Merge tag 'amd-drm-fixes-5.9-2020-08-20' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER   6
59
60 #define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE      (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS     (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS    (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67 #define BUDDY_MASK      (0x3)
68 #define BUDDY_SHIFT     2
69 #define SLOTS_ALIGN     (0x40)
70
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76         int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78
79 enum buddy {
80         HEADLESS = 0,
81         FIRST,
82         MIDDLE,
83         LAST,
84         BUDDIES_MAX = LAST
85 };
86
87 struct z3fold_buddy_slots {
88         /*
89          * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90          * be enough slots to hold all possible variants
91          */
92         unsigned long slot[BUDDY_MASK + 1];
93         unsigned long pool; /* back link + flags */
94         rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK        (0x03)
97
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *                      z3fold page, except for HEADLESS pages
101  * @buddy:              links the z3fold page into the relevant list in the
102  *                      pool
103  * @page_lock:          per-page lock
104  * @refcount:           reference count for the z3fold page
105  * @work:               work_struct for page layout optimization
106  * @slots:              pointer to the structure holding buddy slots
107  * @pool:               pointer to the containing pool
108  * @cpu:                CPU which this page "belongs" to
109  * @first_chunks:       the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:      the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:        the size of the last buddy in chunks, 0 if free
112  * @first_num:          the starting number (for the first handle)
113  * @mapped_count:       the number of objects currently mapped
114  */
115 struct z3fold_header {
116         struct list_head buddy;
117         spinlock_t page_lock;
118         struct kref refcount;
119         struct work_struct work;
120         struct z3fold_buddy_slots *slots;
121         struct z3fold_pool *pool;
122         short cpu;
123         unsigned short first_chunks;
124         unsigned short middle_chunks;
125         unsigned short last_chunks;
126         unsigned short start_middle;
127         unsigned short first_num:2;
128         unsigned short mapped_count:2;
129         unsigned short foreign_handles:2;
130 };
131
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:       pool name
135  * @lock:       protects pool unbuddied/lru lists
136  * @stale_lock: protects pool stale page list
137  * @unbuddied:  per-cpu array of lists tracking z3fold pages that contain 2-
138  *              buddies; the list each z3fold page is added to depends on
139  *              the size of its free region.
140  * @lru:        list tracking the z3fold pages in LRU order by most recently
141  *              added buddy.
142  * @stale:      list of pages marked for freeing
143  * @pages_nr:   number of z3fold pages in the pool.
144  * @c_handle:   cache for z3fold_buddy_slots allocation
145  * @ops:        pointer to a structure of user defined operations specified at
146  *              pool creation time.
147  * @compact_wq: workqueue for page layout background optimization
148  * @release_wq: workqueue for safe page release
149  * @work:       work_struct for safe page release
150  * @inode:      inode for z3fold pseudo filesystem
151  *
152  * This structure is allocated at pool creation time and maintains metadata
153  * pertaining to a particular z3fold pool.
154  */
155 struct z3fold_pool {
156         const char *name;
157         spinlock_t lock;
158         spinlock_t stale_lock;
159         struct list_head *unbuddied;
160         struct list_head lru;
161         struct list_head stale;
162         atomic64_t pages_nr;
163         struct kmem_cache *c_handle;
164         const struct z3fold_ops *ops;
165         struct zpool *zpool;
166         const struct zpool_ops *zpool_ops;
167         struct workqueue_struct *compact_wq;
168         struct workqueue_struct *release_wq;
169         struct work_struct work;
170         struct inode *inode;
171 };
172
173 /*
174  * Internal z3fold page flags
175  */
176 enum z3fold_page_flags {
177         PAGE_HEADLESS = 0,
178         MIDDLE_CHUNK_MAPPED,
179         NEEDS_COMPACTING,
180         PAGE_STALE,
181         PAGE_CLAIMED, /* by either reclaim or free */
182 };
183
184 /*
185  * handle flags, go under HANDLE_FLAG_MASK
186  */
187 enum z3fold_handle_flags {
188         HANDLES_ORPHANED = 0,
189 };
190
191 /*
192  * Forward declarations
193  */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196
197 /*****************
198  * Helpers
199 *****************/
200
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
203 {
204         return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206
207 #define for_each_unbuddied_list(_iter, _begin) \
208         for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211                                                         gfp_t gfp)
212 {
213         struct z3fold_buddy_slots *slots;
214
215         slots = kmem_cache_alloc(pool->c_handle,
216                                  (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218         if (slots) {
219                 /* It will be freed separately in free_handle(). */
220                 kmemleak_not_leak(slots);
221                 memset(slots->slot, 0, sizeof(slots->slot));
222                 slots->pool = (unsigned long)pool;
223                 rwlock_init(&slots->lock);
224         }
225
226         return slots;
227 }
228
229 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
230 {
231         return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
232 }
233
234 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
235 {
236         return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
237 }
238
239 /* Lock a z3fold page */
240 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
241 {
242         spin_lock(&zhdr->page_lock);
243 }
244
245 /* Try to lock a z3fold page */
246 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
247 {
248         return spin_trylock(&zhdr->page_lock);
249 }
250
251 /* Unlock a z3fold page */
252 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
253 {
254         spin_unlock(&zhdr->page_lock);
255 }
256
257
258 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
259                                                         bool lock)
260 {
261         struct z3fold_buddy_slots *slots;
262         struct z3fold_header *zhdr;
263         int locked = 0;
264
265         if (!(handle & (1 << PAGE_HEADLESS))) {
266                 slots = handle_to_slots(handle);
267                 do {
268                         unsigned long addr;
269
270                         read_lock(&slots->lock);
271                         addr = *(unsigned long *)handle;
272                         zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
273                         if (lock)
274                                 locked = z3fold_page_trylock(zhdr);
275                         read_unlock(&slots->lock);
276                         if (locked)
