Merge tag 'kvmarm-fixes-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long begin = offset;
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 WRITE_ONCE(si->highest_bit, end);
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 arch_swap_invalidate_page(si->type, offset);
721                 frontswap_invalidate_page(si->type, offset);
722                 if (swap_slot_free_notify)
723                         swap_slot_free_notify(si->bdev, offset);
724                 offset++;
725         }
726         clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731         unsigned long prev;
732
733         if (!(si->flags & SWP_SOLIDSTATE)) {
734                 si->cluster_next = next;
735                 return;
736         }
737
738         prev = this_cpu_read(*si->cluster_next_cpu);
739         /*
740          * Cross the swap address space size aligned trunk, choose
741          * another trunk randomly to avoid lock contention on swap
742          * address space if possible.
743          */
744         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746                 /* No free swap slots available */
747                 if (si->highest_bit <= si->lowest_bit)
748                         return;
749                 next = si->lowest_bit +
750                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752                 next = max_t(unsigned int, next, si->lowest_bit);
753         }
754         this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758                                unsigned char usage, int nr,
759                                swp_entry_t slots[])
760 {
761         struct swap_cluster_info *ci;
762         unsigned long offset;
763         unsigned long scan_base;
764         unsigned long last_in_cluster = 0;
765         int latency_ration = LATENCY_LIMIT;
766         int n_ret = 0;
767         bool scanned_many = false;
768
769         /*
770          * We try to cluster swap pages by allocating them sequentially
771          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772          * way, however, we resort to first-free allocation, starting
773          * a new cluster.  This prevents us from scattering swap pages
774          * all over the entire swap partition, so that we reduce
775          * overall disk seek times between swap pages.  -- sct
776          * But we do now try to find an empty cluster.  -Andrea
777          * And we let swap pages go all over an SSD partition.  Hugh
778          */
779
780         si->flags += SWP_SCANNING;
781         /*
782          * Use percpu scan base for SSD to reduce lock contention on
783          * cluster and swap cache.  For HDD, sequential access is more
784          * important.
785          */
786         if (si->flags & SWP_SOLIDSTATE)
787                 scan_base = this_cpu_read(*si->cluster_next_cpu);
788         else
789                 scan_base = si->cluster_next;
790         offset = scan_base;
791
792         /* SSD algorithm */
793         if (si->cluster_info) {
794                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795                         goto scan;
796         } else if (unlikely(!si->cluster_nr--)) {
797                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
799                         goto checks;
800                 }
801
802                 spin_unlock(&si->lock);
803
804                 /*
805                  * If seek is expensive, start searching for new cluster from
806                  * start of partition, to minimize the span of allocated swap.
807                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
809                  */
810                 scan_base = offset = si->lowest_bit;
811                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813                 /* Locate the first empty (unaligned) cluster */
814                 for (; last_in_cluster <= si->highest_bit; offset++) {
815                         if (si->swap_map[offset])
816                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
817                         else if (offset == last_in_cluster) {
818                                 spin_lock(&si->lock);
819                                 offset -= SWAPFILE_CLUSTER - 1;
820                                 si->cluster_next = offset;
821                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822                                 goto checks;
823                         }
824                         if (unlikely(--latency_ration < 0)) {
825                                 cond_resched();
826                                 latency_ration = LATENCY_LIMIT;
827                         }
828                 }
829
830                 offset = scan_base;
831                 spin_lock(&si->lock);
832                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833         }
834
835 checks:
836         if (si->cluster_info) {
837                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838                 /* take a break if we already got some slots */
839                         if (n_ret)
840                                 goto done;
841                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
842                                                         &scan_base))
843                                 goto scan;
844                 }
845         }
846         if (!(si->flags & SWP_WRITEOK))
847                 goto no_page;
848         if (!si->highest_bit)
849                 goto no_page;
850         if (offset > si->highest_bit)
851                 scan_base = offset = si->lowest_bit;
852
853         ci = lock_cluster(si, offset);
854         /* reuse swap entry of cache-only swap if not busy. */
855         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856                 int swap_was_freed;
857                 unlock_cluster(ci);
858                 spin_unlock(&si->lock);
859                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860                 spin_lock(&si->lock);
861                 /* entry was freed successfully, try to use this again */
862                 if (swap_was_freed)
863                         goto checks;
864                 goto scan; /* check next one */
865         }
866
867         if (si->swap_map[offset]) {
868                 unlock_cluster(ci);
869                 if (!n_ret)
870                         goto scan;
871                 else
872                         goto done;
873         }
874         WRITE_ONCE(si->swap_map[offset], usage);
875         inc_cluster_info_page(si, si->cluster_info, offset);
876         unlock_cluster(ci);
877
878         swap_range_alloc(si, offset, 1);
879         slots[n_ret++] = swp_entry(si->type, offset);
880
881         /* got enough slots or reach max slots? */
882         if ((n_ret == nr) || (offset >= si->highest_bit))
883                 goto done;
884
885         /* search for next available slot */
886
887         /* time to take a break? */
888         if (unlikely(--latency_ration < 0)) {
889                 if (n_ret)
890                         goto done;
891                 spin_unlock(&si->lock);
892                 cond_resched();
893                 spin_lock(&si->lock);
894                 latency_ration = LATENCY_LIMIT;
895         }
896
897         /* try to get more slots in cluster */
898         if (si->cluster_info) {
899                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900                         goto checks;
901         } else if (si->cluster_nr && !si->swap_map[++offset]) {
902                 /* non-ssd case, still more slots in cluster? */
903                 --si->cluster_nr;
904                 goto checks;
905         }
906
907         /*
908          * Even if there's no free clusters available (fragmented),
909          * try to scan a little more quickly with lock held unless we
910          * have scanned too many slots already.
911          */
912         if (!scanned_many) {
913                 unsigned long scan_limit;
914
915                 if (offset < scan_base)
916                         scan_limit = scan_base;
917                 else
918                         scan_limit = si->highest_bit;
919                 for (; offset <= scan_limit && --latency_ration > 0;
920                      offset++) {
921                         if (!si->swap_map[offset])
922                                 goto checks;
923                 }
924         }
925
926 done:
927         set_cluster_next(si, offset + 1);
928         si->flags -= SWP_SCANNING;
929         return n_ret;
930
931 scan:
932         spin_unlock(&si->lock);
933         while (++offset <= READ_ONCE(si->highest_bit)) {
934                 if (data_race(!si->swap_map[offset])) {
935                         spin_lock(&si->lock);
936                         goto checks;
937                 }
938                 if (vm_swap_full() &&
939                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940                         spin_lock(&si->lock);
941                         goto checks;
942                 }
943                 if (unlikely(--latency_ration < 0)) {
944                         cond_resched();
945                         latency_ration = LATENCY_LIMIT;
946                         scanned_many = true;
947                 }
948         }
949         offset = si->lowest_bit;
950         while (offset < scan_base) {
951                 if (data_race(!si->swap_map[offset])) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (vm_swap_full() &&
956                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957                         spin_lock(&si->lock);
958                         goto checks;
959                 }
960                 if (unlikely(--latency_ration < 0)) {
961                         cond_resched();
962                         latency_ration = LATENCY_LIMIT;
963                         scanned_many = true;
964                 }
965                 offset++;
966         }
967         spin_lock(&si->lock);
968
969 no_page:
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972 }
973
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976         unsigned long idx;
977         struct swap_cluster_info *ci;
978         unsigned long offset, i;
979         unsigned char *map;
980
981         /*
982          * Should not even be attempting cluster allocations when huge
983          * page swap is disabled.  Warn and fail the allocation.
984          */
985         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986                 VM_WARN_ON_ONCE(1);
987                 return 0;
988         }
989
990         if (cluster_list_empty(&si->free_clusters))
991                 return 0;
992
993         idx = cluster_list_first(&si->free_clusters);
994         offset = idx * SWAPFILE_CLUSTER;
995         ci = lock_cluster(si, offset);
996         alloc_cluster(si, idx);
997         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
998
999         map = si->swap_map + offset;
1000         for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001                 map[i] = SWAP_HAS_CACHE;
1002         unlock_cluster(ci);
1003         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004         *slot = swp_entry(si->type, offset);
1005
1006         return 1;
1007 }
1008
1009 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010 {
1011         unsigned long offset = idx * SWAPFILE_CLUSTER;
1012         struct swap_cluster_info *ci;
1013
1014         ci = lock_cluster(si, offset);
1015         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1016         cluster_set_count_flag(ci, 0, 0);
1017         free_cluster(si, idx);
1018         unlock_cluster(ci);
1019         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020 }
1021
1022 static unsigned long scan_swap_map(struct swap_info_struct *si,
1023                                    unsigned char usage)
1024 {
1025         swp_entry_t entry;
1026         int n_ret;
1027
1028         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029
1030         if (n_ret)
1031                 return swp_offset(entry);
1032         else
1033                 return 0;
1034
1035 }
1036
1037 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1038 {
1039         unsigned long size = swap_entry_size(entry_size);
1040         struct swap_info_struct *si, *next;
1041         long avail_pgs;
1042         int n_ret = 0;
1043         int node;
1044
1045         /* Only single cluster request supported */
1046         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1047
1048         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1049         if (avail_pgs <= 0)
1050                 goto noswap;
1051
1052         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053
1054         atomic_long_sub(n_goal * size, &nr_swap_pages);
1055
1056         spin_lock(&swap_avail_lock);
1057
1058 start_over:
1059         node = numa_node_id();
1060         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1061                 /* requeue si to after same-priority siblings */
1062                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1063                 spin_unlock(&swap_avail_lock);
1064                 spin_lock(&si->lock);
1065                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1066                         spin_lock(&swap_avail_lock);
1067                         if (plist_node_empty(&si->avail_lists[node])) {
1068                                 spin_unlock(&si->lock);
1069                                 goto nextsi;
1070                         }
1071                         WARN(!si->highest_bit,
1072                              "swap_info %d in list but !highest_bit\n",
1073                              si->type);
1074                         WARN(!(si->flags & SWP_WRITEOK),
1075                              "swap_info %d in list but !SWP_WRITEOK\n",
1076                              si->type);
1077                         __del_from_avail_list(si);
1078                         spin_unlock(&si->lock);
1079                         goto nextsi;
1080                 }
1081                 if (size == SWAPFILE_CLUSTER) {
1082                         if (si->flags & SWP_BLKDEV)
1083                                 n_ret = swap_alloc_cluster(si, swp_entries);
1084                 } else
1085                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086                                                     n_goal, swp_entries);
1087                 spin_unlock(&si->lock);
1088                 if (n_ret || size == SWAPFILE_CLUSTER)
1089                         goto check_out;
1090                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1091                         si->type);
1092
1093                 spin_lock(&swap_avail_lock);
1094 nextsi:
1095                 /*
1096                  * if we got here, it's likely that si was almost full before,
1097                  * and since scan_swap_map() can drop the si->lock, multiple
1098                  * callers probably all tried to get a page from the same si
1099                  * and it filled up before we could get one; or, the si filled
1100                  * up between us dropping swap_avail_lock and taking si->lock.
1101                  * Since we dropped the swap_avail_lock, the swap_avail_head
1102                  * list may have been modified; so if next is still in the
1103                  * swap_avail_head list then try it, otherwise start over
1104                  * if we have not gotten any slots.
