Merge tag 'irq-urgent-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135                                  unsigned long offset, unsigned long flags)
136 {
137         swp_entry_t entry = swp_entry(si->type, offset);
138         struct folio *folio;
139         int ret = 0;
140
141         folio = filemap_get_folio(swap_address_space(entry), offset);
142         if (IS_ERR(folio))
143                 return 0;
144         /*
145          * When this function is called from scan_swap_map_slots() and it's
146          * called by vmscan.c at reclaiming folios. So we hold a folio lock
147          * here. We have to use trylock for avoiding deadlock. This is a special
148          * case and you should use folio_free_swap() with explicit folio_lock()
149          * in usual operations.
150          */
151         if (folio_trylock(folio)) {
152                 if ((flags & TTRS_ANYWAY) ||
153                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155                         ret = folio_free_swap(folio);
156                 folio_unlock(folio);
157         }
158         folio_put(folio);
159         return ret;
160 }
161
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164         struct rb_node *rb = rb_first(&sis->swap_extent_root);
165         return rb_entry(rb, struct swap_extent, rb_node);
166 }
167
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170         struct rb_node *rb = rb_next(&se->rb_node);
171         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180         struct swap_extent *se;
181         sector_t start_block;
182         sector_t nr_blocks;
183         int err = 0;
184
185         /* Do not discard the swap header page! */
186         se = first_se(si);
187         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189         if (nr_blocks) {
190                 err = blkdev_issue_discard(si->bdev, start_block,
191                                 nr_blocks, GFP_KERNEL);
192                 if (err)
193                         return err;
194                 cond_resched();
195         }
196
197         for (se = next_se(se); se; se = next_se(se)) {
198                 start_block = se->start_block << (PAGE_SHIFT - 9);
199                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200
201                 err = blkdev_issue_discard(si->bdev, start_block,
202                                 nr_blocks, GFP_KERNEL);
203                 if (err)
204                         break;
205
206                 cond_resched();
207         }
208         return err;             /* That will often be -EOPNOTSUPP */
209 }
210
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214         struct swap_extent *se;
215         struct rb_node *rb;
216
217         rb = sis->swap_extent_root.rb_node;
218         while (rb) {
219                 se = rb_entry(rb, struct swap_extent, rb_node);
220                 if (offset < se->start_page)
221                         rb = rb->rb_left;
222                 else if (offset >= se->start_page + se->nr_pages)
223                         rb = rb->rb_right;
224                 else
225                         return se;
226         }
227         /* It *must* be present */
228         BUG();
229 }
230
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233         struct swap_info_struct *sis = swp_swap_info(folio->swap);
234         struct swap_extent *se;
235         sector_t sector;
236         pgoff_t offset;
237
238         offset = swp_offset(folio->swap);
239         se = offset_to_swap_extent(sis, offset);
240         sector = se->start_block + (offset - se->start_page);
241         return sector << (PAGE_SHIFT - 9);
242 }
243
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249                                  pgoff_t start_page, pgoff_t nr_pages)
250 {
251         struct swap_extent *se = offset_to_swap_extent(si, start_page);
252
253         while (nr_pages) {
254                 pgoff_t offset = start_page - se->start_page;
255                 sector_t start_block = se->start_block + offset;
256                 sector_t nr_blocks = se->nr_pages - offset;
257
258                 if (nr_blocks > nr_pages)
259                         nr_blocks = nr_pages;
260                 start_page += nr_blocks;
261                 nr_pages -= nr_blocks;
262
263                 start_block <<= PAGE_SHIFT - 9;
264                 nr_blocks <<= PAGE_SHIFT - 9;
265                 if (blkdev_issue_discard(si->bdev, start_block,
266                                         nr_blocks, GFP_NOIO))
267                         break;
268
269                 se = next_se(se);
270         }
271 }
272
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
275
276 #define swap_entry_size(size)   (size)
277 #else
278 #define SWAPFILE_CLUSTER        256
279
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)   1
285 #endif
286 #define LATENCY_LIMIT           256
287
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289         unsigned int flag)
290 {
291         info->flags = flag;
292 }
293
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296         return info->data;
297 }
298
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300                                      unsigned int c)
301 {
302         info->data = c;
303 }
304
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306                                          unsigned int c, unsigned int f)
307 {
308         info->flags = f;
309         info->data = c;
310 }
311
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314         return info->data;
315 }
316
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318                                     unsigned int n)
319 {
320         info->data = n;
321 }
322
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324                                          unsigned int n, unsigned int f)
325 {
326         info->flags = f;
327         info->data = n;
328 }
329
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332         return info->flags & CLUSTER_FLAG_FREE;
333 }
334
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342         info->flags = CLUSTER_FLAG_NEXT_NULL;
343         info->data = 0;
344 }
345
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348         if (IS_ENABLED(CONFIG_THP_SWAP))
349                 return info->flags & CLUSTER_FLAG_HUGE;
350         return false;
351 }
352
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355         info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359                                                      unsigned long offset)
360 {
361         struct swap_cluster_info *ci;
362
363         ci = si->cluster_info;
364         if (ci) {
365                 ci += offset / SWAPFILE_CLUSTER;
366                 spin_lock(&ci->lock);
367         }
368         return ci;
369 }
370
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373         if (ci)
374                 spin_unlock(&ci->lock);
375 }
376
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382                 struct swap_info_struct *si, unsigned long offset)
383 {
384         struct swap_cluster_info *ci;
385
386         /* Try to use fine-grained SSD-style locking if available: */
387         ci = lock_cluster(si, offset);
388         /* Otherwise, fall back to traditional, coarse locking: */
389         if (!ci)
390                 spin_lock(&si->lock);
391
392         return ci;
393 }
394
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396                                                struct swap_cluster_info *ci)
397 {
398         if (ci)
399                 unlock_cluster(ci);
400         else
401                 spin_unlock(&si->lock);
402 }
403
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406         return cluster_is_null(&list->head);
407 }
408
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411         return cluster_next(&list->head);
412 }
413
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416         cluster_set_null(&list->head);
417         cluster_set_null(&list->tail);
418 }
419
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421                                   struct swap_cluster_info *ci,
422                                   unsigned int idx)
423 {
424         if (cluster_list_empty(list)) {
425                 cluster_set_next_flag(&list->head, idx, 0);
426                 cluster_set_next_flag(&list->tail, idx, 0);
427         } else {
428                 struct swap_cluster_info *ci_tail;
429                 unsigned int tail = cluster_next(&list->tail);
430
431                 /*
432                  * Nested cluster lock, but both cluster locks are
433                  * only acquired when we held swap_info_struct->lock
434                  */
435                 ci_tail = ci + tail;
436                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437                 cluster_set_next(ci_tail, idx);
438                 spin_unlock(&ci_tail->lock);
439                 cluster_set_next_flag(&list->tail, idx, 0);
440         }
441 }
442
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444                                            struct swap_cluster_info *ci)
445 {
446         unsigned int idx;
447
448         idx = cluster_next(&list->head);
449         if (cluster_next(&list->tail) == idx) {
450                 cluster_set_null(&list->head);
451                 cluster_set_null(&list->tail);
452         } else
453                 cluster_set_next_flag(&list->head,
454                                       cluster_next(&ci[idx]), 0);
455
456         return idx;
457 }
458
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461                 unsigned int idx)
462 {
463         /*
464          * If scan_swap_map_slots() can't find a free cluster, it will check
465          * si->swap_map directly. To make sure the discarding cluster isn't
466          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467          * It will be cleared after discard
468          */
469         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471
472         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473
474         schedule_work(&si->discard_work);
475 }
476
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479         struct swap_cluster_info *ci = si->cluster_info;
480
481         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482         cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491         struct swap_cluster_info *info, *ci;
492         unsigned int idx;
493
494         info = si->cluster_info;
495
496         while (!cluster_list_empty(&si->discard_clusters)) {
497                 idx = cluster_list_del_first(&si->discard_clusters, info);
498                 spin_unlock(&si->lock);
499
500                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501                                 SWAPFILE_CLUSTER);
502
503                 spin_lock(&si->lock);
504                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505                 __free_cluster(si, idx);
506                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507                                 0, SWAPFILE_CLUSTER);
508                 unlock_cluster(ci);
509         }
510 }
511
512 static void swap_discard_work(struct work_struct *work)
513 {
514         struct swap_info_struct *si;
515
516         si = container_of(work, struct swap_info_struct, discard_work);
517
518         spin_lock(&si->lock);
519         swap_do_scheduled_discard(si);
520         spin_unlock(&si->lock);
521 }
522
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525         struct swap_info_struct *si;
526
527         si = container_of(ref, struct swap_info_struct, users);
528         complete(&si->comp);
529 }
530
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info;
534
535         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536         cluster_list_del_first(&si->free_clusters, ci);
537         cluster_set_count_flag(ci + idx, 0, 0);
538 }
539
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542         struct swap_cluster_info *ci = si->cluster_info + idx;
543
544         VM_BUG_ON(cluster_count(ci) != 0);
545         /*
546          * If the swap is discardable, prepare discard the cluster
547          * instead of free it immediately. The cluster will be freed
548          * after discard.
549          */
550         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552                 swap_cluster_schedule_discard(si, idx);
553                 return;
554         }
555
556         __free_cluster(si, idx);
557 }
558
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564         struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567
568         if (!cluster_info)
569                 return;
570         if (cluster_is_free(&cluster_info[idx]))
571                 alloc_cluster(p, idx);
572
573         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574         cluster_set_count(&cluster_info[idx],
575                 cluster_count(&cluster_info[idx]) + 1);
576 }
577
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584         struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587
588         if (!cluster_info)
589                 return;
590
591         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592         cluster_set_count(&cluster_info[idx],
593                 cluster_count(&cluster_info[idx]) - 1);
594
595         if (cluster_count(&cluster_info[idx]) == 0)
596                 free_cluster(p, idx);
597 }
598
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605         unsigned long offset)
606 {
607         struct percpu_cluster *percpu_cluster;
608         bool conflict;
609
610         offset /= SWAPFILE_CLUSTER;
611         conflict = !cluster_list_empty(&si->free_clusters) &&
612                 offset != cluster_list_first(&si->free_clusters) &&
613                 cluster_is_free(&si->cluster_info[offset]);
614
615         if (!conflict)
616                 return false;
617
618         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619         cluster_set_null(&percpu_cluster->index);
620         return true;
621 }
622
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628         unsigned long *offset, unsigned long *scan_base)
629 {
630         struct percpu_cluster *cluster;
631         struct swap_cluster_info *ci;
632         unsigned long tmp, max;
633
634 new_cluster:
635         cluster = this_cpu_ptr(si->percpu_cluster);
636         if (cluster_is_null(&cluster->index)) {
637                 if (!cluster_list_empty(&si->free_clusters)) {
638                         cluster->index = si->free_clusters.head;
639                         cluster->next = cluster_next(&cluster->index) *
640                                         SWAPFILE_CLUSTER;
641                 } else if (!cluster_list_empty(&si->discard_clusters)) {
642                         /*
643                          * we don't have free cluster but have some clusters in
644                          * discarding, do discard now and reclaim them, then
645                          * reread cluster_next_cpu since we dropped si->lock
646                          */
647                         swap_do_scheduled_discard(si);
648                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
649                         *offset = *scan_base;
650                         goto new_cluster;
651                 } else
652                         return false;
653         }
654
655         /*
656          * Other CPUs can use our cluster if they can't find a free cluster,
657          * check if there is still free entry in the cluster
658          */
659         tmp = cluster->next;
660         max = min_t(unsigned long, si->max,
661                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662         if (tmp < max) {
663                 ci = lock_cluster(si, tmp);
664                 while (tmp < max) {
665                         if (!si->swap_map[tmp])
666                                 break;
667                         tmp++;
668                 }
669                 unlock_cluster(ci);
670         }
671         if (tmp >= max) {
672                 cluster_set_null(&cluster->index);
673                 goto new_cluster;
674         }
675         cluster->next = tmp + 1;
676         *offset = tmp;
677         *scan_base = tmp;
678         return true;
679 }
680
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683         int nid;
684
685         assert_spin_locked(&p->lock);
686         for_each_node(nid)
687                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692         spin_lock(&swap_avail_lock);
693         __del_from_avail_list(p);
694         spin_unlock(&swap_avail_lock);
695 }
696
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698                              unsigned int nr_entries)
699 {
700         unsigned int end = offset + nr_entries - 1;
701
702         if (offset == si->lowest_bit)
703                 si->lowest_bit += nr_entries;
704         if (end == si->highest_bit)
705                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707         if (si->inuse_pages == si->pages) {
708                 si->lowest_bit = si->max;
709                 si->highest_bit = 0;
710                 del_from_avail_list(si);
711         }
712 }
713
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716         int nid;
717
718         spin_lock(&swap_avail_lock);
719         for_each_node(nid)
720                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721         spin_unlock(&swap_avail_lock);
722 }
723
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725                             unsigned int nr_entries)
726 {
727         unsigned long begin = offset;
728         unsigned long end = offset + nr_entries - 1;
729         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731         if (offset < si->lowest_bit)
732                 si->lowest_bit = offset;
733         if (end > si->highest_bit) {
734                 bool was_full = !si->highest_bit;
735
736                 WRITE_ONCE(si->highest_bit, end);
737                 if (was_full && (si->flags & SWP_WRITEOK))
738                         add_to_avail_list(si);
739         }
740         if (si->flags & SWP_BLKDEV)
741                 swap_slot_free_notify =
742                         si->bdev->bd_disk->fops->swap_slot_free_notify;
743         else
744                 swap_slot_free_notify = NULL;
745         while (offset <= end) {
746                 arch_swap_invalidate_page(si->type, offset);
747                 if (swap_slot_free_notify)
748                         swap_slot_free_notify(si->bdev, offset);
749                 offset++;
750         }
751         clear_shadow_from_swap_cache(si->type, begin, end);
752
753         /*
754          * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
755          * only after the above cleanups are done.
