(skb)->mru = 0;
5027         qdisc_skb_cb(skb)->post_ct = false;
5028         skb->tc_at_ingress = 1;
5029         mini_qdisc_bstats_cpu_update(miniq, skb);
5030
5031         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5032                                      &cl_res, false)) {
5033         case TC_ACT_OK:
5034         case TC_ACT_RECLASSIFY:
5035                 skb->tc_index = TC_H_MIN(cl_res.classid);
5036                 break;
5037         case TC_ACT_SHOT:
5038                 mini_qdisc_qstats_cpu_drop(miniq);
5039                 kfree_skb(skb);
5040                 return NULL;
5041         case TC_ACT_STOLEN:
5042         case TC_ACT_QUEUED:
5043         case TC_ACT_TRAP:
5044                 consume_skb(skb);
5045                 return NULL;
5046         case TC_ACT_REDIRECT:
5047                 /* skb_mac_header check was done by cls/act_bpf, so
5048                  * we can safely push the L2 header back before
5049                  * redirecting to another netdev
5050                  */
5051                 __skb_push(skb, skb->mac_len);
5052                 if (skb_do_redirect(skb) == -EAGAIN) {
5053                         __skb_pull(skb, skb->mac_len);
5054                         *another = true;
5055                         break;
5056                 }
5057                 return NULL;
5058         case TC_ACT_CONSUMED:
5059                 return NULL;
5060         default:
5061                 break;
5062         }
5063 #endif /* CONFIG_NET_CLS_ACT */
5064         return skb;
5065 }
5066
5067 /**
5068  *      netdev_is_rx_handler_busy - check if receive handler is registered
5069  *      @dev: device to check
5070  *
5071  *      Check if a receive handler is already registered for a given device.
5072  *      Return true if there one.
5073  *
5074  *      The caller must hold the rtnl_mutex.
5075  */
5076 bool netdev_is_rx_handler_busy(struct net_device *dev)
5077 {
5078         ASSERT_RTNL();
5079         return dev && rtnl_dereference(dev->rx_handler);
5080 }
5081 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5082
5083 /**
5084  *      netdev_rx_handler_register - register receive handler
5085  *      @dev: device to register a handler for
5086  *      @rx_handler: receive handler to register
5087  *      @rx_handler_data: data pointer that is used by rx handler
5088  *
5089  *      Register a receive handler for a device. This handler will then be
5090  *      called from __netif_receive_skb. A negative errno code is returned
5091  *      on a failure.
5092  *
5093  *      The caller must hold the rtnl_mutex.
5094  *
5095  *      For a general description of rx_handler, see enum rx_handler_result.
5096  */
5097 int netdev_rx_handler_register(struct net_device *dev,
5098                                rx_handler_func_t *rx_handler,
5099                                void *rx_handler_data)
5100 {
5101         if (netdev_is_rx_handler_busy(dev))
5102                 return -EBUSY;
5103
5104         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5105                 return -EINVAL;
5106
5107         /* Note: rx_handler_data must be set before rx_handler */
5108         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5109         rcu_assign_pointer(dev->rx_handler, rx_handler);
5110
5111         return 0;
5112 }
5113 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5114
5115 /**
5116  *      netdev_rx_handler_unregister - unregister receive handler
5117  *      @dev: device to unregister a handler from
5118  *
5119  *      Unregister a receive handler from a device.
5120  *
5121  *      The caller must hold the rtnl_mutex.
5122  */
5123 void netdev_rx_handler_unregister(struct net_device *dev)
5124 {
5125
5126         ASSERT_RTNL();
5127         RCU_INIT_POINTER(dev->rx_handler, NULL);
5128         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5129          * section has a guarantee to see a non NULL rx_handler_data
5130          * as well.
5131          */
5132         synchronize_net();
5133         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5134 }
5135 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5136
5137 /*
5138  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5139  * the special handling of PFMEMALLOC skbs.
5140  */
5141 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5142 {
5143         switch (skb->protocol) {
5144         case htons(ETH_P_ARP):
5145         case htons(ETH_P_IP):
5146         case htons(ETH_P_IPV6):
5147         case htons(ETH_P_8021Q):
5148         case htons(ETH_P_8021AD):
5149                 return true;
5150         default:
5151                 return false;
5152         }
5153 }
5154
5155 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5156                              int *ret, struct net_device *orig_dev)
5157 {
5158         if (nf_hook_ingress_active(skb)) {
5159                 int ingress_retval;
5160
5161                 if (*pt_prev) {
5162                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5163                         *pt_prev = NULL;
5164                 }
5165
5166                 rcu_read_lock();
5167                 ingress_retval = nf_hook_ingress(skb);
5168                 rcu_read_unlock();
5169                 return ingress_retval;
5170         }
5171         return 0;
5172 }
5173
5174 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5175                                     struct packet_type **ppt_prev)
5176 {
5177         struct packet_type *ptype, *pt_prev;
5178         rx_handler_func_t *rx_handler;
5179         struct sk_buff *skb = *pskb;
5180         struct net_device *orig_dev;
5181         bool deliver_exact = false;
5182         int ret = NET_RX_DROP;
5183         __be16 type;
5184
5185         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5186
5187         trace_netif_receive_skb(skb);
5188
5189         orig_dev = skb->dev;
5190
5191         skb_reset_network_header(skb);
5192         if (!skb_transport_header_was_set(skb))
5193                 skb_reset_transport_header(skb);
5194         skb_reset_mac_len(skb);
5195
5196         pt_prev = NULL;
5197
5198 another_round:
5199         skb->skb_iif = skb->dev->ifindex;
5200
5201         __this_cpu_inc(softnet_data.processed);
5202
5203         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5204                 int ret2;
5205
5206                 preempt_disable();
5207                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5208                 preempt_enable();
5209
5210                 if (ret2 != XDP_PASS) {
5211                         ret = NET_RX_DROP;
5212                         goto out;
5213                 }
5214                 skb_reset_mac_len(skb);
5215         }
5216
5217         if (eth_type_vlan(skb->protocol)) {
5218                 skb = skb_vlan_untag(skb);
5219                 if (unlikely(!skb))
5220                         goto out;
5221         }
5222
5223         if (skb_skip_tc_classify(skb))
5224                 goto skip_classify;
5225
5226         if (pfmemalloc)
5227                 goto skip_taps;
5228
5229         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5230                 if (pt_prev)
5231                         ret = deliver_skb(skb, pt_prev, orig_dev);
5232                 pt_prev = ptype;
5233         }
5234
5235         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5236                 if (pt_prev)
5237                         ret = deliver_skb(skb, pt_prev, orig_dev);
5238                 pt_prev = ptype;
5239         }
5240
5241 skip_taps:
5242 #ifdef CONFIG_NET_INGRESS
5243         if (static_branch_unlikely(&ingress_needed_key)) {
5244                 bool another = false;
5245
5246                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5247                                          &another);
5248                 if (another)
5249                         goto another_round;
5250                 if (!skb)
5251                         goto out;
5252
5253                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5254                         goto out;
5255         }
5256 #endif
5257         skb_reset_redirect(skb);
5258 skip_classify:
5259         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5260                 goto drop;
5261
5262         if (skb_vlan_tag_present(skb)) {
5263                 if (pt_prev) {
5264                         ret = deliver_skb(skb, pt_prev, orig_dev);
5265                         pt_prev = NULL;
5266                 }
5267                 if (vlan_do_receive(&skb))
5268                         goto another_round;
5269                 else if (unlikely(!skb))
5270                         goto out;
5271         }
5272
5273         rx_handler = rcu_dereference(skb->dev->rx_handler);
5274         if (rx_handler) {
5275                 if (pt_prev) {
5276                         ret = deliver_skb(skb, pt_prev, orig_dev);
5277                         pt_prev = NULL;
5278                 }
5279                 switch (rx_handler(&skb)) {
5280                 case RX_HANDLER_CONSUMED:
5281                         ret = NET_RX_SUCCESS;
5282                         goto out;
5283                 case RX_HANDLER_ANOTHER:
5284                         goto another_round;
5285                 case RX_HANDLER_EXACT:
5286                         deliver_exact = true;
5287                 case RX_HANDLER_PASS:
5288                         break;
5289                 default:
5290                         BUG();
5291                 }
5292         }
5293
5294         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5295 check_vlan_id:
5296                 if (skb_vlan_tag_get_id(skb)) {
5297                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5298                          * find vlan device.
5299                          */
5300                         skb->pkt_type = PACKET_OTHERHOST;
5301                 } else if (eth_type_vlan(skb->protocol)) {
5302                         /* Outer header is 802.1P with vlan 0, inner header is
5303                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5304                          * not find vlan dev for vlan id 0.
5305                          */
5306                         __vlan_hwaccel_clear_tag(skb);
5307                         skb = skb_vlan_untag(skb);
5308                         if (unlikely(!skb))
5309                                 goto out;
5310                         if (vlan_do_receive(&skb))
5311                                 /* After stripping off 802.1P header with vlan 0
5312                                  * vlan dev is found for inner header.
5313                                  */
5314                                 goto another_round;
5315                         else if (unlikely(!skb))
5316                                 goto out;
5317                         else
5318                                 /* We have stripped outer 802.1P vlan 0 header.
5319                                  * But could not find vlan dev.
5320                                  * check again for vlan id to set OTHERHOST.
5321                                  */
5322                                 goto check_vlan_id;
5323                 }
5324                 /* Note: we might in the future use prio bits
5325                  * and set skb->priority like in vlan_do_receive()
5326                  * For the time being, just ignore Priority Code Point
5327                  */
5328                 __vlan_hwaccel_clear_tag(skb);
5329         }
5330
5331         type = skb->protocol;
5332
5333         /* deliver only exact match when indicated */
5334         if (likely(!deliver_exact)) {
5335                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336                                        &ptype_base[ntohs(type) &
5337                                                    PTYPE_HASH_MASK]);
5338         }
5339
5340         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5341                                &orig_dev->ptype_specific);
5342
5343         if (unlikely(skb->dev != orig_dev)) {
5344                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5345                                        &skb->dev->ptype_specific);
5346         }
5347
5348         if (pt_prev) {
5349                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5350                         goto drop;
5351                 *ppt_prev = pt_prev;
5352         } else {
5353 drop:
5354                 if (!deliver_exact)
5355                         atomic_long_inc(&skb->dev->rx_dropped);
5356                 else
5357                         atomic_long_inc(&skb->dev->rx_nohandler);
5358                 kfree_skb(skb);
5359                 /* Jamal, now you will not able to escape explaining
5360                  * me how you were going to use this. :-)
5361                  */
5362                 ret = NET_RX_DROP;
5363         }
5364
5365 out:
5366         /* The invariant here is that if *ppt_prev is not NULL
5367          * then skb should also be non-NULL.
5368          *
5369          * Apparently *ppt_prev assignment above holds this invariant due to
5370          * skb dereferencing near it.
5371          */
5372         *pskb = skb;
5373         return ret;
5374 }
5375
5376 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5377 {
5378         struct net_device *orig_dev = skb->dev;
5379         struct packet_type *pt_prev = NULL;
5380         int ret;
5381
5382         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5383         if (pt_prev)
5384                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5385                                          skb->dev, pt_prev, orig_dev);
5386         return ret;
5387 }
5388
5389 /**
5390  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5391  *      @skb: buffer to process
5392  *
5393  *      More direct receive version of netif_receive_skb().  It should
5394  *      only be used by callers that have a need to skip RPS and Generic XDP.
5395  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5396  *
5397  *      This function may only be called from softirq context and interrupts
5398  *      should be enabled.
5399  *
5400  *      Return values (usually ignored):
5401  *      NET_RX_SUCCESS: no congestion
5402  *      NET_RX_DROP: packet was dropped
5403  */
5404 int netif_receive_skb_core(struct sk_buff *skb)
5405 {
5406         int ret;
5407
5408         rcu_read_lock();
5409         ret = __netif_receive_skb_one_core(skb, false);
5410         rcu_read_unlock();
5411
5412         return ret;
5413 }
5414 EXPORT_SYMBOL(netif_receive_skb_core);
5415
5416 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5417                                                   struct packet_type *pt_prev,
5418                                                   struct net_device *orig_dev)
5419 {
5420         struct sk_buff *skb, *next;
5421
5422         if (!pt_prev)
5423                 return;
5424         if (list_empty(head))
5425                 return;
5426         if (pt_prev->list_func != NULL)
5427                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5428                                    ip_list_rcv, head, pt_prev, orig_dev);
5429         else
5430                 list_for_each_entry_safe(skb, next, head, list) {
5431                         skb_list_del_init(skb);
5432                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5433                 }
5434 }
5435
5436 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5437 {
5438         /* Fast-path assumptions:
5439          * - There is no RX handler.
5440          * - Only one packet_type matches.
5441          * If either of these fails, we will end up doing some per-packet
5442          * processing in-line, then handling the 'last ptype' for the whole
5443          * sublist.  This can't cause out-of-order delivery to any single ptype,
5444          * because the 'last ptype' must be constant across the sublist, and all
5445          * other ptypes are handled per-packet.
5446          */
5447         /* Current (common) ptype of sublist */
5448         struct packet_type *pt_curr = NULL;
5449         /* Current (common) orig_dev of sublist */
5450         struct net_device *od_curr = NULL;
5451         struct list_head sublist;
5452         struct sk_buff *skb, *next;
5453
5454         INIT_LIST_HEAD(&sublist);
5455         list_for_each_entry_safe(skb, next, head, list) {
5456                 struct net_device *orig_dev = skb->dev;
5457                 struct packet_type *pt_prev = NULL;
5458
5459                 skb_list_del_init(skb);
5460                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461                 if (!pt_prev)
5462                         continue;
5463                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5464                         /* dispatch old sublist */
5465                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5466                         /* start new sublist */
5467                         INIT_LIST_HEAD(&sublist);
5468                         pt_curr = pt_prev;
5469                         od_curr = orig_dev;
5470                 }
5471                 list_add_tail(&skb->list, &sublist);
5472         }
5473
5474         /* dispatch final sublist */
5475         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5476 }
5477
5478 static int __netif_receive_skb(struct sk_buff *skb)
5479 {
5480         int ret;
5481
5482         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5483                 unsigned int noreclaim_flag;
5484
5485                 /*
5486                  * PFMEMALLOC skbs are special, they should
5487                  * - be delivered to SOCK_MEMALLOC sockets only
5488                  * - stay away from userspace
5489                  * - have bounded memory usage
5490                  *
5491                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5492                  * context down to all allocation sites.
5493                  */
5494                 noreclaim_flag = memalloc_noreclaim_save();
5495                 ret = __netif_receive_skb_one_core(skb, true);
5496                 memalloc_noreclaim_restore(noreclaim_flag);
5497         } else
5498                 ret = __netif_receive_skb_one_core(skb, false);
5499
5500         return ret;
5501 }
5502
5503 static void __netif_receive_skb_list(struct list_head *head)
5504 {
5505         unsigned long noreclaim_flag = 0;
5506         struct sk_buff *skb, *next;
5507         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5508
5509         list_for_each_entry_safe(skb, next, head, list) {
5510                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5511                         struct list_head sublist;
5512
5513                         /* Handle the previous sublist */
5514                         list_cut_before(&sublist, head, &skb->list);
5515                         if (!list_empty(&sublist))
5516                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5517                         pfmemalloc = !pfmemalloc;
5518                         /* See comments in __netif_receive_skb */
5519                         if (pfmemalloc)
5520                                 noreclaim_flag = memalloc_noreclaim_save();
5521                         else
5522                                 memalloc_noreclaim_restore(noreclaim_flag);
5523                 }
5524         }
5525         /* Handle the remaining sublist */
5526         if (!list_empty(head))
5527                 __netif_receive_skb_list_core(head, pfmemalloc);
5528         /* Restore pflags */
5529         if (pfmemalloc)
5530                 memalloc_noreclaim_restore(noreclaim_flag);
5531 }
5532
5533 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5534 {
5535         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5536         struct bpf_prog *new = xdp->prog;
5537         int ret = 0;
5538
5539         if (new) {
5540                 u32 i;
5541
5542                 mutex_lock(&new->aux->used_maps_mutex);
5543
5544                 /* generic XDP does not work with DEVMAPs that can
5545                  * have a bpf_prog installed on an entry
5546                  */
5547                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5548                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5549                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5550                                 mutex_unlock(&new->aux->used_maps_mutex);
5551                                 return -EINVAL;
5552                         }
5553                 }
5554
5555                 mutex_unlock(&new->aux->used_maps_mutex);
5556         }
5557
5558         switch (xdp->command) {
5559         case XDP_SETUP_PROG:
5560                 rcu_assign_pointer(dev->xdp_prog, new);
5561                 if (old)
5562                         bpf_prog_put(old);
5563
5564                 if (old && !new) {
5565                         static_branch_dec(&generic_xdp_needed_key);
5566                 } else if (new && !old) {
5567                         static_branch_inc(&generic_xdp_needed_key);
5568                         dev_disable_lro(dev);
5569                         dev_disable_gro_hw(dev);
5570                 }
5571                 break;
5572
5573         default:
5574                 ret = -EINVAL;
5575                 break;
5576         }
5577
5578         return ret;
5579 }
5580
5581 static int netif_receive_skb_internal(struct sk_buff *skb)
5582 {
5583         int ret;
5584
5585         net_timestamp_check(netdev_tstamp_prequeue, skb);
5586
5587         if (skb_defer_rx_timestamp(skb))
5588                 return NET_RX_SUCCESS;
5589
5590         rcu_read_lock();
5591 #ifdef CONFIG_RPS
5592         if (static_branch_unlikely(&rps_needed)) {
5593                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5594                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5595
5596                 if (cpu >= 0) {
5597                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5598                         rcu_read_unlock();
5599                         return ret;
5600                 }
5601         }
5602 #endif
5603         ret = __netif_receive_skb(skb);
5604         rcu_read_unlock();
5605         return ret;
5606 }
5607
5608 static void netif_receive_skb_list_internal(struct list_head *head)
5609 {
5610         struct sk_buff *skb, *next;
5611         struct list_head sublist;
5612
5613         INIT_LIST_HEAD(&sublist);
5614         list_for_each_entry_safe(skb, next, head, list) {
5615                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5616                 skb_list_del_init(skb);
5617                 if (!skb_defer_rx_timestamp(skb))
5618                         list_add_tail(&skb->list, &sublist);
5619         }
5620         list_splice_init(&sublist, head);
5621
5622         rcu_read_lock();
5623 #ifdef CONFIG_RPS
5624         if (static_branch_unlikely(&rps_needed)) {
5625                 list_for_each_entry_safe(skb, next, head, list) {
5626                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5627                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629                         if (cpu >= 0) {
5630                                 /* Will be handled, remove from list */
5631                                 skb_list_del_init(skb);
5632                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633                         }
5634                 }
5635         }
5636 #endif
5637         __netif_receive_skb_list(head);
5638         rcu_read_unlock();
5639 }
5640
5641 /**
5642  *      netif_receive_skb - process receive buffer from network
5643  *      @skb: buffer to process
5644  *
5645  *      netif_receive_skb() is the main receive data processing function.
5646  *      It always succeeds. The buffer may be dropped during processing
5647  *      for congestion control or by the protocol layers.
5648  *
5649  *      This function may only be called from softirq context and interrupts
5650  *      should be enabled.
5651  *
5652  *      Return values (usually ignored):
5653  *      NET_RX_SUCCESS: no congestion
5654  *      NET_RX_DROP: packet was dropped
5655  */
5656 int netif_receive_skb(struct sk_buff *skb)
5657 {
5658         int ret;
5659
5660         trace_netif_receive_skb_entry(skb);
5661
5662         ret = netif_receive_skb_internal(skb);
5663         trace_netif_receive_skb_exit(ret);
5664
5665         return ret;
5666 }
5667 EXPORT_SYMBOL(netif_receive_skb);
5668
5669 /**
5670  *      netif_receive_skb_list - process many receive buffers from network
5671  *      @head: list of skbs to process.
5672  *
5673  *      Since return value of netif_receive_skb() is normally ignored, and
5674  *      wouldn't be meaningful for a list, this function returns void.
5675  *
5676  *      This function may only be called from softirq context and interrupts
5677  *      should be enabled.
5678  */
5679 void netif_receive_skb_list(struct list_head *head)
5680 {
5681         struct sk_buff *skb;
5682
5683         if (list_empty(head))
5684                 return;
5685         if (trace_netif_receive_skb_list_entry_enabled()) {
5686                 list_for_each_entry(skb, head, list)
5687                         trace_netif_receive_skb_list_entry(skb);
5688         }
5689         netif_receive_skb_list_internal(head);
5690         trace_netif_receive_skb_list_exit(0);
5691 }
5692 EXPORT_SYMBOL(netif_receive_skb_list);
5693
5694 static DEFINE_PER_CPU(struct work_struct, flush_works);
5695
5696 /* Network device is going away, flush any packets still pending */
5697 static void flush_backlog(struct work_struct *work)
5698 {
5699         struct sk_buff *skb, *tmp;
5700         struct softnet_data *sd;
5701
5702         local_bh_disable();
5703         sd = this_cpu_ptr(&softnet_data);
5704
5705         local_irq_disable();
5706         rps_lock(sd);
5707         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5708                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5709                         __skb_unlink(skb, &sd->input_pkt_queue);
5710                         dev_kfree_skb_irq(skb);
5711                         input_queue_head_incr(sd);
5712                 }
5713         }
5714         rps_unlock(sd);
5715         local_irq_enable();
5716
5717         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719                         __skb_unlink(skb, &sd->process_queue);
5720                         kfree_skb(skb);
5721                         input_queue_head_incr(sd);
5722                 }
5723         }
5724         local_bh_enable();
5725 }
5726
5727 static bool flush_required(int cpu)
5728 {
5729 #if IS_ENABLED(CONFIG_RPS)
5730         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731         bool do_flush;
5732
5733         local_irq_disable();
5734         rps_lock(sd);
5735
5736         /* as insertion into process_queue happens with the rps lock held,
5737          * process_queue access may race only with dequeue
5738          */
5739         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5740                    !skb_queue_empty_lockless(&sd->process_queue);
5741         rps_unlock(sd);
5742         local_irq_enable();
5743
5744         return do_flush;
5745 #endif
5746         /* without RPS we can't safely check input_pkt_queue: during a
5747          * concurrent remote skb_queue_splice() we can detect as empty both
5748          * input_pkt_queue and process_queue even if the latter could end-up
5749          * containing a lot of packets.
5750          */
5751         return true;
5752 }
5753
5754 static void flush_all_backlogs(void)
5755 {
5756         static cpumask_t flush_cpus;
5757         unsigned int cpu;
5758
5759         /* since we are under rtnl lock protection we can use static data
5760          * for the cpumask and avoid allocating on stack the possibly
5761          * large mask
5762          */
5763         ASSERT_RTNL();
5764
5765         get_online_cpus();
5766
5767         cpumask_clear(&flush_cpus);
5768         for_each_online_cpu(cpu) {
5769                 if (flush_required(cpu)) {
5770                         queue_work_on(cpu, system_highpri_wq,
5771                                       per_cpu_ptr(&flush_works, cpu));
5772                         cpumask_set_cpu(cpu, &flush_cpus);
5773                 }
5774         }
5775
5776         /* we can have in flight packet[s] on the cpus we are not flushing,
5777          * synchronize_net() in unregister_netdevice_many() will take care of
5778          * them
5779          */
5780         for_each_cpu(cpu, &flush_cpus)
5781                 flush_work(per_cpu_ptr(&flush_works, cpu));
5782
5783         put_online_cpus();
5784 }
5785
5786 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5787 static void gro_normal_list(struct napi_struct *napi)
5788 {
5789         if (!napi->rx_count)
5790                 return;
5791         netif_receive_skb_list_internal(&napi->rx_list);
5792         INIT_LIST_HEAD(&napi->rx_list);
5793         napi->rx_count = 0;
5794 }
5795
5796 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5797  * pass the whole batch up to the stack.
