Merge tag 'amd-drm-fixes-5.9-2020-08-20' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
297         struct vm_struct *vm; /* vm area for mapping object that span pages */
298 #else
299         char *vm_buf; /* copy buffer for objects that span pages */
300 #endif
301         char *vm_addr; /* address of kmap_atomic()'ed pages */
302         enum zs_mapmode vm_mm; /* mapping mode */
303 };
304
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 #else
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 #endif
326
327 static int create_cache(struct zs_pool *pool)
328 {
329         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330                                         0, 0, NULL);
331         if (!pool->handle_cachep)
332                 return 1;
333
334         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335                                         0, 0, NULL);
336         if (!pool->zspage_cachep) {
337                 kmem_cache_destroy(pool->handle_cachep);
338                 pool->handle_cachep = NULL;
339                 return 1;
340         }
341
342         return 0;
343 }
344
345 static void destroy_cache(struct zs_pool *pool)
346 {
347         kmem_cache_destroy(pool->handle_cachep);
348         kmem_cache_destroy(pool->zspage_cachep);
349 }
350
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 {
353         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 {
359         kmem_cache_free(pool->handle_cachep, (void *)handle);
360 }
361
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 {
364         return kmem_cache_alloc(pool->zspage_cachep,
365                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 }
367
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 {
370         kmem_cache_free(pool->zspage_cachep, zspage);
371 }
372
373 static void record_obj(unsigned long handle, unsigned long obj)
374 {
375         /*
376          * lsb of @obj represents handle lock while other bits
377          * represent object value the handle is pointing so
378          * updating shouldn't do store tearing.
379          */
380         WRITE_ONCE(*(unsigned long *)handle, obj);
381 }
382
383 /* zpool driver */
384
385 #ifdef CONFIG_ZPOOL
386
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388                              const struct zpool_ops *zpool_ops,
389                              struct zpool *zpool)
390 {
391         /*
392          * Ignore global gfp flags: zs_malloc() may be invoked from
393          * different contexts and its caller must provide a valid
394          * gfp mask.
395          */
396         return zs_create_pool(name);
397 }
398
399 static void zs_zpool_destroy(void *pool)
400 {
401         zs_destroy_pool(pool);
402 }
403
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405                         unsigned long *handle)
406 {
407         *handle = zs_malloc(pool, size, gfp);
408         return *handle ? 0 : -1;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412         zs_free(pool, handle);
413 }
414
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416                         enum zpool_mapmode mm)
417 {
418         enum zs_mapmode zs_mm;
419
420         switch (mm) {
421         case ZPOOL_MM_RO:
422                 zs_mm = ZS_MM_RO;
423                 break;
424         case ZPOOL_MM_WO:
425                 zs_mm = ZS_MM_WO;
426                 break;
427         case ZPOOL_MM_RW:
428         default:
429                 zs_mm = ZS_MM_RW;
430                 break;
431         }
432
433         return zs_map_object(pool, handle, zs_mm);
434 }
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 {
437         zs_unmap_object(pool, handle);
438 }
439
440 static u64 zs_zpool_total_size(void *pool)
441 {
442         return zs_get_total_pages(pool) << PAGE_SHIFT;
443 }
444
445 static struct zpool_driver zs_zpool_driver = {
446         .type =                   "zsmalloc",
447         .owner =                  THIS_MODULE,
448         .create =                 zs_zpool_create,
449         .destroy =                zs_zpool_destroy,
450         .malloc_support_movable = true,
451         .malloc =                 zs_zpool_malloc,
452         .free =                   zs_zpool_free,
453         .map =                    zs_zpool_map,
454         .unmap =                  zs_zpool_unmap,
455         .total_size =             zs_zpool_total_size,
456 };
457
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
460
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
464 static bool is_zspage_isolated(struct zspage *zspage)
465 {
466         return zspage->isolated;
467 }
468
469 static __maybe_unused int is_first_page(struct page *page)
470 {
471         return PagePrivate(page);
472 }
473
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
476 {
477         return zspage->inuse;
478 }
479
480
481 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
482 {
483         zspage->inuse += val;
484 }
485
486 static inline struct page *get_first_page(struct zspage *zspage)
487 {
488         struct page *first_page = zspage->first_page;
489
490         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
491         return first_page;
492 }
493
494 static inline int get_first_obj_offset(struct page *page)
495 {
496         return page->units;
497 }
498
499 static inline void set_first_obj_offset(struct page *page, int offset)
500 {
501         page->units = offset;
502 }
503
504 static inline unsigned int get_freeobj(struct zspage *zspage)
505 {
506         return zspage->freeobj;
507 }
508
509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
510 {
511         zspage->freeobj = obj;
512 }
513
514 static void get_zspage_mapping(struct zspage *zspage,
515                                 unsigned int *class_idx,
516                                 enum fullness_group *fullness)
517 {
518         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
519
520         *fullness = zspage->fullness;
521         *class_idx = zspage->class;
522 }
523
524 static void set_zspage_mapping(struct zspage *zspage,
525                                 unsigned int class_idx,
526                                 enum fullness_group fullness)
527 {
528         zspage->class = class_idx;
529         zspage->fullness = fullness;
530 }
531
532 /*
533  * zsmalloc divides the pool into various size classes where each
534  * class maintains a list of zspages where each zspage is divided
535  * into equal sized chunks. Each allocation falls into one of these
536  * classes depending on its size. This function returns index of the
537  * size class which has chunk size big enough to hold the give size.
538  */
539 static int get_size_class_index(int size)
540 {
541         int idx = 0;
542
543         if (likely(size > ZS_MIN_ALLOC_SIZE))
544                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
545                                 ZS_SIZE_CLASS_DELTA);
546
547         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
548 }
549
550 /* type can be of enum type zs_stat_type or fullness_group */
551 static inline void zs_stat_inc(struct size_class *class,
552                                 int type, unsigned long cnt)
553 {
554         class->stats.objs[type] += cnt;
555 }
556
557 /* type can be of enum type zs_stat_type or fullness_group */
558 static inline void zs_stat_dec(struct size_class *class,
559                                 int type, unsigned long cnt)
560 {
561         class->stats.objs[type] -= cnt;
562 }
563
564 /* type can be of enum type zs_stat_type or fullness_group */
565 static inline unsigned long zs_stat_get(struct size_class *class,
566                                 int type)
567 {
568         return class->stats.objs[type];
569 }
570
571 #ifdef CONFIG_ZSMALLOC_STAT
572
573 static void __init zs_stat_init(void)
574 {
575         if (!debugfs_initialized()) {
576                 pr_warn("debugfs not available, stat dir not created\n");
577                 return;
578         }
579
580         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
581 }
582
583 static void __exit zs_stat_exit(void)
584 {
585         debugfs_remove_recursive(zs_stat_root);
586 }
587
588 static unsigned long zs_can_compact(struct size_class *class);
589
590 static int zs_stats_size_show(struct seq_file *s, void *v)
591 {
592         int i;
593         struct zs_pool *pool = s->private;
594         struct size_class *class;
595         int objs_per_zspage;
596         unsigned long class_almost_full, class_almost_empty;
597         unsigned long obj_allocated, obj_used, pages_used, freeable;
598         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
599         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
600         unsigned long total_freeable = 0;
601
602         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
603                         "class", "size", "almost_full", "almost_empty",
604                         "obj_allocated", "obj_used", "pages_used",
605                         "pages_per_zspage", "freeable");
606
607         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
608                 class = pool->size_class[i];
609
610                 if (class->index != i)
611                         continue;
612
613                 spin_lock(&class->lock);
614                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
615                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
616                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
617                 obj_used = zs_stat_get(class, OBJ_USED);
618                 freeable = zs_can_compact(class);
619                 spin_unlock(&class->lock);
620
621                 objs_per_zspage = class->objs_per_zspage;
622                 pages_used = obj_allocated / objs_per_zspage *
623                                 class->pages_per_zspage;
624
625                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
626                                 " %10lu %10lu %16d %8lu\n",
627                         i, class->size, class_almost_full, class_almost_empty,
628                         obj_allocated, obj_used, pages_used,
629                         class->pages_per_zspage, freeable);
630
631                 total_class_almost_full += class_almost_full;
632                 total_class_almost_empty += class_almost_empty;
633                 total_objs += obj_allocated;
634                 total_used_objs += obj_used;
635                 total_pages += pages_used;
636                 total_freeable += freeable;
637         }
638
639         seq_puts(s, "\n");
640         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
641                         "Total", "", total_class_almost_full,
642                         total_class_almost_empty, total_objs,
643                         total_used_objs, total_pages, "", total_freeable);
644
645         return 0;
646 }
647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
648
649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651         if (!zs_stat_root) {
652                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
653                 return;
654         }
655
656         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
657
658         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
659                             &zs_stats_size_fops);
660 }
661
662 static void zs_pool_stat_destroy(struct zs_pool *pool)
663 {
664         debugfs_remove_recursive(pool->stat_dentry);
665 }
666
667 #else /* CONFIG_ZSMALLOC_STAT */
668 static void __init zs_stat_init(void)
669 {
670 }
671
672 static void __exit zs_stat_exit(void)
673 {
674 }
675
676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
677 {
678 }
679
680 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
681 {
682 }
683 #endif
684
685
686 /*
687  * For each size class, zspages are divided into different groups
688  * depending on how "full" they are. This was done so that we could
689  * easily find empty or nearly empty zspages when we try to shrink
690  * the pool (not yet implemented). This function returns fullness
691  * status of the given page.