756          */
757         smp_wmb();
758         atomic_long_add(nr_entries, &nr_swap_pages);
759         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
760 }
761
762 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
763 {
764         unsigned long prev;
765
766         if (!(si->flags & SWP_SOLIDSTATE)) {
767                 si->cluster_next = next;
768                 return;
769         }
770
771         prev = this_cpu_read(*si->cluster_next_cpu);
772         /*
773          * Cross the swap address space size aligned trunk, choose
774          * another trunk randomly to avoid lock contention on swap
775          * address space if possible.
776          */
777         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
778             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
779                 /* No free swap slots available */
780                 if (si->highest_bit <= si->lowest_bit)
781                         return;
782                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
783                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
784                 next = max_t(unsigned int, next, si->lowest_bit);
785         }
786         this_cpu_write(*si->cluster_next_cpu, next);
787 }
788
789 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
790                                              unsigned long offset)
791 {
792         if (data_race(!si->swap_map[offset])) {
793                 spin_lock(&si->lock);
794                 return true;
795         }
796
797         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
798                 spin_lock(&si->lock);
799                 return true;
800         }
801
802         return false;
803 }
804
805 static int scan_swap_map_slots(struct swap_info_struct *si,
806                                unsigned char usage, int nr,
807                                swp_entry_t slots[])
808 {
809         struct swap_cluster_info *ci;
810         unsigned long offset;
811         unsigned long scan_base;
812         unsigned long last_in_cluster = 0;
813         int latency_ration = LATENCY_LIMIT;
814         int n_ret = 0;
815         bool scanned_many = false;
816
817         /*
818          * We try to cluster swap pages by allocating them sequentially
819          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
820          * way, however, we resort to first-free allocation, starting
821          * a new cluster.  This prevents us from scattering swap pages
822          * all over the entire swap partition, so that we reduce
823          * overall disk seek times between swap pages.  -- sct
824          * But we do now try to find an empty cluster.  -Andrea
825          * And we let swap pages go all over an SSD partition.  Hugh
826          */
827
828         si->flags += SWP_SCANNING;
829         /*
830          * Use percpu scan base for SSD to reduce lock contention on
831          * cluster and swap cache.  For HDD, sequential access is more
832          * important.
833          */
834         if (si->flags & SWP_SOLIDSTATE)
835                 scan_base = this_cpu_read(*si->cluster_next_cpu);
836         else
837                 scan_base = si->cluster_next;
838         offset = scan_base;
839
840         /* SSD algorithm */
841         if (si->cluster_info) {
842                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
843                         goto scan;
844         } else if (unlikely(!si->cluster_nr--)) {
845                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
846                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
847                         goto checks;
848                 }
849
850                 spin_unlock(&si->lock);
851
852                 /*
853                  * If seek is expensive, start searching for new cluster from
854                  * start of partition, to minimize the span of allocated swap.
855                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
856                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
857                  */
858                 scan_base = offset = si->lowest_bit;
859                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
860
861                 /* Locate the first empty (unaligned) cluster */
862                 for (; last_in_cluster <= si->highest_bit; offset++) {
863                         if (si->swap_map[offset])
864                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
865                         else if (offset == last_in_cluster) {
866                                 spin_lock(&si->lock);
867                                 offset -= SWAPFILE_CLUSTER - 1;
868                                 si->cluster_next = offset;
869                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
870                                 goto checks;
871                         }
872                         if (unlikely(--latency_ration < 0)) {
873                                 cond_resched();
874                                 latency_ration = LATENCY_LIMIT;
875                         }
876                 }
877
878                 offset = scan_base;
879                 spin_lock(&si->lock);
880                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
881         }
882
883 checks:
884         if (si->cluster_info) {
885                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
886                 /* take a break if we already got some slots */
887                         if (n_ret)
888                                 goto done;
889                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
890                                                         &scan_base))
891                                 goto scan;
892                 }
893         }
894         if (!(si->flags & SWP_WRITEOK))
895                 goto no_page;
896         if (!si->highest_bit)
897                 goto no_page;
898         if (offset > si->highest_bit)
899                 scan_base = offset = si->lowest_bit;
900
901         ci = lock_cluster(si, offset);
902         /* reuse swap entry of cache-only swap if not busy. */
903         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
904                 int swap_was_freed;
905                 unlock_cluster(ci);
906                 spin_unlock(&si->lock);
907                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
908                 spin_lock(&si->lock);
909                 /* entry was freed successfully, try to use this again */
910                 if (swap_was_freed)
911                         goto checks;
912                 goto scan; /* check next one */
913         }
914
915         if (si->swap_map[offset]) {
916                 unlock_cluster(ci);
917                 if (!n_ret)
918                         goto scan;
919                 else
920                         goto done;
921         }
922         WRITE_ONCE(si->swap_map[offset], usage);
923         inc_cluster_info_page(si, si->cluster_info, offset);
924         unlock_cluster(ci);
925
926         swap_range_alloc(si, offset, 1);
927         slots[n_ret++] = swp_entry(si->type, offset);
928
929         /* got enough slots or reach max slots? */
930         if ((n_ret == nr) || (offset >= si->highest_bit))
931                 goto done;
932
933         /* search for next available slot */
934
935         /* time to take a break? */
936         if (unlikely(--latency_ration < 0)) {
937                 if (n_ret)
938                         goto done;
939                 spin_unlock(&si->lock);
940                 cond_resched();
941                 spin_lock(&si->lock);
942                 latency_ration = LATENCY_LIMIT;
943         }
944
945         /* try to get more slots in cluster */
946         if (si->cluster_info) {
947                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
948                         goto checks;
949         } else if (si->cluster_nr && !si->swap_map[++offset]) {
950                 /* non-ssd case, still more slots in cluster? */
951                 --si->cluster_nr;
952                 goto checks;
953         }
954
955         /*
956          * Even if there's no free clusters available (fragmented),
957          * try to scan a little more quickly with lock held unless we
958          * have scanned too many slots already.
959          */
960         if (!scanned_many) {
961                 unsigned long scan_limit;
962
963                 if (offset < scan_base)
964                         scan_limit = scan_base;
965                 else
966                         scan_limit = si->highest_bit;
967                 for (; offset <= scan_limit && --latency_ration > 0;
968                      offset++) {
969                         if (!si->swap_map[offset])
970                                 goto checks;
971                 }
972         }
973
974 done:
975         set_cluster_next(si, offset + 1);
976         si->flags -= SWP_SCANNING;
977         return n_ret;
978
979 scan:
980         spin_unlock(&si->lock);
981         while (++offset <= READ_ONCE(si->highest_bit)) {
982                 if (unlikely(--latency_ration < 0)) {
983                         cond_resched();
984                         latency_ration = LATENCY_LIMIT;
985                         scanned_many = true;
986                 }
987                 if (swap_offset_available_and_locked(si, offset))
988                         goto checks;
989         }
990         offset = si->lowest_bit;
991         while (offset < scan_base) {
992                 if (unlikely(--latency_ration < 0)) {
993                         cond_resched();
994                         latency_ration = LATENCY_LIMIT;
995                         scanned_many = true;
996                 }
997                 if (swap_offset_available_and_locked(si, offset))
998                         goto checks;
999                 offset++;
1000         }
1001         spin_lock(&si->lock);
1002
1003 no_page:
1004         si->flags -= SWP_SCANNING;
1005         return n_ret;
1006 }
1007
1008 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1009 {
1010         unsigned long idx;
1011         struct swap_cluster_info *ci;
1012         unsigned long offset;
1013
1014         /*
1015          * Should not even be attempting cluster allocations when huge
1016          * page swap is disabled.  Warn and fail the allocation.
1017          */
1018         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1019                 VM_WARN_ON_ONCE(1);
1020                 return 0;
1021         }
1022
1023         if (cluster_list_empty(&si->free_clusters))
1024                 return 0;
1025
1026         idx = cluster_list_first(&si->free_clusters);
1027         offset = idx * SWAPFILE_CLUSTER;
1028         ci = lock_cluster(si, offset);
1029         alloc_cluster(si, idx);
1030         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1031
1032         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1033         unlock_cluster(ci);
1034         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1035         *slot = swp_entry(si->type, offset);
1036
1037         return 1;
1038 }
1039
1040 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1041 {
1042         unsigned long offset = idx * SWAPFILE_CLUSTER;
1043         struct swap_cluster_info *ci;
1044
1045         ci = lock_cluster(si, offset);
1046         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1047         cluster_set_count_flag(ci, 0, 0);
1048         free_cluster(si, idx);
1049         unlock_cluster(ci);
1050         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1051 }
1052
1053 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1054 {
1055         unsigned long size = swap_entry_size(entry_size);
1056         struct swap_info_struct *si, *next;
1057         long avail_pgs;
1058         int n_ret = 0;
1059         int node;
1060
1061         /* Only single cluster request supported */
1062         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1063
1064         spin_lock(&swap_avail_lock);
1065
1066         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1067         if (avail_pgs <= 0) {
1068                 spin_unlock(&swap_avail_lock);
1069                 goto noswap;
1070         }
1071
1072         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1073
1074         atomic_long_sub(n_goal * size, &nr_swap_pages);
1075
1076 start_over:
1077         node = numa_node_id();
1078         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1079                 /* requeue si to after same-priority siblings */
1080                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1081                 spin_unlock(&swap_avail_lock);
1082                 spin_lock(&si->lock);
1083                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1084                         spin_lock(&swap_avail_lock);
1085                         if (plist_node_empty(&si->avail_lists[node])) {
1086                                 spin_unlock(&si->lock);
1087                                 goto nextsi;
1088                         }
1089                         WARN(!si->highest_bit,
1090                              "swap_info %d in list but !highest_bit\n",
1091                              si->type);
1092                         WARN(!(si->flags & SWP_WRITEOK),
1093                              "swap_info %d in list but !SWP_WRITEOK\n",
1094                              si->type);
1095                         __del_from_avail_list(si);
1096                         spin_unlock(&si->lock);
1097                         goto nextsi;
1098                 }
1099                 if (size == SWAPFILE_CLUSTER) {
1100                         if (si->flags & SWP_BLKDEV)
1101                                 n_ret = swap_alloc_cluster(si, swp_entries);
1102                 } else
1103                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1104                                                     n_goal, swp_entries);
1105                 spin_unlock(&si->lock);
1106                 if (n_ret || size == SWAPFILE_CLUSTER)
1107                         goto check_out;
1108                 cond_resched();
1109
1110                 spin_lock(&swap_avail_lock);
1111 nextsi:
1112                 /*
1113                  * if we got here, it's likely that si was almost full before,
1114                  * and since scan_swap_map_slots() can drop the si->lock,
1115                  * multiple callers probably all tried to get a page from the
1116                  * same si and it filled up before we could get one; or, the si
1117                  * filled up between us dropping swap_avail_lock and taking
1118                  * si->lock. Since we dropped the swap_avail_lock, the
1119                  * swap_avail_head list may have been modified; so if next is
1120                  * still in the swap_avail_head list then try it, otherwise
1121                  * start over if we have not gotten any slots.
