inotify: report both events on parent and child with single callback
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156         struct rb_node *rb = rb_first(&sis->swap_extent_root);
157         return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162         struct rb_node *rb = rb_next(&se->rb_node);
163         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172         struct swap_extent *se;
173         sector_t start_block;
174         sector_t nr_blocks;
175         int err = 0;
176
177         /* Do not discard the swap header page! */
178         se = first_se(si);
179         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181         if (nr_blocks) {
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         return err;
186                 cond_resched();
187         }
188
189         for (se = next_se(se); se; se = next_se(se)) {
190                 start_block = se->start_block << (PAGE_SHIFT - 9);
191                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193                 err = blkdev_issue_discard(si->bdev, start_block,
194                                 nr_blocks, GFP_KERNEL, 0);
195                 if (err)
196                         break;
197
198                 cond_resched();
199         }
200         return err;             /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206         struct swap_extent *se;
207         struct rb_node *rb;
208
209         rb = sis->swap_extent_root.rb_node;
210         while (rb) {
211                 se = rb_entry(rb, struct swap_extent, rb_node);
212                 if (offset < se->start_page)
213                         rb = rb->rb_left;
214                 else if (offset >= se->start_page + se->nr_pages)
215                         rb = rb->rb_right;
216                 else
217                         return se;
218         }
219         /* It *must* be present */
220         BUG();
221 }
222
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228                                  pgoff_t start_page, pgoff_t nr_pages)
229 {
230         struct swap_extent *se = offset_to_swap_extent(si, start_page);
231
232         while (nr_pages) {
233                 pgoff_t offset = start_page - se->start_page;
234                 sector_t start_block = se->start_block + offset;
235                 sector_t nr_blocks = se->nr_pages - offset;
236
237                 if (nr_blocks > nr_pages)
238                         nr_blocks = nr_pages;
239                 start_page += nr_blocks;
240                 nr_pages -= nr_blocks;
241
242                 start_block <<= PAGE_SHIFT - 9;
243                 nr_blocks <<= PAGE_SHIFT - 9;
244                 if (blkdev_issue_discard(si->bdev, start_block,
245                                         nr_blocks, GFP_NOIO, 0))
246                         break;
247
248                 se = next_se(se);
249         }
250 }
251
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
254
255 #define swap_entry_size(size)   (size)
256 #else
257 #define SWAPFILE_CLUSTER        256
258
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)   1
264 #endif
265 #define LATENCY_LIMIT           256
266
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268         unsigned int flag)
269 {
270         info->flags = flag;
271 }
272
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275         return info->data;
276 }
277
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279                                      unsigned int c)
280 {
281         info->data = c;
282 }
283
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285                                          unsigned int c, unsigned int f)
286 {
287         info->flags = f;
288         info->data = c;
289 }
290
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297                                     unsigned int n)
298 {
299         info->data = n;
300 }
301
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303                                          unsigned int n, unsigned int f)
304 {
305         info->flags = f;
306         info->data = n;
307 }
308
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311         return info->flags & CLUSTER_FLAG_FREE;
312 }
313
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316         return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321         info->flags = CLUSTER_FLAG_NEXT_NULL;
322         info->data = 0;
323 }
324
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327         if (IS_ENABLED(CONFIG_THP_SWAP))
328                 return info->flags & CLUSTER_FLAG_HUGE;
329         return false;
330 }
331
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334         info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338                                                      unsigned long offset)
339 {
340         struct swap_cluster_info *ci;
341
342         ci = si->cluster_info;
343         if (ci) {
344                 ci += offset / SWAPFILE_CLUSTER;
345                 spin_lock(&ci->lock);
346         }
347         return ci;
348 }
349
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 spin_unlock(&ci->lock);
354 }
355
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361                 struct swap_info_struct *si, unsigned long offset)
362 {
363         struct swap_cluster_info *ci;
364
365         /* Try to use fine-grained SSD-style locking if available: */
366         ci = lock_cluster(si, offset);
367         /* Otherwise, fall back to traditional, coarse locking: */
368         if (!ci)
369                 spin_lock(&si->lock);
370
371         return ci;
372 }
373
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375                                                struct swap_cluster_info *ci)
376 {
377         if (ci)
378                 unlock_cluster(ci);
379         else
380                 spin_unlock(&si->lock);
381 }
382
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385         return cluster_is_null(&list->head);
386 }
387
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390         return cluster_next(&list->head);
391 }
392
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395         cluster_set_null(&list->head);
396         cluster_set_null(&list->tail);
397 }
398
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400                                   struct swap_cluster_info *ci,
401                                   unsigned int idx)
402 {
403         if (cluster_list_empty(list)) {
404                 cluster_set_next_flag(&list->head, idx, 0);
405                 cluster_set_next_flag(&list->tail, idx, 0);
406         } else {
407                 struct swap_cluster_info *ci_tail;
408                 unsigned int tail = cluster_next(&list->tail);
409
410                 /*
411                  * Nested cluster lock, but both cluster locks are
412                  * only acquired when we held swap_info_struct->lock
413                  */
414                 ci_tail = ci + tail;
415                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416                 cluster_set_next(ci_tail, idx);
417                 spin_unlock(&ci_tail->lock);
418                 cluster_set_next_flag(&list->tail, idx, 0);
419         }
420 }
421
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423                                            struct swap_cluster_info *ci)
424 {
425         unsigned int idx;
426
427         idx = cluster_next(&list->head);
428         if (cluster_next(&list->tail) == idx) {
429                 cluster_set_null(&list->head);
430                 cluster_set_null(&list->tail);
431         } else
432                 cluster_set_next_flag(&list->head,
433                                       cluster_next(&ci[idx]), 0);
434
435         return idx;
436 }
437
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440                 unsigned int idx)
441 {
442         /*
443          * If scan_swap_map() can't find a free cluster, it will check
444          * si->swap_map directly. To make sure the discarding cluster isn't
445          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446          * will be cleared after discard
447          */
448         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450
451         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452
453         schedule_work(&si->discard_work);
454 }
455
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info;
459
460         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461         cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470         struct swap_cluster_info *info, *ci;
471         unsigned int idx;
472
473         info = si->cluster_info;
474
475         while (!cluster_list_empty(&si->discard_clusters)) {
476                 idx = cluster_list_del_first(&si->discard_clusters, info);
477                 spin_unlock(&si->lock);
478
479                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480                                 SWAPFILE_CLUSTER);
481
482                 spin_lock(&si->lock);
483                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484                 __free_cluster(si, idx);
485                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486                                 0, SWAPFILE_CLUSTER);
487                 unlock_cluster(ci);
488         }
489 }
490
491 static void swap_discard_work(struct work_struct *work)
492 {
493         struct swap_info_struct *si;
494
495         si = container_of(work, struct swap_info_struct, discard_work);
496
497         spin_lock(&si->lock);
498         swap_do_scheduled_discard(si);
499         spin_unlock(&si->lock);
500 }
501
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504         struct swap_cluster_info *ci = si->cluster_info;
505
506         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507         cluster_list_del_first(&si->free_clusters, ci);
508         cluster_set_count_flag(ci + idx, 0, 0);
509 }
510
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513         struct swap_cluster_info *ci = si->cluster_info + idx;
514
515         VM_BUG_ON(cluster_count(ci) != 0);
516         /*
517          * If the swap is discardable, prepare discard the cluster
518          * instead of free it immediately. The cluster will be freed
519          * after discard.