5798  */
5799 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5800 {
5801         list_add_tail(&skb->list, &napi->rx_list);
5802         napi->rx_count += segs;
5803         if (napi->rx_count >= gro_normal_batch)
5804                 gro_normal_list(napi);
5805 }
5806
5807 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5808 {
5809         struct packet_offload *ptype;
5810         __be16 type = skb->protocol;
5811         struct list_head *head = &offload_base;
5812         int err = -ENOENT;
5813
5814         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5815
5816         if (NAPI_GRO_CB(skb)->count == 1) {
5817                 skb_shinfo(skb)->gso_size = 0;
5818                 goto out;
5819         }
5820
5821         rcu_read_lock();
5822         list_for_each_entry_rcu(ptype, head, list) {
5823                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5824                         continue;
5825
5826                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5827                                          ipv6_gro_complete, inet_gro_complete,
5828                                          skb, 0);
5829                 break;
5830         }
5831         rcu_read_unlock();
5832
5833         if (err) {
5834                 WARN_ON(&ptype->list == head);
5835                 kfree_skb(skb);
5836                 return NET_RX_SUCCESS;
5837         }
5838
5839 out:
5840         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5841         return NET_RX_SUCCESS;
5842 }
5843
5844 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5845                                    bool flush_old)
5846 {
5847         struct list_head *head = &napi->gro_hash[index].list;
5848         struct sk_buff *skb, *p;
5849
5850         list_for_each_entry_safe_reverse(skb, p, head, list) {
5851                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5852                         return;
5853                 skb_list_del_init(skb);
5854                 napi_gro_complete(napi, skb);
5855                 napi->gro_hash[index].count--;
5856         }
5857
5858         if (!napi->gro_hash[index].count)
5859                 __clear_bit(index, &napi->gro_bitmask);
5860 }
5861
5862 /* napi->gro_hash[].list contains packets ordered by age.
5863  * youngest packets at the head of it.
5864  * Complete skbs in reverse order to reduce latencies.
5865  */
5866 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5867 {
5868         unsigned long bitmask = napi->gro_bitmask;
5869         unsigned int i, base = ~0U;
5870
5871         while ((i = ffs(bitmask)) != 0) {
5872                 bitmask >>= i;
5873                 base += i;
5874                 __napi_gro_flush_chain(napi, base, flush_old);
5875         }
5876 }
5877 EXPORT_SYMBOL(napi_gro_flush);
5878
5879 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5880                                           struct sk_buff *skb)
5881 {
5882         unsigned int maclen = skb->dev->hard_header_len;
5883         u32 hash = skb_get_hash_raw(skb);
5884         struct list_head *head;
5885         struct sk_buff *p;
5886
5887         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5888         list_for_each_entry(p, head, list) {
5889                 unsigned long diffs;
5890
5891                 NAPI_GRO_CB(p)->flush = 0;
5892
5893                 if (hash != skb_get_hash_raw(p)) {
5894                         NAPI_GRO_CB(p)->same_flow = 0;
5895                         continue;
5896                 }
5897
5898                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5899                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5900                 if (skb_vlan_tag_present(p))
5901                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5902                 diffs |= skb_metadata_dst_cmp(p, skb);
5903                 diffs |= skb_metadata_differs(p, skb);
5904                 if (maclen == ETH_HLEN)
5905                         diffs |= compare_ether_header(skb_mac_header(p),
5906                                                       skb_mac_header(skb));
5907                 else if (!diffs)
5908                         diffs = memcmp(skb_mac_header(p),
5909                                        skb_mac_header(skb),
5910                                        maclen);
5911                 NAPI_GRO_CB(p)->same_flow = !diffs;
5912         }
5913
5914         return head;
5915 }
5916
5917 static void skb_gro_reset_offset(struct sk_buff *skb)
5918 {
5919         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5920         const skb_frag_t *frag0 = &pinfo->frags[0];
5921
5922         NAPI_GRO_CB(skb)->data_offset = 0;
5923         NAPI_GRO_CB(skb)->frag0 = NULL;
5924         NAPI_GRO_CB(skb)->frag0_len = 0;
5925
5926         if (!skb_headlen(skb) && pinfo->nr_frags &&
5927             !PageHighMem(skb_frag_page(frag0)) &&
5928             (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5929                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5930                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5931                                                     skb_frag_size(frag0),
5932                                                     skb->end - skb->tail);
5933         }
5934 }
5935
5936 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5937 {
5938         struct skb_shared_info *pinfo = skb_shinfo(skb);
5939
5940         BUG_ON(skb->end - skb->tail < grow);
5941
5942         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5943
5944         skb->data_len -= grow;
5945         skb->tail += grow;
5946
5947         skb_frag_off_add(&pinfo->frags[0], grow);
5948         skb_frag_size_sub(&pinfo->frags[0], grow);
5949
5950         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5951                 skb_frag_unref(skb, 0);
5952                 memmove(pinfo->frags, pinfo->frags + 1,
5953                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5954         }
5955 }
5956
5957 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5958 {
5959         struct sk_buff *oldest;
5960
5961         oldest = list_last_entry(head, struct sk_buff, list);
5962
5963         /* We are called with head length >= MAX_GRO_SKBS, so this is
5964          * impossible.
5965          */
5966         if (WARN_ON_ONCE(!oldest))
5967                 return;
5968
5969         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5970          * SKB to the chain.
5971          */
5972         skb_list_del_init(oldest);
5973         napi_gro_complete(napi, oldest);
5974 }
5975
5976 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5977 {
5978         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5979         struct list_head *head = &offload_base;
5980         struct packet_offload *ptype;
5981         __be16 type = skb->protocol;
5982         struct list_head *gro_head;
5983         struct sk_buff *pp = NULL;
5984         enum gro_result ret;
5985         int same_flow;
5986         int grow;
5987
5988         if (netif_elide_gro(skb->dev))
5989                 goto normal;
5990
5991         gro_head = gro_list_prepare(napi, skb);
5992
5993         rcu_read_lock();
5994         list_for_each_entry_rcu(ptype, head, list) {
5995                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5996                         continue;
5997
5998                 skb_set_network_header(skb, skb_gro_offset(skb));
5999                 skb_reset_mac_len(skb);
6000                 NAPI_GRO_CB(skb)->same_flow = 0;
6001                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6002                 NAPI_GRO_CB(skb)->free = 0;
6003                 NAPI_GRO_CB(skb)->encap_mark = 0;
6004                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6005                 NAPI_GRO_CB(skb)->is_fou = 0;
6006                 NAPI_GRO_CB(skb)->is_atomic = 1;
6007                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6008
6009                 /* Setup for GRO checksum validation */
6010                 switch (skb->ip_summed) {
6011                 case CHECKSUM_COMPLETE:
6012                         NAPI_GRO_CB(skb)->csum = skb->csum;
6013                         NAPI_GRO_CB(skb)->csum_valid = 1;
6014                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6015                         break;
6016                 case CHECKSUM_UNNECESSARY:
6017                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6018                         NAPI_GRO_CB(skb)->csum_valid = 0;
6019                         break;
6020                 default:
6021                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6022                         NAPI_GRO_CB(skb)->csum_valid = 0;
6023                 }
6024
6025                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6026                                         ipv6_gro_receive, inet_gro_receive,
6027                                         gro_head, skb);
6028                 break;
6029         }
6030         rcu_read_unlock();
6031
6032         if (&ptype->list == head)
6033                 goto normal;
6034
6035         if (PTR_ERR(pp) == -EINPROGRESS) {
6036                 ret = GRO_CONSUMED;
6037                 goto ok;
6038         }
6039
6040         same_flow = NAPI_GRO_CB(skb)->same_flow;
6041         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6042
6043         if (pp) {
6044                 skb_list_del_init(pp);
6045                 napi_gro_complete(napi, pp);
6046                 napi->gro_hash[hash].count--;
6047         }
6048
6049         if (same_flow)
6050                 goto ok;
6051
6052         if (NAPI_GRO_CB(skb)->flush)
6053                 goto normal;
6054
6055         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6056                 gro_flush_oldest(napi, gro_head);
6057         } else {
6058                 napi->gro_hash[hash].count++;
6059         }
6060         NAPI_GRO_CB(skb)->count = 1;
6061         NAPI_GRO_CB(skb)->age = jiffies;
6062         NAPI_GRO_CB(skb)->last = skb;
6063         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6064         list_add(&skb->list, gro_head);
6065         ret = GRO_HELD;
6066
6067 pull:
6068         grow = skb_gro_offset(skb) - skb_headlen(skb);
6069         if (grow > 0)
6070                 gro_pull_from_frag0(skb, grow);
6071 ok:
6072         if (napi->gro_hash[hash].count) {
6073                 if (!test_bit(hash, &napi->gro_bitmask))
6074                         __set_bit(hash, &napi->gro_bitmask);
6075         } else if (test_bit(hash, &napi->gro_bitmask)) {
6076                 __clear_bit(hash, &napi->gro_bitmask);
6077         }
6078
6079         return ret;
6080
6081 normal:
6082         ret = GRO_NORMAL;
6083         goto pull;
6084 }
6085
6086 struct packet_offload *gro_find_receive_by_type(__be16 type)
6087 {
6088         struct list_head *offload_head = &offload_base;
6089         struct packet_offload *ptype;
6090
6091         list_for_each_entry_rcu(ptype, offload_head, list) {
6092                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6093                         continue;
6094                 return ptype;
6095         }
6096         return NULL;
6097 }
6098 EXPORT_SYMBOL(gro_find_receive_by_type);
6099
6100 struct packet_offload *gro_find_complete_by_type(__be16 type)
6101 {
6102         struct list_head *offload_head = &offload_base;
6103         struct packet_offload *ptype;
6104
6105         list_for_each_entry_rcu(ptype, offload_head, list) {
6106                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6107                         continue;
6108                 return ptype;
6109         }
6110         return NULL;
6111 }
6112 EXPORT_SYMBOL(gro_find_complete_by_type);
6113
6114 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6115                                     struct sk_buff *skb,
6116                                     gro_result_t ret)
6117 {
6118         switch (ret) {
6119         case GRO_NORMAL:
6120                 gro_normal_one(napi, skb, 1);
6121                 break;
6122
6123         case GRO_MERGED_FREE:
6124                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6125                         napi_skb_free_stolen_head(skb);
6126                 else
6127                         __kfree_skb_defer(skb);
6128                 break;
6129
6130         case GRO_HELD:
6131         case GRO_MERGED:
6132         case GRO_CONSUMED:
6133                 break;
6134         }
6135
6136         return ret;
6137 }
6138
6139 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6140 {
6141         gro_result_t ret;
6142
6143         skb_mark_napi_id(skb, napi);
6144         trace_napi_gro_receive_entry(skb);
6145
6146         skb_gro_reset_offset(skb);
6147
6148         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6149         trace_napi_gro_receive_exit(ret);
6150
6151         return ret;
6152 }
6153 EXPORT_SYMBOL(napi_gro_receive);
6154
6155 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6156 {
6157         if (unlikely(skb->pfmemalloc)) {
6158                 consume_skb(skb);
6159                 return;
6160         }
6161         __skb_pull(skb, skb_headlen(skb));
6162         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6163         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6164         __vlan_hwaccel_clear_tag(skb);
6165         skb->dev = napi->dev;
6166         skb->skb_iif = 0;
6167
6168         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6169         skb->pkt_type = PACKET_HOST;
6170
6171         skb->encapsulation = 0;
6172         skb_shinfo(skb)->gso_type = 0;
6173         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6174         skb_ext_reset(skb);
6175
6176         napi->skb = skb;
6177 }
6178
6179 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6180 {
6181         struct sk_buff *skb = napi->skb;
6182
6183         if (!skb) {
6184                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6185                 if (skb) {
6186                         napi->skb = skb;
6187                         skb_mark_napi_id(skb, napi);
6188                 }
6189         }
6190         return skb;
6191 }
6192 EXPORT_SYMBOL(napi_get_frags);
6193
6194 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6195                                       struct sk_buff *skb,
6196                                       gro_result_t ret)
6197 {
6198         switch (ret) {
6199         case GRO_NORMAL:
6200         case GRO_HELD:
6201                 __skb_push(skb, ETH_HLEN);
6202                 skb->protocol = eth_type_trans(skb, skb->dev);
6203                 if (ret == GRO_NORMAL)
6204                         gro_normal_one(napi, skb, 1);
6205                 break;
6206
6207         case GRO_MERGED_FREE:
6208                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6209                         napi_skb_free_stolen_head(skb);
6210                 else
6211                         napi_reuse_skb(napi, skb);
6212                 break;
6213
6214         case GRO_MERGED:
6215         case GRO_CONSUMED:
6216                 break;
6217         }
6218
6219         return ret;
6220 }
6221
6222 /* Upper GRO stack assumes network header starts at gro_offset=0
6223  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6224  * We copy ethernet header into skb->data to have a common layout.
6225  */
6226 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6227 {
6228         struct sk_buff *skb = napi->skb;
6229         const struct ethhdr *eth;
6230         unsigned int hlen = sizeof(*eth);
6231
6232         napi->skb = NULL;
6233
6234         skb_reset_mac_header(skb);
6235         skb_gro_reset_offset(skb);
6236
6237         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6238                 eth = skb_gro_header_slow(skb, hlen, 0);
6239                 if (unlikely(!eth)) {
6240                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6241                                              __func__, napi->dev->name);
6242                         napi_reuse_skb(napi, skb);
6243                         return NULL;
6244                 }
6245         } else {
6246                 eth = (const struct ethhdr *)skb->data;
6247                 gro_pull_from_frag0(skb, hlen);
6248                 NAPI_GRO_CB(skb)->frag0 += hlen;
6249                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6250         }
6251         __skb_pull(skb, hlen);
6252
6253         /*
6254          * This works because the only protocols we care about don't require
6255          * special handling.
6256          * We'll fix it up properly in napi_frags_finish()
6257          */
6258         skb->protocol = eth->h_proto;
6259
6260         return skb;
6261 }
6262
6263 gro_result_t napi_gro_frags(struct napi_struct *napi)
6264 {
6265         gro_result_t ret;
6266         struct sk_buff *skb = napi_frags_skb(napi);
6267
6268         trace_napi_gro_frags_entry(skb);
6269
6270         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6271         trace_napi_gro_frags_exit(ret);
6272
6273         return ret;
6274 }
6275 EXPORT_SYMBOL(napi_gro_frags);
6276
6277 /* Compute the checksum from gro_offset and return the folded value
6278  * after adding in any pseudo checksum.
6279  */
6280 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6281 {
6282         __wsum wsum;
6283         __sum16 sum;
6284
6285         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6286
6287         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6288         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6289         /* See comments in __skb_checksum_complete(). */
6290         if (likely(!sum)) {
6291                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6292                     !skb->csum_complete_sw)
6293                         netdev_rx_csum_fault(skb->dev, skb);
6294         }
6295
6296         NAPI_GRO_CB(skb)->csum = wsum;
6297         NAPI_GRO_CB(skb)->csum_valid = 1;
6298
6299         return sum;
6300 }
6301 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6302
6303 static void net_rps_send_ipi(struct softnet_data *remsd)
6304 {
6305 #ifdef CONFIG_RPS
6306         while (remsd) {
6307                 struct softnet_data *next = remsd->rps_ipi_next;
6308
6309                 if (cpu_online(remsd->cpu))
6310                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6311                 remsd = next;
6312         }
6313 #endif
6314 }
6315
6316 /*
6317  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6318  * Note: called with local irq disabled, but exits with local irq enabled.
6319  */
6320 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6321 {
6322 #ifdef CONFIG_RPS
6323         struct softnet_data *remsd = sd->rps_ipi_list;
6324
6325         if (remsd) {
6326                 sd->rps_ipi_list = NULL;
6327
6328                 local_irq_enable();
6329
6330                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6331                 net_rps_send_ipi(remsd);
6332         } else
6333 #endif
6334                 local_irq_enable();
6335 }
6336
6337 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6338 {
6339 #ifdef CONFIG_RPS
6340         return sd->rps_ipi_list != NULL;
6341 #else
6342         return false;
6343 #endif
6344 }
6345
6346 static int process_backlog(struct napi_struct *napi, int quota)
6347 {
6348         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6349         bool again = true;
6350         int work = 0;
6351
6352         /* Check if we have pending ipi, its better to send them now,
6353          * not waiting net_rx_action() end.
6354          */
6355         if (sd_has_rps_ipi_waiting(sd)) {
6356                 local_irq_disable();
6357                 net_rps_action_and_irq_enable(sd);
6358         }
6359
6360         napi->weight = dev_rx_weight;
6361         while (again) {
6362                 struct sk_buff *skb;
6363
6364                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6365                         rcu_read_lock();
6366                         __netif_receive_skb(skb);
6367                         rcu_read_unlock();
6368                         input_queue_head_incr(sd);
6369                         if (++work >= quota)
6370                                 return work;
6371
6372                 }
6373
6374                 local_irq_disable();
6375                 rps_lock(sd);
6376                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6377                         /*
6378                          * Inline a custom version of __napi_complete().
6379                          * only current cpu owns and manipulates this napi,
6380                          * and NAPI_STATE_SCHED is the only possible flag set
6381                          * on backlog.
6382                          * We can use a plain write instead of clear_bit(),
6383                          * and we dont need an smp_mb() memory barrier.
6384                          */
6385                         napi->state = 0;
6386                         again = false;
6387                 } else {
6388                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6389                                                    &sd->process_queue);
6390                 }
6391                 rps_unlock(sd);
6392                 local_irq_enable();
6393         }
6394
6395         return work;
6396 }
6397
6398 /**
6399  * __napi_schedule - schedule for receive
6400  * @n: entry to schedule
6401  *
6402  * The entry's receive function will be scheduled to run.
6403  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6404  */
6405 void __napi_schedule(struct napi_struct *n)
6406 {
6407         unsigned long flags;
6408
6409         local_irq_save(flags);
6410         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6411         local_irq_restore(flags);
6412 }
6413 EXPORT_SYMBOL(__napi_schedule);
6414
6415 /**
6416  *      napi_schedule_prep - check if napi can be scheduled
6417  *      @n: napi context
6418  *
6419  * Test if NAPI routine is already running, and if not mark
6420  * it as running.  This is used as a condition variable to
6421  * insure only one NAPI poll instance runs.  We also make
6422  * sure there is no pending NAPI disable.
6423  */
6424 bool napi_schedule_prep(struct napi_struct *n)
6425 {
6426         unsigned long val, new;
6427
6428         do {
6429                 val = READ_ONCE(n->state);
6430                 if (unlikely(val & NAPIF_STATE_DISABLE))
6431                         return false;
6432                 new = val | NAPIF_STATE_SCHED;
6433
6434                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6435                  * This was suggested by Alexander Duyck, as compiler
6436                  * emits better code than :
6437                  * if (val & NAPIF_STATE_SCHED)
6438                  *     new |= NAPIF_STATE_MISSED;
6439                  */
6440                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6441                                                    NAPIF_STATE_MISSED;
6442         } while (cmpxchg(&n->state, val, new) != val);
6443
6444         return !(val & NAPIF_STATE_SCHED);
6445 }
6446 EXPORT_SYMBOL(napi_schedule_prep);
6447
6448 /**
6449  * __napi_schedule_irqoff - schedule for receive
6450  * @n: entry to schedule
6451  *
6452  * Variant of __napi_schedule() assuming hard irqs are masked
6453  */
6454 void __napi_schedule_irqoff(struct napi_struct *n)
6455 {
6456         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6457 }
6458 EXPORT_SYMBOL(__napi_schedule_irqoff);
6459
6460 bool napi_complete_done(struct napi_struct *n, int work_done)
6461 {
6462         unsigned long flags, val, new, timeout = 0;
6463         bool ret = true;
6464
6465         /*
6466          * 1) Don't let napi dequeue from the cpu poll list
6467          *    just in case its running on a different cpu.
6468          * 2) If we are busy polling, do nothing here, we have
6469          *    the guarantee we will be called later.
6470          */
6471         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6472                                  NAPIF_STATE_IN_BUSY_POLL)))
6473                 return false;
6474
6475         if (work_done) {
6476                 if (n->gro_bitmask)
6477                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6478                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6479         }
6480         if (n->defer_hard_irqs_count > 0) {
6481                 n->defer_hard_irqs_count--;
6482                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6483                 if (timeout)
6484                         ret = false;
6485         }
6486         if (n->gro_bitmask) {
6487                 /* When the NAPI instance uses a timeout and keeps postponing
6488                  * it, we need to bound somehow the time packets are kept in
6489                  * the GRO layer
6490                  */
6491                 napi_gro_flush(n, !!timeout);
6492         }
6493
6494         gro_normal_list(n);
6495
6496         if (unlikely(!list_empty(&n->poll_list))) {
6497                 /* If n->poll_list is not empty, we need to mask irqs */
6498                 local_irq_save(flags);
6499                 list_del_init(&n->poll_list);
6500                 local_irq_restore(flags);
6501         }
6502
6503         do {
6504                 val = READ_ONCE(n->state);
6505
6506                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6507
6508                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6509                               NAPIF_STATE_SCHED_THREADED |
6510                               NAPIF_STATE_PREFER_BUSY_POLL);
6511
6512                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6513                  * because we will call napi->poll() one more time.
6514                  * This C code was suggested by Alexander Duyck to help gcc.
6515                  */
6516                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6517                                                     NAPIF_STATE_SCHED;
6518         } while (cmpxchg(&n->state, val, new) != val);
6519
6520         if (unlikely(val & NAPIF_STATE_MISSED)) {
6521                 __napi_schedule(n);
6522                 return false;
6523         }
6524
6525         if (timeout)
6526                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6527                               HRTIMER_MODE_REL_PINNED);
6528         return ret;
6529 }
6530 EXPORT_SYMBOL(napi_complete_done);
6531
6532 /* must be called under rcu_read_lock(), as we dont take a reference */
6533 static struct napi_struct *napi_by_id(unsigned int napi_id)
6534 {
6535         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6536         struct napi_struct *napi;
6537
6538         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6539                 if (napi->napi_id == napi_id)
6540                         return napi;
6541
6542         return NULL;
6543 }
6544
6545 #if defined(CONFIG_NET_RX_BUSY_POLL)
6546
6547 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6548 {
6549         if (!skip_schedule) {
6550                 gro_normal_list(napi);
6551                 __napi_schedule(napi);
6552                 return;
6553         }
6554
6555         if (napi->gro_bitmask) {
6556                 /* flush too old packets
6557                  * If HZ < 1000, flush all packets.
6558                  */
6559                 napi_gro_flush(napi, HZ >= 1000);
6560         }
6561
6562         gro_normal_list(napi);
6563         clear_bit(NAPI_STATE_SCHED, &napi->state);
6564 }
6565
6566 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6567                            u16 budget)
6568 {
6569         bool skip_schedule = false;
6570         unsigned long timeout;
6571         int rc;
6572
6573         /* Busy polling means there is a high chance device driver hard irq
6574          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6575          * set in napi_schedule_prep().
6576          * Since we are about to call napi->poll() once more, we can safely
6577          * clear NAPI_STATE_MISSED.
6578          *
6579          * Note: x86 could use a single "lock and ..." instruction
6580          * to perform these two clear_bit()
6581          */
6582         clear_bit(NAPI_STATE_MISSED, &napi->state);
6583         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6584
6585         local_bh_disable();
6586
6587         if (prefer_busy_poll) {
6588                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6589                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6590                 if (napi->defer_hard_irqs_count && timeout) {
6591                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6592                         skip_schedule = true;
6593                 }
6594         }
6595
6596         /* All we really want here is to re-enable device interrupts.
6597          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6598          */
6599         rc = napi->poll(napi, budget);
6600         /* We can't gro_normal_list() here, because napi->poll() might have
6601          * rearmed the napi (napi_complete_done()) in which case it could
6602          * already be running on another CPU.