1105                  */
1106                 if (plist_node_empty(&next->avail_lists[node]))
1107                         goto start_over;
1108         }
1109
1110         spin_unlock(&swap_avail_lock);
1111
1112 check_out:
1113         if (n_ret < n_goal)
1114                 atomic_long_add((long)(n_goal - n_ret) * size,
1115                                 &nr_swap_pages);
1116 noswap:
1117         return n_ret;
1118 }
1119
1120 /* The only caller of this function is now suspend routine */
1121 swp_entry_t get_swap_page_of_type(int type)
1122 {
1123         struct swap_info_struct *si = swap_type_to_swap_info(type);
1124         pgoff_t offset;
1125
1126         if (!si)
1127                 goto fail;
1128
1129         spin_lock(&si->lock);
1130         if (si->flags & SWP_WRITEOK) {
1131                 atomic_long_dec(&nr_swap_pages);
1132                 /* This is called for allocating swap entry, not cache */
1133                 offset = scan_swap_map(si, 1);
1134                 if (offset) {
1135                         spin_unlock(&si->lock);
1136                         return swp_entry(type, offset);
1137                 }
1138                 atomic_long_inc(&nr_swap_pages);
1139         }
1140         spin_unlock(&si->lock);
1141 fail:
1142         return (swp_entry_t) {0};
1143 }
1144
1145 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1146 {
1147         struct swap_info_struct *p;
1148         unsigned long offset;
1149
1150         if (!entry.val)
1151                 goto out;
1152         p = swp_swap_info(entry);
1153         if (!p)
1154                 goto bad_nofile;
1155         if (data_race(!(p->flags & SWP_USED)))
1156                 goto bad_device;
1157         offset = swp_offset(entry);
1158         if (offset >= p->max)
1159                 goto bad_offset;
1160         return p;
1161
1162 bad_offset:
1163         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1164         goto out;
1165 bad_device:
1166         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1167         goto out;
1168 bad_nofile:
1169         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1170 out:
1171         return NULL;
1172 }
1173
1174 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175 {
1176         struct swap_info_struct *p;
1177
1178         p = __swap_info_get(entry);
1179         if (!p)
1180                 goto out;
1181         if (data_race(!p->swap_map[swp_offset(entry)]))
1182                 goto bad_free;
1183         return p;
1184
1185 bad_free:
1186         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1187 out:
1188         return NULL;
1189 }
1190
1191 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1192 {
1193         struct swap_info_struct *p;
1194
1195         p = _swap_info_get(entry);
1196         if (p)
1197                 spin_lock(&p->lock);
1198         return p;
1199 }
1200
1201 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1202                                         struct swap_info_struct *q)
1203 {
1204         struct swap_info_struct *p;
1205
1206         p = _swap_info_get(entry);
1207
1208         if (p != q) {
1209                 if (q != NULL)
1210                         spin_unlock(&q->lock);
1211                 if (p != NULL)
1212                         spin_lock(&p->lock);
1213         }
1214         return p;
1215 }
1216
1217 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1218                                               unsigned long offset,
1219                                               unsigned char usage)
1220 {
1221         unsigned char count;
1222         unsigned char has_cache;
1223
1224         count = p->swap_map[offset];
1225
1226         has_cache = count & SWAP_HAS_CACHE;
1227         count &= ~SWAP_HAS_CACHE;
1228
1229         if (usage == SWAP_HAS_CACHE) {
1230                 VM_BUG_ON(!has_cache);
1231                 has_cache = 0;
1232         } else if (count == SWAP_MAP_SHMEM) {
1233                 /*
1234                  * Or we could insist on shmem.c using a special
1235                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1236                  */
1237                 count = 0;
1238         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1239                 if (count == COUNT_CONTINUED) {
1240                         if (swap_count_continued(p, offset, count))
1241                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1242                         else
1243                                 count = SWAP_MAP_MAX;
1244                 } else
1245                         count--;
1246         }
1247
1248         usage = count | has_cache;
1249         if (usage)
1250                 WRITE_ONCE(p->swap_map[offset], usage);
1251         else
1252                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1253
1254         return usage;
1255 }
1256
1257 /*
1258  * Check whether swap entry is valid in the swap device.  If so,
1259  * return pointer to swap_info_struct, and keep the swap entry valid
1260  * via preventing the swap device from being swapoff, until
1261  * put_swap_device() is called.  Otherwise return NULL.
1262  *
1263  * The entirety of the RCU read critical section must come before the
1264  * return from or after the call to synchronize_rcu() in
1265  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1266  * true, the si->map, si->cluster_info, etc. must be valid in the
1267  * critical section.
1268  *
1269  * Notice that swapoff or swapoff+swapon can still happen before the
1270  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1271  * in put_swap_device() if there isn't any other way to prevent
1272  * swapoff, such as page lock, page table lock, etc.  The caller must
1273  * be prepared for that.  For example, the following situation is
1274  * possible.
1275  *
1276  *   CPU1                               CPU2
1277  *   do_swap_page()
1278  *     ...                              swapoff+swapon
1279  *     __read_swap_cache_async()
1280  *       swapcache_prepare()
1281  *         __swap_duplicate()
1282  *           // check swap_map
1283  *     // verify PTE not changed
1284  *
1285  * In __swap_duplicate(), the swap_map need to be checked before
1286  * changing partly because the specified swap entry may be for another
1287  * swap device which has been swapoff.  And in do_swap_page(), after
1288  * the page is read from the swap device, the PTE is verified not
1289  * changed with the page table locked to check whether the swap device
1290  * has been swapoff or swapoff+swapon.
1291  */
1292 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1293 {
1294         struct swap_info_struct *si;
1295         unsigned long offset;
1296
1297         if (!entry.val)
1298                 goto out;
1299         si = swp_swap_info(entry);
1300         if (!si)
1301                 goto bad_nofile;
1302
1303         rcu_read_lock();
1304         if (data_race(!(si->flags & SWP_VALID)))
1305                 goto unlock_out;
1306         offset = swp_offset(entry);
1307         if (offset >= si->max)
1308                 goto unlock_out;
1309
1310         return si;
1311 bad_nofile:
1312         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1313 out:
1314         return NULL;
1315 unlock_out:
1316         rcu_read_unlock();
1317         return NULL;
1318 }
1319
1320 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1321                                        swp_entry_t entry)
1322 {
1323         struct swap_cluster_info *ci;
1324         unsigned long offset = swp_offset(entry);
1325         unsigned char usage;
1326
1327         ci = lock_cluster_or_swap_info(p, offset);
1328         usage = __swap_entry_free_locked(p, offset, 1);
1329         unlock_cluster_or_swap_info(p, ci);
1330         if (!usage)
1331                 free_swap_slot(entry);
1332
1333         return usage;
1334 }
1335
1336 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1337 {
1338         struct swap_cluster_info *ci;
1339         unsigned long offset = swp_offset(entry);
1340         unsigned char count;
1341
1342         ci = lock_cluster(p, offset);
1343         count = p->swap_map[offset];
1344         VM_BUG_ON(count != SWAP_HAS_CACHE);
1345         p->swap_map[offset] = 0;
1346         dec_cluster_info_page(p, p->cluster_info, offset);
1347         unlock_cluster(ci);
1348
1349         mem_cgroup_uncharge_swap(entry, 1);
1350         swap_range_free(p, offset, 1);
1351 }
1352
1353 /*
1354  * Caller has made sure that the swap device corresponding to entry
1355  * is still around or has not been recycled.
1356  */
1357 void swap_free(swp_entry_t entry)
1358 {
1359         struct swap_info_struct *p;
1360
1361         p = _swap_info_get(entry);
1362         if (p)
1363                 __swap_entry_free(p, entry);
1364 }
1365
1366 /*
1367  * Called after dropping swapcache to decrease refcnt to swap entries.
1368  */
1369 void put_swap_page(struct page *page, swp_entry_t entry)
1370 {
1371         unsigned long offset = swp_offset(entry);
1372         unsigned long idx = offset / SWAPFILE_CLUSTER;
1373         struct swap_cluster_info *ci;
1374         struct swap_info_struct *si;
1375         unsigned char *map;
1376         unsigned int i, free_entries = 0;
1377         unsigned char val;
1378         int size = swap_entry_size(thp_nr_pages(page));
1379
1380         si = _swap_info_get(entry);
1381         if (!si)
1382                 return;
1383
1384         ci = lock_cluster_or_swap_info(si, offset);
1385         if (size == SWAPFILE_CLUSTER) {
1386                 VM_BUG_ON(!cluster_is_huge(ci));
1387                 map = si->swap_map + offset;
1388                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1389                         val = map[i];
1390                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1391                         if (val == SWAP_HAS_CACHE)
1392                                 free_entries++;
1393                 }
1394                 cluster_clear_huge(ci);
1395                 if (free_entries == SWAPFILE_CLUSTER) {
1396                         unlock_cluster_or_swap_info(si, ci);
1397                         spin_lock(&si->lock);
1398                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1399                         swap_free_cluster(si, idx);
1400                         spin_unlock(&si->lock);
1401                         return;
1402                 }
1403         }
1404         for (i = 0; i < size; i++, entry.val++) {
1405                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1406                         unlock_cluster_or_swap_info(si, ci);
1407                         free_swap_slot(entry);
1408                         if (i == size - 1)
1409                                 return;
1410                         lock_cluster_or_swap_info(si, offset);
1411                 }
1412         }
1413         unlock_cluster_or_swap_info(si, ci);
1414 }
1415
1416 #ifdef CONFIG_THP_SWAP
1417 int split_swap_cluster(swp_entry_t entry)
1418 {
1419         struct swap_info_struct *si;
1420         struct swap_cluster_info *ci;
1421         unsigned long offset = swp_offset(entry);
1422
1423         si = _swap_info_get(entry);
1424         if (!si)
1425                 return -EBUSY;
1426         ci = lock_cluster(si, offset);
1427         cluster_clear_huge(ci);
1428         unlock_cluster(ci);
1429         return 0;
1430 }
1431 #endif
1432
1433 static int swp_entry_cmp(const void *ent1, const void *ent2)
1434 {
1435         const swp_entry_t *e1 = ent1, *e2 = ent2;
1436
1437         return (int)swp_type(*e1) - (int)swp_type(*e2);
1438 }
1439
1440 void swapcache_free_entries(swp_entry_t *entries, int n)
1441 {
1442         struct swap_info_struct *p, *prev;
1443         int i;
1444
1445         if (n <= 0)
1446                 return;
1447
1448         prev = NULL;
1449         p = NULL;
1450
1451         /*
1452          * Sort swap entries by swap device, so each lock is only taken once.
1453          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1454          * so low that it isn't necessary to optimize further.
1455          */
1456         if (nr_swapfiles > 1)
1457                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1458         for (i = 0; i < n; ++i) {
1459                 p = swap_info_get_cont(entries[i], prev);
1460                 if (p)
1461                         swap_entry_free(p, entries[i]);
1462                 prev = p;
1463         }
1464         if (p)
1465                 spin_unlock(&p->lock);
1466 }
1467
1468 /*
1469  * How many references to page are currently swapped out?
1470  * This does not give an exact answer when swap count is continued,
1471  * but does include the high COUNT_CONTINUED flag to allow for that.
1472  */
1473 int page_swapcount(struct page *page)
1474 {
1475         int count = 0;
1476         struct swap_info_struct *p;
1477         struct swap_cluster_info *ci;
1478         swp_entry_t entry;
1479         unsigned long offset;
1480
1481         entry.val = page_private(page);
1482         p = _swap_info_get(entry);
1483         if (p) {
1484                 offset = swp_offset(entry);
1485                 ci = lock_cluster_or_swap_info(p, offset);
1486                 count = swap_count(p->swap_map[offset]);
1487                 unlock_cluster_or_swap_info(p, ci);
1488         }
1489         return count;
1490 }
1491
1492 int __swap_count(swp_entry_t entry)
1493 {
1494         struct swap_info_struct *si;
1495         pgoff_t offset = swp_offset(entry);
1496         int count = 0;
1497
1498         si = get_swap_device(entry);
1499         if (si) {
1500                 count = swap_count(si->swap_map[offset]);
1501                 put_swap_device(si);
1502         }
1503         return count;
1504 }
1505
1506 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1507 {
1508         int count = 0;
1509         pgoff_t offset = swp_offset(entry);
1510         struct swap_cluster_info *ci;
1511
1512         ci = lock_cluster_or_swap_info(si, offset);
1513         count = swap_count(si->swap_map[offset]);
1514         unlock_cluster_or_swap_info(si, ci);
1515         return count;
1516 }
1517
1518 /*
1519  * How many references to @entry are currently swapped out?
1520  * This does not give an exact answer when swap count is continued,
1521  * but does include the high COUNT_CONTINUED flag to allow for that.
