Merge tag 'ktest-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux-2.6-microblaze.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/rbtree.h>
24 #include <linux/swap.h>
25 #include <linux/crypto.h>
26 #include <linux/scatterlist.h>
27 #include <linux/mempolicy.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 #include <linux/zswap.h>
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 #include <linux/list_lru.h>
39
40 #include "swap.h"
41 #include "internal.h"
42
43 /*********************************
44 * statistics
45 **********************************/
46 /* Total bytes used by the compressed storage */
47 u64 zswap_pool_total_size;
48 /* The number of compressed pages currently stored in zswap */
49 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50 /* The number of same-value filled pages currently stored in zswap */
51 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Store failed due to compression algorithm failure */
67 static u64 zswap_reject_compress_fail;
68 /* Compressed page was too big for the allocator to (optimally) store */
69 static u64 zswap_reject_compress_poor;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74
75 /* Shrinker work queue */
76 static struct workqueue_struct *shrink_wq;
77 /* Pool limit was hit, we need to calm down */
78 static bool zswap_pool_reached_full;
79
80 /*********************************
81 * tunables
82 **********************************/
83
84 #define ZSWAP_PARAM_UNSET ""
85
86 static int zswap_setup(void);
87
88 /* Enable/disable zswap */
89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90 static int zswap_enabled_param_set(const char *,
91                                    const struct kernel_param *);
92 static const struct kernel_param_ops zswap_enabled_param_ops = {
93         .set =          zswap_enabled_param_set,
94         .get =          param_get_bool,
95 };
96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
97
98 /* Crypto compressor to use */
99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100 static int zswap_compressor_param_set(const char *,
101                                       const struct kernel_param *);
102 static const struct kernel_param_ops zswap_compressor_param_ops = {
103         .set =          zswap_compressor_param_set,
104         .get =          param_get_charp,
105         .free =         param_free_charp,
106 };
107 module_param_cb(compressor, &zswap_compressor_param_ops,
108                 &zswap_compressor, 0644);
109
110 /* Compressed storage zpool to use */
111 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
112 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
113 static const struct kernel_param_ops zswap_zpool_param_ops = {
114         .set =          zswap_zpool_param_set,
115         .get =          param_get_charp,
116         .free =         param_free_charp,
117 };
118 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
119
120 /* The maximum percentage of memory that the compressed pool can occupy */
121 static unsigned int zswap_max_pool_percent = 20;
122 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
123
124 /* The threshold for accepting new pages after the max_pool_percent was hit */
125 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
126 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
127                    uint, 0644);
128
129 /*
130  * Enable/disable handling same-value filled pages (enabled by default).
131  * If disabled every page is considered non-same-value filled.
132  */
133 static bool zswap_same_filled_pages_enabled = true;
134 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
135                    bool, 0644);
136
137 /* Enable/disable handling non-same-value filled pages (enabled by default) */
138 static bool zswap_non_same_filled_pages_enabled = true;
139 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
140                    bool, 0644);
141
142 /* Number of zpools in zswap_pool (empirically determined for scalability) */
143 #define ZSWAP_NR_ZPOOLS 32
144
145 /* Enable/disable memory pressure-based shrinker. */
146 static bool zswap_shrinker_enabled = IS_ENABLED(
147                 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
148 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
149
150 bool is_zswap_enabled(void)
151 {
152         return zswap_enabled;
153 }
154
155 /*********************************
156 * data structures
157 **********************************/
158
159 struct crypto_acomp_ctx {
160         struct crypto_acomp *acomp;
161         struct acomp_req *req;
162         struct crypto_wait wait;
163         u8 *buffer;
164         struct mutex mutex;
165         bool is_sleepable;
166 };
167
168 /*
169  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
170  * The only case where lru_lock is not acquired while holding tree.lock is
171  * when a zswap_entry is taken off the lru for writeback, in that case it
172  * needs to be verified that it's still valid in the tree.
173  */
174 struct zswap_pool {
175         struct zpool *zpools[ZSWAP_NR_ZPOOLS];
176         struct crypto_acomp_ctx __percpu *acomp_ctx;
177         struct percpu_ref ref;
178         struct list_head list;
179         struct work_struct release_work;
180         struct hlist_node node;
181         char tfm_name[CRYPTO_MAX_ALG_NAME];
182 };
183
184 /* Global LRU lists shared by all zswap pools. */
185 static struct list_lru zswap_list_lru;
186 /* counter of pages stored in all zswap pools. */
187 static atomic_t zswap_nr_stored = ATOMIC_INIT(0);
188
189 /* The lock protects zswap_next_shrink updates. */
190 static DEFINE_SPINLOCK(zswap_shrink_lock);
191 static struct mem_cgroup *zswap_next_shrink;
192 static struct work_struct zswap_shrink_work;
193 static struct shrinker *zswap_shrinker;
194
195 /*
196  * struct zswap_entry
197  *
198  * This structure contains the metadata for tracking a single compressed
199  * page within zswap.
200  *
201  * rbnode - links the entry into red-black tree for the appropriate swap type
202  * swpentry - associated swap entry, the offset indexes into the red-black tree
203  * length - the length in bytes of the compressed page data.  Needed during
204  *          decompression. For a same value filled page length is 0, and both
205  *          pool and lru are invalid and must be ignored.
206  * pool - the zswap_pool the entry's data is in
207  * handle - zpool allocation handle that stores the compressed page data
208  * value - value of the same-value filled pages which have same content
209  * objcg - the obj_cgroup that the compressed memory is charged to
210  * lru - handle to the pool's lru used to evict pages.