6603          */
6604         trace_napi_poll(napi, rc, budget);
6605         netpoll_poll_unlock(have_poll_lock);
6606         if (rc == budget)
6607                 __busy_poll_stop(napi, skip_schedule);
6608         local_bh_enable();
6609 }
6610
6611 void napi_busy_loop(unsigned int napi_id,
6612                     bool (*loop_end)(void *, unsigned long),
6613                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6614 {
6615         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6616         int (*napi_poll)(struct napi_struct *napi, int budget);
6617         void *have_poll_lock = NULL;
6618         struct napi_struct *napi;
6619
6620 restart:
6621         napi_poll = NULL;
6622
6623         rcu_read_lock();
6624
6625         napi = napi_by_id(napi_id);
6626         if (!napi)
6627                 goto out;
6628
6629         preempt_disable();
6630         for (;;) {
6631                 int work = 0;
6632
6633                 local_bh_disable();
6634                 if (!napi_poll) {
6635                         unsigned long val = READ_ONCE(napi->state);
6636
6637                         /* If multiple threads are competing for this napi,
6638                          * we avoid dirtying napi->state as much as we can.
6639                          */
6640                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6641                                    NAPIF_STATE_IN_BUSY_POLL)) {
6642                                 if (prefer_busy_poll)
6643                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644                                 goto count;
6645                         }
6646                         if (cmpxchg(&napi->state, val,
6647                                     val | NAPIF_STATE_IN_BUSY_POLL |
6648                                           NAPIF_STATE_SCHED) != val) {
6649                                 if (prefer_busy_poll)
6650                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6651                                 goto count;
6652                         }
6653                         have_poll_lock = netpoll_poll_lock(napi);
6654                         napi_poll = napi->poll;
6655                 }
6656                 work = napi_poll(napi, budget);
6657                 trace_napi_poll(napi, work, budget);
6658                 gro_normal_list(napi);
6659 count:
6660                 if (work > 0)
6661                         __NET_ADD_STATS(dev_net(napi->dev),
6662                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6663                 local_bh_enable();
6664
6665                 if (!loop_end || loop_end(loop_end_arg, start_time))
6666                         break;
6667
6668                 if (unlikely(need_resched())) {
6669                         if (napi_poll)
6670                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6671                         preempt_enable();
6672                         rcu_read_unlock();
6673                         cond_resched();
6674                         if (loop_end(loop_end_arg, start_time))
6675                                 return;
6676                         goto restart;
6677                 }
6678                 cpu_relax();
6679         }
6680         if (napi_poll)
6681                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6682         preempt_enable();
6683 out:
6684         rcu_read_unlock();
6685 }
6686 EXPORT_SYMBOL(napi_busy_loop);
6687
6688 #endif /* CONFIG_NET_RX_BUSY_POLL */
6689
6690 static void napi_hash_add(struct napi_struct *napi)
6691 {
6692         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6693                 return;
6694
6695         spin_lock(&napi_hash_lock);
6696
6697         /* 0..NR_CPUS range is reserved for sender_cpu use */
6698         do {
6699                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6700                         napi_gen_id = MIN_NAPI_ID;
6701         } while (napi_by_id(napi_gen_id));
6702         napi->napi_id = napi_gen_id;
6703
6704         hlist_add_head_rcu(&napi->napi_hash_node,
6705                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6706
6707         spin_unlock(&napi_hash_lock);
6708 }
6709
6710 /* Warning : caller is responsible to make sure rcu grace period
6711  * is respected before freeing memory containing @napi
6712  */
6713 static void napi_hash_del(struct napi_struct *napi)
6714 {
6715         spin_lock(&napi_hash_lock);
6716
6717         hlist_del_init_rcu(&napi->napi_hash_node);
6718
6719         spin_unlock(&napi_hash_lock);
6720 }
6721
6722 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6723 {
6724         struct napi_struct *napi;
6725
6726         napi = container_of(timer, struct napi_struct, timer);
6727
6728         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6729          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6730          */
6731         if (!napi_disable_pending(napi) &&
6732             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6733                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6734                 __napi_schedule_irqoff(napi);
6735         }
6736
6737         return HRTIMER_NORESTART;
6738 }
6739
6740 static void init_gro_hash(struct napi_struct *napi)
6741 {
6742         int i;
6743
6744         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6745                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6746                 napi->gro_hash[i].count = 0;
6747         }
6748         napi->gro_bitmask = 0;
6749 }
6750
6751 int dev_set_threaded(struct net_device *dev, bool threaded)
6752 {
6753         struct napi_struct *napi;
6754         int err = 0;
6755
6756         if (dev->threaded == threaded)
6757                 return 0;
6758
6759         if (threaded) {
6760                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6761                         if (!napi->thread) {
6762                                 err = napi_kthread_create(napi);
6763                                 if (err) {
6764                                         threaded = false;
6765                                         break;
6766                                 }
6767                         }
6768                 }
6769         }
6770
6771         dev->threaded = threaded;
6772
6773         /* Make sure kthread is created before THREADED bit
6774          * is set.
6775          */
6776         smp_mb__before_atomic();
6777
6778         /* Setting/unsetting threaded mode on a napi might not immediately
6779          * take effect, if the current napi instance is actively being
6780          * polled. In this case, the switch between threaded mode and
6781          * softirq mode will happen in the next round of napi_schedule().
6782          * This should not cause hiccups/stalls to the live traffic.
6783          */
6784         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6785                 if (threaded)
6786                         set_bit(NAPI_STATE_THREADED, &napi->state);
6787                 else
6788                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6789         }
6790
6791         return err;
6792 }
6793
6794 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6795                     int (*poll)(struct napi_struct *, int), int weight)
6796 {
6797         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6798                 return;
6799
6800         INIT_LIST_HEAD(&napi->poll_list);
6801         INIT_HLIST_NODE(&napi->napi_hash_node);
6802         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6803         napi->timer.function = napi_watchdog;
6804         init_gro_hash(napi);
6805         napi->skb = NULL;
6806         INIT_LIST_HEAD(&napi->rx_list);
6807         napi->rx_count = 0;
6808         napi->poll = poll;
6809         if (weight > NAPI_POLL_WEIGHT)
6810                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6811                                 weight);
6812         napi->weight = weight;
6813         napi->dev = dev;
6814 #ifdef CONFIG_NETPOLL
6815         napi->poll_owner = -1;
6816 #endif
6817         set_bit(NAPI_STATE_SCHED, &napi->state);
6818         set_bit(NAPI_STATE_NPSVC, &napi->state);
6819         list_add_rcu(&napi->dev_list, &dev->napi_list);
6820         napi_hash_add(napi);
6821         /* Create kthread for this napi if dev->threaded is set.
6822          * Clear dev->threaded if kthread creation failed so that
6823          * threaded mode will not be enabled in napi_enable().
6824          */
6825         if (dev->threaded && napi_kthread_create(napi))
6826                 dev->threaded = 0;
6827 }
6828 EXPORT_SYMBOL(netif_napi_add);
6829
6830 void napi_disable(struct napi_struct *n)
6831 {
6832         might_sleep();
6833         set_bit(NAPI_STATE_DISABLE, &n->state);
6834
6835         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6836                 msleep(1);
6837         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6838                 msleep(1);
6839
6840         hrtimer_cancel(&n->timer);
6841
6842         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6843         clear_bit(NAPI_STATE_DISABLE, &n->state);
6844         clear_bit(NAPI_STATE_THREADED, &n->state);
6845 }
6846 EXPORT_SYMBOL(napi_disable);
6847
6848 /**
6849  *      napi_enable - enable NAPI scheduling
6850  *      @n: NAPI context
6851  *
6852  * Resume NAPI from being scheduled on this context.
6853  * Must be paired with napi_disable.
6854  */
6855 void napi_enable(struct napi_struct *n)
6856 {
6857         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6858         smp_mb__before_atomic();
6859         clear_bit(NAPI_STATE_SCHED, &n->state);
6860         clear_bit(NAPI_STATE_NPSVC, &n->state);
6861         if (n->dev->threaded && n->thread)
6862                 set_bit(NAPI_STATE_THREADED, &n->state);
6863 }
6864 EXPORT_SYMBOL(napi_enable);
6865
6866 static void flush_gro_hash(struct napi_struct *napi)
6867 {
6868         int i;
6869
6870         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6871                 struct sk_buff *skb, *n;
6872
6873                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6874                         kfree_skb(skb);
6875                 napi->gro_hash[i].count = 0;
6876         }
6877 }
6878
6879 /* Must be called in process context */
6880 void __netif_napi_del(struct napi_struct *napi)
6881 {
6882         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6883                 return;
6884
6885         napi_hash_del(napi);
6886         list_del_rcu(&napi->dev_list);
6887         napi_free_frags(napi);
6888
6889         flush_gro_hash(napi);
6890         napi->gro_bitmask = 0;
6891
6892         if (napi->thread) {
6893                 kthread_stop(napi->thread);
6894                 napi->thread = NULL;
6895         }
6896 }
6897 EXPORT_SYMBOL(__netif_napi_del);
6898
6899 static int __napi_poll(struct napi_struct *n, bool *repoll)
6900 {
6901         int work, weight;
6902
6903         weight = n->weight;
6904
6905         /* This NAPI_STATE_SCHED test is for avoiding a race
6906          * with netpoll's poll_napi().  Only the entity which
6907          * obtains the lock and sees NAPI_STATE_SCHED set will
6908          * actually make the ->poll() call.  Therefore we avoid
6909          * accidentally calling ->poll() when NAPI is not scheduled.
6910          */
6911         work = 0;
6912         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6913                 work = n->poll(n, weight);
6914                 trace_napi_poll(n, work, weight);
6915         }
6916
6917         if (unlikely(work > weight))
6918                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6919                             n->poll, work, weight);
6920
6921         if (likely(work < weight))
6922                 return work;
6923
6924         /* Drivers must not modify the NAPI state if they
6925          * consume the entire weight.  In such cases this code
6926          * still "owns" the NAPI instance and therefore can
6927          * move the instance around on the list at-will.
6928          */
6929         if (unlikely(napi_disable_pending(n))) {
6930                 napi_complete(n);
6931                 return work;
6932         }
6933
6934         /* The NAPI context has more processing work, but busy-polling
6935          * is preferred. Exit early.
6936          */
6937         if (napi_prefer_busy_poll(n)) {
6938                 if (napi_complete_done(n, work)) {
6939                         /* If timeout is not set, we need to make sure
6940                          * that the NAPI is re-scheduled.
6941                          */
6942                         napi_schedule(n);
6943                 }
6944                 return work;
6945         }
6946
6947         if (n->gro_bitmask) {
6948                 /* flush too old packets
6949                  * If HZ < 1000, flush all packets.
6950                  */
6951                 napi_gro_flush(n, HZ >= 1000);
6952         }
6953
6954         gro_normal_list(n);
6955
6956         /* Some drivers may have called napi_schedule
6957          * prior to exhausting their budget.
6958          */
6959         if (unlikely(!list_empty(&n->poll_list))) {
6960                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6961                              n->dev ? n->dev->name : "backlog");
6962                 return work;
6963         }
6964
6965         *repoll = true;
6966
6967         return work;
6968 }
6969
6970 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6971 {
6972         bool do_repoll = false;
6973         void *have;
6974         int work;
6975
6976         list_del_init(&n->poll_list);
6977
6978         have = netpoll_poll_lock(n);
6979
6980         work = __napi_poll(n, &do_repoll);
6981
6982         if (do_repoll)
6983                 list_add_tail(&n->poll_list, repoll);
6984
6985         netpoll_poll_unlock(have);
6986
6987         return work;
6988 }
6989
6990 static int napi_thread_wait(struct napi_struct *napi)
6991 {
6992         bool woken = false;
6993
6994         set_current_state(TASK_INTERRUPTIBLE);
6995
6996         while (!kthread_should_stop()) {
6997                 /* Testing SCHED_THREADED bit here to make sure the current
6998                  * kthread owns this napi and could poll on this napi.
6999                  * Testing SCHED bit is not enough because SCHED bit might be
7000                  * set by some other busy poll thread or by napi_disable().
7001                  */
7002                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7003                         WARN_ON(!list_empty(&napi->poll_list));
7004                         __set_current_state(TASK_RUNNING);
7005                         return 0;
7006                 }
7007
7008                 schedule();
7009                 /* woken being true indicates this thread owns this napi. */
7010                 woken = true;
7011                 set_current_state(TASK_INTERRUPTIBLE);
7012         }
7013         __set_current_state(TASK_RUNNING);
7014
7015         return -1;
7016 }
7017
7018 static int napi_threaded_poll(void *data)
7019 {
7020         struct napi_struct *napi = data;
7021         void *have;
7022
7023         while (!napi_thread_wait(napi)) {
7024                 for (;;) {
7025                         bool repoll = false;
7026
7027                         local_bh_disable();
7028
7029                         have = netpoll_poll_lock(napi);
7030                         __napi_poll(napi, &repoll);
7031                         netpoll_poll_unlock(have);
7032
7033                         local_bh_enable();
7034
7035                         if (!repoll)
7036                                 break;
7037
7038                         cond_resched();
7039                 }
7040         }
7041         return 0;
7042 }
7043
7044 static __latent_entropy void net_rx_action(struct softirq_action *h)
7045 {
7046         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7047         unsigned long time_limit = jiffies +
7048                 usecs_to_jiffies(netdev_budget_usecs);
7049         int budget = netdev_budget;
7050         LIST_HEAD(list);
7051         LIST_HEAD(repoll);
7052
7053         local_irq_disable();
7054         list_splice_init(&sd->poll_list, &list);
7055         local_irq_enable();
7056
7057         for (;;) {
7058                 struct napi_struct *n;
7059
7060                 if (list_empty(&list)) {
7061                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7062                                 return;
7063                         break;
7064                 }
7065
7066                 n = list_first_entry(&list, struct napi_struct, poll_list);
7067                 budget -= napi_poll(n, &repoll);
7068
7069                 /* If softirq window is exhausted then punt.
7070                  * Allow this to run for 2 jiffies since which will allow
7071                  * an average latency of 1.5/HZ.
7072                  */
7073                 if (unlikely(budget <= 0 ||
7074                              time_after_eq(jiffies, time_limit))) {
7075                         sd->time_squeeze++;
7076                         break;
7077                 }
7078         }
7079
7080         local_irq_disable();
7081
7082         list_splice_tail_init(&sd->poll_list, &list);
7083         list_splice_tail(&repoll, &list);
7084         list_splice(&list, &sd->poll_list);
7085         if (!list_empty(&sd->poll_list))
7086                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7087
7088         net_rps_action_and_irq_enable(sd);
7089 }
7090
7091 struct netdev_adjacent {
7092         struct net_device *dev;
7093
7094         /* upper master flag, there can only be one master device per list */
7095         bool master;
7096
7097         /* lookup ignore flag */
7098         bool ignore;
7099
7100         /* counter for the number of times this device was added to us */
7101         u16 ref_nr;
7102
7103         /* private field for the users */
7104         void *private;
7105
7106         struct list_head list;
7107         struct rcu_head rcu;
7108 };
7109
7110 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7111                                                  struct list_head *adj_list)
7112 {
7113         struct netdev_adjacent *adj;
7114
7115         list_for_each_entry(adj, adj_list, list) {
7116                 if (adj->dev == adj_dev)
7117                         return adj;
7118         }
7119         return NULL;
7120 }
7121
7122 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7123                                     struct netdev_nested_priv *priv)
7124 {
7125         struct net_device *dev = (struct net_device *)priv->data;
7126
7127         return upper_dev == dev;
7128 }
7129
7130 /**
7131  * netdev_has_upper_dev - Check if device is linked to an upper device
7132  * @dev: device
7133  * @upper_dev: upper device to check
7134  *
7135  * Find out if a device is linked to specified upper device and return true
7136  * in case it is. Note that this checks only immediate upper device,
7137  * not through a complete stack of devices. The caller must hold the RTNL lock.
7138  */
7139 bool netdev_has_upper_dev(struct net_device *dev,
7140                           struct net_device *upper_dev)
7141 {
7142         struct netdev_nested_priv priv = {
7143                 .data = (void *)upper_dev,
7144         };
7145
7146         ASSERT_RTNL();
7147
7148         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7149                                              &priv);
7150 }
7151 EXPORT_SYMBOL(netdev_has_upper_dev);
7152
7153 /**
7154  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7155  * @dev: device
7156  * @upper_dev: upper device to check
7157  *
7158  * Find out if a device is linked to specified upper device and return true
7159  * in case it is. Note that this checks the entire upper device chain.
7160  * The caller must hold rcu lock.
7161  */
7162
7163 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7164                                   struct net_device *upper_dev)
7165 {
7166         struct netdev_nested_priv priv = {
7167                 .data = (void *)upper_dev,
7168         };
7169
7170         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7171                                                &priv);
7172 }
7173 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7174
7175 /**
7176  * netdev_has_any_upper_dev - Check if device is linked to some device
7177  * @dev: device
7178  *
7179  * Find out if a device is linked to an upper device and return true in case
7180  * it is. The caller must hold the RTNL lock.
7181  */
7182 bool netdev_has_any_upper_dev(struct net_device *dev)
7183 {
7184         ASSERT_RTNL();
7185
7186         return !list_empty(&dev->adj_list.upper);
7187 }
7188 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7189
7190 /**
7191  * netdev_master_upper_dev_get - Get master upper device
7192  * @dev: device
7193  *
7194  * Find a master upper device and return pointer to it or NULL in case
7195  * it's not there. The caller must hold the RTNL lock.
7196  */
7197 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7198 {
7199         struct netdev_adjacent *upper;
7200
7201         ASSERT_RTNL();
7202
7203         if (list_empty(&dev->adj_list.upper))
7204                 return NULL;
7205
7206         upper = list_first_entry(&dev->adj_list.upper,
7207                                  struct netdev_adjacent, list);
7208         if (likely(upper->master))
7209                 return upper->dev;
7210         return NULL;
7211 }
7212 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7213
7214 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7215 {
7216         struct netdev_adjacent *upper;
7217
7218         ASSERT_RTNL();
7219
7220         if (list_empty(&dev->adj_list.upper))
7221                 return NULL;
7222
7223         upper = list_first_entry(&dev->adj_list.upper,
7224                                  struct netdev_adjacent, list);
7225         if (likely(upper->master) && !upper->ignore)
7226                 return upper->dev;
7227         return NULL;
7228 }
7229
7230 /**
7231  * netdev_has_any_lower_dev - Check if device is linked to some device
7232  * @dev: device
7233  *
7234  * Find out if a device is linked to a lower device and return true in case
7235  * it is. The caller must hold the RTNL lock.
7236  */
7237 static bool netdev_has_any_lower_dev(struct net_device *dev)
7238 {
7239         ASSERT_RTNL();
7240
7241         return !list_empty(&dev->adj_list.lower);
7242 }
7243
7244 void *netdev_adjacent_get_private(struct list_head *adj_list)
7245 {
7246         struct netdev_adjacent *adj;
7247
7248         adj = list_entry(adj_list, struct netdev_adjacent, list);
7249
7250         return adj->private;
7251 }
7252 EXPORT_SYMBOL(netdev_adjacent_get_private);
7253
7254 /**
7255  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7256  * @dev: device
7257  * @iter: list_head ** of the current position
7258  *
7259  * Gets the next device from the dev's upper list, starting from iter
7260  * position. The caller must hold RCU read lock.
7261  */
7262 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7263                                                  struct list_head **iter)
7264 {
7265         struct netdev_adjacent *upper;
7266
7267         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7268
7269         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7270
7271         if (&upper->list == &dev->adj_list.upper)
7272                 return NULL;
7273
7274         *iter = &upper->list;
7275
7276         return upper->dev;
7277 }
7278 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7279
7280 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7281                                                   struct list_head **iter,
7282                                                   bool *ignore)
7283 {
7284         struct netdev_adjacent *upper;
7285
7286         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7287
7288         if (&upper->list == &dev->adj_list.upper)
7289                 return NULL;
7290
7291         *iter = &upper->list;
7292         *ignore = upper->ignore;
7293
7294         return upper->dev;
7295 }
7296
7297 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7298                                                     struct list_head **iter)
7299 {
7300         struct netdev_adjacent *upper;
7301
7302         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7303
7304         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7305
7306         if (&upper->list == &dev->adj_list.upper)
7307                 return NULL;
7308
7309         *iter = &upper->list;
7310
7311         return upper->dev;
7312 }
7313
7314 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7315                                        int (*fn)(struct net_device *dev,
7316                                          struct netdev_nested_priv *priv),
7317                                        struct netdev_nested_priv *priv)
7318 {
7319         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7320         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7321         int ret, cur = 0;
7322         bool ignore;
7323
7324         now = dev;
7325         iter = &dev->adj_list.upper;
7326
7327         while (1) {
7328                 if (now != dev) {
7329                         ret = fn(now, priv);
7330                         if (ret)
7331                                 return ret;
7332                 }
7333
7334                 next = NULL;
7335                 while (1) {
7336                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7337                         if (!udev)
7338                                 break;
7339                         if (ignore)
7340                                 continue;
7341
7342                         next = udev;
7343                         niter = &udev->adj_list.upper;
7344                         dev_stack[cur] = now;
7345                         iter_stack[cur++] = iter;
7346                         break;
7347                 }
7348
7349                 if (!next) {
7350                         if (!cur)
7351                                 return 0;
7352                         next = dev_stack[--cur];
7353                         niter = iter_stack[cur];
7354                 }
7355
7356                 now = next;
7357                 iter = niter;
7358         }
7359
7360         return 0;
7361 }
7362
7363 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7364                                   int (*fn)(struct net_device *dev,
7365                                             struct netdev_nested_priv *priv),
7366                                   struct netdev_nested_priv *priv)
7367 {
7368         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7369         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7370         int ret, cur = 0;
7371
7372         now = dev;
7373         iter = &dev->adj_list.upper;
7374
7375         while (1) {
7376                 if (now != dev) {
7377                         ret = fn(now, priv);
7378                         if (ret)
7379                                 return ret;
7380                 }
7381
7382                 next = NULL;
7383                 while (1) {
7384                         udev = netdev_next_upper_dev_rcu(now, &iter);
7385                         if (!udev)
7386                                 break;
7387
7388                         next = udev;
7389                         niter = &udev->adj_list.upper;
7390                         dev_stack[cur] = now;
7391                         iter_stack[cur++] = iter;
7392                         break;
7393                 }
7394
7395                 if (!next) {
7396                         if (!cur)
7397                                 return 0;
7398                         next = dev_stack[--cur];
7399                         niter = iter_stack[cur];
7400                 }
7401
7402                 now = next;
7403                 iter = niter;
7404         }
7405
7406         return 0;
7407 }
7408 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7409
7410 static bool __netdev_has_upper_dev(struct net_device *dev,
7411                                    struct net_device *upper_dev)
7412 {
7413         struct netdev_nested_priv priv = {
7414                 .flags = 0,
7415                 .data = (void *)upper_dev,
7416         };
7417
7418         ASSERT_RTNL();
7419
7420         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7421                                            &priv);
7422 }
7423
7424 /**
7425  * netdev_lower_get_next_private - Get the next ->private from the
7426  *                                 lower neighbour list
7427  * @dev: device
7428  * @iter: list_head ** of the current position
7429  *
7430  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7431  * list, starting from iter position. The caller must hold either hold the
7432  * RTNL lock or its own locking that guarantees that the neighbour lower
7433  * list will remain unchanged.
7434  */
7435 void *netdev_lower_get_next_private(struct net_device *dev,
7436                                     struct list_head **iter)
7437 {
7438         struct netdev_adjacent *lower;
7439
7440         lower = list_entry(*iter, struct netdev_adjacent, list);
7441
7442         if (&lower->list == &dev->adj_list.lower)
7443                 return NULL;
7444
7445         *iter = lower->list.next;
7446
7447         return lower->private;
7448 }
7449 EXPORT_SYMBOL(netdev_lower_get_next_private);
7450
7451 /**
7452  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7453  *                                     lower neighbour list, RCU
7454  *                                     variant
7455  * @dev: device
7456  * @iter: list_head ** of the current position
7457  *
7458  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7459  * list, starting from iter position. The caller must hold RCU read lock.