692  */
693 static enum fullness_group get_fullness_group(struct size_class *class,
694                                                 struct zspage *zspage)
695 {
696         int inuse, objs_per_zspage;
697         enum fullness_group fg;
698
699         inuse = get_zspage_inuse(zspage);
700         objs_per_zspage = class->objs_per_zspage;
701
702         if (inuse == 0)
703                 fg = ZS_EMPTY;
704         else if (inuse == objs_per_zspage)
705                 fg = ZS_FULL;
706         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
707                 fg = ZS_ALMOST_EMPTY;
708         else
709                 fg = ZS_ALMOST_FULL;
710
711         return fg;
712 }
713
714 /*
715  * Each size class maintains various freelists and zspages are assigned
716  * to one of these freelists based on the number of live objects they
717  * have. This functions inserts the given zspage into the freelist
718  * identified by <class, fullness_group>.
719  */
720 static void insert_zspage(struct size_class *class,
721                                 struct zspage *zspage,
722                                 enum fullness_group fullness)
723 {
724         struct zspage *head;
725
726         zs_stat_inc(class, fullness, 1);
727         head = list_first_entry_or_null(&class->fullness_list[fullness],
728                                         struct zspage, list);
729         /*
730          * We want to see more ZS_FULL pages and less almost empty/full.
731          * Put pages with higher ->inuse first.
732          */
733         if (head) {
734                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
735                         list_add(&zspage->list, &head->list);
736                         return;
737                 }
738         }
739         list_add(&zspage->list, &class->fullness_list[fullness]);
740 }
741
742 /*
743  * This function removes the given zspage from the freelist identified
744  * by <class, fullness_group>.
745  */
746 static void remove_zspage(struct size_class *class,
747                                 struct zspage *zspage,
748                                 enum fullness_group fullness)
749 {
750         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
751         VM_BUG_ON(is_zspage_isolated(zspage));
752
753         list_del_init(&zspage->list);
754         zs_stat_dec(class, fullness, 1);
755 }
756
757 /*
758  * Each size class maintains zspages in different fullness groups depending
759  * on the number of live objects they contain. When allocating or freeing
760  * objects, the fullness status of the page can change, say, from ALMOST_FULL
761  * to ALMOST_EMPTY when freeing an object. This function checks if such
762  * a status change has occurred for the given page and accordingly moves the
763  * page from the freelist of the old fullness group to that of the new
764  * fullness group.
765  */
766 static enum fullness_group fix_fullness_group(struct size_class *class,
767                                                 struct zspage *zspage)
768 {
769         int class_idx;
770         enum fullness_group currfg, newfg;
771
772         get_zspage_mapping(zspage, &class_idx, &currfg);
773         newfg = get_fullness_group(class, zspage);
774         if (newfg == currfg)
775                 goto out;
776
777         if (!is_zspage_isolated(zspage)) {
778                 remove_zspage(class, zspage, currfg);
779                 insert_zspage(class, zspage, newfg);
780         }
781
782         set_zspage_mapping(zspage, class_idx, newfg);
783
784 out:
785         return newfg;
786 }
787
788 /*
789  * We have to decide on how many pages to link together
790  * to form a zspage for each size class. This is important
791  * to reduce wastage due to unusable space left at end of
792  * each zspage which is given as:
793  *     wastage = Zp % class_size
794  *     usage = Zp - wastage
795  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
796  *
797  * For example, for size class of 3/8 * PAGE_SIZE, we should
798  * link together 3 PAGE_SIZE sized pages to form a zspage
799  * since then we can perfectly fit in 8 such objects.
800  */
801 static int get_pages_per_zspage(int class_size)
802 {
803         int i, max_usedpc = 0;
804         /* zspage order which gives maximum used size per KB */
805         int max_usedpc_order = 1;
806
807         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
808                 int zspage_size;
809                 int waste, usedpc;
810
811                 zspage_size = i * PAGE_SIZE;
812                 waste = zspage_size % class_size;
813                 usedpc = (zspage_size - waste) * 100 / zspage_size;
814
815                 if (usedpc > max_usedpc) {
816                         max_usedpc = usedpc;
817                         max_usedpc_order = i;
818                 }
819         }
820
821         return max_usedpc_order;
822 }
823
824 static struct zspage *get_zspage(struct page *page)
825 {
826         struct zspage *zspage = (struct zspage *)page->private;
827
828         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
829         return zspage;
830 }
831
832 static struct page *get_next_page(struct page *page)
833 {
834         if (unlikely(PageHugeObject(page)))
835                 return NULL;
836
837         return page->freelist;
838 }
839
840 /**
841  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
842  * @obj: the encoded object value
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static void obj_to_location(unsigned long obj, struct page **page,
847                                 unsigned int *obj_idx)
848 {
849         obj >>= OBJ_TAG_BITS;
850         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
851         *obj_idx = (obj & OBJ_INDEX_MASK);
852 }
853
854 /**
855  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856  * @page: page object resides in zspage
857  * @obj_idx: object index
858  */
859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
860 {
861         unsigned long obj;
862
863         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
864         obj |= obj_idx & OBJ_INDEX_MASK;
865         obj <<= OBJ_TAG_BITS;
866
867         return obj;
868 }
869
870 static unsigned long handle_to_obj(unsigned long handle)
871 {
872         return *(unsigned long *)handle;
873 }
874
875 static unsigned long obj_to_head(struct page *page, void *obj)
876 {
877         if (unlikely(PageHugeObject(page))) {
878                 VM_BUG_ON_PAGE(!is_first_page(page), page);
879                 return page->index;
880         } else
881                 return *(unsigned long *)obj;
882 }
883
884 static inline int testpin_tag(unsigned long handle)
885 {
886         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
887 }
888
889 static inline int trypin_tag(unsigned long handle)
890 {
891         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
892 }
893
894 static void pin_tag(unsigned long handle) __acquires(bitlock)
895 {
896         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
897 }
898
899 static void unpin_tag(unsigned long handle) __releases(bitlock)
900 {
901         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
902 }
903
904 static void reset_page(struct page *page)
905 {
906         __ClearPageMovable(page);
907         ClearPagePrivate(page);
908         set_page_private(page, 0);
909         page_mapcount_reset(page);
910         ClearPageHugeObject(page);
911         page->freelist = NULL;
912 }
913
914 static int trylock_zspage(struct zspage *zspage)
915 {
916         struct page *cursor, *fail;
917
918         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
919                                         get_next_page(cursor)) {
920                 if (!trylock_page(cursor)) {
921                         fail = cursor;
922                         goto unlock;
923                 }
924         }
925
926         return 1;
927 unlock:
928         for (cursor = get_first_page(zspage); cursor != fail; cursor =
929                                         get_next_page(cursor))
930                 unlock_page(cursor);
931
932         return 0;
933 }
934
935 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
936                                 struct zspage *zspage)
937 {
938         struct page *page, *next;
939         enum fullness_group fg;
940         unsigned int class_idx;
941
942         get_zspage_mapping(zspage, &class_idx, &fg);
943
944         assert_spin_locked(&class->lock);
945
946         VM_BUG_ON(get_zspage_inuse(zspage));
947         VM_BUG_ON(fg != ZS_EMPTY);
948
949         next = page = get_first_page(zspage);
950         do {
951                 VM_BUG_ON_PAGE(!PageLocked(page), page);
952                 next = get_next_page(page);
953                 reset_page(page);
954                 unlock_page(page);
955                 dec_zone_page_state(page, NR_ZSPAGES);
956                 put_page(page);
957                 page = next;
958         } while (page != NULL);
959
960         cache_free_zspage(pool, zspage);
961
962         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
963         atomic_long_sub(class->pages_per_zspage,
964                                         &pool->pages_allocated);
965 }
966
967 static void free_zspage(struct zs_pool *pool, struct size_class *class,
968                                 struct zspage *zspage)
969 {
970         VM_BUG_ON(get_zspage_inuse(zspage));
971         VM_BUG_ON(list_empty(&zspage->list));
972
973         if (!trylock_zspage(zspage)) {
974                 kick_deferred_free(pool);
975                 return;
976         }
977
978         remove_zspage(class, zspage, ZS_EMPTY);
979         __free_zspage(pool, class, zspage);
980 }
981
982 /* Initialize a newly allocated zspage */
983 static void init_zspage(struct size_class *class, struct zspage *zspage)
984 {
985         unsigned int freeobj = 1;
986         unsigned long off = 0;
987         struct page *page = get_first_page(zspage);
988
989         while (page) {
990                 struct page *next_page;
991                 struct link_free *link;
992                 void *vaddr;
993
994                 set_first_obj_offset(page, off);
995
996                 vaddr = kmap_atomic(page);
997                 link = (struct link_free *)vaddr + off / sizeof(*link);
998
999                 while ((off += class->size) < PAGE_SIZE) {
1000                         link->next = freeobj++ << OBJ_TAG_BITS;
1001                         link += class->size / sizeof(*link);
1002                 }
1003
1004                 /*
1005                  * We now come to the last (full or partial) object on this
1006                  * page, which must point to the first object on the next
1007                  * page (if present)
1008                  */
1009                 next_page = get_next_page(page);
1010                 if (next_page) {
1011                         link->next = freeobj++ << OBJ_TAG_BITS;
1012                 } else {
1013                         /*
1014                          * Reset OBJ_TAG_BITS bit to last link to tell
1015                          * whether it's allocated object or not.