211  */
212 struct zswap_entry {
213         struct rb_node rbnode;
214         swp_entry_t swpentry;
215         unsigned int length;
216         struct zswap_pool *pool;
217         union {
218                 unsigned long handle;
219                 unsigned long value;
220         };
221         struct obj_cgroup *objcg;
222         struct list_head lru;
223 };
224
225 struct zswap_tree {
226         struct rb_root rbroot;
227         spinlock_t lock;
228 };
229
230 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
231 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
232
233 /* RCU-protected iteration */
234 static LIST_HEAD(zswap_pools);
235 /* protects zswap_pools list modification */
236 static DEFINE_SPINLOCK(zswap_pools_lock);
237 /* pool counter to provide unique names to zpool */
238 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
239
240 enum zswap_init_type {
241         ZSWAP_UNINIT,
242         ZSWAP_INIT_SUCCEED,
243         ZSWAP_INIT_FAILED
244 };
245
246 static enum zswap_init_type zswap_init_state;
247
248 /* used to ensure the integrity of initialization */
249 static DEFINE_MUTEX(zswap_init_lock);
250
251 /* init completed, but couldn't create the initial pool */
252 static bool zswap_has_pool;
253
254 /*********************************
255 * helpers and fwd declarations
256 **********************************/
257
258 static inline struct zswap_tree *swap_zswap_tree(swp_entry_t swp)
259 {
260         return &zswap_trees[swp_type(swp)][swp_offset(swp)
261                 >> SWAP_ADDRESS_SPACE_SHIFT];
262 }
263
264 #define zswap_pool_debug(msg, p)                                \
265         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
266                  zpool_get_type((p)->zpools[0]))
267
268 static bool zswap_is_full(void)
269 {
270         return totalram_pages() * zswap_max_pool_percent / 100 <
271                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
272 }
273
274 static bool zswap_can_accept(void)
275 {
276         return totalram_pages() * zswap_accept_thr_percent / 100 *
277                                 zswap_max_pool_percent / 100 >
278                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
279 }
280
281 static u64 get_zswap_pool_size(struct zswap_pool *pool)
282 {
283         u64 pool_size = 0;
284         int i;
285
286         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
287                 pool_size += zpool_get_total_size(pool->zpools[i]);
288
289         return pool_size;
290 }
291
292 static void zswap_update_total_size(void)
293 {
294         struct zswap_pool *pool;
295         u64 total = 0;
296
297         rcu_read_lock();
298
299         list_for_each_entry_rcu(pool, &zswap_pools, list)
300                 total += get_zswap_pool_size(pool);
301
302         rcu_read_unlock();
303
304         zswap_pool_total_size = total;
305 }
306
307 /*********************************
308 * pool functions
309 **********************************/
310 static void __zswap_pool_empty(struct percpu_ref *ref);
311
312 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
313 {
314         int i;
315         struct zswap_pool *pool;
316         char name[38]; /* 'zswap' + 32 char (max) num + \0 */
317         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
318         int ret;
319
320         if (!zswap_has_pool) {
321                 /* if either are unset, pool initialization failed, and we
322                  * need both params to be set correctly before trying to
323                  * create a pool.
324                  */
325                 if (!strcmp(type, ZSWAP_PARAM_UNSET))
326                         return NULL;
327                 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
328                         return NULL;
329         }
330
331         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
332         if (!pool)
333                 return NULL;
334
335         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
336                 /* unique name for each pool specifically required by zsmalloc */
337                 snprintf(name, 38, "zswap%x",
338                          atomic_inc_return(&zswap_pools_count));
339
340                 pool->zpools[i] = zpool_create_pool(type, name, gfp);
341                 if (!pool->zpools[i]) {
342                         pr_err("%s zpool not available\n", type);
343                         goto error;
344                 }
345         }
346         pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
347
348         strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
349
350         pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
351         if (!pool->acomp_ctx) {
352                 pr_err("percpu alloc failed\n");
353                 goto error;
354         }
355
356         ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
357                                        &pool->node);
358         if (ret)
359                 goto error;
360
361         /* being the current pool takes 1 ref; this func expects the
362          * caller to always add the new pool as the current pool
363          */
364         ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
365                               PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
366         if (ret)
367                 goto ref_fail;
368         INIT_LIST_HEAD(&pool->list);
369
370         zswap_pool_debug("created", pool);
371
372         return pool;
373
374 ref_fail:
375         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
376 error:
377         if (pool->acomp_ctx)
378                 free_percpu(pool->acomp_ctx);
379         while (i--)
380                 zpool_destroy_pool(pool->zpools[i]);
381         kfree(pool);
382         return NULL;
383 }
384
385 static struct zswap_pool *__zswap_pool_create_fallback(void)
386 {
387         bool has_comp, has_zpool;
388
389         has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
390         if (!has_comp && strcmp(zswap_compressor,
391                                 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
392                 pr_err("compressor %s not available, using default %s\n",
393                        zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
394                 param_free_charp(&zswap_compressor);
395                 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
396                 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
397         }
398         if (!has_comp) {
399                 pr_err("default compressor %s not available\n",
400                        zswap_compressor);
401                 param_free_charp(&zswap_compressor);
402                 zswap_compressor = ZSWAP_PARAM_UNSET;
403         }
404
405         has_zpool = zpool_has_pool(zswap_zpool_type);
406         if (!has_zpool && strcmp(zswap_zpool_type,
407                                  CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
408                 pr_err("zpool %s not available, using default %s\n",
409                        zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
410                 param_free_charp(&zswap_zpool_type);
411                 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
412                 has_zpool = zpool_has_pool(zswap_zpool_type);
413         }
414         if (!has_zpool) {
415                 pr_err("default zpool %s not available\n",
416                        zswap_zpool_type);
417                 param_free_charp(&zswap_zpool_type);
418                 zswap_zpool_type = ZSWAP_PARAM_UNSET;
419         }
420
421         if (!has_comp || !has_zpool)
422                 return NULL;
423
424         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
425 }
426
427 static void zswap_pool_destroy(struct zswap_pool *pool)
428 {
429         int i;
430
431         zswap_pool_debug("destroying", pool);
432
433         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
434         free_percpu(pool->acomp_ctx);
435
436         for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
437                 zpool_destroy_pool(pool->zpools[i]);
438         kfree(pool);
439 }
440
441 static void __zswap_pool_release(struct work_struct *work)
442 {
443         struct zswap_pool *pool = container_of(work, typeof(*pool),
444                                                 release_work);
445
446         synchronize_rcu();
447
448         /* nobody should have been able to get a ref... */
449         WARN_ON(!percpu_ref_is_zero(&pool->ref));
450         percpu_ref_exit(&pool->ref);
451
452         /* pool is now off zswap_pools list and has no references. */
453         zswap_pool_destroy(pool);
454 }
455
456 static struct zswap_pool *zswap_pool_current(void);
457
458 static void __zswap_pool_empty(struct percpu_ref *ref)
459 {
460         struct zswap_pool *pool;
461
462         pool = container_of(ref, typeof(*pool), ref);
463
464         spin_lock_bh(&zswap_pools_lock);
465
466         WARN_ON(pool == zswap_pool_current());
467
468         list_del_rcu(&pool->list);
469
470         INIT_WORK(&pool->release_work, __zswap_pool_release);
471         schedule_work(&pool->release_work);
472
473         spin_unlock_bh(&zswap_pools_lock);
474 }
475
476 static int __must_check zswap_pool_get(struct zswap_pool *pool)
477 {
478         if (!pool)
479                 return 0;
480
481         return percpu_ref_tryget(&pool->ref);
482 }
483
484 static void zswap_pool_put(struct zswap_pool *pool)
485 {
486         percpu_ref_put(&pool->ref);
487 }
488
489 static struct zswap_pool *__zswap_pool_current(void)
490 {
491         struct zswap_pool *pool;
492
493         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
494         WARN_ONCE(!pool && zswap_has_pool,
495                   "%s: no page storage pool!\n", __func__);
496
497         return pool;
498 }
499
500 static struct zswap_pool *zswap_pool_current(void)
501 {
502         assert_spin_locked(&zswap_pools_lock);
503
504         return __zswap_pool_current();
505 }
506
507 static struct zswap_pool *zswap_pool_current_get(void)
508 {
509         struct zswap_pool *pool;
510
511         rcu_read_lock();
512
513         pool = __zswap_pool_current();
514         if (!zswap_pool_get(pool))
515                 pool = NULL;
516
517         rcu_read_unlock();
518
519         return pool;
520 }
521
522 /* type and compressor must be null-terminated */
523 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
524 {
525         struct zswap_pool *pool;
526
527         assert_spin_locked(&zswap_pools_lock);
528
529         list_for_each_entry_rcu(pool, &zswap_pools, list) {
530                 if (strcmp(pool->tfm_name, compressor))
531                         continue;
532                 /* all zpools share the same type */
533                 if (strcmp(zpool_get_type(pool->zpools[0]), type))
534                         continue;
535                 /* if we can't get it, it's about to be destroyed */
536                 if (!zswap_pool_get(pool))
537                         continue;
538                 return pool;
539         }
540
541         return NULL;
542 }
543
544 /*********************************
545 * param callbacks
546 **********************************/
547
548 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
549 {
550         /* no change required */
551         if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
552                 return false;
553         return true;
554 }
555
556 /* val must be a null-terminated string */
557 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
558                              char *type, char *compressor)
559 {
560         struct zswap_pool *pool, *put_pool = NULL;
561         char *s = strstrip((char *)val);
562         int ret = 0;
563         bool new_pool = false;
564
565         mutex_lock(&zswap_init_lock);
566         switch (zswap_init_state) {
567         case ZSWAP_UNINIT:
568                 /* if this is load-time (pre-init) param setting,
569                  * don't create a pool; that's done during init.