7460  */
7461 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7462                                         struct list_head **iter)
7463 {
7464         struct netdev_adjacent *lower;
7465
7466         WARN_ON_ONCE(!rcu_read_lock_held());
7467
7468         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7469
7470         if (&lower->list == &dev->adj_list.lower)
7471                 return NULL;
7472
7473         *iter = &lower->list;
7474
7475         return lower->private;
7476 }
7477 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7478
7479 /**
7480  * netdev_lower_get_next - Get the next device from the lower neighbour
7481  *                         list
7482  * @dev: device
7483  * @iter: list_head ** of the current position
7484  *
7485  * Gets the next netdev_adjacent from the dev's lower neighbour
7486  * list, starting from iter position. The caller must hold RTNL lock or
7487  * its own locking that guarantees that the neighbour lower
7488  * list will remain unchanged.
7489  */
7490 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7491 {
7492         struct netdev_adjacent *lower;
7493
7494         lower = list_entry(*iter, struct netdev_adjacent, list);
7495
7496         if (&lower->list == &dev->adj_list.lower)
7497                 return NULL;
7498
7499         *iter = lower->list.next;
7500
7501         return lower->dev;
7502 }
7503 EXPORT_SYMBOL(netdev_lower_get_next);
7504
7505 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7506                                                 struct list_head **iter)
7507 {
7508         struct netdev_adjacent *lower;
7509
7510         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7511
7512         if (&lower->list == &dev->adj_list.lower)
7513                 return NULL;
7514
7515         *iter = &lower->list;
7516
7517         return lower->dev;
7518 }
7519
7520 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7521                                                   struct list_head **iter,
7522                                                   bool *ignore)
7523 {
7524         struct netdev_adjacent *lower;
7525
7526         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7527
7528         if (&lower->list == &dev->adj_list.lower)
7529                 return NULL;
7530
7531         *iter = &lower->list;
7532         *ignore = lower->ignore;
7533
7534         return lower->dev;
7535 }
7536
7537 int netdev_walk_all_lower_dev(struct net_device *dev,
7538                               int (*fn)(struct net_device *dev,
7539                                         struct netdev_nested_priv *priv),
7540                               struct netdev_nested_priv *priv)
7541 {
7542         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7543         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7544         int ret, cur = 0;
7545
7546         now = dev;
7547         iter = &dev->adj_list.lower;
7548
7549         while (1) {
7550                 if (now != dev) {
7551                         ret = fn(now, priv);
7552                         if (ret)
7553                                 return ret;
7554                 }
7555
7556                 next = NULL;
7557                 while (1) {
7558                         ldev = netdev_next_lower_dev(now, &iter);
7559                         if (!ldev)
7560                                 break;
7561
7562                         next = ldev;
7563                         niter = &ldev->adj_list.lower;
7564                         dev_stack[cur] = now;
7565                         iter_stack[cur++] = iter;
7566                         break;
7567                 }
7568
7569                 if (!next) {
7570                         if (!cur)
7571                                 return 0;
7572                         next = dev_stack[--cur];
7573                         niter = iter_stack[cur];
7574                 }
7575
7576                 now = next;
7577                 iter = niter;
7578         }
7579
7580         return 0;
7581 }
7582 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7583
7584 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7585                                        int (*fn)(struct net_device *dev,
7586                                          struct netdev_nested_priv *priv),
7587                                        struct netdev_nested_priv *priv)
7588 {
7589         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7590         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7591         int ret, cur = 0;
7592         bool ignore;
7593
7594         now = dev;
7595         iter = &dev->adj_list.lower;
7596
7597         while (1) {
7598                 if (now != dev) {
7599                         ret = fn(now, priv);
7600                         if (ret)
7601                                 return ret;
7602                 }
7603
7604                 next = NULL;
7605                 while (1) {
7606                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7607                         if (!ldev)
7608                                 break;
7609                         if (ignore)
7610                                 continue;
7611
7612                         next = ldev;
7613                         niter = &ldev->adj_list.lower;
7614                         dev_stack[cur] = now;
7615                         iter_stack[cur++] = iter;
7616                         break;
7617                 }
7618
7619                 if (!next) {
7620                         if (!cur)
7621                                 return 0;
7622                         next = dev_stack[--cur];
7623                         niter = iter_stack[cur];
7624                 }
7625
7626                 now = next;
7627                 iter = niter;
7628         }
7629
7630         return 0;
7631 }
7632
7633 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7634                                              struct list_head **iter)
7635 {
7636         struct netdev_adjacent *lower;
7637
7638         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7639         if (&lower->list == &dev->adj_list.lower)
7640                 return NULL;
7641
7642         *iter = &lower->list;
7643
7644         return lower->dev;
7645 }
7646 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7647
7648 static u8 __netdev_upper_depth(struct net_device *dev)
7649 {
7650         struct net_device *udev;
7651         struct list_head *iter;
7652         u8 max_depth = 0;
7653         bool ignore;
7654
7655         for (iter = &dev->adj_list.upper,
7656              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7657              udev;
7658              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7659                 if (ignore)
7660                         continue;
7661                 if (max_depth < udev->upper_level)
7662                         max_depth = udev->upper_level;
7663         }
7664
7665         return max_depth;
7666 }
7667
7668 static u8 __netdev_lower_depth(struct net_device *dev)
7669 {
7670         struct net_device *ldev;
7671         struct list_head *iter;
7672         u8 max_depth = 0;
7673         bool ignore;
7674
7675         for (iter = &dev->adj_list.lower,
7676              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7677              ldev;
7678              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7679                 if (ignore)
7680                         continue;
7681                 if (max_depth < ldev->lower_level)
7682                         max_depth = ldev->lower_level;
7683         }
7684
7685         return max_depth;
7686 }
7687
7688 static int __netdev_update_upper_level(struct net_device *dev,
7689                                        struct netdev_nested_priv *__unused)
7690 {
7691         dev->upper_level = __netdev_upper_depth(dev) + 1;
7692         return 0;
7693 }
7694
7695 static int __netdev_update_lower_level(struct net_device *dev,
7696                                        struct netdev_nested_priv *priv)
7697 {
7698         dev->lower_level = __netdev_lower_depth(dev) + 1;
7699
7700 #ifdef CONFIG_LOCKDEP
7701         if (!priv)
7702                 return 0;
7703
7704         if (priv->flags & NESTED_SYNC_IMM)
7705                 dev->nested_level = dev->lower_level - 1;
7706         if (priv->flags & NESTED_SYNC_TODO)
7707                 net_unlink_todo(dev);
7708 #endif
7709         return 0;
7710 }
7711
7712 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7713                                   int (*fn)(struct net_device *dev,
7714                                             struct netdev_nested_priv *priv),
7715                                   struct netdev_nested_priv *priv)
7716 {
7717         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7718         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7719         int ret, cur = 0;
7720
7721         now = dev;
7722         iter = &dev->adj_list.lower;
7723
7724         while (1) {
7725                 if (now != dev) {
7726                         ret = fn(now, priv);
7727                         if (ret)
7728                                 return ret;
7729                 }
7730
7731                 next = NULL;
7732                 while (1) {
7733                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7734                         if (!ldev)
7735                                 break;
7736
7737                         next = ldev;
7738                         niter = &ldev->adj_list.lower;
7739                         dev_stack[cur] = now;
7740                         iter_stack[cur++] = iter;
7741                         break;
7742                 }
7743
7744                 if (!next) {
7745                         if (!cur)
7746                                 return 0;
7747                         next = dev_stack[--cur];
7748                         niter = iter_stack[cur];
7749                 }
7750
7751                 now = next;
7752                 iter = niter;
7753         }
7754
7755         return 0;
7756 }
7757 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7758
7759 /**
7760  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7761  *                                     lower neighbour list, RCU
7762  *                                     variant
7763  * @dev: device
7764  *
7765  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7766  * list. The caller must hold RCU read lock.
7767  */
7768 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7769 {
7770         struct netdev_adjacent *lower;
7771
7772         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7773                         struct netdev_adjacent, list);
7774         if (lower)
7775                 return lower->private;
7776         return NULL;
7777 }
7778 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7779
7780 /**
7781  * netdev_master_upper_dev_get_rcu - Get master upper device
7782  * @dev: device
7783  *
7784  * Find a master upper device and return pointer to it or NULL in case
7785  * it's not there. The caller must hold the RCU read lock.
7786  */
7787 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7788 {
7789         struct netdev_adjacent *upper;
7790
7791         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7792                                        struct netdev_adjacent, list);
7793         if (upper && likely(upper->master))
7794                 return upper->dev;
7795         return NULL;
7796 }
7797 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7798
7799 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7800                               struct net_device *adj_dev,
7801                               struct list_head *dev_list)
7802 {
7803         char linkname[IFNAMSIZ+7];
7804
7805         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7806                 "upper_%s" : "lower_%s", adj_dev->name);
7807         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7808                                  linkname);
7809 }
7810 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7811                                char *name,
7812                                struct list_head *dev_list)
7813 {
7814         char linkname[IFNAMSIZ+7];
7815
7816         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7817                 "upper_%s" : "lower_%s", name);
7818         sysfs_remove_link(&(dev->dev.kobj), linkname);
7819 }
7820
7821 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7822                                                  struct net_device *adj_dev,
7823                                                  struct list_head *dev_list)
7824 {
7825         return (dev_list == &dev->adj_list.upper ||
7826                 dev_list == &dev->adj_list.lower) &&
7827                 net_eq(dev_net(dev), dev_net(adj_dev));
7828 }
7829
7830 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7831                                         struct net_device *adj_dev,
7832                                         struct list_head *dev_list,
7833                                         void *private, bool master)
7834 {
7835         struct netdev_adjacent *adj;
7836         int ret;
7837
7838         adj = __netdev_find_adj(adj_dev, dev_list);
7839
7840         if (adj) {
7841                 adj->ref_nr += 1;
7842                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7843                          dev->name, adj_dev->name, adj->ref_nr);
7844
7845                 return 0;
7846         }
7847
7848         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7849         if (!adj)
7850                 return -ENOMEM;
7851
7852         adj->dev = adj_dev;
7853         adj->master = master;
7854         adj->ref_nr = 1;
7855         adj->private = private;
7856         adj->ignore = false;
7857         dev_hold(adj_dev);
7858
7859         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7860                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7861
7862         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7863                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7864                 if (ret)
7865                         goto free_adj;
7866         }
7867
7868         /* Ensure that master link is always the first item in list. */
7869         if (master) {
7870                 ret = sysfs_create_link(&(dev->dev.kobj),
7871                                         &(adj_dev->dev.kobj), "master");
7872                 if (ret)
7873                         goto remove_symlinks;
7874
7875                 list_add_rcu(&adj->list, dev_list);
7876         } else {
7877                 list_add_tail_rcu(&adj->list, dev_list);
7878         }
7879
7880         return 0;
7881
7882 remove_symlinks:
7883         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7884                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7885 free_adj:
7886         kfree(adj);
7887         dev_put(adj_dev);
7888
7889         return ret;
7890 }
7891
7892 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7893                                          struct net_device *adj_dev,
7894                                          u16 ref_nr,
7895                                          struct list_head *dev_list)
7896 {
7897         struct netdev_adjacent *adj;
7898
7899         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7900                  dev->name, adj_dev->name, ref_nr);
7901
7902         adj = __netdev_find_adj(adj_dev, dev_list);
7903
7904         if (!adj) {
7905                 pr_err("Adjacency does not exist for device %s from %s\n",
7906                        dev->name, adj_dev->name);
7907                 WARN_ON(1);
7908                 return;
7909         }
7910
7911         if (adj->ref_nr > ref_nr) {
7912                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7913                          dev->name, adj_dev->name, ref_nr,
7914                          adj->ref_nr - ref_nr);
7915                 adj->ref_nr -= ref_nr;
7916                 return;
7917         }
7918
7919         if (adj->master)
7920                 sysfs_remove_link(&(dev->dev.kobj), "master");
7921
7922         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7923                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7924
7925         list_del_rcu(&adj->list);
7926         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7927                  adj_dev->name, dev->name, adj_dev->name);
7928         dev_put(adj_dev);
7929         kfree_rcu(adj, rcu);
7930 }
7931
7932 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7933                                             struct net_device *upper_dev,
7934                                             struct list_head *up_list,
7935                                             struct list_head *down_list,
7936                                             void *private, bool master)
7937 {
7938         int ret;
7939
7940         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7941                                            private, master);
7942         if (ret)
7943                 return ret;
7944
7945         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7946                                            private, false);
7947         if (ret) {
7948                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7949                 return ret;
7950         }
7951
7952         return 0;
7953 }
7954
7955 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7956                                                struct net_device *upper_dev,
7957                                                u16 ref_nr,
7958                                                struct list_head *up_list,
7959                                                struct list_head *down_list)
7960 {
7961         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7962         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7963 }
7964
7965 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7966                                                 struct net_device *upper_dev,
7967                                                 void *private, bool master)
7968 {
7969         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7970                                                 &dev->adj_list.upper,
7971                                                 &upper_dev->adj_list.lower,
7972                                                 private, master);
7973 }
7974
7975 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7976                                                    struct net_device *upper_dev)
7977 {
7978         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7979                                            &dev->adj_list.upper,
7980                                            &upper_dev->adj_list.lower);
7981 }
7982
7983 static int __netdev_upper_dev_link(struct net_device *dev,
7984                                    struct net_device *upper_dev, bool master,
7985                                    void *upper_priv, void *upper_info,
7986                                    struct netdev_nested_priv *priv,
7987                                    struct netlink_ext_ack *extack)
7988 {
7989         struct netdev_notifier_changeupper_info changeupper_info = {
7990                 .info = {
7991                         .dev = dev,
7992                         .extack = extack,
7993                 },
7994                 .upper_dev = upper_dev,
7995                 .master = master,
7996                 .linking = true,
7997                 .upper_info = upper_info,
7998         };
7999         struct net_device *master_dev;
8000         int ret = 0;
8001
8002         ASSERT_RTNL();
8003
8004         if (dev == upper_dev)
8005                 return -EBUSY;
8006
8007         /* To prevent loops, check if dev is not upper device to upper_dev. */
8008         if (__netdev_has_upper_dev(upper_dev, dev))
8009                 return -EBUSY;
8010
8011         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8012                 return -EMLINK;
8013
8014         if (!master) {
8015                 if (__netdev_has_upper_dev(dev, upper_dev))
8016                         return -EEXIST;
8017         } else {
8018                 master_dev = __netdev_master_upper_dev_get(dev);
8019                 if (master_dev)
8020                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8021         }
8022
8023         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8024                                             &changeupper_info.info);
8025         ret = notifier_to_errno(ret);
8026         if (ret)
8027                 return ret;
8028
8029         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8030                                                    master);
8031         if (ret)
8032                 return ret;
8033
8034         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8035                                             &changeupper_info.info);
8036         ret = notifier_to_errno(ret);
8037         if (ret)
8038                 goto rollback;
8039
8040         __netdev_update_upper_level(dev, NULL);
8041         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8042
8043         __netdev_update_lower_level(upper_dev, priv);
8044         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8045                                     priv);
8046
8047         return 0;
8048
8049 rollback:
8050         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8051
8052         return ret;
8053 }
8054
8055 /**
8056  * netdev_upper_dev_link - Add a link to the upper device
8057  * @dev: device
8058  * @upper_dev: new upper device
8059  * @extack: netlink extended ack
8060  *
8061  * Adds a link to device which is upper to this one. The caller must hold
8062  * the RTNL lock. On a failure a negative errno code is returned.
8063  * On success the reference counts are adjusted and the function
8064  * returns zero.
8065  */
8066 int netdev_upper_dev_link(struct net_device *dev,
8067                           struct net_device *upper_dev,
8068                           struct netlink_ext_ack *extack)
8069 {
8070         struct netdev_nested_priv priv = {
8071                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8072                 .data = NULL,
8073         };
8074
8075         return __netdev_upper_dev_link(dev, upper_dev, false,
8076                                        NULL, NULL, &priv, extack);
8077 }
8078 EXPORT_SYMBOL(netdev_upper_dev_link);
8079
8080 /**
8081  * netdev_master_upper_dev_link - Add a master link to the upper device
8082  * @dev: device
8083  * @upper_dev: new upper device
8084  * @upper_priv: upper device private
8085  * @upper_info: upper info to be passed down via notifier
8086  * @extack: netlink extended ack
8087  *
8088  * Adds a link to device which is upper to this one. In this case, only
8089  * one master upper device can be linked, although other non-master devices
8090  * might be linked as well. The caller must hold the RTNL lock.
8091  * On a failure a negative errno code is returned. On success the reference
8092  * counts are adjusted and the function returns zero.
8093  */
8094 int netdev_master_upper_dev_link(struct net_device *dev,
8095                                  struct net_device *upper_dev,
8096                                  void *upper_priv, void *upper_info,
8097                                  struct netlink_ext_ack *extack)
8098 {
8099         struct netdev_nested_priv priv = {
8100                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8101                 .data = NULL,
8102         };
8103
8104         return __netdev_upper_dev_link(dev, upper_dev, true,
8105                                        upper_priv, upper_info, &priv, extack);
8106 }
8107 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8108
8109 static void __netdev_upper_dev_unlink(struct net_device *dev,
8110                                       struct net_device *upper_dev,
8111                                       struct netdev_nested_priv *priv)
8112 {
8113         struct netdev_notifier_changeupper_info changeupper_info = {
8114                 .info = {
8115                         .dev = dev,
8116                 },
8117                 .upper_dev = upper_dev,
8118                 .linking = false,
8119         };
8120
8121         ASSERT_RTNL();
8122
8123         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8124
8125         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8126                                       &changeupper_info.info);
8127
8128         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8129
8130         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8131                                       &changeupper_info.info);
8132
8133         __netdev_update_upper_level(dev, NULL);
8134         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8135
8136         __netdev_update_lower_level(upper_dev, priv);
8137         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8138                                     priv);
8139 }
8140
8141 /**
8142  * netdev_upper_dev_unlink - Removes a link to upper device
8143  * @dev: device
8144  * @upper_dev: new upper device
8145  *
8146  * Removes a link to device which is upper to this one. The caller must hold
8147  * the RTNL lock.
8148  */
8149 void netdev_upper_dev_unlink(struct net_device *dev,
8150                              struct net_device *upper_dev)
8151 {
8152         struct netdev_nested_priv priv = {
8153                 .flags = NESTED_SYNC_TODO,
8154                 .data = NULL,
8155         };
8156
8157         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8158 }
8159 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8160
8161 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8162                                       struct net_device *lower_dev,
8163                                       bool val)
8164 {
8165         struct netdev_adjacent *adj;
8166
8167         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8168         if (adj)
8169                 adj->ignore = val;
8170
8171         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8172         if (adj)
8173                 adj->ignore = val;
8174 }
8175
8176 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8177                                         struct net_device *lower_dev)
8178 {
8179         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8180 }
8181
8182 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8183                                        struct net_device *lower_dev)
8184 {
8185         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8186 }
8187
8188 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8189                                    struct net_device *new_dev,
8190                                    struct net_device *dev,
8191                                    struct netlink_ext_ack *extack)
8192 {
8193         struct netdev_nested_priv priv = {
8194                 .flags = 0,
8195                 .data = NULL,
8196         };
8197         int err;
8198
8199         if (!new_dev)
8200                 return 0;
8201
8202         if (old_dev && new_dev != old_dev)
8203                 netdev_adjacent_dev_disable(dev, old_dev);
8204         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8205                                       extack);
8206         if (err) {
8207                 if (old_dev && new_dev != old_dev)
8208                         netdev_adjacent_dev_enable(dev, old_dev);
8209                 return err;
8210         }
8211
8212         return 0;
8213 }
8214 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8215
8216 void netdev_adjacent_change_commit(struct net_device *old_dev,
8217                                    struct net_device *new_dev,
8218                                    struct net_device *dev)
8219 {
8220         struct netdev_nested_priv priv = {
8221                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8222                 .data = NULL,
8223         };
8224
8225         if (!new_dev || !old_dev)
8226                 return;
8227
8228         if (new_dev == old_dev)
8229                 return;
8230
8231         netdev_adjacent_dev_enable(dev, old_dev);
8232         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8233 }
8234 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8235
8236 void netdev_adjacent_change_abort(struct net_device *old_dev,
8237                                   struct net_device *new_dev,
8238                                   struct net_device *dev)
8239 {
8240         struct netdev_nested_priv priv = {
8241                 .flags = 0,
8242                 .data = NULL,
8243         };
8244
8245         if (!new_dev)
8246                 return;
8247
8248         if (old_dev && new_dev != old_dev)
8249                 netdev_adjacent_dev_enable(dev, old_dev);
8250
8251         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8252 }
8253 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8254
8255 /**
8256  * netdev_bonding_info_change - Dispatch event about slave change
8257  * @dev: device
8258  * @bonding_info: info to dispatch
8259  *
8260  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8261  * The caller must hold the RTNL lock.
8262  */
8263 void netdev_bonding_info_change(struct net_device *dev,
8264                                 struct netdev_bonding_info *bonding_info)
8265 {
8266         struct netdev_notifier_bonding_info info = {
8267                 .info.dev = dev,
8268         };
8269
8270         memcpy(&info.bonding_info, bonding_info,
8271                sizeof(struct netdev_bonding_info));
8272         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8273                                       &info.info);
8274 }
8275 EXPORT_SYMBOL(netdev_bonding_info_change);
8276
8277 /**
8278  * netdev_get_xmit_slave - Get the xmit slave of master device
8279  * @dev: device
8280  * @skb: The packet
8281  * @all_slaves: assume all the slaves are active
8282  *
8283  * The reference counters are not incremented so the caller must be
8284  * careful with locks. The caller must hold RCU lock.
8285  * %NULL is returned if no slave is found.
8286  */
8287
8288 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8289                                          struct sk_buff *skb,
8290                                          bool all_slaves)
8291 {
8292         const struct net_device_ops *ops = dev->netdev_ops;
8293
8294         if (!ops->ndo_get_xmit_slave)
8295                 return NULL;
8296         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8297 }
8298 EXPORT_SYMBOL(netdev_get_xmit_slave);
8299
8300 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8301                                                   struct sock *sk)
8302 {
8303         const struct net_device_ops *ops = dev->netdev_ops;
8304
8305         if (!ops->ndo_sk_get_lower_dev)
8306                 return NULL;
8307         return ops->ndo_sk_get_lower_dev(dev, sk);
8308 }
8309
8310 /**
8311  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8312  * @dev: device
8313  * @sk: the socket
8314  *
8315  * %NULL is returned if no lower device is found.
