mm/memcg: warning on !memcg after readahead page charged
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long begin = offset;
700         unsigned long end = offset + nr_entries - 1;
701         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702
703         if (offset < si->lowest_bit)
704                 si->lowest_bit = offset;
705         if (end > si->highest_bit) {
706                 bool was_full = !si->highest_bit;
707
708                 WRITE_ONCE(si->highest_bit, end);
709                 if (was_full && (si->flags & SWP_WRITEOK))
710                         add_to_avail_list(si);
711         }
712         atomic_long_add(nr_entries, &nr_swap_pages);
713         si->inuse_pages -= nr_entries;
714         if (si->flags & SWP_BLKDEV)
715                 swap_slot_free_notify =
716                         si->bdev->bd_disk->fops->swap_slot_free_notify;
717         else
718                 swap_slot_free_notify = NULL;
719         while (offset <= end) {
720                 arch_swap_invalidate_page(si->type, offset);
721                 frontswap_invalidate_page(si->type, offset);
722                 if (swap_slot_free_notify)
723                         swap_slot_free_notify(si->bdev, offset);
724                 offset++;
725         }
726         clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731         unsigned long prev;
732
733         if (!(si->flags & SWP_SOLIDSTATE)) {
734                 si->cluster_next = next;
735                 return;
736         }
737
738         prev = this_cpu_read(*si->cluster_next_cpu);
739         /*
740          * Cross the swap address space size aligned trunk, choose
741          * another trunk randomly to avoid lock contention on swap
742          * address space if possible.
743          */
744         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746                 /* No free swap slots available */
747                 if (si->highest_bit <= si->lowest_bit)
748                         return;
749                 next = si->lowest_bit +
750                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752                 next = max_t(unsigned int, next, si->lowest_bit);
753         }
754         this_cpu_write(*si->cluster_next_cpu, next);
755 }
756
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758                                unsigned char usage, int nr,
759                                swp_entry_t slots[])
760 {
761         struct swap_cluster_info *ci;
762         unsigned long offset;
763         unsigned long scan_base;
764         unsigned long last_in_cluster = 0;
765         int latency_ration = LATENCY_LIMIT;
766         int n_ret = 0;
767         bool scanned_many = false;
768
769         /*
770          * We try to cluster swap pages by allocating them sequentially
771          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772          * way, however, we resort to first-free allocation, starting
773          * a new cluster.  This prevents us from scattering swap pages
774          * all over the entire swap partition, so that we reduce
775          * overall disk seek times between swap pages.  -- sct
776          * But we do now try to find an empty cluster.  -Andrea
777          * And we let swap pages go all over an SSD partition.  Hugh
778          */
779
780         si->flags += SWP_SCANNING;
781         /*
782          * Use percpu scan base for SSD to reduce lock contention on
783          * cluster and swap cache.  For HDD, sequential access is more
784          * important.
785          */
786         if (si->flags & SWP_SOLIDSTATE)
787                 scan_base = this_cpu_read(*si->cluster_next_cpu);
788         else
789                 scan_base = si->cluster_next;
790         offset = scan_base;
791
792         /* SSD algorithm */
793         if (si->cluster_info) {
794                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795                         goto scan;
796         } else if (unlikely(!si->cluster_nr--)) {
797                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
799                         goto checks;
800                 }
801
802                 spin_unlock(&si->lock);
803
804                 /*
805                  * If seek is expensive, start searching for new cluster from
806                  * start of partition, to minimize the span of allocated swap.
807                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
809                  */
810                 scan_base = offset = si->lowest_bit;
811                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812
813                 /* Locate the first empty (unaligned) cluster */
814                 for (; last_in_cluster <= si->highest_bit; offset++) {
815                         if (si->swap_map[offset])
816                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
817                         else if (offset == last_in_cluster) {
818                                 spin_lock(&si->lock);
819                                 offset -= SWAPFILE_CLUSTER - 1;
820                                 si->cluster_next = offset;
821                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822                                 goto checks;
823                         }
824                         if (unlikely(--latency_ration < 0)) {
825                                 cond_resched();
826                                 latency_ration = LATENCY_LIMIT;
827                         }
828                 }
829
830                 offset = scan_base;
831                 spin_lock(&si->lock);
832                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
833         }
834
835 checks:
836         if (si->cluster_info) {
837                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838                 /* take a break if we already got some slots */
839                         if (n_ret)
840                                 goto done;
841                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
842                                                         &scan_base))
843                                 goto scan;
844                 }
845         }
846         if (!(si->flags & SWP_WRITEOK))
847                 goto no_page;
848         if (!si->highest_bit)
849                 goto no_page;
850         if (offset > si->highest_bit)
851                 scan_base = offset = si->lowest_bit;
852
853         ci = lock_cluster(si, offset);
854         /* reuse swap entry of cache-only swap if not busy. */
855         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856                 int swap_was_freed;
857                 unlock_cluster(ci);
858                 spin_unlock(&si->lock);
859                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860                 spin_lock(&si->lock);
861                 /* entry was freed successfully, try to use this again */
862                 if (swap_was_freed)
863                         goto checks;
864                 goto scan; /* check next one */
865         }
866
867         if (si->swap_map[offset]) {
868                 unlock_cluster(ci);
869                 if (!n_ret)
870                         goto scan;
871                 else
872                         goto done;
873         }
874         WRITE_ONCE(si->swap_map[offset], usage);
875         inc_cluster_info_page(si, si->cluster_info, offset);
876         unlock_cluster(ci);
877
878         swap_range_alloc(si, offset, 1);
879         slots[n_ret++] = swp_entry(si->type, offset);
880
881         /* got enough slots or reach max slots? */
882         if ((n_ret == nr) || (offset >= si->highest_bit))
883                 goto done;
884
885         /* search for next available slot */
886
887         /* time to take a break? */
888         if (unlikely(--latency_ration < 0)) {
889                 if (n_ret)
890                         goto done;
891                 spin_unlock(&si->lock);
892                 cond_resched();
893                 spin_lock(&si->lock);
894                 latency_ration = LATENCY_LIMIT;
895         }
896
897         /* try to get more slots in cluster */
898         if (si->cluster_info) {
899                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900                         goto checks;
901         } else if (si->cluster_nr && !si->swap_map[++offset]) {
902                 /* non-ssd case, still more slots in cluster? */
903                 --si->cluster_nr;
904                 goto checks;
905         }
906
907         /*
908          * Even if there's no free clusters available (fragmented),
909          * try to scan a little more quickly with lock held unless we
910          * have scanned too many slots already.
911          */
912         if (!scanned_many) {
913                 unsigned long scan_limit;
914
915                 if (offset < scan_base)
916                         scan_limit = scan_base;
917                 else
918                         scan_limit = si->highest_bit;
919                 for (; offset <= scan_limit && --latency_ration > 0;
920                      offset++) {
921                         if (!si->swap_map[offset])
922                                 goto checks;
923                 }
924         }
925
926 done:
927         set_cluster_next(si, offset + 1);
928         si->flags -= SWP_SCANNING;
929         return n_ret;
930
931 scan:
932         spin_unlock(&si->lock);
933         while (++offset <= READ_ONCE(si->highest_bit)) {
934                 if (data_race(!si->swap_map[offset])) {
935                         spin_lock(&si->lock);
936                         goto checks;
937                 }
938                 if (vm_swap_full() &&
939                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940                         spin_lock(&si->lock);
941                         goto checks;
942                 }
943                 if (unlikely(--latency_ration < 0)) {
944                         cond_resched();
945                         latency_ration = LATENCY_LIMIT;
946                         scanned_many = true;
947                 }
948         }
949         offset = si->lowest_bit;
950         while (offset < scan_base) {
951                 if (data_race(!si->swap_map[offset])) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (vm_swap_full() &&
956                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957                         spin_lock(&si->lock);
958                         goto checks;
959                 }
960                 if (unlikely(--latency_ration < 0)) {
961                         cond_resched();
962                         latency_ration = LATENCY_LIMIT;
963                         scanned_many = true;
964                 }
965                 offset++;
966         }
967         spin_lock(&si->lock);
968
969 no_page:
970         si->flags -= SWP_SCANNING;
971         return n_ret;
972 }
973
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976         unsigned long idx;
977         struct swap_cluster_info *ci;
978         unsigned long offset;
979
980         /*
981          * Should not even be attempting cluster allocations when huge
982          * page swap is disabled.  Warn and fail the allocation.
983          */
984         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
985                 VM_WARN_ON_ONCE(1);
986                 return 0;
987         }
988
989         if (cluster_list_empty(&si->free_clusters))
990                 return 0;
991
992         idx = cluster_list_first(&si->free_clusters);
993         offset = idx * SWAPFILE_CLUSTER;
994         ci = lock_cluster(si, offset);
995         alloc_cluster(si, idx);
996         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
997
998         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
999         unlock_cluster(ci);
1000         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001         *slot = swp_entry(si->type, offset);
1002
1003         return 1;
1004 }
1005
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008         unsigned long offset = idx * SWAPFILE_CLUSTER;
1009         struct swap_cluster_info *ci;
1010
1011         ci = lock_cluster(si, offset);
1012         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013         cluster_set_count_flag(ci, 0, 0);
1014         free_cluster(si, idx);
1015         unlock_cluster(ci);
1016         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020                                    unsigned char usage)
1021 {
1022         swp_entry_t entry;
1023         int n_ret;
1024
1025         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026
1027         if (n_ret)
1028                 return swp_offset(entry);
1029         else
1030                 return 0;
1031
1032 }
1033
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036         unsigned long size = swap_entry_size(entry_size);
1037         struct swap_info_struct *si, *next;
1038         long avail_pgs;
1039         int n_ret = 0;
1040         int node;
1041
1042         /* Only single cluster request supported */
1043         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044
1045         spin_lock(&swap_avail_lock);
1046
1047         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048         if (avail_pgs <= 0) {
1049                 spin_unlock(&swap_avail_lock);
1050                 goto noswap;
1051         }
1052
1053         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1054
1055         atomic_long_sub(n_goal * size, &nr_swap_pages);
1056
1057 start_over:
1058         node = numa_node_id();
1059         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060                 /* requeue si to after same-priority siblings */
1061                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062                 spin_unlock(&swap_avail_lock);
1063                 spin_lock(&si->lock);
1064                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065                         spin_lock(&swap_avail_lock);
1066                         if (plist_node_empty(&si->avail_lists[node])) {
1067                                 spin_unlock(&si->lock);
1068                                 goto nextsi;
1069                         }
1070                         WARN(!si->highest_bit,
1071                              "swap_info %d in list but !highest_bit\n",
1072                              si->type);
1073                         WARN(!(si->flags & SWP_WRITEOK),
1074                              "swap_info %d in list but !SWP_WRITEOK\n",
1075                              si->type);
1076                         __del_from_avail_list(si);
1077                         spin_unlock(&si->lock);
1078                         goto nextsi;
1079                 }
1080                 if (size == SWAPFILE_CLUSTER) {
1081                         if (si->flags & SWP_BLKDEV)
1082                                 n_ret = swap_alloc_cluster(si, swp_entries);
1083                 } else
1084                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085                                                     n_goal, swp_entries);
1086                 spin_unlock(&si->lock);
1087                 if (n_ret || size == SWAPFILE_CLUSTER)
1088                         goto check_out;
1089                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1090                         si->type);
1091
1092                 spin_lock(&swap_avail_lock);
1093 nextsi:
1094                 /*
1095                  * if we got here, it's likely that si was almost full before,
1096                  * and since scan_swap_map() can drop the si->lock, multiple
1097                  * callers probably all tried to get a page from the same si
1098                  * and it filled up before we could get one; or, the si filled
1099                  * up between us dropping swap_avail_lock and taking si->lock.
1100                  * Since we dropped the swap_avail_lock, the swap_avail_head
1101                  * list may have been modified; so if next is still in the
1102                  * swap_avail_head list then try it, otherwise start over
1103                  * if we have not gotten any slots.