570                  */
571                 ret = param_set_charp(s, kp);
572                 break;
573         case ZSWAP_INIT_SUCCEED:
574                 new_pool = zswap_pool_changed(s, kp);
575                 break;
576         case ZSWAP_INIT_FAILED:
577                 pr_err("can't set param, initialization failed\n");
578                 ret = -ENODEV;
579         }
580         mutex_unlock(&zswap_init_lock);
581
582         /* no need to create a new pool, return directly */
583         if (!new_pool)
584                 return ret;
585
586         if (!type) {
587                 if (!zpool_has_pool(s)) {
588                         pr_err("zpool %s not available\n", s);
589                         return -ENOENT;
590                 }
591                 type = s;
592         } else if (!compressor) {
593                 if (!crypto_has_acomp(s, 0, 0)) {
594                         pr_err("compressor %s not available\n", s);
595                         return -ENOENT;
596                 }
597                 compressor = s;
598         } else {
599                 WARN_ON(1);
600                 return -EINVAL;
601         }
602
603         spin_lock_bh(&zswap_pools_lock);
604
605         pool = zswap_pool_find_get(type, compressor);
606         if (pool) {
607                 zswap_pool_debug("using existing", pool);
608                 WARN_ON(pool == zswap_pool_current());
609                 list_del_rcu(&pool->list);
610         }
611
612         spin_unlock_bh(&zswap_pools_lock);
613
614         if (!pool)
615                 pool = zswap_pool_create(type, compressor);
616         else {
617                 /*
618                  * Restore the initial ref dropped by percpu_ref_kill()
619                  * when the pool was decommissioned and switch it again
620                  * to percpu mode.
621                  */
622                 percpu_ref_resurrect(&pool->ref);
623
624                 /* Drop the ref from zswap_pool_find_get(). */
625                 zswap_pool_put(pool);
626         }
627
628         if (pool)
629                 ret = param_set_charp(s, kp);
630         else
631                 ret = -EINVAL;
632
633         spin_lock_bh(&zswap_pools_lock);
634
635         if (!ret) {
636                 put_pool = zswap_pool_current();
637                 list_add_rcu(&pool->list, &zswap_pools);
638                 zswap_has_pool = true;
639         } else if (pool) {
640                 /* add the possibly pre-existing pool to the end of the pools
641                  * list; if it's new (and empty) then it'll be removed and
642                  * destroyed by the put after we drop the lock
643                  */
644                 list_add_tail_rcu(&pool->list, &zswap_pools);
645                 put_pool = pool;
646         }
647
648         spin_unlock_bh(&zswap_pools_lock);
649
650         if (!zswap_has_pool && !pool) {
651                 /* if initial pool creation failed, and this pool creation also
652                  * failed, maybe both compressor and zpool params were bad.
653                  * Allow changing this param, so pool creation will succeed
654                  * when the other param is changed. We already verified this
655                  * param is ok in the zpool_has_pool() or crypto_has_acomp()
656                  * checks above.
657                  */
658                 ret = param_set_charp(s, kp);
659         }
660
661         /* drop the ref from either the old current pool,
662          * or the new pool we failed to add
663          */
664         if (put_pool)
665                 percpu_ref_kill(&put_pool->ref);
666
667         return ret;
668 }
669
670 static int zswap_compressor_param_set(const char *val,
671                                       const struct kernel_param *kp)
672 {
673         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
674 }
675
676 static int zswap_zpool_param_set(const char *val,
677                                  const struct kernel_param *kp)
678 {
679         return __zswap_param_set(val, kp, NULL, zswap_compressor);
680 }
681
682 static int zswap_enabled_param_set(const char *val,
683                                    const struct kernel_param *kp)
684 {
685         int ret = -ENODEV;
686
687         /* if this is load-time (pre-init) param setting, only set param. */
688         if (system_state != SYSTEM_RUNNING)
689                 return param_set_bool(val, kp);
690
691         mutex_lock(&zswap_init_lock);
692         switch (zswap_init_state) {
693         case ZSWAP_UNINIT:
694                 if (zswap_setup())
695                         break;
696                 fallthrough;
697         case ZSWAP_INIT_SUCCEED:
698                 if (!zswap_has_pool)
699                         pr_err("can't enable, no pool configured\n");
700                 else
701                         ret = param_set_bool(val, kp);
702                 break;
703         case ZSWAP_INIT_FAILED:
704                 pr_err("can't enable, initialization failed\n");
705         }
706         mutex_unlock(&zswap_init_lock);
707
708         return ret;
709 }
710
711 /*********************************
712 * lru functions
713 **********************************/
714
715 /* should be called under RCU */
716 #ifdef CONFIG_MEMCG
717 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
718 {
719         return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
720 }
721 #else
722 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
723 {
724         return NULL;
725 }
726 #endif
727
728 static inline int entry_to_nid(struct zswap_entry *entry)
729 {
730         return page_to_nid(virt_to_page(entry));
731 }
732
733 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
734 {
735         atomic_long_t *nr_zswap_protected;
736         unsigned long lru_size, old, new;
737         int nid = entry_to_nid(entry);
738         struct mem_cgroup *memcg;
739         struct lruvec *lruvec;
740
741         /*
742          * Note that it is safe to use rcu_read_lock() here, even in the face of
743          * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
744          * used in list_lru lookup, only two scenarios are possible:
745          *
746          * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
747          *    new entry will be reparented to memcg's parent's list_lru.
748          * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
749          *    new entry will be added directly to memcg's parent's list_lru.
750          *
751          * Similar reasoning holds for list_lru_del().
752          */
753         rcu_read_lock();
754         memcg = mem_cgroup_from_entry(entry);
755         /* will always succeed */
756         list_lru_add(list_lru, &entry->lru, nid, memcg);
757
758         /* Update the protection area */
759         lru_size = list_lru_count_one(list_lru, nid, memcg);
760         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
761         nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
762         old = atomic_long_inc_return(nr_zswap_protected);
763         /*
764          * Decay to avoid overflow and adapt to changing workloads.
