Merge branch 'for-next/stacktrace' into for-next/core
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long begin = offset;
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 WRITE_ONCE(si->highest_bit, end);
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 arch_swap_invalidate_page(si->type, offset);
721                 frontswap_invalidate_page(si->type, offset);
722                 if (swap_slot_free_notify)
723                         swap_slot_free_notify(si->bdev, offset);
724                 offset++;
725         }
726         clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731         unsigned long prev;
732
733         if (!(si->flags & SWP_SOLIDSTATE)) {
734                 si->cluster_next = next;
735                 return;
736         }
737
738         prev = this_cpu_read(*si->cluster_next_cpu);
739         /*
740          * Cross the swap address space size aligned trunk, choose
741          * another trunk randomly to avoid lock contention on swap
742          * address space if possible.
743          */
744         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746                 /* No free swap slots available */
747                 if (si->highest_bit <= si->lowest_bit)
748                         return;
749                 next = si->lowest_bit +
750                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752                 next = max_t(unsigned int, next, si->lowest_bit);
753         }
754         this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758                                unsigned char usage, int nr,
759                                swp_entry_t slots[])
760 {
761         struct swap_cluster_info *ci;
762         unsigned long offset;
763         unsigned long scan_base;
764         unsigned long last_in_cluster = 0;
765         int latency_ration = LATENCY_LIMIT;
766         int n_ret = 0;
767         bool scanned_many = false;
768
769         /*
770          * We try to cluster swap pages by allocating them sequentially
771          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772          * way, however, we resort to first-free allocation, starting
773          * a new cluster.  This prevents us from scattering swap pages
774          * all over the entire swap partition, so that we reduce
775          * overall disk seek times between swap pages.  -- sct
776          * But we do now try to find an empty cluster.  -Andrea
777          * And we let swap pages go all over an SSD partition.  Hugh
778          */
779
780         si->flags += SWP_SCANNING;
781         /*
782          * Use percpu scan base for SSD to reduce lock contention on
783          * cluster and swap cache.  For HDD, sequential access is more
784          * important.
785          */
786         if (si->flags & SWP_SOLIDSTATE)
787                 scan_base = this_cpu_read(*si->cluster_next_cpu);
788         else
789                 scan_base = si->cluster_next;
790         offset = scan_base;
791
792         /* SSD algorithm */
793         if (si->cluster_info) {
794                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795                         goto scan;
796         } else if (unlikely(!si->cluster_nr--)) {
797                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
799                         goto checks;
800                 }
801
802                 spin_unlock(&si->lock);
803
804                 /*
805                  * If seek is expensive, start searching for new cluster from
806                  * start of partition, to minimize the span of allocated swap.
807                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
809                  */
810                 scan_base = offset = si->lowest_bit;
811                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813                 /* Locate the first empty (unaligned) cluster */
814                 for (; last_in_cluster <= si->highest_bit; offset++) {
815                         if (si->swap_map[offset])
816                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
817                         else if (offset == last_in_cluster) {
818                                 spin_lock(&si->lock);
819                                 offset -= SWAPFILE_CLUSTER - 1;
820                                 si->cluster_next = offset;
821                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822                                 goto checks;
823                         }
824                         if (unlikely(--latency_ration < 0)) {
825                                 cond_resched();
826                                 latency_ration = LATENCY_LIMIT;
827                         }
828                 }
829
830                 offset = scan_base;
831                 spin_lock(&si->lock);
832                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833         }
834
835 checks:
836         if (si->cluster_info) {
837                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838                 /* take a break if we already got some slots */
839                         if (n_ret)
840                                 goto done;
841                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
842                                                         &scan_base))
843                                 goto scan;
844                 }
845         }
846         if (!(si->flags & SWP_WRITEOK))
847                 goto no_page;
848         if (!si->highest_bit)
849                 goto no_page;
850         if (offset > si->highest_bit)
851                 scan_base = offset = si->lowest_bit;
852
853         ci = lock_cluster(si, offset);
854         /* reuse swap entry of cache-only swap if not busy. */
855         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856                 int swap_was_freed;
857                 unlock_cluster(ci);
858                 spin_unlock(&si->lock);
859                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860                 spin_lock(&si->lock);
861                 /* entry was freed successfully, try to use this again */
862                 if (swap_was_freed)
863                         goto checks;
864                 goto scan; /* check next one */
865         }
866
867         if (si->swap_map[offset]) {
868                 unlock_cluster(ci);
869                 if (!n_ret)
870                         goto scan;
871                 else
872                         goto done;
873         }
874         WRITE_ONCE(si->swap_map[offset], usage);
875         inc_cluster_info_page(si, si->cluster_info, offset);
876         unlock_cluster(ci);
877
878         swap_range_alloc(si, offset, 1);
879         slots[n_ret++] = swp_entry(si->type, offset);
880
881         /* got enough slots or reach max slots? */
882         if ((n_ret == nr) || (offset >= si->highest_bit))
883                 goto done;
884
885         /* search for next available slot */
886
887         /* time to take a break? */
888         if (unlikely(--latency_ration < 0)) {
889                 if (n_ret)
890                         goto done;
891                 spin_unlock(&si->lock);
892                 cond_resched();
893                 spin_lock(&si->lock);
894                 latency_ration = LATENCY_LIMIT;
895         }
896
897         /* try to get more slots in cluster */
898         if (si->cluster_info) {
899                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900                         goto checks;
901         } else if (si->cluster_nr && !si->swap_map[++offset]) {
902                 /* non-ssd case, still more slots in cluster? */
903                 --si->cluster_nr;
904                 goto checks;
905         }
906
907         /*
908          * Even if there's no free clusters available (fragmented),
909          * try to scan a little more quickly with lock held unless we
910          * have scanned too many slots already.
911          */
912         if (!scanned_many) {
913                 unsigned long scan_limit;
914
915                 if (offset < scan_base)
916                         scan_limit = scan_base;
917                 else
918                         scan_limit = si->highest_bit;
919                 for (; offset <= scan_limit && --latency_ration > 0;
920                      offset++) {
921                         if (!si->swap_map[offset])
922                                 goto checks;
923                 }
924         }
925
926 done:
927         set_cluster_next(si, offset + 1);
928         si->flags -= SWP_SCANNING;
929         return n_ret;
930
931 scan:
932         spin_unlock(&si->lock);
933         while (++offset <= READ_ONCE(si->highest_bit)) {
934                 if (data_race(!si->swap_map[offset])) {
935                         spin_lock(&si->lock);
936                         goto checks;
937                 }
938                 if (vm_swap_full() &&
939                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940                         spin_lock(&si->lock);
941                         goto checks;
942                 }
943                 if (unlikely(--latency_ration < 0)) {
944                         cond_resched();
945                         latency_ration = LATENCY_LIMIT;
946                         scanned_many = true;
947                 }
948         }
949         offset = si->lowest_bit;
950         while (offset < scan_base) {
951                 if (data_race(!si->swap_map[offset])) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (vm_swap_full() &&
956                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957                         spin_lock(&si->lock);
958                         goto checks;
959                 }
960                 if (unlikely(--latency_ration < 0)) {
961                         cond_resched();
962                         latency_ration = LATENCY_LIMIT;
963                         scanned_many = true;
964                 }
965                 offset++;
966         }
967         spin_lock(&si->lock);
968
969 no_page:
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972 }
973
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976         unsigned long idx;
977         struct swap_cluster_info *ci;
978         unsigned long offset;
979
980         /*
981          * Should not even be attempting cluster allocations when huge
982          * page swap is disabled.  Warn and fail the allocation.
983          */
984         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
985                 VM_WARN_ON_ONCE(1);
986                 return 0;
987         }
988
989         if (cluster_list_empty(&si->free_clusters))
990                 return 0;
991
992         idx = cluster_list_first(&si->free_clusters);
993         offset = idx * SWAPFILE_CLUSTER;
994         ci = lock_cluster(si, offset);
995         alloc_cluster(si, idx);
996         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
997
998         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
999         unlock_cluster(ci);
1000         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001         *slot = swp_entry(si->type, offset);
1002
1003         return 1;
1004 }
1005
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008         unsigned long offset = idx * SWAPFILE_CLUSTER;
1009         struct swap_cluster_info *ci;
1010
1011         ci = lock_cluster(si, offset);
1012         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013         cluster_set_count_flag(ci, 0, 0);
1014         free_cluster(si, idx);
1015         unlock_cluster(ci);
1016         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020                                    unsigned char usage)
1021 {
1022         swp_entry_t entry;
1023         int n_ret;
1024
1025         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026
1027         if (n_ret)
1028                 return swp_offset(entry);
1029         else
1030                 return 0;
1031
1032 }
1033
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036         unsigned long size = swap_entry_size(entry_size);
1037         struct swap_info_struct *si, *next;
1038         long avail_pgs;
1039         int n_ret = 0;
1040         int node;
1041
1042         /* Only single cluster request supported */
1043         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044
1045         spin_lock(&swap_avail_lock);
1046
1047         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048         if (avail_pgs <= 0) {
1049                 spin_unlock(&swap_avail_lock);
1050                 goto noswap;
1051         }
1052
1053         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1054
1055         atomic_long_sub(n_goal * size, &nr_swap_pages);
1056
1057 start_over:
1058         node = numa_node_id();
1059         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060                 /* requeue si to after same-priority siblings */
1061                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062                 spin_unlock(&swap_avail_lock);
1063                 spin_lock(&si->lock);
1064                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065                         spin_lock(&swap_avail_lock);
1066                         if (plist_node_empty(&si->avail_lists[node])) {
1067                                 spin_unlock(&si->lock);
1068                                 goto nextsi;
1069                         }
1070                         WARN(!si->highest_bit,
1071                              "swap_info %d in list but !highest_bit\n",
1072                              si->type);
1073                         WARN(!(si->flags & SWP_WRITEOK),
1074                              "swap_info %d in list but !SWP_WRITEOK\n",
1075                              si->type);
1076                         __del_from_avail_list(si);
1077                         spin_unlock(&si->lock);
1078                         goto nextsi;
1079                 }
1080                 if (size == SWAPFILE_CLUSTER) {
1081                         if (si->flags & SWP_BLKDEV)
1082                                 n_ret = swap_alloc_cluster(si, swp_entries);
1083                 } else
1084                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085                                                     n_goal, swp_entries);
1086                 spin_unlock(&si->lock);
1087                 if (n_ret || size == SWAPFILE_CLUSTER)
1088                         goto check_out;
1089                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1090                         si->type);
1091
1092                 spin_lock(&swap_avail_lock);
1093 nextsi:
1094                 /*
1095                  * if we got here, it's likely that si was almost full before,
1096                  * and since scan_swap_map() can drop the si->lock, multiple
1097                  * callers probably all tried to get a page from the same si
1098                  * and it filled up before we could get one; or, the si filled
1099                  * up between us dropping swap_avail_lock and taking si->lock.
1100                  * Since we dropped the swap_avail_lock, the swap_avail_head
1101                  * list may have been modified; so if next is still in the
1102                  * swap_avail_head list then try it, otherwise start over
1103                  * if we have not gotten any slots.