1522  */
1523 int __swp_swapcount(swp_entry_t entry)
1524 {
1525         int count = 0;
1526         struct swap_info_struct *si;
1527
1528         si = get_swap_device(entry);
1529         if (si) {
1530                 count = swap_swapcount(si, entry);
1531                 put_swap_device(si);
1532         }
1533         return count;
1534 }
1535
1536 /*
1537  * How many references to @entry are currently swapped out?
1538  * This considers COUNT_CONTINUED so it returns exact answer.
1539  */
1540 int swp_swapcount(swp_entry_t entry)
1541 {
1542         int count, tmp_count, n;
1543         struct swap_info_struct *p;
1544         struct swap_cluster_info *ci;
1545         struct page *page;
1546         pgoff_t offset;
1547         unsigned char *map;
1548
1549         p = _swap_info_get(entry);
1550         if (!p)
1551                 return 0;
1552
1553         offset = swp_offset(entry);
1554
1555         ci = lock_cluster_or_swap_info(p, offset);
1556
1557         count = swap_count(p->swap_map[offset]);
1558         if (!(count & COUNT_CONTINUED))
1559                 goto out;
1560
1561         count &= ~COUNT_CONTINUED;
1562         n = SWAP_MAP_MAX + 1;
1563
1564         page = vmalloc_to_page(p->swap_map + offset);
1565         offset &= ~PAGE_MASK;
1566         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1567
1568         do {
1569                 page = list_next_entry(page, lru);
1570                 map = kmap_atomic(page);
1571                 tmp_count = map[offset];
1572                 kunmap_atomic(map);
1573
1574                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1575                 n *= (SWAP_CONT_MAX + 1);
1576         } while (tmp_count & COUNT_CONTINUED);
1577 out:
1578         unlock_cluster_or_swap_info(p, ci);
1579         return count;
1580 }
1581
1582 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1583                                          swp_entry_t entry)
1584 {
1585         struct swap_cluster_info *ci;
1586         unsigned char *map = si->swap_map;
1587         unsigned long roffset = swp_offset(entry);
1588         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1589         int i;
1590         bool ret = false;
1591
1592         ci = lock_cluster_or_swap_info(si, offset);
1593         if (!ci || !cluster_is_huge(ci)) {
1594                 if (swap_count(map[roffset]))
1595                         ret = true;
1596                 goto unlock_out;
1597         }
1598         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1599                 if (swap_count(map[offset + i])) {
1600                         ret = true;
1601                         break;
1602                 }
1603         }
1604 unlock_out:
1605         unlock_cluster_or_swap_info(si, ci);
1606         return ret;
1607 }
1608
1609 static bool page_swapped(struct page *page)
1610 {
1611         swp_entry_t entry;
1612         struct swap_info_struct *si;
1613
1614         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1615                 return page_swapcount(page) != 0;
1616
1617         page = compound_head(page);
1618         entry.val = page_private(page);
1619         si = _swap_info_get(entry);
1620         if (si)
1621                 return swap_page_trans_huge_swapped(si, entry);
1622         return false;
1623 }
1624
1625 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1626                                          int *total_swapcount)
1627 {
1628         int i, map_swapcount, _total_mapcount, _total_swapcount;
1629         unsigned long offset = 0;
1630         struct swap_info_struct *si;
1631         struct swap_cluster_info *ci = NULL;
1632         unsigned char *map = NULL;
1633         int mapcount, swapcount = 0;
1634
1635         /* hugetlbfs shouldn't call it */
1636         VM_BUG_ON_PAGE(PageHuge(page), page);
1637
1638         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1639                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1640                 if (PageSwapCache(page))
1641                         swapcount = page_swapcount(page);
1642                 if (total_swapcount)
1643                         *total_swapcount = swapcount;
1644                 return mapcount + swapcount;
1645         }
1646
1647         page = compound_head(page);
1648
1649         _total_mapcount = _total_swapcount = map_swapcount = 0;
1650         if (PageSwapCache(page)) {
1651                 swp_entry_t entry;
1652
1653                 entry.val = page_private(page);
1654                 si = _swap_info_get(entry);
1655                 if (si) {
1656                         map = si->swap_map;
1657                         offset = swp_offset(entry);
1658                 }
1659         }
1660         if (map)
1661                 ci = lock_cluster(si, offset);
1662         for (i = 0; i < HPAGE_PMD_NR; i++) {
1663                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1664                 _total_mapcount += mapcount;
1665                 if (map) {
1666                         swapcount = swap_count(map[offset + i]);
1667                         _total_swapcount += swapcount;
1668                 }
1669                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1670         }
1671         unlock_cluster(ci);
1672         if (PageDoubleMap(page)) {
1673                 map_swapcount -= 1;
1674                 _total_mapcount -= HPAGE_PMD_NR;
1675         }
1676         mapcount = compound_mapcount(page);
1677         map_swapcount += mapcount;
1678         _total_mapcount += mapcount;
1679         if (total_mapcount)
1680                 *total_mapcount = _total_mapcount;
1681         if (total_swapcount)
1682                 *total_swapcount = _total_swapcount;
1683
1684         return map_swapcount;
1685 }
1686
1687 /*
1688  * We can write to an anon page without COW if there are no other references
1689  * to it.  And as a side-effect, free up its swap: because the old content
1690  * on disk will never be read, and seeking back there to write new content
1691  * later would only waste time away from clustering.
1692  *
1693  * NOTE: total_map_swapcount should not be relied upon by the caller if
1694  * reuse_swap_page() returns false, but it may be always overwritten
1695  * (see the other implementation for CONFIG_SWAP=n).
1696  */
1697 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1698 {
1699         int count, total_mapcount, total_swapcount;
1700
1701         VM_BUG_ON_PAGE(!PageLocked(page), page);
1702         if (unlikely(PageKsm(page)))
1703                 return false;
1704         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1705                                               &total_swapcount);
1706         if (total_map_swapcount)
1707                 *total_map_swapcount = total_mapcount + total_swapcount;
1708         if (count == 1 && PageSwapCache(page) &&
1709             (likely(!PageTransCompound(page)) ||
1710              /* The remaining swap count will be freed soon */
1711              total_swapcount == page_swapcount(page))) {
1712                 if (!PageWriteback(page)) {
1713                         page = compound_head(page);
1714                         delete_from_swap_cache(page);
1715                         SetPageDirty(page);
1716                 } else {
1717                         swp_entry_t entry;
1718                         struct swap_info_struct *p;
1719
1720                         entry.val = page_private(page);
1721                         p = swap_info_get(entry);
1722                         if (p->flags & SWP_STABLE_WRITES) {
1723                                 spin_unlock(&p->lock);
1724                                 return false;
1725                         }
1726                         spin_unlock(&p->lock);
1727                 }
1728         }
1729
1730         return count <= 1;
1731 }
1732
1733 /*
1734  * If swap is getting full, or if there are no more mappings of this page,
1735  * then try_to_free_swap is called to free its swap space.
1736  */
1737 int try_to_free_swap(struct page *page)
1738 {
1739         VM_BUG_ON_PAGE(!PageLocked(page), page);
1740
1741         if (!PageSwapCache(page))
1742                 return 0;
1743         if (PageWriteback(page))
1744                 return 0;
1745         if (page_swapped(page))
1746                 return 0;
1747
1748         /*
1749          * Once hibernation has begun to create its image of memory,
1750          * there's a danger that one of the calls to try_to_free_swap()
1751          * - most probably a call from __try_to_reclaim_swap() while
1752          * hibernation is allocating its own swap pages for the image,
1753          * but conceivably even a call from memory reclaim - will free
1754          * the swap from a page which has already been recorded in the
1755          * image as a clean swapcache page, and then reuse its swap for
1756          * another page of the image.  On waking from hibernation, the
1757          * original page might be freed under memory pressure, then
1758          * later read back in from swap, now with the wrong data.
1759          *
1760          * Hibernation suspends storage while it is writing the image
1761          * to disk so check that here.
1762          */
1763         if (pm_suspended_storage())
1764                 return 0;
1765
1766         page = compound_head(page);
1767         delete_from_swap_cache(page);
1768         SetPageDirty(page);
1769         return 1;
1770 }
1771
1772 /*
1773  * Free the swap entry like above, but also try to
1774  * free the page cache entry if it is the last user.
1775  */
1776 int free_swap_and_cache(swp_entry_t entry)
1777 {
1778         struct swap_info_struct *p;
1779         unsigned char count;
1780
1781         if (non_swap_entry(entry))
1782                 return 1;
1783
1784         p = _swap_info_get(entry);
1785         if (p) {
1786                 count = __swap_entry_free(p, entry);
1787                 if (count == SWAP_HAS_CACHE &&
1788                     !swap_page_trans_huge_swapped(p, entry))
1789                         __try_to_reclaim_swap(p, swp_offset(entry),
1790                                               TTRS_UNMAPPED | TTRS_FULL);
1791         }
1792         return p != NULL;
1793 }
1794
1795 #ifdef CONFIG_HIBERNATION
1796 /*
1797  * Find the swap type that corresponds to given device (if any).
1798  *
1799  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1800  * from 0, in which the swap header is expected to be located.
1801  *
1802  * This is needed for the suspend to disk (aka swsusp).
1803  */
1804 int swap_type_of(dev_t device, sector_t offset)
1805 {
1806         int type;
1807
1808         if (!device)
1809                 return -1;
1810
1811         spin_lock(&swap_lock);
1812         for (type = 0; type < nr_swapfiles; type++) {
1813                 struct swap_info_struct *sis = swap_info[type];
1814
1815                 if (!(sis->flags & SWP_WRITEOK))
1816                         continue;
1817
1818                 if (device == sis->bdev->bd_dev) {
1819                         struct swap_extent *se = first_se(sis);
1820
1821                         if (se->start_block == offset) {
1822                                 spin_unlock(&swap_lock);
1823                                 return type;
1824                         }
1825                 }
1826         }
1827         spin_unlock(&swap_lock);
1828         return -ENODEV;
1829 }
1830
1831 int find_first_swap(dev_t *device)
1832 {
1833         int type;
1834
1835         spin_lock(&swap_lock);
1836         for (type = 0; type < nr_swapfiles; type++) {
1837                 struct swap_info_struct *sis = swap_info[type];
1838
1839                 if (!(sis->flags & SWP_WRITEOK))
1840                         continue;
1841                 *device = sis->bdev->bd_dev;
1842                 spin_unlock(&swap_lock);
1843                 return type;
1844         }
1845         spin_unlock(&swap_lock);
1846         return -ENODEV;
1847 }
1848
1849 /*
1850  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1851  * corresponding to given index in swap_info (swap type).
1852  */
1853 sector_t swapdev_block(int type, pgoff_t offset)
1854 {
1855         struct block_device *bdev;
1856         struct swap_info_struct *si = swap_type_to_swap_info(type);
1857
1858         if (!si || !(si->flags & SWP_WRITEOK))
1859                 return 0;
1860         return map_swap_entry(swp_entry(type, offset), &bdev);
1861 }
1862
1863 /*
1864  * Return either the total number of swap pages of given type, or the number
1865  * of free pages of that type (depending on @free)
1866  *
1867  * This is needed for software suspend
1868  */
1869 unsigned int count_swap_pages(int type, int free)
1870 {
1871         unsigned int n = 0;
1872
1873         spin_lock(&swap_lock);
1874         if ((unsigned int)type < nr_swapfiles) {
1875                 struct swap_info_struct *sis = swap_info[type];
1876
1877                 spin_lock(&sis->lock);
1878                 if (sis->flags & SWP_WRITEOK) {
1879                         n = sis->pages;
1880                         if (free)
1881                                 n -= sis->inuse_pages;
1882                 }
1883                 spin_unlock(&sis->lock);
1884         }
1885         spin_unlock(&swap_lock);
1886         return n;
1887 }
1888 #endif /* CONFIG_HIBERNATION */
1889
1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1891 {
1892         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1893 }
1894
1895 /*
1896  * No need to decide whether this PTE shares the swap entry with others,
1897  * just let do_wp_page work it out if a write is requested later - to
1898  * force COW, vm_page_prot omits write permission from any private vma.