765          * This is based on LRU reclaim cost decaying heuristics.
766          */
767         do {
768                 new = old > lru_size / 4 ? old / 2 : old;
769         } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
770         rcu_read_unlock();
771 }
772
773 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
774 {
775         int nid = entry_to_nid(entry);
776         struct mem_cgroup *memcg;
777
778         rcu_read_lock();
779         memcg = mem_cgroup_from_entry(entry);
780         /* will always succeed */
781         list_lru_del(list_lru, &entry->lru, nid, memcg);
782         rcu_read_unlock();
783 }
784
785 void zswap_lruvec_state_init(struct lruvec *lruvec)
786 {
787         atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
788 }
789
790 void zswap_folio_swapin(struct folio *folio)
791 {
792         struct lruvec *lruvec;
793
794         if (folio) {
795                 lruvec = folio_lruvec(folio);
796                 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
797         }
798 }
799
800 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
801 {
802         /* lock out zswap shrinker walking memcg tree */
803         spin_lock(&zswap_shrink_lock);
804         if (zswap_next_shrink == memcg)
805                 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
806         spin_unlock(&zswap_shrink_lock);
807 }
808
809 /*********************************
810 * rbtree functions
811 **********************************/
812 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
813 {
814         struct rb_node *node = root->rb_node;
815         struct zswap_entry *entry;
816         pgoff_t entry_offset;
817
818         while (node) {
819                 entry = rb_entry(node, struct zswap_entry, rbnode);
820                 entry_offset = swp_offset(entry->swpentry);
821                 if (entry_offset > offset)
822                         node = node->rb_left;
823                 else if (entry_offset < offset)
824                         node = node->rb_right;
825                 else
826                         return entry;
827         }
828         return NULL;
829 }
830
831 /*
832  * In the case that a entry with the same offset is found, a pointer to
833  * the existing entry is stored in dupentry and the function returns -EEXIST
834  */
835 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
836                         struct zswap_entry **dupentry)
837 {
838         struct rb_node **link = &root->rb_node, *parent = NULL;
839         struct zswap_entry *myentry;
840         pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
841
842         while (*link) {
843                 parent = *link;
844                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
845                 myentry_offset = swp_offset(myentry->swpentry);
846                 if (myentry_offset > entry_offset)
847                         link = &(*link)->rb_left;
848                 else if (myentry_offset < entry_offset)
849                         link = &(*link)->rb_right;
850                 else {
851                         *dupentry = myentry;
852                         return -EEXIST;
853                 }
854         }
855         rb_link_node(&entry->rbnode, parent, link);
856         rb_insert_color(&entry->rbnode, root);
857         return 0;
858 }
859
860 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
861 {
862         rb_erase(&entry->rbnode, root);
863         RB_CLEAR_NODE(&entry->rbnode);
864 }
865
866 /*********************************
867 * zswap entry functions
868 **********************************/
869 static struct kmem_cache *zswap_entry_cache;
870
871 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
872 {
873         struct zswap_entry *entry;
874         entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
875         if (!entry)
876                 return NULL;
877         RB_CLEAR_NODE(&entry->rbnode);
878         return entry;
879 }
880
881 static void zswap_entry_cache_free(struct zswap_entry *entry)
882 {
883         kmem_cache_free(zswap_entry_cache, entry);
884 }
885
886 static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
887 {
888         int i = 0;
889
890         if (ZSWAP_NR_ZPOOLS > 1)
891                 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
892
893         return entry->pool->zpools[i];
894 }
895
896 /*
897  * Carries out the common pattern of freeing and entry's zpool allocation,
898  * freeing the entry itself, and decrementing the number of stored pages.
899  */
900 static void zswap_entry_free(struct zswap_entry *entry)
901 {
902         if (!entry->length)
903                 atomic_dec(&zswap_same_filled_pages);
904         else {
905                 zswap_lru_del(&zswap_list_lru, entry);
906                 zpool_free(zswap_find_zpool(entry), entry->handle);
907                 atomic_dec(&zswap_nr_stored);
908                 zswap_pool_put(entry->pool);
909         }
910         if (entry->objcg) {
911                 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
912                 obj_cgroup_put(entry->objcg);
913         }
914         zswap_entry_cache_free(entry);
915         atomic_dec(&zswap_stored_pages);
916         zswap_update_total_size();
917 }
918
919 /*
920  * The caller hold the tree lock and search the entry from the tree,
921  * so it must be on the tree, remove it from the tree and free it.
922  */
923 static void zswap_invalidate_entry(struct zswap_tree *tree,
924                                    struct zswap_entry *entry)
925 {
926         zswap_rb_erase(&tree->rbroot, entry);
927         zswap_entry_free(entry);
928 }
929
930 /*********************************
931 * compressed storage functions
932 **********************************/
933 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
934 {
935         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
936         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
937         struct crypto_acomp *acomp;
938         struct acomp_req *req;
939         int ret;
940
941         mutex_init(&acomp_ctx->mutex);
942
943         acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
944         if (!acomp_ctx->buffer)
945                 return -ENOMEM;
946
947         acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
948         if (IS_ERR(acomp)) {
949                 pr_err("could not alloc crypto acomp %s : %ld\n",
950                                 pool->tfm_name, PTR_ERR(acomp));
951                 ret = PTR_ERR(acomp);
952                 goto acomp_fail;
953         }
954         acomp_ctx->acomp = acomp;
955         acomp_ctx->is_sleepable = acomp_is_async(acomp);
956
957         req = acomp_request_alloc(acomp_ctx->acomp);
958         if (!req) {
959                 pr_err("could not alloc crypto acomp_request %s\n",
960                        pool->tfm_name);
961                 ret = -ENOMEM;
962                 goto req_fail;
963         }
964         acomp_ctx->req = req;
965
966         crypto_init_wait(&acomp_ctx->wait);
967         /*
968          * if the backend of acomp is async zip, crypto_req_done() will wakeup
969          * crypto_wait_req(); if the backend of acomp is scomp, the callback
970          * won't be called, crypto_wait_req() will return without blocking.
971          */
972         acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
973                                    crypto_req_done, &acomp_ctx->wait);
974
975         return 0;
976
977 req_fail:
978         crypto_free_acomp(acomp_ctx->acomp);
979 acomp_fail:
980         kfree(acomp_ctx->buffer);
981         return ret;
982 }
983
984 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
985 {
986         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
987         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
988
989         if (!IS_ERR_OR_NULL(acomp_ctx)) {
990                 if (!IS_ERR_OR_NULL(acomp_ctx->req))
991                         acomp_request_free(acomp_ctx->req);
992                 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
993                         crypto_free_acomp(acomp_ctx->acomp);
994                 kfree(acomp_ctx->buffer);
995         }
996
997         return 0;
998 }
999
1000 static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
1001 {
1002         struct crypto_acomp_ctx *acomp_ctx;
1003         struct scatterlist input, output;
1004         int comp_ret = 0, alloc_ret = 0;
1005         unsigned int dlen = PAGE_SIZE;
1006         unsigned long handle;
1007         struct zpool *zpool;
1008         char *buf;
1009         gfp_t gfp;
1010         u8 *dst;
1011
1012         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1013
1014         mutex_lock(&acomp_ctx->mutex);
1015
1016         dst = acomp_ctx->buffer;
1017         sg_init_table(&input, 1);
1018         sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1019
1020         /*
1021          * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1022          * and hardware-accelerators may won't check the dst buffer size, so
1023          * giving the dst buffer with enough length to avoid buffer overflow.