1016                          */
1017                         link->next = -1UL << OBJ_TAG_BITS;
1018                 }
1019                 kunmap_atomic(vaddr);
1020                 page = next_page;
1021                 off %= PAGE_SIZE;
1022         }
1023
1024         set_freeobj(zspage, 0);
1025 }
1026
1027 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028                                 struct page *pages[])
1029 {
1030         int i;
1031         struct page *page;
1032         struct page *prev_page = NULL;
1033         int nr_pages = class->pages_per_zspage;
1034
1035         /*
1036          * Allocate individual pages and link them together as:
1037          * 1. all pages are linked together using page->freelist
1038          * 2. each sub-page point to zspage using page->private
1039          *
1040          * we set PG_private to identify the first page (i.e. no other sub-page
1041          * has this flag set).
1042          */
1043         for (i = 0; i < nr_pages; i++) {
1044                 page = pages[i];
1045                 set_page_private(page, (unsigned long)zspage);
1046                 page->freelist = NULL;
1047                 if (i == 0) {
1048                         zspage->first_page = page;
1049                         SetPagePrivate(page);
1050                         if (unlikely(class->objs_per_zspage == 1 &&
1051                                         class->pages_per_zspage == 1))
1052                                 SetPageHugeObject(page);
1053                 } else {
1054                         prev_page->freelist = page;
1055                 }
1056                 prev_page = page;
1057         }
1058 }
1059
1060 /*
1061  * Allocate a zspage for the given size class
1062  */
1063 static struct zspage *alloc_zspage(struct zs_pool *pool,
1064                                         struct size_class *class,
1065                                         gfp_t gfp)
1066 {
1067         int i;
1068         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070
1071         if (!zspage)
1072                 return NULL;
1073
1074         memset(zspage, 0, sizeof(struct zspage));
1075         zspage->magic = ZSPAGE_MAGIC;
1076         migrate_lock_init(zspage);
1077
1078         for (i = 0; i < class->pages_per_zspage; i++) {
1079                 struct page *page;
1080
1081                 page = alloc_page(gfp);
1082                 if (!page) {
1083                         while (--i >= 0) {
1084                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1085                                 __free_page(pages[i]);
1086                         }
1087                         cache_free_zspage(pool, zspage);
1088                         return NULL;
1089                 }
1090
1091                 inc_zone_page_state(page, NR_ZSPAGES);
1092                 pages[i] = page;
1093         }
1094
1095         create_page_chain(class, zspage, pages);
1096         init_zspage(class, zspage);
1097
1098         return zspage;
1099 }
1100
1101 static struct zspage *find_get_zspage(struct size_class *class)
1102 {
1103         int i;
1104         struct zspage *zspage;
1105
1106         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1108                                 struct zspage, list);
1109                 if (zspage)
1110                         break;
1111         }
1112
1113         return zspage;
1114 }
1115
1116 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
1117 static inline int __zs_cpu_up(struct mapping_area *area)
1118 {
1119         /*
1120          * Make sure we don't leak memory if a cpu UP notification
1121          * and zs_init() race and both call zs_cpu_up() on the same cpu
1122          */
1123         if (area->vm)
1124                 return 0;
1125         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1126         if (!area->vm)
1127                 return -ENOMEM;
1128         return 0;
1129 }
1130
1131 static inline void __zs_cpu_down(struct mapping_area *area)
1132 {
1133         if (area->vm)
1134                 free_vm_area(area->vm);
1135         area->vm = NULL;
1136 }
1137
1138 static inline void *__zs_map_object(struct mapping_area *area,
1139                                 struct page *pages[2], int off, int size)
1140 {
1141         unsigned long addr = (unsigned long)area->vm->addr;
1142
1143         BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0);
1144         area->vm_addr = area->vm->addr;
1145         return area->vm_addr + off;
1146 }
1147
1148 static inline void __zs_unmap_object(struct mapping_area *area,
1149                                 struct page *pages[2], int off, int size)
1150 {
1151         unsigned long addr = (unsigned long)area->vm_addr;
1152
1153         unmap_kernel_range(addr, PAGE_SIZE * 2);
1154 }
1155
1156 #else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1157
1158 static inline int __zs_cpu_up(struct mapping_area *area)
1159 {
1160         /*
1161          * Make sure we don't leak memory if a cpu UP notification
1162          * and zs_init() race and both call zs_cpu_up() on the same cpu
1163          */
1164         if (area->vm_buf)
1165                 return 0;
1166         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1167         if (!area->vm_buf)
1168                 return -ENOMEM;
1169         return 0;
1170 }
1171
1172 static inline void __zs_cpu_down(struct mapping_area *area)
1173 {
1174         kfree(area->vm_buf);
1175         area->vm_buf = NULL;
1176 }
1177
1178 static void *__zs_map_object(struct mapping_area *area,
1179                         struct page *pages[2], int off, int size)
1180 {
1181         int sizes[2];
1182         void *addr;
1183         char *buf = area->vm_buf;
1184
1185         /* disable page faults to match kmap_atomic() return conditions */
1186         pagefault_disable();
1187
1188         /* no read fastpath */
1189         if (area->vm_mm == ZS_MM_WO)
1190                 goto out;
1191
1192         sizes[0] = PAGE_SIZE - off;
1193         sizes[1] = size - sizes[0];
1194
1195         /* copy object to per-cpu buffer */
1196         addr = kmap_atomic(pages[0]);
1197         memcpy(buf, addr + off, sizes[0]);
1198         kunmap_atomic(addr);
1199         addr = kmap_atomic(pages[1]);
1200         memcpy(buf + sizes[0], addr, sizes[1]);
1201         kunmap_atomic(addr);
1202 out:
1203         return area->vm_buf;
1204 }
1205
1206 static void __zs_unmap_object(struct mapping_area *area,
1207                         struct page *pages[2], int off, int size)
1208 {
1209         int sizes[2];
1210         void *addr;
1211         char *buf;
1212
1213         /* no write fastpath */
1214         if (area->vm_mm == ZS_MM_RO)
1215                 goto out;
1216
1217         buf = area->vm_buf;
1218         buf = buf + ZS_HANDLE_SIZE;
1219         size -= ZS_HANDLE_SIZE;
1220         off += ZS_HANDLE_SIZE;
1221
1222         sizes[0] = PAGE_SIZE - off;
1223         sizes[1] = size - sizes[0];
1224
1225         /* copy per-cpu buffer to object */
1226         addr = kmap_atomic(pages[0]);
1227         memcpy(addr + off, buf, sizes[0]);
1228         kunmap_atomic(addr);
1229         addr = kmap_atomic(pages[1]);
1230         memcpy(addr, buf + sizes[0], sizes[1]);
1231         kunmap_atomic(addr);
1232
1233 out:
1234         /* enable page faults to match kunmap_atomic() return conditions */
1235         pagefault_enable();
1236 }
1237
1238 #endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1239
1240 static int zs_cpu_prepare(unsigned int cpu)
1241 {
1242         struct mapping_area *area;
1243
1244         area = &per_cpu(zs_map_area, cpu);
1245         return __zs_cpu_up(area);
1246 }
1247
1248 static int zs_cpu_dead(unsigned int cpu)
1249 {
1250         struct mapping_area *area;
1251
1252         area = &per_cpu(zs_map_area, cpu);
1253         __zs_cpu_down(area);
1254         return 0;
1255 }
1256
1257 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1258                                         int objs_per_zspage)
1259 {
1260         if (prev->pages_per_zspage == pages_per_zspage &&
1261                 prev->objs_per_zspage == objs_per_zspage)
1262                 return true;
1263
1264         return false;
1265 }
1266
1267 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1268 {
1269         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1270 }
1271
1272 unsigned long zs_get_total_pages(struct zs_pool *pool)
1273 {
1274         return atomic_long_read(&pool->pages_allocated);
1275 }
1276 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1277
1278 /**
1279  * zs_map_object - get address of allocated object from handle.