1104                  */
1105                 if (plist_node_empty(&next->avail_lists[node]))
1106                         goto start_over;
1107         }
1108
1109         spin_unlock(&swap_avail_lock);
1110
1111 check_out:
1112         if (n_ret < n_goal)
1113                 atomic_long_add((long)(n_goal - n_ret) * size,
1114                                 &nr_swap_pages);
1115 noswap:
1116         return n_ret;
1117 }
1118
1119 /* The only caller of this function is now suspend routine */
1120 swp_entry_t get_swap_page_of_type(int type)
1121 {
1122         struct swap_info_struct *si = swap_type_to_swap_info(type);
1123         pgoff_t offset;
1124
1125         if (!si)
1126                 goto fail;
1127
1128         spin_lock(&si->lock);
1129         if (si->flags & SWP_WRITEOK) {
1130                 /* This is called for allocating swap entry, not cache */
1131                 offset = scan_swap_map(si, 1);
1132                 if (offset) {
1133                         atomic_long_dec(&nr_swap_pages);
1134                         spin_unlock(&si->lock);
1135                         return swp_entry(type, offset);
1136                 }
1137         }
1138         spin_unlock(&si->lock);
1139 fail:
1140         return (swp_entry_t) {0};
1141 }
1142
1143 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1144 {
1145         struct swap_info_struct *p;
1146         unsigned long offset;
1147
1148         if (!entry.val)
1149                 goto out;
1150         p = swp_swap_info(entry);
1151         if (!p)
1152                 goto bad_nofile;
1153         if (data_race(!(p->flags & SWP_USED)))
1154                 goto bad_device;
1155         offset = swp_offset(entry);
1156         if (offset >= p->max)
1157                 goto bad_offset;
1158         return p;
1159
1160 bad_offset:
1161         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1162         goto out;
1163 bad_device:
1164         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1165         goto out;
1166 bad_nofile:
1167         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1168 out:
1169         return NULL;
1170 }
1171
1172 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1173 {
1174         struct swap_info_struct *p;
1175
1176         p = __swap_info_get(entry);
1177         if (!p)
1178                 goto out;
1179         if (data_race(!p->swap_map[swp_offset(entry)]))
1180                 goto bad_free;
1181         return p;
1182
1183 bad_free:
1184         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1185 out:
1186         return NULL;
1187 }
1188
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1190 {
1191         struct swap_info_struct *p;
1192
1193         p = _swap_info_get(entry);
1194         if (p)
1195                 spin_lock(&p->lock);
1196         return p;
1197 }
1198
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200                                         struct swap_info_struct *q)
1201 {
1202         struct swap_info_struct *p;
1203
1204         p = _swap_info_get(entry);
1205
1206         if (p != q) {
1207                 if (q != NULL)
1208                         spin_unlock(&q->lock);
1209                 if (p != NULL)
1210                         spin_lock(&p->lock);
1211         }
1212         return p;
1213 }
1214
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216                                               unsigned long offset,
1217                                               unsigned char usage)
1218 {
1219         unsigned char count;
1220         unsigned char has_cache;
1221
1222         count = p->swap_map[offset];
1223
1224         has_cache = count & SWAP_HAS_CACHE;
1225         count &= ~SWAP_HAS_CACHE;
1226
1227         if (usage == SWAP_HAS_CACHE) {
1228                 VM_BUG_ON(!has_cache);
1229                 has_cache = 0;
1230         } else if (count == SWAP_MAP_SHMEM) {
1231                 /*
1232                  * Or we could insist on shmem.c using a special
1233                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1234                  */
1235                 count = 0;
1236         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237                 if (count == COUNT_CONTINUED) {
1238                         if (swap_count_continued(p, offset, count))
1239                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240                         else
1241                                 count = SWAP_MAP_MAX;
1242                 } else
1243                         count--;
1244         }
1245
1246         usage = count | has_cache;
1247         if (usage)
1248                 WRITE_ONCE(p->swap_map[offset], usage);
1249         else
1250                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1251
1252         return usage;
1253 }
1254
1255 /*
1256  * Check whether swap entry is valid in the swap device.  If so,
1257  * return pointer to swap_info_struct, and keep the swap entry valid
1258  * via preventing the swap device from being swapoff, until
1259  * put_swap_device() is called.  Otherwise return NULL.
1260  *
1261  * The entirety of the RCU read critical section must come before the
1262  * return from or after the call to synchronize_rcu() in
1263  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1264  * true, the si->map, si->cluster_info, etc. must be valid in the
1265  * critical section.
1266  *
1267  * Notice that swapoff or swapoff+swapon can still happen before the
1268  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1269  * in put_swap_device() if there isn't any other way to prevent
1270  * swapoff, such as page lock, page table lock, etc.  The caller must
1271  * be prepared for that.  For example, the following situation is
1272  * possible.
1273  *
1274  *   CPU1                               CPU2
1275  *   do_swap_page()
1276  *     ...                              swapoff+swapon
1277  *     __read_swap_cache_async()
1278  *       swapcache_prepare()
1279  *         __swap_duplicate()
1280  *           // check swap_map
1281  *     // verify PTE not changed
1282  *
1283  * In __swap_duplicate(), the swap_map need to be checked before
1284  * changing partly because the specified swap entry may be for another
1285  * swap device which has been swapoff.  And in do_swap_page(), after
1286  * the page is read from the swap device, the PTE is verified not
1287  * changed with the page table locked to check whether the swap device
1288  * has been swapoff or swapoff+swapon.
1289  */
1290 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1291 {
1292         struct swap_info_struct *si;
1293         unsigned long offset;
1294
1295         if (!entry.val)
1296                 goto out;
1297         si = swp_swap_info(entry);
1298         if (!si)
1299                 goto bad_nofile;
1300
1301         rcu_read_lock();
1302         if (data_race(!(si->flags & SWP_VALID)))
1303                 goto unlock_out;
1304         offset = swp_offset(entry);
1305         if (offset >= si->max)
1306                 goto unlock_out;
1307
1308         return si;
1309 bad_nofile:
1310         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1311 out:
1312         return NULL;
1313 unlock_out:
1314         rcu_read_unlock();
1315         return NULL;
1316 }
1317
1318 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1319                                        swp_entry_t entry)
1320 {
1321         struct swap_cluster_info *ci;
1322         unsigned long offset = swp_offset(entry);
1323         unsigned char usage;
1324
1325         ci = lock_cluster_or_swap_info(p, offset);
1326         usage = __swap_entry_free_locked(p, offset, 1);
1327         unlock_cluster_or_swap_info(p, ci);
1328         if (!usage)
1329                 free_swap_slot(entry);
1330
1331         return usage;
1332 }
1333
1334 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1335 {
1336         struct swap_cluster_info *ci;
1337         unsigned long offset = swp_offset(entry);
1338         unsigned char count;
1339
1340         ci = lock_cluster(p, offset);
1341         count = p->swap_map[offset];
1342         VM_BUG_ON(count != SWAP_HAS_CACHE);
1343         p->swap_map[offset] = 0;
1344         dec_cluster_info_page(p, p->cluster_info, offset);
1345         unlock_cluster(ci);
1346
1347         mem_cgroup_uncharge_swap(entry, 1);
1348         swap_range_free(p, offset, 1);
1349 }
1350
1351 /*
1352  * Caller has made sure that the swap device corresponding to entry
1353  * is still around or has not been recycled.
1354  */
1355 void swap_free(swp_entry_t entry)
1356 {
1357         struct swap_info_struct *p;
1358
1359         p = _swap_info_get(entry);
1360         if (p)
1361                 __swap_entry_free(p, entry);
1362 }
1363
1364 /*
1365  * Called after dropping swapcache to decrease refcnt to swap entries.
1366  */
1367 void put_swap_page(struct page *page, swp_entry_t entry)
1368 {
1369         unsigned long offset = swp_offset(entry);
1370         unsigned long idx = offset / SWAPFILE_CLUSTER;
1371         struct swap_cluster_info *ci;
1372         struct swap_info_struct *si;
1373         unsigned char *map;
1374         unsigned int i, free_entries = 0;
1375         unsigned char val;
1376         int size = swap_entry_size(thp_nr_pages(page));
1377
1378         si = _swap_info_get(entry);
1379         if (!si)
1380                 return;
1381
1382         ci = lock_cluster_or_swap_info(si, offset);
1383         if (size == SWAPFILE_CLUSTER) {
1384                 VM_BUG_ON(!cluster_is_huge(ci));
1385                 map = si->swap_map + offset;
1386                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1387                         val = map[i];
1388                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1389                         if (val == SWAP_HAS_CACHE)
1390                                 free_entries++;
1391                 }
1392                 cluster_clear_huge(ci);
1393                 if (free_entries == SWAPFILE_CLUSTER) {
1394                         unlock_cluster_or_swap_info(si, ci);
1395                         spin_lock(&si->lock);
1396                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1397                         swap_free_cluster(si, idx);
1398                         spin_unlock(&si->lock);
1399                         return;
1400                 }
1401         }
1402         for (i = 0; i < size; i++, entry.val++) {
1403                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1404                         unlock_cluster_or_swap_info(si, ci);
1405                         free_swap_slot(entry);
1406                         if (i == size - 1)
1407                                 return;
1408                         lock_cluster_or_swap_info(si, offset);
1409                 }
1410         }
1411         unlock_cluster_or_swap_info(si, ci);
1412 }
1413
1414 #ifdef CONFIG_THP_SWAP
1415 int split_swap_cluster(swp_entry_t entry)
1416 {
1417         struct swap_info_struct *si;
1418         struct swap_cluster_info *ci;
1419         unsigned long offset = swp_offset(entry);
1420
1421         si = _swap_info_get(entry);
1422         if (!si)
1423                 return -EBUSY;
1424         ci = lock_cluster(si, offset);
1425         cluster_clear_huge(ci);
1426         unlock_cluster(ci);
1427         return 0;
1428 }
1429 #endif
1430
1431 static int swp_entry_cmp(const void *ent1, const void *ent2)
1432 {
1433         const swp_entry_t *e1 = ent1, *e2 = ent2;
1434
1435         return (int)swp_type(*e1) - (int)swp_type(*e2);
1436 }
1437
1438 void swapcache_free_entries(swp_entry_t *entries, int n)
1439 {
1440         struct swap_info_struct *p, *prev;
1441         int i;
1442
1443         if (n <= 0)
1444                 return;
1445
1446         prev = NULL;
1447         p = NULL;
1448
1449         /*
1450          * Sort swap entries by swap device, so each lock is only taken once.
1451          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1452          * so low that it isn't necessary to optimize further.
1453          */
1454         if (nr_swapfiles > 1)
1455                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1456         for (i = 0; i < n; ++i) {
1457                 p = swap_info_get_cont(entries[i], prev);
1458                 if (p)
1459                         swap_entry_free(p, entries[i]);
1460                 prev = p;
1461         }
1462         if (p)
1463                 spin_unlock(&p->lock);
1464 }
1465
1466 /*
1467  * How many references to page are currently swapped out?
1468  * This does not give an exact answer when swap count is continued,
1469  * but does include the high COUNT_CONTINUED flag to allow for that.
1470  */
1471 int page_swapcount(struct page *page)
1472 {
1473         int count = 0;
1474         struct swap_info_struct *p;
1475         struct swap_cluster_info *ci;
1476         swp_entry_t entry;
1477         unsigned long offset;
1478
1479         entry.val = page_private(page);
1480         p = _swap_info_get(entry);
1481         if (p) {
1482                 offset = swp_offset(entry);
1483                 ci = lock_cluster_or_swap_info(p, offset);
1484                 count = swap_count(p->swap_map[offset]);
1485                 unlock_cluster_or_swap_info(p, ci);
1486         }
1487         return count;
1488 }
1489
1490 int __swap_count(swp_entry_t entry)
1491 {
1492         struct swap_info_struct *si;
1493         pgoff_t offset = swp_offset(entry);
1494         int count = 0;
1495
1496         si = get_swap_device(entry);
1497         if (si) {
1498                 count = swap_count(si->swap_map[offset]);
1499                 put_swap_device(si);
1500         }
1501         return count;
1502 }
1503
1504 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1505 {
1506         int count = 0;
1507         pgoff_t offset = swp_offset(entry);
1508         struct swap_cluster_info *ci;
1509
1510         ci = lock_cluster_or_swap_info(si, offset);
1511         count = swap_count(si->swap_map[offset]);
1512         unlock_cluster_or_swap_info(si, ci);
1513         return count;
1514 }
1515
1516 /*
1517  * How many references to @entry are currently swapped out?