520          */
521         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523                 swap_cluster_schedule_discard(si, idx);
524                 return;
525         }
526
527         __free_cluster(si, idx);
528 }
529
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535         struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538
539         if (!cluster_info)
540                 return;
541         if (cluster_is_free(&cluster_info[idx]))
542                 alloc_cluster(p, idx);
543
544         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545         cluster_set_count(&cluster_info[idx],
546                 cluster_count(&cluster_info[idx]) + 1);
547 }
548
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561
562         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563         cluster_set_count(&cluster_info[idx],
564                 cluster_count(&cluster_info[idx]) - 1);
565
566         if (cluster_count(&cluster_info[idx]) == 0)
567                 free_cluster(p, idx);
568 }
569
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576         unsigned long offset)
577 {
578         struct percpu_cluster *percpu_cluster;
579         bool conflict;
580
581         offset /= SWAPFILE_CLUSTER;
582         conflict = !cluster_list_empty(&si->free_clusters) &&
583                 offset != cluster_list_first(&si->free_clusters) &&
584                 cluster_is_free(&si->cluster_info[offset]);
585
586         if (!conflict)
587                 return false;
588
589         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590         cluster_set_null(&percpu_cluster->index);
591         return true;
592 }
593
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599         unsigned long *offset, unsigned long *scan_base)
600 {
601         struct percpu_cluster *cluster;
602         struct swap_cluster_info *ci;
603         unsigned long tmp, max;
604
605 new_cluster:
606         cluster = this_cpu_ptr(si->percpu_cluster);
607         if (cluster_is_null(&cluster->index)) {
608                 if (!cluster_list_empty(&si->free_clusters)) {
609                         cluster->index = si->free_clusters.head;
610                         cluster->next = cluster_next(&cluster->index) *
611                                         SWAPFILE_CLUSTER;
612                 } else if (!cluster_list_empty(&si->discard_clusters)) {
613                         /*
614                          * we don't have free cluster but have some clusters in
615                          * discarding, do discard now and reclaim them, then
616                          * reread cluster_next_cpu since we dropped si->lock
617                          */
618                         swap_do_scheduled_discard(si);
619                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
620                         *offset = *scan_base;
621                         goto new_cluster;
622                 } else
623                         return false;
624         }
625
626         /*
627          * Other CPUs can use our cluster if they can't find a free cluster,
628          * check if there is still free entry in the cluster
629          */
630         tmp = cluster->next;
631         max = min_t(unsigned long, si->max,
632                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633         if (tmp < max) {
634                 ci = lock_cluster(si, tmp);
635                 while (tmp < max) {
636                         if (!si->swap_map[tmp])
637                                 break;
638                         tmp++;
639                 }
640                 unlock_cluster(ci);
641         }
642         if (tmp >= max) {
643                 cluster_set_null(&cluster->index);
644                 goto new_cluster;
645         }
646         cluster->next = tmp + 1;
647         *offset = tmp;
648         *scan_base = tmp;
649         return true;
650 }
651
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654         int nid;
655
656         for_each_node(nid)
657                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662         spin_lock(&swap_avail_lock);
663         __del_from_avail_list(p);
664         spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668                              unsigned int nr_entries)
669 {
670         unsigned int end = offset + nr_entries - 1;
671
672         if (offset == si->lowest_bit)
673                 si->lowest_bit += nr_entries;
674         if (end == si->highest_bit)
675                 si->highest_bit -= nr_entries;
676         si->inuse_pages += nr_entries;
677         if (si->inuse_pages == si->pages) {
678                 si->lowest_bit = si->max;
679                 si->highest_bit = 0;
680                 del_from_avail_list(si);
681         }
682 }
683
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686         int nid;
687
688         spin_lock(&swap_avail_lock);
689         for_each_node(nid) {
690                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692         }
693         spin_unlock(&swap_avail_lock);
694 }
695
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697                             unsigned int nr_entries)
698 {
699         unsigned long end = offset + nr_entries - 1;
700         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701
702         if (offset < si->lowest_bit)
703                 si->lowest_bit = offset;
704         if (end > si->highest_bit) {
705                 bool was_full = !si->highest_bit;
706
707                 si->highest_bit = end;
708                 if (was_full && (si->flags & SWP_WRITEOK))
709                         add_to_avail_list(si);
710         }
711         atomic_long_add(nr_entries, &nr_swap_pages);
712         si->inuse_pages -= nr_entries;
713         if (si->flags & SWP_BLKDEV)
714                 swap_slot_free_notify =
715                         si->bdev->bd_disk->fops->swap_slot_free_notify;
716         else
717                 swap_slot_free_notify = NULL;
718         while (offset <= end) {
719                 frontswap_invalidate_page(si->type, offset);
720                 if (swap_slot_free_notify)
721                         swap_slot_free_notify(si->bdev, offset);
722                 offset++;
723         }
724 }
725
726 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
727 {
728         unsigned long prev;
729
730         if (!(si->flags & SWP_SOLIDSTATE)) {
731                 si->cluster_next = next;
732                 return;
733         }
734
735         prev = this_cpu_read(*si->cluster_next_cpu);
736         /*
737          * Cross the swap address space size aligned trunk, choose
738          * another trunk randomly to avoid lock contention on swap
739          * address space if possible.
740          */
741         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
742             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
743                 /* No free swap slots available */
744                 if (si->highest_bit <= si->lowest_bit)
745                         return;
746                 next = si->lowest_bit +
747                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
748                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
749                 next = max_t(unsigned int, next, si->lowest_bit);
750         }
751         this_cpu_write(*si->cluster_next_cpu, next);
752 }
753
754 static int scan_swap_map_slots(struct swap_info_struct *si,
755                                unsigned char usage, int nr,
756                                swp_entry_t slots[])
757 {
758         struct swap_cluster_info *ci;
759         unsigned long offset;
760         unsigned long scan_base;
761         unsigned long last_in_cluster = 0;
762         int latency_ration = LATENCY_LIMIT;
763         int n_ret = 0;
764         bool scanned_many = false;
765
766         /*
767          * We try to cluster swap pages by allocating them sequentially
768          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
769          * way, however, we resort to first-free allocation, starting
770          * a new cluster.  This prevents us from scattering swap pages
771          * all over the entire swap partition, so that we reduce
772          * overall disk seek times between swap pages.  -- sct
773          * But we do now try to find an empty cluster.  -Andrea
774          * And we let swap pages go all over an SSD partition.  Hugh
775          */
776
777         si->flags += SWP_SCANNING;
778         /*
779          * Use percpu scan base for SSD to reduce lock contention on
780          * cluster and swap cache.  For HDD, sequential access is more
781          * important.