1104                  */
1105                 if (plist_node_empty(&next->avail_lists[node]))
1106                         goto start_over;
1107         }
1108
1109         spin_unlock(&swap_avail_lock);
1110
1111 check_out:
1112         if (n_ret < n_goal)
1113                 atomic_long_add((long)(n_goal - n_ret) * size,
1114                                 &nr_swap_pages);
1115 noswap:
1116         return n_ret;
1117 }
1118
1119 /* The only caller of this function is now suspend routine */
1120 swp_entry_t get_swap_page_of_type(int type)
1121 {
1122         struct swap_info_struct *si = swap_type_to_swap_info(type);
1123         pgoff_t offset;
1124
1125         if (!si)
1126                 goto fail;
1127
1128         spin_lock(&si->lock);
1129         if (si->flags & SWP_WRITEOK) {
1130                 /* This is called for allocating swap entry, not cache */
1131                 offset = scan_swap_map(si, 1);
1132                 if (offset) {
1133                         atomic_long_dec(&nr_swap_pages);
1134                         spin_unlock(&si->lock);
1135                         return swp_entry(type, offset);
1136                 }
1137         }
1138         spin_unlock(&si->lock);
1139 fail:
1140         return (swp_entry_t) {0};
1141 }
1142
1143 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1144 {
1145         struct swap_info_struct *p;
1146         unsigned long offset;
1147
1148         if (!entry.val)
1149                 goto out;
1150         p = swp_swap_info(entry);
1151         if (!p)
1152                 goto bad_nofile;
1153         if (data_race(!(p->flags & SWP_USED)))
1154                 goto bad_device;
1155         offset = swp_offset(entry);
1156         if (offset >= p->max)
1157                 goto bad_offset;
1158         return p;
1159
1160 bad_offset:
1161         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1162         goto out;
1163 bad_device:
1164         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1165         goto out;
1166 bad_nofile:
1167         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1168 out:
1169         return NULL;
1170 }
1171
1172 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = __swap_info_get(entry);
1177         if (!p)
1178                 goto out;
1179         if (data_race(!p->swap_map[swp_offset(entry)]))
1180                 goto bad_free;
1181         return p;
1182
1183 bad_free:
1184         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1185 out:
1186         return NULL;
1187 }
1188
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1190 {
1191         struct swap_info_struct *p;
1192
1193         p = _swap_info_get(entry);
1194         if (p)
1195                 spin_lock(&p->lock);
1196         return p;
1197 }
1198
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200                                         struct swap_info_struct *q)
1201 {
1202         struct swap_info_struct *p;
1203
1204         p = _swap_info_get(entry);
1205
1206         if (p != q) {
1207                 if (q != NULL)
1208                         spin_unlock(&q->lock);
1209                 if (p != NULL)
1210                         spin_lock(&p->lock);
1211         }
1212         return p;
1213 }
1214
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216                                               unsigned long offset,
1217                                               unsigned char usage)
1218 {
1219         unsigned char count;
1220         unsigned char has_cache;
1221
1222         count = p->swap_map[offset];
1223
1224         has_cache = count & SWAP_HAS_CACHE;
1225         count &= ~SWAP_HAS_CACHE;
1226
1227         if (usage == SWAP_HAS_CACHE) {
1228                 VM_BUG_ON(!has_cache);
1229                 has_cache = 0;
1230         } else if (count == SWAP_MAP_SHMEM) {
1231                 /*
1232                  * Or we could insist on shmem.c using a special
1233                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1234                  */
1235                 count = 0;
1236         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237                 if (count == COUNT_CONTINUED) {
1238                         if (swap_count_continued(p, offset, count))
1239                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240                         else
1241                                 count = SWAP_MAP_MAX;
1242                 } else
1243                         count--;
1244         }
1245
1246         usage = count | has_cache;
1247         if (usage)
1248                 WRITE_ONCE(p->swap_map[offset], usage);
1249         else
1250                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1251
1252         return usage;
1253 }
1254
1255 /*
1256  * Check whether swap entry is valid in the swap device.  If so,
1257  * return pointer to swap_info_struct, and keep the swap entry valid
1258  * via preventing the swap device from being swapoff, until
1259  * put_swap_device() is called.  Otherwise return NULL.
1260  *
1261  * The entirety of the RCU read critical section must come before the
1262  * return from or after the call to synchronize_rcu() in
1263  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1264  * true, the si->map, si->cluster_info, etc. must be valid in the
1265  * critical section.
1266  *
1267  * Notice that swapoff or swapoff+swapon can still happen before the
1268  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1269  * in put_swap_device() if there isn't any other way to prevent
1270  * swapoff, such as page lock, page table lock, etc.  The caller must
1271  * be prepared for that.  For example, the following situation is
1272  * possible.
1273  *
1274  *   CPU1                               CPU2
1275  *   do_swap_page()
1276  *     ...                              swapoff+swapon
1277  *     __read_swap_cache_async()
1278  *       swapcache_prepare()
1279  *         __swap_duplicate()
1280  *           // check swap_map
1281  *     // verify PTE not changed
1282  *
1283  * In __swap_duplicate(), the swap_map need to be checked before
1284  * changing partly because the specified swap entry may be for another
1285  * swap device which has been swapoff.  And in do_swap_page(), after
1286  * the page is read from the swap device, the PTE is verified not
1287  * changed with the page table locked to check whether the swap device
1288  * has been swapoff or swapoff+swapon.
1289  */
1290 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1291 {
1292         struct swap_info_struct *si;
1293         unsigned long offset;
1294
1295         if (!entry.val)
1296                 goto out;
1297         si = swp_swap_info(entry);
1298         if (!si)
1299                 goto bad_nofile;
1300
1301         rcu_read_lock();
1302         if (data_race(!(si->flags & SWP_VALID)))
1303                 goto unlock_out;
1304         offset = swp_offset(entry);
1305         if (offset >= si->max)
1306                 goto unlock_out;
1307
1308         return si;
1309 bad_nofile:
1310         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1311 out:
1312         return NULL;
1313 unlock_out:
1314         rcu_read_unlock();
1315         return NULL;
1316 }
1317
1318 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1319                                        swp_entry_t entry)
1320 {
1321         struct swap_cluster_info *ci;
1322         unsigned long offset = swp_offset(entry);
1323         unsigned char usage;
1324
1325         ci = lock_cluster_or_swap_info(p, offset);
1326         usage = __swap_entry_free_locked(p, offset, 1);
1327         unlock_cluster_or_swap_info(p, ci);
1328         if (!usage)
1329                 free_swap_slot(entry);
1330
1331         return usage;
1332 }
1333
1334 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1335 {
1336         struct swap_cluster_info *ci;
1337         unsigned long offset = swp_offset(entry);
1338         unsigned char count;
1339
1340         ci = lock_cluster(p, offset);
1341         count = p->swap_map[offset];
1342         VM_BUG_ON(count != SWAP_HAS_CACHE);
1343         p->swap_map[offset] = 0;
1344         dec_cluster_info_page(p, p->cluster_info, offset);
1345         unlock_cluster(ci);
1346
1347         mem_cgroup_uncharge_swap(entry, 1);
1348         swap_range_free(p, offset, 1);
1349 }
1350
1351 /*
1352  * Caller has made sure that the swap device corresponding to entry
1353  * is still around or has not been recycled.
1354  */
1355 void swap_free(swp_entry_t entry)
1356 {
1357         struct swap_info_struct *p;
1358
1359         p = _swap_info_get(entry);
1360         if (p)
1361                 __swap_entry_free(p, entry);
1362 }
1363
1364 /*
1365  * Called after dropping swapcache to decrease refcnt to swap entries.
1366  */
1367 void put_swap_page(struct page *page, swp_entry_t entry)
1368 {
1369         unsigned long offset = swp_offset(entry);
1370         unsigned long idx = offset / SWAPFILE_CLUSTER;
1371         struct swap_cluster_info *ci;
1372         struct swap_info_struct *si;
1373         unsigned char *map;
1374         unsigned int i, free_entries = 0;
1375         unsigned char val;
1376         int size = swap_entry_size(thp_nr_pages(page));
1377
1378         si = _swap_info_get(entry);
1379         if (!si)
1380                 return;
1381
1382         ci = lock_cluster_or_swap_info(si, offset);
1383         if (size == SWAPFILE_CLUSTER) {
1384                 VM_BUG_ON(!cluster_is_huge(ci));
1385                 map = si->swap_map + offset;
1386                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1387                         val = map[i];
1388                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1389                         if (val == SWAP_HAS_CACHE)
1390                                 free_entries++;
1391                 }
1392                 cluster_clear_huge(ci);
1393                 if (free_entries == SWAPFILE_CLUSTER) {
1394                         unlock_cluster_or_swap_info(si, ci);
1395                         spin_lock(&si->lock);
1396                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1397                         swap_free_cluster(si, idx);
1398                         spin_unlock(&si->lock);
1399                         return;
1400                 }
1401         }
1402         for (i = 0; i < size; i++, entry.val++) {
1403                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1404                         unlock_cluster_or_swap_info(si, ci);
1405                         free_swap_slot(entry);
1406                         if (i == size - 1)
1407                                 return;
1408                         lock_cluster_or_swap_info(si, offset);
1409                 }
1410         }
1411         unlock_cluster_or_swap_info(si, ci);
1412 }
1413
1414 #ifdef CONFIG_THP_SWAP
1415 int split_swap_cluster(swp_entry_t entry)
1416 {
1417         struct swap_info_struct *si;
1418         struct swap_cluster_info *ci;
1419         unsigned long offset = swp_offset(entry);
1420
1421         si = _swap_info_get(entry);
1422         if (!si)
1423                 return -EBUSY;
1424         ci = lock_cluster(si, offset);
1425         cluster_clear_huge(ci);
1426         unlock_cluster(ci);
1427         return 0;
1428 }
1429 #endif
1430
1431 static int swp_entry_cmp(const void *ent1, const void *ent2)
1432 {
1433         const swp_entry_t *e1 = ent1, *e2 = ent2;
1434
1435         return (int)swp_type(*e1) - (int)swp_type(*e2);
1436 }
1437
1438 void swapcache_free_entries(swp_entry_t *entries, int n)
1439 {
1440         struct swap_info_struct *p, *prev;
1441         int i;
1442
1443         if (n <= 0)
1444                 return;
1445
1446         prev = NULL;
1447         p = NULL;
1448
1449         /*
1450          * Sort swap entries by swap device, so each lock is only taken once.
1451          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1452          * so low that it isn't necessary to optimize further.
1453          */
1454         if (nr_swapfiles > 1)
1455                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1456         for (i = 0; i < n; ++i) {
1457                 p = swap_info_get_cont(entries[i], prev);
1458                 if (p)
1459                         swap_entry_free(p, entries[i]);
1460                 prev = p;
1461         }
1462         if (p)
1463                 spin_unlock(&p->lock);
1464 }
1465
1466 /*
1467  * How many references to page are currently swapped out?
1468  * This does not give an exact answer when swap count is continued,
1469  * but does include the high COUNT_CONTINUED flag to allow for that.
1470  */
1471 int page_swapcount(struct page *page)
1472 {
1473         int count = 0;
1474         struct swap_info_struct *p;
1475         struct swap_cluster_info *ci;
1476         swp_entry_t entry;
1477         unsigned long offset;
1478
1479         entry.val = page_private(page);
1480         p = _swap_info_get(entry);
1481         if (p) {
1482                 offset = swp_offset(entry);
1483                 ci = lock_cluster_or_swap_info(p, offset);
1484                 count = swap_count(p->swap_map[offset]);
1485                 unlock_cluster_or_swap_info(p, ci);
1486         }
1487         return count;
1488 }
1489
1490 int __swap_count(swp_entry_t entry)
1491 {
1492         struct swap_info_struct *si;
1493         pgoff_t offset = swp_offset(entry);
1494         int count = 0;
1495
1496         si = get_swap_device(entry);
1497         if (si) {
1498                 count = swap_count(si->swap_map[offset]);
1499                 put_swap_device(si);
1500         }
1501         return count;
1502 }
1503
1504 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1505 {
1506         int count = 0;
1507         pgoff_t offset = swp_offset(entry);
1508         struct swap_cluster_info *ci;
1509
1510         ci = lock_cluster_or_swap_info(si, offset);
1511         count = swap_count(si->swap_map[offset]);
1512         unlock_cluster_or_swap_info(si, ci);
1513         return count;
1514 }
1515
1516 /*
1517  * How many references to @entry are currently swapped out?
1518  * This does not give an exact answer when swap count is continued,
1519  * but does include the high COUNT_CONTINUED flag to allow for that.