1518  * This does not give an exact answer when swap count is continued,
1519  * but does include the high COUNT_CONTINUED flag to allow for that.
1520  */
1521 int __swp_swapcount(swp_entry_t entry)
1522 {
1523         int count = 0;
1524         struct swap_info_struct *si;
1525
1526         si = get_swap_device(entry);
1527         if (si) {
1528                 count = swap_swapcount(si, entry);
1529                 put_swap_device(si);
1530         }
1531         return count;
1532 }
1533
1534 /*
1535  * How many references to @entry are currently swapped out?
1536  * This considers COUNT_CONTINUED so it returns exact answer.
1537  */
1538 int swp_swapcount(swp_entry_t entry)
1539 {
1540         int count, tmp_count, n;
1541         struct swap_info_struct *p;
1542         struct swap_cluster_info *ci;
1543         struct page *page;
1544         pgoff_t offset;
1545         unsigned char *map;
1546
1547         p = _swap_info_get(entry);
1548         if (!p)
1549                 return 0;
1550
1551         offset = swp_offset(entry);
1552
1553         ci = lock_cluster_or_swap_info(p, offset);
1554
1555         count = swap_count(p->swap_map[offset]);
1556         if (!(count & COUNT_CONTINUED))
1557                 goto out;
1558
1559         count &= ~COUNT_CONTINUED;
1560         n = SWAP_MAP_MAX + 1;
1561
1562         page = vmalloc_to_page(p->swap_map + offset);
1563         offset &= ~PAGE_MASK;
1564         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1565
1566         do {
1567                 page = list_next_entry(page, lru);
1568                 map = kmap_atomic(page);
1569                 tmp_count = map[offset];
1570                 kunmap_atomic(map);
1571
1572                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1573                 n *= (SWAP_CONT_MAX + 1);
1574         } while (tmp_count & COUNT_CONTINUED);
1575 out:
1576         unlock_cluster_or_swap_info(p, ci);
1577         return count;
1578 }
1579
1580 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1581                                          swp_entry_t entry)
1582 {
1583         struct swap_cluster_info *ci;
1584         unsigned char *map = si->swap_map;
1585         unsigned long roffset = swp_offset(entry);
1586         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1587         int i;
1588         bool ret = false;
1589
1590         ci = lock_cluster_or_swap_info(si, offset);
1591         if (!ci || !cluster_is_huge(ci)) {
1592                 if (swap_count(map[roffset]))
1593                         ret = true;
1594                 goto unlock_out;
1595         }
1596         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1597                 if (swap_count(map[offset + i])) {
1598                         ret = true;
1599                         break;
1600                 }
1601         }
1602 unlock_out:
1603         unlock_cluster_or_swap_info(si, ci);
1604         return ret;
1605 }
1606
1607 static bool page_swapped(struct page *page)
1608 {
1609         swp_entry_t entry;
1610         struct swap_info_struct *si;
1611
1612         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1613                 return page_swapcount(page) != 0;
1614
1615         page = compound_head(page);
1616         entry.val = page_private(page);
1617         si = _swap_info_get(entry);
1618         if (si)
1619                 return swap_page_trans_huge_swapped(si, entry);
1620         return false;
1621 }
1622
1623 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1624                                          int *total_swapcount)
1625 {
1626         int i, map_swapcount, _total_mapcount, _total_swapcount;
1627         unsigned long offset = 0;
1628         struct swap_info_struct *si;
1629         struct swap_cluster_info *ci = NULL;
1630         unsigned char *map = NULL;
1631         int mapcount, swapcount = 0;
1632
1633         /* hugetlbfs shouldn't call it */
1634         VM_BUG_ON_PAGE(PageHuge(page), page);
1635
1636         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1637                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1638                 if (PageSwapCache(page))
1639                         swapcount = page_swapcount(page);
1640                 if (total_swapcount)
1641                         *total_swapcount = swapcount;
1642                 return mapcount + swapcount;
1643         }
1644
1645         page = compound_head(page);
1646
1647         _total_mapcount = _total_swapcount = map_swapcount = 0;
1648         if (PageSwapCache(page)) {
1649                 swp_entry_t entry;
1650
1651                 entry.val = page_private(page);
1652                 si = _swap_info_get(entry);
1653                 if (si) {
1654                         map = si->swap_map;
1655                         offset = swp_offset(entry);
1656                 }
1657         }
1658         if (map)
1659                 ci = lock_cluster(si, offset);
1660         for (i = 0; i < HPAGE_PMD_NR; i++) {
1661                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1662                 _total_mapcount += mapcount;
1663                 if (map) {
1664                         swapcount = swap_count(map[offset + i]);
1665                         _total_swapcount += swapcount;
1666                 }
1667                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1668         }
1669         unlock_cluster(ci);
1670         if (PageDoubleMap(page)) {
1671                 map_swapcount -= 1;
1672                 _total_mapcount -= HPAGE_PMD_NR;
1673         }
1674         mapcount = compound_mapcount(page);
1675         map_swapcount += mapcount;
1676         _total_mapcount += mapcount;
1677         if (total_mapcount)
1678                 *total_mapcount = _total_mapcount;
1679         if (total_swapcount)
1680                 *total_swapcount = _total_swapcount;
1681
1682         return map_swapcount;
1683 }
1684
1685 /*
1686  * We can write to an anon page without COW if there are no other references
1687  * to it.  And as a side-effect, free up its swap: because the old content
1688  * on disk will never be read, and seeking back there to write new content
1689  * later would only waste time away from clustering.
1690  *
1691  * NOTE: total_map_swapcount should not be relied upon by the caller if
1692  * reuse_swap_page() returns false, but it may be always overwritten
1693  * (see the other implementation for CONFIG_SWAP=n).
1694  */
1695 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1696 {
1697         int count, total_mapcount, total_swapcount;
1698
1699         VM_BUG_ON_PAGE(!PageLocked(page), page);
1700         if (unlikely(PageKsm(page)))
1701                 return false;
1702         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1703                                               &total_swapcount);
1704         if (total_map_swapcount)
1705                 *total_map_swapcount = total_mapcount + total_swapcount;
1706         if (count == 1 && PageSwapCache(page) &&
1707             (likely(!PageTransCompound(page)) ||
1708              /* The remaining swap count will be freed soon */
1709              total_swapcount == page_swapcount(page))) {
1710                 if (!PageWriteback(page)) {
1711                         page = compound_head(page);
1712                         delete_from_swap_cache(page);
1713                         SetPageDirty(page);
1714                 } else {
1715                         swp_entry_t entry;
1716                         struct swap_info_struct *p;
1717
1718                         entry.val = page_private(page);
1719                         p = swap_info_get(entry);
1720                         if (p->flags & SWP_STABLE_WRITES) {
1721                                 spin_unlock(&p->lock);
1722                                 return false;
1723                         }
1724                         spin_unlock(&p->lock);
1725                 }
1726         }
1727
1728         return count <= 1;
1729 }
1730
1731 /*
1732  * If swap is getting full, or if there are no more mappings of this page,
1733  * then try_to_free_swap is called to free its swap space.
1734  */
1735 int try_to_free_swap(struct page *page)
1736 {
1737         VM_BUG_ON_PAGE(!PageLocked(page), page);
1738
1739         if (!PageSwapCache(page))
1740                 return 0;
1741         if (PageWriteback(page))
1742                 return 0;
1743         if (page_swapped(page))
1744                 return 0;
1745
1746         /*
1747          * Once hibernation has begun to create its image of memory,
1748          * there's a danger that one of the calls to try_to_free_swap()
1749          * - most probably a call from __try_to_reclaim_swap() while
1750          * hibernation is allocating its own swap pages for the image,
1751          * but conceivably even a call from memory reclaim - will free
1752          * the swap from a page which has already been recorded in the
1753          * image as a clean swapcache page, and then reuse its swap for
1754          * another page of the image.  On waking from hibernation, the
1755          * original page might be freed under memory pressure, then
1756          * later read back in from swap, now with the wrong data.
1757          *
1758          * Hibernation suspends storage while it is writing the image
1759          * to disk so check that here.
1760          */
1761         if (pm_suspended_storage())
1762                 return 0;
1763
1764         page = compound_head(page);
1765         delete_from_swap_cache(page);
1766         SetPageDirty(page);
1767         return 1;
1768 }
1769
1770 /*
1771  * Free the swap entry like above, but also try to
1772  * free the page cache entry if it is the last user.
1773  */
1774 int free_swap_and_cache(swp_entry_t entry)
1775 {
1776         struct swap_info_struct *p;
1777         unsigned char count;
1778
1779         if (non_swap_entry(entry))
1780                 return 1;
1781
1782         p = _swap_info_get(entry);
1783         if (p) {
1784                 count = __swap_entry_free(p, entry);
1785                 if (count == SWAP_HAS_CACHE &&
1786                     !swap_page_trans_huge_swapped(p, entry))
1787                         __try_to_reclaim_swap(p, swp_offset(entry),
1788                                               TTRS_UNMAPPED | TTRS_FULL);
1789         }
1790         return p != NULL;
1791 }
1792
1793 #ifdef CONFIG_HIBERNATION
1794 /*
1795  * Find the swap type that corresponds to given device (if any).
1796  *
1797  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1798  * from 0, in which the swap header is expected to be located.
1799  *
1800  * This is needed for the suspend to disk (aka swsusp).
1801  */
1802 int swap_type_of(dev_t device, sector_t offset)
1803 {
1804         int type;
1805
1806         if (!device)
1807                 return -1;
1808
1809         spin_lock(&swap_lock);
1810         for (type = 0; type < nr_swapfiles; type++) {
1811                 struct swap_info_struct *sis = swap_info[type];
1812
1813                 if (!(sis->flags & SWP_WRITEOK))
1814                         continue;
1815
1816                 if (device == sis->bdev->bd_dev) {
1817                         struct swap_extent *se = first_se(sis);
1818
1819                         if (se->start_block == offset) {
1820                                 spin_unlock(&swap_lock);
1821                                 return type;
1822                         }
1823                 }
1824         }
1825         spin_unlock(&swap_lock);
1826         return -ENODEV;
1827 }
1828
1829 int find_first_swap(dev_t *device)
1830 {
1831         int type;
1832
1833         spin_lock(&swap_lock);
1834         for (type = 0; type < nr_swapfiles; type++) {
1835                 struct swap_info_struct *sis = swap_info[type];
1836
1837                 if (!(sis->flags & SWP_WRITEOK))
1838                         continue;
1839                 *device = sis->bdev->bd_dev;
1840                 spin_unlock(&swap_lock);
1841                 return type;
1842         }
1843         spin_unlock(&swap_lock);
1844         return -ENODEV;
1845 }
1846
1847 /*
1848  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849  * corresponding to given index in swap_info (swap type).
