Merge branch 'exec-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiede...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long begin = offset;
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 WRITE_ONCE(si->highest_bit, end);
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 arch_swap_invalidate_page(si->type, offset);
721                 frontswap_invalidate_page(si->type, offset);
722                 if (swap_slot_free_notify)
723                         swap_slot_free_notify(si->bdev, offset);
724                 offset++;
725         }
726         clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731         unsigned long prev;
732
733         if (!(si->flags & SWP_SOLIDSTATE)) {
734                 si->cluster_next = next;
735                 return;
736         }
737
738         prev = this_cpu_read(*si->cluster_next_cpu);
739         /*
740          * Cross the swap address space size aligned trunk, choose
741          * another trunk randomly to avoid lock contention on swap
742          * address space if possible.
743          */
744         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746                 /* No free swap slots available */
747                 if (si->highest_bit <= si->lowest_bit)
748                         return;
749                 next = si->lowest_bit +
750                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752                 next = max_t(unsigned int, next, si->lowest_bit);
753         }
754         this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758                                unsigned char usage, int nr,
759                                swp_entry_t slots[])
760 {
761         struct swap_cluster_info *ci;
762         unsigned long offset;
763         unsigned long scan_base;
764         unsigned long last_in_cluster = 0;
765         int latency_ration = LATENCY_LIMIT;
766         int n_ret = 0;
767         bool scanned_many = false;
768
769         /*
770          * We try to cluster swap pages by allocating them sequentially
771          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772          * way, however, we resort to first-free allocation, starting
773          * a new cluster.  This prevents us from scattering swap pages
774          * all over the entire swap partition, so that we reduce
775          * overall disk seek times between swap pages.  -- sct
776          * But we do now try to find an empty cluster.  -Andrea
777          * And we let swap pages go all over an SSD partition.  Hugh
778          */
779
780         si->flags += SWP_SCANNING;
781         /*
782          * Use percpu scan base for SSD to reduce lock contention on
783          * cluster and swap cache.  For HDD, sequential access is more
784          * important.
785          */
786         if (si->flags & SWP_SOLIDSTATE)
787                 scan_base = this_cpu_read(*si->cluster_next_cpu);
788         else
789                 scan_base = si->cluster_next;
790         offset = scan_base;
791
792         /* SSD algorithm */
793         if (si->cluster_info) {
794                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795                         goto scan;
796         } else if (unlikely(!si->cluster_nr--)) {
797                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
799                         goto checks;
800                 }
801
802                 spin_unlock(&si->lock);
803
804                 /*
805                  * If seek is expensive, start searching for new cluster from
806                  * start of partition, to minimize the span of allocated swap.
807                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
809                  */
810                 scan_base = offset = si->lowest_bit;
811                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813                 /* Locate the first empty (unaligned) cluster */
814                 for (; last_in_cluster <= si->highest_bit; offset++) {
815                         if (si->swap_map[offset])
816                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
817                         else if (offset == last_in_cluster) {
818                                 spin_lock(&si->lock);
819                                 offset -= SWAPFILE_CLUSTER - 1;
820                                 si->cluster_next = offset;
821                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822                                 goto checks;
823                         }
824                         if (unlikely(--latency_ration < 0)) {
825                                 cond_resched();
826                                 latency_ration = LATENCY_LIMIT;
827                         }
828                 }
829
830                 offset = scan_base;
831                 spin_lock(&si->lock);
832                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833         }
834
835 checks:
836         if (si->cluster_info) {
837                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838                 /* take a break if we already got some slots */
839                         if (n_ret)
840                                 goto done;
841                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
842                                                         &scan_base))
843                                 goto scan;
844                 }
845         }
846         if (!(si->flags & SWP_WRITEOK))
847                 goto no_page;
848         if (!si->highest_bit)
849                 goto no_page;
850         if (offset > si->highest_bit)
851                 scan_base = offset = si->lowest_bit;
852
853         ci = lock_cluster(si, offset);
854         /* reuse swap entry of cache-only swap if not busy. */
855         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856                 int swap_was_freed;
857                 unlock_cluster(ci);
858                 spin_unlock(&si->lock);
859                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860                 spin_lock(&si->lock);
861                 /* entry was freed successfully, try to use this again */
862                 if (swap_was_freed)
863                         goto checks;
864                 goto scan; /* check next one */
865         }
866
867         if (si->swap_map[offset]) {
868                 unlock_cluster(ci);
869                 if (!n_ret)
870                         goto scan;
871                 else
872                         goto done;
873         }
874         WRITE_ONCE(si->swap_map[offset], usage);
875         inc_cluster_info_page(si, si->cluster_info, offset);
876         unlock_cluster(ci);
877
878         swap_range_alloc(si, offset, 1);
879         slots[n_ret++] = swp_entry(si->type, offset);
880
881         /* got enough slots or reach max slots? */
882         if ((n_ret == nr) || (offset >= si->highest_bit))
883                 goto done;
884
885         /* search for next available slot */
886
887         /* time to take a break? */
888         if (unlikely(--latency_ration < 0)) {
889                 if (n_ret)
890                         goto done;
891                 spin_unlock(&si->lock);
892                 cond_resched();
893                 spin_lock(&si->lock);
894                 latency_ration = LATENCY_LIMIT;
895         }
896
897         /* try to get more slots in cluster */
898         if (si->cluster_info) {
899                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900                         goto checks;
901         } else if (si->cluster_nr && !si->swap_map[++offset]) {
902                 /* non-ssd case, still more slots in cluster? */
903                 --si->cluster_nr;
904                 goto checks;
905         }
906
907         /*
908          * Even if there's no free clusters available (fragmented),
909          * try to scan a little more quickly with lock held unless we
910          * have scanned too many slots already.
911          */
912         if (!scanned_many) {
913                 unsigned long scan_limit;
914
915                 if (offset < scan_base)
916                         scan_limit = scan_base;
917                 else
918                         scan_limit = si->highest_bit;
919                 for (; offset <= scan_limit && --latency_ration > 0;
920                      offset++) {
921                         if (!si->swap_map[offset])
922                                 goto checks;
923                 }
924         }
925
926 done:
927         set_cluster_next(si, offset + 1);
928         si->flags -= SWP_SCANNING;
929         return n_ret;
930
931 scan:
932         spin_unlock(&si->lock);
933         while (++offset <= READ_ONCE(si->highest_bit)) {
934                 if (data_race(!si->swap_map[offset])) {
935                         spin_lock(&si->lock);
936                         goto checks;
937                 }
938                 if (vm_swap_full() &&
939                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940                         spin_lock(&si->lock);
941                         goto checks;
942                 }
943                 if (unlikely(--latency_ration < 0)) {
944                         cond_resched();
945                         latency_ration = LATENCY_LIMIT;
946                         scanned_many = true;
947                 }
948         }
949         offset = si->lowest_bit;
950         while (offset < scan_base) {
951                 if (data_race(!si->swap_map[offset])) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (vm_swap_full() &&
956                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957                         spin_lock(&si->lock);
958                         goto checks;
959                 }
960                 if (unlikely(--latency_ration < 0)) {
961                         cond_resched();
962                         latency_ration = LATENCY_LIMIT;
963                         scanned_many = true;
964                 }
965                 offset++;
966         }
967         spin_lock(&si->lock);
968
969 no_page:
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972 }
973
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976         unsigned long idx;
977         struct swap_cluster_info *ci;
978         unsigned long offset;
979
980         /*
981          * Should not even be attempting cluster allocations when huge
982          * page swap is disabled.  Warn and fail the allocation.
983          */
984         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
985                 VM_WARN_ON_ONCE(1);
986                 return 0;
987         }
988
989         if (cluster_list_empty(&si->free_clusters))
990                 return 0;
991
992         idx = cluster_list_first(&si->free_clusters);
993         offset = idx * SWAPFILE_CLUSTER;
994         ci = lock_cluster(si, offset);
995         alloc_cluster(si, idx);
996         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
997
998         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
999         unlock_cluster(ci);
1000         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001         *slot = swp_entry(si->type, offset);
1002
1003         return 1;
1004 }
1005
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008         unsigned long offset = idx * SWAPFILE_CLUSTER;
1009         struct swap_cluster_info *ci;
1010
1011         ci = lock_cluster(si, offset);
1012         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013         cluster_set_count_flag(ci, 0, 0);
1014         free_cluster(si, idx);
1015         unlock_cluster(ci);
1016         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020                                    unsigned char usage)
1021 {
1022         swp_entry_t entry;
1023         int n_ret;
1024
1025         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026
1027         if (n_ret)
1028                 return swp_offset(entry);
1029         else
1030                 return 0;
1031
1032 }
1033
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036         unsigned long size = swap_entry_size(entry_size);
1037         struct swap_info_struct *si, *next;
1038         long avail_pgs;
1039         int n_ret = 0;
1040         int node;
1041
1042         /* Only single cluster request supported */
1043         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044
1045         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1046         if (avail_pgs <= 0)
1047                 goto noswap;
1048
1049         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1050
1051         atomic_long_sub(n_goal * size, &nr_swap_pages);
1052
1053         spin_lock(&swap_avail_lock);
1054
1055 start_over:
1056         node = numa_node_id();
1057         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1058                 /* requeue si to after same-priority siblings */
1059                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1060                 spin_unlock(&swap_avail_lock);
1061                 spin_lock(&si->lock);
1062                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1063                         spin_lock(&swap_avail_lock);
1064                         if (plist_node_empty(&si->avail_lists[node])) {
1065                                 spin_unlock(&si->lock);
1066                                 goto nextsi;
1067                         }
1068                         WARN(!si->highest_bit,
1069                              "swap_info %d in list but !highest_bit\n",
1070                              si->type);
1071                         WARN(!(si->flags & SWP_WRITEOK),
1072                              "swap_info %d in list but !SWP_WRITEOK\n",
1073                              si->type);
1074                         __del_from_avail_list(si);
1075                         spin_unlock(&si->lock);
1076                         goto nextsi;
1077                 }
1078                 if (size == SWAPFILE_CLUSTER) {
1079                         if (si->flags & SWP_BLKDEV)
1080                                 n_ret = swap_alloc_cluster(si, swp_entries);
1081                 } else
1082                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1083                                                     n_goal, swp_entries);
1084                 spin_unlock(&si->lock);
1085                 if (n_ret || size == SWAPFILE_CLUSTER)
1086                         goto check_out;
1087                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1088                         si->type);
1089
1090                 spin_lock(&swap_avail_lock);
1091 nextsi:
1092                 /*
1093                  * if we got here, it's likely that si was almost full before,
1094                  * and since scan_swap_map() can drop the si->lock, multiple
1095                  * callers probably all tried to get a page from the same si
1096                  * and it filled up before we could get one; or, the si filled
1097                  * up between us dropping swap_avail_lock and taking si->lock.
1098                  * Since we dropped the swap_avail_lock, the swap_avail_head
1099                  * list may have been modified; so if next is still in the
1100                  * swap_avail_head list then try it, otherwise start over
1101                  * if we have not gotten any slots.