782          */
783         if (si->flags & SWP_SOLIDSTATE)
784                 scan_base = this_cpu_read(*si->cluster_next_cpu);
785         else
786                 scan_base = si->cluster_next;
787         offset = scan_base;
788
789         /* SSD algorithm */
790         if (si->cluster_info) {
791                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
792                         goto scan;
793         } else if (unlikely(!si->cluster_nr--)) {
794                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
795                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
796                         goto checks;
797                 }
798
799                 spin_unlock(&si->lock);
800
801                 /*
802                  * If seek is expensive, start searching for new cluster from
803                  * start of partition, to minimize the span of allocated swap.
804                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
805                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
806                  */
807                 scan_base = offset = si->lowest_bit;
808                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
809
810                 /* Locate the first empty (unaligned) cluster */
811                 for (; last_in_cluster <= si->highest_bit; offset++) {
812                         if (si->swap_map[offset])
813                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
814                         else if (offset == last_in_cluster) {
815                                 spin_lock(&si->lock);
816                                 offset -= SWAPFILE_CLUSTER - 1;
817                                 si->cluster_next = offset;
818                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819                                 goto checks;
820                         }
821                         if (unlikely(--latency_ration < 0)) {
822                                 cond_resched();
823                                 latency_ration = LATENCY_LIMIT;
824                         }
825                 }
826
827                 offset = scan_base;
828                 spin_lock(&si->lock);
829                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
830         }
831
832 checks:
833         if (si->cluster_info) {
834                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
835                 /* take a break if we already got some slots */
836                         if (n_ret)
837                                 goto done;
838                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
839                                                         &scan_base))
840                                 goto scan;
841                 }
842         }
843         if (!(si->flags & SWP_WRITEOK))
844                 goto no_page;
845         if (!si->highest_bit)
846                 goto no_page;
847         if (offset > si->highest_bit)
848                 scan_base = offset = si->lowest_bit;
849
850         ci = lock_cluster(si, offset);
851         /* reuse swap entry of cache-only swap if not busy. */
852         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
853                 int swap_was_freed;
854                 unlock_cluster(ci);
855                 spin_unlock(&si->lock);
856                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
857                 spin_lock(&si->lock);
858                 /* entry was freed successfully, try to use this again */
859                 if (swap_was_freed)
860                         goto checks;
861                 goto scan; /* check next one */
862         }
863
864         if (si->swap_map[offset]) {
865                 unlock_cluster(ci);
866                 if (!n_ret)
867                         goto scan;
868                 else
869                         goto done;
870         }
871         si->swap_map[offset] = usage;
872         inc_cluster_info_page(si, si->cluster_info, offset);
873         unlock_cluster(ci);
874
875         swap_range_alloc(si, offset, 1);
876         slots[n_ret++] = swp_entry(si->type, offset);
877
878         /* got enough slots or reach max slots? */
879         if ((n_ret == nr) || (offset >= si->highest_bit))
880                 goto done;
881
882         /* search for next available slot */
883
884         /* time to take a break? */
885         if (unlikely(--latency_ration < 0)) {
886                 if (n_ret)
887                         goto done;
888                 spin_unlock(&si->lock);
889                 cond_resched();
890                 spin_lock(&si->lock);
891                 latency_ration = LATENCY_LIMIT;
892         }
893
894         /* try to get more slots in cluster */
895         if (si->cluster_info) {
896                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
897                         goto checks;
898         } else if (si->cluster_nr && !si->swap_map[++offset]) {
899                 /* non-ssd case, still more slots in cluster? */
900                 --si->cluster_nr;
901                 goto checks;
902         }
903
904         /*
905          * Even if there's no free clusters available (fragmented),
906          * try to scan a little more quickly with lock held unless we
907          * have scanned too many slots already.
908          */
909         if (!scanned_many) {
910                 unsigned long scan_limit;
911
912                 if (offset < scan_base)
913                         scan_limit = scan_base;
914                 else
915                         scan_limit = si->highest_bit;
916                 for (; offset <= scan_limit && --latency_ration > 0;
917                      offset++) {
918                         if (!si->swap_map[offset])
919                                 goto checks;
920                 }
921         }
922
923 done:
924         set_cluster_next(si, offset + 1);
925         si->flags -= SWP_SCANNING;
926         return n_ret;
927
928 scan:
929         spin_unlock(&si->lock);
930         while (++offset <= si->highest_bit) {
931                 if (!si->swap_map[offset]) {
932                         spin_lock(&si->lock);
933                         goto checks;
934                 }
935                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
936                         spin_lock(&si->lock);
937                         goto checks;
938                 }
939                 if (unlikely(--latency_ration < 0)) {
940                         cond_resched();
941                         latency_ration = LATENCY_LIMIT;
942                         scanned_many = true;
943                 }
944         }
945         offset = si->lowest_bit;
946         while (offset < scan_base) {
947                 if (!si->swap_map[offset]) {
948                         spin_lock(&si->lock);
949                         goto checks;
950                 }
951                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
952                         spin_lock(&si->lock);
953                         goto checks;
954                 }
955                 if (unlikely(--latency_ration < 0)) {
956                         cond_resched();
957                         latency_ration = LATENCY_LIMIT;
958                         scanned_many = true;
959                 }
960                 offset++;
961         }
962         spin_lock(&si->lock);
963
964 no_page:
965         si->flags -= SWP_SCANNING;
966         return n_ret;
967 }
968
969 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
970 {
971         unsigned long idx;
972         struct swap_cluster_info *ci;
973         unsigned long offset, i;
974         unsigned char *map;
975
976         /*
977          * Should not even be attempting cluster allocations when huge
978          * page swap is disabled.  Warn and fail the allocation.