1024          */
1025         sg_init_one(&output, dst, PAGE_SIZE * 2);
1026         acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1027
1028         /*
1029          * it maybe looks a little bit silly that we send an asynchronous request,
1030          * then wait for its completion synchronously. This makes the process look
1031          * synchronous in fact.
1032          * Theoretically, acomp supports users send multiple acomp requests in one
1033          * acomp instance, then get those requests done simultaneously. but in this
1034          * case, zswap actually does store and load page by page, there is no
1035          * existing method to send the second page before the first page is done
1036          * in one thread doing zwap.
1037          * but in different threads running on different cpu, we have different
1038          * acomp instance, so multiple threads can do (de)compression in parallel.
1039          */
1040         comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1041         dlen = acomp_ctx->req->dlen;
1042         if (comp_ret)
1043                 goto unlock;
1044
1045         zpool = zswap_find_zpool(entry);
1046         gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1047         if (zpool_malloc_support_movable(zpool))
1048                 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1049         alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
1050         if (alloc_ret)
1051                 goto unlock;
1052
1053         buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1054         memcpy(buf, dst, dlen);
1055         zpool_unmap_handle(zpool, handle);
1056
1057         entry->handle = handle;
1058         entry->length = dlen;
1059
1060 unlock:
1061         if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1062                 zswap_reject_compress_poor++;
1063         else if (comp_ret)
1064                 zswap_reject_compress_fail++;
1065         else if (alloc_ret)
1066                 zswap_reject_alloc_fail++;
1067
1068         mutex_unlock(&acomp_ctx->mutex);
1069         return comp_ret == 0 && alloc_ret == 0;
1070 }
1071
1072 static void zswap_decompress(struct zswap_entry *entry, struct page *page)
1073 {
1074         struct zpool *zpool = zswap_find_zpool(entry);
1075         struct scatterlist input, output;
1076         struct crypto_acomp_ctx *acomp_ctx;
1077         u8 *src;
1078
1079         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1080         mutex_lock(&acomp_ctx->mutex);
1081
1082         src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1083         if (acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) {
1084                 memcpy(acomp_ctx->buffer, src, entry->length);
1085                 src = acomp_ctx->buffer;
1086                 zpool_unmap_handle(zpool, entry->handle);
1087         }
1088
1089         sg_init_one(&input, src, entry->length);
1090         sg_init_table(&output, 1);
1091         sg_set_page(&output, page, PAGE_SIZE, 0);
1092         acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1093         BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1094         BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1095         mutex_unlock(&acomp_ctx->mutex);
1096
1097         if (!acomp_ctx->is_sleepable || zpool_can_sleep_mapped(zpool))
1098                 zpool_unmap_handle(zpool, entry->handle);
1099 }
1100
1101 /*********************************
1102 * writeback code
1103 **********************************/
1104 /*
1105  * Attempts to free an entry by adding a folio to the swap cache,
1106  * decompressing the entry data into the folio, and issuing a
1107  * bio write to write the folio back to the swap device.
1108  *
1109  * This can be thought of as a "resumed writeback" of the folio
1110  * to the swap device.  We are basically resuming the same swap
1111  * writeback path that was intercepted with the zswap_store()
1112  * in the first place.  After the folio has been decompressed into
1113  * the swap cache, the compressed version stored by zswap can be
1114  * freed.
1115  */
1116 static int zswap_writeback_entry(struct zswap_entry *entry,
1117                                  swp_entry_t swpentry)
1118 {
1119         struct zswap_tree *tree;
1120         struct folio *folio;
1121         struct mempolicy *mpol;
1122         bool folio_was_allocated;
1123         struct writeback_control wbc = {
1124                 .sync_mode = WB_SYNC_NONE,
1125         };
1126
1127         /* try to allocate swap cache folio */
1128         mpol = get_task_policy(current);
1129         folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1130                                 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1131         if (!folio)
1132                 return -ENOMEM;
1133
1134         /*
1135          * Found an existing folio, we raced with swapin or concurrent
1136          * shrinker. We generally writeback cold folios from zswap, and
1137          * swapin means the folio just became hot, so skip this folio.
1138          * For unlikely concurrent shrinker case, it will be unlinked
1139          * and freed when invalidated by the concurrent shrinker anyway.
1140          */
1141         if (!folio_was_allocated) {
1142                 folio_put(folio);
1143                 return -EEXIST;
1144         }
1145
1146         /*
1147          * folio is locked, and the swapcache is now secured against
1148          * concurrent swapping to and from the slot, and concurrent
1149          * swapoff so we can safely dereference the zswap tree here.
1150          * Verify that the swap entry hasn't been invalidated and recycled
1151          * behind our backs, to avoid overwriting a new swap folio with
1152          * old compressed data. Only when this is successful can the entry
1153          * be dereferenced.
1154          */
1155         tree = swap_zswap_tree(swpentry);
1156         spin_lock(&tree->lock);
1157         if (zswap_rb_search(&tree->rbroot, swp_offset(swpentry)) != entry) {
1158                 spin_unlock(&tree->lock);
1159                 delete_from_swap_cache(folio);
1160                 folio_unlock(folio);
1161                 folio_put(folio);
1162                 return -ENOMEM;
1163         }
1164
1165         /* Safe to deref entry after the entry is verified above. */
1166         zswap_rb_erase(&tree->rbroot, entry);
1167         spin_unlock(&tree->lock);
1168
1169         zswap_decompress(entry, &folio->page);
1170
1171         count_vm_event(ZSWPWB);
1172         if (entry->objcg)
1173                 count_objcg_event(entry->objcg, ZSWPWB);
1174
1175         zswap_entry_free(entry);
1176
1177         /* folio is up to date */
1178         folio_mark_uptodate(folio);
1179
1180         /* move it to the tail of the inactive list after end_writeback */
1181         folio_set_reclaim(folio);
1182
1183         /* start writeback */
1184         __swap_writepage(folio, &wbc);
1185         folio_put(folio);
1186
1187         return 0;
1188 }
1189
1190 /*********************************
1191 * shrinker functions
1192 **********************************/
1193 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1194                                        spinlock_t *lock, void *arg)
1195 {
1196         struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1197         bool *encountered_page_in_swapcache = (bool *)arg;
1198         swp_entry_t swpentry;
1199         enum lru_status ret = LRU_REMOVED_RETRY;
1200         int writeback_result;
1201
1202         /*
1203          * As soon as we drop the LRU lock, the entry can be freed by
1204          * a concurrent invalidation. This means the following:
1205          *
1206          * 1. We extract the swp_entry_t to the stack, allowing
1207          *    zswap_writeback_entry() to pin the swap entry and
1208          *    then validate the zwap entry against that swap entry's
1209          *    tree using pointer value comparison. Only when that
1210          *    is successful can the entry be dereferenced.