277                                 break;
278                         cpu_relax();
279                 } while (lock);
280         } else {
281                 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
282         }
283
284         return zhdr;
285 }
286
287 /* Returns the z3fold page where a given handle is stored */
288 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
289 {
290         return __get_z3fold_header(h, false);
291 }
292
293 /* return locked z3fold page if it's not headless */
294 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
295 {
296         return __get_z3fold_header(h, true);
297 }
298
299 static inline void put_z3fold_header(struct z3fold_header *zhdr)
300 {
301         struct page *page = virt_to_page(zhdr);
302
303         if (!test_bit(PAGE_HEADLESS, &page->private))
304                 z3fold_page_unlock(zhdr);
305 }
306
307 static inline void free_handle(unsigned long handle)
308 {
309         struct z3fold_buddy_slots *slots;
310         struct z3fold_header *zhdr;
311         int i;
312         bool is_free;
313
314         if (handle & (1 << PAGE_HEADLESS))
315                 return;
316
317         if (WARN_ON(*(unsigned long *)handle == 0))
318                 return;
319
320         zhdr = handle_to_z3fold_header(handle);
321         slots = handle_to_slots(handle);
322         write_lock(&slots->lock);
323         *(unsigned long *)handle = 0;
324         if (zhdr->slots == slots) {
325                 write_unlock(&slots->lock);
326                 return; /* simple case, nothing else to do */
327         }
328
329         /* we are freeing a foreign handle if we are here */
330         zhdr->foreign_handles--;
331         is_free = true;
332         if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
333                 write_unlock(&slots->lock);
334                 return;
335         }
336         for (i = 0; i <= BUDDY_MASK; i++) {
337                 if (slots->slot[i]) {
338                         is_free = false;
339                         break;
340                 }
341         }
342         write_unlock(&slots->lock);
343
344         if (is_free) {
345                 struct z3fold_pool *pool = slots_to_pool(slots);
346
347                 kmem_cache_free(pool->c_handle, slots);
348         }
349 }
350
351 static int z3fold_init_fs_context(struct fs_context *fc)
352 {
353         return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
354 }
355
356 static struct file_system_type z3fold_fs = {
357         .name           = "z3fold",
358         .init_fs_context = z3fold_init_fs_context,
359         .kill_sb        = kill_anon_super,
360 };
361
362 static struct vfsmount *z3fold_mnt;
363 static int z3fold_mount(void)
364 {
365         int ret = 0;
366
367         z3fold_mnt = kern_mount(&z3fold_fs);
368         if (IS_ERR(z3fold_mnt))
369                 ret = PTR_ERR(z3fold_mnt);
370
371         return ret;
372 }
373
374 static void z3fold_unmount(void)
375 {
376         kern_unmount(z3fold_mnt);
377 }
378
379 static const struct address_space_operations z3fold_aops;
380 static int z3fold_register_migration(struct z3fold_pool *pool)
381 {
382         pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
383         if (IS_ERR(pool->inode)) {
384                 pool->inode = NULL;
385                 return 1;
386         }
387
388         pool->inode->i_mapping->private_data = pool;
389         pool->inode->i_mapping->a_ops = &z3fold_aops;
390         return 0;
391 }
392
393 static void z3fold_unregister_migration(struct z3fold_pool *pool)
394 {
395         if (pool->inode)
396                 iput(pool->inode);
397  }
398
399 /* Initializes the z3fold header of a newly allocated z3fold page */
400 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
401                                         struct z3fold_pool *pool, gfp_t gfp)
402 {
403         struct z3fold_header *zhdr = page_address(page);
404         struct z3fold_buddy_slots *slots;
405
406         INIT_LIST_HEAD(&page->lru);
407         clear_bit(PAGE_HEADLESS, &page->private);
408         clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
409         clear_bit(NEEDS_COMPACTING, &page->private);
410         clear_bit(PAGE_STALE, &page->private);
411         clear_bit(PAGE_CLAIMED, &page->private);
412         if (headless)
413                 return zhdr;
414
415         slots = alloc_slots(pool, gfp);
416         if (!slots)
417                 return NULL;
418
419         spin_lock_init(&zhdr->page_lock);
420         kref_init(&zhdr->refcount);
421         zhdr->first_chunks = 0;
422         zhdr->middle_chunks = 0;
423         zhdr->last_chunks = 0;
424         zhdr->first_num = 0;
425         zhdr->start_middle = 0;
426         zhdr->cpu = -1;
427         zhdr->foreign_handles = 0;
428         zhdr->mapped_count = 0;
429         zhdr->slots = slots;
430         zhdr->pool = pool;
431         INIT_LIST_HEAD(&zhdr->buddy);
432         INIT_WORK(&zhdr->work, compact_page_work);
433         return zhdr;
434 }
435
436 /* Resets the struct page fields and frees the page */
437 static void free_z3fold_page(struct page *page, bool headless)
438 {
439         if (!headless) {
440                 lock_page(page);
441                 __ClearPageMovable(page);
442                 unlock_page(page);
443         }
444         ClearPagePrivate(page);
445         __free_page(page);
446 }
447
448 /* Helper function to build the index */
449 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
450 {
451         return (bud + zhdr->first_num) & BUDDY_MASK;
452 }
453
454 /*
455  * Encodes the handle of a particular buddy within a z3fold page
456  * Pool lock should be held as this function accesses first_num
457  */
458 static unsigned long __encode_handle(struct z3fold_header *zhdr,
459                                 struct z3fold_buddy_slots *slots,
460                                 enum buddy bud)
461 {
462         unsigned long h = (unsigned long)zhdr;
463         int idx = 0;
464
465         /*
466          * For a headless page, its handle is its pointer with the extra
467          * PAGE_HEADLESS bit set
468          */
469         if (bud == HEADLESS)
470                 return h | (1 << PAGE_HEADLESS);
471
472         /* otherwise, return pointer to encoded handle */
473         idx = __idx(zhdr, bud);
474         h += idx;
475         if (bud == LAST)
476                 h |= (zhdr->last_chunks << BUDDY_SHIFT);
477
478         write_lock(&slots->lock);
479         slots->slot[idx] = h;
480         write_unlock(&slots->lock);
481         return (unsigned long)&slots->slot[idx];
482 }
483
484 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
485 {
486         return __encode_handle(zhdr, zhdr->slots, bud);
487 }
488
489 /* only for LAST bud, returns zero otherwise */
490 static unsigned short handle_to_chunks(unsigned long handle)
491 {
492         struct z3fold_buddy_slots *slots = handle_to_slots(handle);
493         unsigned long addr;
494
495         read_lock(&slots->lock);
496         addr = *(unsigned long *)handle;
497         read_unlock(&slots->lock);
498         return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
499 }
500
501 /*
502  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
503  *  but that doesn't matter. because the masking will result in the
504  *  correct buddy number.