1122                  */
1123                 if (plist_node_empty(&next->avail_lists[node]))
1124                         goto start_over;
1125         }
1126
1127         spin_unlock(&swap_avail_lock);
1128
1129 check_out:
1130         if (n_ret < n_goal)
1131                 atomic_long_add((long)(n_goal - n_ret) * size,
1132                                 &nr_swap_pages);
1133 noswap:
1134         return n_ret;
1135 }
1136
1137 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1138 {
1139         struct swap_info_struct *p;
1140         unsigned long offset;
1141
1142         if (!entry.val)
1143                 goto out;
1144         p = swp_swap_info(entry);
1145         if (!p)
1146                 goto bad_nofile;
1147         if (data_race(!(p->flags & SWP_USED)))
1148                 goto bad_device;
1149         offset = swp_offset(entry);
1150         if (offset >= p->max)
1151                 goto bad_offset;
1152         if (data_race(!p->swap_map[swp_offset(entry)]))
1153                 goto bad_free;
1154         return p;
1155
1156 bad_free:
1157         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1158         goto out;
1159 bad_offset:
1160         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1161         goto out;
1162 bad_device:
1163         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1164         goto out;
1165 bad_nofile:
1166         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172                                         struct swap_info_struct *q)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = _swap_info_get(entry);
1177
1178         if (p != q) {
1179                 if (q != NULL)
1180                         spin_unlock(&q->lock);
1181                 if (p != NULL)
1182                         spin_lock(&p->lock);
1183         }
1184         return p;
1185 }
1186
1187 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188                                               unsigned long offset,
1189                                               unsigned char usage)
1190 {
1191         unsigned char count;
1192         unsigned char has_cache;
1193
1194         count = p->swap_map[offset];
1195
1196         has_cache = count & SWAP_HAS_CACHE;
1197         count &= ~SWAP_HAS_CACHE;
1198
1199         if (usage == SWAP_HAS_CACHE) {
1200                 VM_BUG_ON(!has_cache);
1201                 has_cache = 0;
1202         } else if (count == SWAP_MAP_SHMEM) {
1203                 /*
1204                  * Or we could insist on shmem.c using a special
1205                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1206                  */
1207                 count = 0;
1208         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209                 if (count == COUNT_CONTINUED) {
1210                         if (swap_count_continued(p, offset, count))
1211                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212                         else
1213                                 count = SWAP_MAP_MAX;
1214                 } else
1215                         count--;
1216         }
1217
1218         usage = count | has_cache;
1219         if (usage)
1220                 WRITE_ONCE(p->swap_map[offset], usage);
1221         else
1222                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223
1224         return usage;
1225 }
1226
1227 /*
1228  * When we get a swap entry, if there aren't some other ways to
1229  * prevent swapoff, such as the folio in swap cache is locked, page
1230  * table lock is held, etc., the swap entry may become invalid because
1231  * of swapoff.  Then, we need to enclose all swap related functions
1232  * with get_swap_device() and put_swap_device(), unless the swap
1233  * functions call get/put_swap_device() by themselves.
1234  *
1235  * Note that when only holding the PTL, swapoff might succeed immediately
1236  * after freeing a swap entry. Therefore, immediately after
1237  * __swap_entry_free(), the swap info might become stale and should not
1238  * be touched without a prior get_swap_device().
1239  *
1240  * Check whether swap entry is valid in the swap device.  If so,
1241  * return pointer to swap_info_struct, and keep the swap entry valid
1242  * via preventing the swap device from being swapoff, until
1243  * put_swap_device() is called.  Otherwise return NULL.
1244  *
1245  * Notice that swapoff or swapoff+swapon can still happen before the
1246  * percpu_ref_tryget_live() in get_swap_device() or after the
1247  * percpu_ref_put() in put_swap_device() if there isn't any other way
1248  * to prevent swapoff.  The caller must be prepared for that.  For
1249  * example, the following situation is possible.
1250  *
1251  *   CPU1                               CPU2
1252  *   do_swap_page()
1253  *     ...                              swapoff+swapon
1254  *     __read_swap_cache_async()
1255  *       swapcache_prepare()
1256  *         __swap_duplicate()
1257  *           // check swap_map
1258  *     // verify PTE not changed
1259  *
1260  * In __swap_duplicate(), the swap_map need to be checked before
1261  * changing partly because the specified swap entry may be for another
1262  * swap device which has been swapoff.  And in do_swap_page(), after
1263  * the page is read from the swap device, the PTE is verified not
1264  * changed with the page table locked to check whether the swap device
1265  * has been swapoff or swapoff+swapon.
1266  */
1267 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268 {
1269         struct swap_info_struct *si;
1270         unsigned long offset;
1271
1272         if (!entry.val)
1273                 goto out;
1274         si = swp_swap_info(entry);
1275         if (!si)
1276                 goto bad_nofile;
1277         if (!percpu_ref_tryget_live(&si->users))
1278                 goto out;
1279         /*
1280          * Guarantee the si->users are checked before accessing other
1281          * fields of swap_info_struct.
1282          *
1283          * Paired with the spin_unlock() after setup_swap_info() in
1284          * enable_swap_info().
1285          */
1286         smp_rmb();
1287         offset = swp_offset(entry);
1288         if (offset >= si->max)
1289                 goto put_out;
1290
1291         return si;
1292 bad_nofile:
1293         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294 out:
1295         return NULL;
1296 put_out:
1297         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1298         percpu_ref_put(&si->users);
1299         return NULL;
1300 }
1301
1302 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1303                                        swp_entry_t entry)
1304 {
1305         struct swap_cluster_info *ci;
1306         unsigned long offset = swp_offset(entry);
1307         unsigned char usage;
1308
1309         ci = lock_cluster_or_swap_info(p, offset);
1310         usage = __swap_entry_free_locked(p, offset, 1);
1311         unlock_cluster_or_swap_info(p, ci);
1312         if (!usage)
1313                 free_swap_slot(entry);
1314
1315         return usage;
1316 }
1317
1318 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1319 {
1320         struct swap_cluster_info *ci;
1321         unsigned long offset = swp_offset(entry);
1322         unsigned char count;
1323
1324         ci = lock_cluster(p, offset);
1325         count = p->swap_map[offset];
1326         VM_BUG_ON(count != SWAP_HAS_CACHE);
1327         p->swap_map[offset] = 0;
1328         dec_cluster_info_page(p, p->cluster_info, offset);
1329         unlock_cluster(ci);
1330
1331         mem_cgroup_uncharge_swap(entry, 1);
1332         swap_range_free(p, offset, 1);
1333 }
1334
1335 /*
1336  * Caller has made sure that the swap device corresponding to entry
1337  * is still around or has not been recycled.
1338  */
1339 void swap_free(swp_entry_t entry)
1340 {
1341         struct swap_info_struct *p;
1342
1343         p = _swap_info_get(entry);
1344         if (p)
1345                 __swap_entry_free(p, entry);
1346 }
1347
1348 /*
1349  * Called after dropping swapcache to decrease refcnt to swap entries.
1350  */
1351 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1352 {
1353         unsigned long offset = swp_offset(entry);
1354         unsigned long idx = offset / SWAPFILE_CLUSTER;
1355         struct swap_cluster_info *ci;
1356         struct swap_info_struct *si;
1357         unsigned char *map;
1358         unsigned int i, free_entries = 0;
1359         unsigned char val;
1360         int size = swap_entry_size(folio_nr_pages(folio));
1361
1362         si = _swap_info_get(entry);
1363         if (!si)
1364                 return;
1365
1366         ci = lock_cluster_or_swap_info(si, offset);
1367         if (size == SWAPFILE_CLUSTER) {
1368                 VM_BUG_ON(!cluster_is_huge(ci));
1369                 map = si->swap_map + offset;
1370                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1371                         val = map[i];
1372                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1373                         if (val == SWAP_HAS_CACHE)
1374                                 free_entries++;
1375                 }
1376                 cluster_clear_huge(ci);
1377                 if (free_entries == SWAPFILE_CLUSTER) {
1378                         unlock_cluster_or_swap_info(si, ci);
1379                         spin_lock(&si->lock);
1380                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1381                         swap_free_cluster(si, idx);
1382                         spin_unlock(&si->lock);
1383                         return;
1384                 }
1385         }
1386         for (i = 0; i < size; i++, entry.val++) {
1387                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1388                         unlock_cluster_or_swap_info(si, ci);
1389                         free_swap_slot(entry);
1390                         if (i == size - 1)
1391                                 return;
1392                         lock_cluster_or_swap_info(si, offset);
1393                 }
1394         }
1395         unlock_cluster_or_swap_info(si, ci);
1396 }
1397
1398 #ifdef CONFIG_THP_SWAP
1399 int split_swap_cluster(swp_entry_t entry)
1400 {
1401         struct swap_info_struct *si;
1402         struct swap_cluster_info *ci;
1403         unsigned long offset = swp_offset(entry);
1404
1405         si = _swap_info_get(entry);
1406         if (!si)
1407                 return -EBUSY;
1408         ci = lock_cluster(si, offset);
1409         cluster_clear_huge(ci);
1410         unlock_cluster(ci);
1411         return 0;
1412 }
1413 #endif
1414
1415 static int swp_entry_cmp(const void *ent1, const void *ent2)
1416 {
1417         const swp_entry_t *e1 = ent1, *e2 = ent2;
1418
1419         return (int)swp_type(*e1) - (int)swp_type(*e2);
1420 }
1421
1422 void swapcache_free_entries(swp_entry_t *entries, int n)
1423 {
1424         struct swap_info_struct *p, *prev;
1425         int i;
1426
1427         if (n <= 0)
1428                 return;
1429
1430         prev = NULL;
1431         p = NULL;
1432
1433         /*
1434          * Sort swap entries by swap device, so each lock is only taken once.
1435          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1436          * so low that it isn't necessary to optimize further.
1437          */
1438         if (nr_swapfiles > 1)
1439                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1440         for (i = 0; i < n; ++i) {
1441                 p = swap_info_get_cont(entries[i], prev);
1442                 if (p)
1443                         swap_entry_free(p, entries[i]);
1444                 prev = p;
1445         }
1446         if (p)
1447                 spin_unlock(&p->lock);
1448 }
1449
1450 int __swap_count(swp_entry_t entry)
1451 {
1452         struct swap_info_struct *si = swp_swap_info(entry);
1453         pgoff_t offset = swp_offset(entry);
1454
1455         return swap_count(si->swap_map[offset]);
1456 }
1457
1458 /*
1459  * How many references to @entry are currently swapped out?
1460  * This does not give an exact answer when swap count is continued,
1461  * but does include the high COUNT_CONTINUED flag to allow for that.
1462  */
1463 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1464 {
1465         pgoff_t offset = swp_offset(entry);
1466         struct swap_cluster_info *ci;
1467         int count;
1468
1469         ci = lock_cluster_or_swap_info(si, offset);
1470         count = swap_count(si->swap_map[offset]);
1471         unlock_cluster_or_swap_info(si, ci);
1472         return count;
1473 }
1474
1475 /*
1476  * How many references to @entry are currently swapped out?
1477  * This considers COUNT_CONTINUED so it returns exact answer.
1478  */
1479 int swp_swapcount(swp_entry_t entry)
1480 {
1481         int count, tmp_count, n;
1482         struct swap_info_struct *p;
1483         struct swap_cluster_info *ci;
1484         struct page *page;
1485         pgoff_t offset;
1486         unsigned char *map;
1487
1488         p = _swap_info_get(entry);
1489         if (!p)
1490                 return 0;
1491
1492         offset = swp_offset(entry);
1493
1494         ci = lock_cluster_or_swap_info(p, offset);
1495
1496         count = swap_count(p->swap_map[offset]);
1497         if (!(count & COUNT_CONTINUED))
1498                 goto out;
1499
1500         count &= ~COUNT_CONTINUED;
1501         n = SWAP_MAP_MAX + 1;
1502
1503         page = vmalloc_to_page(p->swap_map + offset);
1504         offset &= ~PAGE_MASK;
1505         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506
1507         do {
1508                 page = list_next_entry(page, lru);
1509                 map = kmap_local_page(page);
1510                 tmp_count = map[offset];
1511                 kunmap_local(map);
1512
1513                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1514                 n *= (SWAP_CONT_MAX + 1);
1515         } while (tmp_count & COUNT_CONTINUED);
1516 out:
1517         unlock_cluster_or_swap_info(p, ci);
1518         return count;
1519 }
1520
1521 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522                                          swp_entry_t entry)
1523 {
1524         struct swap_cluster_info *ci;
1525         unsigned char *map = si->swap_map;
1526         unsigned long roffset = swp_offset(entry);
1527         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528         int i;
1529         bool ret = false;
1530
1531         ci = lock_cluster_or_swap_info(si, offset);
1532         if (!ci || !cluster_is_huge(ci)) {
1533                 if (swap_count(map[roffset]))
1534                         ret = true;
1535                 goto unlock_out;
1536         }
1537         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1538                 if (swap_count(map[offset + i])) {
1539                         ret = true;
1540                         break;
1541                 }
1542         }
1543 unlock_out:
1544         unlock_cluster_or_swap_info(si, ci);
1545         return ret;
1546 }
1547
1548 static bool folio_swapped(struct folio *folio)
1549 {
1550         swp_entry_t entry = folio->swap;
1551         struct swap_info_struct *si = _swap_info_get(entry);
1552
1553         if (!si)
1554                 return false;
1555
1556         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1557                 return swap_swapcount(si, entry) != 0;
1558
1559         return swap_page_trans_huge_swapped(si, entry);
1560 }
1561
1562 /**
1563  * folio_free_swap() - Free the swap space used for this folio.
1564  * @folio: The folio to remove.
1565  *
1566  * If swap is getting full, or if there are no more mappings of this folio,
1567  * then call folio_free_swap to free its swap space.
1568  *
1569  * Return: true if we were able to release the swap space.