8316  */
8317
8318 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8319                                             struct sock *sk)
8320 {
8321         struct net_device *lower;
8322
8323         lower = netdev_sk_get_lower_dev(dev, sk);
8324         while (lower) {
8325                 dev = lower;
8326                 lower = netdev_sk_get_lower_dev(dev, sk);
8327         }
8328
8329         return dev;
8330 }
8331 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8332
8333 static void netdev_adjacent_add_links(struct net_device *dev)
8334 {
8335         struct netdev_adjacent *iter;
8336
8337         struct net *net = dev_net(dev);
8338
8339         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8340                 if (!net_eq(net, dev_net(iter->dev)))
8341                         continue;
8342                 netdev_adjacent_sysfs_add(iter->dev, dev,
8343                                           &iter->dev->adj_list.lower);
8344                 netdev_adjacent_sysfs_add(dev, iter->dev,
8345                                           &dev->adj_list.upper);
8346         }
8347
8348         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8349                 if (!net_eq(net, dev_net(iter->dev)))
8350                         continue;
8351                 netdev_adjacent_sysfs_add(iter->dev, dev,
8352                                           &iter->dev->adj_list.upper);
8353                 netdev_adjacent_sysfs_add(dev, iter->dev,
8354                                           &dev->adj_list.lower);
8355         }
8356 }
8357
8358 static void netdev_adjacent_del_links(struct net_device *dev)
8359 {
8360         struct netdev_adjacent *iter;
8361
8362         struct net *net = dev_net(dev);
8363
8364         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8365                 if (!net_eq(net, dev_net(iter->dev)))
8366                         continue;
8367                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8368                                           &iter->dev->adj_list.lower);
8369                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8370                                           &dev->adj_list.upper);
8371         }
8372
8373         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8374                 if (!net_eq(net, dev_net(iter->dev)))
8375                         continue;
8376                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8377                                           &iter->dev->adj_list.upper);
8378                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8379                                           &dev->adj_list.lower);
8380         }
8381 }
8382
8383 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8384 {
8385         struct netdev_adjacent *iter;
8386
8387         struct net *net = dev_net(dev);
8388
8389         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8390                 if (!net_eq(net, dev_net(iter->dev)))
8391                         continue;
8392                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8393                                           &iter->dev->adj_list.lower);
8394                 netdev_adjacent_sysfs_add(iter->dev, dev,
8395                                           &iter->dev->adj_list.lower);
8396         }
8397
8398         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8399                 if (!net_eq(net, dev_net(iter->dev)))
8400                         continue;
8401                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8402                                           &iter->dev->adj_list.upper);
8403                 netdev_adjacent_sysfs_add(iter->dev, dev,
8404                                           &iter->dev->adj_list.upper);
8405         }
8406 }
8407
8408 void *netdev_lower_dev_get_private(struct net_device *dev,
8409                                    struct net_device *lower_dev)
8410 {
8411         struct netdev_adjacent *lower;
8412
8413         if (!lower_dev)
8414                 return NULL;
8415         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8416         if (!lower)
8417                 return NULL;
8418
8419         return lower->private;
8420 }
8421 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8422
8423
8424 /**
8425  * netdev_lower_state_changed - Dispatch event about lower device state change
8426  * @lower_dev: device
8427  * @lower_state_info: state to dispatch
8428  *
8429  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8430  * The caller must hold the RTNL lock.
8431  */
8432 void netdev_lower_state_changed(struct net_device *lower_dev,
8433                                 void *lower_state_info)
8434 {
8435         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8436                 .info.dev = lower_dev,
8437         };
8438
8439         ASSERT_RTNL();
8440         changelowerstate_info.lower_state_info = lower_state_info;
8441         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8442                                       &changelowerstate_info.info);
8443 }
8444 EXPORT_SYMBOL(netdev_lower_state_changed);
8445
8446 static void dev_change_rx_flags(struct net_device *dev, int flags)
8447 {
8448         const struct net_device_ops *ops = dev->netdev_ops;
8449
8450         if (ops->ndo_change_rx_flags)
8451                 ops->ndo_change_rx_flags(dev, flags);
8452 }
8453
8454 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8455 {
8456         unsigned int old_flags = dev->flags;
8457         kuid_t uid;
8458         kgid_t gid;
8459
8460         ASSERT_RTNL();
8461
8462         dev->flags |= IFF_PROMISC;
8463         dev->promiscuity += inc;
8464         if (dev->promiscuity == 0) {
8465                 /*
8466                  * Avoid overflow.
8467                  * If inc causes overflow, untouch promisc and return error.
8468                  */
8469                 if (inc < 0)
8470                         dev->flags &= ~IFF_PROMISC;
8471                 else {
8472                         dev->promiscuity -= inc;
8473                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8474                                 dev->name);
8475                         return -EOVERFLOW;
8476                 }
8477         }
8478         if (dev->flags != old_flags) {
8479                 pr_info("device %s %s promiscuous mode\n",
8480                         dev->name,
8481                         dev->flags & IFF_PROMISC ? "entered" : "left");
8482                 if (audit_enabled) {
8483                         current_uid_gid(&uid, &gid);
8484                         audit_log(audit_context(), GFP_ATOMIC,
8485                                   AUDIT_ANOM_PROMISCUOUS,
8486                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8487                                   dev->name, (dev->flags & IFF_PROMISC),
8488                                   (old_flags & IFF_PROMISC),
8489                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8490                                   from_kuid(&init_user_ns, uid),
8491                                   from_kgid(&init_user_ns, gid),
8492                                   audit_get_sessionid(current));
8493                 }
8494
8495                 dev_change_rx_flags(dev, IFF_PROMISC);
8496         }
8497         if (notify)
8498                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8499         return 0;
8500 }
8501
8502 /**
8503  *      dev_set_promiscuity     - update promiscuity count on a device
8504  *      @dev: device
8505  *      @inc: modifier
8506  *
8507  *      Add or remove promiscuity from a device. While the count in the device
8508  *      remains above zero the interface remains promiscuous. Once it hits zero
8509  *      the device reverts back to normal filtering operation. A negative inc
8510  *      value is used to drop promiscuity on the device.
8511  *      Return 0 if successful or a negative errno code on error.
8512  */
8513 int dev_set_promiscuity(struct net_device *dev, int inc)
8514 {
8515         unsigned int old_flags = dev->flags;
8516         int err;
8517
8518         err = __dev_set_promiscuity(dev, inc, true);
8519         if (err < 0)
8520                 return err;
8521         if (dev->flags != old_flags)
8522                 dev_set_rx_mode(dev);
8523         return err;
8524 }
8525 EXPORT_SYMBOL(dev_set_promiscuity);
8526
8527 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8528 {
8529         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8530
8531         ASSERT_RTNL();
8532
8533         dev->flags |= IFF_ALLMULTI;
8534         dev->allmulti += inc;
8535         if (dev->allmulti == 0) {
8536                 /*
8537                  * Avoid overflow.
8538                  * If inc causes overflow, untouch allmulti and return error.
8539                  */
8540                 if (inc < 0)
8541                         dev->flags &= ~IFF_ALLMULTI;
8542                 else {
8543                         dev->allmulti -= inc;
8544                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8545                                 dev->name);
8546                         return -EOVERFLOW;
8547                 }
8548         }
8549         if (dev->flags ^ old_flags) {
8550                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8551                 dev_set_rx_mode(dev);
8552                 if (notify)
8553                         __dev_notify_flags(dev, old_flags,
8554                                            dev->gflags ^ old_gflags);
8555         }
8556         return 0;
8557 }
8558
8559 /**
8560  *      dev_set_allmulti        - update allmulti count on a device
8561  *      @dev: device
8562  *      @inc: modifier
8563  *
8564  *      Add or remove reception of all multicast frames to a device. While the
8565  *      count in the device remains above zero the interface remains listening
8566  *      to all interfaces. Once it hits zero the device reverts back to normal
8567  *      filtering operation. A negative @inc value is used to drop the counter
8568  *      when releasing a resource needing all multicasts.
8569  *      Return 0 if successful or a negative errno code on error.
8570  */
8571
8572 int dev_set_allmulti(struct net_device *dev, int inc)
8573 {
8574         return __dev_set_allmulti(dev, inc, true);
8575 }
8576 EXPORT_SYMBOL(dev_set_allmulti);
8577
8578 /*
8579  *      Upload unicast and multicast address lists to device and
8580  *      configure RX filtering. When the device doesn't support unicast
8581  *      filtering it is put in promiscuous mode while unicast addresses
8582  *      are present.
8583  */
8584 void __dev_set_rx_mode(struct net_device *dev)
8585 {
8586         const struct net_device_ops *ops = dev->netdev_ops;
8587
8588         /* dev_open will call this function so the list will stay sane. */
8589         if (!(dev->flags&IFF_UP))
8590                 return;
8591
8592         if (!netif_device_present(dev))
8593                 return;
8594
8595         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8596                 /* Unicast addresses changes may only happen under the rtnl,
8597                  * therefore calling __dev_set_promiscuity here is safe.
8598                  */
8599                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8600                         __dev_set_promiscuity(dev, 1, false);
8601                         dev->uc_promisc = true;
8602                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8603                         __dev_set_promiscuity(dev, -1, false);
8604                         dev->uc_promisc = false;
8605                 }
8606         }
8607
8608         if (ops->ndo_set_rx_mode)
8609                 ops->ndo_set_rx_mode(dev);
8610 }
8611
8612 void dev_set_rx_mode(struct net_device *dev)
8613 {
8614         netif_addr_lock_bh(dev);
8615         __dev_set_rx_mode(dev);
8616         netif_addr_unlock_bh(dev);
8617 }
8618
8619 /**
8620  *      dev_get_flags - get flags reported to userspace
8621  *      @dev: device
8622  *
8623  *      Get the combination of flag bits exported through APIs to userspace.
8624  */
8625 unsigned int dev_get_flags(const struct net_device *dev)
8626 {
8627         unsigned int flags;
8628
8629         flags = (dev->flags & ~(IFF_PROMISC |
8630                                 IFF_ALLMULTI |
8631                                 IFF_RUNNING |
8632                                 IFF_LOWER_UP |
8633                                 IFF_DORMANT)) |
8634                 (dev->gflags & (IFF_PROMISC |
8635                                 IFF_ALLMULTI));
8636
8637         if (netif_running(dev)) {
8638                 if (netif_oper_up(dev))
8639                         flags |= IFF_RUNNING;
8640                 if (netif_carrier_ok(dev))
8641                         flags |= IFF_LOWER_UP;
8642                 if (netif_dormant(dev))
8643                         flags |= IFF_DORMANT;
8644         }
8645
8646         return flags;
8647 }
8648 EXPORT_SYMBOL(dev_get_flags);
8649
8650 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8651                        struct netlink_ext_ack *extack)
8652 {
8653         unsigned int old_flags = dev->flags;
8654         int ret;
8655
8656         ASSERT_RTNL();
8657
8658         /*
8659          *      Set the flags on our device.
8660          */
8661
8662         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8663                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8664                                IFF_AUTOMEDIA)) |
8665                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8666                                     IFF_ALLMULTI));
8667
8668         /*
8669          *      Load in the correct multicast list now the flags have changed.
8670          */
8671
8672         if ((old_flags ^ flags) & IFF_MULTICAST)
8673                 dev_change_rx_flags(dev, IFF_MULTICAST);
8674
8675         dev_set_rx_mode(dev);
8676
8677         /*
8678          *      Have we downed the interface. We handle IFF_UP ourselves
8679          *      according to user attempts to set it, rather than blindly
8680          *      setting it.
8681          */
8682
8683         ret = 0;
8684         if ((old_flags ^ flags) & IFF_UP) {
8685                 if (old_flags & IFF_UP)
8686                         __dev_close(dev);
8687                 else
8688                         ret = __dev_open(dev, extack);
8689         }
8690
8691         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8692                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8693                 unsigned int old_flags = dev->flags;
8694
8695                 dev->gflags ^= IFF_PROMISC;
8696
8697                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8698                         if (dev->flags != old_flags)
8699                                 dev_set_rx_mode(dev);
8700         }
8701
8702         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8703          * is important. Some (broken) drivers set IFF_PROMISC, when
8704          * IFF_ALLMULTI is requested not asking us and not reporting.
8705          */
8706         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8707                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8708
8709                 dev->gflags ^= IFF_ALLMULTI;
8710                 __dev_set_allmulti(dev, inc, false);
8711         }
8712
8713         return ret;
8714 }
8715
8716 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8717                         unsigned int gchanges)
8718 {
8719         unsigned int changes = dev->flags ^ old_flags;
8720
8721         if (gchanges)
8722                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8723
8724         if (changes & IFF_UP) {
8725                 if (dev->flags & IFF_UP)
8726                         call_netdevice_notifiers(NETDEV_UP, dev);
8727                 else
8728                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8729         }
8730
8731         if (dev->flags & IFF_UP &&
8732             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8733                 struct netdev_notifier_change_info change_info = {
8734                         .info = {
8735                                 .dev = dev,
8736                         },
8737                         .flags_changed = changes,
8738                 };
8739
8740                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8741         }
8742 }
8743
8744 /**
8745  *      dev_change_flags - change device settings
8746  *      @dev: device
8747  *      @flags: device state flags
8748  *      @extack: netlink extended ack
8749  *
8750  *      Change settings on device based state flags. The flags are
8751  *      in the userspace exported format.
8752  */
8753 int dev_change_flags(struct net_device *dev, unsigned int flags,
8754                      struct netlink_ext_ack *extack)
8755 {
8756         int ret;
8757         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8758
8759         ret = __dev_change_flags(dev, flags, extack);
8760         if (ret < 0)
8761                 return ret;
8762
8763         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8764         __dev_notify_flags(dev, old_flags, changes);
8765         return ret;
8766 }
8767 EXPORT_SYMBOL(dev_change_flags);
8768
8769 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8770 {
8771         const struct net_device_ops *ops = dev->netdev_ops;
8772
8773         if (ops->ndo_change_mtu)
8774                 return ops->ndo_change_mtu(dev, new_mtu);
8775
8776         /* Pairs with all the lockless reads of dev->mtu in the stack */
8777         WRITE_ONCE(dev->mtu, new_mtu);
8778         return 0;
8779 }
8780 EXPORT_SYMBOL(__dev_set_mtu);
8781
8782 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8783                      struct netlink_ext_ack *extack)
8784 {
8785         /* MTU must be positive, and in range */
8786         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8787                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8788                 return -EINVAL;
8789         }
8790
8791         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8792                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8793                 return -EINVAL;
8794         }
8795         return 0;
8796 }
8797
8798 /**
8799  *      dev_set_mtu_ext - Change maximum transfer unit
8800  *      @dev: device
8801  *      @new_mtu: new transfer unit
8802  *      @extack: netlink extended ack
8803  *
8804  *      Change the maximum transfer size of the network device.
8805  */
8806 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8807                     struct netlink_ext_ack *extack)
8808 {
8809         int err, orig_mtu;
8810
8811         if (new_mtu == dev->mtu)
8812                 return 0;
8813
8814         err = dev_validate_mtu(dev, new_mtu, extack);
8815         if (err)
8816                 return err;
8817
8818         if (!netif_device_present(dev))
8819                 return -ENODEV;
8820
8821         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8822         err = notifier_to_errno(err);
8823         if (err)
8824                 return err;
8825
8826         orig_mtu = dev->mtu;
8827         err = __dev_set_mtu(dev, new_mtu);
8828
8829         if (!err) {
8830                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8831                                                    orig_mtu);
8832                 err = notifier_to_errno(err);
8833                 if (err) {
8834                         /* setting mtu back and notifying everyone again,
8835                          * so that they have a chance to revert changes.
8836                          */
8837                         __dev_set_mtu(dev, orig_mtu);
8838                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8839                                                      new_mtu);
8840                 }
8841         }
8842         return err;
8843 }
8844
8845 int dev_set_mtu(struct net_device *dev, int new_mtu)
8846 {
8847         struct netlink_ext_ack extack;
8848         int err;
8849
8850         memset(&extack, 0, sizeof(extack));
8851         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8852         if (err && extack._msg)
8853                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8854         return err;
8855 }
8856 EXPORT_SYMBOL(dev_set_mtu);
8857
8858 /**
8859  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8860  *      @dev: device
8861  *      @new_len: new tx queue length
8862  */
8863 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8864 {
8865         unsigned int orig_len = dev->tx_queue_len;
8866         int res;
8867
8868         if (new_len != (unsigned int)new_len)
8869                 return -ERANGE;
8870
8871         if (new_len != orig_len) {
8872                 dev->tx_queue_len = new_len;
8873                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8874                 res = notifier_to_errno(res);
8875                 if (res)
8876                         goto err_rollback;
8877                 res = dev_qdisc_change_tx_queue_len(dev);
8878                 if (res)
8879                         goto err_rollback;
8880         }
8881
8882         return 0;
8883
8884 err_rollback:
8885         netdev_err(dev, "refused to change device tx_queue_len\n");
8886         dev->tx_queue_len = orig_len;
8887         return res;
8888 }
8889
8890 /**
8891  *      dev_set_group - Change group this device belongs to
8892  *      @dev: device
8893  *      @new_group: group this device should belong to
8894  */
8895 void dev_set_group(struct net_device *dev, int new_group)
8896 {
8897         dev->group = new_group;
8898 }
8899 EXPORT_SYMBOL(dev_set_group);
8900
8901 /**
8902  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8903  *      @dev: device
8904  *      @addr: new address
8905  *      @extack: netlink extended ack
8906  */
8907 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8908                               struct netlink_ext_ack *extack)
8909 {
8910         struct netdev_notifier_pre_changeaddr_info info = {
8911                 .info.dev = dev,
8912                 .info.extack = extack,
8913                 .dev_addr = addr,
8914         };
8915         int rc;
8916
8917         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8918         return notifier_to_errno(rc);
8919 }
8920 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8921
8922 /**
8923  *      dev_set_mac_address - Change Media Access Control Address
8924  *      @dev: device
8925  *      @sa: new address
8926  *      @extack: netlink extended ack
8927  *
8928  *      Change the hardware (MAC) address of the device
8929  */
8930 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8931                         struct netlink_ext_ack *extack)
8932 {
8933         const struct net_device_ops *ops = dev->netdev_ops;
8934         int err;
8935
8936         if (!ops->ndo_set_mac_address)
8937                 return -EOPNOTSUPP;
8938         if (sa->sa_family != dev->type)
8939                 return -EINVAL;
8940         if (!netif_device_present(dev))
8941                 return -ENODEV;
8942         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8943         if (err)
8944                 return err;
8945         err = ops->ndo_set_mac_address(dev, sa);
8946         if (err)
8947                 return err;
8948         dev->addr_assign_type = NET_ADDR_SET;
8949         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8950         add_device_randomness(dev->dev_addr, dev->addr_len);
8951         return 0;
8952 }
8953 EXPORT_SYMBOL(dev_set_mac_address);
8954
8955 static DECLARE_RWSEM(dev_addr_sem);
8956
8957 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8958                              struct netlink_ext_ack *extack)
8959 {
8960         int ret;
8961
8962         down_write(&dev_addr_sem);
8963         ret = dev_set_mac_address(dev, sa, extack);
8964         up_write(&dev_addr_sem);
8965         return ret;
8966 }
8967 EXPORT_SYMBOL(dev_set_mac_address_user);
8968
8969 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8970 {
8971         size_t size = sizeof(sa->sa_data);
8972         struct net_device *dev;
8973         int ret = 0;
8974
8975         down_read(&dev_addr_sem);
8976         rcu_read_lock();
8977
8978         dev = dev_get_by_name_rcu(net, dev_name);
8979         if (!dev) {
8980                 ret = -ENODEV;
8981                 goto unlock;
8982         }
8983         if (!dev->addr_len)
8984                 memset(sa->sa_data, 0, size);
8985         else
8986                 memcpy(sa->sa_data, dev->dev_addr,
8987                        min_t(size_t, size, dev->addr_len));
8988         sa->sa_family = dev->type;
8989
8990 unlock:
8991         rcu_read_unlock();
8992         up_read(&dev_addr_sem);
8993         return ret;
8994 }
8995 EXPORT_SYMBOL(dev_get_mac_address);
8996
8997 /**
8998  *      dev_change_carrier - Change device carrier
8999  *      @dev: device
9000  *      @new_carrier: new value
9001  *
9002  *      Change device carrier
9003  */
9004 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9005 {
9006         const struct net_device_ops *ops = dev->netdev_ops;
9007
9008         if (!ops->ndo_change_carrier)
9009                 return -EOPNOTSUPP;
9010         if (!netif_device_present(dev))
9011                 return -ENODEV;
9012         return ops->ndo_change_carrier(dev, new_carrier);
9013 }
9014 EXPORT_SYMBOL(dev_change_carrier);
9015
9016 /**
9017  *      dev_get_phys_port_id - Get device physical port ID
9018  *      @dev: device
9019  *      @ppid: port ID
9020  *
9021  *      Get device physical port ID
9022  */
9023 int dev_get_phys_port_id(struct net_device *dev,
9024                          struct netdev_phys_item_id *ppid)
9025 {
9026         const struct net_device_ops *ops = dev->netdev_ops;
9027
9028         if (!ops->ndo_get_phys_port_id)
9029                 return -EOPNOTSUPP;
9030         return ops->ndo_get_phys_port_id(dev, ppid);
9031 }
9032 EXPORT_SYMBOL(dev_get_phys_port_id);
9033
9034 /**
9035  *      dev_get_phys_port_name - Get device physical port name
9036  *      @dev: device
9037  *      @name: port name
9038  *      @len: limit of bytes to copy to name
9039  *
9040  *      Get device physical port name
9041  */
9042 int dev_get_phys_port_name(struct net_device *dev,
9043                            char *name, size_t len)
9044 {
9045         const struct net_device_ops *ops = dev->netdev_ops;
9046         int err;
9047
9048         if (ops->ndo_get_phys_port_name) {
9049                 err = ops->ndo_get_phys_port_name(dev, name, len);
9050                 if (err != -EOPNOTSUPP)
9051                         return err;
9052         }
9053         return devlink_compat_phys_port_name_get(dev, name, len);
9054 }
9055 EXPORT_SYMBOL(dev_get_phys_port_name);
9056
9057 /**
9058  *      dev_get_port_parent_id - Get the device's port parent identifier
9059  *      @dev: network device
9060  *      @ppid: pointer to a storage for the port's parent identifier
9061  *      @recurse: allow/disallow recursion to lower devices
9062  *
9063  *      Get the devices's port parent identifier
9064  */
9065 int dev_get_port_parent_id(struct net_device *dev,
9066                            struct netdev_phys_item_id *ppid,
9067                            bool recurse)
9068 {
9069         const struct net_device_ops *ops = dev->netdev_ops;
9070         struct netdev_phys_item_id first = { };
9071         struct net_device *lower_dev;
9072         struct list_head *iter;
9073         int err;
9074
9075         if (ops->ndo_get_port_parent_id) {
9076                 err = ops->ndo_get_port_parent_id(dev, ppid);
9077                 if (err != -EOPNOTSUPP)
9078                         return err;
9079         }
9080
9081         err = devlink_compat_switch_id_get(dev, ppid);
9082         if (!err || err != -EOPNOTSUPP)
9083                 return err;
9084
9085         if (!recurse)
9086                 return -EOPNOTSUPP;
9087
9088         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9089                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9090                 if (err)
9091                         break;
9092                 if (!first.id_len)
9093                         first = *ppid;
9094                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9095                         return -EOPNOTSUPP;
9096         }
9097
9098         return err;
9099 }
9100 EXPORT_SYMBOL(dev_get_port_parent_id);
9101
9102 /**
9103  *      netdev_port_same_parent_id - Indicate if two network devices have
9104  *      the same port parent identifier
9105  *      @a: first network device
9106  *      @b: second network device
9107  */
9108 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9109 {
9110         struct netdev_phys_item_id a_id = { };
9111         struct netdev_phys_item_id b_id = { };
9112
9113         if (dev_get_port_parent_id(a, &a_id, true) ||
9114             dev_get_port_parent_id(b, &b_id, true))
9115                 return false;
9116
9117         return netdev_phys_item_id_same(&a_id, &b_id);
9118 }
9119 EXPORT_SYMBOL(netdev_port_same_parent_id);
9120
9121 /**
9122  *      dev_change_proto_down - update protocol port state information
9123  *      @dev: device
9124  *      @proto_down: new value
9125  *
9126  *      This info can be used by switch drivers to set the phys state of the
9127  *      port.
9128  */
9129 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9130 {
9131         const struct net_device_ops *ops = dev->netdev_ops;
9132
9133         if (!ops->ndo_change_proto_down)
9134                 return -EOPNOTSUPP;
9135         if (!netif_device_present(dev))
9136                 return -ENODEV;
9137         return ops->ndo_change_proto_down(dev, proto_down);
9138 }
9139 EXPORT_SYMBOL(dev_change_proto_down);
9140
9141 /**
9142  *      dev_change_proto_down_generic - generic implementation for
9143  *      ndo_change_proto_down that sets carrier according to
9144  *      proto_down.