979          */
980         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
981                 VM_WARN_ON_ONCE(1);
982                 return 0;
983         }
984
985         if (cluster_list_empty(&si->free_clusters))
986                 return 0;
987
988         idx = cluster_list_first(&si->free_clusters);
989         offset = idx * SWAPFILE_CLUSTER;
990         ci = lock_cluster(si, offset);
991         alloc_cluster(si, idx);
992         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
993
994         map = si->swap_map + offset;
995         for (i = 0; i < SWAPFILE_CLUSTER; i++)
996                 map[i] = SWAP_HAS_CACHE;
997         unlock_cluster(ci);
998         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
999         *slot = swp_entry(si->type, offset);
1000
1001         return 1;
1002 }
1003
1004 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1005 {
1006         unsigned long offset = idx * SWAPFILE_CLUSTER;
1007         struct swap_cluster_info *ci;
1008
1009         ci = lock_cluster(si, offset);
1010         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1011         cluster_set_count_flag(ci, 0, 0);
1012         free_cluster(si, idx);
1013         unlock_cluster(ci);
1014         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1015 }
1016
1017 static unsigned long scan_swap_map(struct swap_info_struct *si,
1018                                    unsigned char usage)
1019 {
1020         swp_entry_t entry;
1021         int n_ret;
1022
1023         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1024
1025         if (n_ret)
1026                 return swp_offset(entry);
1027         else
1028                 return 0;
1029
1030 }
1031
1032 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1033 {
1034         unsigned long size = swap_entry_size(entry_size);
1035         struct swap_info_struct *si, *next;
1036         long avail_pgs;
1037         int n_ret = 0;
1038         int node;
1039
1040         /* Only single cluster request supported */
1041         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1042
1043         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1044         if (avail_pgs <= 0)
1045                 goto noswap;
1046
1047         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1048
1049         atomic_long_sub(n_goal * size, &nr_swap_pages);
1050
1051         spin_lock(&swap_avail_lock);
1052
1053 start_over:
1054         node = numa_node_id();
1055         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1056                 /* requeue si to after same-priority siblings */
1057                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1058                 spin_unlock(&swap_avail_lock);
1059                 spin_lock(&si->lock);
1060                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1061                         spin_lock(&swap_avail_lock);
1062                         if (plist_node_empty(&si->avail_lists[node])) {
1063                                 spin_unlock(&si->lock);
1064                                 goto nextsi;
1065                         }
1066                         WARN(!si->highest_bit,
1067                              "swap_info %d in list but !highest_bit\n",
1068                              si->type);
1069                         WARN(!(si->flags & SWP_WRITEOK),
1070                              "swap_info %d in list but !SWP_WRITEOK\n",
1071                              si->type);
1072                         __del_from_avail_list(si);
1073                         spin_unlock(&si->lock);
1074                         goto nextsi;
1075                 }
1076                 if (size == SWAPFILE_CLUSTER) {
1077                         if (!(si->flags & SWP_FS))
1078                                 n_ret = swap_alloc_cluster(si, swp_entries);
1079                 } else
1080                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1081                                                     n_goal, swp_entries);
1082                 spin_unlock(&si->lock);
1083                 if (n_ret || size == SWAPFILE_CLUSTER)
1084                         goto check_out;
1085                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1086                         si->type);
1087
1088                 spin_lock(&swap_avail_lock);
1089 nextsi:
1090                 /*
1091                  * if we got here, it's likely that si was almost full before,
1092                  * and since scan_swap_map() can drop the si->lock, multiple
1093                  * callers probably all tried to get a page from the same si
1094                  * and it filled up before we could get one; or, the si filled
1095                  * up between us dropping swap_avail_lock and taking si->lock.
1096                  * Since we dropped the swap_avail_lock, the swap_avail_head
1097                  * list may have been modified; so if next is still in the
1098                  * swap_avail_head list then try it, otherwise start over
1099                  * if we have not gotten any slots.
1100                  */
1101                 if (plist_node_empty(&next->avail_lists[node]))
1102                         goto start_over;
1103         }
1104
1105         spin_unlock(&swap_avail_lock);
1106
1107 check_out:
1108         if (n_ret < n_goal)
1109                 atomic_long_add((long)(n_goal - n_ret) * size,
1110                                 &nr_swap_pages);
1111 noswap:
1112         return n_ret;
1113 }
1114
1115 /* The only caller of this function is now suspend routine */
1116 swp_entry_t get_swap_page_of_type(int type)
1117 {
1118         struct swap_info_struct *si = swap_type_to_swap_info(type);
1119         pgoff_t offset;
1120
1121         if (!si)
1122                 goto fail;
1123
1124         spin_lock(&si->lock);
1125         if (si->flags & SWP_WRITEOK) {
1126                 atomic_long_dec(&nr_swap_pages);
1127                 /* This is called for allocating swap entry, not cache */
1128                 offset = scan_swap_map(si, 1);
1129                 if (offset) {
1130                         spin_unlock(&si->lock);
1131                         return swp_entry(type, offset);
1132                 }
1133                 atomic_long_inc(&nr_swap_pages);
1134         }
1135         spin_unlock(&si->lock);
1136 fail:
1137         return (swp_entry_t) {0};
1138 }
1139
1140 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1141 {
1142         struct swap_info_struct *p;
1143         unsigned long offset;
1144
1145         if (!entry.val)
1146                 goto out;
1147         p = swp_swap_info(entry);
1148         if (!p)
1149                 goto bad_nofile;
1150         if (!(p->flags & SWP_USED))
1151                 goto bad_device;
1152         offset = swp_offset(entry);
1153         if (offset >= p->max)
1154                 goto bad_offset;
1155         return p;
1156
1157 bad_offset:
1158         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1159         goto out;
1160 bad_device:
1161         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1162         goto out;
1163 bad_nofile:
1164         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1165 out:
1166         return NULL;
1167 }
1168
1169 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1170 {
1171         struct swap_info_struct *p;
1172
1173         p = __swap_info_get(entry);
1174         if (!p)
1175                 goto out;
1176         if (!p->swap_map[swp_offset(entry)])
1177                 goto bad_free;
1178         return p;
1179
1180 bad_free:
1181         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1182         goto out;
1183 out:
1184         return NULL;
1185 }
1186
1187 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1188 {
1189         struct swap_info_struct *p;
1190
1191         p = _swap_info_get(entry);
1192         if (p)
1193                 spin_lock(&p->lock);
1194         return p;
1195 }
1196
1197 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1198                                         struct swap_info_struct *q)
1199 {
1200         struct swap_info_struct *p;
1201
1202         p = _swap_info_get(entry);
1203
1204         if (p != q) {
1205                 if (q != NULL)
1206                         spin_unlock(&q->lock);
1207                 if (p != NULL)
1208                         spin_lock(&p->lock);
1209         }
1210         return p;
1211 }
1212
1213 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1214                                               unsigned long offset,
1215                                               unsigned char usage)
1216 {
1217         unsigned char count;
1218         unsigned char has_cache;
1219
1220         count = p->swap_map[offset];
1221
1222         has_cache = count & SWAP_HAS_CACHE;
1223         count &= ~SWAP_HAS_CACHE;
1224
1225         if (usage == SWAP_HAS_CACHE) {
1226                 VM_BUG_ON(!has_cache);
1227                 has_cache = 0;
1228         } else if (count == SWAP_MAP_SHMEM) {
1229                 /*
1230                  * Or we could insist on shmem.c using a special
1231                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1232                  */
1233                 count = 0;
1234         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1235                 if (count == COUNT_CONTINUED) {
1236                         if (swap_count_continued(p, offset, count))
1237                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1238                         else
1239                                 count = SWAP_MAP_MAX;
1240                 } else
1241                         count--;
1242         }
1243
1244         usage = count | has_cache;
1245         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1246
1247         return usage;
1248 }
1249
1250 /*
1251  * Check whether swap entry is valid in the swap device.  If so,
1252  * return pointer to swap_info_struct, and keep the swap entry valid
1253  * via preventing the swap device from being swapoff, until
1254  * put_swap_device() is called.  Otherwise return NULL.
1255  *
1256  * The entirety of the RCU read critical section must come before the
1257  * return from or after the call to synchronize_rcu() in
1258  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1259  * true, the si->map, si->cluster_info, etc. must be valid in the
1260  * critical section.
1261  *
1262  * Notice that swapoff or swapoff+swapon can still happen before the
1263  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1264  * in put_swap_device() if there isn't any other way to prevent
1265  * swapoff, such as page lock, page table lock, etc.  The caller must
1266  * be prepared for that.  For example, the following situation is
1267  * possible.