1899  */
1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1901                 unsigned long addr, swp_entry_t entry, struct page *page)
1902 {
1903         struct page *swapcache;
1904         spinlock_t *ptl;
1905         pte_t *pte;
1906         int ret = 1;
1907
1908         swapcache = page;
1909         page = ksm_might_need_to_copy(page, vma, addr);
1910         if (unlikely(!page))
1911                 return -ENOMEM;
1912
1913         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1914         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1915                 ret = 0;
1916                 goto out;
1917         }
1918
1919         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1920         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1921         get_page(page);
1922         set_pte_at(vma->vm_mm, addr, pte,
1923                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1924         if (page == swapcache) {
1925                 page_add_anon_rmap(page, vma, addr, false);
1926         } else { /* ksm created a completely new copy */
1927                 page_add_new_anon_rmap(page, vma, addr, false);
1928                 lru_cache_add_inactive_or_unevictable(page, vma);
1929         }
1930         swap_free(entry);
1931 out:
1932         pte_unmap_unlock(pte, ptl);
1933         if (page != swapcache) {
1934                 unlock_page(page);
1935                 put_page(page);
1936         }
1937         return ret;
1938 }
1939
1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1941                         unsigned long addr, unsigned long end,
1942                         unsigned int type, bool frontswap,
1943                         unsigned long *fs_pages_to_unuse)
1944 {
1945         struct page *page;
1946         swp_entry_t entry;
1947         pte_t *pte;
1948         struct swap_info_struct *si;
1949         unsigned long offset;
1950         int ret = 0;
1951         volatile unsigned char *swap_map;
1952
1953         si = swap_info[type];
1954         pte = pte_offset_map(pmd, addr);
1955         do {
1956                 struct vm_fault vmf;
1957
1958                 if (!is_swap_pte(*pte))
1959                         continue;
1960
1961                 entry = pte_to_swp_entry(*pte);
1962                 if (swp_type(entry) != type)
1963                         continue;
1964
1965                 offset = swp_offset(entry);
1966                 if (frontswap && !frontswap_test(si, offset))
1967                         continue;
1968
1969                 pte_unmap(pte);
1970                 swap_map = &si->swap_map[offset];
1971                 page = lookup_swap_cache(entry, vma, addr);
1972                 if (!page) {
1973                         vmf.vma = vma;
1974                         vmf.address = addr;
1975                         vmf.pmd = pmd;
1976                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1977                                                 &vmf);
1978                 }
1979                 if (!page) {
1980                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1981                                 goto try_next;
1982                         return -ENOMEM;
1983                 }
1984
1985                 lock_page(page);
1986                 wait_on_page_writeback(page);
1987                 ret = unuse_pte(vma, pmd, addr, entry, page);
1988                 if (ret < 0) {
1989                         unlock_page(page);
1990                         put_page(page);
1991                         goto out;
1992                 }
1993
1994                 try_to_free_swap(page);
1995                 unlock_page(page);
1996                 put_page(page);
1997
1998                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1999                         ret = FRONTSWAP_PAGES_UNUSED;
2000                         goto out;
2001                 }
2002 try_next:
2003                 pte = pte_offset_map(pmd, addr);
2004         } while (pte++, addr += PAGE_SIZE, addr != end);
2005         pte_unmap(pte - 1);
2006
2007         ret = 0;
2008 out:
2009         return ret;
2010 }
2011
2012 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2013                                 unsigned long addr, unsigned long end,
2014                                 unsigned int type, bool frontswap,
2015                                 unsigned long *fs_pages_to_unuse)
2016 {
2017         pmd_t *pmd;
2018         unsigned long next;
2019         int ret;
2020
2021         pmd = pmd_offset(pud, addr);
2022         do {
2023                 cond_resched();
2024                 next = pmd_addr_end(addr, end);
2025                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2026                         continue;
2027                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2028                                       frontswap, fs_pages_to_unuse);
2029                 if (ret)
2030                         return ret;
2031         } while (pmd++, addr = next, addr != end);
2032         return 0;
2033 }
2034
2035 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2036                                 unsigned long addr, unsigned long end,
2037                                 unsigned int type, bool frontswap,
2038                                 unsigned long *fs_pages_to_unuse)
2039 {
2040         pud_t *pud;
2041         unsigned long next;
2042         int ret;
2043
2044         pud = pud_offset(p4d, addr);
2045         do {
2046                 next = pud_addr_end(addr, end);
2047                 if (pud_none_or_clear_bad(pud))
2048                         continue;
2049                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2050                                       frontswap, fs_pages_to_unuse);
2051                 if (ret)
2052                         return ret;
2053         } while (pud++, addr = next, addr != end);
2054         return 0;
2055 }
2056
2057 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2058                                 unsigned long addr, unsigned long end,
2059                                 unsigned int type, bool frontswap,
2060                                 unsigned long *fs_pages_to_unuse)
2061 {
2062         p4d_t *p4d;
2063         unsigned long next;
2064         int ret;
2065
2066         p4d = p4d_offset(pgd, addr);
2067         do {
2068                 next = p4d_addr_end(addr, end);
2069                 if (p4d_none_or_clear_bad(p4d))
2070                         continue;
2071                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2072                                       frontswap, fs_pages_to_unuse);
2073                 if (ret)
2074                         return ret;
2075         } while (p4d++, addr = next, addr != end);
2076         return 0;
2077 }
2078
2079 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2080                      bool frontswap, unsigned long *fs_pages_to_unuse)
2081 {
2082         pgd_t *pgd;
2083         unsigned long addr, end, next;
2084         int ret;
2085
2086         addr = vma->vm_start;
2087         end = vma->vm_end;
2088
2089         pgd = pgd_offset(vma->vm_mm, addr);
2090         do {
2091                 next = pgd_addr_end(addr, end);
2092                 if (pgd_none_or_clear_bad(pgd))
2093                         continue;
2094                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2095                                       frontswap, fs_pages_to_unuse);
2096                 if (ret)
2097                         return ret;
2098         } while (pgd++, addr = next, addr != end);
2099         return 0;
2100 }
2101
2102 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2103                     bool frontswap, unsigned long *fs_pages_to_unuse)
2104 {
2105         struct vm_area_struct *vma;
2106         int ret = 0;
2107
2108         mmap_read_lock(mm);
2109         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2110                 if (vma->anon_vma) {
2111                         ret = unuse_vma(vma, type, frontswap,
2112                                         fs_pages_to_unuse);
2113                         if (ret)
2114                                 break;
2115                 }
2116                 cond_resched();
2117         }
2118         mmap_read_unlock(mm);
2119         return ret;
2120 }
2121
2122 /*
2123  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2124  * from current position to next entry still in use. Return 0
2125  * if there are no inuse entries after prev till end of the map.
2126  */
2127 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2128                                         unsigned int prev, bool frontswap)
2129 {
2130         unsigned int i;
2131         unsigned char count;
2132
2133         /*
2134          * No need for swap_lock here: we're just looking
2135          * for whether an entry is in use, not modifying it; false
2136          * hits are okay, and sys_swapoff() has already prevented new
2137          * allocations from this area (while holding swap_lock).
2138          */
2139         for (i = prev + 1; i < si->max; i++) {
2140                 count = READ_ONCE(si->swap_map[i]);
2141                 if (count && swap_count(count) != SWAP_MAP_BAD)
2142                         if (!frontswap || frontswap_test(si, i))
2143                                 break;
2144                 if ((i % LATENCY_LIMIT) == 0)
2145                         cond_resched();
2146         }
2147
2148         if (i == si->max)
2149                 i = 0;
2150
2151         return i;
2152 }
2153
2154 /*
2155  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2156  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2157  */
2158 int try_to_unuse(unsigned int type, bool frontswap,
2159                  unsigned long pages_to_unuse)
2160 {
2161         struct mm_struct *prev_mm;
2162         struct mm_struct *mm;
2163         struct list_head *p;
2164         int retval = 0;
2165         struct swap_info_struct *si = swap_info[type];
2166         struct page *page;
2167         swp_entry_t entry;
2168         unsigned int i;
2169
2170         if (!READ_ONCE(si->inuse_pages))
2171                 return 0;
2172
2173         if (!frontswap)
2174                 pages_to_unuse = 0;
2175
2176 retry:
2177         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2178         if (retval)
2179                 goto out;
2180
2181         prev_mm = &init_mm;
2182         mmget(prev_mm);
2183
2184         spin_lock(&mmlist_lock);
2185         p = &init_mm.mmlist;
2186         while (READ_ONCE(si->inuse_pages) &&
2187                !signal_pending(current) &&
2188                (p = p->next) != &init_mm.mmlist) {
2189
2190                 mm = list_entry(p, struct mm_struct, mmlist);
2191                 if (!mmget_not_zero(mm))
2192                         continue;
2193                 spin_unlock(&mmlist_lock);
2194                 mmput(prev_mm);
2195                 prev_mm = mm;
2196                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2197
2198                 if (retval) {
2199                         mmput(prev_mm);
2200                         goto out;
2201                 }
2202
2203                 /*
2204                  * Make sure that we aren't completely killing
2205                  * interactive performance.
2206                  */
2207                 cond_resched();
2208                 spin_lock(&mmlist_lock);
2209         }
2210         spin_unlock(&mmlist_lock);
2211
2212         mmput(prev_mm);
2213
2214         i = 0;
2215         while (READ_ONCE(si->inuse_pages) &&
2216                !signal_pending(current) &&
2217                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2218
2219                 entry = swp_entry(type, i);
2220                 page = find_get_page(swap_address_space(entry), i);
2221                 if (!page)
2222                         continue;
2223
2224                 /*
2225                  * It is conceivable that a racing task removed this page from
2226                  * swap cache just before we acquired the page lock. The page
2227                  * might even be back in swap cache on another swap area. But
2228                  * that is okay, try_to_free_swap() only removes stale pages.
2229                  */
2230                 lock_page(page);
2231                 wait_on_page_writeback(page);
2232                 try_to_free_swap(page);
2233                 unlock_page(page);
2234                 put_page(page);
2235
2236                 /*
2237                  * For frontswap, we just need to unuse pages_to_unuse, if
2238                  * it was specified. Need not check frontswap again here as
2239                  * we already zeroed out pages_to_unuse if not frontswap.
2240                  */
2241                 if (pages_to_unuse && --pages_to_unuse == 0)
2242                         goto out;
2243         }
2244
2245         /*
2246          * Lets check again to see if there are still swap entries in the map.
2247          * If yes, we would need to do retry the unuse logic again.
2248          * Under global memory pressure, swap entries can be reinserted back
2249          * into process space after the mmlist loop above passes over them.
2250          *
2251          * Limit the number of retries? No: when mmget_not_zero() above fails,
2252          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2253          * at its own independent pace; and even shmem_writepage() could have
2254          * been preempted after get_swap_page(), temporarily hiding that swap.
2255          * It's easy and robust (though cpu-intensive) just to keep retrying.
2256          */
2257         if (READ_ONCE(si->inuse_pages)) {
2258                 if (!signal_pending(current))
2259                         goto retry;
2260                 retval = -EINTR;
2261         }
2262 out:
2263         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2264 }
2265
2266 /*
2267  * After a successful try_to_unuse, if no swap is now in use, we know
2268  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2269  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2270  * added to the mmlist just after page_duplicate - before would be racy.
2271  */
2272 static void drain_mmlist(void)
2273 {
2274         struct list_head *p, *next;
2275         unsigned int type;
2276
2277         for (type = 0; type < nr_swapfiles; type++)
2278                 if (swap_info[type]->inuse_pages)
2279                         return;
2280         spin_lock(&mmlist_lock);
2281         list_for_each_safe(p, next, &init_mm.mmlist)
2282                 list_del_init(p);
2283         spin_unlock(&mmlist_lock);
2284 }
2285
2286 /*
2287  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2288  * corresponds to page offset for the specified swap entry.