1102                  */
1103                 if (plist_node_empty(&next->avail_lists[node]))
1104                         goto start_over;
1105         }
1106
1107         spin_unlock(&swap_avail_lock);
1108
1109 check_out:
1110         if (n_ret < n_goal)
1111                 atomic_long_add((long)(n_goal - n_ret) * size,
1112                                 &nr_swap_pages);
1113 noswap:
1114         return n_ret;
1115 }
1116
1117 /* The only caller of this function is now suspend routine */
1118 swp_entry_t get_swap_page_of_type(int type)
1119 {
1120         struct swap_info_struct *si = swap_type_to_swap_info(type);
1121         pgoff_t offset;
1122
1123         if (!si)
1124                 goto fail;
1125
1126         spin_lock(&si->lock);
1127         if (si->flags & SWP_WRITEOK) {
1128                 atomic_long_dec(&nr_swap_pages);
1129                 /* This is called for allocating swap entry, not cache */
1130                 offset = scan_swap_map(si, 1);
1131                 if (offset) {
1132                         spin_unlock(&si->lock);
1133                         return swp_entry(type, offset);
1134                 }
1135                 atomic_long_inc(&nr_swap_pages);
1136         }
1137         spin_unlock(&si->lock);
1138 fail:
1139         return (swp_entry_t) {0};
1140 }
1141
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144         struct swap_info_struct *p;
1145         unsigned long offset;
1146
1147         if (!entry.val)
1148                 goto out;
1149         p = swp_swap_info(entry);
1150         if (!p)
1151                 goto bad_nofile;
1152         if (data_race(!(p->flags & SWP_USED)))
1153                 goto bad_device;
1154         offset = swp_offset(entry);
1155         if (offset >= p->max)
1156                 goto bad_offset;
1157         return p;
1158
1159 bad_offset:
1160         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1161         goto out;
1162 bad_device:
1163         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1164         goto out;
1165 bad_nofile:
1166         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173         struct swap_info_struct *p;
1174
1175         p = __swap_info_get(entry);
1176         if (!p)
1177                 goto out;
1178         if (data_race(!p->swap_map[swp_offset(entry)]))
1179                 goto bad_free;
1180         return p;
1181
1182 bad_free:
1183         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1184 out:
1185         return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190         struct swap_info_struct *p;
1191
1192         p = _swap_info_get(entry);
1193         if (p)
1194                 spin_lock(&p->lock);
1195         return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199                                         struct swap_info_struct *q)
1200 {
1201         struct swap_info_struct *p;
1202
1203         p = _swap_info_get(entry);
1204
1205         if (p != q) {
1206                 if (q != NULL)
1207                         spin_unlock(&q->lock);
1208                 if (p != NULL)
1209                         spin_lock(&p->lock);
1210         }
1211         return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215                                               unsigned long offset,
1216                                               unsigned char usage)
1217 {
1218         unsigned char count;
1219         unsigned char has_cache;
1220
1221         count = p->swap_map[offset];
1222
1223         has_cache = count & SWAP_HAS_CACHE;
1224         count &= ~SWAP_HAS_CACHE;
1225
1226         if (usage == SWAP_HAS_CACHE) {
1227                 VM_BUG_ON(!has_cache);
1228                 has_cache = 0;
1229         } else if (count == SWAP_MAP_SHMEM) {
1230                 /*
1231                  * Or we could insist on shmem.c using a special
1232                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1233                  */
1234                 count = 0;
1235         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236                 if (count == COUNT_CONTINUED) {
1237                         if (swap_count_continued(p, offset, count))
1238                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239                         else
1240                                 count = SWAP_MAP_MAX;
1241                 } else
1242                         count--;
1243         }
1244
1245         usage = count | has_cache;
1246         if (usage)
1247                 WRITE_ONCE(p->swap_map[offset], usage);
1248         else
1249                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1250
1251         return usage;
1252 }
1253
1254 /*
1255  * Check whether swap entry is valid in the swap device.  If so,
1256  * return pointer to swap_info_struct, and keep the swap entry valid
1257  * via preventing the swap device from being swapoff, until
1258  * put_swap_device() is called.  Otherwise return NULL.
1259  *
1260  * The entirety of the RCU read critical section must come before the
1261  * return from or after the call to synchronize_rcu() in
1262  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1263  * true, the si->map, si->cluster_info, etc. must be valid in the
1264  * critical section.
1265  *
1266  * Notice that swapoff or swapoff+swapon can still happen before the
1267  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1268  * in put_swap_device() if there isn't any other way to prevent
1269  * swapoff, such as page lock, page table lock, etc.  The caller must
1270  * be prepared for that.  For example, the following situation is
1271  * possible.
1272  *
1273  *   CPU1                               CPU2
1274  *   do_swap_page()
1275  *     ...                              swapoff+swapon
1276  *     __read_swap_cache_async()
1277  *       swapcache_prepare()
1278  *         __swap_duplicate()
1279  *           // check swap_map
1280  *     // verify PTE not changed
1281  *
1282  * In __swap_duplicate(), the swap_map need to be checked before
1283  * changing partly because the specified swap entry may be for another
1284  * swap device which has been swapoff.  And in do_swap_page(), after
1285  * the page is read from the swap device, the PTE is verified not
1286  * changed with the page table locked to check whether the swap device
1287  * has been swapoff or swapoff+swapon.
1288  */
1289 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1290 {
1291         struct swap_info_struct *si;
1292         unsigned long offset;
1293
1294         if (!entry.val)
1295                 goto out;
1296         si = swp_swap_info(entry);
1297         if (!si)
1298                 goto bad_nofile;
1299
1300         rcu_read_lock();
1301         if (data_race(!(si->flags & SWP_VALID)))
1302                 goto unlock_out;
1303         offset = swp_offset(entry);
1304         if (offset >= si->max)
1305                 goto unlock_out;
1306
1307         return si;
1308 bad_nofile:
1309         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1310 out:
1311         return NULL;
1312 unlock_out:
1313         rcu_read_unlock();
1314         return NULL;
1315 }
1316
1317 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1318                                        swp_entry_t entry)
1319 {
1320         struct swap_cluster_info *ci;
1321         unsigned long offset = swp_offset(entry);
1322         unsigned char usage;
1323
1324         ci = lock_cluster_or_swap_info(p, offset);
1325         usage = __swap_entry_free_locked(p, offset, 1);
1326         unlock_cluster_or_swap_info(p, ci);
1327         if (!usage)
1328                 free_swap_slot(entry);
1329
1330         return usage;
1331 }
1332
1333 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1334 {
1335         struct swap_cluster_info *ci;
1336         unsigned long offset = swp_offset(entry);
1337         unsigned char count;
1338
1339         ci = lock_cluster(p, offset);
1340         count = p->swap_map[offset];
1341         VM_BUG_ON(count != SWAP_HAS_CACHE);
1342         p->swap_map[offset] = 0;
1343         dec_cluster_info_page(p, p->cluster_info, offset);
1344         unlock_cluster(ci);
1345
1346         mem_cgroup_uncharge_swap(entry, 1);
1347         swap_range_free(p, offset, 1);
1348 }
1349
1350 /*
1351  * Caller has made sure that the swap device corresponding to entry
1352  * is still around or has not been recycled.
1353  */
1354 void swap_free(swp_entry_t entry)
1355 {
1356         struct swap_info_struct *p;
1357
1358         p = _swap_info_get(entry);
1359         if (p)
1360                 __swap_entry_free(p, entry);
1361 }
1362
1363 /*
1364  * Called after dropping swapcache to decrease refcnt to swap entries.
1365  */
1366 void put_swap_page(struct page *page, swp_entry_t entry)
1367 {
1368         unsigned long offset = swp_offset(entry);
1369         unsigned long idx = offset / SWAPFILE_CLUSTER;
1370         struct swap_cluster_info *ci;
1371         struct swap_info_struct *si;
1372         unsigned char *map;
1373         unsigned int i, free_entries = 0;
1374         unsigned char val;
1375         int size = swap_entry_size(thp_nr_pages(page));
1376
1377         si = _swap_info_get(entry);
1378         if (!si)
1379                 return;
1380
1381         ci = lock_cluster_or_swap_info(si, offset);
1382         if (size == SWAPFILE_CLUSTER) {
1383                 VM_BUG_ON(!cluster_is_huge(ci));
1384                 map = si->swap_map + offset;
1385                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1386                         val = map[i];
1387                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1388                         if (val == SWAP_HAS_CACHE)
1389                                 free_entries++;
1390                 }
1391                 cluster_clear_huge(ci);
1392                 if (free_entries == SWAPFILE_CLUSTER) {
1393                         unlock_cluster_or_swap_info(si, ci);
1394                         spin_lock(&si->lock);
1395                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1396                         swap_free_cluster(si, idx);
1397                         spin_unlock(&si->lock);
1398                         return;
1399                 }
1400         }
1401         for (i = 0; i < size; i++, entry.val++) {
1402                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1403                         unlock_cluster_or_swap_info(si, ci);
1404                         free_swap_slot(entry);
1405                         if (i == size - 1)
1406                                 return;
1407                         lock_cluster_or_swap_info(si, offset);
1408                 }
1409         }
1410         unlock_cluster_or_swap_info(si, ci);
1411 }
1412
1413 #ifdef CONFIG_THP_SWAP
1414 int split_swap_cluster(swp_entry_t entry)
1415 {
1416         struct swap_info_struct *si;
1417         struct swap_cluster_info *ci;
1418         unsigned long offset = swp_offset(entry);
1419
1420         si = _swap_info_get(entry);
1421         if (!si)
1422                 return -EBUSY;
1423         ci = lock_cluster(si, offset);
1424         cluster_clear_huge(ci);
1425         unlock_cluster(ci);
1426         return 0;
1427 }
1428 #endif
1429
1430 static int swp_entry_cmp(const void *ent1, const void *ent2)
1431 {
1432         const swp_entry_t *e1 = ent1, *e2 = ent2;
1433
1434         return (int)swp_type(*e1) - (int)swp_type(*e2);
1435 }
1436
1437 void swapcache_free_entries(swp_entry_t *entries, int n)
1438 {
1439         struct swap_info_struct *p, *prev;
1440         int i;
1441
1442         if (n <= 0)
1443                 return;
1444
1445         prev = NULL;
1446         p = NULL;
1447
1448         /*
1449          * Sort swap entries by swap device, so each lock is only taken once.
1450          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1451          * so low that it isn't necessary to optimize further.
1452          */
1453         if (nr_swapfiles > 1)
1454                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1455         for (i = 0; i < n; ++i) {
1456                 p = swap_info_get_cont(entries[i], prev);
1457                 if (p)
1458                         swap_entry_free(p, entries[i]);
1459                 prev = p;
1460         }
1461         if (p)
1462                 spin_unlock(&p->lock);
1463 }
1464
1465 /*
1466  * How many references to page are currently swapped out?
1467  * This does not give an exact answer when swap count is continued,
1468  * but does include the high COUNT_CONTINUED flag to allow for that.
1469  */
1470 int page_swapcount(struct page *page)
1471 {
1472         int count = 0;
1473         struct swap_info_struct *p;
1474         struct swap_cluster_info *ci;
1475         swp_entry_t entry;
1476         unsigned long offset;
1477
1478         entry.val = page_private(page);
1479         p = _swap_info_get(entry);
1480         if (p) {
1481                 offset = swp_offset(entry);
1482                 ci = lock_cluster_or_swap_info(p, offset);
1483                 count = swap_count(p->swap_map[offset]);
1484                 unlock_cluster_or_swap_info(p, ci);
1485         }
1486         return count;
1487 }
1488
1489 int __swap_count(swp_entry_t entry)
1490 {
1491         struct swap_info_struct *si;
1492         pgoff_t offset = swp_offset(entry);
1493         int count = 0;
1494
1495         si = get_swap_device(entry);
1496         if (si) {
1497                 count = swap_count(si->swap_map[offset]);
1498                 put_swap_device(si);
1499         }
1500         return count;
1501 }
1502
1503 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1504 {
1505         int count = 0;
1506         pgoff_t offset = swp_offset(entry);
1507         struct swap_cluster_info *ci;
1508
1509         ci = lock_cluster_or_swap_info(si, offset);
1510         count = swap_count(si->swap_map[offset]);
1511         unlock_cluster_or_swap_info(si, ci);
1512         return count;
1513 }
1514
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This does not give an exact answer when swap count is continued,
1518  * but does include the high COUNT_CONTINUED flag to allow for that.
1519  */
1520 int __swp_swapcount(swp_entry_t entry)
1521 {
1522         int count = 0;
1523         struct swap_info_struct *si;
1524
1525         si = get_swap_device(entry);
1526         if (si) {
1527                 count = swap_swapcount(si, entry);
1528                 put_swap_device(si);
1529         }
1530         return count;
1531 }
1532
1533 /*
1534  * How many references to @entry are currently swapped out?