1850  */
1851 sector_t swapdev_block(int type, pgoff_t offset)
1852 {
1853         struct block_device *bdev;
1854         struct swap_info_struct *si = swap_type_to_swap_info(type);
1855
1856         if (!si || !(si->flags & SWP_WRITEOK))
1857                 return 0;
1858         return map_swap_entry(swp_entry(type, offset), &bdev);
1859 }
1860
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869         unsigned int n = 0;
1870
1871         spin_lock(&swap_lock);
1872         if ((unsigned int)type < nr_swapfiles) {
1873                 struct swap_info_struct *sis = swap_info[type];
1874
1875                 spin_lock(&sis->lock);
1876                 if (sis->flags & SWP_WRITEOK) {
1877                         n = sis->pages;
1878                         if (free)
1879                                 n -= sis->inuse_pages;
1880                 }
1881                 spin_unlock(&sis->lock);
1882         }
1883         spin_unlock(&swap_lock);
1884         return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899                 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901         struct page *swapcache;
1902         spinlock_t *ptl;
1903         pte_t *pte;
1904         int ret = 1;
1905
1906         swapcache = page;
1907         page = ksm_might_need_to_copy(page, vma, addr);
1908         if (unlikely(!page))
1909                 return -ENOMEM;
1910
1911         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913                 ret = 0;
1914                 goto out;
1915         }
1916
1917         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919         get_page(page);
1920         set_pte_at(vma->vm_mm, addr, pte,
1921                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922         if (page == swapcache) {
1923                 page_add_anon_rmap(page, vma, addr, false);
1924         } else { /* ksm created a completely new copy */
1925                 page_add_new_anon_rmap(page, vma, addr, false);
1926                 lru_cache_add_inactive_or_unevictable(page, vma);
1927         }
1928         swap_free(entry);
1929 out:
1930         pte_unmap_unlock(pte, ptl);
1931         if (page != swapcache) {
1932                 unlock_page(page);
1933                 put_page(page);
1934         }
1935         return ret;
1936 }
1937
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939                         unsigned long addr, unsigned long end,
1940                         unsigned int type, bool frontswap,
1941                         unsigned long *fs_pages_to_unuse)
1942 {
1943         struct page *page;
1944         swp_entry_t entry;
1945         pte_t *pte;
1946         struct swap_info_struct *si;
1947         unsigned long offset;
1948         int ret = 0;
1949         volatile unsigned char *swap_map;
1950
1951         si = swap_info[type];
1952         pte = pte_offset_map(pmd, addr);
1953         do {
1954                 struct vm_fault vmf;
1955
1956                 if (!is_swap_pte(*pte))
1957                         continue;
1958
1959                 entry = pte_to_swp_entry(*pte);
1960                 if (swp_type(entry) != type)
1961                         continue;
1962
1963                 offset = swp_offset(entry);
1964                 if (frontswap && !frontswap_test(si, offset))
1965                         continue;
1966
1967                 pte_unmap(pte);
1968                 swap_map = &si->swap_map[offset];
1969                 page = lookup_swap_cache(entry, vma, addr);
1970                 if (!page) {
1971                         vmf.vma = vma;
1972                         vmf.address = addr;
1973                         vmf.pmd = pmd;
1974                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1975                                                 &vmf);
1976                 }
1977                 if (!page) {
1978                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1979                                 goto try_next;
1980                         return -ENOMEM;
1981                 }
1982
1983                 lock_page(page);
1984                 wait_on_page_writeback(page);
1985                 ret = unuse_pte(vma, pmd, addr, entry, page);
1986                 if (ret < 0) {
1987                         unlock_page(page);
1988                         put_page(page);
1989                         goto out;
1990                 }
1991
1992                 try_to_free_swap(page);
1993                 unlock_page(page);
1994                 put_page(page);
1995
1996                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1997                         ret = FRONTSWAP_PAGES_UNUSED;
1998                         goto out;
1999                 }
2000 try_next:
2001                 pte = pte_offset_map(pmd, addr);
2002         } while (pte++, addr += PAGE_SIZE, addr != end);
2003         pte_unmap(pte - 1);
2004
2005         ret = 0;
2006 out:
2007         return ret;
2008 }
2009
2010 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2011                                 unsigned long addr, unsigned long end,
2012                                 unsigned int type, bool frontswap,
2013                                 unsigned long *fs_pages_to_unuse)
2014 {
2015         pmd_t *pmd;
2016         unsigned long next;
2017         int ret;
2018
2019         pmd = pmd_offset(pud, addr);
2020         do {
2021                 cond_resched();
2022                 next = pmd_addr_end(addr, end);
2023                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2024                         continue;
2025                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2026                                       frontswap, fs_pages_to_unuse);
2027                 if (ret)
2028                         return ret;
2029         } while (pmd++, addr = next, addr != end);
2030         return 0;
2031 }
2032
2033 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2034                                 unsigned long addr, unsigned long end,
2035                                 unsigned int type, bool frontswap,
2036                                 unsigned long *fs_pages_to_unuse)
2037 {
2038         pud_t *pud;
2039         unsigned long next;
2040         int ret;
2041
2042         pud = pud_offset(p4d, addr);
2043         do {
2044                 next = pud_addr_end(addr, end);
2045                 if (pud_none_or_clear_bad(pud))
2046                         continue;
2047                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2048                                       frontswap, fs_pages_to_unuse);
2049                 if (ret)
2050                         return ret;
2051         } while (pud++, addr = next, addr != end);
2052         return 0;
2053 }
2054
2055 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2056                                 unsigned long addr, unsigned long end,
2057                                 unsigned int type, bool frontswap,
2058                                 unsigned long *fs_pages_to_unuse)
2059 {
2060         p4d_t *p4d;
2061         unsigned long next;
2062         int ret;
2063
2064         p4d = p4d_offset(pgd, addr);
2065         do {
2066                 next = p4d_addr_end(addr, end);
2067                 if (p4d_none_or_clear_bad(p4d))
2068                         continue;
2069                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2070                                       frontswap, fs_pages_to_unuse);
2071                 if (ret)
2072                         return ret;
2073         } while (p4d++, addr = next, addr != end);
2074         return 0;
2075 }
2076
2077 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2078                      bool frontswap, unsigned long *fs_pages_to_unuse)
2079 {
2080         pgd_t *pgd;
2081         unsigned long addr, end, next;
2082         int ret;
2083
2084         addr = vma->vm_start;
2085         end = vma->vm_end;
2086
2087         pgd = pgd_offset(vma->vm_mm, addr);
2088         do {
2089                 next = pgd_addr_end(addr, end);
2090                 if (pgd_none_or_clear_bad(pgd))
2091                         continue;
2092                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2093                                       frontswap, fs_pages_to_unuse);
2094                 if (ret)
2095                         return ret;
2096         } while (pgd++, addr = next, addr != end);
2097         return 0;
2098 }
2099
2100 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2101                     bool frontswap, unsigned long *fs_pages_to_unuse)
2102 {
2103         struct vm_area_struct *vma;
2104         int ret = 0;
2105
2106         mmap_read_lock(mm);
2107         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2108                 if (vma->anon_vma) {
2109                         ret = unuse_vma(vma, type, frontswap,
2110                                         fs_pages_to_unuse);
2111                         if (ret)
2112                                 break;
2113                 }
2114                 cond_resched();
2115         }
2116         mmap_read_unlock(mm);
2117         return ret;
2118 }
2119
2120 /*
2121  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2122  * from current position to next entry still in use. Return 0
2123  * if there are no inuse entries after prev till end of the map.
2124  */
2125 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2126                                         unsigned int prev, bool frontswap)
2127 {
2128         unsigned int i;
2129         unsigned char count;
2130
2131         /*
2132          * No need for swap_lock here: we're just looking
2133          * for whether an entry is in use, not modifying it; false
2134          * hits are okay, and sys_swapoff() has already prevented new
2135          * allocations from this area (while holding swap_lock).
2136          */
2137         for (i = prev + 1; i < si->max; i++) {
2138                 count = READ_ONCE(si->swap_map[i]);
2139                 if (count && swap_count(count) != SWAP_MAP_BAD)
2140                         if (!frontswap || frontswap_test(si, i))
2141                                 break;
2142                 if ((i % LATENCY_LIMIT) == 0)
2143                         cond_resched();
2144         }
2145
2146         if (i == si->max)
2147                 i = 0;
2148
2149         return i;
2150 }
2151
2152 /*
2153  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2154  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2155  */
2156 int try_to_unuse(unsigned int type, bool frontswap,
2157                  unsigned long pages_to_unuse)
2158 {
2159         struct mm_struct *prev_mm;
2160         struct mm_struct *mm;
2161         struct list_head *p;
2162         int retval = 0;
2163         struct swap_info_struct *si = swap_info[type];
2164         struct page *page;
2165         swp_entry_t entry;
2166         unsigned int i;
2167
2168         if (!READ_ONCE(si->inuse_pages))
2169                 return 0;
2170
2171         if (!frontswap)
2172                 pages_to_unuse = 0;
2173
2174 retry:
2175         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2176         if (retval)
2177                 goto out;
2178
2179         prev_mm = &init_mm;
2180         mmget(prev_mm);
2181
2182         spin_lock(&mmlist_lock);
2183         p = &init_mm.mmlist;
2184         while (READ_ONCE(si->inuse_pages) &&
2185                !signal_pending(current) &&
2186                (p = p->next) != &init_mm.mmlist) {
2187
2188                 mm = list_entry(p, struct mm_struct, mmlist);
2189                 if (!mmget_not_zero(mm))
2190                         continue;
2191                 spin_unlock(&mmlist_lock);
2192                 mmput(prev_mm);
2193                 prev_mm = mm;
2194                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2195
2196                 if (retval) {
2197                         mmput(prev_mm);
2198                         goto out;
2199                 }
2200
2201                 /*
2202                  * Make sure that we aren't completely killing
2203                  * interactive performance.
2204                  */
2205                 cond_resched();
2206                 spin_lock(&mmlist_lock);
2207         }
2208         spin_unlock(&mmlist_lock);
2209
2210         mmput(prev_mm);
2211
2212         i = 0;
2213         while (READ_ONCE(si->inuse_pages) &&
2214                !signal_pending(current) &&
2215                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2216
2217                 entry = swp_entry(type, i);
2218                 page = find_get_page(swap_address_space(entry), i);
2219                 if (!page)
2220                         continue;
2221
2222                 /*
2223                  * It is conceivable that a racing task removed this page from
2224                  * swap cache just before we acquired the page lock. The page
2225                  * might even be back in swap cache on another swap area. But
2226                  * that is okay, try_to_free_swap() only removes stale pages.
2227                  */
2228                 lock_page(page);
2229                 wait_on_page_writeback(page);
2230                 try_to_free_swap(page);
2231                 unlock_page(page);
2232                 put_page(page);
2233
2234                 /*
2235                  * For frontswap, we just need to unuse pages_to_unuse, if
2236                  * it was specified. Need not check frontswap again here as
2237                  * we already zeroed out pages_to_unuse if not frontswap.
2238                  */
2239                 if (pages_to_unuse && --pages_to_unuse == 0)
2240                         goto out;
2241         }
2242
2243         /*
2244          * Lets check again to see if there are still swap entries in the map.
2245          * If yes, we would need to do retry the unuse logic again.
2246          * Under global memory pressure, swap entries can be reinserted back
2247          * into process space after the mmlist loop above passes over them.
2248          *
2249          * Limit the number of retries? No: when mmget_not_zero() above fails,
2250          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2251          * at its own independent pace; and even shmem_writepage() could have
2252          * been preempted after get_swap_page(), temporarily hiding that swap.
2253          * It's easy and robust (though cpu-intensive) just to keep retrying.
2254          */
2255         if (READ_ONCE(si->inuse_pages)) {
2256                 if (!signal_pending(current))
2257                         goto retry;
2258                 retval = -EINTR;
2259         }
2260 out:
2261         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2262 }
2263
2264 /*
2265  * After a successful try_to_unuse, if no swap is now in use, we know
2266  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2267  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2268  * added to the mmlist just after page_duplicate - before would be racy.
2269  */
2270 static void drain_mmlist(void)
2271 {
2272         struct list_head *p, *next;
2273         unsigned int type;
2274
2275         for (type = 0; type < nr_swapfiles; type++)
2276                 if (swap_info[type]->inuse_pages)
2277                         return;
2278         spin_lock(&mmlist_lock);
2279         list_for_each_safe(p, next, &init_mm.mmlist)
2280                 list_del_init(p);
2281         spin_unlock(&mmlist_lock);
2282 }
2283
2284 /*
2285  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2286  * corresponds to page offset for the specified swap entry.
2287  * Note that the type of this function is sector_t, but it returns page offset
2288  * into the bdev, not sector offset.