1280  * @pool: pool from which the object was allocated
1281  * @handle: handle returned from zs_malloc
1282  * @mm: maping mode to use
1283  *
1284  * Before using an object allocated from zs_malloc, it must be mapped using
1285  * this function. When done with the object, it must be unmapped using
1286  * zs_unmap_object.
1287  *
1288  * Only one object can be mapped per cpu at a time. There is no protection
1289  * against nested mappings.
1290  *
1291  * This function returns with preemption and page faults disabled.
1292  */
1293 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1294                         enum zs_mapmode mm)
1295 {
1296         struct zspage *zspage;
1297         struct page *page;
1298         unsigned long obj, off;
1299         unsigned int obj_idx;
1300
1301         unsigned int class_idx;
1302         enum fullness_group fg;
1303         struct size_class *class;
1304         struct mapping_area *area;
1305         struct page *pages[2];
1306         void *ret;
1307
1308         /*
1309          * Because we use per-cpu mapping areas shared among the
1310          * pools/users, we can't allow mapping in interrupt context
1311          * because it can corrupt another users mappings.
1312          */
1313         BUG_ON(in_interrupt());
1314
1315         /* From now on, migration cannot move the object */
1316         pin_tag(handle);
1317
1318         obj = handle_to_obj(handle);
1319         obj_to_location(obj, &page, &obj_idx);
1320         zspage = get_zspage(page);
1321
1322         /* migration cannot move any subpage in this zspage */
1323         migrate_read_lock(zspage);
1324
1325         get_zspage_mapping(zspage, &class_idx, &fg);
1326         class = pool->size_class[class_idx];
1327         off = (class->size * obj_idx) & ~PAGE_MASK;
1328
1329         area = &get_cpu_var(zs_map_area);
1330         area->vm_mm = mm;
1331         if (off + class->size <= PAGE_SIZE) {
1332                 /* this object is contained entirely within a page */
1333                 area->vm_addr = kmap_atomic(page);
1334                 ret = area->vm_addr + off;
1335                 goto out;
1336         }
1337
1338         /* this object spans two pages */
1339         pages[0] = page;
1340         pages[1] = get_next_page(page);
1341         BUG_ON(!pages[1]);
1342
1343         ret = __zs_map_object(area, pages, off, class->size);
1344 out:
1345         if (likely(!PageHugeObject(page)))
1346                 ret += ZS_HANDLE_SIZE;
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(zs_map_object);
1351
1352 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1353 {
1354         struct zspage *zspage;
1355         struct page *page;
1356         unsigned long obj, off;
1357         unsigned int obj_idx;
1358
1359         unsigned int class_idx;
1360         enum fullness_group fg;
1361         struct size_class *class;
1362         struct mapping_area *area;
1363
1364         obj = handle_to_obj(handle);
1365         obj_to_location(obj, &page, &obj_idx);
1366         zspage = get_zspage(page);
1367         get_zspage_mapping(zspage, &class_idx, &fg);
1368         class = pool->size_class[class_idx];
1369         off = (class->size * obj_idx) & ~PAGE_MASK;
1370
1371         area = this_cpu_ptr(&zs_map_area);
1372         if (off + class->size <= PAGE_SIZE)
1373                 kunmap_atomic(area->vm_addr);
1374         else {
1375                 struct page *pages[2];
1376
1377                 pages[0] = page;
1378                 pages[1] = get_next_page(page);
1379                 BUG_ON(!pages[1]);
1380
1381                 __zs_unmap_object(area, pages, off, class->size);
1382         }
1383         put_cpu_var(zs_map_area);
1384
1385         migrate_read_unlock(zspage);
1386         unpin_tag(handle);
1387 }
1388 EXPORT_SYMBOL_GPL(zs_unmap_object);
1389
1390 /**
1391  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1392  *                        zsmalloc &size_class.
1393  * @pool: zsmalloc pool to use
1394  *
1395  * The function returns the size of the first huge class - any object of equal
1396  * or bigger size will be stored in zspage consisting of a single physical
1397  * page.
1398  *
1399  * Context: Any context.
1400  *
1401  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1402  */
1403 size_t zs_huge_class_size(struct zs_pool *pool)
1404 {
1405         return huge_class_size;
1406 }
1407 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1408
1409 static unsigned long obj_malloc(struct size_class *class,
1410                                 struct zspage *zspage, unsigned long handle)
1411 {
1412         int i, nr_page, offset;
1413         unsigned long obj;
1414         struct link_free *link;
1415
1416         struct page *m_page;
1417         unsigned long m_offset;
1418         void *vaddr;
1419
1420         handle |= OBJ_ALLOCATED_TAG;
1421         obj = get_freeobj(zspage);
1422
1423         offset = obj * class->size;
1424         nr_page = offset >> PAGE_SHIFT;
1425         m_offset = offset & ~PAGE_MASK;
1426         m_page = get_first_page(zspage);
1427
1428         for (i = 0; i < nr_page; i++)
1429                 m_page = get_next_page(m_page);
1430
1431         vaddr = kmap_atomic(m_page);
1432         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1433         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1434         if (likely(!PageHugeObject(m_page)))
1435                 /* record handle in the header of allocated chunk */
1436                 link->handle = handle;
1437         else
1438                 /* record handle to page->index */
1439                 zspage->first_page->index = handle;
1440
1441         kunmap_atomic(vaddr);
1442         mod_zspage_inuse(zspage, 1);
1443         zs_stat_inc(class, OBJ_USED, 1);
1444
1445         obj = location_to_obj(m_page, obj);
1446
1447         return obj;
1448 }
1449
1450
1451 /**
1452  * zs_malloc - Allocate block of given size from pool.
1453  * @pool: pool to allocate from
1454  * @size: size of block to allocate
1455  * @gfp: gfp flags when allocating object
1456  *
1457  * On success, handle to the allocated object is returned,
1458  * otherwise 0.