1535  * This considers COUNT_CONTINUED so it returns exact answer.
1536  */
1537 int swp_swapcount(swp_entry_t entry)
1538 {
1539         int count, tmp_count, n;
1540         struct swap_info_struct *p;
1541         struct swap_cluster_info *ci;
1542         struct page *page;
1543         pgoff_t offset;
1544         unsigned char *map;
1545
1546         p = _swap_info_get(entry);
1547         if (!p)
1548                 return 0;
1549
1550         offset = swp_offset(entry);
1551
1552         ci = lock_cluster_or_swap_info(p, offset);
1553
1554         count = swap_count(p->swap_map[offset]);
1555         if (!(count & COUNT_CONTINUED))
1556                 goto out;
1557
1558         count &= ~COUNT_CONTINUED;
1559         n = SWAP_MAP_MAX + 1;
1560
1561         page = vmalloc_to_page(p->swap_map + offset);
1562         offset &= ~PAGE_MASK;
1563         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1564
1565         do {
1566                 page = list_next_entry(page, lru);
1567                 map = kmap_atomic(page);
1568                 tmp_count = map[offset];
1569                 kunmap_atomic(map);
1570
1571                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1572                 n *= (SWAP_CONT_MAX + 1);
1573         } while (tmp_count & COUNT_CONTINUED);
1574 out:
1575         unlock_cluster_or_swap_info(p, ci);
1576         return count;
1577 }
1578
1579 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1580                                          swp_entry_t entry)
1581 {
1582         struct swap_cluster_info *ci;
1583         unsigned char *map = si->swap_map;
1584         unsigned long roffset = swp_offset(entry);
1585         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1586         int i;
1587         bool ret = false;
1588
1589         ci = lock_cluster_or_swap_info(si, offset);
1590         if (!ci || !cluster_is_huge(ci)) {
1591                 if (swap_count(map[roffset]))
1592                         ret = true;
1593                 goto unlock_out;
1594         }
1595         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1596                 if (swap_count(map[offset + i])) {
1597                         ret = true;
1598                         break;
1599                 }
1600         }
1601 unlock_out:
1602         unlock_cluster_or_swap_info(si, ci);
1603         return ret;
1604 }
1605
1606 static bool page_swapped(struct page *page)
1607 {
1608         swp_entry_t entry;
1609         struct swap_info_struct *si;
1610
1611         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1612                 return page_swapcount(page) != 0;
1613
1614         page = compound_head(page);
1615         entry.val = page_private(page);
1616         si = _swap_info_get(entry);
1617         if (si)
1618                 return swap_page_trans_huge_swapped(si, entry);
1619         return false;
1620 }
1621
1622 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1623                                          int *total_swapcount)
1624 {
1625         int i, map_swapcount, _total_mapcount, _total_swapcount;
1626         unsigned long offset = 0;
1627         struct swap_info_struct *si;
1628         struct swap_cluster_info *ci = NULL;
1629         unsigned char *map = NULL;
1630         int mapcount, swapcount = 0;
1631
1632         /* hugetlbfs shouldn't call it */
1633         VM_BUG_ON_PAGE(PageHuge(page), page);
1634
1635         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1636                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1637                 if (PageSwapCache(page))
1638                         swapcount = page_swapcount(page);
1639                 if (total_swapcount)
1640                         *total_swapcount = swapcount;
1641                 return mapcount + swapcount;
1642         }
1643
1644         page = compound_head(page);
1645
1646         _total_mapcount = _total_swapcount = map_swapcount = 0;
1647         if (PageSwapCache(page)) {
1648                 swp_entry_t entry;
1649
1650                 entry.val = page_private(page);
1651                 si = _swap_info_get(entry);
1652                 if (si) {
1653                         map = si->swap_map;
1654                         offset = swp_offset(entry);
1655                 }
1656         }
1657         if (map)
1658                 ci = lock_cluster(si, offset);
1659         for (i = 0; i < HPAGE_PMD_NR; i++) {
1660                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1661                 _total_mapcount += mapcount;
1662                 if (map) {
1663                         swapcount = swap_count(map[offset + i]);
1664                         _total_swapcount += swapcount;
1665                 }
1666                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1667         }
1668         unlock_cluster(ci);
1669         if (PageDoubleMap(page)) {
1670                 map_swapcount -= 1;
1671                 _total_mapcount -= HPAGE_PMD_NR;
1672         }
1673         mapcount = compound_mapcount(page);
1674         map_swapcount += mapcount;
1675         _total_mapcount += mapcount;
1676         if (total_mapcount)
1677                 *total_mapcount = _total_mapcount;
1678         if (total_swapcount)
1679                 *total_swapcount = _total_swapcount;
1680
1681         return map_swapcount;
1682 }
1683
1684 /*
1685  * We can write to an anon page without COW if there are no other references
1686  * to it.  And as a side-effect, free up its swap: because the old content
1687  * on disk will never be read, and seeking back there to write new content
1688  * later would only waste time away from clustering.
1689  *
1690  * NOTE: total_map_swapcount should not be relied upon by the caller if
1691  * reuse_swap_page() returns false, but it may be always overwritten
1692  * (see the other implementation for CONFIG_SWAP=n).
1693  */
1694 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1695 {
1696         int count, total_mapcount, total_swapcount;
1697
1698         VM_BUG_ON_PAGE(!PageLocked(page), page);
1699         if (unlikely(PageKsm(page)))
1700                 return false;
1701         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1702                                               &total_swapcount);
1703         if (total_map_swapcount)
1704                 *total_map_swapcount = total_mapcount + total_swapcount;
1705         if (count == 1 && PageSwapCache(page) &&
1706             (likely(!PageTransCompound(page)) ||
1707              /* The remaining swap count will be freed soon */
1708              total_swapcount == page_swapcount(page))) {
1709                 if (!PageWriteback(page)) {
1710                         page = compound_head(page);
1711                         delete_from_swap_cache(page);
1712                         SetPageDirty(page);
1713                 } else {
1714                         swp_entry_t entry;
1715                         struct swap_info_struct *p;
1716
1717                         entry.val = page_private(page);
1718                         p = swap_info_get(entry);
1719                         if (p->flags & SWP_STABLE_WRITES) {
1720                                 spin_unlock(&p->lock);
1721                                 return false;
1722                         }
1723                         spin_unlock(&p->lock);
1724                 }
1725         }
1726
1727         return count <= 1;
1728 }
1729
1730 /*
1731  * If swap is getting full, or if there are no more mappings of this page,
1732  * then try_to_free_swap is called to free its swap space.
1733  */
1734 int try_to_free_swap(struct page *page)
1735 {
1736         VM_BUG_ON_PAGE(!PageLocked(page), page);
1737
1738         if (!PageSwapCache(page))
1739                 return 0;
1740         if (PageWriteback(page))
1741                 return 0;
1742         if (page_swapped(page))
1743                 return 0;
1744
1745         /*
1746          * Once hibernation has begun to create its image of memory,
1747          * there's a danger that one of the calls to try_to_free_swap()
1748          * - most probably a call from __try_to_reclaim_swap() while
1749          * hibernation is allocating its own swap pages for the image,
1750          * but conceivably even a call from memory reclaim - will free
1751          * the swap from a page which has already been recorded in the
1752          * image as a clean swapcache page, and then reuse its swap for
1753          * another page of the image.  On waking from hibernation, the
1754          * original page might be freed under memory pressure, then
1755          * later read back in from swap, now with the wrong data.
1756          *
1757          * Hibernation suspends storage while it is writing the image
1758          * to disk so check that here.
1759          */
1760         if (pm_suspended_storage())
1761                 return 0;
1762
1763         page = compound_head(page);
1764         delete_from_swap_cache(page);
1765         SetPageDirty(page);
1766         return 1;
1767 }
1768
1769 /*
1770  * Free the swap entry like above, but also try to
1771  * free the page cache entry if it is the last user.
1772  */
1773 int free_swap_and_cache(swp_entry_t entry)
1774 {
1775         struct swap_info_struct *p;
1776         unsigned char count;
1777
1778         if (non_swap_entry(entry))
1779                 return 1;
1780
1781         p = _swap_info_get(entry);
1782         if (p) {
1783                 count = __swap_entry_free(p, entry);
1784                 if (count == SWAP_HAS_CACHE &&
1785                     !swap_page_trans_huge_swapped(p, entry))
1786                         __try_to_reclaim_swap(p, swp_offset(entry),
1787                                               TTRS_UNMAPPED | TTRS_FULL);
1788         }
1789         return p != NULL;
1790 }
1791
1792 #ifdef CONFIG_HIBERNATION
1793 /*
1794  * Find the swap type that corresponds to given device (if any).
1795  *
1796  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797  * from 0, in which the swap header is expected to be located.
1798  *
1799  * This is needed for the suspend to disk (aka swsusp).
1800  */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803         int type;
1804
1805         if (!device)
1806                 return -1;
1807
1808         spin_lock(&swap_lock);
1809         for (type = 0; type < nr_swapfiles; type++) {
1810                 struct swap_info_struct *sis = swap_info[type];
1811
1812                 if (!(sis->flags & SWP_WRITEOK))
1813                         continue;
1814
1815                 if (device == sis->bdev->bd_dev) {
1816                         struct swap_extent *se = first_se(sis);
1817
1818                         if (se->start_block == offset) {
1819                                 spin_unlock(&swap_lock);
1820                                 return type;
1821                         }
1822                 }
1823         }
1824         spin_unlock(&swap_lock);
1825         return -ENODEV;
1826 }
1827
1828 int find_first_swap(dev_t *device)
1829 {
1830         int type;
1831
1832         spin_lock(&swap_lock);
1833         for (type = 0; type < nr_swapfiles; type++) {
1834                 struct swap_info_struct *sis = swap_info[type];
1835
1836                 if (!(sis->flags & SWP_WRITEOK))
1837                         continue;
1838                 *device = sis->bdev->bd_dev;
1839                 spin_unlock(&swap_lock);
1840                 return type;
1841         }
1842         spin_unlock(&swap_lock);
1843         return -ENODEV;
1844 }
1845
1846 /*
1847  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848  * corresponding to given index in swap_info (swap type).
1849  */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852         struct block_device *bdev;
1853         struct swap_info_struct *si = swap_type_to_swap_info(type);
1854
1855         if (!si || !(si->flags & SWP_WRITEOK))
1856                 return 0;
1857         return map_swap_entry(swp_entry(type, offset), &bdev);
1858 }
1859
1860 /*
1861  * Return either the total number of swap pages of given type, or the number
1862  * of free pages of that type (depending on @free)
1863  *
1864  * This is needed for software suspend
1865  */
1866 unsigned int count_swap_pages(int type, int free)
1867 {
1868         unsigned int n = 0;
1869
1870         spin_lock(&swap_lock);
1871         if ((unsigned int)type < nr_swapfiles) {
1872                 struct swap_info_struct *sis = swap_info[type];
1873
1874                 spin_lock(&sis->lock);
1875                 if (sis->flags & SWP_WRITEOK) {
1876                         n = sis->pages;
1877                         if (free)
1878                                 n -= sis->inuse_pages;
1879                 }
1880                 spin_unlock(&sis->lock);
1881         }
1882         spin_unlock(&swap_lock);
1883         return n;
1884 }
1885 #endif /* CONFIG_HIBERNATION */
1886
1887 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1888 {
1889         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1890 }
1891
1892 /*
1893  * No need to decide whether this PTE shares the swap entry with others,
1894  * just let do_wp_page work it out if a write is requested later - to
1895  * force COW, vm_page_prot omits write permission from any private vma.