505  */
506 static enum buddy handle_to_buddy(unsigned long handle)
507 {
508         struct z3fold_header *zhdr;
509         struct z3fold_buddy_slots *slots = handle_to_slots(handle);
510         unsigned long addr;
511
512         read_lock(&slots->lock);
513         WARN_ON(handle & (1 << PAGE_HEADLESS));
514         addr = *(unsigned long *)handle;
515         read_unlock(&slots->lock);
516         zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
517         return (addr - zhdr->first_num) & BUDDY_MASK;
518 }
519
520 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
521 {
522         return zhdr->pool;
523 }
524
525 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
526 {
527         struct page *page = virt_to_page(zhdr);
528         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
529         bool is_free = true;
530         int i;
531
532         WARN_ON(!list_empty(&zhdr->buddy));
533         set_bit(PAGE_STALE, &page->private);
534         clear_bit(NEEDS_COMPACTING, &page->private);
535         spin_lock(&pool->lock);
536         if (!list_empty(&page->lru))
537                 list_del_init(&page->lru);
538         spin_unlock(&pool->lock);
539
540         /* If there are no foreign handles, free the handles array */
541         read_lock(&zhdr->slots->lock);
542         for (i = 0; i <= BUDDY_MASK; i++) {
543                 if (zhdr->slots->slot[i]) {
544                         is_free = false;
545                         break;
546                 }
547         }
548         if (!is_free)
549                 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
550         read_unlock(&zhdr->slots->lock);
551
552         if (is_free)
553                 kmem_cache_free(pool->c_handle, zhdr->slots);
554
555         if (locked)
556                 z3fold_page_unlock(zhdr);
557
558         spin_lock(&pool->stale_lock);
559         list_add(&zhdr->buddy, &pool->stale);
560         queue_work(pool->release_wq, &pool->work);
561         spin_unlock(&pool->stale_lock);
562 }
563
564 static void __attribute__((__unused__))
565                         release_z3fold_page(struct kref *ref)
566 {
567         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
568                                                 refcount);
569         __release_z3fold_page(zhdr, false);
570 }
571
572 static void release_z3fold_page_locked(struct kref *ref)
573 {
574         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
575                                                 refcount);
576         WARN_ON(z3fold_page_trylock(zhdr));
577         __release_z3fold_page(zhdr, true);
578 }
579
580 static void release_z3fold_page_locked_list(struct kref *ref)
581 {
582         struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
583                                                refcount);
584         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
585
586         spin_lock(&pool->lock);
587         list_del_init(&zhdr->buddy);
588         spin_unlock(&pool->lock);
589
590         WARN_ON(z3fold_page_trylock(zhdr));
591         __release_z3fold_page(zhdr, true);
592 }
593
594 static void free_pages_work(struct work_struct *w)
595 {
596         struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
597
598         spin_lock(&pool->stale_lock);
599         while (!list_empty(&pool->stale)) {
600                 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
601                                                 struct z3fold_header, buddy);
602                 struct page *page = virt_to_page(zhdr);
603
604                 list_del(&zhdr->buddy);
605                 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
606                         continue;
607                 spin_unlock(&pool->stale_lock);
608                 cancel_work_sync(&zhdr->work);
609                 free_z3fold_page(page, false);
610                 cond_resched();
611                 spin_lock(&pool->stale_lock);
612         }
613         spin_unlock(&pool->stale_lock);
614 }
615
616 /*
617  * Returns the number of free chunks in a z3fold page.
618  * NB: can't be used with HEADLESS pages.
619  */
620 static int num_free_chunks(struct z3fold_header *zhdr)
621 {
622         int nfree;
623         /*
624          * If there is a middle object, pick up the bigger free space
625          * either before or after it. Otherwise just subtract the number
626          * of chunks occupied by the first and the last objects.
627          */
628         if (zhdr->middle_chunks != 0) {
629                 int nfree_before = zhdr->first_chunks ?
630                         0 : zhdr->start_middle - ZHDR_CHUNKS;
631                 int nfree_after = zhdr->last_chunks ?
632                         0 : TOTAL_CHUNKS -
633                                 (zhdr->start_middle + zhdr->middle_chunks);
634                 nfree = max(nfree_before, nfree_after);
635         } else
636                 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
637         return nfree;
638 }
639
640 /* Add to the appropriate unbuddied list */
641 static inline void add_to_unbuddied(struct z3fold_pool *pool,
642                                 struct z3fold_header *zhdr)
643 {
644         if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
645                         zhdr->middle_chunks == 0) {
646                 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
647
648                 int freechunks = num_free_chunks(zhdr);
649                 spin_lock(&pool->lock);
650                 list_add(&zhdr->buddy, &unbuddied[freechunks]);
651                 spin_unlock(&pool->lock);
652                 zhdr->cpu = smp_processor_id();
653                 put_cpu_ptr(pool->unbuddied);
654         }
655 }
656
657 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
658                                 unsigned short dst_chunk)
659 {
660         void *beg = zhdr;
661         return memmove(beg + (dst_chunk << CHUNK_SHIFT),
662                        beg + (zhdr->start_middle << CHUNK_SHIFT),
663                        zhdr->middle_chunks << CHUNK_SHIFT);
664 }
665
666 static inline bool buddy_single(struct z3fold_header *zhdr)
667 {
668         return !((zhdr->first_chunks && zhdr->middle_chunks) ||
669                         (zhdr->first_chunks && zhdr->last_chunks) ||
670                         (zhdr->middle_chunks && zhdr->last_chunks));
671 }
672
673 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
674 {
675         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
676         void *p = zhdr;
677         unsigned long old_handle = 0;
678         size_t sz = 0;
679         struct z3fold_header *new_zhdr = NULL;
680         int first_idx = __idx(zhdr, FIRST);
681         int middle_idx = __idx(zhdr, MIDDLE);
682         int last_idx = __idx(zhdr, LAST);
683         unsigned short *moved_chunks = NULL;
684
685         /*
686          * No need to protect slots here -- all the slots are "local" and
687          * the page lock is already taken
688          */
689         if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
690                 p += ZHDR_SIZE_ALIGNED;
691                 sz = zhdr->first_chunks << CHUNK_SHIFT;
692                 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
693                 moved_chunks = &zhdr->first_chunks;
694         } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
695                 p += zhdr->start_middle << CHUNK_SHIFT;
696                 sz = zhdr->middle_chunks << CHUNK_SHIFT;
697                 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
698                 moved_chunks = &zhdr->middle_chunks;
699         } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
700                 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
701                 sz = zhdr->last_chunks << CHUNK_SHIFT;
702                 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
703                 moved_chunks = &zhdr->last_chunks;
704         }
705
706         if (sz > 0) {
707                 enum buddy new_bud = HEADLESS;
708                 short chunks = size_to_chunks(sz);
709                 void *q;
710
711                 new_zhdr = __z3fold_alloc(pool, sz, false);
712                 if (!new_zhdr)
713                         return NULL;
714
715                 if (WARN_ON(new_zhdr == zhdr))
716                         goto out_fail;
717
718                 if (new_zhdr->first_chunks == 0) {
719                         if (new_zhdr->middle_chunks != 0 &&
720                                         chunks >= new_zhdr->start_middle) {
721                                 new_bud = LAST;
722                         } else {
723                                 new_bud = FIRST;
724                         }
725                 } else if (new_zhdr->last_chunks == 0) {
726                         new_bud = LAST;
727                 } else if (new_zhdr->middle_chunks == 0) {
728                         new_bud = MIDDLE;
729                 }
730                 q = new_zhdr;
731                 switch (new_bud) {
732                 case FIRST:
733                         new_zhdr->first_chunks = chunks;
734                         q += ZHDR_SIZE_ALIGNED;
735                         break;
736                 case MIDDLE:
737                         new_zhdr->middle_chunks = chunks;
738                         new_zhdr->start_middle =
739                                 new_zhdr->first_chunks + ZHDR_CHUNKS;
740                         q += new_zhdr->start_middle << CHUNK_SHIFT;
741                         break;
742                 case LAST:
743                         new_zhdr->last_chunks = chunks;