1459  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1460  */
1461 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1462 {
1463         unsigned long handle, obj;
1464         struct size_class *class;
1465         enum fullness_group newfg;
1466         struct zspage *zspage;
1467
1468         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1469                 return 0;
1470
1471         handle = cache_alloc_handle(pool, gfp);
1472         if (!handle)
1473                 return 0;
1474
1475         /* extra space in chunk to keep the handle */
1476         size += ZS_HANDLE_SIZE;
1477         class = pool->size_class[get_size_class_index(size)];
1478
1479         spin_lock(&class->lock);
1480         zspage = find_get_zspage(class);
1481         if (likely(zspage)) {
1482                 obj = obj_malloc(class, zspage, handle);
1483                 /* Now move the zspage to another fullness group, if required */
1484                 fix_fullness_group(class, zspage);
1485                 record_obj(handle, obj);
1486                 spin_unlock(&class->lock);
1487
1488                 return handle;
1489         }
1490
1491         spin_unlock(&class->lock);
1492
1493         zspage = alloc_zspage(pool, class, gfp);
1494         if (!zspage) {
1495                 cache_free_handle(pool, handle);
1496                 return 0;
1497         }
1498
1499         spin_lock(&class->lock);
1500         obj = obj_malloc(class, zspage, handle);
1501         newfg = get_fullness_group(class, zspage);
1502         insert_zspage(class, zspage, newfg);
1503         set_zspage_mapping(zspage, class->index, newfg);
1504         record_obj(handle, obj);
1505         atomic_long_add(class->pages_per_zspage,
1506                                 &pool->pages_allocated);
1507         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1508
1509         /* We completely set up zspage so mark them as movable */
1510         SetZsPageMovable(pool, zspage);
1511         spin_unlock(&class->lock);
1512
1513         return handle;
1514 }
1515 EXPORT_SYMBOL_GPL(zs_malloc);
1516
1517 static void obj_free(struct size_class *class, unsigned long obj)
1518 {
1519         struct link_free *link;
1520         struct zspage *zspage;
1521         struct page *f_page;
1522         unsigned long f_offset;
1523         unsigned int f_objidx;
1524         void *vaddr;
1525
1526         obj &= ~OBJ_ALLOCATED_TAG;
1527         obj_to_location(obj, &f_page, &f_objidx);
1528         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1529         zspage = get_zspage(f_page);
1530
1531         vaddr = kmap_atomic(f_page);
1532
1533         /* Insert this object in containing zspage's freelist */
1534         link = (struct link_free *)(vaddr + f_offset);
1535         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1536         kunmap_atomic(vaddr);
1537         set_freeobj(zspage, f_objidx);
1538         mod_zspage_inuse(zspage, -1);
1539         zs_stat_dec(class, OBJ_USED, 1);
1540 }
1541
1542 void zs_free(struct zs_pool *pool, unsigned long handle)
1543 {
1544         struct zspage *zspage;
1545         struct page *f_page;
1546         unsigned long obj;
1547         unsigned int f_objidx;
1548         int class_idx;
1549         struct size_class *class;
1550         enum fullness_group fullness;
1551         bool isolated;
1552
1553         if (unlikely(!handle))
1554                 return;
1555
1556         pin_tag(handle);
1557         obj = handle_to_obj(handle);
1558         obj_to_location(obj, &f_page, &f_objidx);
1559         zspage = get_zspage(f_page);
1560
1561         migrate_read_lock(zspage);
1562
1563         get_zspage_mapping(zspage, &class_idx, &fullness);
1564         class = pool->size_class[class_idx];
1565
1566         spin_lock(&class->lock);
1567         obj_free(class, obj);
1568         fullness = fix_fullness_group(class, zspage);
1569         if (fullness != ZS_EMPTY) {
1570                 migrate_read_unlock(zspage);
1571                 goto out;
1572         }
1573
1574         isolated = is_zspage_isolated(zspage);
1575         migrate_read_unlock(zspage);
1576         /* If zspage is isolated, zs_page_putback will free the zspage */
1577         if (likely(!isolated))
1578                 free_zspage(pool, class, zspage);
1579 out:
1580
1581         spin_unlock(&class->lock);
1582         unpin_tag(handle);
1583         cache_free_handle(pool, handle);
1584 }
1585 EXPORT_SYMBOL_GPL(zs_free);
1586
1587 static void zs_object_copy(struct size_class *class, unsigned long dst,
1588                                 unsigned long src)
1589 {
1590         struct page *s_page, *d_page;
1591         unsigned int s_objidx, d_objidx;
1592         unsigned long s_off, d_off;
1593         void *s_addr, *d_addr;
1594         int s_size, d_size, size;
1595         int written = 0;
1596
1597         s_size = d_size = class->size;
1598
1599         obj_to_location(src, &s_page, &s_objidx);
1600         obj_to_location(dst, &d_page, &d_objidx);
1601
1602         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1603         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1604
1605         if (s_off + class->size > PAGE_SIZE)
1606                 s_size = PAGE_SIZE - s_off;
1607
1608         if (d_off + class->size > PAGE_SIZE)
1609                 d_size = PAGE_SIZE - d_off;
1610
1611         s_addr = kmap_atomic(s_page);
1612         d_addr = kmap_atomic(d_page);
1613
1614         while (1) {
1615                 size = min(s_size, d_size);
1616                 memcpy(d_addr + d_off, s_addr + s_off, size);
1617                 written += size;
1618
1619                 if (written == class->size)
1620                         break;
1621
1622                 s_off += size;
1623                 s_size -= size;
1624                 d_off += size;
1625                 d_size -= size;
1626
1627                 if (s_off >= PAGE_SIZE) {
1628                         kunmap_atomic(d_addr);
1629                         kunmap_atomic(s_addr);
1630                         s_page = get_next_page(s_page);
1631                         s_addr = kmap_atomic(s_page);
1632                         d_addr = kmap_atomic(d_page);
1633                         s_size = class->size - written;
1634                         s_off = 0;
1635                 }
1636
1637                 if (d_off >= PAGE_SIZE) {
1638                         kunmap_atomic(d_addr);
1639                         d_page = get_next_page(d_page);
1640                         d_addr = kmap_atomic(d_page);
1641                         d_size = class->size - written;
1642                         d_off = 0;
1643                 }
1644         }
1645
1646         kunmap_atomic(d_addr);
1647         kunmap_atomic(s_addr);
1648 }
1649
1650 /*
1651  * Find alloced object in zspage from index object and
1652  * return handle.
1653  */
1654 static unsigned long find_alloced_obj(struct size_class *class,
1655                                         struct page *page, int *obj_idx)
1656 {
1657         unsigned long head;
1658         int offset = 0;
1659         int index = *obj_idx;
1660         unsigned long handle = 0;
1661         void *addr = kmap_atomic(page);
1662
1663         offset = get_first_obj_offset(page);
1664         offset += class->size * index;
1665
1666         while (offset < PAGE_SIZE) {
1667                 head = obj_to_head(page, addr + offset);
1668                 if (head & OBJ_ALLOCATED_TAG) {
1669                         handle = head & ~OBJ_ALLOCATED_TAG;
1670                         if (trypin_tag(handle))
1671                                 break;
1672                         handle = 0;
1673                 }
1674
1675                 offset += class->size;
1676                 index++;
1677         }
1678
1679         kunmap_atomic(addr);
1680
1681         *obj_idx = index;
1682
1683         return handle;
1684 }
1685
1686 struct zs_compact_control {
1687         /* Source spage for migration which could be a subpage of zspage */
1688         struct page *s_page;
1689         /* Destination page for migration which should be a first page
1690          * of zspage. */
1691         struct page *d_page;
1692          /* Starting object index within @s_page which used for live object
1693           * in the subpage. */
1694         int obj_idx;
1695 };
1696
1697 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1698                                 struct zs_compact_control *cc)
1699 {
1700         unsigned long used_obj, free_obj;
1701         unsigned long handle;
1702         struct page *s_page = cc->s_page;
1703         struct page *d_page = cc->d_page;
1704         int obj_idx = cc->obj_idx;
1705         int ret = 0;
1706
1707         while (1) {
1708                 handle = find_alloced_obj(class, s_page, &obj_idx);
1709                 if (!handle) {
1710                         s_page = get_next_page(s_page);
1711                         if (!s_page)
1712                                 break;
1713                         obj_idx = 0;
1714                         continue;
1715                 }
1716
1717                 /* Stop if there is no more space */
1718                 if (zspage_full(class, get_zspage(d_page))) {
1719                         unpin_tag(handle);
1720                         ret = -ENOMEM;
1721                         break;
1722                 }
1723
1724                 used_obj = handle_to_obj(handle);
1725                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1726                 zs_object_copy(class, free_obj, used_obj);
1727                 obj_idx++;
1728                 /*
1729                  * record_obj updates handle's value to free_obj and it will
1730                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1731                  * breaks synchronization using pin_tag(e,g, zs_free) so
1732                  * let's keep the lock bit.