1896  */
1897 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1898                 unsigned long addr, swp_entry_t entry, struct page *page)
1899 {
1900         struct page *swapcache;
1901         spinlock_t *ptl;
1902         pte_t *pte;
1903         int ret = 1;
1904
1905         swapcache = page;
1906         page = ksm_might_need_to_copy(page, vma, addr);
1907         if (unlikely(!page))
1908                 return -ENOMEM;
1909
1910         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1911         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1912                 ret = 0;
1913                 goto out;
1914         }
1915
1916         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1917         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1918         get_page(page);
1919         set_pte_at(vma->vm_mm, addr, pte,
1920                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1921         if (page == swapcache) {
1922                 page_add_anon_rmap(page, vma, addr, false);
1923         } else { /* ksm created a completely new copy */
1924                 page_add_new_anon_rmap(page, vma, addr, false);
1925                 lru_cache_add_inactive_or_unevictable(page, vma);
1926         }
1927         swap_free(entry);
1928 out:
1929         pte_unmap_unlock(pte, ptl);
1930         if (page != swapcache) {
1931                 unlock_page(page);
1932                 put_page(page);
1933         }
1934         return ret;
1935 }
1936
1937 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1938                         unsigned long addr, unsigned long end,
1939                         unsigned int type, bool frontswap,
1940                         unsigned long *fs_pages_to_unuse)
1941 {
1942         struct page *page;
1943         swp_entry_t entry;
1944         pte_t *pte;
1945         struct swap_info_struct *si;
1946         unsigned long offset;
1947         int ret = 0;
1948         volatile unsigned char *swap_map;
1949
1950         si = swap_info[type];
1951         pte = pte_offset_map(pmd, addr);
1952         do {
1953                 struct vm_fault vmf;
1954
1955                 if (!is_swap_pte(*pte))
1956                         continue;
1957
1958                 entry = pte_to_swp_entry(*pte);
1959                 if (swp_type(entry) != type)
1960                         continue;
1961
1962                 offset = swp_offset(entry);
1963                 if (frontswap && !frontswap_test(si, offset))
1964                         continue;
1965
1966                 pte_unmap(pte);
1967                 swap_map = &si->swap_map[offset];
1968                 page = lookup_swap_cache(entry, vma, addr);
1969                 if (!page) {
1970                         vmf.vma = vma;
1971                         vmf.address = addr;
1972                         vmf.pmd = pmd;
1973                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1974                                                 &vmf);
1975                 }
1976                 if (!page) {
1977                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1978                                 goto try_next;
1979                         return -ENOMEM;
1980                 }
1981
1982                 lock_page(page);
1983                 wait_on_page_writeback(page);
1984                 ret = unuse_pte(vma, pmd, addr, entry, page);
1985                 if (ret < 0) {
1986                         unlock_page(page);
1987                         put_page(page);
1988                         goto out;
1989                 }
1990
1991                 try_to_free_swap(page);
1992                 unlock_page(page);
1993                 put_page(page);
1994
1995                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1996                         ret = FRONTSWAP_PAGES_UNUSED;
1997                         goto out;
1998                 }
1999 try_next:
2000                 pte = pte_offset_map(pmd, addr);
2001         } while (pte++, addr += PAGE_SIZE, addr != end);
2002         pte_unmap(pte - 1);
2003
2004         ret = 0;
2005 out:
2006         return ret;
2007 }
2008
2009 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2010                                 unsigned long addr, unsigned long end,
2011                                 unsigned int type, bool frontswap,
2012                                 unsigned long *fs_pages_to_unuse)
2013 {
2014         pmd_t *pmd;
2015         unsigned long next;
2016         int ret;
2017
2018         pmd = pmd_offset(pud, addr);
2019         do {
2020                 cond_resched();
2021                 next = pmd_addr_end(addr, end);
2022                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2023                         continue;
2024                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2025                                       frontswap, fs_pages_to_unuse);
2026                 if (ret)
2027                         return ret;
2028         } while (pmd++, addr = next, addr != end);
2029         return 0;
2030 }
2031
2032 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2033                                 unsigned long addr, unsigned long end,
2034                                 unsigned int type, bool frontswap,
2035                                 unsigned long *fs_pages_to_unuse)
2036 {
2037         pud_t *pud;
2038         unsigned long next;
2039         int ret;
2040
2041         pud = pud_offset(p4d, addr);
2042         do {
2043                 next = pud_addr_end(addr, end);
2044                 if (pud_none_or_clear_bad(pud))
2045                         continue;
2046                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2047                                       frontswap, fs_pages_to_unuse);
2048                 if (ret)
2049                         return ret;
2050         } while (pud++, addr = next, addr != end);
2051         return 0;
2052 }
2053
2054 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2055                                 unsigned long addr, unsigned long end,
2056                                 unsigned int type, bool frontswap,
2057                                 unsigned long *fs_pages_to_unuse)
2058 {
2059         p4d_t *p4d;
2060         unsigned long next;
2061         int ret;
2062
2063         p4d = p4d_offset(pgd, addr);
2064         do {
2065                 next = p4d_addr_end(addr, end);
2066                 if (p4d_none_or_clear_bad(p4d))
2067                         continue;
2068                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2069                                       frontswap, fs_pages_to_unuse);
2070                 if (ret)
2071                         return ret;
2072         } while (p4d++, addr = next, addr != end);
2073         return 0;
2074 }
2075
2076 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2077                      bool frontswap, unsigned long *fs_pages_to_unuse)
2078 {
2079         pgd_t *pgd;
2080         unsigned long addr, end, next;
2081         int ret;
2082
2083         addr = vma->vm_start;
2084         end = vma->vm_end;
2085
2086         pgd = pgd_offset(vma->vm_mm, addr);
2087         do {
2088                 next = pgd_addr_end(addr, end);
2089                 if (pgd_none_or_clear_bad(pgd))
2090                         continue;
2091                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2092                                       frontswap, fs_pages_to_unuse);
2093                 if (ret)
2094                         return ret;
2095         } while (pgd++, addr = next, addr != end);
2096         return 0;
2097 }
2098
2099 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2100                     bool frontswap, unsigned long *fs_pages_to_unuse)
2101 {
2102         struct vm_area_struct *vma;
2103         int ret = 0;
2104
2105         mmap_read_lock(mm);
2106         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2107                 if (vma->anon_vma) {
2108                         ret = unuse_vma(vma, type, frontswap,
2109                                         fs_pages_to_unuse);
2110                         if (ret)
2111                                 break;
2112                 }
2113                 cond_resched();
2114         }
2115         mmap_read_unlock(mm);
2116         return ret;
2117 }
2118
2119 /*
2120  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2121  * from current position to next entry still in use. Return 0
2122  * if there are no inuse entries after prev till end of the map.
2123  */
2124 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2125                                         unsigned int prev, bool frontswap)
2126 {
2127         unsigned int i;
2128         unsigned char count;
2129
2130         /*
2131          * No need for swap_lock here: we're just looking
2132          * for whether an entry is in use, not modifying it; false
2133          * hits are okay, and sys_swapoff() has already prevented new
2134          * allocations from this area (while holding swap_lock).
2135          */
2136         for (i = prev + 1; i < si->max; i++) {
2137                 count = READ_ONCE(si->swap_map[i]);
2138                 if (count && swap_count(count) != SWAP_MAP_BAD)
2139                         if (!frontswap || frontswap_test(si, i))
2140                                 break;
2141                 if ((i % LATENCY_LIMIT) == 0)
2142                         cond_resched();
2143         }
2144
2145         if (i == si->max)
2146                 i = 0;
2147
2148         return i;
2149 }
2150
2151 /*
2152  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2153  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2154  */
2155 int try_to_unuse(unsigned int type, bool frontswap,
2156                  unsigned long pages_to_unuse)
2157 {
2158         struct mm_struct *prev_mm;
2159         struct mm_struct *mm;
2160         struct list_head *p;
2161         int retval = 0;
2162         struct swap_info_struct *si = swap_info[type];
2163         struct page *page;
2164         swp_entry_t entry;
2165         unsigned int i;
2166
2167         if (!READ_ONCE(si->inuse_pages))
2168                 return 0;
2169
2170         if (!frontswap)
2171                 pages_to_unuse = 0;
2172
2173 retry:
2174         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2175         if (retval)
2176                 goto out;
2177
2178         prev_mm = &init_mm;
2179         mmget(prev_mm);
2180
2181         spin_lock(&mmlist_lock);
2182         p = &init_mm.mmlist;
2183         while (READ_ONCE(si->inuse_pages) &&
2184                !signal_pending(current) &&
2185                (p = p->next) != &init_mm.mmlist) {
2186
2187                 mm = list_entry(p, struct mm_struct, mmlist);
2188                 if (!mmget_not_zero(mm))
2189                         continue;
2190                 spin_unlock(&mmlist_lock);
2191                 mmput(prev_mm);
2192                 prev_mm = mm;
2193                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2194
2195                 if (retval) {
2196                         mmput(prev_mm);
2197                         goto out;
2198                 }
2199
2200                 /*
2201                  * Make sure that we aren't completely killing
2202                  * interactive performance.
2203                  */
2204                 cond_resched();
2205                 spin_lock(&mmlist_lock);
2206         }
2207         spin_unlock(&mmlist_lock);
2208
2209         mmput(prev_mm);
2210
2211         i = 0;
2212         while (READ_ONCE(si->inuse_pages) &&
2213                !signal_pending(current) &&
2214                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2215
2216                 entry = swp_entry(type, i);
2217                 page = find_get_page(swap_address_space(entry), i);
2218                 if (!page)
2219                         continue;
2220
2221                 /*
2222                  * It is conceivable that a racing task removed this page from
2223                  * swap cache just before we acquired the page lock. The page
2224                  * might even be back in swap cache on another swap area. But
2225                  * that is okay, try_to_free_swap() only removes stale pages.
2226                  */
2227                 lock_page(page);
2228                 wait_on_page_writeback(page);
2229                 try_to_free_swap(page);
2230                 unlock_page(page);
2231                 put_page(page);
2232
2233                 /*
2234                  * For frontswap, we just need to unuse pages_to_unuse, if
2235                  * it was specified. Need not check frontswap again here as
2236                  * we already zeroed out pages_to_unuse if not frontswap.
2237                  */
2238                 if (pages_to_unuse && --pages_to_unuse == 0)
2239                         goto out;
2240         }
2241
2242         /*
2243          * Lets check again to see if there are still swap entries in the map.
2244          * If yes, we would need to do retry the unuse logic again.
2245          * Under global memory pressure, swap entries can be reinserted back
2246          * into process space after the mmlist loop above passes over them.
2247          *
2248          * Limit the number of retries? No: when mmget_not_zero() above fails,
2249          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2250          * at its own independent pace; and even shmem_writepage() could have
2251          * been preempted after get_swap_page(), temporarily hiding that swap.
2252          * It's easy and robust (though cpu-intensive) just to keep retrying.
2253          */
2254         if (READ_ONCE(si->inuse_pages)) {
2255                 if (!signal_pending(current))
2256                         goto retry;
2257                 retval = -EINTR;
2258         }
2259 out:
2260         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2261 }
2262
2263 /*
2264  * After a successful try_to_unuse, if no swap is now in use, we know
2265  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2266  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2267  * added to the mmlist just after page_duplicate - before would be racy.
2268  */
2269 static void drain_mmlist(void)
2270 {
2271         struct list_head *p, *next;
2272         unsigned int type;
2273
2274         for (type = 0; type < nr_swapfiles; type++)
2275                 if (swap_info[type]->inuse_pages)
2276                         return;
2277         spin_lock(&mmlist_lock);
2278         list_for_each_safe(p, next, &init_mm.mmlist)
2279                 list_del_init(p);
2280         spin_unlock(&mmlist_lock);
2281 }
2282
2283 /*
2284  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2285  * corresponds to page offset for the specified swap entry.
2286  * Note that the type of this function is sector_t, but it returns page offset
2287  * into the bdev, not sector offset.
2288  */
2289 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2290 {
2291         struct swap_info_struct *sis;
2292         struct swap_extent *se;
2293         pgoff_t offset;
2294
2295         sis = swp_swap_info(entry);
2296         *bdev = sis->bdev;
2297
2298         offset = swp_offset(entry);
2299         se = offset_to_swap_extent(sis, offset);
2300         return se->start_block + (offset - se->start_page);
2301 }
2302
2303 /*
2304  * Returns the page offset into bdev for the specified page's swap entry.