1211          *
1212          * 2. Usually, objects are taken off the LRU for reclaim. In
1213          *    this case this isn't possible, because if reclaim fails
1214          *    for whatever reason, we have no means of knowing if the
1215          *    entry is alive to put it back on the LRU.
1216          *
1217          *    So rotate it before dropping the lock. If the entry is
1218          *    written back or invalidated, the free path will unlink
1219          *    it. For failures, rotation is the right thing as well.
1220          *
1221          *    Temporary failures, where the same entry should be tried
1222          *    again immediately, almost never happen for this shrinker.
1223          *    We don't do any trylocking; -ENOMEM comes closest,
1224          *    but that's extremely rare and doesn't happen spuriously
1225          *    either. Don't bother distinguishing this case.
1226          */
1227         list_move_tail(item, &l->list);
1228
1229         /*
1230          * Once the lru lock is dropped, the entry might get freed. The
1231          * swpentry is copied to the stack, and entry isn't deref'd again
1232          * until the entry is verified to still be alive in the tree.
1233          */
1234         swpentry = entry->swpentry;
1235
1236         /*
1237          * It's safe to drop the lock here because we return either
1238          * LRU_REMOVED_RETRY or LRU_RETRY.
1239          */
1240         spin_unlock(lock);
1241
1242         writeback_result = zswap_writeback_entry(entry, swpentry);
1243
1244         if (writeback_result) {
1245                 zswap_reject_reclaim_fail++;
1246                 ret = LRU_RETRY;
1247
1248                 /*
1249                  * Encountering a page already in swap cache is a sign that we are shrinking
1250                  * into the warmer region. We should terminate shrinking (if we're in the dynamic
1251                  * shrinker context).
1252                  */
1253                 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1254                         ret = LRU_STOP;
1255                         *encountered_page_in_swapcache = true;
1256                 }
1257         } else {
1258                 zswap_written_back_pages++;
1259         }
1260
1261         spin_lock(lock);
1262         return ret;
1263 }
1264
1265 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1266                 struct shrink_control *sc)
1267 {
1268         struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1269         unsigned long shrink_ret, nr_protected, lru_size;
1270         bool encountered_page_in_swapcache = false;
1271
1272         if (!zswap_shrinker_enabled ||
1273                         !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1274                 sc->nr_scanned = 0;
1275                 return SHRINK_STOP;
1276         }
1277
1278         nr_protected =
1279                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1280         lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1281
1282         /*
1283          * Abort if we are shrinking into the protected region.
1284          *
1285          * This short-circuiting is necessary because if we have too many multiple
1286          * concurrent reclaimers getting the freeable zswap object counts at the
1287          * same time (before any of them made reasonable progress), the total
1288          * number of reclaimed objects might be more than the number of unprotected
1289          * objects (i.e the reclaimers will reclaim into the protected area of the
1290          * zswap LRU).
1291          */
1292         if (nr_protected >= lru_size - sc->nr_to_scan) {
1293                 sc->nr_scanned = 0;
1294                 return SHRINK_STOP;
1295         }
1296
1297         shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1298                 &encountered_page_in_swapcache);
1299
1300         if (encountered_page_in_swapcache)
1301                 return SHRINK_STOP;
1302
1303         return shrink_ret ? shrink_ret : SHRINK_STOP;
1304 }
1305
1306 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1307                 struct shrink_control *sc)
1308 {
1309         struct mem_cgroup *memcg = sc->memcg;
1310         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1311         unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1312
1313         if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1314                 return 0;
1315
1316 #ifdef CONFIG_MEMCG_KMEM
1317         mem_cgroup_flush_stats(memcg);
1318         nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1319         nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1320 #else
1321         /* use pool stats instead of memcg stats */
1322         nr_backing = zswap_pool_total_size >> PAGE_SHIFT;
1323         nr_stored = atomic_read(&zswap_nr_stored);
1324 #endif
1325
1326         if (!nr_stored)
1327                 return 0;
1328
1329         nr_protected =
1330                 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1331         nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1332         /*
1333          * Subtract the lru size by an estimate of the number of pages
1334          * that should be protected.
1335          */
1336         nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1337
1338         /*
1339          * Scale the number of freeable pages by the memory saving factor.
1340          * This ensures that the better zswap compresses memory, the fewer
1341          * pages we will evict to swap (as it will otherwise incur IO for
1342          * relatively small memory saving).
1343          */
1344         return mult_frac(nr_freeable, nr_backing, nr_stored);
1345 }
1346
1347 static struct shrinker *zswap_alloc_shrinker(void)
1348 {
1349         struct shrinker *shrinker;
1350
1351         shrinker =
1352                 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1353         if (!shrinker)
1354                 return NULL;
1355
1356         shrinker->scan_objects = zswap_shrinker_scan;
1357         shrinker->count_objects = zswap_shrinker_count;
1358         shrinker->batch = 0;
1359         shrinker->seeks = DEFAULT_SEEKS;
1360         return shrinker;
1361 }
1362
1363 static int shrink_memcg(struct mem_cgroup *memcg)
1364 {
1365         int nid, shrunk = 0;
1366
1367         if (!mem_cgroup_zswap_writeback_enabled(memcg))
1368                 return -EINVAL;
1369
1370         /*
1371          * Skip zombies because their LRUs are reparented and we would be
1372          * reclaiming from the parent instead of the dead memcg.
1373          */
1374         if (memcg && !mem_cgroup_online(memcg))
1375                 return -ENOENT;
1376
1377         for_each_node_state(nid, N_NORMAL_MEMORY) {
1378                 unsigned long nr_to_walk = 1;
1379
1380                 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1381                                             &shrink_memcg_cb, NULL, &nr_to_walk);
1382         }
1383         return shrunk ? 0 : -EAGAIN;
1384 }
1385
1386 static void shrink_worker(struct work_struct *w)
1387 {
1388         struct mem_cgroup *memcg;
1389         int ret, failures = 0;
1390
1391         /* global reclaim will select cgroup in a round-robin fashion. */
1392         do {
1393                 spin_lock(&zswap_shrink_lock);
1394                 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1395                 memcg = zswap_next_shrink;
1396
1397                 /*
1398                  * We need to retry if we have gone through a full round trip, or if we
1399                  * got an offline memcg (or else we risk undoing the effect of the
1400                  * zswap memcg offlining cleanup callback). This is not catastrophic
1401                  * per se, but it will keep the now offlined memcg hostage for a while.
1402                  *
1403                  * Note that if we got an online memcg, we will keep the extra
1404                  * reference in case the original reference obtained by mem_cgroup_iter
1405                  * is dropped by the zswap memcg offlining callback, ensuring that the
1406                  * memcg is not killed when we are reclaiming.