1268  *
1269  *   CPU1                               CPU2
1270  *   do_swap_page()
1271  *     ...                              swapoff+swapon
1272  *     __read_swap_cache_async()
1273  *       swapcache_prepare()
1274  *         __swap_duplicate()
1275  *           // check swap_map
1276  *     // verify PTE not changed
1277  *
1278  * In __swap_duplicate(), the swap_map need to be checked before
1279  * changing partly because the specified swap entry may be for another
1280  * swap device which has been swapoff.  And in do_swap_page(), after
1281  * the page is read from the swap device, the PTE is verified not
1282  * changed with the page table locked to check whether the swap device
1283  * has been swapoff or swapoff+swapon.
1284  */
1285 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1286 {
1287         struct swap_info_struct *si;
1288         unsigned long offset;
1289
1290         if (!entry.val)
1291                 goto out;
1292         si = swp_swap_info(entry);
1293         if (!si)
1294                 goto bad_nofile;
1295
1296         rcu_read_lock();
1297         if (!(si->flags & SWP_VALID))
1298                 goto unlock_out;
1299         offset = swp_offset(entry);
1300         if (offset >= si->max)
1301                 goto unlock_out;
1302
1303         return si;
1304 bad_nofile:
1305         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1306 out:
1307         return NULL;
1308 unlock_out:
1309         rcu_read_unlock();
1310         return NULL;
1311 }
1312
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314                                        swp_entry_t entry)
1315 {
1316         struct swap_cluster_info *ci;
1317         unsigned long offset = swp_offset(entry);
1318         unsigned char usage;
1319
1320         ci = lock_cluster_or_swap_info(p, offset);
1321         usage = __swap_entry_free_locked(p, offset, 1);
1322         unlock_cluster_or_swap_info(p, ci);
1323         if (!usage)
1324                 free_swap_slot(entry);
1325
1326         return usage;
1327 }
1328
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331         struct swap_cluster_info *ci;
1332         unsigned long offset = swp_offset(entry);
1333         unsigned char count;
1334
1335         ci = lock_cluster(p, offset);
1336         count = p->swap_map[offset];
1337         VM_BUG_ON(count != SWAP_HAS_CACHE);
1338         p->swap_map[offset] = 0;
1339         dec_cluster_info_page(p, p->cluster_info, offset);
1340         unlock_cluster(ci);
1341
1342         mem_cgroup_uncharge_swap(entry, 1);
1343         swap_range_free(p, offset, 1);
1344 }
1345
1346 /*
1347  * Caller has made sure that the swap device corresponding to entry
1348  * is still around or has not been recycled.
1349  */
1350 void swap_free(swp_entry_t entry)
1351 {
1352         struct swap_info_struct *p;
1353
1354         p = _swap_info_get(entry);
1355         if (p)
1356                 __swap_entry_free(p, entry);
1357 }
1358
1359 /*
1360  * Called after dropping swapcache to decrease refcnt to swap entries.
1361  */
1362 void put_swap_page(struct page *page, swp_entry_t entry)
1363 {
1364         unsigned long offset = swp_offset(entry);
1365         unsigned long idx = offset / SWAPFILE_CLUSTER;
1366         struct swap_cluster_info *ci;
1367         struct swap_info_struct *si;
1368         unsigned char *map;
1369         unsigned int i, free_entries = 0;
1370         unsigned char val;
1371         int size = swap_entry_size(hpage_nr_pages(page));
1372
1373         si = _swap_info_get(entry);
1374         if (!si)
1375                 return;
1376
1377         ci = lock_cluster_or_swap_info(si, offset);
1378         if (size == SWAPFILE_CLUSTER) {
1379                 VM_BUG_ON(!cluster_is_huge(ci));
1380                 map = si->swap_map + offset;
1381                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1382                         val = map[i];
1383                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1384                         if (val == SWAP_HAS_CACHE)
1385                                 free_entries++;
1386                 }
1387                 cluster_clear_huge(ci);
1388                 if (free_entries == SWAPFILE_CLUSTER) {
1389                         unlock_cluster_or_swap_info(si, ci);
1390                         spin_lock(&si->lock);
1391                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1392                         swap_free_cluster(si, idx);
1393                         spin_unlock(&si->lock);
1394                         return;
1395                 }
1396         }
1397         for (i = 0; i < size; i++, entry.val++) {
1398                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1399                         unlock_cluster_or_swap_info(si, ci);
1400                         free_swap_slot(entry);
1401                         if (i == size - 1)
1402                                 return;
1403                         lock_cluster_or_swap_info(si, offset);
1404                 }
1405         }
1406         unlock_cluster_or_swap_info(si, ci);
1407 }
1408
1409 #ifdef CONFIG_THP_SWAP
1410 int split_swap_cluster(swp_entry_t entry)
1411 {
1412         struct swap_info_struct *si;
1413         struct swap_cluster_info *ci;
1414         unsigned long offset = swp_offset(entry);
1415
1416         si = _swap_info_get(entry);
1417         if (!si)
1418                 return -EBUSY;
1419         ci = lock_cluster(si, offset);
1420         cluster_clear_huge(ci);
1421         unlock_cluster(ci);
1422         return 0;
1423 }
1424 #endif
1425
1426 static int swp_entry_cmp(const void *ent1, const void *ent2)
1427 {
1428         const swp_entry_t *e1 = ent1, *e2 = ent2;
1429
1430         return (int)swp_type(*e1) - (int)swp_type(*e2);
1431 }
1432
1433 void swapcache_free_entries(swp_entry_t *entries, int n)
1434 {
1435         struct swap_info_struct *p, *prev;
1436         int i;
1437
1438         if (n <= 0)
1439                 return;
1440
1441         prev = NULL;
1442         p = NULL;
1443
1444         /*
1445          * Sort swap entries by swap device, so each lock is only taken once.
1446          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1447          * so low that it isn't necessary to optimize further.
1448          */
1449         if (nr_swapfiles > 1)
1450                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1451         for (i = 0; i < n; ++i) {
1452                 p = swap_info_get_cont(entries[i], prev);
1453                 if (p)
1454                         swap_entry_free(p, entries[i]);
1455                 prev = p;
1456         }
1457         if (p)
1458                 spin_unlock(&p->lock);
1459 }
1460
1461 /*
1462  * How many references to page are currently swapped out?
1463  * This does not give an exact answer when swap count is continued,
1464  * but does include the high COUNT_CONTINUED flag to allow for that.
1465  */
1466 int page_swapcount(struct page *page)
1467 {
1468         int count = 0;
1469         struct swap_info_struct *p;
1470         struct swap_cluster_info *ci;
1471         swp_entry_t entry;
1472         unsigned long offset;
1473
1474         entry.val = page_private(page);
1475         p = _swap_info_get(entry);
1476         if (p) {
1477                 offset = swp_offset(entry);
1478                 ci = lock_cluster_or_swap_info(p, offset);
1479                 count = swap_count(p->swap_map[offset]);
1480                 unlock_cluster_or_swap_info(p, ci);
1481         }
1482         return count;
1483 }
1484
1485 int __swap_count(swp_entry_t entry)
1486 {
1487         struct swap_info_struct *si;
1488         pgoff_t offset = swp_offset(entry);
1489         int count = 0;
1490
1491         si = get_swap_device(entry);
1492         if (si) {
1493                 count = swap_count(si->swap_map[offset]);
1494                 put_swap_device(si);
1495         }
1496         return count;
1497 }
1498
1499 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1500 {
1501         int count = 0;
1502         pgoff_t offset = swp_offset(entry);
1503         struct swap_cluster_info *ci;
1504
1505         ci = lock_cluster_or_swap_info(si, offset);
1506         count = swap_count(si->swap_map[offset]);
1507         unlock_cluster_or_swap_info(si, ci);
1508         return count;
1509 }
1510
1511 /*
1512  * How many references to @entry are currently swapped out?