2305  */
2306 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2307 {
2308         swp_entry_t entry;
2309         entry.val = page_private(page);
2310         return map_swap_entry(entry, bdev);
2311 }
2312
2313 /*
2314  * Free all of a swapdev's extent information
2315  */
2316 static void destroy_swap_extents(struct swap_info_struct *sis)
2317 {
2318         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2319                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2320                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2321
2322                 rb_erase(rb, &sis->swap_extent_root);
2323                 kfree(se);
2324         }
2325
2326         if (sis->flags & SWP_ACTIVATED) {
2327                 struct file *swap_file = sis->swap_file;
2328                 struct address_space *mapping = swap_file->f_mapping;
2329
2330                 sis->flags &= ~SWP_ACTIVATED;
2331                 if (mapping->a_ops->swap_deactivate)
2332                         mapping->a_ops->swap_deactivate(swap_file);
2333         }
2334 }
2335
2336 /*
2337  * Add a block range (and the corresponding page range) into this swapdev's
2338  * extent tree.
2339  *
2340  * This function rather assumes that it is called in ascending page order.
2341  */
2342 int
2343 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2344                 unsigned long nr_pages, sector_t start_block)
2345 {
2346         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2347         struct swap_extent *se;
2348         struct swap_extent *new_se;
2349
2350         /*
2351          * place the new node at the right most since the
2352          * function is called in ascending page order.
2353          */
2354         while (*link) {
2355                 parent = *link;
2356                 link = &parent->rb_right;
2357         }
2358
2359         if (parent) {
2360                 se = rb_entry(parent, struct swap_extent, rb_node);
2361                 BUG_ON(se->start_page + se->nr_pages != start_page);
2362                 if (se->start_block + se->nr_pages == start_block) {
2363                         /* Merge it */
2364                         se->nr_pages += nr_pages;
2365                         return 0;
2366                 }
2367         }
2368
2369         /* No merge, insert a new extent. */
2370         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2371         if (new_se == NULL)
2372                 return -ENOMEM;
2373         new_se->start_page = start_page;
2374         new_se->nr_pages = nr_pages;
2375         new_se->start_block = start_block;
2376
2377         rb_link_node(&new_se->rb_node, parent, link);
2378         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2379         return 1;
2380 }
2381 EXPORT_SYMBOL_GPL(add_swap_extent);
2382
2383 /*
2384  * A `swap extent' is a simple thing which maps a contiguous range of pages
2385  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2386  * is built at swapon time and is then used at swap_writepage/swap_readpage
2387  * time for locating where on disk a page belongs.
2388  *
2389  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2390  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2391  * swap files identically.
2392  *
2393  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2394  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2395  * swapfiles are handled *identically* after swapon time.
2396  *
2397  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2398  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2399  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2400  * requirements, they are simply tossed out - we will never use those blocks
2401  * for swapping.
2402  *
2403  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2404  * prevents users from writing to the swap device, which will corrupt memory.
2405  *
2406  * The amount of disk space which a single swap extent represents varies.
2407  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2408  * extents in the list.  To avoid much list walking, we cache the previous
2409  * search location in `curr_swap_extent', and start new searches from there.
2410  * This is extremely effective.  The average number of iterations in
2411  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2412  */
2413 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2414 {
2415         struct file *swap_file = sis->swap_file;
2416         struct address_space *mapping = swap_file->f_mapping;
2417         struct inode *inode = mapping->host;
2418         int ret;
2419
2420         if (S_ISBLK(inode->i_mode)) {
2421                 ret = add_swap_extent(sis, 0, sis->max, 0);
2422                 *span = sis->pages;
2423                 return ret;
2424         }
2425
2426         if (mapping->a_ops->swap_activate) {
2427                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2428                 if (ret >= 0)
2429                         sis->flags |= SWP_ACTIVATED;
2430                 if (!ret) {
2431                         sis->flags |= SWP_FS_OPS;
2432                         ret = add_swap_extent(sis, 0, sis->max, 0);
2433                         *span = sis->pages;
2434                 }
2435                 return ret;
2436         }
2437
2438         return generic_swapfile_activate(sis, swap_file, span);
2439 }
2440
2441 static int swap_node(struct swap_info_struct *p)
2442 {
2443         struct block_device *bdev;
2444
2445         if (p->bdev)
2446                 bdev = p->bdev;
2447         else
2448                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2449
2450         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2451 }
2452
2453 static void setup_swap_info(struct swap_info_struct *p, int prio,
2454                             unsigned char *swap_map,
2455                             struct swap_cluster_info *cluster_info)
2456 {
2457         int i;
2458
2459         if (prio >= 0)
2460                 p->prio = prio;
2461         else
2462                 p->prio = --least_priority;
2463         /*
2464          * the plist prio is negated because plist ordering is
2465          * low-to-high, while swap ordering is high-to-low
2466          */
2467         p->list.prio = -p->prio;
2468         for_each_node(i) {
2469                 if (p->prio >= 0)
2470                         p->avail_lists[i].prio = -p->prio;
2471                 else {
2472                         if (swap_node(p) == i)
2473                                 p->avail_lists[i].prio = 1;
2474                         else
2475                                 p->avail_lists[i].prio = -p->prio;
2476                 }
2477         }
2478         p->swap_map = swap_map;
2479         p->cluster_info = cluster_info;
2480 }
2481
2482 static void _enable_swap_info(struct swap_info_struct *p)
2483 {
2484         p->flags |= SWP_WRITEOK | SWP_VALID;
2485         atomic_long_add(p->pages, &nr_swap_pages);
2486         total_swap_pages += p->pages;
2487
2488         assert_spin_locked(&swap_lock);
2489         /*
2490          * both lists are plists, and thus priority ordered.
2491          * swap_active_head needs to be priority ordered for swapoff(),
2492          * which on removal of any swap_info_struct with an auto-assigned
2493          * (i.e. negative) priority increments the auto-assigned priority
2494          * of any lower-priority swap_info_structs.
2495          * swap_avail_head needs to be priority ordered for get_swap_page(),
2496          * which allocates swap pages from the highest available priority
2497          * swap_info_struct.
2498          */
2499         plist_add(&p->list, &swap_active_head);
2500         add_to_avail_list(p);
2501 }
2502
2503 static void enable_swap_info(struct swap_info_struct *p, int prio,
2504                                 unsigned char *swap_map,
2505                                 struct swap_cluster_info *cluster_info,
2506                                 unsigned long *frontswap_map)
2507 {
2508         frontswap_init(p->type, frontswap_map);
2509         spin_lock(&swap_lock);
2510         spin_lock(&p->lock);
2511         setup_swap_info(p, prio, swap_map, cluster_info);
2512         spin_unlock(&p->lock);
2513         spin_unlock(&swap_lock);
2514         /*
2515          * Guarantee swap_map, cluster_info, etc. fields are valid
2516          * between get/put_swap_device() if SWP_VALID bit is set
2517          */
2518         synchronize_rcu();
2519         spin_lock(&swap_lock);
2520         spin_lock(&p->lock);
2521         _enable_swap_info(p);
2522         spin_unlock(&p->lock);
2523         spin_unlock(&swap_lock);
2524 }
2525
2526 static void reinsert_swap_info(struct swap_info_struct *p)
2527 {
2528         spin_lock(&swap_lock);
2529         spin_lock(&p->lock);
2530         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2531         _enable_swap_info(p);
2532         spin_unlock(&p->lock);
2533         spin_unlock(&swap_lock);
2534 }
2535
2536 bool has_usable_swap(void)
2537 {
2538         bool ret = true;
2539
2540         spin_lock(&swap_lock);
2541         if (plist_head_empty(&swap_active_head))
2542                 ret = false;
2543         spin_unlock(&swap_lock);
2544         return ret;
2545 }
2546
2547 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2548 {
2549         struct swap_info_struct *p = NULL;
2550         unsigned char *swap_map;
2551         struct swap_cluster_info *cluster_info;
2552         unsigned long *frontswap_map;
2553         struct file *swap_file, *victim;
2554         struct address_space *mapping;
2555         struct inode *inode;
2556         struct filename *pathname;
2557         int err, found = 0;
2558         unsigned int old_block_size;
2559
2560         if (!capable(CAP_SYS_ADMIN))
2561                 return -EPERM;
2562
2563         BUG_ON(!current->mm);
2564
2565         pathname = getname(specialfile);
2566         if (IS_ERR(pathname))
2567                 return PTR_ERR(pathname);
2568
2569         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2570         err = PTR_ERR(victim);
2571         if (IS_ERR(victim))
2572                 goto out;
2573
2574         mapping = victim->f_mapping;
2575         spin_lock(&swap_lock);
2576         plist_for_each_entry(p, &swap_active_head, list) {
2577                 if (p->flags & SWP_WRITEOK) {
2578                         if (p->swap_file->f_mapping == mapping) {
2579                                 found = 1;
2580                                 break;
2581                         }
2582                 }
2583         }
2584         if (!found) {
2585                 err = -EINVAL;
2586                 spin_unlock(&swap_lock);
2587                 goto out_dput;
2588         }
2589         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2590                 vm_unacct_memory(p->pages);
2591         else {
2592                 err = -ENOMEM;
2593                 spin_unlock(&swap_lock);
2594                 goto out_dput;
2595         }
2596         del_from_avail_list(p);
2597         spin_lock(&p->lock);
2598         if (p->prio < 0) {
2599                 struct swap_info_struct *si = p;
2600                 int nid;
2601
2602                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2603                         si->prio++;
2604                         si->list.prio--;
2605                         for_each_node(nid) {
2606                                 if (si->avail_lists[nid].prio != 1)
2607                                         si->avail_lists[nid].prio--;
2608                         }
2609                 }
2610                 least_priority++;
2611         }
2612         plist_del(&p->list, &swap_active_head);
2613         atomic_long_sub(p->pages, &nr_swap_pages);
2614         total_swap_pages -= p->pages;
2615         p->flags &= ~SWP_WRITEOK;
2616         spin_unlock(&p->lock);
2617         spin_unlock(&swap_lock);
2618
2619         disable_swap_slots_cache_lock();
2620
2621         set_current_oom_origin();
2622         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2623         clear_current_oom_origin();
2624
2625         if (err) {
2626                 /* re-insert swap space back into swap_list */
2627                 reinsert_swap_info(p);
2628                 reenable_swap_slots_cache_unlock();
2629                 goto out_dput;
2630         }
2631
2632         reenable_swap_slots_cache_unlock();
2633
2634         spin_lock(&swap_lock);
2635         spin_lock(&p->lock);
2636         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2637         spin_unlock(&p->lock);
2638         spin_unlock(&swap_lock);
2639         /*
2640          * wait for swap operations protected by get/put_swap_device()
2641          * to complete
2642          */
2643         synchronize_rcu();
2644
2645         flush_work(&p->discard_work);
2646
2647         destroy_swap_extents(p);
2648         if (p->flags & SWP_CONTINUED)
2649                 free_swap_count_continuations(p);
2650
2651         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2652                 atomic_dec(&nr_rotate_swap);
2653
2654         mutex_lock(&swapon_mutex);
2655         spin_lock(&swap_lock);
2656         spin_lock(&p->lock);
2657         drain_mmlist();
2658
2659         /* wait for anyone still in scan_swap_map */
2660         p->highest_bit = 0;             /* cuts scans short */
2661         while (p->flags >= SWP_SCANNING) {
2662                 spin_unlock(&p->lock);
2663                 spin_unlock(&swap_lock);
2664                 schedule_timeout_uninterruptible(1);
2665                 spin_lock(&swap_lock);
2666                 spin_lock(&p->lock);
2667         }
2668
2669         swap_file = p->swap_file;
2670         old_block_size = p->old_block_size;
2671         p->swap_file = NULL;
2672         p->max = 0;
2673         swap_map = p->swap_map;
2674         p->swap_map = NULL;
2675         cluster_info = p->cluster_info;
2676         p->cluster_info = NULL;
2677         frontswap_map = frontswap_map_get(p);
2678         spin_unlock(&p->lock);
2679         spin_unlock(&swap_lock);
2680         arch_swap_invalidate_area(p->type);
2681         frontswap_invalidate_area(p->type);
2682         frontswap_map_set(p, NULL);
2683         mutex_unlock(&swapon_mutex);
2684         free_percpu(p->percpu_cluster);
2685         p->percpu_cluster = NULL;
2686         free_percpu(p->cluster_next_cpu);
2687         p->cluster_next_cpu = NULL;
2688         vfree(swap_map);
2689         kvfree(cluster_info);
2690         kvfree(frontswap_map);
2691         /* Destroy swap account information */
2692         swap_cgroup_swapoff(p->type);
2693         exit_swap_address_space(p->type);
2694
2695         inode = mapping->host;
2696         if (S_ISBLK(inode->i_mode)) {
2697                 struct block_device *bdev = I_BDEV(inode);
2698
2699                 set_blocksize(bdev, old_block_size);
2700                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2701         }
2702
2703         inode_lock(inode);
2704         inode->i_flags &= ~S_SWAPFILE;
2705         inode_unlock(inode);
2706         filp_close(swap_file, NULL);
2707
2708         /*
2709          * Clear the SWP_USED flag after all resources are freed so that swapon
2710          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2711          * not hold p->lock after we cleared its SWP_WRITEOK.