1570  */
1571 bool folio_free_swap(struct folio *folio)
1572 {
1573         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1574
1575         if (!folio_test_swapcache(folio))
1576                 return false;
1577         if (folio_test_writeback(folio))
1578                 return false;
1579         if (folio_swapped(folio))
1580                 return false;
1581
1582         /*
1583          * Once hibernation has begun to create its image of memory,
1584          * there's a danger that one of the calls to folio_free_swap()
1585          * - most probably a call from __try_to_reclaim_swap() while
1586          * hibernation is allocating its own swap pages for the image,
1587          * but conceivably even a call from memory reclaim - will free
1588          * the swap from a folio which has already been recorded in the
1589          * image as a clean swapcache folio, and then reuse its swap for
1590          * another page of the image.  On waking from hibernation, the
1591          * original folio might be freed under memory pressure, then
1592          * later read back in from swap, now with the wrong data.
1593          *
1594          * Hibernation suspends storage while it is writing the image
1595          * to disk so check that here.
1596          */
1597         if (pm_suspended_storage())
1598                 return false;
1599
1600         delete_from_swap_cache(folio);
1601         folio_set_dirty(folio);
1602         return true;
1603 }
1604
1605 /*
1606  * Free the swap entry like above, but also try to
1607  * free the page cache entry if it is the last user.
1608  */
1609 int free_swap_and_cache(swp_entry_t entry)
1610 {
1611         struct swap_info_struct *p;
1612         unsigned char count;
1613
1614         if (non_swap_entry(entry))
1615                 return 1;
1616
1617         p = get_swap_device(entry);
1618         if (p) {
1619                 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1620                         put_swap_device(p);
1621                         return 0;
1622                 }
1623
1624                 count = __swap_entry_free(p, entry);
1625                 if (count == SWAP_HAS_CACHE &&
1626                     !swap_page_trans_huge_swapped(p, entry))
1627                         __try_to_reclaim_swap(p, swp_offset(entry),
1628                                               TTRS_UNMAPPED | TTRS_FULL);
1629                 put_swap_device(p);
1630         }
1631         return p != NULL;
1632 }
1633
1634 #ifdef CONFIG_HIBERNATION
1635
1636 swp_entry_t get_swap_page_of_type(int type)
1637 {
1638         struct swap_info_struct *si = swap_type_to_swap_info(type);
1639         swp_entry_t entry = {0};
1640
1641         if (!si)
1642                 goto fail;
1643
1644         /* This is called for allocating swap entry, not cache */
1645         spin_lock(&si->lock);
1646         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647                 atomic_long_dec(&nr_swap_pages);
1648         spin_unlock(&si->lock);
1649 fail:
1650         return entry;
1651 }
1652
1653 /*
1654  * Find the swap type that corresponds to given device (if any).
1655  *
1656  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657  * from 0, in which the swap header is expected to be located.
1658  *
1659  * This is needed for the suspend to disk (aka swsusp).
1660  */
1661 int swap_type_of(dev_t device, sector_t offset)
1662 {
1663         int type;
1664
1665         if (!device)
1666                 return -1;
1667
1668         spin_lock(&swap_lock);
1669         for (type = 0; type < nr_swapfiles; type++) {
1670                 struct swap_info_struct *sis = swap_info[type];
1671
1672                 if (!(sis->flags & SWP_WRITEOK))
1673                         continue;
1674
1675                 if (device == sis->bdev->bd_dev) {
1676                         struct swap_extent *se = first_se(sis);
1677
1678                         if (se->start_block == offset) {
1679                                 spin_unlock(&swap_lock);
1680                                 return type;
1681                         }
1682                 }
1683         }
1684         spin_unlock(&swap_lock);
1685         return -ENODEV;
1686 }
1687
1688 int find_first_swap(dev_t *device)
1689 {
1690         int type;
1691
1692         spin_lock(&swap_lock);
1693         for (type = 0; type < nr_swapfiles; type++) {
1694                 struct swap_info_struct *sis = swap_info[type];
1695
1696                 if (!(sis->flags & SWP_WRITEOK))
1697                         continue;
1698                 *device = sis->bdev->bd_dev;
1699                 spin_unlock(&swap_lock);
1700                 return type;
1701         }
1702         spin_unlock(&swap_lock);
1703         return -ENODEV;
1704 }
1705
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712         struct swap_info_struct *si = swap_type_to_swap_info(type);
1713         struct swap_extent *se;
1714
1715         if (!si || !(si->flags & SWP_WRITEOK))
1716                 return 0;
1717         se = offset_to_swap_extent(si, offset);
1718         return se->start_block + (offset - se->start_page);
1719 }
1720
1721 /*
1722  * Return either the total number of swap pages of given type, or the number
1723  * of free pages of that type (depending on @free)
1724  *
1725  * This is needed for software suspend
1726  */
1727 unsigned int count_swap_pages(int type, int free)
1728 {
1729         unsigned int n = 0;
1730
1731         spin_lock(&swap_lock);
1732         if ((unsigned int)type < nr_swapfiles) {
1733                 struct swap_info_struct *sis = swap_info[type];
1734
1735                 spin_lock(&sis->lock);
1736                 if (sis->flags & SWP_WRITEOK) {
1737                         n = sis->pages;
1738                         if (free)
1739                                 n -= sis->inuse_pages;
1740                 }
1741                 spin_unlock(&sis->lock);
1742         }
1743         spin_unlock(&swap_lock);
1744         return n;
1745 }
1746 #endif /* CONFIG_HIBERNATION */
1747
1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749 {
1750         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1751 }
1752
1753 /*
1754  * No need to decide whether this PTE shares the swap entry with others,
1755  * just let do_wp_page work it out if a write is requested later - to
1756  * force COW, vm_page_prot omits write permission from any private vma.
1757  */
1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1760 {
1761         struct page *page;
1762         struct folio *swapcache;
1763         spinlock_t *ptl;
1764         pte_t *pte, new_pte, old_pte;
1765         bool hwpoisoned = false;
1766         int ret = 1;
1767
1768         swapcache = folio;
1769         folio = ksm_might_need_to_copy(folio, vma, addr);
1770         if (unlikely(!folio))
1771                 return -ENOMEM;
1772         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1773                 hwpoisoned = true;
1774                 folio = swapcache;
1775         }
1776
1777         page = folio_file_page(folio, swp_offset(entry));
1778         if (PageHWPoison(page))
1779                 hwpoisoned = true;
1780
1781         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1782         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1783                                                 swp_entry_to_pte(entry)))) {
1784                 ret = 0;
1785                 goto out;
1786         }
1787
1788         old_pte = ptep_get(pte);
1789
1790         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1791                 swp_entry_t swp_entry;
1792
1793                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794                 if (hwpoisoned) {
1795                         swp_entry = make_hwpoison_entry(page);
1796                 } else {
1797                         swp_entry = make_poisoned_swp_entry();
1798                 }
1799                 new_pte = swp_entry_to_pte(swp_entry);
1800                 ret = 0;
1801                 goto setpte;
1802         }
1803
1804         /*
1805          * Some architectures may have to restore extra metadata to the page
1806          * when reading from swap. This metadata may be indexed by swap entry
1807          * so this must be called before swap_free().
1808          */
1809         arch_swap_restore(entry, folio);
1810
1811         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1812         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1813         folio_get(folio);
1814         if (folio == swapcache) {
1815                 rmap_t rmap_flags = RMAP_NONE;
1816
1817                 /*
1818                  * See do_swap_page(): writeback would be problematic.
1819                  * However, we do a folio_wait_writeback() just before this
1820                  * call and have the folio locked.
1821                  */
1822                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1823                 if (pte_swp_exclusive(old_pte))
1824                         rmap_flags |= RMAP_EXCLUSIVE;
1825
1826                 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1827         } else { /* ksm created a completely new copy */
1828                 folio_add_new_anon_rmap(folio, vma, addr);
1829                 folio_add_lru_vma(folio, vma);
1830         }
1831         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1832         if (pte_swp_soft_dirty(old_pte))
1833                 new_pte = pte_mksoft_dirty(new_pte);
1834         if (pte_swp_uffd_wp(old_pte))
1835                 new_pte = pte_mkuffd_wp(new_pte);
1836 setpte:
1837         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1838         swap_free(entry);
1839 out:
1840         if (pte)
1841                 pte_unmap_unlock(pte, ptl);
1842         if (folio != swapcache) {
1843                 folio_unlock(folio);
1844                 folio_put(folio);
1845         }
1846         return ret;
1847 }
1848
1849 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1850                         unsigned long addr, unsigned long end,
1851                         unsigned int type)
1852 {
1853         pte_t *pte = NULL;
1854         struct swap_info_struct *si;
1855
1856         si = swap_info[type];
1857         do {
1858                 struct folio *folio;
1859                 unsigned long offset;
1860                 unsigned char swp_count;
1861                 swp_entry_t entry;
1862                 int ret;
1863                 pte_t ptent;
1864
1865                 if (!pte++) {
1866                         pte = pte_offset_map(pmd, addr);
1867                         if (!pte)
1868                                 break;
1869                 }
1870
1871                 ptent = ptep_get_lockless(pte);
1872
1873                 if (!is_swap_pte(ptent))
1874                         continue;
1875
1876                 entry = pte_to_swp_entry(ptent);
1877                 if (swp_type(entry) != type)
1878                         continue;
1879
1880                 offset = swp_offset(entry);
1881                 pte_unmap(pte);
1882                 pte = NULL;
1883
1884                 folio = swap_cache_get_folio(entry, vma, addr);
1885                 if (!folio) {
1886                         struct page *page;
1887                         struct vm_fault vmf = {
1888                                 .vma = vma,
1889                                 .address = addr,
1890                                 .real_address = addr,
1891                                 .pmd = pmd,
1892                         };
1893
1894                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1895                                                 &vmf);
1896                         if (page)
1897                                 folio = page_folio(page);
1898                 }
1899                 if (!folio) {
1900                         swp_count = READ_ONCE(si->swap_map[offset]);
1901                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1902                                 continue;
1903                         return -ENOMEM;
1904                 }
1905
1906                 folio_lock(folio);
1907                 folio_wait_writeback(folio);
1908                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1909                 if (ret < 0) {
1910                         folio_unlock(folio);
1911                         folio_put(folio);
1912                         return ret;
1913                 }
1914
1915                 folio_free_swap(folio);
1916                 folio_unlock(folio);
1917                 folio_put(folio);
1918         } while (addr += PAGE_SIZE, addr != end);
1919
1920         if (pte)
1921                 pte_unmap(pte);
1922         return 0;
1923 }
1924
1925 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1926                                 unsigned long addr, unsigned long end,
1927                                 unsigned int type)
1928 {
1929         pmd_t *pmd;
1930         unsigned long next;
1931         int ret;
1932
1933         pmd = pmd_offset(pud, addr);
1934         do {
1935                 cond_resched();
1936                 next = pmd_addr_end(addr, end);
1937                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1938                 if (ret)
1939                         return ret;
1940         } while (pmd++, addr = next, addr != end);
1941         return 0;
1942 }
1943
1944 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1945                                 unsigned long addr, unsigned long end,
1946                                 unsigned int type)
1947 {
1948         pud_t *pud;
1949         unsigned long next;
1950         int ret;
1951
1952         pud = pud_offset(p4d, addr);
1953         do {
1954                 next = pud_addr_end(addr, end);
1955                 if (pud_none_or_clear_bad(pud))
1956                         continue;
1957                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1958                 if (ret)
1959                         return ret;
1960         } while (pud++, addr = next, addr != end);
1961         return 0;
1962 }
1963
1964 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1965                                 unsigned long addr, unsigned long end,
1966                                 unsigned int type)
1967 {
1968         p4d_t *p4d;
1969         unsigned long next;
1970         int ret;
1971
1972         p4d = p4d_offset(pgd, addr);
1973         do {
1974                 next = p4d_addr_end(addr, end);
1975                 if (p4d_none_or_clear_bad(p4d))
1976                         continue;
1977                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1978                 if (ret)
1979                         return ret;
1980         } while (p4d++, addr = next, addr != end);
1981         return 0;
1982 }
1983
1984 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1985 {
1986         pgd_t *pgd;
1987         unsigned long addr, end, next;
1988         int ret;
1989
1990         addr = vma->vm_start;
1991         end = vma->vm_end;
1992
1993         pgd = pgd_offset(vma->vm_mm, addr);
1994         do {
1995                 next = pgd_addr_end(addr, end);
1996                 if (pgd_none_or_clear_bad(pgd))
1997                         continue;
1998                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1999                 if (ret)
2000                         return ret;
2001         } while (pgd++, addr = next, addr != end);
2002         return 0;
2003 }
2004
2005 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2006 {
2007         struct vm_area_struct *vma;
2008         int ret = 0;
2009         VMA_ITERATOR(vmi, mm, 0);
2010
2011         mmap_read_lock(mm);
2012         for_each_vma(vmi, vma) {
2013                 if (vma->anon_vma) {
2014                         ret = unuse_vma(vma, type);
2015                         if (ret)
2016                                 break;
2017                 }
2018
2019                 cond_resched();
2020         }
2021         mmap_read_unlock(mm);
2022         return ret;
2023 }
2024
2025 /*
2026  * Scan swap_map from current position to next entry still in use.
2027  * Return 0 if there are no inuse entries after prev till end of
2028  * the map.