744                         q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
745                         break;
746                 default:
747                         goto out_fail;
748                 }
749                 new_zhdr->foreign_handles++;
750                 memcpy(q, p, sz);
751                 write_lock(&zhdr->slots->lock);
752                 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
753                         __idx(new_zhdr, new_bud);
754                 if (new_bud == LAST)
755                         *(unsigned long *)old_handle |=
756                                         (new_zhdr->last_chunks << BUDDY_SHIFT);
757                 write_unlock(&zhdr->slots->lock);
758                 add_to_unbuddied(pool, new_zhdr);
759                 z3fold_page_unlock(new_zhdr);
760
761                 *moved_chunks = 0;
762         }
763
764         return new_zhdr;
765
766 out_fail:
767         if (new_zhdr) {
768                 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
769                         atomic64_dec(&pool->pages_nr);
770                 else {
771                         add_to_unbuddied(pool, new_zhdr);
772                         z3fold_page_unlock(new_zhdr);
773                 }
774         }
775         return NULL;
776
777 }
778
779 #define BIG_CHUNK_GAP   3
780 /* Has to be called with lock held */
781 static int z3fold_compact_page(struct z3fold_header *zhdr)
782 {
783         struct page *page = virt_to_page(zhdr);
784
785         if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
786                 return 0; /* can't move middle chunk, it's used */
787
788         if (unlikely(PageIsolated(page)))
789                 return 0;
790
791         if (zhdr->middle_chunks == 0)
792                 return 0; /* nothing to compact */
793
794         if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
795                 /* move to the beginning */
796                 mchunk_memmove(zhdr, ZHDR_CHUNKS);
797                 zhdr->first_chunks = zhdr->middle_chunks;
798                 zhdr->middle_chunks = 0;
799                 zhdr->start_middle = 0;
800                 zhdr->first_num++;
801                 return 1;
802         }
803
804         /*
805          * moving data is expensive, so let's only do that if
806          * there's substantial gain (at least BIG_CHUNK_GAP chunks)
807          */
808         if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
809             zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
810                         BIG_CHUNK_GAP) {
811                 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
812                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
813                 return 1;
814         } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
815                    TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
816                                         + zhdr->middle_chunks) >=
817                         BIG_CHUNK_GAP) {
818                 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
819                         zhdr->middle_chunks;
820                 mchunk_memmove(zhdr, new_start);
821                 zhdr->start_middle = new_start;
822                 return 1;
823         }
824
825         return 0;
826 }
827
828 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
829 {
830         struct z3fold_pool *pool = zhdr_to_pool(zhdr);
831         struct page *page;
832
833         page = virt_to_page(zhdr);
834         if (locked)
835                 WARN_ON(z3fold_page_trylock(zhdr));
836         else
837                 z3fold_page_lock(zhdr);
838         if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
839                 z3fold_page_unlock(zhdr);
840                 return;
841         }
842         spin_lock(&pool->lock);
843         list_del_init(&zhdr->buddy);
844         spin_unlock(&pool->lock);
845
846         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
847                 atomic64_dec(&pool->pages_nr);
848                 return;
849         }
850
851         if (unlikely(PageIsolated(page) ||
852                      test_bit(PAGE_CLAIMED, &page->private) ||
853                      test_bit(PAGE_STALE, &page->private))) {
854                 z3fold_page_unlock(zhdr);
855                 return;
856         }
857
858         if (!zhdr->foreign_handles && buddy_single(zhdr) &&
859             zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
860                 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
861                         atomic64_dec(&pool->pages_nr);
862                 else
863                         z3fold_page_unlock(zhdr);
864                 return;
865         }
866
867         z3fold_compact_page(zhdr);
868         add_to_unbuddied(pool, zhdr);
869         z3fold_page_unlock(zhdr);
870 }
871
872 static void compact_page_work(struct work_struct *w)
873 {
874         struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
875                                                 work);
876
877         do_compact_page(zhdr, false);
878 }
879
880 /* returns _locked_ z3fold page header or NULL */
881 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
882                                                 size_t size, bool can_sleep)
883 {
884         struct z3fold_header *zhdr = NULL;
885         struct page *page;
886         struct list_head *unbuddied;
887         int chunks = size_to_chunks(size), i;
888
889 lookup:
890         /* First, try to find an unbuddied z3fold page. */
891         unbuddied = get_cpu_ptr(pool->unbuddied);
892         for_each_unbuddied_list(i, chunks) {
893                 struct list_head *l = &unbuddied[i];
894
895                 zhdr = list_first_entry_or_null(READ_ONCE(l),
896                                         struct z3fold_header, buddy);
897
898                 if (!zhdr)
899                         continue;
900
901                 /* Re-check under lock. */
902                 spin_lock(&pool->lock);
903                 l = &unbuddied[i];
904                 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
905                                                 struct z3fold_header, buddy)) ||
906                     !z3fold_page_trylock(zhdr)) {
907                         spin_unlock(&pool->lock);
908                         zhdr = NULL;
909                         put_cpu_ptr(pool->unbuddied);
910                         if (can_sleep)
911                                 cond_resched();
912                         goto lookup;
913                 }
914                 list_del_init(&zhdr->buddy);
915                 zhdr->cpu = -1;
916                 spin_unlock(&pool->lock);
917
918                 page = virt_to_page(zhdr);
919                 if (test_bit(NEEDS_COMPACTING, &page->private) ||
920                     test_bit(PAGE_CLAIMED, &page->private)) {
921                         z3fold_page_unlock(zhdr);
922                         zhdr = NULL;
923                         put_cpu_ptr(pool->unbuddied);
924                         if (can_sleep)
925                                 cond_resched();
926                         goto lookup;
927                 }
928
929                 /*
930                  * this page could not be removed from its unbuddied
931                  * list while pool lock was held, and then we've taken
932                  * page lock so kref_put could not be called before
933                  * we got here, so it's safe to just call kref_get()
934                  */
935                 kref_get(&zhdr->refcount);
936                 break;
937         }
938         put_cpu_ptr(pool->unbuddied);
939
940         if (!zhdr) {
941                 int cpu;
942
943                 /* look for _exact_ match on other cpus' lists */
944                 for_each_online_cpu(cpu) {
945                         struct list_head *l;
946
947                         unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
948                         spin_lock(&pool->lock);
949                         l = &unbuddied[chunks];
950
951                         zhdr = list_first_entry_or_null(READ_ONCE(l),
952                                                 struct z3fold_header, buddy);
953
954                         if (!zhdr || !z3fold_page_trylock(zhdr)) {
955                                 spin_unlock(&pool->lock);
956                                 zhdr = NULL;
957                                 continue;
958                         }
959                         list_del_init(&zhdr->buddy);
960                         zhdr->cpu = -1;
961                         spin_unlock(&pool->lock);
962
963                         page = virt_to_page(zhdr);
964                         if (test_bit(NEEDS_COMPACTING, &page->private) ||
965                             test_bit(PAGE_CLAIMED, &page->private)) {
966                                 z3fold_page_unlock(zhdr);
967                                 zhdr = NULL;
968                                 if (can_sleep)
969                                         cond_resched();
970                                 continue;
971                         }
972                         kref_get(&zhdr->refcount);
973                         break;
974                 }
975         }
976
977         return zhdr;
978 }
979
980 /*
981  * API Functions
982  */
983
984 /**
985  * z3fold_create_pool() - create a new z3fold pool
986  * @name:       pool name
987  * @gfp:        gfp flags when allocating the z3fold pool structure
988  * @ops:        user-defined operations for the z3fold pool
989  *
990  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
991  * failed.