2712          */
2713         spin_lock(&swap_lock);
2714         p->flags = 0;
2715         spin_unlock(&swap_lock);
2716
2717         err = 0;
2718         atomic_inc(&proc_poll_event);
2719         wake_up_interruptible(&proc_poll_wait);
2720
2721 out_dput:
2722         filp_close(victim, NULL);
2723 out:
2724         putname(pathname);
2725         return err;
2726 }
2727
2728 #ifdef CONFIG_PROC_FS
2729 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2730 {
2731         struct seq_file *seq = file->private_data;
2732
2733         poll_wait(file, &proc_poll_wait, wait);
2734
2735         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2736                 seq->poll_event = atomic_read(&proc_poll_event);
2737                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2738         }
2739
2740         return EPOLLIN | EPOLLRDNORM;
2741 }
2742
2743 /* iterator */
2744 static void *swap_start(struct seq_file *swap, loff_t *pos)
2745 {
2746         struct swap_info_struct *si;
2747         int type;
2748         loff_t l = *pos;
2749
2750         mutex_lock(&swapon_mutex);
2751
2752         if (!l)
2753                 return SEQ_START_TOKEN;
2754
2755         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2756                 if (!(si->flags & SWP_USED) || !si->swap_map)
2757                         continue;
2758                 if (!--l)
2759                         return si;
2760         }
2761
2762         return NULL;
2763 }
2764
2765 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2766 {
2767         struct swap_info_struct *si = v;
2768         int type;
2769
2770         if (v == SEQ_START_TOKEN)
2771                 type = 0;
2772         else
2773                 type = si->type + 1;
2774
2775         ++(*pos);
2776         for (; (si = swap_type_to_swap_info(type)); type++) {
2777                 if (!(si->flags & SWP_USED) || !si->swap_map)
2778                         continue;
2779                 return si;
2780         }
2781
2782         return NULL;
2783 }
2784
2785 static void swap_stop(struct seq_file *swap, void *v)
2786 {
2787         mutex_unlock(&swapon_mutex);
2788 }
2789
2790 static int swap_show(struct seq_file *swap, void *v)
2791 {
2792         struct swap_info_struct *si = v;
2793         struct file *file;
2794         int len;
2795         unsigned int bytes, inuse;
2796
2797         if (si == SEQ_START_TOKEN) {
2798                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2799                 return 0;
2800         }
2801
2802         bytes = si->pages << (PAGE_SHIFT - 10);
2803         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2804
2805         file = si->swap_file;
2806         len = seq_file_path(swap, file, " \t\n\\");
2807         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2808                         len < 40 ? 40 - len : 1, " ",
2809                         S_ISBLK(file_inode(file)->i_mode) ?
2810                                 "partition" : "file\t",
2811                         bytes, bytes < 10000000 ? "\t" : "",
2812                         inuse, inuse < 10000000 ? "\t" : "",
2813                         si->prio);
2814         return 0;
2815 }
2816
2817 static const struct seq_operations swaps_op = {
2818         .start =        swap_start,
2819         .next =         swap_next,
2820         .stop =         swap_stop,
2821         .show =         swap_show
2822 };
2823
2824 static int swaps_open(struct inode *inode, struct file *file)
2825 {
2826         struct seq_file *seq;
2827         int ret;
2828
2829         ret = seq_open(file, &swaps_op);
2830         if (ret)
2831                 return ret;
2832
2833         seq = file->private_data;
2834         seq->poll_event = atomic_read(&proc_poll_event);
2835         return 0;
2836 }
2837
2838 static const struct proc_ops swaps_proc_ops = {
2839         .proc_flags     = PROC_ENTRY_PERMANENT,
2840         .proc_open      = swaps_open,
2841         .proc_read      = seq_read,
2842         .proc_lseek     = seq_lseek,
2843         .proc_release   = seq_release,
2844         .proc_poll      = swaps_poll,
2845 };
2846
2847 static int __init procswaps_init(void)
2848 {
2849         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2850         return 0;
2851 }
2852 __initcall(procswaps_init);
2853 #endif /* CONFIG_PROC_FS */
2854
2855 #ifdef MAX_SWAPFILES_CHECK
2856 static int __init max_swapfiles_check(void)
2857 {
2858         MAX_SWAPFILES_CHECK();
2859         return 0;
2860 }
2861 late_initcall(max_swapfiles_check);
2862 #endif
2863
2864 static struct swap_info_struct *alloc_swap_info(void)
2865 {
2866         struct swap_info_struct *p;
2867         struct swap_info_struct *defer = NULL;
2868         unsigned int type;
2869         int i;
2870
2871         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2872         if (!p)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         spin_lock(&swap_lock);
2876         for (type = 0; type < nr_swapfiles; type++) {
2877                 if (!(swap_info[type]->flags & SWP_USED))
2878                         break;
2879         }
2880         if (type >= MAX_SWAPFILES) {
2881                 spin_unlock(&swap_lock);
2882                 kvfree(p);
2883                 return ERR_PTR(-EPERM);
2884         }
2885         if (type >= nr_swapfiles) {
2886                 p->type = type;
2887                 WRITE_ONCE(swap_info[type], p);
2888                 /*
2889                  * Write swap_info[type] before nr_swapfiles, in case a
2890                  * racing procfs swap_start() or swap_next() is reading them.
2891                  * (We never shrink nr_swapfiles, we never free this entry.)
2892                  */
2893                 smp_wmb();
2894                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2895         } else {
2896                 defer = p;
2897                 p = swap_info[type];
2898                 /*
2899                  * Do not memset this entry: a racing procfs swap_next()
2900                  * would be relying on p->type to remain valid.
2901                  */
2902         }
2903         p->swap_extent_root = RB_ROOT;
2904         plist_node_init(&p->list, 0);
2905         for_each_node(i)
2906                 plist_node_init(&p->avail_lists[i], 0);
2907         p->flags = SWP_USED;
2908         spin_unlock(&swap_lock);
2909         kvfree(defer);
2910         spin_lock_init(&p->lock);
2911         spin_lock_init(&p->cont_lock);
2912
2913         return p;
2914 }
2915
2916 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2917 {
2918         int error;
2919
2920         if (S_ISBLK(inode->i_mode)) {
2921                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2922                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2923                 if (IS_ERR(p->bdev)) {
2924                         error = PTR_ERR(p->bdev);
2925                         p->bdev = NULL;
2926                         return error;
2927                 }
2928                 p->old_block_size = block_size(p->bdev);
2929                 error = set_blocksize(p->bdev, PAGE_SIZE);
2930                 if (error < 0)
2931                         return error;
2932                 /*
2933                  * Zoned block devices contain zones that have a sequential
2934                  * write only restriction.  Hence zoned block devices are not
2935                  * suitable for swapping.  Disallow them here.
2936                  */
2937                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2938                         return -EINVAL;
2939                 p->flags |= SWP_BLKDEV;
2940         } else if (S_ISREG(inode->i_mode)) {
2941                 p->bdev = inode->i_sb->s_bdev;
2942         }
2943
2944         return 0;
2945 }
2946
2947
2948 /*
2949  * Find out how many pages are allowed for a single swap device. There
2950  * are two limiting factors:
2951  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2952  * 2) the number of bits in the swap pte, as defined by the different
2953  * architectures.
2954  *
2955  * In order to find the largest possible bit mask, a swap entry with
2956  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2957  * decoded to a swp_entry_t again, and finally the swap offset is
2958  * extracted.
2959  *
2960  * This will mask all the bits from the initial ~0UL mask that can't
2961  * be encoded in either the swp_entry_t or the architecture definition
2962  * of a swap pte.
2963  */
2964 unsigned long generic_max_swapfile_size(void)
2965 {
2966         return swp_offset(pte_to_swp_entry(
2967                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2968 }
2969
2970 /* Can be overridden by an architecture for additional checks. */
2971 __weak unsigned long max_swapfile_size(void)
2972 {
2973         return generic_max_swapfile_size();
2974 }
2975
2976 static unsigned long read_swap_header(struct swap_info_struct *p,
2977                                         union swap_header *swap_header,
2978                                         struct inode *inode)
2979 {
2980         int i;
2981         unsigned long maxpages;
2982         unsigned long swapfilepages;
2983         unsigned long last_page;
2984
2985         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2986                 pr_err("Unable to find swap-space signature\n");
2987                 return 0;
2988         }
2989
2990         /* swap partition endianess hack... */
2991         if (swab32(swap_header->info.version) == 1) {
2992                 swab32s(&swap_header->info.version);
2993                 swab32s(&swap_header->info.last_page);
2994                 swab32s(&swap_header->info.nr_badpages);
2995                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2996                         return 0;
2997                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2998                         swab32s(&swap_header->info.badpages[i]);
2999         }
3000         /* Check the swap header's sub-version */
3001         if (swap_header->info.version != 1) {
3002                 pr_warn("Unable to handle swap header version %d\n",
3003                         swap_header->info.version);
3004                 return 0;
3005         }
3006
3007         p->lowest_bit  = 1;
3008         p->cluster_next = 1;
3009         p->cluster_nr = 0;
3010
3011         maxpages = max_swapfile_size();
3012         last_page = swap_header->info.last_page;
3013         if (!last_page) {
3014                 pr_warn("Empty swap-file\n");
3015                 return 0;
3016         }
3017         if (last_page > maxpages) {
3018                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3019                         maxpages << (PAGE_SHIFT - 10),
3020                         last_page << (PAGE_SHIFT - 10));
3021         }
3022         if (maxpages > last_page) {
3023                 maxpages = last_page + 1;
3024                 /* p->max is an unsigned int: don't overflow it */
3025                 if ((unsigned int)maxpages == 0)
3026                         maxpages = UINT_MAX;
3027         }
3028         p->highest_bit = maxpages - 1;
3029
3030         if (!maxpages)
3031                 return 0;
3032         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3033         if (swapfilepages && maxpages > swapfilepages) {
3034                 pr_warn("Swap area shorter than signature indicates\n");
3035                 return 0;
3036         }
3037         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3038                 return 0;
3039         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3040                 return 0;
3041
3042         return maxpages;
3043 }
3044
3045 #define SWAP_CLUSTER_INFO_COLS                                          \
3046         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3047 #define SWAP_CLUSTER_SPACE_COLS                                         \
3048         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3049 #define SWAP_CLUSTER_COLS                                               \
3050         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3051
3052 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3053                                         union swap_header *swap_header,
3054                                         unsigned char *swap_map,
3055                                         struct swap_cluster_info *cluster_info,
3056                                         unsigned long maxpages,
3057                                         sector_t *span)
3058 {
3059         unsigned int j, k;
3060         unsigned int nr_good_pages;
3061         int nr_extents;
3062         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3063         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3064         unsigned long i, idx;
3065
3066         nr_good_pages = maxpages - 1;   /* omit header page */
3067
3068         cluster_list_init(&p->free_clusters);
3069         cluster_list_init(&p->discard_clusters);
3070
3071         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3072                 unsigned int page_nr = swap_header->info.badpages[i];
3073                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3074                         return -EINVAL;
3075                 if (page_nr < maxpages) {
3076                         swap_map[page_nr] = SWAP_MAP_BAD;
3077                         nr_good_pages--;
3078                         /*
3079                          * Haven't marked the cluster free yet, no list
3080                          * operation involved
3081                          */
3082                         inc_cluster_info_page(p, cluster_info, page_nr);
3083                 }
3084         }
3085
3086         /* Haven't marked the cluster free yet, no list operation involved */
3087         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3088                 inc_cluster_info_page(p, cluster_info, i);
3089
3090         if (nr_good_pages) {
3091                 swap_map[0] = SWAP_MAP_BAD;
3092                 /*
3093                  * Not mark the cluster free yet, no list
3094                  * operation involved
3095                  */
3096                 inc_cluster_info_page(p, cluster_info, 0);
3097                 p->max = maxpages;
3098                 p->pages = nr_good_pages;
3099                 nr_extents = setup_swap_extents(p, span);
3100                 if (nr_extents < 0)
3101                         return nr_extents;
3102                 nr_good_pages = p->pages;
3103         }
3104         if (!nr_good_pages) {
3105                 pr_warn("Empty swap-file\n");
3106                 return -EINVAL;
3107         }
3108
3109         if (!cluster_info)
3110                 return nr_extents;
3111
3112
3113         /*
3114          * Reduce false cache line sharing between cluster_info and
3115          * sharing same address space.