2289  */
2290 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2291 {
2292         struct swap_info_struct *sis;
2293         struct swap_extent *se;
2294         pgoff_t offset;
2295
2296         sis = swp_swap_info(entry);
2297         *bdev = sis->bdev;
2298
2299         offset = swp_offset(entry);
2300         se = offset_to_swap_extent(sis, offset);
2301         return se->start_block + (offset - se->start_page);
2302 }
2303
2304 /*
2305  * Returns the page offset into bdev for the specified page's swap entry.
2306  */
2307 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2308 {
2309         swp_entry_t entry;
2310         entry.val = page_private(page);
2311         return map_swap_entry(entry, bdev);
2312 }
2313
2314 /*
2315  * Free all of a swapdev's extent information
2316  */
2317 static void destroy_swap_extents(struct swap_info_struct *sis)
2318 {
2319         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2320                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2321                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2322
2323                 rb_erase(rb, &sis->swap_extent_root);
2324                 kfree(se);
2325         }
2326
2327         if (sis->flags & SWP_ACTIVATED) {
2328                 struct file *swap_file = sis->swap_file;
2329                 struct address_space *mapping = swap_file->f_mapping;
2330
2331                 sis->flags &= ~SWP_ACTIVATED;
2332                 if (mapping->a_ops->swap_deactivate)
2333                         mapping->a_ops->swap_deactivate(swap_file);
2334         }
2335 }
2336
2337 /*
2338  * Add a block range (and the corresponding page range) into this swapdev's
2339  * extent tree.
2340  *
2341  * This function rather assumes that it is called in ascending page order.
2342  */
2343 int
2344 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2345                 unsigned long nr_pages, sector_t start_block)
2346 {
2347         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2348         struct swap_extent *se;
2349         struct swap_extent *new_se;
2350
2351         /*
2352          * place the new node at the right most since the
2353          * function is called in ascending page order.
2354          */
2355         while (*link) {
2356                 parent = *link;
2357                 link = &parent->rb_right;
2358         }
2359
2360         if (parent) {
2361                 se = rb_entry(parent, struct swap_extent, rb_node);
2362                 BUG_ON(se->start_page + se->nr_pages != start_page);
2363                 if (se->start_block + se->nr_pages == start_block) {
2364                         /* Merge it */
2365                         se->nr_pages += nr_pages;
2366                         return 0;
2367                 }
2368         }
2369
2370         /* No merge, insert a new extent. */
2371         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2372         if (new_se == NULL)
2373                 return -ENOMEM;
2374         new_se->start_page = start_page;
2375         new_se->nr_pages = nr_pages;
2376         new_se->start_block = start_block;
2377
2378         rb_link_node(&new_se->rb_node, parent, link);
2379         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2380         return 1;
2381 }
2382 EXPORT_SYMBOL_GPL(add_swap_extent);
2383
2384 /*
2385  * A `swap extent' is a simple thing which maps a contiguous range of pages
2386  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2387  * is built at swapon time and is then used at swap_writepage/swap_readpage
2388  * time for locating where on disk a page belongs.
2389  *
2390  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2391  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2392  * swap files identically.
2393  *
2394  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2395  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2396  * swapfiles are handled *identically* after swapon time.
2397  *
2398  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2399  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2400  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2401  * requirements, they are simply tossed out - we will never use those blocks
2402  * for swapping.
2403  *
2404  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2405  * prevents users from writing to the swap device, which will corrupt memory.
2406  *
2407  * The amount of disk space which a single swap extent represents varies.
2408  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2409  * extents in the list.  To avoid much list walking, we cache the previous
2410  * search location in `curr_swap_extent', and start new searches from there.
2411  * This is extremely effective.  The average number of iterations in
2412  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2413  */
2414 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2415 {
2416         struct file *swap_file = sis->swap_file;
2417         struct address_space *mapping = swap_file->f_mapping;
2418         struct inode *inode = mapping->host;
2419         int ret;
2420
2421         if (S_ISBLK(inode->i_mode)) {
2422                 ret = add_swap_extent(sis, 0, sis->max, 0);
2423                 *span = sis->pages;
2424                 return ret;
2425         }
2426
2427         if (mapping->a_ops->swap_activate) {
2428                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2429                 if (ret >= 0)
2430                         sis->flags |= SWP_ACTIVATED;
2431                 if (!ret) {
2432                         sis->flags |= SWP_FS_OPS;
2433                         ret = add_swap_extent(sis, 0, sis->max, 0);
2434                         *span = sis->pages;
2435                 }
2436                 return ret;
2437         }
2438
2439         return generic_swapfile_activate(sis, swap_file, span);
2440 }
2441
2442 static int swap_node(struct swap_info_struct *p)
2443 {
2444         struct block_device *bdev;
2445
2446         if (p->bdev)
2447                 bdev = p->bdev;
2448         else
2449                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450
2451         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452 }
2453
2454 static void setup_swap_info(struct swap_info_struct *p, int prio,
2455                             unsigned char *swap_map,
2456                             struct swap_cluster_info *cluster_info)
2457 {
2458         int i;
2459
2460         if (prio >= 0)
2461                 p->prio = prio;
2462         else
2463                 p->prio = --least_priority;
2464         /*
2465          * the plist prio is negated because plist ordering is
2466          * low-to-high, while swap ordering is high-to-low
2467          */
2468         p->list.prio = -p->prio;
2469         for_each_node(i) {
2470                 if (p->prio >= 0)
2471                         p->avail_lists[i].prio = -p->prio;
2472                 else {
2473                         if (swap_node(p) == i)
2474                                 p->avail_lists[i].prio = 1;
2475                         else
2476                                 p->avail_lists[i].prio = -p->prio;
2477                 }
2478         }
2479         p->swap_map = swap_map;
2480         p->cluster_info = cluster_info;
2481 }
2482
2483 static void _enable_swap_info(struct swap_info_struct *p)
2484 {
2485         p->flags |= SWP_WRITEOK | SWP_VALID;
2486         atomic_long_add(p->pages, &nr_swap_pages);
2487         total_swap_pages += p->pages;
2488
2489         assert_spin_locked(&swap_lock);
2490         /*
2491          * both lists are plists, and thus priority ordered.
2492          * swap_active_head needs to be priority ordered for swapoff(),
2493          * which on removal of any swap_info_struct with an auto-assigned
2494          * (i.e. negative) priority increments the auto-assigned priority
2495          * of any lower-priority swap_info_structs.
2496          * swap_avail_head needs to be priority ordered for get_swap_page(),
2497          * which allocates swap pages from the highest available priority
2498          * swap_info_struct.
2499          */
2500         plist_add(&p->list, &swap_active_head);
2501         add_to_avail_list(p);
2502 }
2503
2504 static void enable_swap_info(struct swap_info_struct *p, int prio,
2505                                 unsigned char *swap_map,
2506                                 struct swap_cluster_info *cluster_info,
2507                                 unsigned long *frontswap_map)
2508 {
2509         frontswap_init(p->type, frontswap_map);
2510         spin_lock(&swap_lock);
2511         spin_lock(&p->lock);
2512         setup_swap_info(p, prio, swap_map, cluster_info);
2513         spin_unlock(&p->lock);
2514         spin_unlock(&swap_lock);
2515         /*
2516          * Guarantee swap_map, cluster_info, etc. fields are valid
2517          * between get/put_swap_device() if SWP_VALID bit is set
2518          */
2519         synchronize_rcu();
2520         spin_lock(&swap_lock);
2521         spin_lock(&p->lock);
2522         _enable_swap_info(p);
2523         spin_unlock(&p->lock);
2524         spin_unlock(&swap_lock);
2525 }
2526
2527 static void reinsert_swap_info(struct swap_info_struct *p)
2528 {
2529         spin_lock(&swap_lock);
2530         spin_lock(&p->lock);
2531         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2532         _enable_swap_info(p);
2533         spin_unlock(&p->lock);
2534         spin_unlock(&swap_lock);
2535 }
2536
2537 bool has_usable_swap(void)
2538 {
2539         bool ret = true;
2540
2541         spin_lock(&swap_lock);
2542         if (plist_head_empty(&swap_active_head))
2543                 ret = false;
2544         spin_unlock(&swap_lock);
2545         return ret;
2546 }
2547
2548 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2549 {
2550         struct swap_info_struct *p = NULL;
2551         unsigned char *swap_map;
2552         struct swap_cluster_info *cluster_info;
2553         unsigned long *frontswap_map;
2554         struct file *swap_file, *victim;
2555         struct address_space *mapping;
2556         struct inode *inode;
2557         struct filename *pathname;
2558         int err, found = 0;
2559         unsigned int old_block_size;
2560
2561         if (!capable(CAP_SYS_ADMIN))
2562                 return -EPERM;
2563
2564         BUG_ON(!current->mm);
2565
2566         pathname = getname(specialfile);
2567         if (IS_ERR(pathname))
2568                 return PTR_ERR(pathname);
2569
2570         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2571         err = PTR_ERR(victim);
2572         if (IS_ERR(victim))
2573                 goto out;
2574
2575         mapping = victim->f_mapping;
2576         spin_lock(&swap_lock);
2577         plist_for_each_entry(p, &swap_active_head, list) {
2578                 if (p->flags & SWP_WRITEOK) {
2579                         if (p->swap_file->f_mapping == mapping) {
2580                                 found = 1;
2581                                 break;
2582                         }
2583                 }
2584         }
2585         if (!found) {
2586                 err = -EINVAL;
2587                 spin_unlock(&swap_lock);
2588                 goto out_dput;
2589         }
2590         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2591                 vm_unacct_memory(p->pages);
2592         else {
2593                 err = -ENOMEM;
2594                 spin_unlock(&swap_lock);
2595                 goto out_dput;
2596         }
2597         del_from_avail_list(p);
2598         spin_lock(&p->lock);
2599         if (p->prio < 0) {
2600                 struct swap_info_struct *si = p;
2601                 int nid;
2602
2603                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2604                         si->prio++;
2605                         si->list.prio--;
2606                         for_each_node(nid) {
2607                                 if (si->avail_lists[nid].prio != 1)
2608                                         si->avail_lists[nid].prio--;
2609                         }
2610                 }
2611                 least_priority++;
2612         }
2613         plist_del(&p->list, &swap_active_head);
2614         atomic_long_sub(p->pages, &nr_swap_pages);
2615         total_swap_pages -= p->pages;
2616         p->flags &= ~SWP_WRITEOK;
2617         spin_unlock(&p->lock);
2618         spin_unlock(&swap_lock);
2619
2620         disable_swap_slots_cache_lock();
2621
2622         set_current_oom_origin();
2623         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2624         clear_current_oom_origin();
2625
2626         if (err) {
2627                 /* re-insert swap space back into swap_list */
2628                 reinsert_swap_info(p);
2629                 reenable_swap_slots_cache_unlock();
2630                 goto out_dput;
2631         }
2632
2633         reenable_swap_slots_cache_unlock();
2634
2635         spin_lock(&swap_lock);
2636         spin_lock(&p->lock);
2637         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2638         spin_unlock(&p->lock);
2639         spin_unlock(&swap_lock);
2640         /*
2641          * wait for swap operations protected by get/put_swap_device()
2642          * to complete
2643          */
2644         synchronize_rcu();
2645
2646         flush_work(&p->discard_work);
2647
2648         destroy_swap_extents(p);
2649         if (p->flags & SWP_CONTINUED)
2650                 free_swap_count_continuations(p);
2651
2652         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2653                 atomic_dec(&nr_rotate_swap);
2654
2655         mutex_lock(&swapon_mutex);
2656         spin_lock(&swap_lock);
2657         spin_lock(&p->lock);
2658         drain_mmlist();
2659
2660         /* wait for anyone still in scan_swap_map */
2661         p->highest_bit = 0;             /* cuts scans short */
2662         while (p->flags >= SWP_SCANNING) {
2663                 spin_unlock(&p->lock);
2664                 spin_unlock(&swap_lock);
2665                 schedule_timeout_uninterruptible(1);
2666                 spin_lock(&swap_lock);
2667                 spin_lock(&p->lock);
2668         }
2669
2670         swap_file = p->swap_file;
2671         old_block_size = p->old_block_size;
2672         p->swap_file = NULL;
2673         p->max = 0;
2674         swap_map = p->swap_map;
2675         p->swap_map = NULL;
2676         cluster_info = p->cluster_info;
2677         p->cluster_info = NULL;
2678         frontswap_map = frontswap_map_get(p);
2679         spin_unlock(&p->lock);
2680         spin_unlock(&swap_lock);
2681         arch_swap_invalidate_area(p->type);
2682         frontswap_invalidate_area(p->type);
2683         frontswap_map_set(p, NULL);
2684         mutex_unlock(&swapon_mutex);
2685         free_percpu(p->percpu_cluster);
2686         p->percpu_cluster = NULL;
2687         free_percpu(p->cluster_next_cpu);
2688         p->cluster_next_cpu = NULL;
2689         vfree(swap_map);
2690         kvfree(cluster_info);
2691         kvfree(frontswap_map);
2692         /* Destroy swap account information */
2693         swap_cgroup_swapoff(p->type);
2694         exit_swap_address_space(p->type);
2695
2696         inode = mapping->host;
2697         if (S_ISBLK(inode->i_mode)) {
2698                 struct block_device *bdev = I_BDEV(inode);
2699
2700                 set_blocksize(bdev, old_block_size);
2701                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2702         }
2703
2704         inode_lock(inode);
2705         inode->i_flags &= ~S_SWAPFILE;
2706         inode_unlock(inode);
2707         filp_close(swap_file, NULL);
2708
2709         /*
2710          * Clear the SWP_USED flag after all resources are freed so that swapon
2711          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2712          * not hold p->lock after we cleared its SWP_WRITEOK.