1733                  */
1734                 free_obj |= BIT(HANDLE_PIN_BIT);
1735                 record_obj(handle, free_obj);
1736                 unpin_tag(handle);
1737                 obj_free(class, used_obj);
1738         }
1739
1740         /* Remember last position in this iteration */
1741         cc->s_page = s_page;
1742         cc->obj_idx = obj_idx;
1743
1744         return ret;
1745 }
1746
1747 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1748 {
1749         int i;
1750         struct zspage *zspage;
1751         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1752
1753         if (!source) {
1754                 fg[0] = ZS_ALMOST_FULL;
1755                 fg[1] = ZS_ALMOST_EMPTY;
1756         }
1757
1758         for (i = 0; i < 2; i++) {
1759                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1760                                                         struct zspage, list);
1761                 if (zspage) {
1762                         VM_BUG_ON(is_zspage_isolated(zspage));
1763                         remove_zspage(class, zspage, fg[i]);
1764                         return zspage;
1765                 }
1766         }
1767
1768         return zspage;
1769 }
1770
1771 /*
1772  * putback_zspage - add @zspage into right class's fullness list
1773  * @class: destination class
1774  * @zspage: target page
1775  *
1776  * Return @zspage's fullness_group
1777  */
1778 static enum fullness_group putback_zspage(struct size_class *class,
1779                         struct zspage *zspage)
1780 {
1781         enum fullness_group fullness;
1782
1783         VM_BUG_ON(is_zspage_isolated(zspage));
1784
1785         fullness = get_fullness_group(class, zspage);
1786         insert_zspage(class, zspage, fullness);
1787         set_zspage_mapping(zspage, class->index, fullness);
1788
1789         return fullness;
1790 }
1791
1792 #ifdef CONFIG_COMPACTION
1793 /*
1794  * To prevent zspage destroy during migration, zspage freeing should
1795  * hold locks of all pages in the zspage.
1796  */
1797 static void lock_zspage(struct zspage *zspage)
1798 {
1799         struct page *page = get_first_page(zspage);
1800
1801         do {
1802                 lock_page(page);
1803         } while ((page = get_next_page(page)) != NULL);
1804 }
1805
1806 static int zs_init_fs_context(struct fs_context *fc)
1807 {
1808         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1809 }
1810
1811 static struct file_system_type zsmalloc_fs = {
1812         .name           = "zsmalloc",
1813         .init_fs_context = zs_init_fs_context,
1814         .kill_sb        = kill_anon_super,
1815 };
1816
1817 static int zsmalloc_mount(void)
1818 {
1819         int ret = 0;
1820
1821         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1822         if (IS_ERR(zsmalloc_mnt))
1823                 ret = PTR_ERR(zsmalloc_mnt);
1824
1825         return ret;
1826 }
1827
1828 static void zsmalloc_unmount(void)
1829 {
1830         kern_unmount(zsmalloc_mnt);
1831 }
1832
1833 static void migrate_lock_init(struct zspage *zspage)
1834 {
1835         rwlock_init(&zspage->lock);
1836 }
1837
1838 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1839 {
1840         read_lock(&zspage->lock);
1841 }
1842
1843 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1844 {
1845         read_unlock(&zspage->lock);
1846 }
1847
1848 static void migrate_write_lock(struct zspage *zspage)
1849 {
1850         write_lock(&zspage->lock);
1851 }
1852
1853 static void migrate_write_unlock(struct zspage *zspage)
1854 {
1855         write_unlock(&zspage->lock);
1856 }
1857
1858 /* Number of isolated subpage for *page migration* in this zspage */
1859 static void inc_zspage_isolation(struct zspage *zspage)
1860 {
1861         zspage->isolated++;
1862 }
1863
1864 static void dec_zspage_isolation(struct zspage *zspage)
1865 {
1866         zspage->isolated--;
1867 }
1868
1869 static void putback_zspage_deferred(struct zs_pool *pool,
1870                                     struct size_class *class,
1871                                     struct zspage *zspage)
1872 {
1873         enum fullness_group fg;
1874
1875         fg = putback_zspage(class, zspage);
1876         if (fg == ZS_EMPTY)
1877                 schedule_work(&pool->free_work);
1878
1879 }
1880
1881 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1882 {
1883         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1884         atomic_long_dec(&pool->isolated_pages);
1885         /*
1886          * There's no possibility of racing, since wait_for_isolated_drain()
1887          * checks the isolated count under &class->lock after enqueuing
1888          * on migration_wait.
1889          */
1890         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1891                 wake_up_all(&pool->migration_wait);
1892 }
1893
1894 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1895                                 struct page *newpage, struct page *oldpage)
1896 {
1897         struct page *page;
1898         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1899         int idx = 0;
1900
1901         page = get_first_page(zspage);
1902         do {
1903                 if (page == oldpage)
1904                         pages[idx] = newpage;
1905                 else
1906                         pages[idx] = page;
1907                 idx++;
1908         } while ((page = get_next_page(page)) != NULL);
1909
1910         create_page_chain(class, zspage, pages);
1911         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1912         if (unlikely(PageHugeObject(oldpage)))
1913                 newpage->index = oldpage->index;
1914         __SetPageMovable(newpage, page_mapping(oldpage));
1915 }
1916
1917 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1918 {
1919         struct zs_pool *pool;
1920         struct size_class *class;
1921         int class_idx;
1922         enum fullness_group fullness;
1923         struct zspage *zspage;
1924         struct address_space *mapping;
1925
1926         /*
1927          * Page is locked so zspage couldn't be destroyed. For detail, look at
1928          * lock_zspage in free_zspage.
1929          */
1930         VM_BUG_ON_PAGE(!PageMovable(page), page);
1931         VM_BUG_ON_PAGE(PageIsolated(page), page);
1932
1933         zspage = get_zspage(page);
1934
1935         /*
1936          * Without class lock, fullness could be stale while class_idx is okay
1937          * because class_idx is constant unless page is freed so we should get
1938          * fullness again under class lock.
1939          */
1940         get_zspage_mapping(zspage, &class_idx, &fullness);
1941         mapping = page_mapping(page);
1942         pool = mapping->private_data;
1943         class = pool->size_class[class_idx];
1944
1945         spin_lock(&class->lock);
1946         if (get_zspage_inuse(zspage) == 0) {
1947                 spin_unlock(&class->lock);
1948                 return false;
1949         }
1950
1951         /* zspage is isolated for object migration */
1952         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1953                 spin_unlock(&class->lock);
1954                 return false;
1955         }
1956
1957         /*
1958          * If this is first time isolation for the zspage, isolate zspage from
1959          * size_class to prevent further object allocation from the zspage.
1960          */
1961         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1962                 get_zspage_mapping(zspage, &class_idx, &fullness);
1963                 atomic_long_inc(&pool->isolated_pages);
1964                 remove_zspage(class, zspage, fullness);
1965         }
1966
1967         inc_zspage_isolation(zspage);
1968         spin_unlock(&class->lock);
1969
1970         return true;
1971 }
1972
1973 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1974                 struct page *page, enum migrate_mode mode)
1975 {
1976         struct zs_pool *pool;
1977         struct size_class *class;
1978         int class_idx;
1979         enum fullness_group fullness;
1980         struct zspage *zspage;
1981         struct page *dummy;
1982         void *s_addr, *d_addr, *addr;
1983         int offset, pos;
1984         unsigned long handle, head;
1985         unsigned long old_obj, new_obj;
1986         unsigned int obj_idx;
1987         int ret = -EAGAIN;
1988
1989         /*
1990          * We cannot support the _NO_COPY case here, because copy needs to
1991          * happen under the zs lock, which does not work with
1992          * MIGRATE_SYNC_NO_COPY workflow.
1993          */
1994         if (mode == MIGRATE_SYNC_NO_COPY)
1995                 return -EINVAL;
1996
1997         VM_BUG_ON_PAGE(!PageMovable(page), page);
1998         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1999
2000         zspage = get_zspage(page);
2001
2002         /* Concurrent compactor cannot migrate any subpage in zspage */
2003         migrate_write_lock(zspage);
2004         get_zspage_mapping(zspage, &class_idx, &fullness);
2005         pool = mapping->private_data;
2006         class = pool->size_class[class_idx];
2007         offset = get_first_obj_offset(page);
2008
2009         spin_lock(&class->lock);
2010         if (!get_zspage_inuse(zspage)) {
2011                 /*
2012                  * Set "offset" to end of the page so that every loops
2013                  * skips unnecessary object scanning.
2014                  */
2015                 offset = PAGE_SIZE;
2016         }
2017
2018         pos = offset;
2019         s_addr = kmap_atomic(page);
2020         while (pos < PAGE_SIZE) {
2021                 head = obj_to_head(page, s_addr + pos);
2022                 if (head & OBJ_ALLOCATED_TAG) {
2023                         handle = head & ~OBJ_ALLOCATED_TAG;
2024                         if (!trypin_tag(handle))
2025                                 goto unpin_objects;
2026                 }
2027                 pos += class->size;
2028         }
2029
2030         /*
2031          * Here, any user cannot access all objects in the zspage so let's move.