992  */
993 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
994                 const struct z3fold_ops *ops)
995 {
996         struct z3fold_pool *pool = NULL;
997         int i, cpu;
998
999         pool = kzalloc(sizeof(struct z3fold_pool), gfp);
1000         if (!pool)
1001                 goto out;
1002         pool->c_handle = kmem_cache_create("z3fold_handle",
1003                                 sizeof(struct z3fold_buddy_slots),
1004                                 SLOTS_ALIGN, 0, NULL);
1005         if (!pool->c_handle)
1006                 goto out_c;
1007         spin_lock_init(&pool->lock);
1008         spin_lock_init(&pool->stale_lock);
1009         pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1010         if (!pool->unbuddied)
1011                 goto out_pool;
1012         for_each_possible_cpu(cpu) {
1013                 struct list_head *unbuddied =
1014                                 per_cpu_ptr(pool->unbuddied, cpu);
1015                 for_each_unbuddied_list(i, 0)
1016                         INIT_LIST_HEAD(&unbuddied[i]);
1017         }
1018         INIT_LIST_HEAD(&pool->lru);
1019         INIT_LIST_HEAD(&pool->stale);
1020         atomic64_set(&pool->pages_nr, 0);
1021         pool->name = name;
1022         pool->compact_wq = create_singlethread_workqueue(pool->name);
1023         if (!pool->compact_wq)
1024                 goto out_unbuddied;
1025         pool->release_wq = create_singlethread_workqueue(pool->name);
1026         if (!pool->release_wq)
1027                 goto out_wq;
1028         if (z3fold_register_migration(pool))
1029                 goto out_rwq;
1030         INIT_WORK(&pool->work, free_pages_work);
1031         pool->ops = ops;
1032         return pool;
1033
1034 out_rwq:
1035         destroy_workqueue(pool->release_wq);
1036 out_wq:
1037         destroy_workqueue(pool->compact_wq);
1038 out_unbuddied:
1039         free_percpu(pool->unbuddied);
1040 out_pool:
1041         kmem_cache_destroy(pool->c_handle);
1042 out_c:
1043         kfree(pool);
1044 out:
1045         return NULL;
1046 }
1047
1048 /**
1049  * z3fold_destroy_pool() - destroys an existing z3fold pool
1050  * @pool:       the z3fold pool to be destroyed
1051  *
1052  * The pool should be emptied before this function is called.
1053  */
1054 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1055 {
1056         kmem_cache_destroy(pool->c_handle);
1057
1058         /*
1059          * We need to destroy pool->compact_wq before pool->release_wq,
1060          * as any pending work on pool->compact_wq will call
1061          * queue_work(pool->release_wq, &pool->work).
1062          *
1063          * There are still outstanding pages until both workqueues are drained,
1064          * so we cannot unregister migration until then.
1065          */
1066
1067         destroy_workqueue(pool->compact_wq);
1068         destroy_workqueue(pool->release_wq);
1069         z3fold_unregister_migration(pool);
1070         kfree(pool);
1071 }
1072
1073 /**
1074  * z3fold_alloc() - allocates a region of a given size
1075  * @pool:       z3fold pool from which to allocate
1076  * @size:       size in bytes of the desired allocation
1077  * @gfp:        gfp flags used if the pool needs to grow
1078  * @handle:     handle of the new allocation
1079  *
1080  * This function will attempt to find a free region in the pool large enough to
1081  * satisfy the allocation request.  A search of the unbuddied lists is
1082  * performed first. If no suitable free region is found, then a new page is
1083  * allocated and added to the pool to satisfy the request.
1084  *
1085  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1086  * as z3fold pool pages.
1087  *
1088  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1089  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1090  * a new page.
1091  */
1092 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1093                         unsigned long *handle)
1094 {
1095         int chunks = size_to_chunks(size);
1096         struct z3fold_header *zhdr = NULL;
1097         struct page *page = NULL;
1098         enum buddy bud;
1099         bool can_sleep = gfpflags_allow_blocking(gfp);
1100
1101         if (!size)
1102                 return -EINVAL;
1103
1104         if (size > PAGE_SIZE)
1105                 return -ENOSPC;
1106
1107         if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1108                 bud = HEADLESS;
1109         else {
1110 retry:
1111                 zhdr = __z3fold_alloc(pool, size, can_sleep);
1112                 if (zhdr) {
1113                         if (zhdr->first_chunks == 0) {
1114                                 if (zhdr->middle_chunks != 0 &&
1115                                     chunks >= zhdr->start_middle)
1116                                         bud = LAST;
1117                                 else
1118                                         bud = FIRST;
1119                         } else if (zhdr->last_chunks == 0)
1120                                 bud = LAST;
1121                         else if (zhdr->middle_chunks == 0)
1122                                 bud = MIDDLE;
1123                         else {
1124                                 if (kref_put(&zhdr->refcount,
1125                                              release_z3fold_page_locked))
1126                                         atomic64_dec(&pool->pages_nr);
1127                                 else
1128                                         z3fold_page_unlock(zhdr);
1129                                 pr_err("No free chunks in unbuddied\n");
1130                                 WARN_ON(1);
1131                                 goto retry;
1132                         }
1133                         page = virt_to_page(zhdr);
1134                         goto found;
1135                 }
1136                 bud = FIRST;
1137         }
1138
1139         page = NULL;
1140         if (can_sleep) {
1141                 spin_lock(&pool->stale_lock);
1142                 zhdr = list_first_entry_or_null(&pool->stale,
1143                                                 struct z3fold_header, buddy);
1144                 /*
1145                  * Before allocating a page, let's see if we can take one from
1146                  * the stale pages list. cancel_work_sync() can sleep so we
1147                  * limit this case to the contexts where we can sleep
1148                  */
1149                 if (zhdr) {
1150                         list_del(&zhdr->buddy);
1151                         spin_unlock(&pool->stale_lock);
1152                         cancel_work_sync(&zhdr->work);
1153                         page = virt_to_page(zhdr);
1154                 } else {
1155                         spin_unlock(&pool->stale_lock);
1156                 }
1157         }
1158         if (!page)
1159                 page = alloc_page(gfp);
1160
1161         if (!page)
1162                 return -ENOMEM;
1163
1164         zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1165         if (!zhdr) {
1166                 __free_page(page);
1167                 return -ENOMEM;
1168         }
1169         atomic64_inc(&pool->pages_nr);
1170
1171         if (bud == HEADLESS) {
1172                 set_bit(PAGE_HEADLESS, &page->private);
1173                 goto headless;
1174         }
1175         if (can_sleep) {
1176                 lock_page(page);
1177                 __SetPageMovable(page, pool->inode->i_mapping);
1178                 unlock_page(page);
1179         } else {
1180                 if (trylock_page(page)) {
1181                         __SetPageMovable(page, pool->inode->i_mapping);
1182                         unlock_page(page);
1183                 }
1184         }
1185         z3fold_page_lock(zhdr);
1186
1187 found:
1188         if (bud == FIRST)
1189                 zhdr->first_chunks = chunks;
1190         else if (bud == LAST)
1191                 zhdr->last_chunks = chunks;
1192         else {
1193                 zhdr->middle_chunks = chunks;
1194                 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1195         }
1196         add_to_unbuddied(pool, zhdr);
1197
1198 headless:
1199         spin_lock(&pool->lock);
1200         /* Add/move z3fold page to beginning of LRU */
1201         if (!list_empty(&page->lru))
1202                 list_del(&page->lru);
1203
1204         list_add(&page->lru, &pool->lru);
1205
1206         *handle = encode_handle(zhdr, bud);
1207         spin_unlock(&pool->lock);
1208         if (bud != HEADLESS)
1209                 z3fold_page_unlock(zhdr);
1210
1211         return 0;
1212 }
1213
1214 /**
1215  * z3fold_free() - frees the allocation associated with the given handle
1216  * @pool:       pool in which the allocation resided
1217  * @handle:     handle associated with the allocation returned by z3fold_alloc()
1218  *
1219  * In the case that the z3fold page in which the allocation resides is under
1220  * reclaim, as indicated by the PG_reclaim flag being set, this function
1221  * only sets the first|last_chunks to 0.  The page is actually freed
1222  * once both buddies are evicted (see z3fold_reclaim_page() below).