2029  */
2030 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2031                                         unsigned int prev)
2032 {
2033         unsigned int i;
2034         unsigned char count;
2035
2036         /*
2037          * No need for swap_lock here: we're just looking
2038          * for whether an entry is in use, not modifying it; false
2039          * hits are okay, and sys_swapoff() has already prevented new
2040          * allocations from this area (while holding swap_lock).
2041          */
2042         for (i = prev + 1; i < si->max; i++) {
2043                 count = READ_ONCE(si->swap_map[i]);
2044                 if (count && swap_count(count) != SWAP_MAP_BAD)
2045                         break;
2046                 if ((i % LATENCY_LIMIT) == 0)
2047                         cond_resched();
2048         }
2049
2050         if (i == si->max)
2051                 i = 0;
2052
2053         return i;
2054 }
2055
2056 static int try_to_unuse(unsigned int type)
2057 {
2058         struct mm_struct *prev_mm;
2059         struct mm_struct *mm;
2060         struct list_head *p;
2061         int retval = 0;
2062         struct swap_info_struct *si = swap_info[type];
2063         struct folio *folio;
2064         swp_entry_t entry;
2065         unsigned int i;
2066
2067         if (!READ_ONCE(si->inuse_pages))
2068                 goto success;
2069
2070 retry:
2071         retval = shmem_unuse(type);
2072         if (retval)
2073                 return retval;
2074
2075         prev_mm = &init_mm;
2076         mmget(prev_mm);
2077
2078         spin_lock(&mmlist_lock);
2079         p = &init_mm.mmlist;
2080         while (READ_ONCE(si->inuse_pages) &&
2081                !signal_pending(current) &&
2082                (p = p->next) != &init_mm.mmlist) {
2083
2084                 mm = list_entry(p, struct mm_struct, mmlist);
2085                 if (!mmget_not_zero(mm))
2086                         continue;
2087                 spin_unlock(&mmlist_lock);
2088                 mmput(prev_mm);
2089                 prev_mm = mm;
2090                 retval = unuse_mm(mm, type);
2091                 if (retval) {
2092                         mmput(prev_mm);
2093                         return retval;
2094                 }
2095
2096                 /*
2097                  * Make sure that we aren't completely killing
2098                  * interactive performance.
2099                  */
2100                 cond_resched();
2101                 spin_lock(&mmlist_lock);
2102         }
2103         spin_unlock(&mmlist_lock);
2104
2105         mmput(prev_mm);
2106
2107         i = 0;
2108         while (READ_ONCE(si->inuse_pages) &&
2109                !signal_pending(current) &&
2110                (i = find_next_to_unuse(si, i)) != 0) {
2111
2112                 entry = swp_entry(type, i);
2113                 folio = filemap_get_folio(swap_address_space(entry), i);
2114                 if (IS_ERR(folio))
2115                         continue;
2116
2117                 /*
2118                  * It is conceivable that a racing task removed this folio from
2119                  * swap cache just before we acquired the page lock. The folio
2120                  * might even be back in swap cache on another swap area. But
2121                  * that is okay, folio_free_swap() only removes stale folios.
2122                  */
2123                 folio_lock(folio);
2124                 folio_wait_writeback(folio);
2125                 folio_free_swap(folio);
2126                 folio_unlock(folio);
2127                 folio_put(folio);
2128         }
2129
2130         /*
2131          * Lets check again to see if there are still swap entries in the map.
2132          * If yes, we would need to do retry the unuse logic again.
2133          * Under global memory pressure, swap entries can be reinserted back
2134          * into process space after the mmlist loop above passes over them.
2135          *
2136          * Limit the number of retries? No: when mmget_not_zero()
2137          * above fails, that mm is likely to be freeing swap from
2138          * exit_mmap(), which proceeds at its own independent pace;
2139          * and even shmem_writepage() could have been preempted after
2140          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2141          * and robust (though cpu-intensive) just to keep retrying.
2142          */
2143         if (READ_ONCE(si->inuse_pages)) {
2144                 if (!signal_pending(current))
2145                         goto retry;
2146                 return -EINTR;
2147         }
2148
2149 success:
2150         /*
2151          * Make sure that further cleanups after try_to_unuse() returns happen
2152          * after swap_range_free() reduces si->inuse_pages to 0.
2153          */
2154         smp_mb();
2155         return 0;
2156 }
2157
2158 /*
2159  * After a successful try_to_unuse, if no swap is now in use, we know
2160  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2161  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2162  * added to the mmlist just after page_duplicate - before would be racy.
2163  */
2164 static void drain_mmlist(void)
2165 {
2166         struct list_head *p, *next;
2167         unsigned int type;
2168
2169         for (type = 0; type < nr_swapfiles; type++)
2170                 if (swap_info[type]->inuse_pages)
2171                         return;
2172         spin_lock(&mmlist_lock);
2173         list_for_each_safe(p, next, &init_mm.mmlist)
2174                 list_del_init(p);
2175         spin_unlock(&mmlist_lock);
2176 }
2177
2178 /*
2179  * Free all of a swapdev's extent information
2180  */
2181 static void destroy_swap_extents(struct swap_info_struct *sis)
2182 {
2183         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2184                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2185                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2186
2187                 rb_erase(rb, &sis->swap_extent_root);
2188                 kfree(se);
2189         }
2190
2191         if (sis->flags & SWP_ACTIVATED) {
2192                 struct file *swap_file = sis->swap_file;
2193                 struct address_space *mapping = swap_file->f_mapping;
2194
2195                 sis->flags &= ~SWP_ACTIVATED;
2196                 if (mapping->a_ops->swap_deactivate)
2197                         mapping->a_ops->swap_deactivate(swap_file);
2198         }
2199 }
2200
2201 /*
2202  * Add a block range (and the corresponding page range) into this swapdev's
2203  * extent tree.
2204  *
2205  * This function rather assumes that it is called in ascending page order.
2206  */
2207 int
2208 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2209                 unsigned long nr_pages, sector_t start_block)
2210 {
2211         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2212         struct swap_extent *se;
2213         struct swap_extent *new_se;
2214
2215         /*
2216          * place the new node at the right most since the
2217          * function is called in ascending page order.
2218          */
2219         while (*link) {
2220                 parent = *link;
2221                 link = &parent->rb_right;
2222         }
2223
2224         if (parent) {
2225                 se = rb_entry(parent, struct swap_extent, rb_node);
2226                 BUG_ON(se->start_page + se->nr_pages != start_page);
2227                 if (se->start_block + se->nr_pages == start_block) {
2228                         /* Merge it */
2229                         se->nr_pages += nr_pages;
2230                         return 0;
2231                 }
2232         }
2233
2234         /* No merge, insert a new extent. */
2235         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2236         if (new_se == NULL)
2237                 return -ENOMEM;
2238         new_se->start_page = start_page;
2239         new_se->nr_pages = nr_pages;
2240         new_se->start_block = start_block;
2241
2242         rb_link_node(&new_se->rb_node, parent, link);
2243         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2244         return 1;
2245 }
2246 EXPORT_SYMBOL_GPL(add_swap_extent);
2247
2248 /*
2249  * A `swap extent' is a simple thing which maps a contiguous range of pages
2250  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2251  * built at swapon time and is then used at swap_writepage/swap_read_folio
2252  * time for locating where on disk a page belongs.
2253  *
2254  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2255  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2256  * swap files identically.
2257  *
2258  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2259  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2260  * swapfiles are handled *identically* after swapon time.
2261  *
2262  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2263  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2264  * blocks are found which do not fall within the PAGE_SIZE alignment
2265  * requirements, they are simply tossed out - we will never use those blocks
2266  * for swapping.
2267  *
2268  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2269  * prevents users from writing to the swap device, which will corrupt memory.
2270  *
2271  * The amount of disk space which a single swap extent represents varies.
2272  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2273  * extents in the rbtree. - akpm.
2274  */
2275 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2276 {
2277         struct file *swap_file = sis->swap_file;
2278         struct address_space *mapping = swap_file->f_mapping;
2279         struct inode *inode = mapping->host;
2280         int ret;
2281
2282         if (S_ISBLK(inode->i_mode)) {
2283                 ret = add_swap_extent(sis, 0, sis->max, 0);
2284                 *span = sis->pages;
2285                 return ret;
2286         }
2287
2288         if (mapping->a_ops->swap_activate) {
2289                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2290                 if (ret < 0)
2291                         return ret;
2292                 sis->flags |= SWP_ACTIVATED;
2293                 if ((sis->flags & SWP_FS_OPS) &&
2294                     sio_pool_init() != 0) {
2295                         destroy_swap_extents(sis);
2296                         return -ENOMEM;
2297                 }
2298                 return ret;
2299         }
2300
2301         return generic_swapfile_activate(sis, swap_file, span);
2302 }
2303
2304 static int swap_node(struct swap_info_struct *p)
2305 {
2306         struct block_device *bdev;
2307
2308         if (p->bdev)
2309                 bdev = p->bdev;
2310         else
2311                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2312
2313         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2314 }
2315
2316 static void setup_swap_info(struct swap_info_struct *p, int prio,
2317                             unsigned char *swap_map,
2318                             struct swap_cluster_info *cluster_info)
2319 {
2320         int i;
2321
2322         if (prio >= 0)
2323                 p->prio = prio;
2324         else
2325                 p->prio = --least_priority;
2326         /*
2327          * the plist prio is negated because plist ordering is
2328          * low-to-high, while swap ordering is high-to-low
2329          */
2330         p->list.prio = -p->prio;
2331         for_each_node(i) {
2332                 if (p->prio >= 0)
2333                         p->avail_lists[i].prio = -p->prio;
2334                 else {
2335                         if (swap_node(p) == i)
2336                                 p->avail_lists[i].prio = 1;
2337                         else
2338                                 p->avail_lists[i].prio = -p->prio;
2339                 }
2340         }
2341         p->swap_map = swap_map;
2342         p->cluster_info = cluster_info;
2343 }
2344
2345 static void _enable_swap_info(struct swap_info_struct *p)
2346 {
2347         p->flags |= SWP_WRITEOK;
2348         atomic_long_add(p->pages, &nr_swap_pages);
2349         total_swap_pages += p->pages;
2350
2351         assert_spin_locked(&swap_lock);
2352         /*
2353          * both lists are plists, and thus priority ordered.
2354          * swap_active_head needs to be priority ordered for swapoff(),
2355          * which on removal of any swap_info_struct with an auto-assigned
2356          * (i.e. negative) priority increments the auto-assigned priority
2357          * of any lower-priority swap_info_structs.
2358          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2359          * which allocates swap pages from the highest available priority
2360          * swap_info_struct.
2361          */
2362         plist_add(&p->list, &swap_active_head);
2363
2364         /* add to available list iff swap device is not full */
2365         if (p->highest_bit)
2366                 add_to_avail_list(p);
2367 }
2368
2369 static void enable_swap_info(struct swap_info_struct *p, int prio,
2370                                 unsigned char *swap_map,
2371                                 struct swap_cluster_info *cluster_info)
2372 {
2373         spin_lock(&swap_lock);
2374         spin_lock(&p->lock);
2375         setup_swap_info(p, prio, swap_map, cluster_info);
2376         spin_unlock(&p->lock);
2377         spin_unlock(&swap_lock);
2378         /*
2379          * Finished initializing swap device, now it's safe to reference it.
2380          */
2381         percpu_ref_resurrect(&p->users);
2382         spin_lock(&swap_lock);
2383         spin_lock(&p->lock);
2384         _enable_swap_info(p);
2385         spin_unlock(&p->lock);
2386         spin_unlock(&swap_lock);
2387 }
2388
2389 static void reinsert_swap_info(struct swap_info_struct *p)
2390 {
2391         spin_lock(&swap_lock);
2392         spin_lock(&p->lock);
2393         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2394         _enable_swap_info(p);
2395         spin_unlock(&p->lock);
2396         spin_unlock(&swap_lock);
2397 }
2398
2399 bool has_usable_swap(void)
2400 {
2401         bool ret = true;
2402
2403         spin_lock(&swap_lock);
2404         if (plist_head_empty(&swap_active_head))
2405                 ret = false;
2406         spin_unlock(&swap_lock);
2407         return ret;
2408 }
2409
2410 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2411 {
2412         struct swap_info_struct *p = NULL;
2413         unsigned char *swap_map;
2414         struct swap_cluster_info *cluster_info;
2415         struct file *swap_file, *victim;
2416         struct address_space *mapping;
2417         struct inode *inode;
2418         struct filename *pathname;
2419         int err, found = 0;
2420         unsigned int old_block_size;
2421
2422         if (!capable(CAP_SYS_ADMIN))
2423                 return -EPERM;
2424
2425         BUG_ON(!current->mm);
2426
2427         pathname = getname(specialfile);
2428         if (IS_ERR(pathname))
2429                 return PTR_ERR(pathname);
2430
2431         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2432         err = PTR_ERR(victim);
2433         if (IS_ERR(victim))
2434                 goto out;
2435
2436         mapping = victim->f_mapping;
2437         spin_lock(&swap_lock);
2438         plist_for_each_entry(p, &swap_active_head, list) {
2439                 if (p->flags & SWP_WRITEOK) {
2440                         if (p->swap_file->f_mapping == mapping) {
2441                                 found = 1;
2442                                 break;
2443                         }
2444                 }
2445         }
2446         if (!found) {
2447                 err = -EINVAL;
2448                 spin_unlock(&swap_lock);
2449                 goto out_dput;
2450         }
2451         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2452                 vm_unacct_memory(p->pages);
2453         else {
2454                 err = -ENOMEM;
2455                 spin_unlock(&swap_lock);
2456                 goto out_dput;
2457         }
2458         spin_lock(&p->lock);
2459         del_from_avail_list(p);
2460         if (p->prio < 0) {
2461                 struct swap_info_struct *si = p;
2462                 int nid;
2463
2464                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2465                         si->prio++;
2466                         si->list.prio--;
2467                         for_each_node(nid) {
2468                                 if (si->avail_lists[nid].prio != 1)
2469                                         si->avail_lists[nid].prio--;
2470                         }
2471                 }
2472                 least_priority++;
2473         }
2474         plist_del(&p->list, &swap_active_head);
2475         atomic_long_sub(p->pages, &nr_swap_pages);
2476         total_swap_pages -= p->pages;
2477         p->flags &= ~SWP_WRITEOK;
2478         spin_unlock(&p->lock);
2479         spin_unlock(&swap_lock);
2480
2481         disable_swap_slots_cache_lock();
2482
2483         set_current_oom_origin();
2484         err = try_to_unuse(p->type);
2485         clear_current_oom_origin();
2486
2487         if (err) {
2488                 /* re-insert swap space back into swap_list */
2489                 reinsert_swap_info(p);
2490                 reenable_swap_slots_cache_unlock();
2491                 goto out_dput;
2492         }
2493
2494         reenable_swap_slots_cache_unlock();
2495
2496         /*
2497          * Wait for swap operations protected by get/put_swap_device()
2498          * to complete.