1520  */
1521 int __swp_swapcount(swp_entry_t entry)
1522 {
1523         int count = 0;
1524         struct swap_info_struct *si;
1525
1526         si = get_swap_device(entry);
1527         if (si) {
1528                 count = swap_swapcount(si, entry);
1529                 put_swap_device(si);
1530         }
1531         return count;
1532 }
1533
1534 /*
1535  * How many references to @entry are currently swapped out?
1536  * This considers COUNT_CONTINUED so it returns exact answer.
1537  */
1538 int swp_swapcount(swp_entry_t entry)
1539 {
1540         int count, tmp_count, n;
1541         struct swap_info_struct *p;
1542         struct swap_cluster_info *ci;
1543         struct page *page;
1544         pgoff_t offset;
1545         unsigned char *map;
1546
1547         p = _swap_info_get(entry);
1548         if (!p)
1549                 return 0;
1550
1551         offset = swp_offset(entry);
1552
1553         ci = lock_cluster_or_swap_info(p, offset);
1554
1555         count = swap_count(p->swap_map[offset]);
1556         if (!(count & COUNT_CONTINUED))
1557                 goto out;
1558
1559         count &= ~COUNT_CONTINUED;
1560         n = SWAP_MAP_MAX + 1;
1561
1562         page = vmalloc_to_page(p->swap_map + offset);
1563         offset &= ~PAGE_MASK;
1564         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1565
1566         do {
1567                 page = list_next_entry(page, lru);
1568                 map = kmap_atomic(page);
1569                 tmp_count = map[offset];
1570                 kunmap_atomic(map);
1571
1572                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1573                 n *= (SWAP_CONT_MAX + 1);
1574         } while (tmp_count & COUNT_CONTINUED);
1575 out:
1576         unlock_cluster_or_swap_info(p, ci);
1577         return count;
1578 }
1579
1580 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1581                                          swp_entry_t entry)
1582 {
1583         struct swap_cluster_info *ci;
1584         unsigned char *map = si->swap_map;
1585         unsigned long roffset = swp_offset(entry);
1586         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1587         int i;
1588         bool ret = false;
1589
1590         ci = lock_cluster_or_swap_info(si, offset);
1591         if (!ci || !cluster_is_huge(ci)) {
1592                 if (swap_count(map[roffset]))
1593                         ret = true;
1594                 goto unlock_out;
1595         }
1596         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1597                 if (swap_count(map[offset + i])) {
1598                         ret = true;
1599                         break;
1600                 }
1601         }
1602 unlock_out:
1603         unlock_cluster_or_swap_info(si, ci);
1604         return ret;
1605 }
1606
1607 static bool page_swapped(struct page *page)
1608 {
1609         swp_entry_t entry;
1610         struct swap_info_struct *si;
1611
1612         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1613                 return page_swapcount(page) != 0;
1614
1615         page = compound_head(page);
1616         entry.val = page_private(page);
1617         si = _swap_info_get(entry);
1618         if (si)
1619                 return swap_page_trans_huge_swapped(si, entry);
1620         return false;
1621 }
1622
1623 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1624                                          int *total_swapcount)
1625 {
1626         int i, map_swapcount, _total_mapcount, _total_swapcount;
1627         unsigned long offset = 0;
1628         struct swap_info_struct *si;
1629         struct swap_cluster_info *ci = NULL;
1630         unsigned char *map = NULL;
1631         int mapcount, swapcount = 0;
1632
1633         /* hugetlbfs shouldn't call it */
1634         VM_BUG_ON_PAGE(PageHuge(page), page);
1635
1636         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1637                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1638                 if (PageSwapCache(page))
1639                         swapcount = page_swapcount(page);
1640                 if (total_swapcount)
1641                         *total_swapcount = swapcount;
1642                 return mapcount + swapcount;
1643         }
1644
1645         page = compound_head(page);
1646
1647         _total_mapcount = _total_swapcount = map_swapcount = 0;
1648         if (PageSwapCache(page)) {
1649                 swp_entry_t entry;
1650
1651                 entry.val = page_private(page);
1652                 si = _swap_info_get(entry);
1653                 if (si) {
1654                         map = si->swap_map;
1655                         offset = swp_offset(entry);
1656                 }
1657         }
1658         if (map)
1659                 ci = lock_cluster(si, offset);
1660         for (i = 0; i < HPAGE_PMD_NR; i++) {
1661                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1662                 _total_mapcount += mapcount;
1663                 if (map) {
1664                         swapcount = swap_count(map[offset + i]);
1665                         _total_swapcount += swapcount;
1666                 }
1667                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1668         }
1669         unlock_cluster(ci);
1670         if (PageDoubleMap(page)) {
1671                 map_swapcount -= 1;
1672                 _total_mapcount -= HPAGE_PMD_NR;
1673         }
1674         mapcount = compound_mapcount(page);
1675         map_swapcount += mapcount;
1676         _total_mapcount += mapcount;
1677         if (total_mapcount)
1678                 *total_mapcount = _total_mapcount;
1679         if (total_swapcount)
1680                 *total_swapcount = _total_swapcount;
1681
1682         return map_swapcount;
1683 }
1684
1685 /*
1686  * We can write to an anon page without COW if there are no other references
1687  * to it.  And as a side-effect, free up its swap: because the old content
1688  * on disk will never be read, and seeking back there to write new content
1689  * later would only waste time away from clustering.
1690  *
1691  * NOTE: total_map_swapcount should not be relied upon by the caller if
1692  * reuse_swap_page() returns false, but it may be always overwritten
1693  * (see the other implementation for CONFIG_SWAP=n).
1694  */
1695 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1696 {
1697         int count, total_mapcount, total_swapcount;
1698
1699         VM_BUG_ON_PAGE(!PageLocked(page), page);
1700         if (unlikely(PageKsm(page)))
1701                 return false;
1702         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1703                                               &total_swapcount);
1704         if (total_map_swapcount)
1705                 *total_map_swapcount = total_mapcount + total_swapcount;
1706         if (count == 1 && PageSwapCache(page) &&
1707             (likely(!PageTransCompound(page)) ||
1708              /* The remaining swap count will be freed soon */
1709              total_swapcount == page_swapcount(page))) {
1710                 if (!PageWriteback(page)) {
1711                         page = compound_head(page);
1712                         delete_from_swap_cache(page);
1713                         SetPageDirty(page);
1714                 } else {
1715                         swp_entry_t entry;
1716                         struct swap_info_struct *p;
1717
1718                         entry.val = page_private(page);
1719                         p = swap_info_get(entry);
1720                         if (p->flags & SWP_STABLE_WRITES) {
1721                                 spin_unlock(&p->lock);
1722                                 return false;
1723                         }
1724                         spin_unlock(&p->lock);
1725                 }
1726         }
1727
1728         return count <= 1;
1729 }
1730
1731 /*
1732  * If swap is getting full, or if there are no more mappings of this page,
1733  * then try_to_free_swap is called to free its swap space.
1734  */
1735 int try_to_free_swap(struct page *page)
1736 {
1737         VM_BUG_ON_PAGE(!PageLocked(page), page);
1738
1739         if (!PageSwapCache(page))
1740                 return 0;
1741         if (PageWriteback(page))
1742                 return 0;
1743         if (page_swapped(page))
1744                 return 0;
1745
1746         /*
1747          * Once hibernation has begun to create its image of memory,
1748          * there's a danger that one of the calls to try_to_free_swap()
1749          * - most probably a call from __try_to_reclaim_swap() while
1750          * hibernation is allocating its own swap pages for the image,
1751          * but conceivably even a call from memory reclaim - will free
1752          * the swap from a page which has already been recorded in the
1753          * image as a clean swapcache page, and then reuse its swap for
1754          * another page of the image.  On waking from hibernation, the
1755          * original page might be freed under memory pressure, then
1756          * later read back in from swap, now with the wrong data.
1757          *
1758          * Hibernation suspends storage while it is writing the image
1759          * to disk so check that here.
1760          */
1761         if (pm_suspended_storage())
1762                 return 0;
1763
1764         page = compound_head(page);
1765         delete_from_swap_cache(page);
1766         SetPageDirty(page);
1767         return 1;
1768 }
1769
1770 /*
1771  * Free the swap entry like above, but also try to
1772  * free the page cache entry if it is the last user.
1773  */
1774 int free_swap_and_cache(swp_entry_t entry)
1775 {
1776         struct swap_info_struct *p;
1777         unsigned char count;
1778
1779         if (non_swap_entry(entry))
1780                 return 1;
1781
1782         p = _swap_info_get(entry);
1783         if (p) {
1784                 count = __swap_entry_free(p, entry);
1785                 if (count == SWAP_HAS_CACHE &&
1786                     !swap_page_trans_huge_swapped(p, entry))
1787                         __try_to_reclaim_swap(p, swp_offset(entry),
1788                                               TTRS_UNMAPPED | TTRS_FULL);
1789         }
1790         return p != NULL;
1791 }
1792
1793 #ifdef CONFIG_HIBERNATION
1794 /*
1795  * Find the swap type that corresponds to given device (if any).
1796  *
1797  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1798  * from 0, in which the swap header is expected to be located.
1799  *
1800  * This is needed for the suspend to disk (aka swsusp).
1801  */
1802 int swap_type_of(dev_t device, sector_t offset)
1803 {
1804         int type;
1805
1806         if (!device)
1807                 return -1;
1808
1809         spin_lock(&swap_lock);
1810         for (type = 0; type < nr_swapfiles; type++) {
1811                 struct swap_info_struct *sis = swap_info[type];
1812
1813                 if (!(sis->flags & SWP_WRITEOK))
1814                         continue;
1815
1816                 if (device == sis->bdev->bd_dev) {
1817                         struct swap_extent *se = first_se(sis);
1818
1819                         if (se->start_block == offset) {
1820                                 spin_unlock(&swap_lock);
1821                                 return type;
1822                         }
1823                 }
1824         }
1825         spin_unlock(&swap_lock);
1826         return -ENODEV;
1827 }
1828
1829 int find_first_swap(dev_t *device)
1830 {
1831         int type;
1832
1833         spin_lock(&swap_lock);
1834         for (type = 0; type < nr_swapfiles; type++) {
1835                 struct swap_info_struct *sis = swap_info[type];
1836
1837                 if (!(sis->flags & SWP_WRITEOK))
1838                         continue;
1839                 *device = sis->bdev->bd_dev;
1840                 spin_unlock(&swap_lock);
1841                 return type;
1842         }
1843         spin_unlock(&swap_lock);
1844         return -ENODEV;
1845 }
1846
1847 /*
1848  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849  * corresponding to given index in swap_info (swap type).