1223  */
1224 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1225 {
1226         struct z3fold_header *zhdr;
1227         struct page *page;
1228         enum buddy bud;
1229         bool page_claimed;
1230
1231         zhdr = get_z3fold_header(handle);
1232         page = virt_to_page(zhdr);
1233         page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1234
1235         if (test_bit(PAGE_HEADLESS, &page->private)) {
1236                 /* if a headless page is under reclaim, just leave.
1237                  * NB: we use test_and_set_bit for a reason: if the bit
1238                  * has not been set before, we release this page
1239                  * immediately so we don't care about its value any more.
1240                  */
1241                 if (!page_claimed) {
1242                         spin_lock(&pool->lock);
1243                         list_del(&page->lru);
1244                         spin_unlock(&pool->lock);
1245                         put_z3fold_header(zhdr);
1246                         free_z3fold_page(page, true);
1247                         atomic64_dec(&pool->pages_nr);
1248                 }
1249                 return;
1250         }
1251
1252         /* Non-headless case */
1253         bud = handle_to_buddy(handle);
1254
1255         switch (bud) {
1256         case FIRST:
1257                 zhdr->first_chunks = 0;
1258                 break;
1259         case MIDDLE:
1260                 zhdr->middle_chunks = 0;
1261                 break;
1262         case LAST:
1263                 zhdr->last_chunks = 0;
1264                 break;
1265         default:
1266                 pr_err("%s: unknown bud %d\n", __func__, bud);
1267                 WARN_ON(1);
1268                 put_z3fold_header(zhdr);
1269                 clear_bit(PAGE_CLAIMED, &page->private);
1270                 return;
1271         }
1272
1273         if (!page_claimed)
1274                 free_handle(handle);
1275         if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1276                 atomic64_dec(&pool->pages_nr);
1277                 return;
1278         }
1279         if (page_claimed) {
1280                 /* the page has not been claimed by us */
1281                 z3fold_page_unlock(zhdr);
1282                 return;
1283         }
1284         if (unlikely(PageIsolated(page)) ||
1285             test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1286                 put_z3fold_header(zhdr);
1287                 clear_bit(PAGE_CLAIMED, &page->private);
1288                 return;
1289         }
1290         if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1291                 spin_lock(&pool->lock);
1292                 list_del_init(&zhdr->buddy);
1293                 spin_unlock(&pool->lock);
1294                 zhdr->cpu = -1;
1295                 kref_get(&zhdr->refcount);
1296                 clear_bit(PAGE_CLAIMED, &page->private);
1297                 do_compact_page(zhdr, true);
1298                 return;
1299         }
1300         kref_get(&zhdr->refcount);
1301         clear_bit(PAGE_CLAIMED, &page->private);
1302         queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1303         put_z3fold_header(zhdr);
1304 }
1305
1306 /**
1307  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1308  * @pool:       pool from which a page will attempt to be evicted
1309  * @retries:    number of pages on the LRU list for which eviction will
1310  *              be attempted before failing
1311  *
1312  * z3fold reclaim is different from normal system reclaim in that it is done
1313  * from the bottom, up. This is because only the bottom layer, z3fold, has
1314  * information on how the allocations are organized within each z3fold page.
1315  * This has the potential to create interesting locking situations between
1316  * z3fold and the user, however.
1317  *
1318  * To avoid these, this is how z3fold_reclaim_page() should be called:
1319  *
1320  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1321  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1322  * call the user-defined eviction handler with the pool and handle as
1323  * arguments.
1324  *
1325  * If the handle can not be evicted, the eviction handler should return
1326  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1327  * appropriate list and try the next z3fold page on the LRU up to
1328  * a user defined number of retries.
1329  *
1330  * If the handle is successfully evicted, the eviction handler should
1331  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1332  * contains logic to delay freeing the page if the page is under reclaim,
1333  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1334  *
1335  * If all buddies in the z3fold page are successfully evicted, then the
1336  * z3fold page can be freed.
1337  *
1338  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1339  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1340  * the retry limit was hit.
1341  */
1342 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1343 {
1344         int i, ret = -1;
1345         struct z3fold_header *zhdr = NULL;
1346         struct page *page = NULL;
1347         struct list_head *pos;
1348         unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1349
1350         spin_lock(&pool->lock);
1351         if (!pool->ops || !pool->ops->evict || retries == 0) {
1352                 spin_unlock(&pool->lock);
1353                 return -EINVAL;
1354         }
1355         for (i = 0; i < retries; i++) {
1356                 if (list_empty(&pool->lru)) {
1357                         spin_unlock(&pool->lock);
1358                         return -EINVAL;
1359                 }
1360                 list_for_each_prev(pos, &pool->lru) {
1361                         page = list_entry(pos, struct page, lru);
1362
1363                         /* this bit could have been set by free, in which case
1364                          * we pass over to the next page in the pool.