1513  * This does not give an exact answer when swap count is continued,
1514  * but does include the high COUNT_CONTINUED flag to allow for that.
1515  */
1516 int __swp_swapcount(swp_entry_t entry)
1517 {
1518         int count = 0;
1519         struct swap_info_struct *si;
1520
1521         si = get_swap_device(entry);
1522         if (si) {
1523                 count = swap_swapcount(si, entry);
1524                 put_swap_device(si);
1525         }
1526         return count;
1527 }
1528
1529 /*
1530  * How many references to @entry are currently swapped out?
1531  * This considers COUNT_CONTINUED so it returns exact answer.
1532  */
1533 int swp_swapcount(swp_entry_t entry)
1534 {
1535         int count, tmp_count, n;
1536         struct swap_info_struct *p;
1537         struct swap_cluster_info *ci;
1538         struct page *page;
1539         pgoff_t offset;
1540         unsigned char *map;
1541
1542         p = _swap_info_get(entry);
1543         if (!p)
1544                 return 0;
1545
1546         offset = swp_offset(entry);
1547
1548         ci = lock_cluster_or_swap_info(p, offset);
1549
1550         count = swap_count(p->swap_map[offset]);
1551         if (!(count & COUNT_CONTINUED))
1552                 goto out;
1553
1554         count &= ~COUNT_CONTINUED;
1555         n = SWAP_MAP_MAX + 1;
1556
1557         page = vmalloc_to_page(p->swap_map + offset);
1558         offset &= ~PAGE_MASK;
1559         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1560
1561         do {
1562                 page = list_next_entry(page, lru);
1563                 map = kmap_atomic(page);
1564                 tmp_count = map[offset];
1565                 kunmap_atomic(map);
1566
1567                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1568                 n *= (SWAP_CONT_MAX + 1);
1569         } while (tmp_count & COUNT_CONTINUED);
1570 out:
1571         unlock_cluster_or_swap_info(p, ci);
1572         return count;
1573 }
1574
1575 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1576                                          swp_entry_t entry)
1577 {
1578         struct swap_cluster_info *ci;
1579         unsigned char *map = si->swap_map;
1580         unsigned long roffset = swp_offset(entry);
1581         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1582         int i;
1583         bool ret = false;
1584
1585         ci = lock_cluster_or_swap_info(si, offset);
1586         if (!ci || !cluster_is_huge(ci)) {
1587                 if (swap_count(map[roffset]))
1588                         ret = true;
1589                 goto unlock_out;
1590         }
1591         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1592                 if (swap_count(map[offset + i])) {
1593                         ret = true;
1594                         break;
1595                 }
1596         }
1597 unlock_out:
1598         unlock_cluster_or_swap_info(si, ci);
1599         return ret;
1600 }
1601
1602 static bool page_swapped(struct page *page)
1603 {
1604         swp_entry_t entry;
1605         struct swap_info_struct *si;
1606
1607         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1608                 return page_swapcount(page) != 0;
1609
1610         page = compound_head(page);
1611         entry.val = page_private(page);
1612         si = _swap_info_get(entry);
1613         if (si)
1614                 return swap_page_trans_huge_swapped(si, entry);
1615         return false;
1616 }
1617
1618 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1619                                          int *total_swapcount)
1620 {
1621         int i, map_swapcount, _total_mapcount, _total_swapcount;
1622         unsigned long offset = 0;
1623         struct swap_info_struct *si;
1624         struct swap_cluster_info *ci = NULL;
1625         unsigned char *map = NULL;
1626         int mapcount, swapcount = 0;
1627
1628         /* hugetlbfs shouldn't call it */
1629         VM_BUG_ON_PAGE(PageHuge(page), page);
1630
1631         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1632                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1633                 if (PageSwapCache(page))
1634                         swapcount = page_swapcount(page);
1635                 if (total_swapcount)
1636                         *total_swapcount = swapcount;
1637                 return mapcount + swapcount;
1638         }
1639
1640         page = compound_head(page);
1641
1642         _total_mapcount = _total_swapcount = map_swapcount = 0;
1643         if (PageSwapCache(page)) {
1644                 swp_entry_t entry;
1645
1646                 entry.val = page_private(page);
1647                 si = _swap_info_get(entry);
1648                 if (si) {
1649                         map = si->swap_map;
1650                         offset = swp_offset(entry);
1651                 }
1652         }
1653         if (map)
1654                 ci = lock_cluster(si, offset);
1655         for (i = 0; i < HPAGE_PMD_NR; i++) {
1656                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1657                 _total_mapcount += mapcount;
1658                 if (map) {
1659                         swapcount = swap_count(map[offset + i]);
1660                         _total_swapcount += swapcount;
1661                 }
1662                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1663         }
1664         unlock_cluster(ci);
1665         if (PageDoubleMap(page)) {
1666                 map_swapcount -= 1;
1667                 _total_mapcount -= HPAGE_PMD_NR;
1668         }
1669         mapcount = compound_mapcount(page);
1670         map_swapcount += mapcount;
1671         _total_mapcount += mapcount;
1672         if (total_mapcount)
1673                 *total_mapcount = _total_mapcount;
1674         if (total_swapcount)
1675                 *total_swapcount = _total_swapcount;
1676
1677         return map_swapcount;
1678 }
1679
1680 /*
1681  * We can write to an anon page without COW if there are no other references
1682  * to it.  And as a side-effect, free up its swap: because the old content
1683  * on disk will never be read, and seeking back there to write new content
1684  * later would only waste time away from clustering.
1685  *
1686  * NOTE: total_map_swapcount should not be relied upon by the caller if
1687  * reuse_swap_page() returns false, but it may be always overwritten
1688  * (see the other implementation for CONFIG_SWAP=n).
1689  */
1690 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1691 {
1692         int count, total_mapcount, total_swapcount;
1693
1694         VM_BUG_ON_PAGE(!PageLocked(page), page);
1695         if (unlikely(PageKsm(page)))
1696                 return false;
1697         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1698                                               &total_swapcount);
1699         if (total_map_swapcount)
1700                 *total_map_swapcount = total_mapcount + total_swapcount;
1701         if (count == 1 && PageSwapCache(page) &&
1702             (likely(!PageTransCompound(page)) ||
1703              /* The remaining swap count will be freed soon */
1704              total_swapcount == page_swapcount(page))) {
1705                 if (!PageWriteback(page)) {
1706                         page = compound_head(page);
1707                         delete_from_swap_cache(page);
1708                         SetPageDirty(page);
1709                 } else {
1710                         swp_entry_t entry;
1711                         struct swap_info_struct *p;
1712
1713                         entry.val = page_private(page);
1714                         p = swap_info_get(entry);
1715                         if (p->flags & SWP_STABLE_WRITES) {
1716                                 spin_unlock(&p->lock);
1717                                 return false;
1718                         }
1719                         spin_unlock(&p->lock);
1720                 }
1721         }
1722
1723         return count <= 1;
1724 }
1725
1726 /*
1727  * If swap is getting full, or if there are no more mappings of this page,
1728  * then try_to_free_swap is called to free its swap space.