2289  * Note that the type of this function is sector_t, but it returns page offset
2290  * into the bdev, not sector offset.
2291  */
2292 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2293 {
2294         struct swap_info_struct *sis;
2295         struct swap_extent *se;
2296         pgoff_t offset;
2297
2298         sis = swp_swap_info(entry);
2299         *bdev = sis->bdev;
2300
2301         offset = swp_offset(entry);
2302         se = offset_to_swap_extent(sis, offset);
2303         return se->start_block + (offset - se->start_page);
2304 }
2305
2306 /*
2307  * Returns the page offset into bdev for the specified page's swap entry.
2308  */
2309 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310 {
2311         swp_entry_t entry;
2312         entry.val = page_private(page);
2313         return map_swap_entry(entry, bdev);
2314 }
2315
2316 /*
2317  * Free all of a swapdev's extent information
2318  */
2319 static void destroy_swap_extents(struct swap_info_struct *sis)
2320 {
2321         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2322                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2323                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2324
2325                 rb_erase(rb, &sis->swap_extent_root);
2326                 kfree(se);
2327         }
2328
2329         if (sis->flags & SWP_ACTIVATED) {
2330                 struct file *swap_file = sis->swap_file;
2331                 struct address_space *mapping = swap_file->f_mapping;
2332
2333                 sis->flags &= ~SWP_ACTIVATED;
2334                 if (mapping->a_ops->swap_deactivate)
2335                         mapping->a_ops->swap_deactivate(swap_file);
2336         }
2337 }
2338
2339 /*
2340  * Add a block range (and the corresponding page range) into this swapdev's
2341  * extent tree.
2342  *
2343  * This function rather assumes that it is called in ascending page order.
2344  */
2345 int
2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347                 unsigned long nr_pages, sector_t start_block)
2348 {
2349         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2350         struct swap_extent *se;
2351         struct swap_extent *new_se;
2352
2353         /*
2354          * place the new node at the right most since the
2355          * function is called in ascending page order.
2356          */
2357         while (*link) {
2358                 parent = *link;
2359                 link = &parent->rb_right;
2360         }
2361
2362         if (parent) {
2363                 se = rb_entry(parent, struct swap_extent, rb_node);
2364                 BUG_ON(se->start_page + se->nr_pages != start_page);
2365                 if (se->start_block + se->nr_pages == start_block) {
2366                         /* Merge it */
2367                         se->nr_pages += nr_pages;
2368                         return 0;
2369                 }
2370         }
2371
2372         /* No merge, insert a new extent. */
2373         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2374         if (new_se == NULL)
2375                 return -ENOMEM;
2376         new_se->start_page = start_page;
2377         new_se->nr_pages = nr_pages;
2378         new_se->start_block = start_block;
2379
2380         rb_link_node(&new_se->rb_node, parent, link);
2381         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2382         return 1;
2383 }
2384 EXPORT_SYMBOL_GPL(add_swap_extent);
2385
2386 /*
2387  * A `swap extent' is a simple thing which maps a contiguous range of pages
2388  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2389  * is built at swapon time and is then used at swap_writepage/swap_readpage
2390  * time for locating where on disk a page belongs.
2391  *
2392  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2393  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2394  * swap files identically.
2395  *
2396  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2397  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2398  * swapfiles are handled *identically* after swapon time.
2399  *
2400  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2401  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2402  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2403  * requirements, they are simply tossed out - we will never use those blocks
2404  * for swapping.
2405  *
2406  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2407  * prevents users from writing to the swap device, which will corrupt memory.
2408  *
2409  * The amount of disk space which a single swap extent represents varies.
2410  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2411  * extents in the list.  To avoid much list walking, we cache the previous
2412  * search location in `curr_swap_extent', and start new searches from there.
2413  * This is extremely effective.  The average number of iterations in
2414  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2415  */
2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417 {
2418         struct file *swap_file = sis->swap_file;
2419         struct address_space *mapping = swap_file->f_mapping;
2420         struct inode *inode = mapping->host;
2421         int ret;
2422
2423         if (S_ISBLK(inode->i_mode)) {
2424                 ret = add_swap_extent(sis, 0, sis->max, 0);
2425                 *span = sis->pages;
2426                 return ret;
2427         }
2428
2429         if (mapping->a_ops->swap_activate) {
2430                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431                 if (ret >= 0)
2432                         sis->flags |= SWP_ACTIVATED;
2433                 if (!ret) {
2434                         sis->flags |= SWP_FS_OPS;
2435                         ret = add_swap_extent(sis, 0, sis->max, 0);
2436                         *span = sis->pages;
2437                 }
2438                 return ret;
2439         }
2440
2441         return generic_swapfile_activate(sis, swap_file, span);
2442 }
2443
2444 static int swap_node(struct swap_info_struct *p)
2445 {
2446         struct block_device *bdev;
2447
2448         if (p->bdev)
2449                 bdev = p->bdev;
2450         else
2451                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2452
2453         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2454 }
2455
2456 static void setup_swap_info(struct swap_info_struct *p, int prio,
2457                             unsigned char *swap_map,
2458                             struct swap_cluster_info *cluster_info)
2459 {
2460         int i;
2461
2462         if (prio >= 0)
2463                 p->prio = prio;
2464         else
2465                 p->prio = --least_priority;
2466         /*
2467          * the plist prio is negated because plist ordering is
2468          * low-to-high, while swap ordering is high-to-low
2469          */
2470         p->list.prio = -p->prio;
2471         for_each_node(i) {
2472                 if (p->prio >= 0)
2473                         p->avail_lists[i].prio = -p->prio;
2474                 else {
2475                         if (swap_node(p) == i)
2476                                 p->avail_lists[i].prio = 1;
2477                         else
2478                                 p->avail_lists[i].prio = -p->prio;
2479                 }
2480         }
2481         p->swap_map = swap_map;
2482         p->cluster_info = cluster_info;
2483 }
2484
2485 static void _enable_swap_info(struct swap_info_struct *p)
2486 {
2487         p->flags |= SWP_WRITEOK | SWP_VALID;
2488         atomic_long_add(p->pages, &nr_swap_pages);
2489         total_swap_pages += p->pages;
2490
2491         assert_spin_locked(&swap_lock);
2492         /*
2493          * both lists are plists, and thus priority ordered.
2494          * swap_active_head needs to be priority ordered for swapoff(),
2495          * which on removal of any swap_info_struct with an auto-assigned
2496          * (i.e. negative) priority increments the auto-assigned priority
2497          * of any lower-priority swap_info_structs.
2498          * swap_avail_head needs to be priority ordered for get_swap_page(),
2499          * which allocates swap pages from the highest available priority
2500          * swap_info_struct.
2501          */
2502         plist_add(&p->list, &swap_active_head);
2503         add_to_avail_list(p);
2504 }
2505
2506 static void enable_swap_info(struct swap_info_struct *p, int prio,
2507                                 unsigned char *swap_map,
2508                                 struct swap_cluster_info *cluster_info,
2509                                 unsigned long *frontswap_map)
2510 {
2511         frontswap_init(p->type, frontswap_map);
2512         spin_lock(&swap_lock);
2513         spin_lock(&p->lock);
2514         setup_swap_info(p, prio, swap_map, cluster_info);
2515         spin_unlock(&p->lock);
2516         spin_unlock(&swap_lock);
2517         /*
2518          * Guarantee swap_map, cluster_info, etc. fields are valid
2519          * between get/put_swap_device() if SWP_VALID bit is set
2520          */
2521         synchronize_rcu();
2522         spin_lock(&swap_lock);
2523         spin_lock(&p->lock);
2524         _enable_swap_info(p);
2525         spin_unlock(&p->lock);
2526         spin_unlock(&swap_lock);
2527 }
2528
2529 static void reinsert_swap_info(struct swap_info_struct *p)
2530 {
2531         spin_lock(&swap_lock);
2532         spin_lock(&p->lock);
2533         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2534         _enable_swap_info(p);
2535         spin_unlock(&p->lock);
2536         spin_unlock(&swap_lock);
2537 }
2538
2539 bool has_usable_swap(void)
2540 {
2541         bool ret = true;
2542
2543         spin_lock(&swap_lock);
2544         if (plist_head_empty(&swap_active_head))
2545                 ret = false;
2546         spin_unlock(&swap_lock);
2547         return ret;
2548 }
2549
2550 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2551 {
2552         struct swap_info_struct *p = NULL;
2553         unsigned char *swap_map;
2554         struct swap_cluster_info *cluster_info;
2555         unsigned long *frontswap_map;
2556         struct file *swap_file, *victim;
2557         struct address_space *mapping;
2558         struct inode *inode;
2559         struct filename *pathname;
2560         int err, found = 0;
2561         unsigned int old_block_size;
2562
2563         if (!capable(CAP_SYS_ADMIN))
2564                 return -EPERM;
2565
2566         BUG_ON(!current->mm);
2567
2568         pathname = getname(specialfile);
2569         if (IS_ERR(pathname))
2570                 return PTR_ERR(pathname);
2571
2572         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2573         err = PTR_ERR(victim);
2574         if (IS_ERR(victim))
2575                 goto out;
2576
2577         mapping = victim->f_mapping;
2578         spin_lock(&swap_lock);
2579         plist_for_each_entry(p, &swap_active_head, list) {
2580                 if (p->flags & SWP_WRITEOK) {
2581                         if (p->swap_file->f_mapping == mapping) {
2582                                 found = 1;
2583                                 break;
2584                         }
2585                 }
2586         }
2587         if (!found) {
2588                 err = -EINVAL;
2589                 spin_unlock(&swap_lock);
2590                 goto out_dput;
2591         }
2592         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2593                 vm_unacct_memory(p->pages);
2594         else {
2595                 err = -ENOMEM;
2596                 spin_unlock(&swap_lock);
2597                 goto out_dput;
2598         }
2599         del_from_avail_list(p);
2600         spin_lock(&p->lock);
2601         if (p->prio < 0) {
2602                 struct swap_info_struct *si = p;
2603                 int nid;
2604
2605                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2606                         si->prio++;
2607                         si->list.prio--;
2608                         for_each_node(nid) {
2609                                 if (si->avail_lists[nid].prio != 1)
2610                                         si->avail_lists[nid].prio--;
2611                         }
2612                 }
2613                 least_priority++;
2614         }
2615         plist_del(&p->list, &swap_active_head);
2616         atomic_long_sub(p->pages, &nr_swap_pages);
2617         total_swap_pages -= p->pages;
2618         p->flags &= ~SWP_WRITEOK;
2619         spin_unlock(&p->lock);
2620         spin_unlock(&swap_lock);
2621
2622         disable_swap_slots_cache_lock();
2623
2624         set_current_oom_origin();
2625         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2626         clear_current_oom_origin();
2627
2628         if (err) {
2629                 /* re-insert swap space back into swap_list */
2630                 reinsert_swap_info(p);
2631                 reenable_swap_slots_cache_unlock();
2632                 goto out_dput;
2633         }
2634
2635         reenable_swap_slots_cache_unlock();
2636
2637         spin_lock(&swap_lock);
2638         spin_lock(&p->lock);
2639         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2640         spin_unlock(&p->lock);
2641         spin_unlock(&swap_lock);
2642         /*
2643          * wait for swap operations protected by get/put_swap_device()
2644          * to complete
2645          */
2646         synchronize_rcu();
2647
2648         flush_work(&p->discard_work);
2649
2650         destroy_swap_extents(p);
2651         if (p->flags & SWP_CONTINUED)
2652                 free_swap_count_continuations(p);
2653
2654         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2655                 atomic_dec(&nr_rotate_swap);
2656
2657         mutex_lock(&swapon_mutex);
2658         spin_lock(&swap_lock);
2659         spin_lock(&p->lock);
2660         drain_mmlist();
2661
2662         /* wait for anyone still in scan_swap_map */
2663         p->highest_bit = 0;             /* cuts scans short */
2664         while (p->flags >= SWP_SCANNING) {
2665                 spin_unlock(&p->lock);
2666                 spin_unlock(&swap_lock);
2667                 schedule_timeout_uninterruptible(1);
2668                 spin_lock(&swap_lock);
2669                 spin_lock(&p->lock);
2670         }
2671
2672         swap_file = p->swap_file;
2673         old_block_size = p->old_block_size;
2674         p->swap_file = NULL;
2675         p->max = 0;
2676         swap_map = p->swap_map;
2677         p->swap_map = NULL;
2678         cluster_info = p->cluster_info;
2679         p->cluster_info = NULL;
2680         frontswap_map = frontswap_map_get(p);
2681         spin_unlock(&p->lock);
2682         spin_unlock(&swap_lock);
2683         arch_swap_invalidate_area(p->type);
2684         frontswap_invalidate_area(p->type);
2685         frontswap_map_set(p, NULL);
2686         mutex_unlock(&swapon_mutex);
2687         free_percpu(p->percpu_cluster);
2688         p->percpu_cluster = NULL;
2689         free_percpu(p->cluster_next_cpu);
2690         p->cluster_next_cpu = NULL;
2691         vfree(swap_map);
2692         kvfree(cluster_info);
2693         kvfree(frontswap_map);
2694         /* Destroy swap account information */
2695         swap_cgroup_swapoff(p->type);
2696         exit_swap_address_space(p->type);
2697
2698         inode = mapping->host;
2699         if (S_ISBLK(inode->i_mode)) {
2700                 struct block_device *bdev = I_BDEV(inode);
2701
2702                 set_blocksize(bdev, old_block_size);
2703                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2704         }
2705
2706         inode_lock(inode);
2707         inode->i_flags &= ~S_SWAPFILE;
2708         inode_unlock(inode);
2709         filp_close(swap_file, NULL);
2710
2711         /*
2712          * Clear the SWP_USED flag after all resources are freed so that swapon
2713          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2714          * not hold p->lock after we cleared its SWP_WRITEOK.