1365                          */
1366                         if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1367                                 page = NULL;
1368                                 continue;
1369                         }
1370
1371                         if (unlikely(PageIsolated(page))) {
1372                                 clear_bit(PAGE_CLAIMED, &page->private);
1373                                 page = NULL;
1374                                 continue;
1375                         }
1376                         zhdr = page_address(page);
1377                         if (test_bit(PAGE_HEADLESS, &page->private))
1378                                 break;
1379
1380                         if (!z3fold_page_trylock(zhdr)) {
1381                                 clear_bit(PAGE_CLAIMED, &page->private);
1382                                 zhdr = NULL;
1383                                 continue; /* can't evict at this point */
1384                         }
1385                         if (zhdr->foreign_handles) {
1386                                 clear_bit(PAGE_CLAIMED, &page->private);
1387                                 z3fold_page_unlock(zhdr);
1388                                 zhdr = NULL;
1389                                 continue; /* can't evict such page */
1390                         }
1391                         kref_get(&zhdr->refcount);
1392                         list_del_init(&zhdr->buddy);
1393                         zhdr->cpu = -1;
1394                         break;
1395                 }
1396
1397                 if (!zhdr)
1398                         break;
1399
1400                 list_del_init(&page->lru);
1401                 spin_unlock(&pool->lock);
1402
1403                 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1404                         /*
1405                          * We need encode the handles before unlocking, and
1406                          * use our local slots structure because z3fold_free
1407                          * can zero out zhdr->slots and we can't do much
1408                          * about that
1409                          */
1410                         first_handle = 0;
1411                         last_handle = 0;
1412                         middle_handle = 0;
1413                         if (zhdr->first_chunks)
1414                                 first_handle = encode_handle(zhdr, FIRST);
1415                         if (zhdr->middle_chunks)
1416                                 middle_handle = encode_handle(zhdr, MIDDLE);
1417                         if (zhdr->last_chunks)
1418                                 last_handle = encode_handle(zhdr, LAST);
1419                         /*
1420                          * it's safe to unlock here because we hold a
1421                          * reference to this page
1422                          */
1423                         z3fold_page_unlock(zhdr);
1424                 } else {
1425                         first_handle = encode_handle(zhdr, HEADLESS);
1426                         last_handle = middle_handle = 0;
1427                 }
1428                 /* Issue the eviction callback(s) */
1429                 if (middle_handle) {
1430                         ret = pool->ops->evict(pool, middle_handle);
1431                         if (ret)
1432                                 goto next;
1433                         free_handle(middle_handle);
1434                 }
1435                 if (first_handle) {
1436                         ret = pool->ops->evict(pool, first_handle);
1437                         if (ret)
1438                                 goto next;
1439                         free_handle(first_handle);
1440                 }
1441                 if (last_handle) {
1442                         ret = pool->ops->evict(pool, last_handle);
1443                         if (ret)
1444                                 goto next;
1445                         free_handle(last_handle);
1446                 }
1447 next:
1448                 if (test_bit(PAGE_HEADLESS, &page->private)) {
1449                         if (ret == 0) {
1450                                 free_z3fold_page(page, true);
1451                                 atomic64_dec(&pool->pages_nr);
1452                                 return 0;
1453                         }
1454                         spin_lock(&pool->lock);
1455                         list_add(&page->lru, &pool->lru);
1456                         spin_unlock(&pool->lock);
1457                         clear_bit(PAGE_CLAIMED, &page->private);
1458                 } else {
1459                         z3fold_page_lock(zhdr);
1460                         if (kref_put(&zhdr->refcount,
1461                                         release_z3fold_page_locked)) {
1462                                 atomic64_dec(&pool->pages_nr);
1463                                 return 0;
1464                         }
1465                         /*
1466                          * if we are here, the page is still not completely
1467                          * free. Take the global pool lock then to be able
1468                          * to add it back to the lru list
1469                          */
1470                         spin_lock(&pool->lock);
1471                         list_add(&page->lru, &pool->lru);
1472                         spin_unlock(&pool->lock);
1473                         z3fold_page_unlock(zhdr);
1474                         clear_bit(PAGE_CLAIMED, &page->private);
1475                 }
1476
1477                 /* We started off locked to we need to lock the pool back */
1478                 spin_lock(&pool->lock);
1479         }
1480         spin_unlock(&pool->lock);
1481         return -EAGAIN;
1482 }
1483
1484 /**
1485  * z3fold_map() - maps the allocation associated with the given handle
1486  * @pool:       pool in which the allocation resides
1487  * @handle:     handle associated with the allocation to be mapped
1488  *
1489  * Extracts the buddy number from handle and constructs the pointer to the
1490  * correct starting chunk within the page.
1491  *
1492  * Returns: a pointer to the mapped allocation
1493  */
1494 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1495 {
1496         struct z3fold_header *zhdr;
1497         struct page *page;
1498         void *addr;
1499         enum buddy buddy;
1500
1501         zhdr = get_z3fold_header(handle);
1502         addr = zhdr;
1503         page = virt_to_page(zhdr);
1504
1505         if (test_bit(PAGE_HEADLESS, &page->private))
1506                 goto out;
1507
1508         buddy = handle_to_buddy(handle);
1509         switch (buddy) {
1510         case FIRST:
1511                 addr += ZHDR_SIZE_ALIGNED;
1512                 break;
1513         case MIDDLE:
1514                 addr += zhdr->start_middle << CHUNK_SHIFT;
1515                 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1516                 break;
1517         case LAST:
1518                 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1519                 break;
1520         default:
1521                 pr_err("unknown buddy id %d\n", buddy);
1522                 WARN_ON(1);
1523                 addr = NULL;
1524                 break;
1525         }
1526
1527         if (addr)
1528                 zhdr->mapped_count++;
1529 out:
1530         put_z3fold_header(zhdr);
1531         return addr;
1532 }
1533
1534 /**
1535  * z3fold_unmap() - unmaps the allocation associated with the given handle
1536  * @pool:       pool in which the allocation resides
1537  * @handle:     handle associated with the allocation to be unmapped
1538  */
1539 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1540 {
1541         struct z3fold_header *zhdr;
1542         struct page *page;
1543         enum buddy buddy;
1544
1545         zhdr = get_z3fold_header(handle);
1546         page = virt_to_page(zhdr);
1547
1548         if (test_bit(PAGE_HEADLESS, &page->private))
1549                 return;
1550
1551         buddy = handle_to_buddy(handle);
1552         if (buddy == MIDDLE)
1553                 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1554         zhdr->mapped_count--;
1555         put_z3fold_header(zhdr);
1556 }
1557
1558 /**
1559  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1560  * @pool:       pool whose size is being queried
1561  *
1562  * Returns: size in pages of the given pool.