2713          */
2714         spin_lock(&swap_lock);
2715         p->flags = 0;
2716         spin_unlock(&swap_lock);
2717
2718         err = 0;
2719         atomic_inc(&proc_poll_event);
2720         wake_up_interruptible(&proc_poll_wait);
2721
2722 out_dput:
2723         filp_close(victim, NULL);
2724 out:
2725         putname(pathname);
2726         return err;
2727 }
2728
2729 #ifdef CONFIG_PROC_FS
2730 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2731 {
2732         struct seq_file *seq = file->private_data;
2733
2734         poll_wait(file, &proc_poll_wait, wait);
2735
2736         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2737                 seq->poll_event = atomic_read(&proc_poll_event);
2738                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2739         }
2740
2741         return EPOLLIN | EPOLLRDNORM;
2742 }
2743
2744 /* iterator */
2745 static void *swap_start(struct seq_file *swap, loff_t *pos)
2746 {
2747         struct swap_info_struct *si;
2748         int type;
2749         loff_t l = *pos;
2750
2751         mutex_lock(&swapon_mutex);
2752
2753         if (!l)
2754                 return SEQ_START_TOKEN;
2755
2756         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2757                 if (!(si->flags & SWP_USED) || !si->swap_map)
2758                         continue;
2759                 if (!--l)
2760                         return si;
2761         }
2762
2763         return NULL;
2764 }
2765
2766 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2767 {
2768         struct swap_info_struct *si = v;
2769         int type;
2770
2771         if (v == SEQ_START_TOKEN)
2772                 type = 0;
2773         else
2774                 type = si->type + 1;
2775
2776         ++(*pos);
2777         for (; (si = swap_type_to_swap_info(type)); type++) {
2778                 if (!(si->flags & SWP_USED) || !si->swap_map)
2779                         continue;
2780                 return si;
2781         }
2782
2783         return NULL;
2784 }
2785
2786 static void swap_stop(struct seq_file *swap, void *v)
2787 {
2788         mutex_unlock(&swapon_mutex);
2789 }
2790
2791 static int swap_show(struct seq_file *swap, void *v)
2792 {
2793         struct swap_info_struct *si = v;
2794         struct file *file;
2795         int len;
2796         unsigned int bytes, inuse;
2797
2798         if (si == SEQ_START_TOKEN) {
2799                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2800                 return 0;
2801         }
2802
2803         bytes = si->pages << (PAGE_SHIFT - 10);
2804         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2805
2806         file = si->swap_file;
2807         len = seq_file_path(swap, file, " \t\n\\");
2808         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2809                         len < 40 ? 40 - len : 1, " ",
2810                         S_ISBLK(file_inode(file)->i_mode) ?
2811                                 "partition" : "file\t",
2812                         bytes, bytes < 10000000 ? "\t" : "",
2813                         inuse, inuse < 10000000 ? "\t" : "",
2814                         si->prio);
2815         return 0;
2816 }
2817
2818 static const struct seq_operations swaps_op = {
2819         .start =        swap_start,
2820         .next =         swap_next,
2821         .stop =         swap_stop,
2822         .show =         swap_show
2823 };
2824
2825 static int swaps_open(struct inode *inode, struct file *file)
2826 {
2827         struct seq_file *seq;
2828         int ret;
2829
2830         ret = seq_open(file, &swaps_op);
2831         if (ret)
2832                 return ret;
2833
2834         seq = file->private_data;
2835         seq->poll_event = atomic_read(&proc_poll_event);
2836         return 0;
2837 }
2838
2839 static const struct proc_ops swaps_proc_ops = {
2840         .proc_flags     = PROC_ENTRY_PERMANENT,
2841         .proc_open      = swaps_open,
2842         .proc_read      = seq_read,
2843         .proc_lseek     = seq_lseek,
2844         .proc_release   = seq_release,
2845         .proc_poll      = swaps_poll,
2846 };
2847
2848 static int __init procswaps_init(void)
2849 {
2850         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2851         return 0;
2852 }
2853 __initcall(procswaps_init);
2854 #endif /* CONFIG_PROC_FS */
2855
2856 #ifdef MAX_SWAPFILES_CHECK
2857 static int __init max_swapfiles_check(void)
2858 {
2859         MAX_SWAPFILES_CHECK();
2860         return 0;
2861 }
2862 late_initcall(max_swapfiles_check);
2863 #endif
2864
2865 static struct swap_info_struct *alloc_swap_info(void)
2866 {
2867         struct swap_info_struct *p;
2868         struct swap_info_struct *defer = NULL;
2869         unsigned int type;
2870         int i;
2871
2872         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2873         if (!p)
2874                 return ERR_PTR(-ENOMEM);
2875
2876         spin_lock(&swap_lock);
2877         for (type = 0; type < nr_swapfiles; type++) {
2878                 if (!(swap_info[type]->flags & SWP_USED))
2879                         break;
2880         }
2881         if (type >= MAX_SWAPFILES) {
2882                 spin_unlock(&swap_lock);
2883                 kvfree(p);
2884                 return ERR_PTR(-EPERM);
2885         }
2886         if (type >= nr_swapfiles) {
2887                 p->type = type;
2888                 WRITE_ONCE(swap_info[type], p);
2889                 /*
2890                  * Write swap_info[type] before nr_swapfiles, in case a
2891                  * racing procfs swap_start() or swap_next() is reading them.
2892                  * (We never shrink nr_swapfiles, we never free this entry.)
2893                  */
2894                 smp_wmb();
2895                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2896         } else {
2897                 defer = p;
2898                 p = swap_info[type];
2899                 /*
2900                  * Do not memset this entry: a racing procfs swap_next()
2901                  * would be relying on p->type to remain valid.
2902                  */
2903         }
2904         p->swap_extent_root = RB_ROOT;
2905         plist_node_init(&p->list, 0);
2906         for_each_node(i)
2907                 plist_node_init(&p->avail_lists[i], 0);
2908         p->flags = SWP_USED;
2909         spin_unlock(&swap_lock);
2910         kvfree(defer);
2911         spin_lock_init(&p->lock);
2912         spin_lock_init(&p->cont_lock);
2913
2914         return p;
2915 }
2916
2917 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2918 {
2919         int error;
2920
2921         if (S_ISBLK(inode->i_mode)) {
2922                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2923                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2924                 if (IS_ERR(p->bdev)) {
2925                         error = PTR_ERR(p->bdev);
2926                         p->bdev = NULL;
2927                         return error;
2928                 }
2929                 p->old_block_size = block_size(p->bdev);
2930                 error = set_blocksize(p->bdev, PAGE_SIZE);
2931                 if (error < 0)
2932                         return error;
2933                 /*
2934                  * Zoned block devices contain zones that have a sequential
2935                  * write only restriction.  Hence zoned block devices are not
2936                  * suitable for swapping.  Disallow them here.
2937                  */
2938                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2939                         return -EINVAL;
2940                 p->flags |= SWP_BLKDEV;
2941         } else if (S_ISREG(inode->i_mode)) {
2942                 p->bdev = inode->i_sb->s_bdev;
2943         }
2944
2945         return 0;
2946 }
2947
2948
2949 /*
2950  * Find out how many pages are allowed for a single swap device. There
2951  * are two limiting factors:
2952  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2953  * 2) the number of bits in the swap pte, as defined by the different
2954  * architectures.
2955  *
2956  * In order to find the largest possible bit mask, a swap entry with
2957  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2958  * decoded to a swp_entry_t again, and finally the swap offset is
2959  * extracted.
2960  *
2961  * This will mask all the bits from the initial ~0UL mask that can't
2962  * be encoded in either the swp_entry_t or the architecture definition
2963  * of a swap pte.
2964  */
2965 unsigned long generic_max_swapfile_size(void)
2966 {
2967         return swp_offset(pte_to_swp_entry(
2968                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2969 }
2970
2971 /* Can be overridden by an architecture for additional checks. */
2972 __weak unsigned long max_swapfile_size(void)
2973 {
2974         return generic_max_swapfile_size();
2975 }
2976
2977 static unsigned long read_swap_header(struct swap_info_struct *p,
2978                                         union swap_header *swap_header,
2979                                         struct inode *inode)
2980 {
2981         int i;
2982         unsigned long maxpages;
2983         unsigned long swapfilepages;
2984         unsigned long last_page;
2985
2986         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2987                 pr_err("Unable to find swap-space signature\n");
2988                 return 0;
2989         }
2990
2991         /* swap partition endianess hack... */
2992         if (swab32(swap_header->info.version) == 1) {
2993                 swab32s(&swap_header->info.version);
2994                 swab32s(&swap_header->info.last_page);
2995                 swab32s(&swap_header->info.nr_badpages);
2996                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997                         return 0;
2998                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2999                         swab32s(&swap_header->info.badpages[i]);
3000         }
3001         /* Check the swap header's sub-version */
3002         if (swap_header->info.version != 1) {
3003                 pr_warn("Unable to handle swap header version %d\n",
3004                         swap_header->info.version);
3005                 return 0;
3006         }
3007
3008         p->lowest_bit  = 1;
3009         p->cluster_next = 1;
3010         p->cluster_nr = 0;
3011
3012         maxpages = max_swapfile_size();
3013         last_page = swap_header->info.last_page;
3014         if (!last_page) {
3015                 pr_warn("Empty swap-file\n");
3016                 return 0;
3017         }
3018         if (last_page > maxpages) {
3019                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3020                         maxpages << (PAGE_SHIFT - 10),
3021                         last_page << (PAGE_SHIFT - 10));
3022         }
3023         if (maxpages > last_page) {
3024                 maxpages = last_page + 1;
3025                 /* p->max is an unsigned int: don't overflow it */
3026                 if ((unsigned int)maxpages == 0)
3027                         maxpages = UINT_MAX;
3028         }
3029         p->highest_bit = maxpages - 1;
3030
3031         if (!maxpages)
3032                 return 0;
3033         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3034         if (swapfilepages && maxpages > swapfilepages) {
3035                 pr_warn("Swap area shorter than signature indicates\n");
3036                 return 0;
3037         }
3038         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3039                 return 0;
3040         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3041                 return 0;
3042
3043         return maxpages;
3044 }
3045
3046 #define SWAP_CLUSTER_INFO_COLS                                          \
3047         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3048 #define SWAP_CLUSTER_SPACE_COLS                                         \
3049         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3050 #define SWAP_CLUSTER_COLS                                               \
3051         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3052
3053 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3054                                         union swap_header *swap_header,
3055                                         unsigned char *swap_map,
3056                                         struct swap_cluster_info *cluster_info,
3057                                         unsigned long maxpages,
3058                                         sector_t *span)
3059 {
3060         unsigned int j, k;
3061         unsigned int nr_good_pages;
3062         int nr_extents;
3063         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3064         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3065         unsigned long i, idx;
3066
3067         nr_good_pages = maxpages - 1;   /* omit header page */
3068
3069         cluster_list_init(&p->free_clusters);
3070         cluster_list_init(&p->discard_clusters);
3071
3072         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3073                 unsigned int page_nr = swap_header->info.badpages[i];
3074                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3075                         return -EINVAL;
3076                 if (page_nr < maxpages) {
3077                         swap_map[page_nr] = SWAP_MAP_BAD;
3078                         nr_good_pages--;
3079                         /*
3080                          * Haven't marked the cluster free yet, no list
3081                          * operation involved
3082                          */
3083                         inc_cluster_info_page(p, cluster_info, page_nr);
3084                 }
3085         }
3086
3087         /* Haven't marked the cluster free yet, no list operation involved */
3088         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3089                 inc_cluster_info_page(p, cluster_info, i);
3090
3091         if (nr_good_pages) {
3092                 swap_map[0] = SWAP_MAP_BAD;
3093                 /*
3094                  * Not mark the cluster free yet, no list
3095                  * operation involved
3096                  */
3097                 inc_cluster_info_page(p, cluster_info, 0);
3098                 p->max = maxpages;
3099                 p->pages = nr_good_pages;
3100                 nr_extents = setup_swap_extents(p, span);
3101                 if (nr_extents < 0)
3102                         return nr_extents;
3103                 nr_good_pages = p->pages;
3104         }
3105         if (!nr_good_pages) {
3106                 pr_warn("Empty swap-file\n");
3107                 return -EINVAL;
3108         }
3109
3110         if (!cluster_info)
3111                 return nr_extents;
3112
3113
3114         /*
3115          * Reduce false cache line sharing between cluster_info and
3116          * sharing same address space.