1850  */
1851 sector_t swapdev_block(int type, pgoff_t offset)
1852 {
1853         struct block_device *bdev;
1854         struct swap_info_struct *si = swap_type_to_swap_info(type);
1855
1856         if (!si || !(si->flags & SWP_WRITEOK))
1857                 return 0;
1858         return map_swap_entry(swp_entry(type, offset), &bdev);
1859 }
1860
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869         unsigned int n = 0;
1870
1871         spin_lock(&swap_lock);
1872         if ((unsigned int)type < nr_swapfiles) {
1873                 struct swap_info_struct *sis = swap_info[type];
1874
1875                 spin_lock(&sis->lock);
1876                 if (sis->flags & SWP_WRITEOK) {
1877                         n = sis->pages;
1878                         if (free)
1879                                 n -= sis->inuse_pages;
1880                 }
1881                 spin_unlock(&sis->lock);
1882         }
1883         spin_unlock(&swap_lock);
1884         return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899                 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901         struct page *swapcache;
1902         spinlock_t *ptl;
1903         pte_t *pte;
1904         int ret = 1;
1905
1906         swapcache = page;
1907         page = ksm_might_need_to_copy(page, vma, addr);
1908         if (unlikely(!page))
1909                 return -ENOMEM;
1910
1911         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913                 ret = 0;
1914                 goto out;
1915         }
1916
1917         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919         get_page(page);
1920         set_pte_at(vma->vm_mm, addr, pte,
1921                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922         if (page == swapcache) {
1923                 page_add_anon_rmap(page, vma, addr, false);
1924         } else { /* ksm created a completely new copy */
1925                 page_add_new_anon_rmap(page, vma, addr, false);
1926                 lru_cache_add_inactive_or_unevictable(page, vma);
1927         }
1928         swap_free(entry);
1929 out:
1930         pte_unmap_unlock(pte, ptl);
1931         if (page != swapcache) {
1932                 unlock_page(page);
1933                 put_page(page);
1934         }
1935         return ret;
1936 }
1937
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939                         unsigned long addr, unsigned long end,
1940                         unsigned int type, bool frontswap,
1941                         unsigned long *fs_pages_to_unuse)
1942 {
1943         struct page *page;
1944         swp_entry_t entry;
1945         pte_t *pte;
1946         struct swap_info_struct *si;
1947         unsigned long offset;
1948         int ret = 0;
1949         volatile unsigned char *swap_map;
1950
1951         si = swap_info[type];
1952         pte = pte_offset_map(pmd, addr);
1953         do {
1954                 if (!is_swap_pte(*pte))
1955                         continue;
1956
1957                 entry = pte_to_swp_entry(*pte);
1958                 if (swp_type(entry) != type)
1959                         continue;
1960
1961                 offset = swp_offset(entry);
1962                 if (frontswap && !frontswap_test(si, offset))
1963                         continue;
1964
1965                 pte_unmap(pte);
1966                 swap_map = &si->swap_map[offset];
1967                 page = lookup_swap_cache(entry, vma, addr);
1968                 if (!page) {
1969                         struct vm_fault vmf = {
1970                                 .vma = vma,
1971                                 .address = addr,
1972                                 .pmd = pmd,
1973                         };
1974
1975                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976                                                 &vmf);
1977                 }
1978                 if (!page) {
1979                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980                                 goto try_next;
1981                         return -ENOMEM;
1982                 }
1983
1984                 lock_page(page);
1985                 wait_on_page_writeback(page);
1986                 ret = unuse_pte(vma, pmd, addr, entry, page);
1987                 if (ret < 0) {
1988                         unlock_page(page);
1989                         put_page(page);
1990                         goto out;
1991                 }
1992
1993                 try_to_free_swap(page);
1994                 unlock_page(page);
1995                 put_page(page);
1996
1997                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998                         ret = FRONTSWAP_PAGES_UNUSED;
1999                         goto out;
2000                 }
2001 try_next:
2002                 pte = pte_offset_map(pmd, addr);
2003         } while (pte++, addr += PAGE_SIZE, addr != end);
2004         pte_unmap(pte - 1);
2005
2006         ret = 0;
2007 out:
2008         return ret;
2009 }
2010
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012                                 unsigned long addr, unsigned long end,
2013                                 unsigned int type, bool frontswap,
2014                                 unsigned long *fs_pages_to_unuse)
2015 {
2016         pmd_t *pmd;
2017         unsigned long next;
2018         int ret;
2019
2020         pmd = pmd_offset(pud, addr);
2021         do {
2022                 cond_resched();
2023                 next = pmd_addr_end(addr, end);
2024                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025                         continue;
2026                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2027                                       frontswap, fs_pages_to_unuse);
2028                 if (ret)
2029                         return ret;
2030         } while (pmd++, addr = next, addr != end);
2031         return 0;
2032 }
2033
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035                                 unsigned long addr, unsigned long end,
2036                                 unsigned int type, bool frontswap,
2037                                 unsigned long *fs_pages_to_unuse)
2038 {
2039         pud_t *pud;
2040         unsigned long next;
2041         int ret;
2042
2043         pud = pud_offset(p4d, addr);
2044         do {
2045                 next = pud_addr_end(addr, end);
2046                 if (pud_none_or_clear_bad(pud))
2047                         continue;
2048                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2049                                       frontswap, fs_pages_to_unuse);
2050                 if (ret)
2051                         return ret;
2052         } while (pud++, addr = next, addr != end);
2053         return 0;
2054 }
2055
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057                                 unsigned long addr, unsigned long end,
2058                                 unsigned int type, bool frontswap,
2059                                 unsigned long *fs_pages_to_unuse)
2060 {
2061         p4d_t *p4d;
2062         unsigned long next;
2063         int ret;
2064
2065         p4d = p4d_offset(pgd, addr);
2066         do {
2067                 next = p4d_addr_end(addr, end);
2068                 if (p4d_none_or_clear_bad(p4d))
2069                         continue;
2070                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2071                                       frontswap, fs_pages_to_unuse);
2072                 if (ret)
2073                         return ret;
2074         } while (p4d++, addr = next, addr != end);
2075         return 0;
2076 }
2077
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079                      bool frontswap, unsigned long *fs_pages_to_unuse)
2080 {
2081         pgd_t *pgd;
2082         unsigned long addr, end, next;
2083         int ret;
2084
2085         addr = vma->vm_start;
2086         end = vma->vm_end;
2087
2088         pgd = pgd_offset(vma->vm_mm, addr);
2089         do {
2090                 next = pgd_addr_end(addr, end);
2091                 if (pgd_none_or_clear_bad(pgd))
2092                         continue;
2093                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094                                       frontswap, fs_pages_to_unuse);
2095                 if (ret)
2096                         return ret;
2097         } while (pgd++, addr = next, addr != end);
2098         return 0;
2099 }
2100
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102                     bool frontswap, unsigned long *fs_pages_to_unuse)
2103 {
2104         struct vm_area_struct *vma;
2105         int ret = 0;
2106
2107         mmap_read_lock(mm);
2108         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109                 if (vma->anon_vma) {
2110                         ret = unuse_vma(vma, type, frontswap,
2111                                         fs_pages_to_unuse);
2112                         if (ret)
2113                                 break;
2114                 }
2115                 cond_resched();
2116         }
2117         mmap_read_unlock(mm);
2118         return ret;
2119 }
2120
2121 /*
2122  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123  * from current position to next entry still in use. Return 0
2124  * if there are no inuse entries after prev till end of the map.
2125  */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127                                         unsigned int prev, bool frontswap)
2128 {
2129         unsigned int i;
2130         unsigned char count;
2131
2132         /*
2133          * No need for swap_lock here: we're just looking
2134          * for whether an entry is in use, not modifying it; false
2135          * hits are okay, and sys_swapoff() has already prevented new
2136          * allocations from this area (while holding swap_lock).
2137          */
2138         for (i = prev + 1; i < si->max; i++) {
2139                 count = READ_ONCE(si->swap_map[i]);
2140                 if (count && swap_count(count) != SWAP_MAP_BAD)
2141                         if (!frontswap || frontswap_test(si, i))
2142                                 break;
2143                 if ((i % LATENCY_LIMIT) == 0)
2144                         cond_resched();
2145         }
2146
2147         if (i == si->max)
2148                 i = 0;
2149
2150         return i;
2151 }
2152
2153 /*
2154  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156  */
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158                  unsigned long pages_to_unuse)
2159 {
2160         struct mm_struct *prev_mm;
2161         struct mm_struct *mm;
2162         struct list_head *p;
2163         int retval = 0;
2164         struct swap_info_struct *si = swap_info[type];
2165         struct page *page;
2166         swp_entry_t entry;
2167         unsigned int i;
2168
2169         if (!READ_ONCE(si->inuse_pages))
2170                 return 0;
2171
2172         if (!frontswap)
2173                 pages_to_unuse = 0;
2174
2175 retry:
2176         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177         if (retval)
2178                 goto out;
2179
2180         prev_mm = &init_mm;
2181         mmget(prev_mm);
2182
2183         spin_lock(&mmlist_lock);
2184         p = &init_mm.mmlist;
2185         while (READ_ONCE(si->inuse_pages) &&
2186                !signal_pending(current) &&
2187                (p = p->next) != &init_mm.mmlist) {
2188
2189                 mm = list_entry(p, struct mm_struct, mmlist);
2190                 if (!mmget_not_zero(mm))
2191                         continue;
2192                 spin_unlock(&mmlist_lock);
2193                 mmput(prev_mm);
2194                 prev_mm = mm;
2195                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196
2197                 if (retval) {
2198                         mmput(prev_mm);
2199                         goto out;
2200                 }
2201
2202                 /*
2203                  * Make sure that we aren't completely killing
2204                  * interactive performance.
2205                  */
2206                 cond_resched();
2207                 spin_lock(&mmlist_lock);
2208         }
2209         spin_unlock(&mmlist_lock);
2210
2211         mmput(prev_mm);
2212
2213         i = 0;
2214         while (READ_ONCE(si->inuse_pages) &&
2215                !signal_pending(current) &&
2216                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217
2218                 entry = swp_entry(type, i);
2219                 page = find_get_page(swap_address_space(entry), i);
2220                 if (!page)
2221                         continue;
2222
2223                 /*
2224                  * It is conceivable that a racing task removed this page from
2225                  * swap cache just before we acquired the page lock. The page
2226                  * might even be back in swap cache on another swap area. But
2227                  * that is okay, try_to_free_swap() only removes stale pages.
2228                  */
2229                 lock_page(page);
2230                 wait_on_page_writeback(page);
2231                 try_to_free_swap(page);
2232                 unlock_page(page);
2233                 put_page(page);
2234
2235                 /*
2236                  * For frontswap, we just need to unuse pages_to_unuse, if
2237                  * it was specified. Need not check frontswap again here as
2238                  * we already zeroed out pages_to_unuse if not frontswap.
2239                  */
2240                 if (pages_to_unuse && --pages_to_unuse == 0)
2241                         goto out;
2242         }
2243
2244         /*
2245          * Lets check again to see if there are still swap entries in the map.
2246          * If yes, we would need to do retry the unuse logic again.
2247          * Under global memory pressure, swap entries can be reinserted back
2248          * into process space after the mmlist loop above passes over them.
2249          *
2250          * Limit the number of retries? No: when mmget_not_zero() above fails,
2251          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252          * at its own independent pace; and even shmem_writepage() could have
2253          * been preempted after get_swap_page(), temporarily hiding that swap.
2254          * It's easy and robust (though cpu-intensive) just to keep retrying.
2255          */
2256         if (READ_ONCE(si->inuse_pages)) {
2257                 if (!signal_pending(current))
2258                         goto retry;
2259                 retval = -EINTR;
2260         }
2261 out:
2262         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263 }
2264
2265 /*
2266  * After a successful try_to_unuse, if no swap is now in use, we know
2267  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2268  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269  * added to the mmlist just after page_duplicate - before would be racy.
2270  */
2271 static void drain_mmlist(void)
2272 {
2273         struct list_head *p, *next;
2274         unsigned int type;
2275
2276         for (type = 0; type < nr_swapfiles; type++)
2277                 if (swap_info[type]->inuse_pages)
2278                         return;
2279         spin_lock(&mmlist_lock);
2280         list_for_each_safe(p, next, &init_mm.mmlist)
2281                 list_del_init(p);
2282         spin_unlock(&mmlist_lock);
2283 }
2284
2285 /*
2286  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2287  * corresponds to page offset for the specified swap entry.
2288  * Note that the type of this function is sector_t, but it returns page offset
2289  * into the bdev, not sector offset.
2290  */
2291 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2292 {
2293         struct swap_info_struct *sis;
2294         struct swap_extent *se;
2295         pgoff_t offset;
2296
2297         sis = swp_swap_info(entry);
2298         *bdev = sis->bdev;
2299
2300         offset = swp_offset(entry);
2301         se = offset_to_swap_extent(sis, offset);
2302         return se->start_block + (offset - se->start_page);
2303 }
2304
2305 /*
2306  * Returns the page offset into bdev for the specified page's swap entry.