2715          */
2716         spin_lock(&swap_lock);
2717         p->flags = 0;
2718         spin_unlock(&swap_lock);
2719
2720         err = 0;
2721         atomic_inc(&proc_poll_event);
2722         wake_up_interruptible(&proc_poll_wait);
2723
2724 out_dput:
2725         filp_close(victim, NULL);
2726 out:
2727         putname(pathname);
2728         return err;
2729 }
2730
2731 #ifdef CONFIG_PROC_FS
2732 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2733 {
2734         struct seq_file *seq = file->private_data;
2735
2736         poll_wait(file, &proc_poll_wait, wait);
2737
2738         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2739                 seq->poll_event = atomic_read(&proc_poll_event);
2740                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2741         }
2742
2743         return EPOLLIN | EPOLLRDNORM;
2744 }
2745
2746 /* iterator */
2747 static void *swap_start(struct seq_file *swap, loff_t *pos)
2748 {
2749         struct swap_info_struct *si;
2750         int type;
2751         loff_t l = *pos;
2752
2753         mutex_lock(&swapon_mutex);
2754
2755         if (!l)
2756                 return SEQ_START_TOKEN;
2757
2758         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2759                 if (!(si->flags & SWP_USED) || !si->swap_map)
2760                         continue;
2761                 if (!--l)
2762                         return si;
2763         }
2764
2765         return NULL;
2766 }
2767
2768 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2769 {
2770         struct swap_info_struct *si = v;
2771         int type;
2772
2773         if (v == SEQ_START_TOKEN)
2774                 type = 0;
2775         else
2776                 type = si->type + 1;
2777
2778         ++(*pos);
2779         for (; (si = swap_type_to_swap_info(type)); type++) {
2780                 if (!(si->flags & SWP_USED) || !si->swap_map)
2781                         continue;
2782                 return si;
2783         }
2784
2785         return NULL;
2786 }
2787
2788 static void swap_stop(struct seq_file *swap, void *v)
2789 {
2790         mutex_unlock(&swapon_mutex);
2791 }
2792
2793 static int swap_show(struct seq_file *swap, void *v)
2794 {
2795         struct swap_info_struct *si = v;
2796         struct file *file;
2797         int len;
2798         unsigned int bytes, inuse;
2799
2800         if (si == SEQ_START_TOKEN) {
2801                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2802                 return 0;
2803         }
2804
2805         bytes = si->pages << (PAGE_SHIFT - 10);
2806         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2807
2808         file = si->swap_file;
2809         len = seq_file_path(swap, file, " \t\n\\");
2810         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2811                         len < 40 ? 40 - len : 1, " ",
2812                         S_ISBLK(file_inode(file)->i_mode) ?
2813                                 "partition" : "file\t",
2814                         bytes, bytes < 10000000 ? "\t" : "",
2815                         inuse, inuse < 10000000 ? "\t" : "",
2816                         si->prio);
2817         return 0;
2818 }
2819
2820 static const struct seq_operations swaps_op = {
2821         .start =        swap_start,
2822         .next =         swap_next,
2823         .stop =         swap_stop,
2824         .show =         swap_show
2825 };
2826
2827 static int swaps_open(struct inode *inode, struct file *file)
2828 {
2829         struct seq_file *seq;
2830         int ret;
2831
2832         ret = seq_open(file, &swaps_op);
2833         if (ret)
2834                 return ret;
2835
2836         seq = file->private_data;
2837         seq->poll_event = atomic_read(&proc_poll_event);
2838         return 0;
2839 }
2840
2841 static const struct proc_ops swaps_proc_ops = {
2842         .proc_flags     = PROC_ENTRY_PERMANENT,
2843         .proc_open      = swaps_open,
2844         .proc_read      = seq_read,
2845         .proc_lseek     = seq_lseek,
2846         .proc_release   = seq_release,
2847         .proc_poll      = swaps_poll,
2848 };
2849
2850 static int __init procswaps_init(void)
2851 {
2852         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2853         return 0;
2854 }
2855 __initcall(procswaps_init);
2856 #endif /* CONFIG_PROC_FS */
2857
2858 #ifdef MAX_SWAPFILES_CHECK
2859 static int __init max_swapfiles_check(void)
2860 {
2861         MAX_SWAPFILES_CHECK();
2862         return 0;
2863 }
2864 late_initcall(max_swapfiles_check);
2865 #endif
2866
2867 static struct swap_info_struct *alloc_swap_info(void)
2868 {
2869         struct swap_info_struct *p;
2870         unsigned int type;
2871         int i;
2872
2873         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2874         if (!p)
2875                 return ERR_PTR(-ENOMEM);
2876
2877         spin_lock(&swap_lock);
2878         for (type = 0; type < nr_swapfiles; type++) {
2879                 if (!(swap_info[type]->flags & SWP_USED))
2880                         break;
2881         }
2882         if (type >= MAX_SWAPFILES) {
2883                 spin_unlock(&swap_lock);
2884                 kvfree(p);
2885                 return ERR_PTR(-EPERM);
2886         }
2887         if (type >= nr_swapfiles) {
2888                 p->type = type;
2889                 WRITE_ONCE(swap_info[type], p);
2890                 /*
2891                  * Write swap_info[type] before nr_swapfiles, in case a
2892                  * racing procfs swap_start() or swap_next() is reading them.
2893                  * (We never shrink nr_swapfiles, we never free this entry.)
2894                  */
2895                 smp_wmb();
2896                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2897         } else {
2898                 kvfree(p);
2899                 p = swap_info[type];
2900                 /*
2901                  * Do not memset this entry: a racing procfs swap_next()
2902                  * would be relying on p->type to remain valid.
2903                  */
2904         }
2905         p->swap_extent_root = RB_ROOT;
2906         plist_node_init(&p->list, 0);
2907         for_each_node(i)
2908                 plist_node_init(&p->avail_lists[i], 0);
2909         p->flags = SWP_USED;
2910         spin_unlock(&swap_lock);
2911         spin_lock_init(&p->lock);
2912         spin_lock_init(&p->cont_lock);
2913
2914         return p;
2915 }
2916
2917 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2918 {
2919         int error;
2920
2921         if (S_ISBLK(inode->i_mode)) {
2922                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2923                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2924                 if (IS_ERR(p->bdev)) {
2925                         error = PTR_ERR(p->bdev);
2926                         p->bdev = NULL;
2927                         return error;
2928                 }
2929                 p->old_block_size = block_size(p->bdev);
2930                 error = set_blocksize(p->bdev, PAGE_SIZE);
2931                 if (error < 0)
2932                         return error;
2933                 /*
2934                  * Zoned block devices contain zones that have a sequential
2935                  * write only restriction.  Hence zoned block devices are not
2936                  * suitable for swapping.  Disallow them here.
2937                  */
2938                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2939                         return -EINVAL;
2940                 p->flags |= SWP_BLKDEV;
2941         } else if (S_ISREG(inode->i_mode)) {
2942                 p->bdev = inode->i_sb->s_bdev;
2943         }
2944
2945         return 0;
2946 }
2947
2948
2949 /*
2950  * Find out how many pages are allowed for a single swap device. There
2951  * are two limiting factors:
2952  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2953  * 2) the number of bits in the swap pte, as defined by the different
2954  * architectures.
2955  *
2956  * In order to find the largest possible bit mask, a swap entry with
2957  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2958  * decoded to a swp_entry_t again, and finally the swap offset is
2959  * extracted.
2960  *
2961  * This will mask all the bits from the initial ~0UL mask that can't
2962  * be encoded in either the swp_entry_t or the architecture definition
2963  * of a swap pte.
2964  */
2965 unsigned long generic_max_swapfile_size(void)
2966 {
2967         return swp_offset(pte_to_swp_entry(
2968                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2969 }
2970
2971 /* Can be overridden by an architecture for additional checks. */
2972 __weak unsigned long max_swapfile_size(void)
2973 {
2974         return generic_max_swapfile_size();
2975 }
2976
2977 static unsigned long read_swap_header(struct swap_info_struct *p,
2978                                         union swap_header *swap_header,
2979                                         struct inode *inode)
2980 {
2981         int i;
2982         unsigned long maxpages;
2983         unsigned long swapfilepages;
2984         unsigned long last_page;
2985
2986         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2987                 pr_err("Unable to find swap-space signature\n");
2988                 return 0;
2989         }
2990
2991         /* swap partition endianess hack... */
2992         if (swab32(swap_header->info.version) == 1) {
2993                 swab32s(&swap_header->info.version);
2994                 swab32s(&swap_header->info.last_page);
2995                 swab32s(&swap_header->info.nr_badpages);
2996                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997                         return 0;
2998                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2999                         swab32s(&swap_header->info.badpages[i]);
3000         }
3001         /* Check the swap header's sub-version */
3002         if (swap_header->info.version != 1) {
3003                 pr_warn("Unable to handle swap header version %d\n",
3004                         swap_header->info.version);
3005                 return 0;
3006         }
3007
3008         p->lowest_bit  = 1;
3009         p->cluster_next = 1;
3010         p->cluster_nr = 0;
3011
3012         maxpages = max_swapfile_size();
3013         last_page = swap_header->info.last_page;
3014         if (!last_page) {
3015                 pr_warn("Empty swap-file\n");
3016                 return 0;
3017         }
3018         if (last_page > maxpages) {
3019                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3020                         maxpages << (PAGE_SHIFT - 10),
3021                         last_page << (PAGE_SHIFT - 10));
3022         }
3023         if (maxpages > last_page) {
3024                 maxpages = last_page + 1;
3025                 /* p->max is an unsigned int: don't overflow it */
3026                 if ((unsigned int)maxpages == 0)
3027                         maxpages = UINT_MAX;
3028         }
3029         p->highest_bit = maxpages - 1;
3030
3031         if (!maxpages)
3032                 return 0;
3033         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3034         if (swapfilepages && maxpages > swapfilepages) {
3035                 pr_warn("Swap area shorter than signature indicates\n");
3036                 return 0;
3037         }
3038         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3039                 return 0;
3040         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3041                 return 0;
3042
3043         return maxpages;
3044 }
3045
3046 #define SWAP_CLUSTER_INFO_COLS                                          \
3047         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3048 #define SWAP_CLUSTER_SPACE_COLS                                         \
3049         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3050 #define SWAP_CLUSTER_COLS                                               \
3051         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3052
3053 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3054                                         union swap_header *swap_header,
3055                                         unsigned char *swap_map,
3056                                         struct swap_cluster_info *cluster_info,
3057                                         unsigned long maxpages,
3058                                         sector_t *span)
3059 {
3060         unsigned int j, k;
3061         unsigned int nr_good_pages;
3062         int nr_extents;
3063         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3064         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3065         unsigned long i, idx;
3066
3067         nr_good_pages = maxpages - 1;   /* omit header page */
3068
3069         cluster_list_init(&p->free_clusters);
3070         cluster_list_init(&p->discard_clusters);
3071
3072         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3073                 unsigned int page_nr = swap_header->info.badpages[i];
3074                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3075                         return -EINVAL;
3076                 if (page_nr < maxpages) {
3077                         swap_map[page_nr] = SWAP_MAP_BAD;
3078                         nr_good_pages--;
3079                         /*
3080                          * Haven't marked the cluster free yet, no list
3081                          * operation involved
3082                          */
3083                         inc_cluster_info_page(p, cluster_info, page_nr);
3084                 }
3085         }
3086
3087         /* Haven't marked the cluster free yet, no list operation involved */
3088         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3089                 inc_cluster_info_page(p, cluster_info, i);
3090
3091         if (nr_good_pages) {
3092                 swap_map[0] = SWAP_MAP_BAD;
3093                 /*
3094                  * Not mark the cluster free yet, no list
3095                  * operation involved
3096                  */
3097                 inc_cluster_info_page(p, cluster_info, 0);
3098                 p->max = maxpages;
3099                 p->pages = nr_good_pages;
3100                 nr_extents = setup_swap_extents(p, span);
3101                 if (nr_extents < 0)
3102                         return nr_extents;
3103                 nr_good_pages = p->pages;
3104         }
3105         if (!nr_good_pages) {
3106                 pr_warn("Empty swap-file\n");
3107                 return -EINVAL;
3108         }
3109
3110         if (!cluster_info)
3111                 return nr_extents;
3112
3113
3114         /*
3115          * Reduce false cache line sharing between cluster_info and
3116          * sharing same address space.