2499          *
2500          * We need synchronize_rcu() here to protect the accessing to
2501          * the swap cache data structure.
2502          */
2503         percpu_ref_kill(&p->users);
2504         synchronize_rcu();
2505         wait_for_completion(&p->comp);
2506
2507         flush_work(&p->discard_work);
2508
2509         destroy_swap_extents(p);
2510         if (p->flags & SWP_CONTINUED)
2511                 free_swap_count_continuations(p);
2512
2513         if (!p->bdev || !bdev_nonrot(p->bdev))
2514                 atomic_dec(&nr_rotate_swap);
2515
2516         mutex_lock(&swapon_mutex);
2517         spin_lock(&swap_lock);
2518         spin_lock(&p->lock);
2519         drain_mmlist();
2520
2521         /* wait for anyone still in scan_swap_map_slots */
2522         p->highest_bit = 0;             /* cuts scans short */
2523         while (p->flags >= SWP_SCANNING) {
2524                 spin_unlock(&p->lock);
2525                 spin_unlock(&swap_lock);
2526                 schedule_timeout_uninterruptible(1);
2527                 spin_lock(&swap_lock);
2528                 spin_lock(&p->lock);
2529         }
2530
2531         swap_file = p->swap_file;
2532         old_block_size = p->old_block_size;
2533         p->swap_file = NULL;
2534         p->max = 0;
2535         swap_map = p->swap_map;
2536         p->swap_map = NULL;
2537         cluster_info = p->cluster_info;
2538         p->cluster_info = NULL;
2539         spin_unlock(&p->lock);
2540         spin_unlock(&swap_lock);
2541         arch_swap_invalidate_area(p->type);
2542         zswap_swapoff(p->type);
2543         mutex_unlock(&swapon_mutex);
2544         free_percpu(p->percpu_cluster);
2545         p->percpu_cluster = NULL;
2546         free_percpu(p->cluster_next_cpu);
2547         p->cluster_next_cpu = NULL;
2548         vfree(swap_map);
2549         kvfree(cluster_info);
2550         /* Destroy swap account information */
2551         swap_cgroup_swapoff(p->type);
2552         exit_swap_address_space(p->type);
2553
2554         inode = mapping->host;
2555         if (p->bdev_file) {
2556                 set_blocksize(p->bdev, old_block_size);
2557                 fput(p->bdev_file);
2558                 p->bdev_file = NULL;
2559         }
2560
2561         inode_lock(inode);
2562         inode->i_flags &= ~S_SWAPFILE;
2563         inode_unlock(inode);
2564         filp_close(swap_file, NULL);
2565
2566         /*
2567          * Clear the SWP_USED flag after all resources are freed so that swapon
2568          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2569          * not hold p->lock after we cleared its SWP_WRITEOK.
2570          */
2571         spin_lock(&swap_lock);
2572         p->flags = 0;
2573         spin_unlock(&swap_lock);
2574
2575         err = 0;
2576         atomic_inc(&proc_poll_event);
2577         wake_up_interruptible(&proc_poll_wait);
2578
2579 out_dput:
2580         filp_close(victim, NULL);
2581 out:
2582         putname(pathname);
2583         return err;
2584 }
2585
2586 #ifdef CONFIG_PROC_FS
2587 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2588 {
2589         struct seq_file *seq = file->private_data;
2590
2591         poll_wait(file, &proc_poll_wait, wait);
2592
2593         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2594                 seq->poll_event = atomic_read(&proc_poll_event);
2595                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2596         }
2597
2598         return EPOLLIN | EPOLLRDNORM;
2599 }
2600
2601 /* iterator */
2602 static void *swap_start(struct seq_file *swap, loff_t *pos)
2603 {
2604         struct swap_info_struct *si;
2605         int type;
2606         loff_t l = *pos;
2607
2608         mutex_lock(&swapon_mutex);
2609
2610         if (!l)
2611                 return SEQ_START_TOKEN;
2612
2613         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2614                 if (!(si->flags & SWP_USED) || !si->swap_map)
2615                         continue;
2616                 if (!--l)
2617                         return si;
2618         }
2619
2620         return NULL;
2621 }
2622
2623 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2624 {
2625         struct swap_info_struct *si = v;
2626         int type;
2627
2628         if (v == SEQ_START_TOKEN)
2629                 type = 0;
2630         else
2631                 type = si->type + 1;
2632
2633         ++(*pos);
2634         for (; (si = swap_type_to_swap_info(type)); type++) {
2635                 if (!(si->flags & SWP_USED) || !si->swap_map)
2636                         continue;
2637                 return si;
2638         }
2639
2640         return NULL;
2641 }
2642
2643 static void swap_stop(struct seq_file *swap, void *v)
2644 {
2645         mutex_unlock(&swapon_mutex);
2646 }
2647
2648 static int swap_show(struct seq_file *swap, void *v)
2649 {
2650         struct swap_info_struct *si = v;
2651         struct file *file;
2652         int len;
2653         unsigned long bytes, inuse;
2654
2655         if (si == SEQ_START_TOKEN) {
2656                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2657                 return 0;
2658         }
2659
2660         bytes = K(si->pages);
2661         inuse = K(READ_ONCE(si->inuse_pages));
2662
2663         file = si->swap_file;
2664         len = seq_file_path(swap, file, " \t\n\\");
2665         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2666                         len < 40 ? 40 - len : 1, " ",
2667                         S_ISBLK(file_inode(file)->i_mode) ?
2668                                 "partition" : "file\t",
2669                         bytes, bytes < 10000000 ? "\t" : "",
2670                         inuse, inuse < 10000000 ? "\t" : "",
2671                         si->prio);
2672         return 0;
2673 }
2674
2675 static const struct seq_operations swaps_op = {
2676         .start =        swap_start,
2677         .next =         swap_next,
2678         .stop =         swap_stop,
2679         .show =         swap_show
2680 };
2681
2682 static int swaps_open(struct inode *inode, struct file *file)
2683 {
2684         struct seq_file *seq;
2685         int ret;
2686
2687         ret = seq_open(file, &swaps_op);
2688         if (ret)
2689                 return ret;
2690
2691         seq = file->private_data;
2692         seq->poll_event = atomic_read(&proc_poll_event);
2693         return 0;
2694 }
2695
2696 static const struct proc_ops swaps_proc_ops = {
2697         .proc_flags     = PROC_ENTRY_PERMANENT,
2698         .proc_open      = swaps_open,
2699         .proc_read      = seq_read,
2700         .proc_lseek     = seq_lseek,
2701         .proc_release   = seq_release,
2702         .proc_poll      = swaps_poll,
2703 };
2704
2705 static int __init procswaps_init(void)
2706 {
2707         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2708         return 0;
2709 }
2710 __initcall(procswaps_init);
2711 #endif /* CONFIG_PROC_FS */
2712
2713 #ifdef MAX_SWAPFILES_CHECK
2714 static int __init max_swapfiles_check(void)
2715 {
2716         MAX_SWAPFILES_CHECK();
2717         return 0;
2718 }
2719 late_initcall(max_swapfiles_check);
2720 #endif
2721
2722 static struct swap_info_struct *alloc_swap_info(void)
2723 {
2724         struct swap_info_struct *p;
2725         struct swap_info_struct *defer = NULL;
2726         unsigned int type;
2727         int i;
2728
2729         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2730         if (!p)
2731                 return ERR_PTR(-ENOMEM);
2732
2733         if (percpu_ref_init(&p->users, swap_users_ref_free,
2734                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2735                 kvfree(p);
2736                 return ERR_PTR(-ENOMEM);
2737         }
2738
2739         spin_lock(&swap_lock);
2740         for (type = 0; type < nr_swapfiles; type++) {
2741                 if (!(swap_info[type]->flags & SWP_USED))
2742                         break;
2743         }
2744         if (type >= MAX_SWAPFILES) {
2745                 spin_unlock(&swap_lock);
2746                 percpu_ref_exit(&p->users);
2747                 kvfree(p);
2748                 return ERR_PTR(-EPERM);
2749         }
2750         if (type >= nr_swapfiles) {
2751                 p->type = type;
2752                 /*
2753                  * Publish the swap_info_struct after initializing it.
2754                  * Note that kvzalloc() above zeroes all its fields.
2755                  */
2756                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2757                 nr_swapfiles++;
2758         } else {
2759                 defer = p;
2760                 p = swap_info[type];
2761                 /*
2762                  * Do not memset this entry: a racing procfs swap_next()
2763                  * would be relying on p->type to remain valid.
2764                  */
2765         }
2766         p->swap_extent_root = RB_ROOT;
2767         plist_node_init(&p->list, 0);
2768         for_each_node(i)
2769                 plist_node_init(&p->avail_lists[i], 0);
2770         p->flags = SWP_USED;
2771         spin_unlock(&swap_lock);
2772         if (defer) {
2773                 percpu_ref_exit(&defer->users);
2774                 kvfree(defer);
2775         }
2776         spin_lock_init(&p->lock);
2777         spin_lock_init(&p->cont_lock);
2778         init_completion(&p->comp);
2779
2780         return p;
2781 }
2782
2783 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2784 {
2785         int error;
2786
2787         if (S_ISBLK(inode->i_mode)) {
2788                 p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2789                                 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2790                 if (IS_ERR(p->bdev_file)) {
2791                         error = PTR_ERR(p->bdev_file);
2792                         p->bdev_file = NULL;
2793                         return error;
2794                 }
2795                 p->bdev = file_bdev(p->bdev_file);
2796                 p->old_block_size = block_size(p->bdev);
2797                 error = set_blocksize(p->bdev, PAGE_SIZE);
2798                 if (error < 0)
2799                         return error;
2800                 /*
2801                  * Zoned block devices contain zones that have a sequential
2802                  * write only restriction.  Hence zoned block devices are not
2803                  * suitable for swapping.  Disallow them here.
2804                  */
2805                 if (bdev_is_zoned(p->bdev))
2806                         return -EINVAL;
2807                 p->flags |= SWP_BLKDEV;
2808         } else if (S_ISREG(inode->i_mode)) {
2809                 p->bdev = inode->i_sb->s_bdev;
2810         }
2811
2812         return 0;
2813 }
2814
2815
2816 /*
2817  * Find out how many pages are allowed for a single swap device. There
2818  * are two limiting factors:
2819  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2820  * 2) the number of bits in the swap pte, as defined by the different
2821  * architectures.
2822  *
2823  * In order to find the largest possible bit mask, a swap entry with
2824  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2825  * decoded to a swp_entry_t again, and finally the swap offset is
2826  * extracted.
2827  *
2828  * This will mask all the bits from the initial ~0UL mask that can't
2829  * be encoded in either the swp_entry_t or the architecture definition
2830  * of a swap pte.