9145  *
9146  *      @dev: device
9147  *      @proto_down: new value
9148  */
9149 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9150 {
9151         if (proto_down)
9152                 netif_carrier_off(dev);
9153         else
9154                 netif_carrier_on(dev);
9155         dev->proto_down = proto_down;
9156         return 0;
9157 }
9158 EXPORT_SYMBOL(dev_change_proto_down_generic);
9159
9160 /**
9161  *      dev_change_proto_down_reason - proto down reason
9162  *
9163  *      @dev: device
9164  *      @mask: proto down mask
9165  *      @value: proto down value
9166  */
9167 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9168                                   u32 value)
9169 {
9170         int b;
9171
9172         if (!mask) {
9173                 dev->proto_down_reason = value;
9174         } else {
9175                 for_each_set_bit(b, &mask, 32) {
9176                         if (value & (1 << b))
9177                                 dev->proto_down_reason |= BIT(b);
9178                         else
9179                                 dev->proto_down_reason &= ~BIT(b);
9180                 }
9181         }
9182 }
9183 EXPORT_SYMBOL(dev_change_proto_down_reason);
9184
9185 struct bpf_xdp_link {
9186         struct bpf_link link;
9187         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9188         int flags;
9189 };
9190
9191 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9192 {
9193         if (flags & XDP_FLAGS_HW_MODE)
9194                 return XDP_MODE_HW;
9195         if (flags & XDP_FLAGS_DRV_MODE)
9196                 return XDP_MODE_DRV;
9197         if (flags & XDP_FLAGS_SKB_MODE)
9198                 return XDP_MODE_SKB;
9199         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9200 }
9201
9202 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9203 {
9204         switch (mode) {
9205         case XDP_MODE_SKB:
9206                 return generic_xdp_install;
9207         case XDP_MODE_DRV:
9208         case XDP_MODE_HW:
9209                 return dev->netdev_ops->ndo_bpf;
9210         default:
9211                 return NULL;
9212         }
9213 }
9214
9215 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9216                                          enum bpf_xdp_mode mode)
9217 {
9218         return dev->xdp_state[mode].link;
9219 }
9220
9221 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9222                                      enum bpf_xdp_mode mode)
9223 {
9224         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9225
9226         if (link)
9227                 return link->link.prog;
9228         return dev->xdp_state[mode].prog;
9229 }
9230
9231 static u8 dev_xdp_prog_count(struct net_device *dev)
9232 {
9233         u8 count = 0;
9234         int i;
9235
9236         for (i = 0; i < __MAX_XDP_MODE; i++)
9237                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9238                         count++;
9239         return count;
9240 }
9241
9242 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9243 {
9244         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9245
9246         return prog ? prog->aux->id : 0;
9247 }
9248
9249 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9250                              struct bpf_xdp_link *link)
9251 {
9252         dev->xdp_state[mode].link = link;
9253         dev->xdp_state[mode].prog = NULL;
9254 }
9255
9256 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9257                              struct bpf_prog *prog)
9258 {
9259         dev->xdp_state[mode].link = NULL;
9260         dev->xdp_state[mode].prog = prog;
9261 }
9262
9263 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9264                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9265                            u32 flags, struct bpf_prog *prog)
9266 {
9267         struct netdev_bpf xdp;
9268         int err;
9269
9270         memset(&xdp, 0, sizeof(xdp));
9271         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9272         xdp.extack = extack;
9273         xdp.flags = flags;
9274         xdp.prog = prog;
9275
9276         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9277          * "moved" into driver), so they don't increment it on their own, but
9278          * they do decrement refcnt when program is detached or replaced.
9279          * Given net_device also owns link/prog, we need to bump refcnt here
9280          * to prevent drivers from underflowing it.
9281          */
9282         if (prog)
9283                 bpf_prog_inc(prog);
9284         err = bpf_op(dev, &xdp);
9285         if (err) {
9286                 if (prog)
9287                         bpf_prog_put(prog);
9288                 return err;
9289         }
9290
9291         if (mode != XDP_MODE_HW)
9292                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9293
9294         return 0;
9295 }
9296
9297 static void dev_xdp_uninstall(struct net_device *dev)
9298 {
9299         struct bpf_xdp_link *link;
9300         struct bpf_prog *prog;
9301         enum bpf_xdp_mode mode;
9302         bpf_op_t bpf_op;
9303
9304         ASSERT_RTNL();
9305
9306         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9307                 prog = dev_xdp_prog(dev, mode);
9308                 if (!prog)
9309                         continue;
9310
9311                 bpf_op = dev_xdp_bpf_op(dev, mode);
9312                 if (!bpf_op)
9313                         continue;
9314
9315                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9316
9317                 /* auto-detach link from net device */
9318                 link = dev_xdp_link(dev, mode);
9319                 if (link)
9320                         link->dev = NULL;
9321                 else
9322                         bpf_prog_put(prog);
9323
9324                 dev_xdp_set_link(dev, mode, NULL);
9325         }
9326 }
9327
9328 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9329                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9330                           struct bpf_prog *old_prog, u32 flags)
9331 {
9332         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9333         struct bpf_prog *cur_prog;
9334         enum bpf_xdp_mode mode;
9335         bpf_op_t bpf_op;
9336         int err;
9337
9338         ASSERT_RTNL();
9339
9340         /* either link or prog attachment, never both */
9341         if (link && (new_prog || old_prog))
9342                 return -EINVAL;
9343         /* link supports only XDP mode flags */
9344         if (link && (flags & ~XDP_FLAGS_MODES)) {
9345                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9346                 return -EINVAL;
9347         }
9348         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9349         if (num_modes > 1) {
9350                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9351                 return -EINVAL;
9352         }
9353         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9354         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9355                 NL_SET_ERR_MSG(extack,
9356                                "More than one program loaded, unset mode is ambiguous");
9357                 return -EINVAL;
9358         }
9359         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9360         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9361                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9362                 return -EINVAL;
9363         }
9364
9365         mode = dev_xdp_mode(dev, flags);
9366         /* can't replace attached link */
9367         if (dev_xdp_link(dev, mode)) {
9368                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9369                 return -EBUSY;
9370         }
9371
9372         cur_prog = dev_xdp_prog(dev, mode);
9373         /* can't replace attached prog with link */
9374         if (link && cur_prog) {
9375                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9376                 return -EBUSY;
9377         }
9378         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9379                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9380                 return -EEXIST;
9381         }
9382
9383         /* put effective new program into new_prog */
9384         if (link)
9385                 new_prog = link->link.prog;
9386
9387         if (new_prog) {
9388                 bool offload = mode == XDP_MODE_HW;
9389                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9390                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9391
9392                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9393                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9394                         return -EBUSY;
9395                 }
9396                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9397                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9398                         return -EEXIST;
9399                 }
9400                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9401                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9402                         return -EINVAL;
9403                 }
9404                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9405                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9406                         return -EINVAL;
9407                 }
9408                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9409                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9410                         return -EINVAL;
9411                 }
9412         }
9413
9414         /* don't call drivers if the effective program didn't change */
9415         if (new_prog != cur_prog) {
9416                 bpf_op = dev_xdp_bpf_op(dev, mode);
9417                 if (!bpf_op) {
9418                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9419                         return -EOPNOTSUPP;
9420                 }
9421
9422                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9423                 if (err)
9424                         return err;
9425         }
9426
9427         if (link)
9428                 dev_xdp_set_link(dev, mode, link);
9429         else
9430                 dev_xdp_set_prog(dev, mode, new_prog);
9431         if (cur_prog)
9432                 bpf_prog_put(cur_prog);
9433
9434         return 0;
9435 }
9436
9437 static int dev_xdp_attach_link(struct net_device *dev,
9438                                struct netlink_ext_ack *extack,
9439                                struct bpf_xdp_link *link)
9440 {
9441         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9442 }
9443
9444 static int dev_xdp_detach_link(struct net_device *dev,
9445                                struct netlink_ext_ack *extack,
9446                                struct bpf_xdp_link *link)
9447 {
9448         enum bpf_xdp_mode mode;
9449         bpf_op_t bpf_op;
9450
9451         ASSERT_RTNL();
9452
9453         mode = dev_xdp_mode(dev, link->flags);
9454         if (dev_xdp_link(dev, mode) != link)
9455                 return -EINVAL;
9456
9457         bpf_op = dev_xdp_bpf_op(dev, mode);
9458         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9459         dev_xdp_set_link(dev, mode, NULL);
9460         return 0;
9461 }
9462
9463 static void bpf_xdp_link_release(struct bpf_link *link)
9464 {
9465         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9466
9467         rtnl_lock();
9468
9469         /* if racing with net_device's tear down, xdp_link->dev might be
9470          * already NULL, in which case link was already auto-detached
9471          */
9472         if (xdp_link->dev) {
9473                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9474                 xdp_link->dev = NULL;
9475         }
9476
9477         rtnl_unlock();
9478 }
9479
9480 static int bpf_xdp_link_detach(struct bpf_link *link)
9481 {
9482         bpf_xdp_link_release(link);
9483         return 0;
9484 }
9485
9486 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9487 {
9488         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9489
9490         kfree(xdp_link);
9491 }
9492
9493 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9494                                      struct seq_file *seq)
9495 {
9496         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9497         u32 ifindex = 0;
9498
9499         rtnl_lock();
9500         if (xdp_link->dev)
9501                 ifindex = xdp_link->dev->ifindex;
9502         rtnl_unlock();
9503
9504         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9505 }
9506
9507 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9508                                        struct bpf_link_info *info)
9509 {
9510         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9511         u32 ifindex = 0;
9512
9513         rtnl_lock();
9514         if (xdp_link->dev)
9515                 ifindex = xdp_link->dev->ifindex;
9516         rtnl_unlock();
9517
9518         info->xdp.ifindex = ifindex;
9519         return 0;
9520 }
9521
9522 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9523                                struct bpf_prog *old_prog)
9524 {
9525         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9526         enum bpf_xdp_mode mode;
9527         bpf_op_t bpf_op;
9528         int err = 0;
9529
9530         rtnl_lock();
9531
9532         /* link might have been auto-released already, so fail */
9533         if (!xdp_link->dev) {
9534                 err = -ENOLINK;
9535                 goto out_unlock;
9536         }
9537
9538         if (old_prog && link->prog != old_prog) {
9539                 err = -EPERM;
9540                 goto out_unlock;
9541         }
9542         old_prog = link->prog;
9543         if (old_prog == new_prog) {
9544                 /* no-op, don't disturb drivers */
9545                 bpf_prog_put(new_prog);
9546                 goto out_unlock;
9547         }
9548
9549         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9550         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9551         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9552                               xdp_link->flags, new_prog);
9553         if (err)
9554                 goto out_unlock;
9555
9556         old_prog = xchg(&link->prog, new_prog);
9557         bpf_prog_put(old_prog);
9558
9559 out_unlock:
9560         rtnl_unlock();
9561         return err;
9562 }
9563
9564 static const struct bpf_link_ops bpf_xdp_link_lops = {
9565         .release = bpf_xdp_link_release,
9566         .dealloc = bpf_xdp_link_dealloc,
9567         .detach = bpf_xdp_link_detach,
9568         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9569         .fill_link_info = bpf_xdp_link_fill_link_info,
9570         .update_prog = bpf_xdp_link_update,
9571 };
9572
9573 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9574 {
9575         struct net *net = current->nsproxy->net_ns;
9576         struct bpf_link_primer link_primer;
9577         struct bpf_xdp_link *link;
9578         struct net_device *dev;
9579         int err, fd;
9580
9581         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9582         if (!dev)
9583                 return -EINVAL;
9584
9585         link = kzalloc(sizeof(*link), GFP_USER);
9586         if (!link) {
9587                 err = -ENOMEM;
9588                 goto out_put_dev;
9589         }
9590
9591         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9592         link->dev = dev;
9593         link->flags = attr->link_create.flags;
9594
9595         err = bpf_link_prime(&link->link, &link_primer);
9596         if (err) {
9597                 kfree(link);
9598                 goto out_put_dev;
9599         }
9600
9601         rtnl_lock();
9602         err = dev_xdp_attach_link(dev, NULL, link);
9603         rtnl_unlock();
9604
9605         if (err) {
9606                 bpf_link_cleanup(&link_primer);
9607                 goto out_put_dev;
9608         }
9609
9610         fd = bpf_link_settle(&link_primer);
9611         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9612         dev_put(dev);
9613         return fd;
9614
9615 out_put_dev:
9616         dev_put(dev);
9617         return err;
9618 }
9619
9620 /**
9621  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9622  *      @dev: device
9623  *      @extack: netlink extended ack
9624  *      @fd: new program fd or negative value to clear
9625  *      @expected_fd: old program fd that userspace expects to replace or clear
9626  *      @flags: xdp-related flags
9627  *
9628  *      Set or clear a bpf program for a device
9629  */
9630 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9631                       int fd, int expected_fd, u32 flags)
9632 {
9633         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9634         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9635         int err;
9636
9637         ASSERT_RTNL();
9638
9639         if (fd >= 0) {
9640                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9641                                                  mode != XDP_MODE_SKB);
9642                 if (IS_ERR(new_prog))
9643                         return PTR_ERR(new_prog);
9644         }
9645
9646         if (expected_fd >= 0) {
9647                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9648                                                  mode != XDP_MODE_SKB);
9649                 if (IS_ERR(old_prog)) {
9650                         err = PTR_ERR(old_prog);
9651                         old_prog = NULL;
9652                         goto err_out;
9653                 }
9654         }
9655
9656         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9657
9658 err_out:
9659         if (err && new_prog)
9660                 bpf_prog_put(new_prog);
9661         if (old_prog)
9662                 bpf_prog_put(old_prog);
9663         return err;
9664 }
9665
9666 /**
9667  *      dev_new_index   -       allocate an ifindex
9668  *      @net: the applicable net namespace
9669  *
9670  *      Returns a suitable unique value for a new device interface
9671  *      number.  The caller must hold the rtnl semaphore or the
9672  *      dev_base_lock to be sure it remains unique.
9673  */
9674 static int dev_new_index(struct net *net)
9675 {
9676         int ifindex = net->ifindex;
9677
9678         for (;;) {
9679                 if (++ifindex <= 0)
9680                         ifindex = 1;
9681                 if (!__dev_get_by_index(net, ifindex))
9682                         return net->ifindex = ifindex;
9683         }
9684 }
9685
9686 /* Delayed registration/unregisteration */
9687 static LIST_HEAD(net_todo_list);
9688 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9689
9690 static void net_set_todo(struct net_device *dev)
9691 {
9692         list_add_tail(&dev->todo_list, &net_todo_list);
9693         dev_net(dev)->dev_unreg_count++;
9694 }
9695
9696 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9697         struct net_device *upper, netdev_features_t features)
9698 {
9699         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9700         netdev_features_t feature;
9701         int feature_bit;
9702
9703         for_each_netdev_feature(upper_disables, feature_bit) {
9704                 feature = __NETIF_F_BIT(feature_bit);
9705                 if (!(upper->wanted_features & feature)
9706                     && (features & feature)) {
9707                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9708                                    &feature, upper->name);
9709                         features &= ~feature;
9710                 }
9711         }
9712
9713         return features;
9714 }
9715
9716 static void netdev_sync_lower_features(struct net_device *upper,
9717         struct net_device *lower, netdev_features_t features)
9718 {
9719         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9720         netdev_features_t feature;
9721         int feature_bit;
9722
9723         for_each_netdev_feature(upper_disables, feature_bit) {
9724                 feature = __NETIF_F_BIT(feature_bit);
9725                 if (!(features & feature) && (lower->features & feature)) {
9726                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9727                                    &feature, lower->name);
9728                         lower->wanted_features &= ~feature;
9729                         __netdev_update_features(lower);
9730
9731                         if (unlikely(lower->features & feature))
9732                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9733                                             &feature, lower->name);
9734                         else
9735                                 netdev_features_change(lower);
9736                 }
9737         }
9738 }
9739
9740 static netdev_features_t netdev_fix_features(struct net_device *dev,
9741         netdev_features_t features)
9742 {
9743         /* Fix illegal checksum combinations */
9744         if ((features & NETIF_F_HW_CSUM) &&
9745             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9746                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9747                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9748         }
9749
9750         /* TSO requires that SG is present as well. */
9751         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9752                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9753                 features &= ~NETIF_F_ALL_TSO;
9754         }
9755
9756         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9757                                         !(features & NETIF_F_IP_CSUM)) {
9758                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9759                 features &= ~NETIF_F_TSO;
9760                 features &= ~NETIF_F_TSO_ECN;
9761         }
9762
9763         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9764                                          !(features & NETIF_F_IPV6_CSUM)) {
9765                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9766                 features &= ~NETIF_F_TSO6;
9767         }
9768
9769         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9770         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9771                 features &= ~NETIF_F_TSO_MANGLEID;
9772
9773         /* TSO ECN requires that TSO is present as well. */
9774         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9775                 features &= ~NETIF_F_TSO_ECN;
9776
9777         /* Software GSO depends on SG. */
9778         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9779                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9780                 features &= ~NETIF_F_GSO;
9781         }
9782
9783         /* GSO partial features require GSO partial be set */
9784         if ((features & dev->gso_partial_features) &&
9785             !(features & NETIF_F_GSO_PARTIAL)) {
9786                 netdev_dbg(dev,
9787                            "Dropping partially supported GSO features since no GSO partial.\n");
9788                 features &= ~dev->gso_partial_features;
9789         }
9790
9791         if (!(features & NETIF_F_RXCSUM)) {
9792                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9793                  * successfully merged by hardware must also have the
9794                  * checksum verified by hardware.  If the user does not
9795                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9796                  */
9797                 if (features & NETIF_F_GRO_HW) {
9798                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9799                         features &= ~NETIF_F_GRO_HW;
9800                 }
9801         }
9802
9803         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9804         if (features & NETIF_F_RXFCS) {
9805                 if (features & NETIF_F_LRO) {
9806                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9807                         features &= ~NETIF_F_LRO;
9808                 }
9809
9810                 if (features & NETIF_F_GRO_HW) {
9811                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9812                         features &= ~NETIF_F_GRO_HW;
9813                 }
9814         }
9815
9816         if (features & NETIF_F_HW_TLS_TX) {
9817                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9818                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9819                 bool hw_csum = features & NETIF_F_HW_CSUM;
9820
9821                 if (!ip_csum && !hw_csum) {
9822                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9823                         features &= ~NETIF_F_HW_TLS_TX;
9824                 }
9825         }
9826
9827         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9828                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9829                 features &= ~NETIF_F_HW_TLS_RX;
9830         }
9831
9832         return features;
9833 }
9834
9835 int __netdev_update_features(struct net_device *dev)
9836 {
9837         struct net_device *upper, *lower;
9838         netdev_features_t features;
9839         struct list_head *iter;
9840         int err = -1;
9841
9842         ASSERT_RTNL();
9843
9844         features = netdev_get_wanted_features(dev);
9845
9846         if (dev->netdev_ops->ndo_fix_features)
9847                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9848
9849         /* driver might be less strict about feature dependencies */
9850         features = netdev_fix_features(dev, features);
9851
9852         /* some features can't be enabled if they're off on an upper device */
9853         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9854                 features = netdev_sync_upper_features(dev, upper, features);
9855
9856         if (dev->features == features)
9857                 goto sync_lower;
9858
9859         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9860                 &dev->features, &features);
9861
9862         if (dev->netdev_ops->ndo_set_features)
9863                 err = dev->netdev_ops->ndo_set_features(dev, features);
9864         else
9865                 err = 0;
9866
9867         if (unlikely(err < 0)) {
9868                 netdev_err(dev,
9869                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9870                         err, &features, &dev->features);
9871                 /* return non-0 since some features might have changed and
9872                  * it's better to fire a spurious notification than miss it
9873                  */
9874                 return -1;
9875         }
9876
9877 sync_lower:
9878         /* some features must be disabled on lower devices when disabled
9879          * on an upper device (think: bonding master or bridge)
9880          */
9881         netdev_for_each_lower_dev(dev, lower, iter)
9882                 netdev_sync_lower_features(dev, lower, features);
9883
9884         if (!err) {
9885                 netdev_features_t diff = features ^ dev->features;
9886
9887                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9888                         /* udp_tunnel_{get,drop}_rx_info both need
9889                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9890                          * device, or they won't do anything.
9891                          * Thus we need to update dev->features
9892                          * *before* calling udp_tunnel_get_rx_info,
9893                          * but *after* calling udp_tunnel_drop_rx_info.
9894                          */
9895                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9896                                 dev->features = features;
9897                                 udp_tunnel_get_rx_info(dev);
9898                         } else {
9899                                 udp_tunnel_drop_rx_info(dev);
9900                         }
9901                 }
9902
9903                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9904                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9905                                 dev->features = features;
9906                                 err |= vlan_get_rx_ctag_filter_info(dev);
9907                         } else {
9908                                 vlan_drop_rx_ctag_filter_info(dev);
9909                         }
9910                 }
9911
9912                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9913                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9914                                 dev->features = features;
9915                                 err |= vlan_get_rx_stag_filter_info(dev);
9916                         } else {
9917                                 vlan_drop_rx_stag_filter_info(dev);
9918                         }
9919                 }
9920
9921                 dev->features = features;
9922         }
9923
9924         return err < 0 ? 0 : 1;
9925 }
9926
9927 /**
9928  *      netdev_update_features - recalculate device features
9929  *      @dev: the device to check
9930  *
9931  *      Recalculate dev->features set and send notifications if it
9932  *      has changed. Should be called after driver or hardware dependent
9933  *      conditions might have changed that influence the features.
9934  */
9935 void netdev_update_features(struct net_device *dev)
9936 {
9937         if (__netdev_update_features(dev))
9938                 netdev_features_change(dev);
9939 }
9940 EXPORT_SYMBOL(netdev_update_features);
9941
9942 /**
9943  *      netdev_change_features - recalculate device features
9944  *      @dev: the device to check
9945  *
9946  *      Recalculate dev->features set and send notifications even
9947  *      if they have not changed. Should be called instead of
9948  *      netdev_update_features() if also dev->vlan_features might
9949  *      have changed to allow the changes to be propagated to stacked
9950  *      VLAN devices.
9951  */
9952 void netdev_change_features(struct net_device *dev)
9953 {
9954         __netdev_update_features(dev);
9955         netdev_features_change(dev);
9956 }
9957 EXPORT_SYMBOL(netdev_change_features);
9958
9959 /**
9960  *      netif_stacked_transfer_operstate -      transfer operstate
9961  *      @rootdev: the root or lower level device to transfer state from
9962  *      @dev: the device to transfer operstate to
9963  *
9964  *      Transfer operational state from root to device. This is normally
9965  *      called when a stacking relationship exists between the root
9966  *      device and the device(a leaf device).