2307  */
2308 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2309 {
2310         swp_entry_t entry;
2311         entry.val = page_private(page);
2312         return map_swap_entry(entry, bdev);
2313 }
2314
2315 /*
2316  * Free all of a swapdev's extent information
2317  */
2318 static void destroy_swap_extents(struct swap_info_struct *sis)
2319 {
2320         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2321                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2322                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2323
2324                 rb_erase(rb, &sis->swap_extent_root);
2325                 kfree(se);
2326         }
2327
2328         if (sis->flags & SWP_ACTIVATED) {
2329                 struct file *swap_file = sis->swap_file;
2330                 struct address_space *mapping = swap_file->f_mapping;
2331
2332                 sis->flags &= ~SWP_ACTIVATED;
2333                 if (mapping->a_ops->swap_deactivate)
2334                         mapping->a_ops->swap_deactivate(swap_file);
2335         }
2336 }
2337
2338 /*
2339  * Add a block range (and the corresponding page range) into this swapdev's
2340  * extent tree.
2341  *
2342  * This function rather assumes that it is called in ascending page order.
2343  */
2344 int
2345 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2346                 unsigned long nr_pages, sector_t start_block)
2347 {
2348         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2349         struct swap_extent *se;
2350         struct swap_extent *new_se;
2351
2352         /*
2353          * place the new node at the right most since the
2354          * function is called in ascending page order.
2355          */
2356         while (*link) {
2357                 parent = *link;
2358                 link = &parent->rb_right;
2359         }
2360
2361         if (parent) {
2362                 se = rb_entry(parent, struct swap_extent, rb_node);
2363                 BUG_ON(se->start_page + se->nr_pages != start_page);
2364                 if (se->start_block + se->nr_pages == start_block) {
2365                         /* Merge it */
2366                         se->nr_pages += nr_pages;
2367                         return 0;
2368                 }
2369         }
2370
2371         /* No merge, insert a new extent. */
2372         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2373         if (new_se == NULL)
2374                 return -ENOMEM;
2375         new_se->start_page = start_page;
2376         new_se->nr_pages = nr_pages;
2377         new_se->start_block = start_block;
2378
2379         rb_link_node(&new_se->rb_node, parent, link);
2380         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2381         return 1;
2382 }
2383 EXPORT_SYMBOL_GPL(add_swap_extent);
2384
2385 /*
2386  * A `swap extent' is a simple thing which maps a contiguous range of pages
2387  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2388  * is built at swapon time and is then used at swap_writepage/swap_readpage
2389  * time for locating where on disk a page belongs.
2390  *
2391  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393  * swap files identically.
2394  *
2395  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2397  * swapfiles are handled *identically* after swapon time.
2398  *
2399  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2401  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402  * requirements, they are simply tossed out - we will never use those blocks
2403  * for swapping.
2404  *
2405  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2406  * prevents users from writing to the swap device, which will corrupt memory.
2407  *
2408  * The amount of disk space which a single swap extent represents varies.
2409  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2410  * extents in the list.  To avoid much list walking, we cache the previous
2411  * search location in `curr_swap_extent', and start new searches from there.
2412  * This is extremely effective.  The average number of iterations in
2413  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2414  */
2415 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2416 {
2417         struct file *swap_file = sis->swap_file;
2418         struct address_space *mapping = swap_file->f_mapping;
2419         struct inode *inode = mapping->host;
2420         int ret;
2421
2422         if (S_ISBLK(inode->i_mode)) {
2423                 ret = add_swap_extent(sis, 0, sis->max, 0);
2424                 *span = sis->pages;
2425                 return ret;
2426         }
2427
2428         if (mapping->a_ops->swap_activate) {
2429                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2430                 if (ret >= 0)
2431                         sis->flags |= SWP_ACTIVATED;
2432                 if (!ret) {
2433                         sis->flags |= SWP_FS_OPS;
2434                         ret = add_swap_extent(sis, 0, sis->max, 0);
2435                         *span = sis->pages;
2436                 }
2437                 return ret;
2438         }
2439
2440         return generic_swapfile_activate(sis, swap_file, span);
2441 }
2442
2443 static int swap_node(struct swap_info_struct *p)
2444 {
2445         struct block_device *bdev;
2446
2447         if (p->bdev)
2448                 bdev = p->bdev;
2449         else
2450                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2451
2452         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2453 }
2454
2455 static void setup_swap_info(struct swap_info_struct *p, int prio,
2456                             unsigned char *swap_map,
2457                             struct swap_cluster_info *cluster_info)
2458 {
2459         int i;
2460
2461         if (prio >= 0)
2462                 p->prio = prio;
2463         else
2464                 p->prio = --least_priority;
2465         /*
2466          * the plist prio is negated because plist ordering is
2467          * low-to-high, while swap ordering is high-to-low
2468          */
2469         p->list.prio = -p->prio;
2470         for_each_node(i) {
2471                 if (p->prio >= 0)
2472                         p->avail_lists[i].prio = -p->prio;
2473                 else {
2474                         if (swap_node(p) == i)
2475                                 p->avail_lists[i].prio = 1;
2476                         else
2477                                 p->avail_lists[i].prio = -p->prio;
2478                 }
2479         }
2480         p->swap_map = swap_map;
2481         p->cluster_info = cluster_info;
2482 }
2483
2484 static void _enable_swap_info(struct swap_info_struct *p)
2485 {
2486         p->flags |= SWP_WRITEOK | SWP_VALID;
2487         atomic_long_add(p->pages, &nr_swap_pages);
2488         total_swap_pages += p->pages;
2489
2490         assert_spin_locked(&swap_lock);
2491         /*
2492          * both lists are plists, and thus priority ordered.
2493          * swap_active_head needs to be priority ordered for swapoff(),
2494          * which on removal of any swap_info_struct with an auto-assigned
2495          * (i.e. negative) priority increments the auto-assigned priority
2496          * of any lower-priority swap_info_structs.
2497          * swap_avail_head needs to be priority ordered for get_swap_page(),
2498          * which allocates swap pages from the highest available priority
2499          * swap_info_struct.
2500          */
2501         plist_add(&p->list, &swap_active_head);
2502         add_to_avail_list(p);
2503 }
2504
2505 static void enable_swap_info(struct swap_info_struct *p, int prio,
2506                                 unsigned char *swap_map,
2507                                 struct swap_cluster_info *cluster_info,
2508                                 unsigned long *frontswap_map)
2509 {
2510         frontswap_init(p->type, frontswap_map);
2511         spin_lock(&swap_lock);
2512         spin_lock(&p->lock);
2513         setup_swap_info(p, prio, swap_map, cluster_info);
2514         spin_unlock(&p->lock);
2515         spin_unlock(&swap_lock);
2516         /*
2517          * Guarantee swap_map, cluster_info, etc. fields are valid
2518          * between get/put_swap_device() if SWP_VALID bit is set
2519          */
2520         synchronize_rcu();
2521         spin_lock(&swap_lock);
2522         spin_lock(&p->lock);
2523         _enable_swap_info(p);
2524         spin_unlock(&p->lock);
2525         spin_unlock(&swap_lock);
2526 }
2527
2528 static void reinsert_swap_info(struct swap_info_struct *p)
2529 {
2530         spin_lock(&swap_lock);
2531         spin_lock(&p->lock);
2532         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2533         _enable_swap_info(p);
2534         spin_unlock(&p->lock);
2535         spin_unlock(&swap_lock);
2536 }
2537
2538 bool has_usable_swap(void)
2539 {
2540         bool ret = true;
2541
2542         spin_lock(&swap_lock);
2543         if (plist_head_empty(&swap_active_head))
2544                 ret = false;
2545         spin_unlock(&swap_lock);
2546         return ret;
2547 }
2548
2549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2550 {
2551         struct swap_info_struct *p = NULL;
2552         unsigned char *swap_map;
2553         struct swap_cluster_info *cluster_info;
2554         unsigned long *frontswap_map;
2555         struct file *swap_file, *victim;
2556         struct address_space *mapping;
2557         struct inode *inode;
2558         struct filename *pathname;
2559         int err, found = 0;
2560         unsigned int old_block_size;
2561
2562         if (!capable(CAP_SYS_ADMIN))
2563                 return -EPERM;
2564
2565         BUG_ON(!current->mm);
2566
2567         pathname = getname(specialfile);
2568         if (IS_ERR(pathname))
2569                 return PTR_ERR(pathname);
2570
2571         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2572         err = PTR_ERR(victim);
2573         if (IS_ERR(victim))
2574                 goto out;
2575
2576         mapping = victim->f_mapping;
2577         spin_lock(&swap_lock);
2578         plist_for_each_entry(p, &swap_active_head, list) {
2579                 if (p->flags & SWP_WRITEOK) {
2580                         if (p->swap_file->f_mapping == mapping) {
2581                                 found = 1;
2582                                 break;
2583                         }
2584                 }
2585         }
2586         if (!found) {
2587                 err = -EINVAL;
2588                 spin_unlock(&swap_lock);
2589                 goto out_dput;
2590         }
2591         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2592                 vm_unacct_memory(p->pages);
2593         else {
2594                 err = -ENOMEM;
2595                 spin_unlock(&swap_lock);
2596                 goto out_dput;
2597         }
2598         del_from_avail_list(p);
2599         spin_lock(&p->lock);
2600         if (p->prio < 0) {
2601                 struct swap_info_struct *si = p;
2602                 int nid;
2603
2604                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2605                         si->prio++;
2606                         si->list.prio--;
2607                         for_each_node(nid) {
2608                                 if (si->avail_lists[nid].prio != 1)
2609                                         si->avail_lists[nid].prio--;
2610                         }
2611                 }
2612                 least_priority++;
2613         }
2614         plist_del(&p->list, &swap_active_head);
2615         atomic_long_sub(p->pages, &nr_swap_pages);
2616         total_swap_pages -= p->pages;
2617         p->flags &= ~SWP_WRITEOK;
2618         spin_unlock(&p->lock);
2619         spin_unlock(&swap_lock);
2620
2621         disable_swap_slots_cache_lock();
2622
2623         set_current_oom_origin();
2624         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2625         clear_current_oom_origin();
2626
2627         if (err) {
2628                 /* re-insert swap space back into swap_list */
2629                 reinsert_swap_info(p);
2630                 reenable_swap_slots_cache_unlock();
2631                 goto out_dput;
2632         }
2633
2634         reenable_swap_slots_cache_unlock();
2635
2636         spin_lock(&swap_lock);
2637         spin_lock(&p->lock);
2638         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2639         spin_unlock(&p->lock);
2640         spin_unlock(&swap_lock);
2641         /*
2642          * wait for swap operations protected by get/put_swap_device()
2643          * to complete
2644          */
2645         synchronize_rcu();
2646
2647         flush_work(&p->discard_work);
2648
2649         destroy_swap_extents(p);
2650         if (p->flags & SWP_CONTINUED)
2651                 free_swap_count_continuations(p);
2652
2653         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2654                 atomic_dec(&nr_rotate_swap);
2655
2656         mutex_lock(&swapon_mutex);
2657         spin_lock(&swap_lock);
2658         spin_lock(&p->lock);
2659         drain_mmlist();
2660
2661         /* wait for anyone still in scan_swap_map */
2662         p->highest_bit = 0;             /* cuts scans short */
2663         while (p->flags >= SWP_SCANNING) {
2664                 spin_unlock(&p->lock);
2665                 spin_unlock(&swap_lock);
2666                 schedule_timeout_uninterruptible(1);
2667                 spin_lock(&swap_lock);
2668                 spin_lock(&p->lock);
2669         }
2670
2671         swap_file = p->swap_file;
2672         old_block_size = p->old_block_size;
2673         p->swap_file = NULL;
2674         p->max = 0;
2675         swap_map = p->swap_map;
2676         p->swap_map = NULL;
2677         cluster_info = p->cluster_info;
2678         p->cluster_info = NULL;
2679         frontswap_map = frontswap_map_get(p);
2680         spin_unlock(&p->lock);
2681         spin_unlock(&swap_lock);
2682         arch_swap_invalidate_area(p->type);
2683         frontswap_invalidate_area(p->type);
2684         frontswap_map_set(p, NULL);
2685         mutex_unlock(&swapon_mutex);
2686         free_percpu(p->percpu_cluster);
2687         p->percpu_cluster = NULL;
2688         free_percpu(p->cluster_next_cpu);
2689         p->cluster_next_cpu = NULL;
2690         vfree(swap_map);
2691         kvfree(cluster_info);
2692         kvfree(frontswap_map);
2693         /* Destroy swap account information */
2694         swap_cgroup_swapoff(p->type);
2695         exit_swap_address_space(p->type);
2696
2697         inode = mapping->host;
2698         if (S_ISBLK(inode->i_mode)) {
2699                 struct block_device *bdev = I_BDEV(inode);
2700
2701                 set_blocksize(bdev, old_block_size);
2702                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2703         }
2704
2705         inode_lock(inode);
2706         inode->i_flags &= ~S_SWAPFILE;
2707         inode_unlock(inode);
2708         filp_close(swap_file, NULL);
2709
2710         /*
2711          * Clear the SWP_USED flag after all resources are freed so that swapon
2712          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2713          * not hold p->lock after we cleared its SWP_WRITEOK.