3116          */
3117         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3118                 j = (k + col) % SWAP_CLUSTER_COLS;
3119                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3120                         idx = i * SWAP_CLUSTER_COLS + j;
3121                         if (idx >= nr_clusters)
3122                                 continue;
3123                         if (cluster_count(&cluster_info[idx]))
3124                                 continue;
3125                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3126                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3127                                               idx);
3128                 }
3129         }
3130         return nr_extents;
3131 }
3132
3133 /*
3134  * Helper to sys_swapon determining if a given swap
3135  * backing device queue supports DISCARD operations.
3136  */
3137 static bool swap_discardable(struct swap_info_struct *si)
3138 {
3139         struct request_queue *q = bdev_get_queue(si->bdev);
3140
3141         if (!q || !blk_queue_discard(q))
3142                 return false;
3143
3144         return true;
3145 }
3146
3147 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3148 {
3149         struct swap_info_struct *p;
3150         struct filename *name;
3151         struct file *swap_file = NULL;
3152         struct address_space *mapping;
3153         int prio;
3154         int error;
3155         union swap_header *swap_header;
3156         int nr_extents;
3157         sector_t span;
3158         unsigned long maxpages;
3159         unsigned char *swap_map = NULL;
3160         struct swap_cluster_info *cluster_info = NULL;
3161         unsigned long *frontswap_map = NULL;
3162         struct page *page = NULL;
3163         struct inode *inode = NULL;
3164         bool inced_nr_rotate_swap = false;
3165
3166         if (swap_flags & ~SWAP_FLAGS_VALID)
3167                 return -EINVAL;
3168
3169         if (!capable(CAP_SYS_ADMIN))
3170                 return -EPERM;
3171
3172         if (!swap_avail_heads)
3173                 return -ENOMEM;
3174
3175         p = alloc_swap_info();
3176         if (IS_ERR(p))
3177                 return PTR_ERR(p);
3178
3179         INIT_WORK(&p->discard_work, swap_discard_work);
3180
3181         name = getname(specialfile);
3182         if (IS_ERR(name)) {
3183                 error = PTR_ERR(name);
3184                 name = NULL;
3185                 goto bad_swap;
3186         }
3187         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3188         if (IS_ERR(swap_file)) {
3189                 error = PTR_ERR(swap_file);
3190                 swap_file = NULL;
3191                 goto bad_swap;
3192         }
3193
3194         p->swap_file = swap_file;
3195         mapping = swap_file->f_mapping;
3196         inode = mapping->host;
3197
3198         error = claim_swapfile(p, inode);
3199         if (unlikely(error))
3200                 goto bad_swap;
3201
3202         inode_lock(inode);
3203         if (IS_SWAPFILE(inode)) {
3204                 error = -EBUSY;
3205                 goto bad_swap_unlock_inode;
3206         }
3207
3208         /*
3209          * Read the swap header.
3210          */
3211         if (!mapping->a_ops->readpage) {
3212                 error = -EINVAL;
3213                 goto bad_swap_unlock_inode;
3214         }
3215         page = read_mapping_page(mapping, 0, swap_file);
3216         if (IS_ERR(page)) {
3217                 error = PTR_ERR(page);
3218                 goto bad_swap_unlock_inode;
3219         }
3220         swap_header = kmap(page);
3221
3222         maxpages = read_swap_header(p, swap_header, inode);
3223         if (unlikely(!maxpages)) {
3224                 error = -EINVAL;
3225                 goto bad_swap_unlock_inode;
3226         }
3227
3228         /* OK, set up the swap map and apply the bad block list */
3229         swap_map = vzalloc(maxpages);
3230         if (!swap_map) {
3231                 error = -ENOMEM;
3232                 goto bad_swap_unlock_inode;
3233         }
3234
3235         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3236                 p->flags |= SWP_STABLE_WRITES;
3237
3238         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3239                 p->flags |= SWP_SYNCHRONOUS_IO;
3240
3241         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3242                 int cpu;
3243                 unsigned long ci, nr_cluster;
3244
3245                 p->flags |= SWP_SOLIDSTATE;
3246                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3247                 if (!p->cluster_next_cpu) {
3248                         error = -ENOMEM;
3249                         goto bad_swap_unlock_inode;
3250                 }
3251                 /*
3252                  * select a random position to start with to help wear leveling
3253                  * SSD
3254                  */
3255                 for_each_possible_cpu(cpu) {
3256                         per_cpu(*p->cluster_next_cpu, cpu) =
3257                                 1 + prandom_u32_max(p->highest_bit);
3258                 }
3259                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3260
3261                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3262                                         GFP_KERNEL);
3263                 if (!cluster_info) {
3264                         error = -ENOMEM;
3265                         goto bad_swap_unlock_inode;
3266                 }
3267
3268                 for (ci = 0; ci < nr_cluster; ci++)
3269                         spin_lock_init(&((cluster_info + ci)->lock));
3270
3271                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3272                 if (!p->percpu_cluster) {
3273                         error = -ENOMEM;
3274                         goto bad_swap_unlock_inode;
3275                 }
3276                 for_each_possible_cpu(cpu) {
3277                         struct percpu_cluster *cluster;
3278                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3279                         cluster_set_null(&cluster->index);
3280                 }
3281         } else {
3282                 atomic_inc(&nr_rotate_swap);
3283                 inced_nr_rotate_swap = true;
3284         }
3285
3286         error = swap_cgroup_swapon(p->type, maxpages);
3287         if (error)
3288                 goto bad_swap_unlock_inode;
3289
3290         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3291                 cluster_info, maxpages, &span);
3292         if (unlikely(nr_extents < 0)) {
3293                 error = nr_extents;
3294                 goto bad_swap_unlock_inode;
3295         }
3296         /* frontswap enabled? set up bit-per-page map for frontswap */
3297         if (IS_ENABLED(CONFIG_FRONTSWAP))
3298                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3299                                          sizeof(long),
3300                                          GFP_KERNEL);
3301
3302         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3303                 /*
3304                  * When discard is enabled for swap with no particular
3305                  * policy flagged, we set all swap discard flags here in
3306                  * order to sustain backward compatibility with older
3307                  * swapon(8) releases.
3308                  */
3309                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3310                              SWP_PAGE_DISCARD);
3311
3312                 /*
3313                  * By flagging sys_swapon, a sysadmin can tell us to
3314                  * either do single-time area discards only, or to just
3315                  * perform discards for released swap page-clusters.
3316                  * Now it's time to adjust the p->flags accordingly.
3317                  */
3318                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3319                         p->flags &= ~SWP_PAGE_DISCARD;
3320                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3321                         p->flags &= ~SWP_AREA_DISCARD;
3322
3323                 /* issue a swapon-time discard if it's still required */
3324                 if (p->flags & SWP_AREA_DISCARD) {
3325                         int err = discard_swap(p);
3326                         if (unlikely(err))
3327                                 pr_err("swapon: discard_swap(%p): %d\n",
3328                                         p, err);
3329                 }
3330         }
3331
3332         error = init_swap_address_space(p->type, maxpages);
3333         if (error)
3334                 goto bad_swap_unlock_inode;
3335
3336         /*
3337          * Flush any pending IO and dirty mappings before we start using this
3338          * swap device.
3339          */
3340         inode->i_flags |= S_SWAPFILE;
3341         error = inode_drain_writes(inode);
3342         if (error) {
3343                 inode->i_flags &= ~S_SWAPFILE;
3344                 goto free_swap_address_space;
3345         }
3346
3347         mutex_lock(&swapon_mutex);
3348         prio = -1;
3349         if (swap_flags & SWAP_FLAG_PREFER)
3350                 prio =
3351                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3352         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3353
3354         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3355                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3356                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3357                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3358                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3359                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3360                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3361                 (frontswap_map) ? "FS" : "");
3362
3363         mutex_unlock(&swapon_mutex);
3364         atomic_inc(&proc_poll_event);
3365         wake_up_interruptible(&proc_poll_wait);
3366
3367         error = 0;
3368         goto out;
3369 free_swap_address_space:
3370         exit_swap_address_space(p->type);
3371 bad_swap_unlock_inode:
3372         inode_unlock(inode);
3373 bad_swap:
3374         free_percpu(p->percpu_cluster);
3375         p->percpu_cluster = NULL;
3376         free_percpu(p->cluster_next_cpu);
3377         p->cluster_next_cpu = NULL;
3378         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3379                 set_blocksize(p->bdev, p->old_block_size);
3380                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3381         }
3382         inode = NULL;
3383         destroy_swap_extents(p);
3384         swap_cgroup_swapoff(p->type);
3385         spin_lock(&swap_lock);
3386         p->swap_file = NULL;
3387         p->flags = 0;
3388         spin_unlock(&swap_lock);
3389         vfree(swap_map);
3390         kvfree(cluster_info);
3391         kvfree(frontswap_map);
3392         if (inced_nr_rotate_swap)
3393                 atomic_dec(&nr_rotate_swap);
3394         if (swap_file)
3395                 filp_close(swap_file, NULL);
3396 out:
3397         if (page && !IS_ERR(page)) {
3398                 kunmap(page);
3399                 put_page(page);
3400         }
3401         if (name)
3402                 putname(name);
3403         if (inode)
3404                 inode_unlock(inode);
3405         if (!error)
3406                 enable_swap_slots_cache();
3407         return error;
3408 }
3409
3410 void si_swapinfo(struct sysinfo *val)
3411 {
3412         unsigned int type;
3413         unsigned long nr_to_be_unused = 0;
3414
3415         spin_lock(&swap_lock);
3416         for (type = 0; type < nr_swapfiles; type++) {
3417                 struct swap_info_struct *si = swap_info[type];
3418
3419                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3420                         nr_to_be_unused += si->inuse_pages;
3421         }
3422         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3423         val->totalswap = total_swap_pages + nr_to_be_unused;
3424         spin_unlock(&swap_lock);
3425 }
3426
3427 /*
3428  * Verify that a swap entry is valid and increment its swap map count.