1729  */
1730 int try_to_free_swap(struct page *page)
1731 {
1732         VM_BUG_ON_PAGE(!PageLocked(page), page);
1733
1734         if (!PageSwapCache(page))
1735                 return 0;
1736         if (PageWriteback(page))
1737                 return 0;
1738         if (page_swapped(page))
1739                 return 0;
1740
1741         /*
1742          * Once hibernation has begun to create its image of memory,
1743          * there's a danger that one of the calls to try_to_free_swap()
1744          * - most probably a call from __try_to_reclaim_swap() while
1745          * hibernation is allocating its own swap pages for the image,
1746          * but conceivably even a call from memory reclaim - will free
1747          * the swap from a page which has already been recorded in the
1748          * image as a clean swapcache page, and then reuse its swap for
1749          * another page of the image.  On waking from hibernation, the
1750          * original page might be freed under memory pressure, then
1751          * later read back in from swap, now with the wrong data.
1752          *
1753          * Hibernation suspends storage while it is writing the image
1754          * to disk so check that here.
1755          */
1756         if (pm_suspended_storage())
1757                 return 0;
1758
1759         page = compound_head(page);
1760         delete_from_swap_cache(page);
1761         SetPageDirty(page);
1762         return 1;
1763 }
1764
1765 /*
1766  * Free the swap entry like above, but also try to
1767  * free the page cache entry if it is the last user.
1768  */
1769 int free_swap_and_cache(swp_entry_t entry)
1770 {
1771         struct swap_info_struct *p;
1772         unsigned char count;
1773
1774         if (non_swap_entry(entry))
1775                 return 1;
1776
1777         p = _swap_info_get(entry);
1778         if (p) {
1779                 count = __swap_entry_free(p, entry);
1780                 if (count == SWAP_HAS_CACHE &&
1781                     !swap_page_trans_huge_swapped(p, entry))
1782                         __try_to_reclaim_swap(p, swp_offset(entry),
1783                                               TTRS_UNMAPPED | TTRS_FULL);
1784         }
1785         return p != NULL;
1786 }
1787
1788 #ifdef CONFIG_HIBERNATION
1789 /*
1790  * Find the swap type that corresponds to given device (if any).
1791  *
1792  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1793  * from 0, in which the swap header is expected to be located.
1794  *
1795  * This is needed for the suspend to disk (aka swsusp).
1796  */
1797 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1798 {
1799         struct block_device *bdev = NULL;
1800         int type;
1801
1802         if (device)
1803                 bdev = bdget(device);
1804
1805         spin_lock(&swap_lock);
1806         for (type = 0; type < nr_swapfiles; type++) {
1807                 struct swap_info_struct *sis = swap_info[type];
1808
1809                 if (!(sis->flags & SWP_WRITEOK))
1810                         continue;
1811
1812                 if (!bdev) {
1813                         if (bdev_p)
1814                                 *bdev_p = bdgrab(sis->bdev);
1815
1816                         spin_unlock(&swap_lock);
1817                         return type;
1818                 }
1819                 if (bdev == sis->bdev) {
1820                         struct swap_extent *se = first_se(sis);
1821
1822                         if (se->start_block == offset) {
1823                                 if (bdev_p)
1824                                         *bdev_p = bdgrab(sis->bdev);
1825
1826                                 spin_unlock(&swap_lock);
1827                                 bdput(bdev);
1828                                 return type;
1829                         }
1830                 }
1831         }
1832         spin_unlock(&swap_lock);
1833         if (bdev)
1834                 bdput(bdev);
1835
1836         return -ENODEV;
1837 }
1838
1839 /*
1840  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1841  * corresponding to given index in swap_info (swap type).
1842  */
1843 sector_t swapdev_block(int type, pgoff_t offset)
1844 {
1845         struct block_device *bdev;
1846         struct swap_info_struct *si = swap_type_to_swap_info(type);
1847
1848         if (!si || !(si->flags & SWP_WRITEOK))
1849                 return 0;
1850         return map_swap_entry(swp_entry(type, offset), &bdev);
1851 }
1852
1853 /*
1854  * Return either the total number of swap pages of given type, or the number
1855  * of free pages of that type (depending on @free)
1856  *
1857  * This is needed for software suspend
1858  */
1859 unsigned int count_swap_pages(int type, int free)
1860 {
1861         unsigned int n = 0;
1862
1863         spin_lock(&swap_lock);
1864         if ((unsigned int)type < nr_swapfiles) {
1865                 struct swap_info_struct *sis = swap_info[type];
1866
1867                 spin_lock(&sis->lock);
1868                 if (sis->flags & SWP_WRITEOK) {
1869                         n = sis->pages;
1870                         if (free)
1871                                 n -= sis->inuse_pages;
1872                 }
1873                 spin_unlock(&sis->lock);
1874         }
1875         spin_unlock(&swap_lock);
1876         return n;
1877 }
1878 #endif /* CONFIG_HIBERNATION */
1879
1880 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1881 {
1882         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1883 }
1884
1885 /*
1886  * No need to decide whether this PTE shares the swap entry with others,
1887  * just let do_wp_page work it out if a write is requested later - to
1888  * force COW, vm_page_prot omits write permission from any private vma.
1889  */
1890 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1891                 unsigned long addr, swp_entry_t entry, struct page *page)
1892 {
1893         struct page *swapcache;
1894         spinlock_t *ptl;
1895         pte_t *pte;
1896         int ret = 1;
1897
1898         swapcache = page;
1899         page = ksm_might_need_to_copy(page, vma, addr);
1900         if (unlikely(!page))
1901                 return -ENOMEM;
1902
1903         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1904         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1905                 ret = 0;
1906                 goto out;
1907         }
1908
1909         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1910         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1911         get_page(page);
1912         set_pte_at(vma->vm_mm, addr, pte,
1913                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914         if (page == swapcache) {
1915                 page_add_anon_rmap(page, vma, addr, false);
1916         } else { /* ksm created a completely new copy */
1917                 page_add_new_anon_rmap(page, vma, addr, false);
1918                 lru_cache_add_active_or_unevictable(page, vma);
1919         }
1920         swap_free(entry);
1921         /*
1922          * Move the page to the active list so it is not
1923          * immediately swapped out again after swapon.