2714          */
2715         spin_lock(&swap_lock);
2716         p->flags = 0;
2717         spin_unlock(&swap_lock);
2718
2719         err = 0;
2720         atomic_inc(&proc_poll_event);
2721         wake_up_interruptible(&proc_poll_wait);
2722
2723 out_dput:
2724         filp_close(victim, NULL);
2725 out:
2726         putname(pathname);
2727         return err;
2728 }
2729
2730 #ifdef CONFIG_PROC_FS
2731 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2732 {
2733         struct seq_file *seq = file->private_data;
2734
2735         poll_wait(file, &proc_poll_wait, wait);
2736
2737         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2738                 seq->poll_event = atomic_read(&proc_poll_event);
2739                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2740         }
2741
2742         return EPOLLIN | EPOLLRDNORM;
2743 }
2744
2745 /* iterator */
2746 static void *swap_start(struct seq_file *swap, loff_t *pos)
2747 {
2748         struct swap_info_struct *si;
2749         int type;
2750         loff_t l = *pos;
2751
2752         mutex_lock(&swapon_mutex);
2753
2754         if (!l)
2755                 return SEQ_START_TOKEN;
2756
2757         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2758                 if (!(si->flags & SWP_USED) || !si->swap_map)
2759                         continue;
2760                 if (!--l)
2761                         return si;
2762         }
2763
2764         return NULL;
2765 }
2766
2767 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2768 {
2769         struct swap_info_struct *si = v;
2770         int type;
2771
2772         if (v == SEQ_START_TOKEN)
2773                 type = 0;
2774         else
2775                 type = si->type + 1;
2776
2777         ++(*pos);
2778         for (; (si = swap_type_to_swap_info(type)); type++) {
2779                 if (!(si->flags & SWP_USED) || !si->swap_map)
2780                         continue;
2781                 return si;
2782         }
2783
2784         return NULL;
2785 }
2786
2787 static void swap_stop(struct seq_file *swap, void *v)
2788 {
2789         mutex_unlock(&swapon_mutex);
2790 }
2791
2792 static int swap_show(struct seq_file *swap, void *v)
2793 {
2794         struct swap_info_struct *si = v;
2795         struct file *file;
2796         int len;
2797         unsigned int bytes, inuse;
2798
2799         if (si == SEQ_START_TOKEN) {
2800                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2801                 return 0;
2802         }
2803
2804         bytes = si->pages << (PAGE_SHIFT - 10);
2805         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2806
2807         file = si->swap_file;
2808         len = seq_file_path(swap, file, " \t\n\\");
2809         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2810                         len < 40 ? 40 - len : 1, " ",
2811                         S_ISBLK(file_inode(file)->i_mode) ?
2812                                 "partition" : "file\t",
2813                         bytes, bytes < 10000000 ? "\t" : "",
2814                         inuse, inuse < 10000000 ? "\t" : "",
2815                         si->prio);
2816         return 0;
2817 }
2818
2819 static const struct seq_operations swaps_op = {
2820         .start =        swap_start,
2821         .next =         swap_next,
2822         .stop =         swap_stop,
2823         .show =         swap_show
2824 };
2825
2826 static int swaps_open(struct inode *inode, struct file *file)
2827 {
2828         struct seq_file *seq;
2829         int ret;
2830
2831         ret = seq_open(file, &swaps_op);
2832         if (ret)
2833                 return ret;
2834
2835         seq = file->private_data;
2836         seq->poll_event = atomic_read(&proc_poll_event);
2837         return 0;
2838 }
2839
2840 static const struct proc_ops swaps_proc_ops = {
2841         .proc_flags     = PROC_ENTRY_PERMANENT,
2842         .proc_open      = swaps_open,
2843         .proc_read      = seq_read,
2844         .proc_lseek     = seq_lseek,
2845         .proc_release   = seq_release,
2846         .proc_poll      = swaps_poll,
2847 };
2848
2849 static int __init procswaps_init(void)
2850 {
2851         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2852         return 0;
2853 }
2854 __initcall(procswaps_init);
2855 #endif /* CONFIG_PROC_FS */
2856
2857 #ifdef MAX_SWAPFILES_CHECK
2858 static int __init max_swapfiles_check(void)
2859 {
2860         MAX_SWAPFILES_CHECK();
2861         return 0;
2862 }
2863 late_initcall(max_swapfiles_check);
2864 #endif
2865
2866 static struct swap_info_struct *alloc_swap_info(void)
2867 {
2868         struct swap_info_struct *p;
2869         struct swap_info_struct *defer = NULL;
2870         unsigned int type;
2871         int i;
2872
2873         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2874         if (!p)
2875                 return ERR_PTR(-ENOMEM);
2876
2877         spin_lock(&swap_lock);
2878         for (type = 0; type < nr_swapfiles; type++) {
2879                 if (!(swap_info[type]->flags & SWP_USED))
2880                         break;
2881         }
2882         if (type >= MAX_SWAPFILES) {
2883                 spin_unlock(&swap_lock);
2884                 kvfree(p);
2885                 return ERR_PTR(-EPERM);
2886         }
2887         if (type >= nr_swapfiles) {
2888                 p->type = type;
2889                 WRITE_ONCE(swap_info[type], p);
2890                 /*
2891                  * Write swap_info[type] before nr_swapfiles, in case a
2892                  * racing procfs swap_start() or swap_next() is reading them.
2893                  * (We never shrink nr_swapfiles, we never free this entry.)
2894                  */
2895                 smp_wmb();
2896                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2897         } else {
2898                 defer = p;
2899                 p = swap_info[type];
2900                 /*
2901                  * Do not memset this entry: a racing procfs swap_next()
2902                  * would be relying on p->type to remain valid.
2903                  */
2904         }
2905         p->swap_extent_root = RB_ROOT;
2906         plist_node_init(&p->list, 0);
2907         for_each_node(i)
2908                 plist_node_init(&p->avail_lists[i], 0);
2909         p->flags = SWP_USED;
2910         spin_unlock(&swap_lock);
2911         kvfree(defer);
2912         spin_lock_init(&p->lock);
2913         spin_lock_init(&p->cont_lock);
2914
2915         return p;
2916 }
2917
2918 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2919 {
2920         int error;
2921
2922         if (S_ISBLK(inode->i_mode)) {
2923                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2924                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2925                 if (IS_ERR(p->bdev)) {
2926                         error = PTR_ERR(p->bdev);
2927                         p->bdev = NULL;
2928                         return error;
2929                 }
2930                 p->old_block_size = block_size(p->bdev);
2931                 error = set_blocksize(p->bdev, PAGE_SIZE);
2932                 if (error < 0)
2933                         return error;
2934                 /*
2935                  * Zoned block devices contain zones that have a sequential
2936                  * write only restriction.  Hence zoned block devices are not
2937                  * suitable for swapping.  Disallow them here.
2938                  */
2939                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2940                         return -EINVAL;
2941                 p->flags |= SWP_BLKDEV;
2942         } else if (S_ISREG(inode->i_mode)) {
2943                 p->bdev = inode->i_sb->s_bdev;
2944         }
2945
2946         return 0;
2947 }
2948
2949
2950 /*
2951  * Find out how many pages are allowed for a single swap device. There
2952  * are two limiting factors:
2953  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2954  * 2) the number of bits in the swap pte, as defined by the different
2955  * architectures.
2956  *
2957  * In order to find the largest possible bit mask, a swap entry with
2958  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2959  * decoded to a swp_entry_t again, and finally the swap offset is
2960  * extracted.
2961  *
2962  * This will mask all the bits from the initial ~0UL mask that can't
2963  * be encoded in either the swp_entry_t or the architecture definition
2964  * of a swap pte.
2965  */
2966 unsigned long generic_max_swapfile_size(void)
2967 {
2968         return swp_offset(pte_to_swp_entry(
2969                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2970 }
2971
2972 /* Can be overridden by an architecture for additional checks. */
2973 __weak unsigned long max_swapfile_size(void)
2974 {
2975         return generic_max_swapfile_size();
2976 }
2977
2978 static unsigned long read_swap_header(struct swap_info_struct *p,
2979                                         union swap_header *swap_header,
2980                                         struct inode *inode)
2981 {
2982         int i;
2983         unsigned long maxpages;
2984         unsigned long swapfilepages;
2985         unsigned long last_page;
2986
2987         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2988                 pr_err("Unable to find swap-space signature\n");
2989                 return 0;
2990         }
2991
2992         /* swap partition endianess hack... */
2993         if (swab32(swap_header->info.version) == 1) {
2994                 swab32s(&swap_header->info.version);
2995                 swab32s(&swap_header->info.last_page);
2996                 swab32s(&swap_header->info.nr_badpages);
2997                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2998                         return 0;
2999                 for (i = 0; i < swap_header->info.nr_badpages; i++)
3000                         swab32s(&swap_header->info.badpages[i]);
3001         }
3002         /* Check the swap header's sub-version */
3003         if (swap_header->info.version != 1) {
3004                 pr_warn("Unable to handle swap header version %d\n",
3005                         swap_header->info.version);
3006                 return 0;
3007         }
3008
3009         p->lowest_bit  = 1;
3010         p->cluster_next = 1;
3011         p->cluster_nr = 0;
3012
3013         maxpages = max_swapfile_size();
3014         last_page = swap_header->info.last_page;
3015         if (!last_page) {
3016                 pr_warn("Empty swap-file\n");
3017                 return 0;
3018         }
3019         if (last_page > maxpages) {
3020                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3021                         maxpages << (PAGE_SHIFT - 10),
3022                         last_page << (PAGE_SHIFT - 10));
3023         }
3024         if (maxpages > last_page) {
3025                 maxpages = last_page + 1;
3026                 /* p->max is an unsigned int: don't overflow it */
3027                 if ((unsigned int)maxpages == 0)
3028                         maxpages = UINT_MAX;
3029         }
3030         p->highest_bit = maxpages - 1;
3031
3032         if (!maxpages)
3033                 return 0;
3034         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3035         if (swapfilepages && maxpages > swapfilepages) {
3036                 pr_warn("Swap area shorter than signature indicates\n");
3037                 return 0;
3038         }
3039         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3040                 return 0;
3041         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3042                 return 0;
3043
3044         return maxpages;
3045 }
3046
3047 #define SWAP_CLUSTER_INFO_COLS                                          \
3048         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3049 #define SWAP_CLUSTER_SPACE_COLS                                         \
3050         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3051 #define SWAP_CLUSTER_COLS                                               \
3052         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3053
3054 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3055                                         union swap_header *swap_header,
3056                                         unsigned char *swap_map,
3057                                         struct swap_cluster_info *cluster_info,
3058                                         unsigned long maxpages,
3059                                         sector_t *span)
3060 {
3061         unsigned int j, k;
3062         unsigned int nr_good_pages;
3063         int nr_extents;
3064         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3065         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3066         unsigned long i, idx;
3067
3068         nr_good_pages = maxpages - 1;   /* omit header page */
3069
3070         cluster_list_init(&p->free_clusters);
3071         cluster_list_init(&p->discard_clusters);
3072
3073         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3074                 unsigned int page_nr = swap_header->info.badpages[i];
3075                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3076                         return -EINVAL;
3077                 if (page_nr < maxpages) {
3078                         swap_map[page_nr] = SWAP_MAP_BAD;
3079                         nr_good_pages--;
3080                         /*
3081                          * Haven't marked the cluster free yet, no list
3082                          * operation involved
3083                          */
3084                         inc_cluster_info_page(p, cluster_info, page_nr);
3085                 }
3086         }
3087
3088         /* Haven't marked the cluster free yet, no list operation involved */
3089         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3090                 inc_cluster_info_page(p, cluster_info, i);
3091
3092         if (nr_good_pages) {
3093                 swap_map[0] = SWAP_MAP_BAD;
3094                 /*
3095                  * Not mark the cluster free yet, no list
3096                  * operation involved
3097                  */
3098                 inc_cluster_info_page(p, cluster_info, 0);
3099                 p->max = maxpages;
3100                 p->pages = nr_good_pages;
3101                 nr_extents = setup_swap_extents(p, span);
3102                 if (nr_extents < 0)
3103                         return nr_extents;
3104                 nr_good_pages = p->pages;
3105         }
3106         if (!nr_good_pages) {
3107                 pr_warn("Empty swap-file\n");
3108                 return -EINVAL;
3109         }
3110
3111         if (!cluster_info)
3112                 return nr_extents;
3113
3114
3115         /*
3116          * Reduce false cache line sharing between cluster_info and
3117          * sharing same address space.