3429  *
3430  * Returns error code in following case.
3431  * - success -> 0
3432  * - swp_entry is invalid -> EINVAL
3433  * - swp_entry is migration entry -> EINVAL
3434  * - swap-cache reference is requested but there is already one. -> EEXIST
3435  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3436  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3437  */
3438 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3439 {
3440         struct swap_info_struct *p;
3441         struct swap_cluster_info *ci;
3442         unsigned long offset;
3443         unsigned char count;
3444         unsigned char has_cache;
3445         int err;
3446
3447         p = get_swap_device(entry);
3448         if (!p)
3449                 return -EINVAL;
3450
3451         offset = swp_offset(entry);
3452         ci = lock_cluster_or_swap_info(p, offset);
3453
3454         count = p->swap_map[offset];
3455
3456         /*
3457          * swapin_readahead() doesn't check if a swap entry is valid, so the
3458          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3459          */
3460         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3461                 err = -ENOENT;
3462                 goto unlock_out;
3463         }
3464
3465         has_cache = count & SWAP_HAS_CACHE;
3466         count &= ~SWAP_HAS_CACHE;
3467         err = 0;
3468
3469         if (usage == SWAP_HAS_CACHE) {
3470
3471                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3472                 if (!has_cache && count)
3473                         has_cache = SWAP_HAS_CACHE;
3474                 else if (has_cache)             /* someone else added cache */
3475                         err = -EEXIST;
3476                 else                            /* no users remaining */
3477                         err = -ENOENT;
3478
3479         } else if (count || has_cache) {
3480
3481                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3482                         count += usage;
3483                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3484                         err = -EINVAL;
3485                 else if (swap_count_continued(p, offset, count))
3486                         count = COUNT_CONTINUED;
3487                 else
3488                         err = -ENOMEM;
3489         } else
3490                 err = -ENOENT;                  /* unused swap entry */
3491
3492         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3493
3494 unlock_out:
3495         unlock_cluster_or_swap_info(p, ci);
3496         if (p)
3497                 put_swap_device(p);
3498         return err;
3499 }
3500
3501 /*
3502  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3503  * (in which case its reference count is never incremented).
3504  */
3505 void swap_shmem_alloc(swp_entry_t entry)
3506 {
3507         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3508 }
3509
3510 /*
3511  * Increase reference count of swap entry by 1.
3512  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3513  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3514  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3515  * might occur if a page table entry has got corrupted.
3516  */
3517 int swap_duplicate(swp_entry_t entry)
3518 {
3519         int err = 0;
3520
3521         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3522                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3523         return err;
3524 }
3525
3526 /*
3527  * @entry: swap entry for which we allocate swap cache.
3528  *
3529  * Called when allocating swap cache for existing swap entry,
3530  * This can return error codes. Returns 0 at success.
3531  * -EEXIST means there is a swap cache.
3532  * Note: return code is different from swap_duplicate().
3533  */
3534 int swapcache_prepare(swp_entry_t entry)
3535 {
3536         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3537 }
3538
3539 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3540 {
3541         return swap_type_to_swap_info(swp_type(entry));
3542 }
3543
3544 struct swap_info_struct *page_swap_info(struct page *page)
3545 {
3546         swp_entry_t entry = { .val = page_private(page) };
3547         return swp_swap_info(entry);
3548 }
3549
3550 /*
3551  * out-of-line __page_file_ methods to avoid include hell.
3552  */
3553 struct address_space *__page_file_mapping(struct page *page)
3554 {
3555         return page_swap_info(page)->swap_file->f_mapping;
3556 }
3557 EXPORT_SYMBOL_GPL(__page_file_mapping);
3558
3559 pgoff_t __page_file_index(struct page *page)
3560 {
3561         swp_entry_t swap = { .val = page_private(page) };
3562         return swp_offset(swap);
3563 }
3564 EXPORT_SYMBOL_GPL(__page_file_index);
3565
3566 /*
3567  * add_swap_count_continuation - called when a swap count is duplicated
3568  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3569  * page of the original vmalloc'ed swap_map, to hold the continuation count
3570  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3571  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3572  *
3573  * These continuation pages are seldom referenced: the common paths all work
3574  * on the original swap_map, only referring to a continuation page when the
3575  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3576  *
3577  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3578  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3579  * can be called after dropping locks.
3580  */
3581 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3582 {
3583         struct swap_info_struct *si;
3584         struct swap_cluster_info *ci;
3585         struct page *head;
3586         struct page *page;
3587         struct page *list_page;
3588         pgoff_t offset;
3589         unsigned char count;
3590         int ret = 0;
3591
3592         /*
3593          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3594          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3595          */
3596         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3597
3598         si = get_swap_device(entry);
3599         if (!si) {
3600                 /*
3601                  * An acceptable race has occurred since the failing
3602                  * __swap_duplicate(): the swap device may be swapoff
3603                  */
3604                 goto outer;
3605         }
3606         spin_lock(&si->lock);
3607
3608         offset = swp_offset(entry);
3609
3610         ci = lock_cluster(si, offset);
3611
3612         count = swap_count(si->swap_map[offset]);
3613
3614         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3615                 /*
3616                  * The higher the swap count, the more likely it is that tasks
3617                  * will race to add swap count continuation: we need to avoid
3618                  * over-provisioning.
3619                  */
3620                 goto out;
3621         }
3622
3623         if (!page) {
3624                 ret = -ENOMEM;
3625                 goto out;
3626         }
3627
3628         /*
3629          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3630          * no architecture is using highmem pages for kernel page tables: so it
3631          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3632          */
3633         head = vmalloc_to_page(si->swap_map + offset);
3634         offset &= ~PAGE_MASK;
3635
3636         spin_lock(&si->cont_lock);
3637         /*
3638          * Page allocation does not initialize the page's lru field,
3639          * but it does always reset its private field.
3640          */
3641         if (!page_private(head)) {
3642                 BUG_ON(count & COUNT_CONTINUED);
3643                 INIT_LIST_HEAD(&head->lru);
3644                 set_page_private(head, SWP_CONTINUED);
3645                 si->flags |= SWP_CONTINUED;
3646         }
3647
3648         list_for_each_entry(list_page, &head->lru, lru) {
3649                 unsigned char *map;
3650
3651                 /*
3652                  * If the previous map said no continuation, but we've found
3653                  * a continuation page, free our allocation and use this one.
3654                  */
3655                 if (!(count & COUNT_CONTINUED))
3656                         goto out_unlock_cont;
3657
3658                 map = kmap_atomic(list_page) + offset;
3659                 count = *map;
3660                 kunmap_atomic(map);
3661
3662                 /*
3663                  * If this continuation count now has some space in it,
3664                  * free our allocation and use this one.
3665                  */
3666                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3667                         goto out_unlock_cont;
3668         }
3669
3670         list_add_tail(&page->lru, &head->lru);
3671         page = NULL;                    /* now it's attached, don't free it */
3672 out_unlock_cont:
3673         spin_unlock(&si->cont_lock);
3674 out:
3675         unlock_cluster(ci);
3676         spin_unlock(&si->lock);
3677         put_swap_device(si);
3678 outer:
3679         if (page)
3680                 __free_page(page);
3681         return ret;
3682 }
3683
3684 /*
3685  * swap_count_continued - when the original swap_map count is incremented
3686  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3687  * into, carry if so, or else fail until a new continuation page is allocated;
3688  * when the original swap_map count is decremented from 0 with continuation,
3689  * borrow from the continuation and report whether it still holds more.
3690  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3691  * lock.
3692  */
3693 static bool swap_count_continued(struct swap_info_struct *si,
3694                                  pgoff_t offset, unsigned char count)
3695 {
3696         struct page *head;
3697         struct page *page;
3698         unsigned char *map;
3699         bool ret;
3700
3701         head = vmalloc_to_page(si->swap_map + offset);
3702         if (page_private(head) != SWP_CONTINUED) {
3703                 BUG_ON(count & COUNT_CONTINUED);
3704                 return false;           /* need to add count continuation */
3705         }
3706
3707         spin_lock(&si->cont_lock);
3708         offset &= ~PAGE_MASK;
3709         page = list_next_entry(head, lru);
3710         map = kmap_atomic(page) + offset;
3711
3712         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3713                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3714
3715         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3716                 /*
3717                  * Think of how you add 1 to 999
3718                  */
3719                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3720                         kunmap_atomic(map);
3721                         page = list_next_entry(page, lru);
3722                         BUG_ON(page == head);
3723                         map = kmap_atomic(page) + offset;
3724                 }
3725                 if (*map == SWAP_CONT_MAX) {
3726                         kunmap_atomic(map);
3727                         page = list_next_entry(page, lru);
3728                         if (page == head) {
3729                                 ret = false;    /* add count continuation */
3730                                 goto out;
3731                         }
3732                         map = kmap_atomic(page) + offset;
3733 init_map:               *map = 0;               /* we didn't zero the page */
3734                 }
3735                 *map += 1;
3736                 kunmap_atomic(map);
3737                 while ((page = list_prev_entry(page, lru)) != head) {
3738                         map = kmap_atomic(page) + offset;
3739                         *map = COUNT_CONTINUED;
3740                         kunmap_atomic(map);
3741                 }
3742                 ret = true;                     /* incremented */
3743
3744         } else {                                /* decrementing */
3745                 /*
3746                  * Think of how you subtract 1 from 1000
3747                  */
3748                 BUG_ON(count != COUNT_CONTINUED);
3749                 while (*map == COUNT_CONTINUED) {
3750                         kunmap_atomic(map);
3751                         page = list_next_entry(page, lru);
3752                         BUG_ON(page == head);
3753                         map = kmap_atomic(page) + offset;
3754                 }
3755                 BUG_ON(*map == 0);
3756                 *map -= 1;
3757                 if (*map == 0)
3758                         count = 0;
3759                 kunmap_atomic(map);
3760                 while ((page = list_prev_entry(page, lru)) != head) {
3761                         map = kmap_atomic(page) + offset;
3762                         *map = SWAP_CONT_MAX | count;
3763                         count = COUNT_CONTINUED;
3764                         kunmap_atomic(map);
3765                 }
3766                 ret = count == COUNT_CONTINUED;
3767         }
3768 out:
3769         spin_unlock(&si->cont_lock);
3770         return ret;
3771 }
3772
3773 /*
3774  * free_swap_count_continuations - swapoff free all the continuation pages
3775  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3776  */
3777 static void free_swap_count_continuations(struct swap_info_struct *si)
3778 {
3779         pgoff_t offset;
3780
3781         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3782                 struct page *head;
3783                 head = vmalloc_to_page(si->swap_map + offset);
3784                 if (page_private(head)) {
3785                         struct page *page, *next;
3786
3787                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3788                                 list_del(&page->lru);
3789                                 __free_page(page);
3790                         }
3791                 }
3792         }
3793 }
3794
3795 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3796 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3797 {
3798         struct swap_info_struct *si, *next;
3799         int nid = page_to_nid(page);
3800
3801         if (!(gfp_mask & __GFP_IO))
3802                 return;
3803
3804         if (!blk_cgroup_congested())
3805                 return;
3806
3807         /*
3808          * We've already scheduled a throttle, avoid taking the global swap
3809          * lock.
3810          */
3811         if (current->throttle_queue)
3812                 return;
3813
3814         spin_lock(&swap_avail_lock);
3815         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3816                                   avail_lists[nid]) {
3817                 if (si->bdev) {
3818                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3819                         break;
3820                 }
3821         }
3822         spin_unlock(&swap_avail_lock);
3823 }
3824 #endif
3825
3826 static int __init swapfile_init(void)
3827 {
3828         int nid;
3829
3830         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3831                                          GFP_KERNEL);
3832         if (!swap_avail_heads) {
3833                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3834                 return -ENOMEM;
3835         }
3836
3837         for_each_node(nid)
3838                 plist_head_init(&swap_avail_heads[nid]);
3839
3840         return 0;
3841 }
3842 subsys_initcall(swapfile_init);