2831  */
2832 unsigned long generic_max_swapfile_size(void)
2833 {
2834         return swp_offset(pte_to_swp_entry(
2835                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2836 }
2837
2838 /* Can be overridden by an architecture for additional checks. */
2839 __weak unsigned long arch_max_swapfile_size(void)
2840 {
2841         return generic_max_swapfile_size();
2842 }
2843
2844 static unsigned long read_swap_header(struct swap_info_struct *p,
2845                                         union swap_header *swap_header,
2846                                         struct inode *inode)
2847 {
2848         int i;
2849         unsigned long maxpages;
2850         unsigned long swapfilepages;
2851         unsigned long last_page;
2852
2853         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2854                 pr_err("Unable to find swap-space signature\n");
2855                 return 0;
2856         }
2857
2858         /* swap partition endianness hack... */
2859         if (swab32(swap_header->info.version) == 1) {
2860                 swab32s(&swap_header->info.version);
2861                 swab32s(&swap_header->info.last_page);
2862                 swab32s(&swap_header->info.nr_badpages);
2863                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2864                         return 0;
2865                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2866                         swab32s(&swap_header->info.badpages[i]);
2867         }
2868         /* Check the swap header's sub-version */
2869         if (swap_header->info.version != 1) {
2870                 pr_warn("Unable to handle swap header version %d\n",
2871                         swap_header->info.version);
2872                 return 0;
2873         }
2874
2875         p->lowest_bit  = 1;
2876         p->cluster_next = 1;
2877         p->cluster_nr = 0;
2878
2879         maxpages = swapfile_maximum_size;
2880         last_page = swap_header->info.last_page;
2881         if (!last_page) {
2882                 pr_warn("Empty swap-file\n");
2883                 return 0;
2884         }
2885         if (last_page > maxpages) {
2886                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2887                         K(maxpages), K(last_page));
2888         }
2889         if (maxpages > last_page) {
2890                 maxpages = last_page + 1;
2891                 /* p->max is an unsigned int: don't overflow it */
2892                 if ((unsigned int)maxpages == 0)
2893                         maxpages = UINT_MAX;
2894         }
2895         p->highest_bit = maxpages - 1;
2896
2897         if (!maxpages)
2898                 return 0;
2899         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2900         if (swapfilepages && maxpages > swapfilepages) {
2901                 pr_warn("Swap area shorter than signature indicates\n");
2902                 return 0;
2903         }
2904         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2905                 return 0;
2906         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2907                 return 0;
2908
2909         return maxpages;
2910 }
2911
2912 #define SWAP_CLUSTER_INFO_COLS                                          \
2913         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2914 #define SWAP_CLUSTER_SPACE_COLS                                         \
2915         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2916 #define SWAP_CLUSTER_COLS                                               \
2917         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2918
2919 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2920                                         union swap_header *swap_header,
2921                                         unsigned char *swap_map,
2922                                         struct swap_cluster_info *cluster_info,
2923                                         unsigned long maxpages,
2924                                         sector_t *span)
2925 {
2926         unsigned int j, k;
2927         unsigned int nr_good_pages;
2928         int nr_extents;
2929         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2930         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2931         unsigned long i, idx;
2932
2933         nr_good_pages = maxpages - 1;   /* omit header page */
2934
2935         cluster_list_init(&p->free_clusters);
2936         cluster_list_init(&p->discard_clusters);
2937
2938         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2939                 unsigned int page_nr = swap_header->info.badpages[i];
2940                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2941                         return -EINVAL;
2942                 if (page_nr < maxpages) {
2943                         swap_map[page_nr] = SWAP_MAP_BAD;
2944                         nr_good_pages--;
2945                         /*
2946                          * Haven't marked the cluster free yet, no list
2947                          * operation involved
2948                          */
2949                         inc_cluster_info_page(p, cluster_info, page_nr);
2950                 }
2951         }
2952
2953         /* Haven't marked the cluster free yet, no list operation involved */
2954         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2955                 inc_cluster_info_page(p, cluster_info, i);
2956
2957         if (nr_good_pages) {
2958                 swap_map[0] = SWAP_MAP_BAD;
2959                 /*
2960                  * Not mark the cluster free yet, no list
2961                  * operation involved
2962                  */
2963                 inc_cluster_info_page(p, cluster_info, 0);
2964                 p->max = maxpages;
2965                 p->pages = nr_good_pages;
2966                 nr_extents = setup_swap_extents(p, span);
2967                 if (nr_extents < 0)
2968                         return nr_extents;
2969                 nr_good_pages = p->pages;
2970         }
2971         if (!nr_good_pages) {
2972                 pr_warn("Empty swap-file\n");
2973                 return -EINVAL;
2974         }
2975
2976         if (!cluster_info)
2977                 return nr_extents;
2978
2979
2980         /*
2981          * Reduce false cache line sharing between cluster_info and
2982          * sharing same address space.
2983          */
2984         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2985                 j = (k + col) % SWAP_CLUSTER_COLS;
2986                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2987                         idx = i * SWAP_CLUSTER_COLS + j;
2988                         if (idx >= nr_clusters)
2989                                 continue;
2990                         if (cluster_count(&cluster_info[idx]))
2991                                 continue;
2992                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2993                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2994                                               idx);
2995                 }
2996         }
2997         return nr_extents;
2998 }
2999
3000 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3001 {
3002         struct swap_info_struct *p;
3003         struct filename *name;
3004         struct file *swap_file = NULL;
3005         struct address_space *mapping;
3006         struct dentry *dentry;
3007         int prio;
3008         int error;
3009         union swap_header *swap_header;
3010         int nr_extents;
3011         sector_t span;
3012         unsigned long maxpages;
3013         unsigned char *swap_map = NULL;
3014         struct swap_cluster_info *cluster_info = NULL;
3015         struct page *page = NULL;
3016         struct inode *inode = NULL;
3017         bool inced_nr_rotate_swap = false;
3018
3019         if (swap_flags & ~SWAP_FLAGS_VALID)
3020                 return -EINVAL;
3021
3022         if (!capable(CAP_SYS_ADMIN))
3023                 return -EPERM;
3024
3025         if (!swap_avail_heads)
3026                 return -ENOMEM;
3027
3028         p = alloc_swap_info();
3029         if (IS_ERR(p))
3030                 return PTR_ERR(p);
3031
3032         INIT_WORK(&p->discard_work, swap_discard_work);
3033
3034         name = getname(specialfile);
3035         if (IS_ERR(name)) {
3036                 error = PTR_ERR(name);
3037                 name = NULL;
3038                 goto bad_swap;
3039         }
3040         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3041         if (IS_ERR(swap_file)) {
3042                 error = PTR_ERR(swap_file);
3043                 swap_file = NULL;
3044                 goto bad_swap;
3045         }
3046
3047         p->swap_file = swap_file;
3048         mapping = swap_file->f_mapping;
3049         dentry = swap_file->f_path.dentry;
3050         inode = mapping->host;
3051
3052         error = claim_swapfile(p, inode);
3053         if (unlikely(error))
3054                 goto bad_swap;
3055
3056         inode_lock(inode);
3057         if (d_unlinked(dentry) || cant_mount(dentry)) {
3058                 error = -ENOENT;
3059                 goto bad_swap_unlock_inode;
3060         }
3061         if (IS_SWAPFILE(inode)) {
3062                 error = -EBUSY;
3063                 goto bad_swap_unlock_inode;
3064         }
3065
3066         /*
3067          * Read the swap header.
3068          */
3069         if (!mapping->a_ops->read_folio) {
3070                 error = -EINVAL;
3071                 goto bad_swap_unlock_inode;
3072         }
3073         page = read_mapping_page(mapping, 0, swap_file);
3074         if (IS_ERR(page)) {
3075                 error = PTR_ERR(page);
3076                 goto bad_swap_unlock_inode;
3077         }
3078         swap_header = kmap(page);
3079
3080         maxpages = read_swap_header(p, swap_header, inode);
3081         if (unlikely(!maxpages)) {
3082                 error = -EINVAL;
3083                 goto bad_swap_unlock_inode;
3084         }
3085
3086         /* OK, set up the swap map and apply the bad block list */
3087         swap_map = vzalloc(maxpages);
3088         if (!swap_map) {
3089                 error = -ENOMEM;
3090                 goto bad_swap_unlock_inode;
3091         }
3092
3093         if (p->bdev && bdev_stable_writes(p->bdev))
3094                 p->flags |= SWP_STABLE_WRITES;
3095
3096         if (p->bdev && bdev_synchronous(p->bdev))
3097                 p->flags |= SWP_SYNCHRONOUS_IO;
3098
3099         if (p->bdev && bdev_nonrot(p->bdev)) {
3100                 int cpu;
3101                 unsigned long ci, nr_cluster;
3102
3103                 p->flags |= SWP_SOLIDSTATE;
3104                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3105                 if (!p->cluster_next_cpu) {
3106                         error = -ENOMEM;
3107                         goto bad_swap_unlock_inode;
3108                 }
3109                 /*
3110                  * select a random position to start with to help wear leveling
3111                  * SSD
3112                  */
3113                 for_each_possible_cpu(cpu) {
3114                         per_cpu(*p->cluster_next_cpu, cpu) =
3115                                 get_random_u32_inclusive(1, p->highest_bit);
3116                 }
3117                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3118
3119                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3120                                         GFP_KERNEL);
3121                 if (!cluster_info) {
3122                         error = -ENOMEM;
3123                         goto bad_swap_unlock_inode;
3124                 }
3125
3126                 for (ci = 0; ci < nr_cluster; ci++)
3127                         spin_lock_init(&((cluster_info + ci)->lock));
3128
3129                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3130                 if (!p->percpu_cluster) {
3131                         error = -ENOMEM;
3132                         goto bad_swap_unlock_inode;
3133                 }
3134                 for_each_possible_cpu(cpu) {
3135                         struct percpu_cluster *cluster;
3136                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3137                         cluster_set_null(&cluster->index);
3138                 }
3139         } else {
3140                 atomic_inc(&nr_rotate_swap);
3141                 inced_nr_rotate_swap = true;
3142         }
3143
3144         error = swap_cgroup_swapon(p->type, maxpages);
3145         if (error)
3146                 goto bad_swap_unlock_inode;
3147
3148         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3149                 cluster_info, maxpages, &span);
3150         if (unlikely(nr_extents < 0)) {
3151                 error = nr_extents;
3152                 goto bad_swap_unlock_inode;
3153         }
3154
3155         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3156             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3157                 /*
3158                  * When discard is enabled for swap with no particular
3159                  * policy flagged, we set all swap discard flags here in
3160                  * order to sustain backward compatibility with older
3161                  * swapon(8) releases.
3162                  */
3163                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3164                              SWP_PAGE_DISCARD);
3165
3166                 /*
3167                  * By flagging sys_swapon, a sysadmin can tell us to
3168                  * either do single-time area discards only, or to just
3169                  * perform discards for released swap page-clusters.
3170                  * Now it's time to adjust the p->flags accordingly.
3171                  */
3172                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3173                         p->flags &= ~SWP_PAGE_DISCARD;
3174                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3175                         p->flags &= ~SWP_AREA_DISCARD;
3176
3177                 /* issue a swapon-time discard if it's still required */
3178                 if (p->flags & SWP_AREA_DISCARD) {
3179                         int err = discard_swap(p);
3180                         if (unlikely(err))
3181                                 pr_err("swapon: discard_swap(%p): %d\n",
3182                                         p, err);
3183                 }
3184         }
3185
3186         error = init_swap_address_space(p->type, maxpages);
3187         if (error)
3188                 goto bad_swap_unlock_inode;
3189
3190         error = zswap_swapon(p->type, maxpages);
3191         if (error)
3192                 goto free_swap_address_space;
3193
3194         /*
3195          * Flush any pending IO and dirty mappings before we start using this
3196          * swap device.
3197          */
3198         inode->i_flags |= S_SWAPFILE;
3199         error = inode_drain_writes(inode);
3200         if (error) {
3201                 inode->i_flags &= ~S_SWAPFILE;
3202                 goto free_swap_zswap;
3203         }
3204
3205         mutex_lock(&swapon_mutex);
3206         prio = -1;
3207         if (swap_flags & SWAP_FLAG_PREFER)
3208                 prio =
3209                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3210         enable_swap_info(p, prio, swap_map, cluster_info);
3211
3212         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3213                 K(p->pages), name->name, p->prio, nr_extents,
3214                 K((unsigned long long)span),
3215                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3216                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3217                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3218                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3219
3220         mutex_unlock(&swapon_mutex);
3221         atomic_inc(&proc_poll_event);
3222         wake_up_interruptible(&proc_poll_wait);
3223
3224         error = 0;
3225         goto out;
3226 free_swap_zswap:
3227         zswap_swapoff(p->type);
3228 free_swap_address_space:
3229         exit_swap_address_space(p->type);
3230 bad_swap_unlock_inode:
3231         inode_unlock(inode);
3232 bad_swap:
3233         free_percpu(p->percpu_cluster);
3234         p->percpu_cluster = NULL;
3235         free_percpu(p->cluster_next_cpu);
3236         p->cluster_next_cpu = NULL;
3237         if (p->bdev_file) {
3238                 set_blocksize(p->bdev, p->old_block_size);
3239                 fput(p->bdev_file);
3240                 p->bdev_file = NULL;
3241         }
3242         inode = NULL;
3243         destroy_swap_extents(p);
3244         swap_cgroup_swapoff(p->type);
3245         spin_lock(&swap_lock);
3246         p->swap_file = NULL;
3247         p->flags = 0;
3248         spin_unlock(&swap_lock);
3249         vfree(swap_map);
3250         kvfree(cluster_info);
3251         if (inced_nr_rotate_swap)
3252                 atomic_dec(&nr_rotate_swap);
3253         if (swap_file)
3254                 filp_close(swap_file, NULL);
3255 out:
3256         if (page && !IS_ERR(page)) {
3257                 kunmap(page);
3258                 put_page(page);
3259         }
3260         if (name)
3261                 putname(name);
3262         if (inode)
3263                 inode_unlock(inode);
3264         if (!error)
3265                 enable_swap_slots_cache();
3266         return error;
3267 }
3268
3269 void si_swapinfo(struct sysinfo *val)
3270 {
3271         unsigned int type;
3272         unsigned long nr_to_be_unused = 0;
3273
3274         spin_lock(&swap_lock);
3275         for (type = 0; type < nr_swapfiles; type++) {
3276                 struct swap_info_struct *si = swap_info[type];
3277
3278                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3279                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3280         }
3281         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3282         val->totalswap = total_swap_pages + nr_to_be_unused;
3283         spin_unlock(&swap_lock);
3284 }
3285
3286 /*
3287  * Verify that a swap entry is valid and increment its swap map count.