3118          */
3119         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3120                 j = (k + col) % SWAP_CLUSTER_COLS;
3121                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3122                         idx = i * SWAP_CLUSTER_COLS + j;
3123                         if (idx >= nr_clusters)
3124                                 continue;
3125                         if (cluster_count(&cluster_info[idx]))
3126                                 continue;
3127                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3128                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3129                                               idx);
3130                 }
3131         }
3132         return nr_extents;
3133 }
3134
3135 /*
3136  * Helper to sys_swapon determining if a given swap
3137  * backing device queue supports DISCARD operations.
3138  */
3139 static bool swap_discardable(struct swap_info_struct *si)
3140 {
3141         struct request_queue *q = bdev_get_queue(si->bdev);
3142
3143         if (!q || !blk_queue_discard(q))
3144                 return false;
3145
3146         return true;
3147 }
3148
3149 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3150 {
3151         struct swap_info_struct *p;
3152         struct filename *name;
3153         struct file *swap_file = NULL;
3154         struct address_space *mapping;
3155         int prio;
3156         int error;
3157         union swap_header *swap_header;
3158         int nr_extents;
3159         sector_t span;
3160         unsigned long maxpages;
3161         unsigned char *swap_map = NULL;
3162         struct swap_cluster_info *cluster_info = NULL;
3163         unsigned long *frontswap_map = NULL;
3164         struct page *page = NULL;
3165         struct inode *inode = NULL;
3166         bool inced_nr_rotate_swap = false;
3167
3168         if (swap_flags & ~SWAP_FLAGS_VALID)
3169                 return -EINVAL;
3170
3171         if (!capable(CAP_SYS_ADMIN))
3172                 return -EPERM;
3173
3174         if (!swap_avail_heads)
3175                 return -ENOMEM;
3176
3177         p = alloc_swap_info();
3178         if (IS_ERR(p))
3179                 return PTR_ERR(p);
3180
3181         INIT_WORK(&p->discard_work, swap_discard_work);
3182
3183         name = getname(specialfile);
3184         if (IS_ERR(name)) {
3185                 error = PTR_ERR(name);
3186                 name = NULL;
3187                 goto bad_swap;
3188         }
3189         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3190         if (IS_ERR(swap_file)) {
3191                 error = PTR_ERR(swap_file);
3192                 swap_file = NULL;
3193                 goto bad_swap;
3194         }
3195
3196         p->swap_file = swap_file;
3197         mapping = swap_file->f_mapping;
3198         inode = mapping->host;
3199
3200         error = claim_swapfile(p, inode);
3201         if (unlikely(error))
3202                 goto bad_swap;
3203
3204         inode_lock(inode);
3205         if (IS_SWAPFILE(inode)) {
3206                 error = -EBUSY;
3207                 goto bad_swap_unlock_inode;
3208         }
3209
3210         /*
3211          * Read the swap header.
3212          */
3213         if (!mapping->a_ops->readpage) {
3214                 error = -EINVAL;
3215                 goto bad_swap_unlock_inode;
3216         }
3217         page = read_mapping_page(mapping, 0, swap_file);
3218         if (IS_ERR(page)) {
3219                 error = PTR_ERR(page);
3220                 goto bad_swap_unlock_inode;
3221         }
3222         swap_header = kmap(page);
3223
3224         maxpages = read_swap_header(p, swap_header, inode);
3225         if (unlikely(!maxpages)) {
3226                 error = -EINVAL;
3227                 goto bad_swap_unlock_inode;
3228         }
3229
3230         /* OK, set up the swap map and apply the bad block list */
3231         swap_map = vzalloc(maxpages);
3232         if (!swap_map) {
3233                 error = -ENOMEM;
3234                 goto bad_swap_unlock_inode;
3235         }
3236
3237         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3238                 p->flags |= SWP_STABLE_WRITES;
3239
3240         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3241                 p->flags |= SWP_SYNCHRONOUS_IO;
3242
3243         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3244                 int cpu;
3245                 unsigned long ci, nr_cluster;
3246
3247                 p->flags |= SWP_SOLIDSTATE;
3248                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3249                 if (!p->cluster_next_cpu) {
3250                         error = -ENOMEM;
3251                         goto bad_swap_unlock_inode;
3252                 }
3253                 /*
3254                  * select a random position to start with to help wear leveling
3255                  * SSD
3256                  */
3257                 for_each_possible_cpu(cpu) {
3258                         per_cpu(*p->cluster_next_cpu, cpu) =
3259                                 1 + prandom_u32_max(p->highest_bit);
3260                 }
3261                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3262
3263                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3264                                         GFP_KERNEL);
3265                 if (!cluster_info) {
3266                         error = -ENOMEM;
3267                         goto bad_swap_unlock_inode;
3268                 }
3269
3270                 for (ci = 0; ci < nr_cluster; ci++)
3271                         spin_lock_init(&((cluster_info + ci)->lock));
3272
3273                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3274                 if (!p->percpu_cluster) {
3275                         error = -ENOMEM;
3276                         goto bad_swap_unlock_inode;
3277                 }
3278                 for_each_possible_cpu(cpu) {
3279                         struct percpu_cluster *cluster;
3280                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3281                         cluster_set_null(&cluster->index);
3282                 }
3283         } else {
3284                 atomic_inc(&nr_rotate_swap);
3285                 inced_nr_rotate_swap = true;
3286         }
3287
3288         error = swap_cgroup_swapon(p->type, maxpages);
3289         if (error)
3290                 goto bad_swap_unlock_inode;
3291
3292         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3293                 cluster_info, maxpages, &span);
3294         if (unlikely(nr_extents < 0)) {
3295                 error = nr_extents;
3296                 goto bad_swap_unlock_inode;
3297         }
3298         /* frontswap enabled? set up bit-per-page map for frontswap */
3299         if (IS_ENABLED(CONFIG_FRONTSWAP))
3300                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3301                                          sizeof(long),
3302                                          GFP_KERNEL);
3303
3304         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3305                 /*
3306                  * When discard is enabled for swap with no particular
3307                  * policy flagged, we set all swap discard flags here in
3308                  * order to sustain backward compatibility with older
3309                  * swapon(8) releases.
3310                  */
3311                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3312                              SWP_PAGE_DISCARD);
3313
3314                 /*
3315                  * By flagging sys_swapon, a sysadmin can tell us to
3316                  * either do single-time area discards only, or to just
3317                  * perform discards for released swap page-clusters.
3318                  * Now it's time to adjust the p->flags accordingly.
3319                  */
3320                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3321                         p->flags &= ~SWP_PAGE_DISCARD;
3322                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3323                         p->flags &= ~SWP_AREA_DISCARD;
3324
3325                 /* issue a swapon-time discard if it's still required */
3326                 if (p->flags & SWP_AREA_DISCARD) {
3327                         int err = discard_swap(p);
3328                         if (unlikely(err))
3329                                 pr_err("swapon: discard_swap(%p): %d\n",
3330                                         p, err);
3331                 }
3332         }
3333
3334         error = init_swap_address_space(p->type, maxpages);
3335         if (error)
3336                 goto bad_swap_unlock_inode;
3337
3338         /*
3339          * Flush any pending IO and dirty mappings before we start using this
3340          * swap device.
3341          */
3342         inode->i_flags |= S_SWAPFILE;
3343         error = inode_drain_writes(inode);
3344         if (error) {
3345                 inode->i_flags &= ~S_SWAPFILE;
3346                 goto free_swap_address_space;
3347         }
3348
3349         mutex_lock(&swapon_mutex);
3350         prio = -1;
3351         if (swap_flags & SWAP_FLAG_PREFER)
3352                 prio =
3353                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3354         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3355
3356         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3357                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3358                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3359                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3360                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3361                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3362                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3363                 (frontswap_map) ? "FS" : "");
3364
3365         mutex_unlock(&swapon_mutex);
3366         atomic_inc(&proc_poll_event);
3367         wake_up_interruptible(&proc_poll_wait);
3368
3369         error = 0;
3370         goto out;
3371 free_swap_address_space:
3372         exit_swap_address_space(p->type);
3373 bad_swap_unlock_inode:
3374         inode_unlock(inode);
3375 bad_swap:
3376         free_percpu(p->percpu_cluster);
3377         p->percpu_cluster = NULL;
3378         free_percpu(p->cluster_next_cpu);
3379         p->cluster_next_cpu = NULL;
3380         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3381                 set_blocksize(p->bdev, p->old_block_size);
3382                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3383         }
3384         inode = NULL;
3385         destroy_swap_extents(p);
3386         swap_cgroup_swapoff(p->type);
3387         spin_lock(&swap_lock);
3388         p->swap_file = NULL;
3389         p->flags = 0;
3390         spin_unlock(&swap_lock);
3391         vfree(swap_map);
3392         kvfree(cluster_info);
3393         kvfree(frontswap_map);
3394         if (inced_nr_rotate_swap)
3395                 atomic_dec(&nr_rotate_swap);
3396         if (swap_file)
3397                 filp_close(swap_file, NULL);
3398 out:
3399         if (page && !IS_ERR(page)) {
3400                 kunmap(page);
3401                 put_page(page);
3402         }
3403         if (name)
3404                 putname(name);
3405         if (inode)
3406                 inode_unlock(inode);
3407         if (!error)
3408                 enable_swap_slots_cache();
3409         return error;
3410 }
3411
3412 void si_swapinfo(struct sysinfo *val)
3413 {
3414         unsigned int type;
3415         unsigned long nr_to_be_unused = 0;
3416
3417         spin_lock(&swap_lock);
3418         for (type = 0; type < nr_swapfiles; type++) {
3419                 struct swap_info_struct *si = swap_info[type];
3420
3421                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3422                         nr_to_be_unused += si->inuse_pages;
3423         }
3424         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3425         val->totalswap = total_swap_pages + nr_to_be_unused;
3426         spin_unlock(&swap_lock);
3427 }
3428
3429 /*
3430  * Verify that a swap entry is valid and increment its swap map count.
3431  *
3432  * Returns error code in following case.