2032          */
2033         d_addr = kmap_atomic(newpage);
2034         memcpy(d_addr, s_addr, PAGE_SIZE);
2035         kunmap_atomic(d_addr);
2036
2037         for (addr = s_addr + offset; addr < s_addr + pos;
2038                                         addr += class->size) {
2039                 head = obj_to_head(page, addr);
2040                 if (head & OBJ_ALLOCATED_TAG) {
2041                         handle = head & ~OBJ_ALLOCATED_TAG;
2042                         if (!testpin_tag(handle))
2043                                 BUG();
2044
2045                         old_obj = handle_to_obj(handle);
2046                         obj_to_location(old_obj, &dummy, &obj_idx);
2047                         new_obj = (unsigned long)location_to_obj(newpage,
2048                                                                 obj_idx);
2049                         new_obj |= BIT(HANDLE_PIN_BIT);
2050                         record_obj(handle, new_obj);
2051                 }
2052         }
2053
2054         replace_sub_page(class, zspage, newpage, page);
2055         get_page(newpage);
2056
2057         dec_zspage_isolation(zspage);
2058
2059         /*
2060          * Page migration is done so let's putback isolated zspage to
2061          * the list if @page is final isolated subpage in the zspage.
2062          */
2063         if (!is_zspage_isolated(zspage)) {
2064                 /*
2065                  * We cannot race with zs_destroy_pool() here because we wait
2066                  * for isolation to hit zero before we start destroying.
2067                  * Also, we ensure that everyone can see pool->destroying before
2068                  * we start waiting.
2069                  */
2070                 putback_zspage_deferred(pool, class, zspage);
2071                 zs_pool_dec_isolated(pool);
2072         }
2073
2074         if (page_zone(newpage) != page_zone(page)) {
2075                 dec_zone_page_state(page, NR_ZSPAGES);
2076                 inc_zone_page_state(newpage, NR_ZSPAGES);
2077         }
2078
2079         reset_page(page);
2080         put_page(page);
2081         page = newpage;
2082
2083         ret = MIGRATEPAGE_SUCCESS;
2084 unpin_objects:
2085         for (addr = s_addr + offset; addr < s_addr + pos;
2086                                                 addr += class->size) {
2087                 head = obj_to_head(page, addr);
2088                 if (head & OBJ_ALLOCATED_TAG) {
2089                         handle = head & ~OBJ_ALLOCATED_TAG;
2090                         if (!testpin_tag(handle))
2091                                 BUG();
2092                         unpin_tag(handle);
2093                 }
2094         }
2095         kunmap_atomic(s_addr);
2096         spin_unlock(&class->lock);
2097         migrate_write_unlock(zspage);
2098
2099         return ret;
2100 }
2101
2102 static void zs_page_putback(struct page *page)
2103 {
2104         struct zs_pool *pool;
2105         struct size_class *class;
2106         int class_idx;
2107         enum fullness_group fg;
2108         struct address_space *mapping;
2109         struct zspage *zspage;
2110
2111         VM_BUG_ON_PAGE(!PageMovable(page), page);
2112         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2113
2114         zspage = get_zspage(page);
2115         get_zspage_mapping(zspage, &class_idx, &fg);
2116         mapping = page_mapping(page);
2117         pool = mapping->private_data;
2118         class = pool->size_class[class_idx];
2119
2120         spin_lock(&class->lock);
2121         dec_zspage_isolation(zspage);
2122         if (!is_zspage_isolated(zspage)) {
2123                 /*
2124                  * Due to page_lock, we cannot free zspage immediately
2125                  * so let's defer.
2126                  */
2127                 putback_zspage_deferred(pool, class, zspage);
2128                 zs_pool_dec_isolated(pool);
2129         }
2130         spin_unlock(&class->lock);
2131 }
2132
2133 static const struct address_space_operations zsmalloc_aops = {
2134         .isolate_page = zs_page_isolate,
2135         .migratepage = zs_page_migrate,
2136         .putback_page = zs_page_putback,
2137 };
2138
2139 static int zs_register_migration(struct zs_pool *pool)
2140 {
2141         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2142         if (IS_ERR(pool->inode)) {
2143                 pool->inode = NULL;
2144                 return 1;
2145         }
2146
2147         pool->inode->i_mapping->private_data = pool;
2148         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2149         return 0;
2150 }
2151
2152 static bool pool_isolated_are_drained(struct zs_pool *pool)
2153 {
2154         return atomic_long_read(&pool->isolated_pages) == 0;
2155 }
2156
2157 /* Function for resolving migration */
2158 static void wait_for_isolated_drain(struct zs_pool *pool)
2159 {
2160
2161         /*
2162          * We're in the process of destroying the pool, so there are no
2163          * active allocations. zs_page_isolate() fails for completely free
2164          * zspages, so we need only wait for the zs_pool's isolated
2165          * count to hit zero.
2166          */
2167         wait_event(pool->migration_wait,
2168                    pool_isolated_are_drained(pool));
2169 }
2170
2171 static void zs_unregister_migration(struct zs_pool *pool)
2172 {
2173         pool->destroying = true;
2174         /*
2175          * We need a memory barrier here to ensure global visibility of
2176          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2177          * case we don't care, or it will be > 0 and pool->destroying will
2178          * ensure that we wake up once isolation hits 0.
2179          */
2180         smp_mb();
2181         wait_for_isolated_drain(pool); /* This can block */
2182         flush_work(&pool->free_work);
2183         iput(pool->inode);
2184 }
2185
2186 /*
2187  * Caller should hold page_lock of all pages in the zspage
2188  * In here, we cannot use zspage meta data.
2189  */
2190 static void async_free_zspage(struct work_struct *work)
2191 {
2192         int i;
2193         struct size_class *class;
2194         unsigned int class_idx;
2195         enum fullness_group fullness;
2196         struct zspage *zspage, *tmp;
2197         LIST_HEAD(free_pages);
2198         struct zs_pool *pool = container_of(work, struct zs_pool,
2199                                         free_work);
2200
2201         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2202                 class = pool->size_class[i];
2203                 if (class->index != i)
2204                         continue;
2205
2206                 spin_lock(&class->lock);
2207                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2208                 spin_unlock(&class->lock);
2209         }
2210
2211
2212         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2213                 list_del(&zspage->list);
2214                 lock_zspage(zspage);
2215
2216                 get_zspage_mapping(zspage, &class_idx, &fullness);
2217                 VM_BUG_ON(fullness != ZS_EMPTY);
2218                 class = pool->size_class[class_idx];
2219                 spin_lock(&class->lock);
2220                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2221                 spin_unlock(&class->lock);
2222         }
2223 };
2224
2225 static void kick_deferred_free(struct zs_pool *pool)
2226 {
2227         schedule_work(&pool->free_work);
2228 }
2229
2230 static void init_deferred_free(struct zs_pool *pool)
2231 {
2232         INIT_WORK(&pool->free_work, async_free_zspage);
2233 }
2234
2235 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2236 {
2237         struct page *page = get_first_page(zspage);
2238
2239         do {
2240                 WARN_ON(!trylock_page(page));
2241                 __SetPageMovable(page, pool->inode->i_mapping);
2242                 unlock_page(page);
2243         } while ((page = get_next_page(page)) != NULL);
2244 }
2245 #endif
2246
2247 /*
2248  *
2249  * Based on the number of unused allocated objects calculate
2250  * and return the number of pages that we can free.
2251  */
2252 static unsigned long zs_can_compact(struct size_class *class)
2253 {
2254         unsigned long obj_wasted;
2255         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2256         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2257
2258         if (obj_allocated <= obj_used)
2259                 return 0;
2260
2261         obj_wasted = obj_allocated - obj_used;
2262         obj_wasted /= class->objs_per_zspage;
2263
2264         return obj_wasted * class->pages_per_zspage;
2265 }
2266
2267 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2268 {
2269         struct zs_compact_control cc;
2270         struct zspage *src_zspage;
2271         struct zspage *dst_zspage = NULL;
2272
2273         spin_lock(&class->lock);
2274         while ((src_zspage = isolate_zspage(class, true))) {
2275
2276                 if (!zs_can_compact(class))
2277                         break;
2278
2279                 cc.obj_idx = 0;
2280                 cc.s_page = get_first_page(src_zspage);
2281
2282                 while ((dst_zspage = isolate_zspage(class, false))) {
2283                         cc.d_page = get_first_page(dst_zspage);
2284                         /*
2285                          * If there is no more space in dst_page, resched
2286                          * and see if anyone had allocated another zspage.