3117          */
3118         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3119                 j = (k + col) % SWAP_CLUSTER_COLS;
3120                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3121                         idx = i * SWAP_CLUSTER_COLS + j;
3122                         if (idx >= nr_clusters)
3123                                 continue;
3124                         if (cluster_count(&cluster_info[idx]))
3125                                 continue;
3126                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3127                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3128                                               idx);
3129                 }
3130         }
3131         return nr_extents;
3132 }
3133
3134 /*
3135  * Helper to sys_swapon determining if a given swap
3136  * backing device queue supports DISCARD operations.
3137  */
3138 static bool swap_discardable(struct swap_info_struct *si)
3139 {
3140         struct request_queue *q = bdev_get_queue(si->bdev);
3141
3142         if (!q || !blk_queue_discard(q))
3143                 return false;
3144
3145         return true;
3146 }
3147
3148 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3149 {
3150         struct swap_info_struct *p;
3151         struct filename *name;
3152         struct file *swap_file = NULL;
3153         struct address_space *mapping;
3154         int prio;
3155         int error;
3156         union swap_header *swap_header;
3157         int nr_extents;
3158         sector_t span;
3159         unsigned long maxpages;
3160         unsigned char *swap_map = NULL;
3161         struct swap_cluster_info *cluster_info = NULL;
3162         unsigned long *frontswap_map = NULL;
3163         struct page *page = NULL;
3164         struct inode *inode = NULL;
3165         bool inced_nr_rotate_swap = false;
3166
3167         if (swap_flags & ~SWAP_FLAGS_VALID)
3168                 return -EINVAL;
3169
3170         if (!capable(CAP_SYS_ADMIN))
3171                 return -EPERM;
3172
3173         if (!swap_avail_heads)
3174                 return -ENOMEM;
3175
3176         p = alloc_swap_info();
3177         if (IS_ERR(p))
3178                 return PTR_ERR(p);
3179
3180         INIT_WORK(&p->discard_work, swap_discard_work);
3181
3182         name = getname(specialfile);
3183         if (IS_ERR(name)) {
3184                 error = PTR_ERR(name);
3185                 name = NULL;
3186                 goto bad_swap;
3187         }
3188         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3189         if (IS_ERR(swap_file)) {
3190                 error = PTR_ERR(swap_file);
3191                 swap_file = NULL;
3192                 goto bad_swap;
3193         }
3194
3195         p->swap_file = swap_file;
3196         mapping = swap_file->f_mapping;
3197         inode = mapping->host;
3198
3199         error = claim_swapfile(p, inode);
3200         if (unlikely(error))
3201                 goto bad_swap;
3202
3203         inode_lock(inode);
3204         if (IS_SWAPFILE(inode)) {
3205                 error = -EBUSY;
3206                 goto bad_swap_unlock_inode;
3207         }
3208
3209         /*
3210          * Read the swap header.
3211          */
3212         if (!mapping->a_ops->readpage) {
3213                 error = -EINVAL;
3214                 goto bad_swap_unlock_inode;
3215         }
3216         page = read_mapping_page(mapping, 0, swap_file);
3217         if (IS_ERR(page)) {
3218                 error = PTR_ERR(page);
3219                 goto bad_swap_unlock_inode;
3220         }
3221         swap_header = kmap(page);
3222
3223         maxpages = read_swap_header(p, swap_header, inode);
3224         if (unlikely(!maxpages)) {
3225                 error = -EINVAL;
3226                 goto bad_swap_unlock_inode;
3227         }
3228
3229         /* OK, set up the swap map and apply the bad block list */
3230         swap_map = vzalloc(maxpages);
3231         if (!swap_map) {
3232                 error = -ENOMEM;
3233                 goto bad_swap_unlock_inode;
3234         }
3235
3236         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3237                 p->flags |= SWP_STABLE_WRITES;
3238
3239         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3240                 p->flags |= SWP_SYNCHRONOUS_IO;
3241
3242         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3243                 int cpu;
3244                 unsigned long ci, nr_cluster;
3245
3246                 p->flags |= SWP_SOLIDSTATE;
3247                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3248                 if (!p->cluster_next_cpu) {
3249                         error = -ENOMEM;
3250                         goto bad_swap_unlock_inode;
3251                 }
3252                 /*
3253                  * select a random position to start with to help wear leveling
3254                  * SSD
3255                  */
3256                 for_each_possible_cpu(cpu) {
3257                         per_cpu(*p->cluster_next_cpu, cpu) =
3258                                 1 + prandom_u32_max(p->highest_bit);
3259                 }
3260                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3261
3262                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3263                                         GFP_KERNEL);
3264                 if (!cluster_info) {
3265                         error = -ENOMEM;
3266                         goto bad_swap_unlock_inode;
3267                 }
3268
3269                 for (ci = 0; ci < nr_cluster; ci++)
3270                         spin_lock_init(&((cluster_info + ci)->lock));
3271
3272                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3273                 if (!p->percpu_cluster) {
3274                         error = -ENOMEM;
3275                         goto bad_swap_unlock_inode;
3276                 }
3277                 for_each_possible_cpu(cpu) {
3278                         struct percpu_cluster *cluster;
3279                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3280                         cluster_set_null(&cluster->index);
3281                 }
3282         } else {
3283                 atomic_inc(&nr_rotate_swap);
3284                 inced_nr_rotate_swap = true;
3285         }
3286
3287         error = swap_cgroup_swapon(p->type, maxpages);
3288         if (error)
3289                 goto bad_swap_unlock_inode;
3290
3291         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3292                 cluster_info, maxpages, &span);
3293         if (unlikely(nr_extents < 0)) {
3294                 error = nr_extents;
3295                 goto bad_swap_unlock_inode;
3296         }
3297         /* frontswap enabled? set up bit-per-page map for frontswap */
3298         if (IS_ENABLED(CONFIG_FRONTSWAP))
3299                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3300                                          sizeof(long),
3301                                          GFP_KERNEL);
3302
3303         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3304                 /*
3305                  * When discard is enabled for swap with no particular
3306                  * policy flagged, we set all swap discard flags here in
3307                  * order to sustain backward compatibility with older
3308                  * swapon(8) releases.
3309                  */
3310                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3311                              SWP_PAGE_DISCARD);
3312
3313                 /*
3314                  * By flagging sys_swapon, a sysadmin can tell us to
3315                  * either do single-time area discards only, or to just
3316                  * perform discards for released swap page-clusters.
3317                  * Now it's time to adjust the p->flags accordingly.
3318                  */
3319                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3320                         p->flags &= ~SWP_PAGE_DISCARD;
3321                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3322                         p->flags &= ~SWP_AREA_DISCARD;
3323
3324                 /* issue a swapon-time discard if it's still required */
3325                 if (p->flags & SWP_AREA_DISCARD) {
3326                         int err = discard_swap(p);
3327                         if (unlikely(err))
3328                                 pr_err("swapon: discard_swap(%p): %d\n",
3329                                         p, err);
3330                 }
3331         }
3332
3333         error = init_swap_address_space(p->type, maxpages);
3334         if (error)
3335                 goto bad_swap_unlock_inode;
3336
3337         /*
3338          * Flush any pending IO and dirty mappings before we start using this
3339          * swap device.
3340          */
3341         inode->i_flags |= S_SWAPFILE;
3342         error = inode_drain_writes(inode);
3343         if (error) {
3344                 inode->i_flags &= ~S_SWAPFILE;
3345                 goto free_swap_address_space;
3346         }
3347
3348         mutex_lock(&swapon_mutex);
3349         prio = -1;
3350         if (swap_flags & SWAP_FLAG_PREFER)
3351                 prio =
3352                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3353         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3354
3355         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3356                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3357                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3358                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3359                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3360                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3361                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3362                 (frontswap_map) ? "FS" : "");
3363
3364         mutex_unlock(&swapon_mutex);
3365         atomic_inc(&proc_poll_event);
3366         wake_up_interruptible(&proc_poll_wait);
3367
3368         error = 0;
3369         goto out;
3370 free_swap_address_space:
3371         exit_swap_address_space(p->type);
3372 bad_swap_unlock_inode:
3373         inode_unlock(inode);
3374 bad_swap:
3375         free_percpu(p->percpu_cluster);
3376         p->percpu_cluster = NULL;
3377         free_percpu(p->cluster_next_cpu);
3378         p->cluster_next_cpu = NULL;
3379         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3380                 set_blocksize(p->bdev, p->old_block_size);
3381                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3382         }
3383         inode = NULL;
3384         destroy_swap_extents(p);
3385         swap_cgroup_swapoff(p->type);
3386         spin_lock(&swap_lock);
3387         p->swap_file = NULL;
3388         p->flags = 0;
3389         spin_unlock(&swap_lock);
3390         vfree(swap_map);
3391         kvfree(cluster_info);
3392         kvfree(frontswap_map);
3393         if (inced_nr_rotate_swap)
3394                 atomic_dec(&nr_rotate_swap);
3395         if (swap_file)
3396                 filp_close(swap_file, NULL);
3397 out:
3398         if (page && !IS_ERR(page)) {
3399                 kunmap(page);
3400                 put_page(page);
3401         }
3402         if (name)
3403                 putname(name);
3404         if (inode)
3405                 inode_unlock(inode);
3406         if (!error)
3407                 enable_swap_slots_cache();
3408         return error;
3409 }
3410
3411 void si_swapinfo(struct sysinfo *val)
3412 {
3413         unsigned int type;
3414         unsigned long nr_to_be_unused = 0;
3415
3416         spin_lock(&swap_lock);
3417         for (type = 0; type < nr_swapfiles; type++) {
3418                 struct swap_info_struct *si = swap_info[type];
3419
3420                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3421                         nr_to_be_unused += si->inuse_pages;
3422         }
3423         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3424         val->totalswap = total_swap_pages + nr_to_be_unused;
3425         spin_unlock(&swap_lock);
3426 }
3427
3428 /*
3429  * Verify that a swap entry is valid and increment its swap map count.