3433  * - success -> 0
3434  * - swp_entry is invalid -> EINVAL
3435  * - swp_entry is migration entry -> EINVAL
3436  * - swap-cache reference is requested but there is already one. -> EEXIST
3437  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3438  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3439  */
3440 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3441 {
3442         struct swap_info_struct *p;
3443         struct swap_cluster_info *ci;
3444         unsigned long offset;
3445         unsigned char count;
3446         unsigned char has_cache;
3447         int err;
3448
3449         p = get_swap_device(entry);
3450         if (!p)
3451                 return -EINVAL;
3452
3453         offset = swp_offset(entry);
3454         ci = lock_cluster_or_swap_info(p, offset);
3455
3456         count = p->swap_map[offset];
3457
3458         /*
3459          * swapin_readahead() doesn't check if a swap entry is valid, so the
3460          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3461          */
3462         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3463                 err = -ENOENT;
3464                 goto unlock_out;
3465         }
3466
3467         has_cache = count & SWAP_HAS_CACHE;
3468         count &= ~SWAP_HAS_CACHE;
3469         err = 0;
3470
3471         if (usage == SWAP_HAS_CACHE) {
3472
3473                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3474                 if (!has_cache && count)
3475                         has_cache = SWAP_HAS_CACHE;
3476                 else if (has_cache)             /* someone else added cache */
3477                         err = -EEXIST;
3478                 else                            /* no users remaining */
3479                         err = -ENOENT;
3480
3481         } else if (count || has_cache) {
3482
3483                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3484                         count += usage;
3485                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3486                         err = -EINVAL;
3487                 else if (swap_count_continued(p, offset, count))
3488                         count = COUNT_CONTINUED;
3489                 else
3490                         err = -ENOMEM;
3491         } else
3492                 err = -ENOENT;                  /* unused swap entry */
3493
3494         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3495
3496 unlock_out:
3497         unlock_cluster_or_swap_info(p, ci);
3498         if (p)
3499                 put_swap_device(p);
3500         return err;
3501 }
3502
3503 /*
3504  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3505  * (in which case its reference count is never incremented).
3506  */
3507 void swap_shmem_alloc(swp_entry_t entry)
3508 {
3509         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3510 }
3511
3512 /*
3513  * Increase reference count of swap entry by 1.
3514  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3515  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3516  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3517  * might occur if a page table entry has got corrupted.
3518  */
3519 int swap_duplicate(swp_entry_t entry)
3520 {
3521         int err = 0;
3522
3523         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3524                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3525         return err;
3526 }
3527
3528 /*
3529  * @entry: swap entry for which we allocate swap cache.
3530  *
3531  * Called when allocating swap cache for existing swap entry,
3532  * This can return error codes. Returns 0 at success.
3533  * -EEXIST means there is a swap cache.
3534  * Note: return code is different from swap_duplicate().
3535  */
3536 int swapcache_prepare(swp_entry_t entry)
3537 {
3538         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3539 }
3540
3541 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3542 {
3543         return swap_type_to_swap_info(swp_type(entry));
3544 }
3545
3546 struct swap_info_struct *page_swap_info(struct page *page)
3547 {
3548         swp_entry_t entry = { .val = page_private(page) };
3549         return swp_swap_info(entry);
3550 }
3551
3552 /*
3553  * out-of-line __page_file_ methods to avoid include hell.
3554  */
3555 struct address_space *__page_file_mapping(struct page *page)
3556 {
3557         return page_swap_info(page)->swap_file->f_mapping;
3558 }
3559 EXPORT_SYMBOL_GPL(__page_file_mapping);
3560
3561 pgoff_t __page_file_index(struct page *page)
3562 {
3563         swp_entry_t swap = { .val = page_private(page) };
3564         return swp_offset(swap);
3565 }
3566 EXPORT_SYMBOL_GPL(__page_file_index);
3567
3568 /*
3569  * add_swap_count_continuation - called when a swap count is duplicated
3570  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3571  * page of the original vmalloc'ed swap_map, to hold the continuation count
3572  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3573  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3574  *
3575  * These continuation pages are seldom referenced: the common paths all work
3576  * on the original swap_map, only referring to a continuation page when the
3577  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3578  *
3579  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3580  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3581  * can be called after dropping locks.
3582  */
3583 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3584 {
3585         struct swap_info_struct *si;
3586         struct swap_cluster_info *ci;
3587         struct page *head;
3588         struct page *page;
3589         struct page *list_page;
3590         pgoff_t offset;
3591         unsigned char count;
3592         int ret = 0;
3593
3594         /*
3595          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3596          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3597          */
3598         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3599
3600         si = get_swap_device(entry);
3601         if (!si) {
3602                 /*
3603                  * An acceptable race has occurred since the failing
3604                  * __swap_duplicate(): the swap device may be swapoff
3605                  */
3606                 goto outer;
3607         }
3608         spin_lock(&si->lock);
3609
3610         offset = swp_offset(entry);
3611
3612         ci = lock_cluster(si, offset);
3613
3614         count = swap_count(si->swap_map[offset]);
3615
3616         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3617                 /*
3618                  * The higher the swap count, the more likely it is that tasks
3619                  * will race to add swap count continuation: we need to avoid
3620                  * over-provisioning.
3621                  */
3622                 goto out;
3623         }
3624
3625         if (!page) {
3626                 ret = -ENOMEM;
3627                 goto out;
3628         }
3629
3630         /*
3631          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3632          * no architecture is using highmem pages for kernel page tables: so it
3633          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3634          */
3635         head = vmalloc_to_page(si->swap_map + offset);
3636         offset &= ~PAGE_MASK;
3637
3638         spin_lock(&si->cont_lock);
3639         /*
3640          * Page allocation does not initialize the page's lru field,
3641          * but it does always reset its private field.
3642          */
3643         if (!page_private(head)) {
3644                 BUG_ON(count & COUNT_CONTINUED);
3645                 INIT_LIST_HEAD(&head->lru);
3646                 set_page_private(head, SWP_CONTINUED);
3647                 si->flags |= SWP_CONTINUED;
3648         }
3649
3650         list_for_each_entry(list_page, &head->lru, lru) {
3651                 unsigned char *map;
3652
3653                 /*
3654                  * If the previous map said no continuation, but we've found
3655                  * a continuation page, free our allocation and use this one.
3656                  */
3657                 if (!(count & COUNT_CONTINUED))
3658                         goto out_unlock_cont;
3659
3660                 map = kmap_atomic(list_page) + offset;
3661                 count = *map;
3662                 kunmap_atomic(map);
3663
3664                 /*
3665                  * If this continuation count now has some space in it,
3666                  * free our allocation and use this one.
3667                  */
3668                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3669                         goto out_unlock_cont;
3670         }
3671
3672         list_add_tail(&page->lru, &head->lru);
3673         page = NULL;                    /* now it's attached, don't free it */
3674 out_unlock_cont:
3675         spin_unlock(&si->cont_lock);
3676 out:
3677         unlock_cluster(ci);
3678         spin_unlock(&si->lock);
3679         put_swap_device(si);
3680 outer:
3681         if (page)
3682                 __free_page(page);
3683         return ret;
3684 }
3685
3686 /*
3687  * swap_count_continued - when the original swap_map count is incremented
3688  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3689  * into, carry if so, or else fail until a new continuation page is allocated;
3690  * when the original swap_map count is decremented from 0 with continuation,
3691  * borrow from the continuation and report whether it still holds more.
3692  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3693  * lock.
3694  */
3695 static bool swap_count_continued(struct swap_info_struct *si,
3696                                  pgoff_t offset, unsigned char count)
3697 {
3698         struct page *head;
3699         struct page *page;
3700         unsigned char *map;
3701         bool ret;
3702
3703         head = vmalloc_to_page(si->swap_map + offset);
3704         if (page_private(head) != SWP_CONTINUED) {
3705                 BUG_ON(count & COUNT_CONTINUED);
3706                 return false;           /* need to add count continuation */
3707         }
3708
3709         spin_lock(&si->cont_lock);
3710         offset &= ~PAGE_MASK;
3711         page = list_next_entry(head, lru);
3712         map = kmap_atomic(page) + offset;
3713
3714         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3715                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3716
3717         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3718                 /*
3719                  * Think of how you add 1 to 999
3720                  */
3721                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3722                         kunmap_atomic(map);
3723                         page = list_next_entry(page, lru);
3724                         BUG_ON(page == head);
3725                         map = kmap_atomic(page) + offset;
3726                 }
3727                 if (*map == SWAP_CONT_MAX) {
3728                         kunmap_atomic(map);
3729                         page = list_next_entry(page, lru);
3730                         if (page == head) {
3731                                 ret = false;    /* add count continuation */
3732                                 goto out;
3733                         }
3734                         map = kmap_atomic(page) + offset;
3735 init_map:               *map = 0;               /* we didn't zero the page */
3736                 }
3737                 *map += 1;
3738                 kunmap_atomic(map);
3739                 while ((page = list_prev_entry(page, lru)) != head) {
3740                         map = kmap_atomic(page) + offset;
3741                         *map = COUNT_CONTINUED;
3742                         kunmap_atomic(map);
3743                 }
3744                 ret = true;                     /* incremented */
3745
3746         } else {                                /* decrementing */
3747                 /*
3748                  * Think of how you subtract 1 from 1000
3749                  */
3750                 BUG_ON(count != COUNT_CONTINUED);
3751                 while (*map == COUNT_CONTINUED) {
3752                         kunmap_atomic(map);
3753                         page = list_next_entry(page, lru);
3754                         BUG_ON(page == head);
3755                         map = kmap_atomic(page) + offset;
3756                 }
3757                 BUG_ON(*map == 0);
3758                 *map -= 1;
3759                 if (*map == 0)
3760                         count = 0;
3761                 kunmap_atomic(map);
3762                 while ((page = list_prev_entry(page, lru)) != head) {
3763                         map = kmap_atomic(page) + offset;
3764                         *map = SWAP_CONT_MAX | count;
3765                         count = COUNT_CONTINUED;
3766                         kunmap_atomic(map);
3767                 }
3768                 ret = count == COUNT_CONTINUED;
3769         }
3770 out:
3771         spin_unlock(&si->cont_lock);
3772         return ret;
3773 }
3774
3775 /*
3776  * free_swap_count_continuations - swapoff free all the continuation pages
3777  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3778  */
3779 static void free_swap_count_continuations(struct swap_info_struct *si)
3780 {
3781         pgoff_t offset;
3782
3783         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3784                 struct page *head;
3785                 head = vmalloc_to_page(si->swap_map + offset);
3786                 if (page_private(head)) {
3787                         struct page *page, *next;
3788
3789                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3790                                 list_del(&page->lru);
3791                                 __free_page(page);
3792                         }
3793                 }
3794         }
3795 }
3796
3797 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3798 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3799 {
3800         struct swap_info_struct *si, *next;
3801         int nid = page_to_nid(page);
3802
3803         if (!(gfp_mask & __GFP_IO))
3804                 return;
3805
3806         if (!blk_cgroup_congested())
3807                 return;
3808
3809         /*
3810          * We've already scheduled a throttle, avoid taking the global swap
3811          * lock.
3812          */
3813         if (current->throttle_queue)
3814                 return;
3815
3816         spin_lock(&swap_avail_lock);
3817         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3818                                   avail_lists[nid]) {
3819                 if (si->bdev) {
3820                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3821                         break;
3822                 }
3823         }
3824         spin_unlock(&swap_avail_lock);
3825 }
3826 #endif
3827
3828 static int __init swapfile_init(void)
3829 {
3830         int nid;
3831
3832         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3833                                          GFP_KERNEL);
3834         if (!swap_avail_heads) {
3835                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3836                 return -ENOMEM;
3837         }
3838
3839         for_each_node(nid)
3840                 plist_head_init(&swap_avail_heads[nid]);
3841
3842         return 0;
3843 }
3844 subsys_initcall(swapfile_init);