2287                          */
2288                         if (!migrate_zspage(pool, class, &cc))
2289                                 break;
2290
2291                         putback_zspage(class, dst_zspage);
2292                 }
2293
2294                 /* Stop if we couldn't find slot */
2295                 if (dst_zspage == NULL)
2296                         break;
2297
2298                 putback_zspage(class, dst_zspage);
2299                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2300                         free_zspage(pool, class, src_zspage);
2301                         pool->stats.pages_compacted += class->pages_per_zspage;
2302                 }
2303                 spin_unlock(&class->lock);
2304                 cond_resched();
2305                 spin_lock(&class->lock);
2306         }
2307
2308         if (src_zspage)
2309                 putback_zspage(class, src_zspage);
2310
2311         spin_unlock(&class->lock);
2312 }
2313
2314 unsigned long zs_compact(struct zs_pool *pool)
2315 {
2316         int i;
2317         struct size_class *class;
2318
2319         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2320                 class = pool->size_class[i];
2321                 if (!class)
2322                         continue;
2323                 if (class->index != i)
2324                         continue;
2325                 __zs_compact(pool, class);
2326         }
2327
2328         return pool->stats.pages_compacted;
2329 }
2330 EXPORT_SYMBOL_GPL(zs_compact);
2331
2332 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2333 {
2334         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2335 }
2336 EXPORT_SYMBOL_GPL(zs_pool_stats);
2337
2338 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2339                 struct shrink_control *sc)
2340 {
2341         unsigned long pages_freed;
2342         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2343                         shrinker);
2344
2345         pages_freed = pool->stats.pages_compacted;
2346         /*
2347          * Compact classes and calculate compaction delta.
2348          * Can run concurrently with a manually triggered
2349          * (by user) compaction.
2350          */
2351         pages_freed = zs_compact(pool) - pages_freed;
2352
2353         return pages_freed ? pages_freed : SHRINK_STOP;
2354 }
2355
2356 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2357                 struct shrink_control *sc)
2358 {
2359         int i;
2360         struct size_class *class;
2361         unsigned long pages_to_free = 0;
2362         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2363                         shrinker);
2364
2365         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2366                 class = pool->size_class[i];
2367                 if (!class)
2368                         continue;
2369                 if (class->index != i)
2370                         continue;
2371
2372                 pages_to_free += zs_can_compact(class);
2373         }
2374
2375         return pages_to_free;
2376 }
2377
2378 static void zs_unregister_shrinker(struct zs_pool *pool)
2379 {
2380         unregister_shrinker(&pool->shrinker);
2381 }
2382
2383 static int zs_register_shrinker(struct zs_pool *pool)
2384 {
2385         pool->shrinker.scan_objects = zs_shrinker_scan;
2386         pool->shrinker.count_objects = zs_shrinker_count;
2387         pool->shrinker.batch = 0;
2388         pool->shrinker.seeks = DEFAULT_SEEKS;
2389
2390         return register_shrinker(&pool->shrinker);
2391 }
2392
2393 /**
2394  * zs_create_pool - Creates an allocation pool to work from.
2395  * @name: pool name to be created
2396  *
2397  * This function must be called before anything when using
2398  * the zsmalloc allocator.
2399  *
2400  * On success, a pointer to the newly created pool is returned,
2401  * otherwise NULL.
2402  */
2403 struct zs_pool *zs_create_pool(const char *name)
2404 {
2405         int i;
2406         struct zs_pool *pool;
2407         struct size_class *prev_class = NULL;
2408
2409         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2410         if (!pool)
2411                 return NULL;
2412
2413         init_deferred_free(pool);
2414
2415         pool->name = kstrdup(name, GFP_KERNEL);
2416         if (!pool->name)
2417                 goto err;
2418
2419 #ifdef CONFIG_COMPACTION
2420         init_waitqueue_head(&pool->migration_wait);
2421 #endif
2422
2423         if (create_cache(pool))
2424                 goto err;
2425
2426         /*
2427          * Iterate reversely, because, size of size_class that we want to use
2428          * for merging should be larger or equal to current size.
2429          */
2430         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2431                 int size;
2432                 int pages_per_zspage;
2433                 int objs_per_zspage;
2434                 struct size_class *class;
2435                 int fullness = 0;
2436
2437                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2438                 if (size > ZS_MAX_ALLOC_SIZE)
2439                         size = ZS_MAX_ALLOC_SIZE;
2440                 pages_per_zspage = get_pages_per_zspage(size);
2441                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2442
2443                 /*
2444                  * We iterate from biggest down to smallest classes,
2445                  * so huge_class_size holds the size of the first huge
2446                  * class. Any object bigger than or equal to that will
2447                  * endup in the huge class.
2448                  */
2449                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2450                                 !huge_class_size) {
2451                         huge_class_size = size;
2452                         /*
2453                          * The object uses ZS_HANDLE_SIZE bytes to store the
2454                          * handle. We need to subtract it, because zs_malloc()
2455                          * unconditionally adds handle size before it performs
2456                          * size class search - so object may be smaller than
2457                          * huge class size, yet it still can end up in the huge
2458                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2459                          * right before class lookup.
2460                          */
2461                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2462                 }
2463
2464                 /*
2465                  * size_class is used for normal zsmalloc operation such
2466                  * as alloc/free for that size. Although it is natural that we
2467                  * have one size_class for each size, there is a chance that we
2468                  * can get more memory utilization if we use one size_class for
2469                  * many different sizes whose size_class have same
2470                  * characteristics. So, we makes size_class point to
2471                  * previous size_class if possible.
2472                  */
2473                 if (prev_class) {
2474                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2475                                 pool->size_class[i] = prev_class;
2476                                 continue;
2477                         }
2478                 }
2479
2480                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2481                 if (!class)
2482                         goto err;
2483
2484                 class->size = size;
2485                 class->index = i;
2486                 class->pages_per_zspage = pages_per_zspage;
2487                 class->objs_per_zspage = objs_per_zspage;
2488                 spin_lock_init(&class->lock);
2489                 pool->size_class[i] = class;
2490                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2491                                                         fullness++)
2492                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2493
2494                 prev_class = class;
2495         }
2496
2497         /* debug only, don't abort if it fails */
2498         zs_pool_stat_create(pool, name);
2499
2500         if (zs_register_migration(pool))
2501                 goto err;
2502
2503         /*
2504          * Not critical since shrinker is only used to trigger internal
2505          * defragmentation of the pool which is pretty optional thing.  If
2506          * registration fails we still can use the pool normally and user can
2507          * trigger compaction manually. Thus, ignore return code.
2508          */
2509         zs_register_shrinker(pool);
2510
2511         return pool;
2512
2513 err:
2514         zs_destroy_pool(pool);
2515         return NULL;
2516 }
2517 EXPORT_SYMBOL_GPL(zs_create_pool);
2518
2519 void zs_destroy_pool(struct zs_pool *pool)
2520 {
2521         int i;
2522
2523         zs_unregister_shrinker(pool);
2524         zs_unregister_migration(pool);
2525         zs_pool_stat_destroy(pool);
2526
2527         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2528                 int fg;
2529                 struct size_class *class = pool->size_class[i];
2530
2531                 if (!class)
2532                         continue;
2533
2534                 if (class->index != i)
2535                         continue;
2536
2537                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2538                         if (!list_empty(&class->fullness_list[fg])) {
2539                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2540                                         class->size, fg);
2541                         }
2542                 }
2543                 kfree(class);
2544         }
2545
2546         destroy_cache(pool);
2547         kfree(pool->name);
2548         kfree(pool);
2549 }
2550 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2551
2552 static int __init zs_init(void)
2553 {
2554         int ret;
2555
2556         ret = zsmalloc_mount();
2557         if (ret)
2558                 goto out;
2559
2560         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2561                                 zs_cpu_prepare, zs_cpu_dead);
2562         if (ret)
2563                 goto hp_setup_fail;
2564
2565 #ifdef CONFIG_ZPOOL
2566         zpool_register_driver(&zs_zpool_driver);
2567 #endif
2568
2569         zs_stat_init();
2570
2571         return 0;
2572
2573 hp_setup_fail:
2574         zsmalloc_unmount();
2575 out:
2576         return ret;
2577 }
2578
2579 static void __exit zs_exit(void)
2580 {
2581 #ifdef CONFIG_ZPOOL
2582         zpool_unregister_driver(&zs_zpool_driver);
2583 #endif
2584         zsmalloc_unmount();
2585         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2586
2587         zs_stat_exit();
2588 }
2589
2590 module_init(zs_init);
2591 module_exit(zs_exit);
2592
2593 MODULE_LICENSE("Dual BSD/GPL");
2594 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");