3430  *
3431  * Returns error code in following case.
3432  * - success -> 0
3433  * - swp_entry is invalid -> EINVAL
3434  * - swp_entry is migration entry -> EINVAL
3435  * - swap-cache reference is requested but there is already one. -> EEXIST
3436  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3437  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3438  */
3439 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3440 {
3441         struct swap_info_struct *p;
3442         struct swap_cluster_info *ci;
3443         unsigned long offset;
3444         unsigned char count;
3445         unsigned char has_cache;
3446         int err;
3447
3448         p = get_swap_device(entry);
3449         if (!p)
3450                 return -EINVAL;
3451
3452         offset = swp_offset(entry);
3453         ci = lock_cluster_or_swap_info(p, offset);
3454
3455         count = p->swap_map[offset];
3456
3457         /*
3458          * swapin_readahead() doesn't check if a swap entry is valid, so the
3459          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3460          */
3461         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3462                 err = -ENOENT;
3463                 goto unlock_out;
3464         }
3465
3466         has_cache = count & SWAP_HAS_CACHE;
3467         count &= ~SWAP_HAS_CACHE;
3468         err = 0;
3469
3470         if (usage == SWAP_HAS_CACHE) {
3471
3472                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3473                 if (!has_cache && count)
3474                         has_cache = SWAP_HAS_CACHE;
3475                 else if (has_cache)             /* someone else added cache */
3476                         err = -EEXIST;
3477                 else                            /* no users remaining */
3478                         err = -ENOENT;
3479
3480         } else if (count || has_cache) {
3481
3482                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3483                         count += usage;
3484                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3485                         err = -EINVAL;
3486                 else if (swap_count_continued(p, offset, count))
3487                         count = COUNT_CONTINUED;
3488                 else
3489                         err = -ENOMEM;
3490         } else
3491                 err = -ENOENT;                  /* unused swap entry */
3492
3493         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3494
3495 unlock_out:
3496         unlock_cluster_or_swap_info(p, ci);
3497         if (p)
3498                 put_swap_device(p);
3499         return err;
3500 }
3501
3502 /*
3503  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3504  * (in which case its reference count is never incremented).
3505  */
3506 void swap_shmem_alloc(swp_entry_t entry)
3507 {
3508         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3509 }
3510
3511 /*
3512  * Increase reference count of swap entry by 1.
3513  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3514  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3515  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3516  * might occur if a page table entry has got corrupted.
3517  */
3518 int swap_duplicate(swp_entry_t entry)
3519 {
3520         int err = 0;
3521
3522         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3523                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3524         return err;
3525 }
3526
3527 /*
3528  * @entry: swap entry for which we allocate swap cache.
3529  *
3530  * Called when allocating swap cache for existing swap entry,
3531  * This can return error codes. Returns 0 at success.
3532  * -EEXIST means there is a swap cache.
3533  * Note: return code is different from swap_duplicate().
3534  */
3535 int swapcache_prepare(swp_entry_t entry)
3536 {
3537         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3538 }
3539
3540 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3541 {
3542         return swap_type_to_swap_info(swp_type(entry));
3543 }
3544
3545 struct swap_info_struct *page_swap_info(struct page *page)
3546 {
3547         swp_entry_t entry = { .val = page_private(page) };
3548         return swp_swap_info(entry);
3549 }
3550
3551 /*
3552  * out-of-line __page_file_ methods to avoid include hell.
3553  */
3554 struct address_space *__page_file_mapping(struct page *page)
3555 {
3556         return page_swap_info(page)->swap_file->f_mapping;
3557 }
3558 EXPORT_SYMBOL_GPL(__page_file_mapping);
3559
3560 pgoff_t __page_file_index(struct page *page)
3561 {
3562         swp_entry_t swap = { .val = page_private(page) };
3563         return swp_offset(swap);
3564 }
3565 EXPORT_SYMBOL_GPL(__page_file_index);
3566
3567 /*
3568  * add_swap_count_continuation - called when a swap count is duplicated
3569  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3570  * page of the original vmalloc'ed swap_map, to hold the continuation count
3571  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3572  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3573  *
3574  * These continuation pages are seldom referenced: the common paths all work
3575  * on the original swap_map, only referring to a continuation page when the
3576  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3577  *
3578  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3579  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3580  * can be called after dropping locks.
3581  */
3582 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3583 {
3584         struct swap_info_struct *si;
3585         struct swap_cluster_info *ci;
3586         struct page *head;
3587         struct page *page;
3588         struct page *list_page;
3589         pgoff_t offset;
3590         unsigned char count;
3591         int ret = 0;
3592
3593         /*
3594          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3595          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3596          */
3597         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3598
3599         si = get_swap_device(entry);
3600         if (!si) {
3601                 /*
3602                  * An acceptable race has occurred since the failing
3603                  * __swap_duplicate(): the swap device may be swapoff
3604                  */
3605                 goto outer;
3606         }
3607         spin_lock(&si->lock);
3608
3609         offset = swp_offset(entry);
3610
3611         ci = lock_cluster(si, offset);
3612
3613         count = swap_count(si->swap_map[offset]);
3614
3615         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3616                 /*
3617                  * The higher the swap count, the more likely it is that tasks
3618                  * will race to add swap count continuation: we need to avoid
3619                  * over-provisioning.
3620                  */
3621                 goto out;
3622         }
3623
3624         if (!page) {
3625                 ret = -ENOMEM;
3626                 goto out;
3627         }
3628
3629         /*
3630          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3631          * no architecture is using highmem pages for kernel page tables: so it
3632          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3633          */
3634         head = vmalloc_to_page(si->swap_map + offset);
3635         offset &= ~PAGE_MASK;
3636
3637         spin_lock(&si->cont_lock);
3638         /*
3639          * Page allocation does not initialize the page's lru field,
3640          * but it does always reset its private field.
3641          */
3642         if (!page_private(head)) {
3643                 BUG_ON(count & COUNT_CONTINUED);
3644                 INIT_LIST_HEAD(&head->lru);
3645                 set_page_private(head, SWP_CONTINUED);
3646                 si->flags |= SWP_CONTINUED;
3647         }
3648
3649         list_for_each_entry(list_page, &head->lru, lru) {
3650                 unsigned char *map;
3651
3652                 /*
3653                  * If the previous map said no continuation, but we've found
3654                  * a continuation page, free our allocation and use this one.
3655                  */
3656                 if (!(count & COUNT_CONTINUED))
3657                         goto out_unlock_cont;
3658
3659                 map = kmap_atomic(list_page) + offset;
3660                 count = *map;
3661                 kunmap_atomic(map);
3662
3663                 /*
3664                  * If this continuation count now has some space in it,
3665                  * free our allocation and use this one.
3666                  */
3667                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3668                         goto out_unlock_cont;
3669         }
3670
3671         list_add_tail(&page->lru, &head->lru);
3672         page = NULL;                    /* now it's attached, don't free it */
3673 out_unlock_cont:
3674         spin_unlock(&si->cont_lock);
3675 out:
3676         unlock_cluster(ci);
3677         spin_unlock(&si->lock);
3678         put_swap_device(si);
3679 outer:
3680         if (page)
3681                 __free_page(page);
3682         return ret;
3683 }
3684
3685 /*
3686  * swap_count_continued - when the original swap_map count is incremented
3687  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3688  * into, carry if so, or else fail until a new continuation page is allocated;
3689  * when the original swap_map count is decremented from 0 with continuation,
3690  * borrow from the continuation and report whether it still holds more.
3691  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3692  * lock.
3693  */
3694 static bool swap_count_continued(struct swap_info_struct *si,
3695                                  pgoff_t offset, unsigned char count)
3696 {
3697         struct page *head;
3698         struct page *page;
3699         unsigned char *map;
3700         bool ret;
3701
3702         head = vmalloc_to_page(si->swap_map + offset);
3703         if (page_private(head) != SWP_CONTINUED) {
3704                 BUG_ON(count & COUNT_CONTINUED);
3705                 return false;           /* need to add count continuation */
3706         }
3707
3708         spin_lock(&si->cont_lock);
3709         offset &= ~PAGE_MASK;
3710         page = list_next_entry(head, lru);
3711         map = kmap_atomic(page) + offset;
3712
3713         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3714                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3715
3716         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3717                 /*
3718                  * Think of how you add 1 to 999
3719                  */
3720                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3721                         kunmap_atomic(map);
3722                         page = list_next_entry(page, lru);
3723                         BUG_ON(page == head);
3724                         map = kmap_atomic(page) + offset;
3725                 }
3726                 if (*map == SWAP_CONT_MAX) {
3727                         kunmap_atomic(map);
3728                         page = list_next_entry(page, lru);
3729                         if (page == head) {
3730                                 ret = false;    /* add count continuation */
3731                                 goto out;
3732                         }
3733                         map = kmap_atomic(page) + offset;
3734 init_map:               *map = 0;               /* we didn't zero the page */
3735                 }
3736                 *map += 1;
3737                 kunmap_atomic(map);
3738                 while ((page = list_prev_entry(page, lru)) != head) {
3739                         map = kmap_atomic(page) + offset;
3740                         *map = COUNT_CONTINUED;
3741                         kunmap_atomic(map);
3742                 }
3743                 ret = true;                     /* incremented */
3744
3745         } else {                                /* decrementing */
3746                 /*
3747                  * Think of how you subtract 1 from 1000
3748                  */
3749                 BUG_ON(count != COUNT_CONTINUED);
3750                 while (*map == COUNT_CONTINUED) {
3751                         kunmap_atomic(map);
3752                         page = list_next_entry(page, lru);
3753                         BUG_ON(page == head);
3754                         map = kmap_atomic(page) + offset;
3755                 }
3756                 BUG_ON(*map == 0);
3757                 *map -= 1;
3758                 if (*map == 0)
3759                         count = 0;
3760                 kunmap_atomic(map);
3761                 while ((page = list_prev_entry(page, lru)) != head) {
3762                         map = kmap_atomic(page) + offset;
3763                         *map = SWAP_CONT_MAX | count;
3764                         count = COUNT_CONTINUED;
3765                         kunmap_atomic(map);
3766                 }
3767                 ret = count == COUNT_CONTINUED;
3768         }
3769 out:
3770         spin_unlock(&si->cont_lock);
3771         return ret;
3772 }
3773
3774 /*
3775  * free_swap_count_continuations - swapoff free all the continuation pages
3776  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3777  */
3778 static void free_swap_count_continuations(struct swap_info_struct *si)
3779 {
3780         pgoff_t offset;
3781
3782         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3783                 struct page *head;
3784                 head = vmalloc_to_page(si->swap_map + offset);
3785                 if (page_private(head)) {
3786                         struct page *page, *next;
3787
3788                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3789                                 list_del(&page->lru);
3790                                 __free_page(page);
3791                         }
3792                 }
3793         }
3794 }
3795
3796 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3797 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3798 {
3799         struct swap_info_struct *si, *next;
3800         int nid = page_to_nid(page);
3801
3802         if (!(gfp_mask & __GFP_IO))
3803                 return;
3804
3805         if (!blk_cgroup_congested())
3806                 return;
3807
3808         /*
3809          * We've already scheduled a throttle, avoid taking the global swap
3810          * lock.
3811          */
3812         if (current->throttle_queue)
3813                 return;
3814
3815         spin_lock(&swap_avail_lock);
3816         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3817                                   avail_lists[nid]) {
3818                 if (si->bdev) {
3819                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3820                         break;
3821                 }
3822         }
3823         spin_unlock(&swap_avail_lock);
3824 }
3825 #endif
3826
3827 static int __init swapfile_init(void)
3828 {
3829         int nid;
3830
3831         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3832                                          GFP_KERNEL);
3833         if (!swap_avail_heads) {
3834                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3835                 return -ENOMEM;
3836         }
3837
3838         for_each_node(nid)
3839                 plist_head_init(&swap_avail_heads[nid]);
3840
3841         return 0;
3842 }
3843 subsys_initcall(swapfile_init);