9967  */
9968 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9969                                         struct net_device *dev)
9970 {
9971         if (rootdev->operstate == IF_OPER_DORMANT)
9972                 netif_dormant_on(dev);
9973         else
9974                 netif_dormant_off(dev);
9975
9976         if (rootdev->operstate == IF_OPER_TESTING)
9977                 netif_testing_on(dev);
9978         else
9979                 netif_testing_off(dev);
9980
9981         if (netif_carrier_ok(rootdev))
9982                 netif_carrier_on(dev);
9983         else
9984                 netif_carrier_off(dev);
9985 }
9986 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9987
9988 static int netif_alloc_rx_queues(struct net_device *dev)
9989 {
9990         unsigned int i, count = dev->num_rx_queues;
9991         struct netdev_rx_queue *rx;
9992         size_t sz = count * sizeof(*rx);
9993         int err = 0;
9994
9995         BUG_ON(count < 1);
9996
9997         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9998         if (!rx)
9999                 return -ENOMEM;
10000
10001         dev->_rx = rx;
10002
10003         for (i = 0; i < count; i++) {
10004                 rx[i].dev = dev;
10005
10006                 /* XDP RX-queue setup */
10007                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10008                 if (err < 0)
10009                         goto err_rxq_info;
10010         }
10011         return 0;
10012
10013 err_rxq_info:
10014         /* Rollback successful reg's and free other resources */
10015         while (i--)
10016                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10017         kvfree(dev->_rx);
10018         dev->_rx = NULL;
10019         return err;
10020 }
10021
10022 static void netif_free_rx_queues(struct net_device *dev)
10023 {
10024         unsigned int i, count = dev->num_rx_queues;
10025
10026         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10027         if (!dev->_rx)
10028                 return;
10029
10030         for (i = 0; i < count; i++)
10031                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10032
10033         kvfree(dev->_rx);
10034 }
10035
10036 static void netdev_init_one_queue(struct net_device *dev,
10037                                   struct netdev_queue *queue, void *_unused)
10038 {
10039         /* Initialize queue lock */
10040         spin_lock_init(&queue->_xmit_lock);
10041         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10042         queue->xmit_lock_owner = -1;
10043         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10044         queue->dev = dev;
10045 #ifdef CONFIG_BQL
10046         dql_init(&queue->dql, HZ);
10047 #endif
10048 }
10049
10050 static void netif_free_tx_queues(struct net_device *dev)
10051 {
10052         kvfree(dev->_tx);
10053 }
10054
10055 static int netif_alloc_netdev_queues(struct net_device *dev)
10056 {
10057         unsigned int count = dev->num_tx_queues;
10058         struct netdev_queue *tx;
10059         size_t sz = count * sizeof(*tx);
10060
10061         if (count < 1 || count > 0xffff)
10062                 return -EINVAL;
10063
10064         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10065         if (!tx)
10066                 return -ENOMEM;
10067
10068         dev->_tx = tx;
10069
10070         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10071         spin_lock_init(&dev->tx_global_lock);
10072
10073         return 0;
10074 }
10075
10076 void netif_tx_stop_all_queues(struct net_device *dev)
10077 {
10078         unsigned int i;
10079
10080         for (i = 0; i < dev->num_tx_queues; i++) {
10081                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10082
10083                 netif_tx_stop_queue(txq);
10084         }
10085 }
10086 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10087
10088 /**
10089  *      register_netdevice      - register a network device
10090  *      @dev: device to register
10091  *
10092  *      Take a completed network device structure and add it to the kernel
10093  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10094  *      chain. 0 is returned on success. A negative errno code is returned
10095  *      on a failure to set up the device, or if the name is a duplicate.
10096  *
10097  *      Callers must hold the rtnl semaphore. You may want
10098  *      register_netdev() instead of this.
10099  *
10100  *      BUGS:
10101  *      The locking appears insufficient to guarantee two parallel registers
10102  *      will not get the same name.
10103  */
10104
10105 int register_netdevice(struct net_device *dev)
10106 {
10107         int ret;
10108         struct net *net = dev_net(dev);
10109
10110         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10111                      NETDEV_FEATURE_COUNT);
10112         BUG_ON(dev_boot_phase);
10113         ASSERT_RTNL();
10114
10115         might_sleep();
10116
10117         /* When net_device's are persistent, this will be fatal. */
10118         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10119         BUG_ON(!net);
10120
10121         ret = ethtool_check_ops(dev->ethtool_ops);
10122         if (ret)
10123                 return ret;
10124
10125         spin_lock_init(&dev->addr_list_lock);
10126         netdev_set_addr_lockdep_class(dev);
10127
10128         ret = dev_get_valid_name(net, dev, dev->name);
10129         if (ret < 0)
10130                 goto out;
10131
10132         ret = -ENOMEM;
10133         dev->name_node = netdev_name_node_head_alloc(dev);
10134         if (!dev->name_node)
10135                 goto out;
10136
10137         /* Init, if this function is available */
10138         if (dev->netdev_ops->ndo_init) {
10139                 ret = dev->netdev_ops->ndo_init(dev);
10140                 if (ret) {
10141                         if (ret > 0)
10142                                 ret = -EIO;
10143                         goto err_free_name;
10144                 }
10145         }
10146
10147         if (((dev->hw_features | dev->features) &
10148              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10149             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10150              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10151                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10152                 ret = -EINVAL;
10153                 goto err_uninit;
10154         }
10155
10156         ret = -EBUSY;
10157         if (!dev->ifindex)
10158                 dev->ifindex = dev_new_index(net);
10159         else if (__dev_get_by_index(net, dev->ifindex))
10160                 goto err_uninit;
10161
10162         /* Transfer changeable features to wanted_features and enable
10163          * software offloads (GSO and GRO).
10164          */
10165         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10166         dev->features |= NETIF_F_SOFT_FEATURES;
10167
10168         if (dev->udp_tunnel_nic_info) {
10169                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10170                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10171         }
10172
10173         dev->wanted_features = dev->features & dev->hw_features;
10174
10175         if (!(dev->flags & IFF_LOOPBACK))
10176                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10177
10178         /* If IPv4 TCP segmentation offload is supported we should also
10179          * allow the device to enable segmenting the frame with the option
10180          * of ignoring a static IP ID value.  This doesn't enable the
10181          * feature itself but allows the user to enable it later.
10182          */
10183         if (dev->hw_features & NETIF_F_TSO)
10184                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10185         if (dev->vlan_features & NETIF_F_TSO)
10186                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10187         if (dev->mpls_features & NETIF_F_TSO)
10188                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10189         if (dev->hw_enc_features & NETIF_F_TSO)
10190                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10191
10192         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10193          */
10194         dev->vlan_features |= NETIF_F_HIGHDMA;
10195
10196         /* Make NETIF_F_SG inheritable to tunnel devices.
10197          */
10198         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10199
10200         /* Make NETIF_F_SG inheritable to MPLS.
10201          */
10202         dev->mpls_features |= NETIF_F_SG;
10203
10204         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10205         ret = notifier_to_errno(ret);
10206         if (ret)
10207                 goto err_uninit;
10208
10209         ret = netdev_register_kobject(dev);
10210         if (ret) {
10211                 dev->reg_state = NETREG_UNREGISTERED;
10212                 goto err_uninit;
10213         }
10214         dev->reg_state = NETREG_REGISTERED;
10215
10216         __netdev_update_features(dev);
10217
10218         /*
10219          *      Default initial state at registry is that the
10220          *      device is present.
10221          */
10222
10223         set_bit(__LINK_STATE_PRESENT, &dev->state);
10224
10225         linkwatch_init_dev(dev);
10226
10227         dev_init_scheduler(dev);
10228         dev_hold(dev);
10229         list_netdevice(dev);
10230         add_device_randomness(dev->dev_addr, dev->addr_len);
10231
10232         /* If the device has permanent device address, driver should
10233          * set dev_addr and also addr_assign_type should be set to
10234          * NET_ADDR_PERM (default value).
10235          */
10236         if (dev->addr_assign_type == NET_ADDR_PERM)
10237                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10238
10239         /* Notify protocols, that a new device appeared. */
10240         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10241         ret = notifier_to_errno(ret);
10242         if (ret) {
10243                 /* Expect explicit free_netdev() on failure */
10244                 dev->needs_free_netdev = false;
10245                 unregister_netdevice_queue(dev, NULL);
10246                 goto out;
10247         }
10248         /*
10249          *      Prevent userspace races by waiting until the network
10250          *      device is fully setup before sending notifications.
10251          */
10252         if (!dev->rtnl_link_ops ||
10253             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10254                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10255
10256 out:
10257         return ret;
10258
10259 err_uninit:
10260         if (dev->netdev_ops->ndo_uninit)
10261                 dev->netdev_ops->ndo_uninit(dev);
10262         if (dev->priv_destructor)
10263                 dev->priv_destructor(dev);
10264 err_free_name:
10265         netdev_name_node_free(dev->name_node);
10266         goto out;
10267 }
10268 EXPORT_SYMBOL(register_netdevice);
10269
10270 /**
10271  *      init_dummy_netdev       - init a dummy network device for NAPI
10272  *      @dev: device to init
10273  *
10274  *      This takes a network device structure and initialize the minimum
10275  *      amount of fields so it can be used to schedule NAPI polls without
10276  *      registering a full blown interface. This is to be used by drivers
10277  *      that need to tie several hardware interfaces to a single NAPI
10278  *      poll scheduler due to HW limitations.
10279  */
10280 int init_dummy_netdev(struct net_device *dev)
10281 {
10282         /* Clear everything. Note we don't initialize spinlocks
10283          * are they aren't supposed to be taken by any of the
10284          * NAPI code and this dummy netdev is supposed to be
10285          * only ever used for NAPI polls
10286          */
10287         memset(dev, 0, sizeof(struct net_device));
10288
10289         /* make sure we BUG if trying to hit standard
10290          * register/unregister code path
10291          */
10292         dev->reg_state = NETREG_DUMMY;
10293
10294         /* NAPI wants this */
10295         INIT_LIST_HEAD(&dev->napi_list);
10296
10297         /* a dummy interface is started by default */
10298         set_bit(__LINK_STATE_PRESENT, &dev->state);
10299         set_bit(__LINK_STATE_START, &dev->state);
10300
10301         /* napi_busy_loop stats accounting wants this */
10302         dev_net_set(dev, &init_net);
10303
10304         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10305          * because users of this 'device' dont need to change
10306          * its refcount.
10307          */
10308
10309         return 0;
10310 }
10311 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10312
10313
10314 /**
10315  *      register_netdev - register a network device
10316  *      @dev: device to register
10317  *
10318  *      Take a completed network device structure and add it to the kernel
10319  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10320  *      chain. 0 is returned on success. A negative errno code is returned
10321  *      on a failure to set up the device, or if the name is a duplicate.
10322  *
10323  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10324  *      and expands the device name if you passed a format string to
10325  *      alloc_netdev.
10326  */
10327 int register_netdev(struct net_device *dev)
10328 {
10329         int err;
10330
10331         if (rtnl_lock_killable())
10332                 return -EINTR;
10333         err = register_netdevice(dev);
10334         rtnl_unlock();
10335         return err;
10336 }
10337 EXPORT_SYMBOL(register_netdev);
10338
10339 int netdev_refcnt_read(const struct net_device *dev)
10340 {
10341         int i, refcnt = 0;
10342
10343         for_each_possible_cpu(i)
10344                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10345         return refcnt;
10346 }
10347 EXPORT_SYMBOL(netdev_refcnt_read);
10348
10349 #define WAIT_REFS_MIN_MSECS 1
10350 #define WAIT_REFS_MAX_MSECS 250
10351 /**
10352  * netdev_wait_allrefs - wait until all references are gone.
10353  * @dev: target net_device
10354  *
10355  * This is called when unregistering network devices.
10356  *
10357  * Any protocol or device that holds a reference should register
10358  * for netdevice notification, and cleanup and put back the
10359  * reference if they receive an UNREGISTER event.
10360  * We can get stuck here if buggy protocols don't correctly
10361  * call dev_put.
10362  */
10363 static void netdev_wait_allrefs(struct net_device *dev)
10364 {
10365         unsigned long rebroadcast_time, warning_time;
10366         int wait = 0, refcnt;
10367
10368         linkwatch_forget_dev(dev);
10369
10370         rebroadcast_time = warning_time = jiffies;
10371         refcnt = netdev_refcnt_read(dev);
10372
10373         while (refcnt != 0) {
10374                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10375                         rtnl_lock();
10376
10377                         /* Rebroadcast unregister notification */
10378                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10379
10380                         __rtnl_unlock();
10381                         rcu_barrier();
10382                         rtnl_lock();
10383
10384                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10385                                      &dev->state)) {
10386                                 /* We must not have linkwatch events
10387                                  * pending on unregister. If this
10388                                  * happens, we simply run the queue
10389                                  * unscheduled, resulting in a noop
10390                                  * for this device.
10391                                  */
10392                                 linkwatch_run_queue();
10393                         }
10394
10395                         __rtnl_unlock();
10396
10397                         rebroadcast_time = jiffies;
10398                 }
10399
10400                 if (!wait) {
10401                         rcu_barrier();
10402                         wait = WAIT_REFS_MIN_MSECS;
10403                 } else {
10404                         msleep(wait);
10405                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10406                 }
10407
10408                 refcnt = netdev_refcnt_read(dev);
10409
10410                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10411                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10412                                  dev->name, refcnt);
10413                         warning_time = jiffies;
10414                 }
10415         }
10416 }
10417
10418 /* The sequence is:
10419  *
10420  *      rtnl_lock();
10421  *      ...
10422  *      register_netdevice(x1);
10423  *      register_netdevice(x2);
10424  *      ...
10425  *      unregister_netdevice(y1);
10426  *      unregister_netdevice(y2);
10427  *      ...
10428  *      rtnl_unlock();
10429  *      free_netdev(y1);
10430  *      free_netdev(y2);
10431  *
10432  * We are invoked by rtnl_unlock().
10433  * This allows us to deal with problems:
10434  * 1) We can delete sysfs objects which invoke hotplug
10435  *    without deadlocking with linkwatch via keventd.
10436  * 2) Since we run with the RTNL semaphore not held, we can sleep
10437  *    safely in order to wait for the netdev refcnt to drop to zero.
10438  *
10439  * We must not return until all unregister events added during
10440  * the interval the lock was held have been completed.
10441  */
10442 void netdev_run_todo(void)
10443 {
10444         struct list_head list;
10445 #ifdef CONFIG_LOCKDEP
10446         struct list_head unlink_list;
10447
10448         list_replace_init(&net_unlink_list, &unlink_list);
10449
10450         while (!list_empty(&unlink_list)) {
10451                 struct net_device *dev = list_first_entry(&unlink_list,
10452                                                           struct net_device,
10453                                                           unlink_list);
10454                 list_del_init(&dev->unlink_list);
10455                 dev->nested_level = dev->lower_level - 1;
10456         }
10457 #endif
10458
10459         /* Snapshot list, allow later requests */
10460         list_replace_init(&net_todo_list, &list);
10461
10462         __rtnl_unlock();
10463
10464
10465         /* Wait for rcu callbacks to finish before next phase */
10466         if (!list_empty(&list))
10467                 rcu_barrier();
10468
10469         while (!list_empty(&list)) {
10470                 struct net_device *dev
10471                         = list_first_entry(&list, struct net_device, todo_list);
10472                 list_del(&dev->todo_list);
10473
10474                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10475                         pr_err("network todo '%s' but state %d\n",
10476                                dev->name, dev->reg_state);
10477                         dump_stack();
10478                         continue;
10479                 }
10480
10481                 dev->reg_state = NETREG_UNREGISTERED;
10482
10483                 netdev_wait_allrefs(dev);
10484
10485                 /* paranoia */
10486                 BUG_ON(netdev_refcnt_read(dev));
10487                 BUG_ON(!list_empty(&dev->ptype_all));
10488                 BUG_ON(!list_empty(&dev->ptype_specific));
10489                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10490                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10491 #if IS_ENABLED(CONFIG_DECNET)
10492                 WARN_ON(dev->dn_ptr);
10493 #endif
10494                 if (dev->priv_destructor)
10495                         dev->priv_destructor(dev);
10496                 if (dev->needs_free_netdev)
10497                         free_netdev(dev);
10498
10499                 /* Report a network device has been unregistered */
10500                 rtnl_lock();
10501                 dev_net(dev)->dev_unreg_count--;
10502                 __rtnl_unlock();
10503                 wake_up(&netdev_unregistering_wq);
10504
10505                 /* Free network device */
10506                 kobject_put(&dev->dev.kobj);
10507         }
10508 }
10509
10510 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10511  * all the same fields in the same order as net_device_stats, with only
10512  * the type differing, but rtnl_link_stats64 may have additional fields
10513  * at the end for newer counters.
10514  */
10515 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10516                              const struct net_device_stats *netdev_stats)
10517 {
10518 #if BITS_PER_LONG == 64
10519         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10520         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10521         /* zero out counters that only exist in rtnl_link_stats64 */
10522         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10523                sizeof(*stats64) - sizeof(*netdev_stats));
10524 #else
10525         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10526         const unsigned long *src = (const unsigned long *)netdev_stats;
10527         u64 *dst = (u64 *)stats64;
10528
10529         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10530         for (i = 0; i < n; i++)
10531                 dst[i] = src[i];
10532         /* zero out counters that only exist in rtnl_link_stats64 */
10533         memset((char *)stats64 + n * sizeof(u64), 0,
10534                sizeof(*stats64) - n * sizeof(u64));
10535 #endif
10536 }
10537 EXPORT_SYMBOL(netdev_stats_to_stats64);
10538
10539 /**
10540  *      dev_get_stats   - get network device statistics
10541  *      @dev: device to get statistics from
10542  *      @storage: place to store stats
10543  *
10544  *      Get network statistics from device. Return @storage.
10545  *      The device driver may provide its own method by setting
10546  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10547  *      otherwise the internal statistics structure is used.
10548  */
10549 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10550                                         struct rtnl_link_stats64 *storage)
10551 {
10552         const struct net_device_ops *ops = dev->netdev_ops;
10553
10554         if (ops->ndo_get_stats64) {
10555                 memset(storage, 0, sizeof(*storage));
10556                 ops->ndo_get_stats64(dev, storage);
10557         } else if (ops->ndo_get_stats) {
10558                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10559         } else {
10560                 netdev_stats_to_stats64(storage, &dev->stats);
10561         }
10562         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10563         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10564         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10565         return storage;
10566 }
10567 EXPORT_SYMBOL(dev_get_stats);
10568
10569 /**
10570  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10571  *      @s: place to store stats
10572  *      @netstats: per-cpu network stats to read from
10573  *
10574  *      Read per-cpu network statistics and populate the related fields in @s.
10575  */
10576 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10577                            const struct pcpu_sw_netstats __percpu *netstats)
10578 {
10579         int cpu;
10580
10581         for_each_possible_cpu(cpu) {
10582                 const struct pcpu_sw_netstats *stats;
10583                 struct pcpu_sw_netstats tmp;
10584                 unsigned int start;
10585
10586                 stats = per_cpu_ptr(netstats, cpu);
10587                 do {
10588                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10589                         tmp.rx_packets = stats->rx_packets;
10590                         tmp.rx_bytes   = stats->rx_bytes;
10591                         tmp.tx_packets = stats->tx_packets;
10592                         tmp.tx_bytes   = stats->tx_bytes;
10593                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10594
10595                 s->rx_packets += tmp.rx_packets;
10596                 s->rx_bytes   += tmp.rx_bytes;
10597                 s->tx_packets += tmp.tx_packets;
10598                 s->tx_bytes   += tmp.tx_bytes;
10599         }
10600 }
10601 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10602
10603 /**
10604  *      dev_get_tstats64 - ndo_get_stats64 implementation
10605  *      @dev: device to get statistics from
10606  *      @s: place to store stats
10607  *
10608  *      Populate @s from dev->stats and dev->tstats. Can be used as
10609  *      ndo_get_stats64() callback.
10610  */
10611 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10612 {
10613         netdev_stats_to_stats64(s, &dev->stats);
10614         dev_fetch_sw_netstats(s, dev->tstats);
10615 }
10616 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10617
10618 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10619 {
10620         struct netdev_queue *queue = dev_ingress_queue(dev);
10621
10622 #ifdef CONFIG_NET_CLS_ACT
10623         if (queue)
10624                 return queue;
10625         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10626         if (!queue)
10627                 return NULL;
10628         netdev_init_one_queue(dev, queue, NULL);
10629         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10630         queue->qdisc_sleeping = &noop_qdisc;
10631         rcu_assign_pointer(dev->ingress_queue, queue);
10632 #endif
10633         return queue;
10634 }
10635
10636 static const struct ethtool_ops default_ethtool_ops;
10637
10638 void netdev_set_default_ethtool_ops(struct net_device *dev,
10639                                     const struct ethtool_ops *ops)
10640 {
10641         if (dev->ethtool_ops == &default_ethtool_ops)
10642                 dev->ethtool_ops = ops;
10643 }
10644 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10645
10646 void netdev_freemem(struct net_device *dev)
10647 {
10648         char *addr = (char *)dev - dev->padded;
10649
10650         kvfree(addr);
10651 }
10652
10653 /**
10654  * alloc_netdev_mqs - allocate network device
10655  * @sizeof_priv: size of private data to allocate space for
10656  * @name: device name format string
10657  * @name_assign_type: origin of device name
10658  * @setup: callback to initialize device
10659  * @txqs: the number of TX subqueues to allocate
10660  * @rxqs: the number of RX subqueues to allocate
10661  *
10662  * Allocates a struct net_device with private data area for driver use
10663  * and performs basic initialization.  Also allocates subqueue structs
10664  * for each queue on the device.
10665  */
10666 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10667                 unsigned char name_assign_type,
10668                 void (*setup)(struct net_device *),
10669                 unsigned int txqs, unsigned int rxqs)
10670 {
10671         struct net_device *dev;
10672         unsigned int alloc_size;
10673         struct net_device *p;
10674
10675         BUG_ON(strlen(name) >= sizeof(dev->name));
10676
10677         if (txqs < 1) {
10678                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10679                 return NULL;
10680         }
10681
10682         if (rxqs < 1) {
10683                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10684                 return NULL;
10685         }
10686
10687         alloc_size = sizeof(struct net_device);
10688         if (sizeof_priv) {
10689                 /* ensure 32-byte alignment of private area */
10690                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10691                 alloc_size += sizeof_priv;
10692         }
10693         /* ensure 32-byte alignment of whole construct */
10694         alloc_size += NETDEV_ALIGN - 1;
10695
10696         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10697         if (!p)
10698                 return NULL;
10699
10700         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10701         dev->padded = (char *)dev - (char *)p;
10702
10703         dev->pcpu_refcnt = alloc_percpu(int);
10704         if (!dev->pcpu_refcnt)
10705                 goto free_dev;
10706
10707         if (dev_addr_init(dev))
10708                 goto free_pcpu;
10709
10710         dev_mc_init(dev);
10711         dev_uc_init(dev);
10712
10713         dev_net_set(dev, &init_net);
10714
10715         dev->gso_max_size = GSO_MAX_SIZE;
10716         dev->gso_max_segs = GSO_MAX_SEGS;
10717         dev->upper_level = 1;
10718         dev->lower_level = 1;
10719 #ifdef CONFIG_LOCKDEP
10720         dev->nested_level = 0;
10721         INIT_LIST_HEAD(&dev->unlink_list);
10722 #endif
10723
10724         INIT_LIST_HEAD(&dev->napi_list);
10725         INIT_LIST_HEAD(&dev->unreg_list);
10726         INIT_LIST_HEAD(&dev->close_list);
10727         INIT_LIST_HEAD(&dev->link_watch_list);
10728         INIT_LIST_HEAD(&dev->adj_list.upper);
10729         INIT_LIST_HEAD(&dev->adj_list.lower);
10730         INIT_LIST_HEAD(&dev->ptype_all);
10731         INIT_LIST_HEAD(&dev->ptype_specific);
10732         INIT_LIST_HEAD(&dev->net_notifier_list);
10733 #ifdef CONFIG_NET_SCHED
10734         hash_init(dev->qdisc_hash);
10735 #endif
10736         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10737         setup(dev);
10738
10739         if (!dev->tx_queue_len) {
10740                 dev->priv_flags |= IFF_NO_QUEUE;
10741                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10742         }
10743
10744         dev->num_tx_queues = txqs;
10745         dev->real_num_tx_queues = txqs;
10746         if (netif_alloc_netdev_queues(dev))
10747                 goto free_all;
10748
10749         dev->num_rx_queues = rxqs;
10750         dev->real_num_rx_queues = rxqs;
10751         if (netif_alloc_rx_queues(dev))
10752                 goto free_all;
10753
10754         strcpy(dev->name, name);
10755         dev->name_assign_type = name_assign_type;
10756         dev->group = INIT_NETDEV_GROUP;
10757         if (!dev->ethtool_ops)
10758                 dev->ethtool_ops = &default_ethtool_ops;
10759
10760         nf_hook_ingress_init(dev);
10761
10762         return dev;
10763
10764 free_all:
10765         free_netdev(dev);
10766         return NULL;
10767
10768 free_pcpu:
10769         free_percpu(dev->pcpu_refcnt);
10770 free_dev:
10771         netdev_freemem(dev);
10772         return NULL;
10773 }
10774 EXPORT_SYMBOL(alloc_netdev_mqs);
10775
10776 /**
10777  * free_netdev - free network device
10778  * @dev: device
10779  *
10780  * This function does the last stage of destroying an allocated device
10781  * interface. The reference to the device object is released. If this
10782  * is the last reference then it will be freed.Must be called in process
10783  * context.