3288  *
3289  * Returns error code in following case.
3290  * - success -> 0
3291  * - swp_entry is invalid -> EINVAL
3292  * - swp_entry is migration entry -> EINVAL
3293  * - swap-cache reference is requested but there is already one. -> EEXIST
3294  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3295  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3296  */
3297 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3298 {
3299         struct swap_info_struct *p;
3300         struct swap_cluster_info *ci;
3301         unsigned long offset;
3302         unsigned char count;
3303         unsigned char has_cache;
3304         int err;
3305
3306         p = swp_swap_info(entry);
3307
3308         offset = swp_offset(entry);
3309         ci = lock_cluster_or_swap_info(p, offset);
3310
3311         count = p->swap_map[offset];
3312
3313         /*
3314          * swapin_readahead() doesn't check if a swap entry is valid, so the
3315          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3316          */
3317         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3318                 err = -ENOENT;
3319                 goto unlock_out;
3320         }
3321
3322         has_cache = count & SWAP_HAS_CACHE;
3323         count &= ~SWAP_HAS_CACHE;
3324         err = 0;
3325
3326         if (usage == SWAP_HAS_CACHE) {
3327
3328                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3329                 if (!has_cache && count)
3330                         has_cache = SWAP_HAS_CACHE;
3331                 else if (has_cache)             /* someone else added cache */
3332                         err = -EEXIST;
3333                 else                            /* no users remaining */
3334                         err = -ENOENT;
3335
3336         } else if (count || has_cache) {
3337
3338                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3339                         count += usage;
3340                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3341                         err = -EINVAL;
3342                 else if (swap_count_continued(p, offset, count))
3343                         count = COUNT_CONTINUED;
3344                 else
3345                         err = -ENOMEM;
3346         } else
3347                 err = -ENOENT;                  /* unused swap entry */
3348
3349         if (!err)
3350                 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3351
3352 unlock_out:
3353         unlock_cluster_or_swap_info(p, ci);
3354         return err;
3355 }
3356
3357 /*
3358  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3359  * (in which case its reference count is never incremented).
3360  */
3361 void swap_shmem_alloc(swp_entry_t entry)
3362 {
3363         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3364 }
3365
3366 /*
3367  * Increase reference count of swap entry by 1.
3368  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3369  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3370  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3371  * might occur if a page table entry has got corrupted.
3372  */
3373 int swap_duplicate(swp_entry_t entry)
3374 {
3375         int err = 0;
3376
3377         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3378                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3379         return err;
3380 }
3381
3382 /*
3383  * @entry: swap entry for which we allocate swap cache.
3384  *
3385  * Called when allocating swap cache for existing swap entry,
3386  * This can return error codes. Returns 0 at success.
3387  * -EEXIST means there is a swap cache.
3388  * Note: return code is different from swap_duplicate().
3389  */
3390 int swapcache_prepare(swp_entry_t entry)
3391 {
3392         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3393 }
3394
3395 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3396 {
3397         struct swap_cluster_info *ci;
3398         unsigned long offset = swp_offset(entry);
3399         unsigned char usage;
3400
3401         ci = lock_cluster_or_swap_info(si, offset);
3402         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3403         unlock_cluster_or_swap_info(si, ci);
3404         if (!usage)
3405                 free_swap_slot(entry);
3406 }
3407
3408 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3409 {
3410         return swap_type_to_swap_info(swp_type(entry));
3411 }
3412
3413 /*
3414  * out-of-line methods to avoid include hell.
3415  */
3416 struct address_space *swapcache_mapping(struct folio *folio)
3417 {
3418         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3419 }
3420 EXPORT_SYMBOL_GPL(swapcache_mapping);
3421
3422 pgoff_t __page_file_index(struct page *page)
3423 {
3424         swp_entry_t swap = page_swap_entry(page);
3425         return swp_offset(swap);
3426 }
3427 EXPORT_SYMBOL_GPL(__page_file_index);
3428
3429 /*
3430  * add_swap_count_continuation - called when a swap count is duplicated
3431  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3432  * page of the original vmalloc'ed swap_map, to hold the continuation count
3433  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3434  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3435  *
3436  * These continuation pages are seldom referenced: the common paths all work
3437  * on the original swap_map, only referring to a continuation page when the
3438  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3439  *
3440  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3441  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3442  * can be called after dropping locks.
3443  */
3444 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3445 {
3446         struct swap_info_struct *si;
3447         struct swap_cluster_info *ci;
3448         struct page *head;
3449         struct page *page;
3450         struct page *list_page;
3451         pgoff_t offset;
3452         unsigned char count;
3453         int ret = 0;
3454
3455         /*
3456          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3457          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3458          */
3459         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3460
3461         si = get_swap_device(entry);
3462         if (!si) {
3463                 /*
3464                  * An acceptable race has occurred since the failing
3465                  * __swap_duplicate(): the swap device may be swapoff
3466                  */
3467                 goto outer;
3468         }
3469         spin_lock(&si->lock);
3470
3471         offset = swp_offset(entry);
3472
3473         ci = lock_cluster(si, offset);
3474
3475         count = swap_count(si->swap_map[offset]);
3476
3477         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3478                 /*
3479                  * The higher the swap count, the more likely it is that tasks
3480                  * will race to add swap count continuation: we need to avoid
3481                  * over-provisioning.
3482                  */
3483                 goto out;
3484         }
3485
3486         if (!page) {
3487                 ret = -ENOMEM;
3488                 goto out;
3489         }
3490
3491         head = vmalloc_to_page(si->swap_map + offset);
3492         offset &= ~PAGE_MASK;
3493
3494         spin_lock(&si->cont_lock);
3495         /*
3496          * Page allocation does not initialize the page's lru field,
3497          * but it does always reset its private field.
3498          */
3499         if (!page_private(head)) {
3500                 BUG_ON(count & COUNT_CONTINUED);
3501                 INIT_LIST_HEAD(&head->lru);
3502                 set_page_private(head, SWP_CONTINUED);
3503                 si->flags |= SWP_CONTINUED;
3504         }
3505
3506         list_for_each_entry(list_page, &head->lru, lru) {
3507                 unsigned char *map;
3508
3509                 /*
3510                  * If the previous map said no continuation, but we've found
3511                  * a continuation page, free our allocation and use this one.
3512                  */
3513                 if (!(count & COUNT_CONTINUED))
3514                         goto out_unlock_cont;
3515
3516                 map = kmap_local_page(list_page) + offset;
3517                 count = *map;
3518                 kunmap_local(map);
3519
3520                 /*
3521                  * If this continuation count now has some space in it,
3522                  * free our allocation and use this one.
3523                  */
3524                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3525                         goto out_unlock_cont;
3526         }
3527
3528         list_add_tail(&page->lru, &head->lru);
3529         page = NULL;                    /* now it's attached, don't free it */
3530 out_unlock_cont:
3531         spin_unlock(&si->cont_lock);
3532 out:
3533         unlock_cluster(ci);
3534         spin_unlock(&si->lock);
3535         put_swap_device(si);
3536 outer:
3537         if (page)
3538                 __free_page(page);
3539         return ret;
3540 }
3541
3542 /*
3543  * swap_count_continued - when the original swap_map count is incremented
3544  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3545  * into, carry if so, or else fail until a new continuation page is allocated;
3546  * when the original swap_map count is decremented from 0 with continuation,
3547  * borrow from the continuation and report whether it still holds more.
3548  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3549  * lock.
3550  */
3551 static bool swap_count_continued(struct swap_info_struct *si,
3552                                  pgoff_t offset, unsigned char count)
3553 {
3554         struct page *head;
3555         struct page *page;
3556         unsigned char *map;
3557         bool ret;
3558
3559         head = vmalloc_to_page(si->swap_map + offset);
3560         if (page_private(head) != SWP_CONTINUED) {
3561                 BUG_ON(count & COUNT_CONTINUED);
3562                 return false;           /* need to add count continuation */
3563         }
3564
3565         spin_lock(&si->cont_lock);
3566         offset &= ~PAGE_MASK;
3567         page = list_next_entry(head, lru);
3568         map = kmap_local_page(page) + offset;
3569
3570         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3571                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3572
3573         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3574                 /*
3575                  * Think of how you add 1 to 999
3576                  */
3577                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3578                         kunmap_local(map);
3579                         page = list_next_entry(page, lru);
3580                         BUG_ON(page == head);
3581                         map = kmap_local_page(page) + offset;
3582                 }
3583                 if (*map == SWAP_CONT_MAX) {
3584                         kunmap_local(map);
3585                         page = list_next_entry(page, lru);
3586                         if (page == head) {
3587                                 ret = false;    /* add count continuation */
3588                                 goto out;
3589                         }
3590                         map = kmap_local_page(page) + offset;
3591 init_map:               *map = 0;               /* we didn't zero the page */
3592                 }
3593                 *map += 1;
3594                 kunmap_local(map);
3595                 while ((page = list_prev_entry(page, lru)) != head) {
3596                         map = kmap_local_page(page) + offset;
3597                         *map = COUNT_CONTINUED;
3598                         kunmap_local(map);
3599                 }
3600                 ret = true;                     /* incremented */
3601
3602         } else {                                /* decrementing */
3603                 /*
3604                  * Think of how you subtract 1 from 1000
3605                  */
3606                 BUG_ON(count != COUNT_CONTINUED);
3607                 while (*map == COUNT_CONTINUED) {
3608                         kunmap_local(map);
3609                         page = list_next_entry(page, lru);
3610                         BUG_ON(page == head);
3611                         map = kmap_local_page(page) + offset;
3612                 }
3613                 BUG_ON(*map == 0);
3614                 *map -= 1;
3615                 if (*map == 0)
3616                         count = 0;
3617                 kunmap_local(map);
3618                 while ((page = list_prev_entry(page, lru)) != head) {
3619                         map = kmap_local_page(page) + offset;
3620                         *map = SWAP_CONT_MAX | count;
3621                         count = COUNT_CONTINUED;
3622                         kunmap_local(map);
3623                 }
3624                 ret = count == COUNT_CONTINUED;
3625         }
3626 out:
3627         spin_unlock(&si->cont_lock);
3628         return ret;
3629 }
3630
3631 /*
3632  * free_swap_count_continuations - swapoff free all the continuation pages
3633  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3634  */
3635 static void free_swap_count_continuations(struct swap_info_struct *si)
3636 {
3637         pgoff_t offset;
3638
3639         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3640                 struct page *head;
3641                 head = vmalloc_to_page(si->swap_map + offset);
3642                 if (page_private(head)) {
3643                         struct page *page, *next;
3644
3645                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3646                                 list_del(&page->lru);
3647                                 __free_page(page);
3648                         }
3649                 }
3650         }
3651 }
3652
3653 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3654 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3655 {
3656         struct swap_info_struct *si, *next;
3657         int nid = folio_nid(folio);
3658
3659         if (!(gfp & __GFP_IO))
3660                 return;
3661
3662         if (!blk_cgroup_congested())
3663                 return;
3664
3665         /*
3666          * We've already scheduled a throttle, avoid taking the global swap
3667          * lock.
3668          */
3669         if (current->throttle_disk)
3670                 return;
3671
3672         spin_lock(&swap_avail_lock);
3673         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3674                                   avail_lists[nid]) {
3675                 if (si->bdev) {
3676                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3677                         break;
3678                 }
3679         }
3680         spin_unlock(&swap_avail_lock);
3681 }
3682 #endif
3683
3684 static int __init swapfile_init(void)
3685 {
3686         int nid;
3687
3688         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3689                                          GFP_KERNEL);
3690         if (!swap_avail_heads) {
3691                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3692                 return -ENOMEM;
3693         }
3694
3695         for_each_node(nid)
3696                 plist_head_init(&swap_avail_heads[nid]);
3697
3698         swapfile_maximum_size = arch_max_swapfile_size();
3699
3700 #ifdef CONFIG_MIGRATION
3701         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3702                 swap_migration_ad_supported = true;
3703 #endif  /* CONFIG_MIGRATION */
3704
3705         return 0;
3706 }
3707 subsys_initcall(swapfile_init);