3117          */
3118         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3119                 j = (k + col) % SWAP_CLUSTER_COLS;
3120                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3121                         idx = i * SWAP_CLUSTER_COLS + j;
3122                         if (idx >= nr_clusters)
3123                                 continue;
3124                         if (cluster_count(&cluster_info[idx]))
3125                                 continue;
3126                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3127                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3128                                               idx);
3129                 }
3130         }
3131         return nr_extents;
3132 }
3133
3134 /*
3135  * Helper to sys_swapon determining if a given swap
3136  * backing device queue supports DISCARD operations.
3137  */
3138 static bool swap_discardable(struct swap_info_struct *si)
3139 {
3140         struct request_queue *q = bdev_get_queue(si->bdev);
3141
3142         if (!q || !blk_queue_discard(q))
3143                 return false;
3144
3145         return true;
3146 }
3147
3148 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3149 {
3150         struct swap_info_struct *p;
3151         struct filename *name;
3152         struct file *swap_file = NULL;
3153         struct address_space *mapping;
3154         int prio;
3155         int error;
3156         union swap_header *swap_header;
3157         int nr_extents;
3158         sector_t span;
3159         unsigned long maxpages;
3160         unsigned char *swap_map = NULL;
3161         struct swap_cluster_info *cluster_info = NULL;
3162         unsigned long *frontswap_map = NULL;
3163         struct page *page = NULL;
3164         struct inode *inode = NULL;
3165         bool inced_nr_rotate_swap = false;
3166
3167         if (swap_flags & ~SWAP_FLAGS_VALID)
3168                 return -EINVAL;
3169
3170         if (!capable(CAP_SYS_ADMIN))
3171                 return -EPERM;
3172
3173         if (!swap_avail_heads)
3174                 return -ENOMEM;
3175
3176         p = alloc_swap_info();
3177         if (IS_ERR(p))
3178                 return PTR_ERR(p);
3179
3180         INIT_WORK(&p->discard_work, swap_discard_work);
3181
3182         name = getname(specialfile);
3183         if (IS_ERR(name)) {
3184                 error = PTR_ERR(name);
3185                 name = NULL;
3186                 goto bad_swap;
3187         }
3188         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3189         if (IS_ERR(swap_file)) {
3190                 error = PTR_ERR(swap_file);
3191                 swap_file = NULL;
3192                 goto bad_swap;
3193         }
3194
3195         p->swap_file = swap_file;
3196         mapping = swap_file->f_mapping;
3197         inode = mapping->host;
3198
3199         error = claim_swapfile(p, inode);
3200         if (unlikely(error))
3201                 goto bad_swap;
3202
3203         inode_lock(inode);
3204         if (IS_SWAPFILE(inode)) {
3205                 error = -EBUSY;
3206                 goto bad_swap_unlock_inode;
3207         }
3208
3209         /*
3210          * Read the swap header.
3211          */
3212         if (!mapping->a_ops->readpage) {
3213                 error = -EINVAL;
3214                 goto bad_swap_unlock_inode;
3215         }
3216         page = read_mapping_page(mapping, 0, swap_file);
3217         if (IS_ERR(page)) {
3218                 error = PTR_ERR(page);
3219                 goto bad_swap_unlock_inode;
3220         }
3221         swap_header = kmap(page);
3222
3223         maxpages = read_swap_header(p, swap_header, inode);
3224         if (unlikely(!maxpages)) {
3225                 error = -EINVAL;
3226                 goto bad_swap_unlock_inode;
3227         }
3228
3229         /* OK, set up the swap map and apply the bad block list */
3230         swap_map = vzalloc(maxpages);
3231         if (!swap_map) {
3232                 error = -ENOMEM;
3233                 goto bad_swap_unlock_inode;
3234         }
3235
3236         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3237                 p->flags |= SWP_STABLE_WRITES;
3238
3239         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3240                 p->flags |= SWP_SYNCHRONOUS_IO;
3241
3242         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3243                 int cpu;
3244                 unsigned long ci, nr_cluster;
3245
3246                 p->flags |= SWP_SOLIDSTATE;
3247                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3248                 if (!p->cluster_next_cpu) {
3249                         error = -ENOMEM;
3250                         goto bad_swap_unlock_inode;
3251                 }
3252                 /*
3253                  * select a random position to start with to help wear leveling
3254                  * SSD
3255                  */
3256                 for_each_possible_cpu(cpu) {
3257                         per_cpu(*p->cluster_next_cpu, cpu) =
3258                                 1 + prandom_u32_max(p->highest_bit);
3259                 }
3260                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3261
3262                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3263                                         GFP_KERNEL);
3264                 if (!cluster_info) {
3265                         error = -ENOMEM;
3266                         goto bad_swap_unlock_inode;
3267                 }
3268
3269                 for (ci = 0; ci < nr_cluster; ci++)
3270                         spin_lock_init(&((cluster_info + ci)->lock));
3271
3272                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3273                 if (!p->percpu_cluster) {
3274                         error = -ENOMEM;
3275                         goto bad_swap_unlock_inode;
3276                 }
3277                 for_each_possible_cpu(cpu) {
3278                         struct percpu_cluster *cluster;
3279                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3280                         cluster_set_null(&cluster->index);
3281                 }
3282         } else {
3283                 atomic_inc(&nr_rotate_swap);
3284                 inced_nr_rotate_swap = true;
3285         }
3286
3287         error = swap_cgroup_swapon(p->type, maxpages);
3288         if (error)
3289                 goto bad_swap_unlock_inode;
3290
3291         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3292                 cluster_info, maxpages, &span);
3293         if (unlikely(nr_extents < 0)) {
3294                 error = nr_extents;
3295                 goto bad_swap_unlock_inode;
3296         }
3297         /* frontswap enabled? set up bit-per-page map for frontswap */
3298         if (IS_ENABLED(CONFIG_FRONTSWAP))
3299                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3300                                          sizeof(long),
3301                                          GFP_KERNEL);
3302
3303         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3304                 /*
3305                  * When discard is enabled for swap with no particular
3306                  * policy flagged, we set all swap discard flags here in
3307                  * order to sustain backward compatibility with older
3308                  * swapon(8) releases.
3309                  */
3310                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3311                              SWP_PAGE_DISCARD);
3312
3313                 /*
3314                  * By flagging sys_swapon, a sysadmin can tell us to
3315                  * either do single-time area discards only, or to just
3316                  * perform discards for released swap page-clusters.
3317                  * Now it's time to adjust the p->flags accordingly.
3318                  */
3319                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3320                         p->flags &= ~SWP_PAGE_DISCARD;
3321                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3322                         p->flags &= ~SWP_AREA_DISCARD;
3323
3324                 /* issue a swapon-time discard if it's still required */
3325                 if (p->flags & SWP_AREA_DISCARD) {
3326                         int err = discard_swap(p);
3327                         if (unlikely(err))
3328                                 pr_err("swapon: discard_swap(%p): %d\n",
3329                                         p, err);
3330                 }
3331         }
3332
3333         error = init_swap_address_space(p->type, maxpages);
3334         if (error)
3335                 goto bad_swap_unlock_inode;
3336
3337         /*
3338          * Flush any pending IO and dirty mappings before we start using this
3339          * swap device.
3340          */
3341         inode->i_flags |= S_SWAPFILE;
3342         error = inode_drain_writes(inode);
3343         if (error) {
3344                 inode->i_flags &= ~S_SWAPFILE;
3345                 goto free_swap_address_space;
3346         }
3347
3348         mutex_lock(&swapon_mutex);
3349         prio = -1;
3350         if (swap_flags & SWAP_FLAG_PREFER)
3351                 prio =
3352                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3353         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3354
3355         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3356                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3357                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3358                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3359                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3360                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3361                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3362                 (frontswap_map) ? "FS" : "");
3363
3364         mutex_unlock(&swapon_mutex);
3365         atomic_inc(&proc_poll_event);
3366         wake_up_interruptible(&proc_poll_wait);
3367
3368         error = 0;
3369         goto out;
3370 free_swap_address_space:
3371         exit_swap_address_space(p->type);
3372 bad_swap_unlock_inode:
3373         inode_unlock(inode);
3374 bad_swap:
3375         free_percpu(p->percpu_cluster);
3376         p->percpu_cluster = NULL;
3377         free_percpu(p->cluster_next_cpu);
3378         p->cluster_next_cpu = NULL;
3379         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3380                 set_blocksize(p->bdev, p->old_block_size);
3381                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3382         }
3383         inode = NULL;
3384         destroy_swap_extents(p);
3385         swap_cgroup_swapoff(p->type);
3386         spin_lock(&swap_lock);
3387         p->swap_file = NULL;
3388         p->flags = 0;
3389         spin_unlock(&swap_lock);
3390         vfree(swap_map);
3391         kvfree(cluster_info);
3392         kvfree(frontswap_map);
3393         if (inced_nr_rotate_swap)
3394                 atomic_dec(&nr_rotate_swap);
3395         if (swap_file)
3396                 filp_close(swap_file, NULL);
3397 out:
3398         if (page && !IS_ERR(page)) {
3399                 kunmap(page);
3400                 put_page(page);
3401         }
3402         if (name)
3403                 putname(name);
3404         if (inode)
3405                 inode_unlock(inode);
3406         if (!error)
3407                 enable_swap_slots_cache();
3408         return error;
3409 }
3410
3411 void si_swapinfo(struct sysinfo *val)
3412 {
3413         unsigned int type;
3414         unsigned long nr_to_be_unused = 0;
3415
3416         spin_lock(&swap_lock);
3417         for (type = 0; type < nr_swapfiles; type++) {
3418                 struct swap_info_struct *si = swap_info[type];
3419
3420                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3421                         nr_to_be_unused += si->inuse_pages;
3422         }
3423         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3424         val->totalswap = total_swap_pages + nr_to_be_unused;
3425         spin_unlock(&swap_lock);
3426 }
3427
3428 /*
3429  * Verify that a swap entry is valid and increment its swap map count.