1407                  */
1408                 if (!memcg) {
1409                         spin_unlock(&zswap_shrink_lock);
1410                         if (++failures == MAX_RECLAIM_RETRIES)
1411                                 break;
1412
1413                         goto resched;
1414                 }
1415
1416                 if (!mem_cgroup_tryget_online(memcg)) {
1417                         /* drop the reference from mem_cgroup_iter() */
1418                         mem_cgroup_iter_break(NULL, memcg);
1419                         zswap_next_shrink = NULL;
1420                         spin_unlock(&zswap_shrink_lock);
1421
1422                         if (++failures == MAX_RECLAIM_RETRIES)
1423                                 break;
1424
1425                         goto resched;
1426                 }
1427                 spin_unlock(&zswap_shrink_lock);
1428
1429                 ret = shrink_memcg(memcg);
1430                 /* drop the extra reference */
1431                 mem_cgroup_put(memcg);
1432
1433                 if (ret == -EINVAL)
1434                         break;
1435                 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1436                         break;
1437
1438 resched:
1439                 cond_resched();
1440         } while (!zswap_can_accept());
1441 }
1442
1443 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1444 {
1445         unsigned long *page;
1446         unsigned long val;
1447         unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1448
1449         page = (unsigned long *)ptr;
1450         val = page[0];
1451
1452         if (val != page[last_pos])
1453                 return 0;
1454
1455         for (pos = 1; pos < last_pos; pos++) {
1456                 if (val != page[pos])
1457                         return 0;
1458         }
1459
1460         *value = val;
1461
1462         return 1;
1463 }
1464
1465 static void zswap_fill_page(void *ptr, unsigned long value)
1466 {
1467         unsigned long *page;
1468
1469         page = (unsigned long *)ptr;
1470         memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1471 }
1472
1473 bool zswap_store(struct folio *folio)
1474 {
1475         swp_entry_t swp = folio->swap;
1476         pgoff_t offset = swp_offset(swp);
1477         struct zswap_tree *tree = swap_zswap_tree(swp);
1478         struct zswap_entry *entry, *dupentry;
1479         struct obj_cgroup *objcg = NULL;
1480         struct mem_cgroup *memcg = NULL;
1481
1482         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1483         VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1484
1485         /* Large folios aren't supported */
1486         if (folio_test_large(folio))
1487                 return false;
1488
1489         if (!zswap_enabled)
1490                 goto check_old;
1491
1492         objcg = get_obj_cgroup_from_folio(folio);
1493         if (objcg && !obj_cgroup_may_zswap(objcg)) {
1494                 memcg = get_mem_cgroup_from_objcg(objcg);
1495                 if (shrink_memcg(memcg)) {
1496                         mem_cgroup_put(memcg);
1497                         goto reject;
1498                 }
1499                 mem_cgroup_put(memcg);
1500         }
1501
1502         /* reclaim space if needed */
1503         if (zswap_is_full()) {
1504                 zswap_pool_limit_hit++;
1505                 zswap_pool_reached_full = true;
1506                 goto shrink;
1507         }
1508
1509         if (zswap_pool_reached_full) {
1510                if (!zswap_can_accept())
1511                         goto shrink;
1512                 else
1513                         zswap_pool_reached_full = false;
1514         }
1515
1516         /* allocate entry */
1517         entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1518         if (!entry) {
1519                 zswap_reject_kmemcache_fail++;
1520                 goto reject;
1521         }
1522
1523         if (zswap_same_filled_pages_enabled) {
1524                 unsigned long value;
1525                 u8 *src;
1526
1527                 src = kmap_local_folio(folio, 0);
1528                 if (zswap_is_page_same_filled(src, &value)) {
1529                         kunmap_local(src);
1530                         entry->length = 0;
1531                         entry->value = value;
1532                         atomic_inc(&zswap_same_filled_pages);
1533                         goto insert_entry;
1534                 }
1535                 kunmap_local(src);
1536         }
1537
1538         if (!zswap_non_same_filled_pages_enabled)
1539                 goto freepage;
1540
1541         /* if entry is successfully added, it keeps the reference */
1542         entry->pool = zswap_pool_current_get();
1543         if (!entry->pool)
1544                 goto freepage;
1545
1546         if (objcg) {
1547                 memcg = get_mem_cgroup_from_objcg(objcg);
1548                 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1549                         mem_cgroup_put(memcg);
1550                         goto put_pool;
1551                 }
1552                 mem_cgroup_put(memcg);
1553         }
1554
1555         if (!zswap_compress(folio, entry))
1556                 goto put_pool;
1557
1558 insert_entry:
1559         entry->swpentry = swp;
1560         entry->objcg = objcg;
1561         if (objcg) {
1562                 obj_cgroup_charge_zswap(objcg, entry->length);
1563                 /* Account before objcg ref is moved to tree */
1564                 count_objcg_event(objcg, ZSWPOUT);
1565         }
1566
1567         /* map */
1568         spin_lock(&tree->lock);
1569         /*
1570          * The folio may have been dirtied again, invalidate the
1571          * possibly stale entry before inserting the new entry.
1572          */
1573         if (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1574                 zswap_invalidate_entry(tree, dupentry);
1575                 WARN_ON(zswap_rb_insert(&tree->rbroot, entry, &dupentry));
1576         }
1577         if (entry->length) {
1578                 INIT_LIST_HEAD(&entry->lru);
1579                 zswap_lru_add(&zswap_list_lru, entry);
1580                 atomic_inc(&zswap_nr_stored);
1581         }
1582         spin_unlock(&tree->lock);
1583
1584         /* update stats */
1585         atomic_inc(&zswap_stored_pages);
1586         zswap_update_total_size();
1587         count_vm_event(ZSWPOUT);
1588
1589         return true;
1590
1591 put_pool:
1592         zswap_pool_put(entry->pool);
1593 freepage:
1594         zswap_entry_cache_free(entry);
1595 reject:
1596         if (objcg)
1597                 obj_cgroup_put(objcg);
1598 check_old:
1599         /*
1600          * If the zswap store fails or zswap is disabled, we must invalidate the
1601          * possibly stale entry which was previously stored at this offset.
1602          * Otherwise, writeback could overwrite the new data in the swapfile.