10784  */
10785 void free_netdev(struct net_device *dev)
10786 {
10787         struct napi_struct *p, *n;
10788
10789         might_sleep();
10790
10791         /* When called immediately after register_netdevice() failed the unwind
10792          * handling may still be dismantling the device. Handle that case by
10793          * deferring the free.
10794          */
10795         if (dev->reg_state == NETREG_UNREGISTERING) {
10796                 ASSERT_RTNL();
10797                 dev->needs_free_netdev = true;
10798                 return;
10799         }
10800
10801         netif_free_tx_queues(dev);
10802         netif_free_rx_queues(dev);
10803
10804         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10805
10806         /* Flush device addresses */
10807         dev_addr_flush(dev);
10808
10809         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10810                 netif_napi_del(p);
10811
10812         free_percpu(dev->pcpu_refcnt);
10813         dev->pcpu_refcnt = NULL;
10814         free_percpu(dev->xdp_bulkq);
10815         dev->xdp_bulkq = NULL;
10816
10817         /*  Compatibility with error handling in drivers */
10818         if (dev->reg_state == NETREG_UNINITIALIZED) {
10819                 netdev_freemem(dev);
10820                 return;
10821         }
10822
10823         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10824         dev->reg_state = NETREG_RELEASED;
10825
10826         /* will free via device release */
10827         put_device(&dev->dev);
10828 }
10829 EXPORT_SYMBOL(free_netdev);
10830
10831 /**
10832  *      synchronize_net -  Synchronize with packet receive processing
10833  *
10834  *      Wait for packets currently being received to be done.
10835  *      Does not block later packets from starting.
10836  */
10837 void synchronize_net(void)
10838 {
10839         might_sleep();
10840         if (rtnl_is_locked())
10841                 synchronize_rcu_expedited();
10842         else
10843                 synchronize_rcu();
10844 }
10845 EXPORT_SYMBOL(synchronize_net);
10846
10847 /**
10848  *      unregister_netdevice_queue - remove device from the kernel
10849  *      @dev: device
10850  *      @head: list
10851  *
10852  *      This function shuts down a device interface and removes it
10853  *      from the kernel tables.
10854  *      If head not NULL, device is queued to be unregistered later.
10855  *
10856  *      Callers must hold the rtnl semaphore.  You may want
10857  *      unregister_netdev() instead of this.
10858  */
10859
10860 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10861 {
10862         ASSERT_RTNL();
10863
10864         if (head) {
10865                 list_move_tail(&dev->unreg_list, head);
10866         } else {
10867                 LIST_HEAD(single);
10868
10869                 list_add(&dev->unreg_list, &single);
10870                 unregister_netdevice_many(&single);
10871         }
10872 }
10873 EXPORT_SYMBOL(unregister_netdevice_queue);
10874
10875 /**
10876  *      unregister_netdevice_many - unregister many devices
10877  *      @head: list of devices
10878  *
10879  *  Note: As most callers use a stack allocated list_head,
10880  *  we force a list_del() to make sure stack wont be corrupted later.
10881  */
10882 void unregister_netdevice_many(struct list_head *head)
10883 {
10884         struct net_device *dev, *tmp;
10885         LIST_HEAD(close_head);
10886
10887         BUG_ON(dev_boot_phase);
10888         ASSERT_RTNL();
10889
10890         if (list_empty(head))
10891                 return;
10892
10893         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10894                 /* Some devices call without registering
10895                  * for initialization unwind. Remove those
10896                  * devices and proceed with the remaining.
10897                  */
10898                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10899                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10900                                  dev->name, dev);
10901
10902                         WARN_ON(1);
10903                         list_del(&dev->unreg_list);
10904                         continue;
10905                 }
10906                 dev->dismantle = true;
10907                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10908         }
10909
10910         /* If device is running, close it first. */
10911         list_for_each_entry(dev, head, unreg_list)
10912                 list_add_tail(&dev->close_list, &close_head);
10913         dev_close_many(&close_head, true);
10914
10915         list_for_each_entry(dev, head, unreg_list) {
10916                 /* And unlink it from device chain. */
10917                 unlist_netdevice(dev);
10918
10919                 dev->reg_state = NETREG_UNREGISTERING;
10920         }
10921         flush_all_backlogs();
10922
10923         synchronize_net();
10924
10925         list_for_each_entry(dev, head, unreg_list) {
10926                 struct sk_buff *skb = NULL;
10927
10928                 /* Shutdown queueing discipline. */
10929                 dev_shutdown(dev);
10930
10931                 dev_xdp_uninstall(dev);
10932
10933                 /* Notify protocols, that we are about to destroy
10934                  * this device. They should clean all the things.
10935                  */
10936                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10937
10938                 if (!dev->rtnl_link_ops ||
10939                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10940                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10941                                                      GFP_KERNEL, NULL, 0);
10942
10943                 /*
10944                  *      Flush the unicast and multicast chains
10945                  */
10946                 dev_uc_flush(dev);
10947                 dev_mc_flush(dev);
10948
10949                 netdev_name_node_alt_flush(dev);
10950                 netdev_name_node_free(dev->name_node);
10951
10952                 if (dev->netdev_ops->ndo_uninit)
10953                         dev->netdev_ops->ndo_uninit(dev);
10954
10955                 if (skb)
10956                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10957
10958                 /* Notifier chain MUST detach us all upper devices. */
10959                 WARN_ON(netdev_has_any_upper_dev(dev));
10960                 WARN_ON(netdev_has_any_lower_dev(dev));
10961
10962                 /* Remove entries from kobject tree */
10963                 netdev_unregister_kobject(dev);
10964 #ifdef CONFIG_XPS
10965                 /* Remove XPS queueing entries */
10966                 netif_reset_xps_queues_gt(dev, 0);
10967 #endif
10968         }
10969
10970         synchronize_net();
10971
10972         list_for_each_entry(dev, head, unreg_list) {
10973                 dev_put(dev);
10974                 net_set_todo(dev);
10975         }
10976
10977         list_del(head);
10978 }
10979 EXPORT_SYMBOL(unregister_netdevice_many);
10980
10981 /**
10982  *      unregister_netdev - remove device from the kernel
10983  *      @dev: device
10984  *
10985  *      This function shuts down a device interface and removes it
10986  *      from the kernel tables.
10987  *
10988  *      This is just a wrapper for unregister_netdevice that takes
10989  *      the rtnl semaphore.  In general you want to use this and not
10990  *      unregister_netdevice.
10991  */
10992 void unregister_netdev(struct net_device *dev)
10993 {
10994         rtnl_lock();
10995         unregister_netdevice(dev);
10996         rtnl_unlock();
10997 }
10998 EXPORT_SYMBOL(unregister_netdev);
10999
11000 /**
11001  *      dev_change_net_namespace - move device to different nethost namespace
11002  *      @dev: device
11003  *      @net: network namespace
11004  *      @pat: If not NULL name pattern to try if the current device name
11005  *            is already taken in the destination network namespace.
11006  *
11007  *      This function shuts down a device interface and moves it
11008  *      to a new network namespace. On success 0 is returned, on
11009  *      a failure a netagive errno code is returned.
11010  *
11011  *      Callers must hold the rtnl semaphore.
11012  */
11013
11014 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11015 {
11016         struct net *net_old = dev_net(dev);
11017         int err, new_nsid, new_ifindex;
11018
11019         ASSERT_RTNL();
11020
11021         /* Don't allow namespace local devices to be moved. */
11022         err = -EINVAL;
11023         if (dev->features & NETIF_F_NETNS_LOCAL)
11024                 goto out;
11025
11026         /* Ensure the device has been registrered */
11027         if (dev->reg_state != NETREG_REGISTERED)
11028                 goto out;
11029
11030         /* Get out if there is nothing todo */
11031         err = 0;
11032         if (net_eq(net_old, net))
11033                 goto out;
11034
11035         /* Pick the destination device name, and ensure
11036          * we can use it in the destination network namespace.
11037          */
11038         err = -EEXIST;
11039         if (__dev_get_by_name(net, dev->name)) {
11040                 /* We get here if we can't use the current device name */
11041                 if (!pat)
11042                         goto out;
11043                 err = dev_get_valid_name(net, dev, pat);
11044                 if (err < 0)
11045                         goto out;
11046         }
11047
11048         /*
11049          * And now a mini version of register_netdevice unregister_netdevice.
11050          */
11051
11052         /* If device is running close it first. */
11053         dev_close(dev);
11054
11055         /* And unlink it from device chain */
11056         unlist_netdevice(dev);
11057
11058         synchronize_net();
11059
11060         /* Shutdown queueing discipline. */
11061         dev_shutdown(dev);
11062
11063         /* Notify protocols, that we are about to destroy
11064          * this device. They should clean all the things.
11065          *
11066          * Note that dev->reg_state stays at NETREG_REGISTERED.
11067          * This is wanted because this way 8021q and macvlan know
11068          * the device is just moving and can keep their slaves up.
11069          */
11070         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11071         rcu_barrier();
11072
11073         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11074         /* If there is an ifindex conflict assign a new one */
11075         if (__dev_get_by_index(net, dev->ifindex))
11076                 new_ifindex = dev_new_index(net);
11077         else
11078                 new_ifindex = dev->ifindex;
11079
11080         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11081                             new_ifindex);
11082
11083         /*
11084          *      Flush the unicast and multicast chains
11085          */
11086         dev_uc_flush(dev);
11087         dev_mc_flush(dev);
11088
11089         /* Send a netdev-removed uevent to the old namespace */
11090         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11091         netdev_adjacent_del_links(dev);
11092
11093         /* Move per-net netdevice notifiers that are following the netdevice */
11094         move_netdevice_notifiers_dev_net(dev, net);
11095
11096         /* Actually switch the network namespace */
11097         dev_net_set(dev, net);
11098         dev->ifindex = new_ifindex;
11099
11100         /* Send a netdev-add uevent to the new namespace */
11101         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11102         netdev_adjacent_add_links(dev);
11103
11104         /* Fixup kobjects */
11105         err = device_rename(&dev->dev, dev->name);
11106         WARN_ON(err);
11107
11108         /* Adapt owner in case owning user namespace of target network
11109          * namespace is different from the original one.
11110          */
11111         err = netdev_change_owner(dev, net_old, net);
11112         WARN_ON(err);
11113
11114         /* Add the device back in the hashes */
11115         list_netdevice(dev);
11116
11117         /* Notify protocols, that a new device appeared. */
11118         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11119
11120         /*
11121          *      Prevent userspace races by waiting until the network
11122          *      device is fully setup before sending notifications.
11123          */
11124         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11125
11126         synchronize_net();
11127         err = 0;
11128 out:
11129         return err;
11130 }
11131 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11132
11133 static int dev_cpu_dead(unsigned int oldcpu)
11134 {
11135         struct sk_buff **list_skb;
11136         struct sk_buff *skb;
11137         unsigned int cpu;
11138         struct softnet_data *sd, *oldsd, *remsd = NULL;
11139
11140         local_irq_disable();
11141         cpu = smp_processor_id();
11142         sd = &per_cpu(softnet_data, cpu);
11143         oldsd = &per_cpu(softnet_data, oldcpu);
11144
11145         /* Find end of our completion_queue. */
11146         list_skb = &sd->completion_queue;
11147         while (*list_skb)
11148                 list_skb = &(*list_skb)->next;
11149         /* Append completion queue from offline CPU. */
11150         *list_skb = oldsd->completion_queue;
11151         oldsd->completion_queue = NULL;
11152
11153         /* Append output queue from offline CPU. */
11154         if (oldsd->output_queue) {
11155                 *sd->output_queue_tailp = oldsd->output_queue;
11156                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11157                 oldsd->output_queue = NULL;
11158                 oldsd->output_queue_tailp = &oldsd->output_queue;
11159         }
11160         /* Append NAPI poll list from offline CPU, with one exception :
11161          * process_backlog() must be called by cpu owning percpu backlog.
11162          * We properly handle process_queue & input_pkt_queue later.
11163          */
11164         while (!list_empty(&oldsd->poll_list)) {
11165                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11166                                                             struct napi_struct,
11167                                                             poll_list);
11168
11169                 list_del_init(&napi->poll_list);
11170                 if (napi->poll == process_backlog)
11171                         napi->state = 0;
11172                 else
11173                         ____napi_schedule(sd, napi);
11174         }
11175
11176         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11177         local_irq_enable();
11178
11179 #ifdef CONFIG_RPS
11180         remsd = oldsd->rps_ipi_list;
11181         oldsd->rps_ipi_list = NULL;
11182 #endif
11183         /* send out pending IPI's on offline CPU */
11184         net_rps_send_ipi(remsd);
11185
11186         /* Process offline CPU's input_pkt_queue */
11187         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11188                 netif_rx_ni(skb);
11189                 input_queue_head_incr(oldsd);
11190         }
11191         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11192                 netif_rx_ni(skb);
11193                 input_queue_head_incr(oldsd);
11194         }
11195
11196         return 0;
11197 }
11198
11199 /**
11200  *      netdev_increment_features - increment feature set by one
11201  *      @all: current feature set
11202  *      @one: new feature set
11203  *      @mask: mask feature set
11204  *
11205  *      Computes a new feature set after adding a device with feature set
11206  *      @one to the master device with current feature set @all.  Will not
11207  *      enable anything that is off in @mask. Returns the new feature set.
11208  */
11209 netdev_features_t netdev_increment_features(netdev_features_t all,
11210         netdev_features_t one, netdev_features_t mask)
11211 {
11212         if (mask & NETIF_F_HW_CSUM)
11213                 mask |= NETIF_F_CSUM_MASK;
11214         mask |= NETIF_F_VLAN_CHALLENGED;
11215
11216         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11217         all &= one | ~NETIF_F_ALL_FOR_ALL;
11218
11219         /* If one device supports hw checksumming, set for all. */
11220         if (all & NETIF_F_HW_CSUM)
11221                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11222
11223         return all;
11224 }
11225 EXPORT_SYMBOL(netdev_increment_features);
11226
11227 static struct hlist_head * __net_init netdev_create_hash(void)
11228 {
11229         int i;
11230         struct hlist_head *hash;
11231
11232         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11233         if (hash != NULL)
11234                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11235                         INIT_HLIST_HEAD(&hash[i]);
11236
11237         return hash;
11238 }
11239
11240 /* Initialize per network namespace state */
11241 static int __net_init netdev_init(struct net *net)
11242 {
11243         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11244                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11245
11246         if (net != &init_net)
11247                 INIT_LIST_HEAD(&net->dev_base_head);
11248
11249         net->dev_name_head = netdev_create_hash();
11250         if (net->dev_name_head == NULL)
11251                 goto err_name;
11252
11253         net->dev_index_head = netdev_create_hash();
11254         if (net->dev_index_head == NULL)
11255                 goto err_idx;
11256
11257         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11258
11259         return 0;
11260
11261 err_idx:
11262         kfree(net->dev_name_head);
11263 err_name:
11264         return -ENOMEM;
11265 }
11266
11267 /**
11268  *      netdev_drivername - network driver for the device
11269  *      @dev: network device
11270  *
11271  *      Determine network driver for device.
11272  */
11273 const char *netdev_drivername(const struct net_device *dev)
11274 {
11275         const struct device_driver *driver;
11276         const struct device *parent;
11277         const char *empty = "";
11278
11279         parent = dev->dev.parent;
11280         if (!parent)
11281                 return empty;
11282
11283         driver = parent->driver;
11284         if (driver && driver->name)
11285                 return driver->name;
11286         return empty;
11287 }
11288
11289 static void __netdev_printk(const char *level, const struct net_device *dev,
11290                             struct va_format *vaf)
11291 {
11292         if (dev && dev->dev.parent) {
11293                 dev_printk_emit(level[1] - '0',
11294                                 dev->dev.parent,
11295                                 "%s %s %s%s: %pV",
11296                                 dev_driver_string(dev->dev.parent),
11297                                 dev_name(dev->dev.parent),
11298                                 netdev_name(dev), netdev_reg_state(dev),
11299                                 vaf);
11300         } else if (dev) {
11301                 printk("%s%s%s: %pV",
11302                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11303         } else {
11304                 printk("%s(NULL net_device): %pV", level, vaf);
11305         }
11306 }
11307
11308 void netdev_printk(const char *level, const struct net_device *dev,
11309                    const char *format, ...)
11310 {
11311         struct va_format vaf;
11312         va_list args;
11313
11314         va_start(args, format);
11315
11316         vaf.fmt = format;
11317         vaf.va = &args;
11318
11319         __netdev_printk(level, dev, &vaf);
11320
11321         va_end(args);
11322 }
11323 EXPORT_SYMBOL(netdev_printk);
11324
11325 #define define_netdev_printk_level(func, level)                 \
11326 void func(const struct net_device *dev, const char *fmt, ...)   \
11327 {                                                               \
11328         struct va_format vaf;                                   \
11329         va_list args;                                           \
11330                                                                 \
11331         va_start(args, fmt);                                    \
11332                                                                 \
11333         vaf.fmt = fmt;                                          \
11334         vaf.va = &args;                                         \
11335                                                                 \
11336         __netdev_printk(level, dev, &vaf);                      \
11337                                                                 \
11338         va_end(args);                                           \
11339 }                                                               \
11340 EXPORT_SYMBOL(func);
11341
11342 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11343 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11344 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11345 define_netdev_printk_level(netdev_err, KERN_ERR);
11346 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11347 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11348 define_netdev_printk_level(netdev_info, KERN_INFO);
11349
11350 static void __net_exit netdev_exit(struct net *net)
11351 {
11352         kfree(net->dev_name_head);
11353         kfree(net->dev_index_head);
11354         if (net != &init_net)
11355                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11356 }
11357
11358 static struct pernet_operations __net_initdata netdev_net_ops = {
11359         .init = netdev_init,
11360         .exit = netdev_exit,
11361 };
11362
11363 static void __net_exit default_device_exit(struct net *net)
11364 {
11365         struct net_device *dev, *aux;
11366         /*
11367          * Push all migratable network devices back to the
11368          * initial network namespace
11369          */
11370         rtnl_lock();
11371         for_each_netdev_safe(net, dev, aux) {
11372                 int err;
11373                 char fb_name[IFNAMSIZ];
11374
11375                 /* Ignore unmoveable devices (i.e. loopback) */
11376                 if (dev->features & NETIF_F_NETNS_LOCAL)
11377                         continue;
11378
11379                 /* Leave virtual devices for the generic cleanup */
11380                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11381                         continue;
11382
11383                 /* Push remaining network devices to init_net */
11384                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11385                 if (__dev_get_by_name(&init_net, fb_name))
11386                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11387                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11388                 if (err) {
11389                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11390                                  __func__, dev->name, err);
11391                         BUG();
11392                 }
11393         }
11394         rtnl_unlock();
11395 }
11396
11397 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11398 {
11399         /* Return with the rtnl_lock held when there are no network
11400          * devices unregistering in any network namespace in net_list.
11401          */
11402         struct net *net;
11403         bool unregistering;
11404         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11405
11406         add_wait_queue(&netdev_unregistering_wq, &wait);
11407         for (;;) {
11408                 unregistering = false;
11409                 rtnl_lock();
11410                 list_for_each_entry(net, net_list, exit_list) {
11411                         if (net->dev_unreg_count > 0) {
11412                                 unregistering = true;
11413                                 break;
11414                         }
11415                 }
11416                 if (!unregistering)
11417                         break;
11418                 __rtnl_unlock();
11419
11420                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11421         }
11422         remove_wait_queue(&netdev_unregistering_wq, &wait);
11423 }
11424
11425 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11426 {
11427         /* At exit all network devices most be removed from a network
11428          * namespace.  Do this in the reverse order of registration.
11429          * Do this across as many network namespaces as possible to
11430          * improve batching efficiency.
11431          */
11432         struct net_device *dev;
11433         struct net *net;
11434         LIST_HEAD(dev_kill_list);
11435
11436         /* To prevent network device cleanup code from dereferencing
11437          * loopback devices or network devices that have been freed
11438          * wait here for all pending unregistrations to complete,
11439          * before unregistring the loopback device and allowing the
11440          * network namespace be freed.
11441          *
11442          * The netdev todo list containing all network devices
11443          * unregistrations that happen in default_device_exit_batch
11444          * will run in the rtnl_unlock() at the end of
11445          * default_device_exit_batch.
11446          */
11447         rtnl_lock_unregistering(net_list);
11448         list_for_each_entry(net, net_list, exit_list) {
11449                 for_each_netdev_reverse(net, dev) {
11450                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11451                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11452                         else
11453                                 unregister_netdevice_queue(dev, &dev_kill_list);
11454                 }
11455         }
11456         unregister_netdevice_many(&dev_kill_list);
11457         rtnl_unlock();
11458 }
11459
11460 static struct pernet_operations __net_initdata default_device_ops = {
11461         .exit = default_device_exit,
11462         .exit_batch = default_device_exit_batch,
11463 };
11464
11465 /*
11466  *      Initialize the DEV module. At boot time this walks the device list and
11467  *      unhooks any devices that fail to initialise (normally hardware not
11468  *      present) and leaves us with a valid list of present and active devices.
11469  *
11470  */
11471
11472 /*
11473  *       This is called single threaded during boot, so no need
11474  *       to take the rtnl semaphore.
11475  */
11476 static int __init net_dev_init(void)
11477 {
11478         int i, rc = -ENOMEM;
11479
11480         BUG_ON(!dev_boot_phase);
11481
11482         if (dev_proc_init())
11483                 goto out;
11484
11485         if (netdev_kobject_init())
11486                 goto out;
11487
11488         INIT_LIST_HEAD(&ptype_all);
11489         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11490                 INIT_LIST_HEAD(&ptype_base[i]);
11491
11492         INIT_LIST_HEAD(&offload_base);
11493
11494         if (register_pernet_subsys(&netdev_net_ops))
11495                 goto out;
11496
11497         /*
11498          *      Initialise the packet receive queues.
11499          */
11500
11501         for_each_possible_cpu(i) {
11502                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11503                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11504
11505                 INIT_WORK(flush, flush_backlog);
11506
11507                 skb_queue_head_init(&sd->input_pkt_queue);
11508                 skb_queue_head_init(&sd->process_queue);
11509 #ifdef CONFIG_XFRM_OFFLOAD
11510                 skb_queue_head_init(&sd->xfrm_backlog);
11511 #endif
11512                 INIT_LIST_HEAD(&sd->poll_list);
11513                 sd->output_queue_tailp = &sd->output_queue;
11514 #ifdef CONFIG_RPS
11515                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11516                 sd->cpu = i;
11517 #endif
11518
11519                 init_gro_hash(&sd->backlog);
11520                 sd->backlog.poll = process_backlog;
11521                 sd->backlog.weight = weight_p;
11522         }
11523
11524         dev_boot_phase = 0;
11525
11526         /* The loopback device is special if any other network devices
11527          * is present in a network namespace the loopback device must
11528          * be present. Since we now dynamically allocate and free the
11529          * loopback device ensure this invariant is maintained by
11530          * keeping the loopback device as the first device on the
11531          * list of network devices.  Ensuring the loopback devices
11532          * is the first device that appears and the last network device
11533          * that disappears.
11534          */
11535         if (register_pernet_device(&loopback_net_ops))
11536                 goto out;
11537
11538         if (register_pernet_device(&default_device_ops))
11539                 goto out;
11540
11541         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11542         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11543
11544         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11545                                        NULL, dev_cpu_dead);
11546         WARN_ON(rc < 0);
11547         rc = 0;
11548 out:
11549         return rc;
11550 }
11551
11552 subsys_initcall(net_dev_init);