3430  *
3431  * Returns error code in following case.
3432  * - success -> 0
3433  * - swp_entry is invalid -> EINVAL
3434  * - swp_entry is migration entry -> EINVAL
3435  * - swap-cache reference is requested but there is already one. -> EEXIST
3436  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3437  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3438  */
3439 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3440 {
3441         struct swap_info_struct *p;
3442         struct swap_cluster_info *ci;
3443         unsigned long offset;
3444         unsigned char count;
3445         unsigned char has_cache;
3446         int err = -EINVAL;
3447
3448         p = get_swap_device(entry);
3449         if (!p)
3450                 goto out;
3451
3452         offset = swp_offset(entry);
3453         ci = lock_cluster_or_swap_info(p, offset);
3454
3455         count = p->swap_map[offset];
3456
3457         /*
3458          * swapin_readahead() doesn't check if a swap entry is valid, so the
3459          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3460          */
3461         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3462                 err = -ENOENT;
3463                 goto unlock_out;
3464         }
3465
3466         has_cache = count & SWAP_HAS_CACHE;
3467         count &= ~SWAP_HAS_CACHE;
3468         err = 0;
3469
3470         if (usage == SWAP_HAS_CACHE) {
3471
3472                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3473                 if (!has_cache && count)
3474                         has_cache = SWAP_HAS_CACHE;
3475                 else if (has_cache)             /* someone else added cache */
3476                         err = -EEXIST;
3477                 else                            /* no users remaining */
3478                         err = -ENOENT;
3479
3480         } else if (count || has_cache) {
3481
3482                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3483                         count += usage;
3484                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3485                         err = -EINVAL;
3486                 else if (swap_count_continued(p, offset, count))
3487                         count = COUNT_CONTINUED;
3488                 else
3489                         err = -ENOMEM;
3490         } else
3491                 err = -ENOENT;                  /* unused swap entry */
3492
3493         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3494
3495 unlock_out:
3496         unlock_cluster_or_swap_info(p, ci);
3497 out:
3498         if (p)
3499                 put_swap_device(p);
3500         return err;
3501 }
3502
3503 /*
3504  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3505  * (in which case its reference count is never incremented).
3506  */
3507 void swap_shmem_alloc(swp_entry_t entry)
3508 {
3509         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3510 }
3511
3512 /*
3513  * Increase reference count of swap entry by 1.
3514  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3515  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3516  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3517  * might occur if a page table entry has got corrupted.
3518  */
3519 int swap_duplicate(swp_entry_t entry)
3520 {
3521         int err = 0;
3522
3523         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3524                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3525         return err;
3526 }
3527
3528 /*
3529  * @entry: swap entry for which we allocate swap cache.
3530  *
3531  * Called when allocating swap cache for existing swap entry,
3532  * This can return error codes. Returns 0 at success.
3533  * -EEXIST means there is a swap cache.
3534  * Note: return code is different from swap_duplicate().
3535  */
3536 int swapcache_prepare(swp_entry_t entry)
3537 {
3538         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3539 }
3540
3541 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3542 {
3543         return swap_type_to_swap_info(swp_type(entry));
3544 }
3545
3546 struct swap_info_struct *page_swap_info(struct page *page)
3547 {
3548         swp_entry_t entry = { .val = page_private(page) };
3549         return swp_swap_info(entry);
3550 }
3551
3552 /*
3553  * out-of-line __page_file_ methods to avoid include hell.
3554  */
3555 struct address_space *__page_file_mapping(struct page *page)
3556 {
3557         return page_swap_info(page)->swap_file->f_mapping;
3558 }
3559 EXPORT_SYMBOL_GPL(__page_file_mapping);
3560
3561 pgoff_t __page_file_index(struct page *page)
3562 {
3563         swp_entry_t swap = { .val = page_private(page) };
3564         return swp_offset(swap);
3565 }
3566 EXPORT_SYMBOL_GPL(__page_file_index);
3567
3568 /*
3569  * add_swap_count_continuation - called when a swap count is duplicated
3570  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3571  * page of the original vmalloc'ed swap_map, to hold the continuation count
3572  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3573  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3574  *
3575  * These continuation pages are seldom referenced: the common paths all work
3576  * on the original swap_map, only referring to a continuation page when the
3577  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3578  *
3579  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3580  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3581  * can be called after dropping locks.
3582  */
3583 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3584 {
3585         struct swap_info_struct *si;
3586         struct swap_cluster_info *ci;
3587         struct page *head;
3588         struct page *page;
3589         struct page *list_page;
3590         pgoff_t offset;
3591         unsigned char count;
3592         int ret = 0;
3593
3594         /*
3595          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3596          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3597          */
3598         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3599
3600         si = get_swap_device(entry);
3601         if (!si) {
3602                 /*
3603                  * An acceptable race has occurred since the failing
3604                  * __swap_duplicate(): the swap device may be swapoff
3605                  */
3606                 goto outer;
3607         }
3608         spin_lock(&si->lock);
3609
3610         offset = swp_offset(entry);
3611
3612         ci = lock_cluster(si, offset);
3613
3614         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3615
3616         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3617                 /*
3618                  * The higher the swap count, the more likely it is that tasks
3619                  * will race to add swap count continuation: we need to avoid
3620                  * over-provisioning.
3621                  */
3622                 goto out;
3623         }
3624
3625         if (!page) {
3626                 ret = -ENOMEM;
3627                 goto out;
3628         }
3629
3630         /*
3631          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3632          * no architecture is using highmem pages for kernel page tables: so it
3633          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3634          */
3635         head = vmalloc_to_page(si->swap_map + offset);
3636         offset &= ~PAGE_MASK;
3637
3638         spin_lock(&si->cont_lock);
3639         /*
3640          * Page allocation does not initialize the page's lru field,
3641          * but it does always reset its private field.
3642          */
3643         if (!page_private(head)) {
3644                 BUG_ON(count & COUNT_CONTINUED);
3645                 INIT_LIST_HEAD(&head->lru);
3646                 set_page_private(head, SWP_CONTINUED);
3647                 si->flags |= SWP_CONTINUED;
3648         }
3649
3650         list_for_each_entry(list_page, &head->lru, lru) {
3651                 unsigned char *map;
3652
3653                 /*
3654                  * If the previous map said no continuation, but we've found
3655                  * a continuation page, free our allocation and use this one.
3656                  */
3657                 if (!(count & COUNT_CONTINUED))
3658                         goto out_unlock_cont;
3659
3660                 map = kmap_atomic(list_page) + offset;
3661                 count = *map;
3662                 kunmap_atomic(map);
3663
3664                 /*
3665                  * If this continuation count now has some space in it,
3666                  * free our allocation and use this one.
3667                  */
3668                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3669                         goto out_unlock_cont;
3670         }
3671
3672         list_add_tail(&page->lru, &head->lru);
3673         page = NULL;                    /* now it's attached, don't free it */
3674 out_unlock_cont:
3675         spin_unlock(&si->cont_lock);
3676 out:
3677         unlock_cluster(ci);
3678         spin_unlock(&si->lock);
3679         put_swap_device(si);
3680 outer:
3681         if (page)
3682                 __free_page(page);
3683         return ret;
3684 }
3685
3686 /*
3687  * swap_count_continued - when the original swap_map count is incremented
3688  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3689  * into, carry if so, or else fail until a new continuation page is allocated;
3690  * when the original swap_map count is decremented from 0 with continuation,
3691  * borrow from the continuation and report whether it still holds more.
3692  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3693  * lock.
3694  */
3695 static bool swap_count_continued(struct swap_info_struct *si,
3696                                  pgoff_t offset, unsigned char count)
3697 {
3698         struct page *head;
3699         struct page *page;
3700         unsigned char *map;
3701         bool ret;
3702
3703         head = vmalloc_to_page(si->swap_map + offset);
3704         if (page_private(head) != SWP_CONTINUED) {
3705                 BUG_ON(count & COUNT_CONTINUED);
3706                 return false;           /* need to add count continuation */
3707         }
3708
3709         spin_lock(&si->cont_lock);
3710         offset &= ~PAGE_MASK;
3711         page = list_next_entry(head, lru);
3712         map = kmap_atomic(page) + offset;
3713
3714         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3715                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3716
3717         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3718                 /*
3719                  * Think of how you add 1 to 999
3720                  */
3721                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3722                         kunmap_atomic(map);
3723                         page = list_next_entry(page, lru);
3724                         BUG_ON(page == head);
3725                         map = kmap_atomic(page) + offset;
3726                 }
3727                 if (*map == SWAP_CONT_MAX) {
3728                         kunmap_atomic(map);
3729                         page = list_next_entry(page, lru);
3730                         if (page == head) {
3731                                 ret = false;    /* add count continuation */
3732                                 goto out;
3733                         }
3734                         map = kmap_atomic(page) + offset;
3735 init_map:               *map = 0;               /* we didn't zero the page */
3736                 }
3737                 *map += 1;
3738                 kunmap_atomic(map);
3739                 while ((page = list_prev_entry(page, lru)) != head) {
3740                         map = kmap_atomic(page) + offset;
3741                         *map = COUNT_CONTINUED;
3742                         kunmap_atomic(map);
3743                 }
3744                 ret = true;                     /* incremented */
3745
3746         } else {                                /* decrementing */
3747                 /*
3748                  * Think of how you subtract 1 from 1000
3749                  */
3750                 BUG_ON(count != COUNT_CONTINUED);
3751                 while (*map == COUNT_CONTINUED) {
3752                         kunmap_atomic(map);
3753                         page = list_next_entry(page, lru);
3754                         BUG_ON(page == head);
3755                         map = kmap_atomic(page) + offset;
3756                 }
3757                 BUG_ON(*map == 0);
3758                 *map -= 1;
3759                 if (*map == 0)
3760                         count = 0;
3761                 kunmap_atomic(map);
3762                 while ((page = list_prev_entry(page, lru)) != head) {
3763                         map = kmap_atomic(page) + offset;
3764                         *map = SWAP_CONT_MAX | count;
3765                         count = COUNT_CONTINUED;
3766                         kunmap_atomic(map);
3767                 }
3768                 ret = count == COUNT_CONTINUED;
3769         }
3770 out:
3771         spin_unlock(&si->cont_lock);
3772         return ret;
3773 }
3774
3775 /*
3776  * free_swap_count_continuations - swapoff free all the continuation pages
3777  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3778  */
3779 static void free_swap_count_continuations(struct swap_info_struct *si)
3780 {
3781         pgoff_t offset;
3782
3783         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3784                 struct page *head;
3785                 head = vmalloc_to_page(si->swap_map + offset);
3786                 if (page_private(head)) {
3787                         struct page *page, *next;
3788
3789                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3790                                 list_del(&page->lru);
3791                                 __free_page(page);
3792                         }
3793                 }
3794         }
3795 }
3796
3797 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3798 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3799 {
3800         struct swap_info_struct *si, *next;
3801         int nid = page_to_nid(page);
3802
3803         if (!(gfp_mask & __GFP_IO))
3804                 return;
3805
3806         if (!blk_cgroup_congested())
3807                 return;
3808
3809         /*
3810          * We've already scheduled a throttle, avoid taking the global swap
3811          * lock.
3812          */
3813         if (current->throttle_queue)
3814                 return;
3815
3816         spin_lock(&swap_avail_lock);
3817         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3818                                   avail_lists[nid]) {
3819                 if (si->bdev) {
3820                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3821                         break;
3822                 }
3823         }
3824         spin_unlock(&swap_avail_lock);
3825 }
3826 #endif
3827
3828 static int __init swapfile_init(void)
3829 {
3830         int nid;
3831
3832         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3833                                          GFP_KERNEL);
3834         if (!swap_avail_heads) {
3835                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3836                 return -ENOMEM;
3837         }
3838
3839         for_each_node(nid)
3840                 plist_head_init(&swap_avail_heads[nid]);
3841
3842         return 0;
3843 }
3844 subsys_initcall(swapfile_init);