1603          */
1604         spin_lock(&tree->lock);
1605         entry = zswap_rb_search(&tree->rbroot, offset);
1606         if (entry)
1607                 zswap_invalidate_entry(tree, entry);
1608         spin_unlock(&tree->lock);
1609         return false;
1610
1611 shrink:
1612         queue_work(shrink_wq, &zswap_shrink_work);
1613         goto reject;
1614 }
1615
1616 bool zswap_load(struct folio *folio)
1617 {
1618         swp_entry_t swp = folio->swap;
1619         pgoff_t offset = swp_offset(swp);
1620         struct page *page = &folio->page;
1621         struct zswap_tree *tree = swap_zswap_tree(swp);
1622         struct zswap_entry *entry;
1623         u8 *dst;
1624
1625         VM_WARN_ON_ONCE(!folio_test_locked(folio));
1626
1627         spin_lock(&tree->lock);
1628         entry = zswap_rb_search(&tree->rbroot, offset);
1629         if (!entry) {
1630                 spin_unlock(&tree->lock);
1631                 return false;
1632         }
1633         zswap_rb_erase(&tree->rbroot, entry);
1634         spin_unlock(&tree->lock);
1635
1636         if (entry->length)
1637                 zswap_decompress(entry, page);
1638         else {
1639                 dst = kmap_local_page(page);
1640                 zswap_fill_page(dst, entry->value);
1641                 kunmap_local(dst);
1642         }
1643
1644         count_vm_event(ZSWPIN);
1645         if (entry->objcg)
1646                 count_objcg_event(entry->objcg, ZSWPIN);
1647
1648         zswap_entry_free(entry);
1649
1650         folio_mark_dirty(folio);
1651
1652         return true;
1653 }
1654
1655 void zswap_invalidate(swp_entry_t swp)
1656 {
1657         pgoff_t offset = swp_offset(swp);
1658         struct zswap_tree *tree = swap_zswap_tree(swp);
1659         struct zswap_entry *entry;
1660
1661         spin_lock(&tree->lock);
1662         entry = zswap_rb_search(&tree->rbroot, offset);
1663         if (entry)
1664                 zswap_invalidate_entry(tree, entry);
1665         spin_unlock(&tree->lock);
1666 }
1667
1668 int zswap_swapon(int type, unsigned long nr_pages)
1669 {
1670         struct zswap_tree *trees, *tree;
1671         unsigned int nr, i;
1672
1673         nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1674         trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1675         if (!trees) {
1676                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1677                 return -ENOMEM;
1678         }
1679
1680         for (i = 0; i < nr; i++) {
1681                 tree = trees + i;
1682                 tree->rbroot = RB_ROOT;
1683                 spin_lock_init(&tree->lock);
1684         }
1685
1686         nr_zswap_trees[type] = nr;
1687         zswap_trees[type] = trees;
1688         return 0;
1689 }
1690
1691 void zswap_swapoff(int type)
1692 {
1693         struct zswap_tree *trees = zswap_trees[type];
1694         unsigned int i;
1695
1696         if (!trees)
1697                 return;
1698
1699         /* try_to_unuse() invalidated all the entries already */
1700         for (i = 0; i < nr_zswap_trees[type]; i++)
1701                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&trees[i].rbroot));
1702
1703         kvfree(trees);
1704         nr_zswap_trees[type] = 0;
1705         zswap_trees[type] = NULL;
1706 }
1707
1708 /*********************************
1709 * debugfs functions
1710 **********************************/
1711 #ifdef CONFIG_DEBUG_FS
1712 #include <linux/debugfs.h>
1713
1714 static struct dentry *zswap_debugfs_root;
1715
1716 static int zswap_debugfs_init(void)
1717 {
1718         if (!debugfs_initialized())
1719                 return -ENODEV;
1720
1721         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1722
1723         debugfs_create_u64("pool_limit_hit", 0444,
1724                            zswap_debugfs_root, &zswap_pool_limit_hit);
1725         debugfs_create_u64("reject_reclaim_fail", 0444,
1726                            zswap_debugfs_root, &zswap_reject_reclaim_fail);
1727         debugfs_create_u64("reject_alloc_fail", 0444,
1728                            zswap_debugfs_root, &zswap_reject_alloc_fail);
1729         debugfs_create_u64("reject_kmemcache_fail", 0444,
1730                            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1731         debugfs_create_u64("reject_compress_fail", 0444,
1732                            zswap_debugfs_root, &zswap_reject_compress_fail);
1733         debugfs_create_u64("reject_compress_poor", 0444,
1734                            zswap_debugfs_root, &zswap_reject_compress_poor);
1735         debugfs_create_u64("written_back_pages", 0444,
1736                            zswap_debugfs_root, &zswap_written_back_pages);
1737         debugfs_create_u64("pool_total_size", 0444,
1738                            zswap_debugfs_root, &zswap_pool_total_size);
1739         debugfs_create_atomic_t("stored_pages", 0444,
1740                                 zswap_debugfs_root, &zswap_stored_pages);
1741         debugfs_create_atomic_t("same_filled_pages", 0444,
1742                                 zswap_debugfs_root, &zswap_same_filled_pages);
1743
1744         return 0;
1745 }
1746 #else
1747 static int zswap_debugfs_init(void)
1748 {
1749         return 0;
1750 }
1751 #endif
1752
1753 /*********************************
1754 * module init and exit
1755 **********************************/
1756 static int zswap_setup(void)
1757 {
1758         struct zswap_pool *pool;
1759         int ret;
1760
1761         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1762         if (!zswap_entry_cache) {
1763                 pr_err("entry cache creation failed\n");
1764                 goto cache_fail;
1765         }
1766
1767         ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1768                                       "mm/zswap_pool:prepare",
1769                                       zswap_cpu_comp_prepare,
1770                                       zswap_cpu_comp_dead);
1771         if (ret)
1772                 goto hp_fail;
1773
1774         shrink_wq = alloc_workqueue("zswap-shrink",
1775                         WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1776         if (!shrink_wq)
1777                 goto shrink_wq_fail;
1778
1779         zswap_shrinker = zswap_alloc_shrinker();
1780         if (!zswap_shrinker)
1781                 goto shrinker_fail;
1782         if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1783                 goto lru_fail;
1784         shrinker_register(zswap_shrinker);
1785
1786         INIT_WORK(&zswap_shrink_work, shrink_worker);
1787
1788         pool = __zswap_pool_create_fallback();
1789         if (pool) {
1790                 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1791                         zpool_get_type(pool->zpools[0]));
1792                 list_add(&pool->list, &zswap_pools);
1793                 zswap_has_pool = true;
1794         } else {
1795                 pr_err("pool creation failed\n");
1796                 zswap_enabled = false;
1797         }
1798
1799         if (zswap_debugfs_init())
1800                 pr_warn("debugfs initialization failed\n");
1801         zswap_init_state = ZSWAP_INIT_SUCCEED;
1802         return 0;
1803
1804 lru_fail:
1805         shrinker_free(zswap_shrinker);
1806 shrinker_fail:
1807         destroy_workqueue(shrink_wq);
1808 shrink_wq_fail:
1809         cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1810 hp_fail:
1811         kmem_cache_destroy(zswap_entry_cache);
1812 cache_fail:
1813         /* if built-in, we aren't unloaded on failure; don't allow use */
1814         zswap_init_state = ZSWAP_INIT_FAILED;
1815         zswap_enabled = false;
1816         return -ENOMEM;
1817 }
1818
1819 static int __init zswap_init(void)
1820 {
1821         if (!zswap_enabled)
1822                 return 0;
1823         return zswap_setup();
1824 }
1825 /* must be late so crypto has time to come up */
1826 late_initcall(zswap_init);
1827
1828 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1829 MODULE_DESCRIPTION("Compressed cache for swap pages");