1563  */
1564 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1565 {
1566         return atomic64_read(&pool->pages_nr);
1567 }
1568
1569 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1570 {
1571         struct z3fold_header *zhdr;
1572         struct z3fold_pool *pool;
1573
1574         VM_BUG_ON_PAGE(!PageMovable(page), page);
1575         VM_BUG_ON_PAGE(PageIsolated(page), page);
1576
1577         if (test_bit(PAGE_HEADLESS, &page->private) ||
1578             test_bit(PAGE_CLAIMED, &page->private))
1579                 return false;
1580
1581         zhdr = page_address(page);
1582         z3fold_page_lock(zhdr);
1583         if (test_bit(NEEDS_COMPACTING, &page->private) ||
1584             test_bit(PAGE_STALE, &page->private))
1585                 goto out;
1586
1587         if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1588                 goto out;
1589
1590         pool = zhdr_to_pool(zhdr);
1591         spin_lock(&pool->lock);
1592         if (!list_empty(&zhdr->buddy))
1593                 list_del_init(&zhdr->buddy);
1594         if (!list_empty(&page->lru))
1595                 list_del_init(&page->lru);
1596         spin_unlock(&pool->lock);
1597
1598         kref_get(&zhdr->refcount);
1599         z3fold_page_unlock(zhdr);
1600         return true;
1601
1602 out:
1603         z3fold_page_unlock(zhdr);
1604         return false;
1605 }
1606
1607 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1608                                struct page *page, enum migrate_mode mode)
1609 {
1610         struct z3fold_header *zhdr, *new_zhdr;
1611         struct z3fold_pool *pool;
1612         struct address_space *new_mapping;
1613
1614         VM_BUG_ON_PAGE(!PageMovable(page), page);
1615         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1616         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1617
1618         zhdr = page_address(page);
1619         pool = zhdr_to_pool(zhdr);
1620
1621         if (!z3fold_page_trylock(zhdr)) {
1622                 return -EAGAIN;
1623         }
1624         if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1625                 z3fold_page_unlock(zhdr);
1626                 return -EBUSY;
1627         }
1628         if (work_pending(&zhdr->work)) {
1629                 z3fold_page_unlock(zhdr);
1630                 return -EAGAIN;
1631         }
1632         new_zhdr = page_address(newpage);
1633         memcpy(new_zhdr, zhdr, PAGE_SIZE);
1634         newpage->private = page->private;
1635         page->private = 0;
1636         z3fold_page_unlock(zhdr);
1637         spin_lock_init(&new_zhdr->page_lock);
1638         INIT_WORK(&new_zhdr->work, compact_page_work);
1639         /*
1640          * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1641          * so we only have to reinitialize it.
1642          */
1643         INIT_LIST_HEAD(&new_zhdr->buddy);
1644         new_mapping = page_mapping(page);
1645         __ClearPageMovable(page);
1646         ClearPagePrivate(page);
1647
1648         get_page(newpage);
1649         z3fold_page_lock(new_zhdr);
1650         if (new_zhdr->first_chunks)
1651                 encode_handle(new_zhdr, FIRST);
1652         if (new_zhdr->last_chunks)
1653                 encode_handle(new_zhdr, LAST);
1654         if (new_zhdr->middle_chunks)
1655                 encode_handle(new_zhdr, MIDDLE);
1656         set_bit(NEEDS_COMPACTING, &newpage->private);
1657         new_zhdr->cpu = smp_processor_id();
1658         spin_lock(&pool->lock);
1659         list_add(&newpage->lru, &pool->lru);
1660         spin_unlock(&pool->lock);
1661         __SetPageMovable(newpage, new_mapping);
1662         z3fold_page_unlock(new_zhdr);
1663
1664         queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1665
1666         page_mapcount_reset(page);
1667         put_page(page);
1668         return 0;
1669 }
1670
1671 static void z3fold_page_putback(struct page *page)
1672 {
1673         struct z3fold_header *zhdr;
1674         struct z3fold_pool *pool;
1675
1676         zhdr = page_address(page);
1677         pool = zhdr_to_pool(zhdr);
1678
1679         z3fold_page_lock(zhdr);
1680         if (!list_empty(&zhdr->buddy))
1681                 list_del_init(&zhdr->buddy);
1682         INIT_LIST_HEAD(&page->lru);
1683         if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1684                 atomic64_dec(&pool->pages_nr);
1685                 return;
1686         }
1687         spin_lock(&pool->lock);
1688         list_add(&page->lru, &pool->lru);
1689         spin_unlock(&pool->lock);
1690         z3fold_page_unlock(zhdr);
1691 }
1692
1693 static const struct address_space_operations z3fold_aops = {
1694         .isolate_page = z3fold_page_isolate,
1695         .migratepage = z3fold_page_migrate,
1696         .putback_page = z3fold_page_putback,
1697 };
1698
1699 /*****************
1700  * zpool
1701  ****************/
1702
1703 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1704 {
1705         if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1706                 return pool->zpool_ops->evict(pool->zpool, handle);
1707         else
1708                 return -ENOENT;
1709 }
1710
1711 static const struct z3fold_ops z3fold_zpool_ops = {
1712         .evict =        z3fold_zpool_evict
1713 };
1714
1715 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1716                                const struct zpool_ops *zpool_ops,
1717                                struct zpool *zpool)
1718 {
1719         struct z3fold_pool *pool;
1720
1721         pool = z3fold_create_pool(name, gfp,
1722                                 zpool_ops ? &z3fold_zpool_ops : NULL);
1723         if (pool) {
1724                 pool->zpool = zpool;
1725                 pool->zpool_ops = zpool_ops;
1726         }
1727         return pool;
1728 }
1729
1730 static void z3fold_zpool_destroy(void *pool)
1731 {
1732         z3fold_destroy_pool(pool);
1733 }
1734
1735 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1736                         unsigned long *handle)
1737 {
1738         return z3fold_alloc(pool, size, gfp, handle);
1739 }
1740 static void z3fold_zpool_free(void *pool, unsigned long handle)
1741 {
1742         z3fold_free(pool, handle);
1743 }
1744
1745 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1746                         unsigned int *reclaimed)
1747 {
1748         unsigned int total = 0;
1749         int ret = -EINVAL;
1750
1751         while (total < pages) {
1752                 ret = z3fold_reclaim_page(pool, 8);
1753                 if (ret < 0)
1754                         break;
1755                 total++;
1756         }
1757
1758         if (reclaimed)
1759                 *reclaimed = total;
1760
1761         return ret;
1762 }
1763
1764 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1765                         enum zpool_mapmode mm)
1766 {
1767         return z3fold_map(pool, handle);
1768 }
1769 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1770 {
1771         z3fold_unmap(pool, handle);
1772 }
1773
1774 static u64 z3fold_zpool_total_size(void *pool)
1775 {
1776         return z3fold_get_pool_size(pool) * PAGE_SIZE;
1777 }
1778
1779 static struct zpool_driver z3fold_zpool_driver = {
1780         .type =         "z3fold",
1781         .owner =        THIS_MODULE,
1782         .create =       z3fold_zpool_create,
1783         .destroy =      z3fold_zpool_destroy,
1784         .malloc =       z3fold_zpool_malloc,
1785         .free =         z3fold_zpool_free,
1786         .shrink =       z3fold_zpool_shrink,
1787         .map =          z3fold_zpool_map,
1788         .unmap =        z3fold_zpool_unmap,
1789         .total_size =   z3fold_zpool_total_size,
1790 };
1791
1792 MODULE_ALIAS("zpool-z3fold");
1793
1794 static int __init init_z3fold(void)
1795 {
1796         int ret;
1797
1798         /* Make sure the z3fold header is not larger than the page size */
1799         BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1800         ret = z3fold_mount();
1801         if (ret)
1802                 return ret;
1803
1804         zpool_register_driver(&z3fold_zpool_driver);
1805
1806         return 0;
1807 }
1808
1809 static void __exit exit_z3fold(void)
1810 {
1811         z3fold_unmount();
1812         zpool_unregister_driver(&z3fold_zpool_driver);
1813 }
1814
1815 module_init(init_z3fold);
1816 module_exit(exit_z3fold);
1817
1818 MODULE_LICENSE("GPL");
1819 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1820 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");