1924          */
1925         activate_page(page);
1926 out:
1927         pte_unmap_unlock(pte, ptl);
1928         if (page != swapcache) {
1929                 unlock_page(page);
1930                 put_page(page);
1931         }
1932         return ret;
1933 }
1934
1935 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1936                         unsigned long addr, unsigned long end,
1937                         unsigned int type, bool frontswap,
1938                         unsigned long *fs_pages_to_unuse)
1939 {
1940         struct page *page;
1941         swp_entry_t entry;
1942         pte_t *pte;
1943         struct swap_info_struct *si;
1944         unsigned long offset;
1945         int ret = 0;
1946         volatile unsigned char *swap_map;
1947
1948         si = swap_info[type];
1949         pte = pte_offset_map(pmd, addr);
1950         do {
1951                 struct vm_fault vmf;
1952
1953                 if (!is_swap_pte(*pte))
1954                         continue;
1955
1956                 entry = pte_to_swp_entry(*pte);
1957                 if (swp_type(entry) != type)
1958                         continue;
1959
1960                 offset = swp_offset(entry);
1961                 if (frontswap && !frontswap_test(si, offset))
1962                         continue;
1963
1964                 pte_unmap(pte);
1965                 swap_map = &si->swap_map[offset];
1966                 page = lookup_swap_cache(entry, vma, addr);
1967                 if (!page) {
1968                         vmf.vma = vma;
1969                         vmf.address = addr;
1970                         vmf.pmd = pmd;
1971                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1972                                                 &vmf);
1973                 }
1974                 if (!page) {
1975                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1976                                 goto try_next;
1977                         return -ENOMEM;
1978                 }
1979
1980                 lock_page(page);
1981                 wait_on_page_writeback(page);
1982                 ret = unuse_pte(vma, pmd, addr, entry, page);
1983                 if (ret < 0) {
1984                         unlock_page(page);
1985                         put_page(page);
1986                         goto out;
1987                 }
1988
1989                 try_to_free_swap(page);
1990                 unlock_page(page);
1991                 put_page(page);
1992
1993                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1994                         ret = FRONTSWAP_PAGES_UNUSED;
1995                         goto out;
1996                 }
1997 try_next:
1998                 pte = pte_offset_map(pmd, addr);
1999         } while (pte++, addr += PAGE_SIZE, addr != end);
2000         pte_unmap(pte - 1);
2001
2002         ret = 0;
2003 out:
2004         return ret;
2005 }
2006
2007 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2008                                 unsigned long addr, unsigned long end,
2009                                 unsigned int type, bool frontswap,
2010                                 unsigned long *fs_pages_to_unuse)
2011 {
2012         pmd_t *pmd;
2013         unsigned long next;
2014         int ret;
2015
2016         pmd = pmd_offset(pud, addr);
2017         do {
2018                 cond_resched();
2019                 next = pmd_addr_end(addr, end);
2020                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2021                         continue;
2022                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2023                                       frontswap, fs_pages_to_unuse);
2024                 if (ret)
2025                         return ret;
2026         } while (pmd++, addr = next, addr != end);
2027         return 0;
2028 }
2029
2030 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2031                                 unsigned long addr, unsigned long end,
2032                                 unsigned int type, bool frontswap,
2033                                 unsigned long *fs_pages_to_unuse)
2034 {
2035         pud_t *pud;
2036         unsigned long next;
2037         int ret;
2038
2039         pud = pud_offset(p4d, addr);
2040         do {
2041                 next = pud_addr_end(addr, end);
2042                 if (pud_none_or_clear_bad(pud))
2043                         continue;
2044                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2045                                       frontswap, fs_pages_to_unuse);
2046                 if (ret)
2047                         return ret;
2048         } while (pud++, addr = next, addr != end);
2049         return 0;
2050 }
2051
2052 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2053                                 unsigned long addr, unsigned long end,
2054                                 unsigned int type, bool frontswap,
2055                                 unsigned long *fs_pages_to_unuse)
2056 {
2057         p4d_t *p4d;
2058         unsigned long next;
2059         int ret;
2060
2061         p4d = p4d_offset(pgd, addr);
2062         do {
2063                 next = p4d_addr_end(addr, end);
2064                 if (p4d_none_or_clear_bad(p4d))
2065                         continue;
2066                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2067                                       frontswap, fs_pages_to_unuse);
2068                 if (ret)
2069                         return ret;
2070         } while (p4d++, addr = next, addr != end);
2071         return 0;
2072 }
2073
2074 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2075                      bool frontswap, unsigned long *fs_pages_to_unuse)
2076 {
2077         pgd_t *pgd;
2078         unsigned long addr, end, next;
2079         int ret;
2080
2081         addr = vma->vm_start;
2082         end = vma->vm_end;
2083
2084         pgd = pgd_offset(vma->vm_mm, addr);
2085         do {
2086                 next = pgd_addr_end(addr, end);
2087                 if (pgd_none_or_clear_bad(pgd))
2088                         continue;
2089                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2090                                       frontswap, fs_pages_to_unuse);
2091                 if (ret)
2092                         return ret;
2093         } while (pgd++, addr = next, addr != end);
2094         return 0;
2095 }
2096
2097 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2098                     bool frontswap, unsigned long *fs_pages_to_unuse)
2099 {
2100         struct vm_area_struct *vma;
2101         int ret = 0;
2102
2103         mmap_read_lock(mm);
2104         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2105                 if (vma->anon_vma) {
2106                         ret = unuse_vma(vma, type, frontswap,
2107                                         fs_pages_to_unuse);
2108                         if (ret)
2109                                 break;
2110                 }
2111                 cond_resched();
2112         }
2113         mmap_read_unlock(mm);
2114         return ret;
2115 }
2116
2117 /*
2118  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2119  * from current position to next entry still in use. Return 0
2120  * if there are no inuse entries after prev till end of the map.
2121  */
2122 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2123                                         unsigned int prev, bool frontswap)
2124 {
2125         unsigned int i;
2126         unsigned char count;
2127
2128         /*
2129          * No need for swap_lock here: we're just looking
2130          * for whether an entry is in use, not modifying it; false
2131          * hits are okay, and sys_swapoff() has already prevented new
2132          * allocations from this area (while holding swap_lock).
2133          */
2134         for (i = prev + 1; i < si->max; i++) {
2135                 count = READ_ONCE(si->swap_map[i]);
2136                 if (count && swap_count(count) != SWAP_MAP_BAD)
2137                         if (!frontswap || frontswap_test(si, i))
2138                                 break;
2139                 if ((i % LATENCY_LIMIT) == 0)
2140                         cond_resched();
2141         }
2142
2143         if (i == si->max)
2144                 i = 0;
2145
2146         return i;
2147 }
2148
2149 /*
2150  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2151  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2152  */
2153 int try_to_unuse(unsigned int type, bool frontswap,
2154                  unsigned long pages_to_unuse)
2155 {
2156         struct mm_struct *prev_mm;
2157         struct mm_struct *mm;
2158         struct list_head *p;
2159         int retval = 0;
2160         struct swap_info_struct *si = swap_info[type];
2161         struct page *page;
2162         swp_entry_t entry;
2163         unsigned int i;
2164
2165         if (!READ_ONCE(si->inuse_pages))
2166                 return 0;
2167
2168         if (!frontswap)
2169                 pages_to_unuse = 0;
2170
2171 retry:
2172         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2173         if (retval)
2174                 goto out;
2175
2176         prev_mm = &init_mm;
2177         mmget(prev_mm);
2178
2179         spin_lock(&mmlist_lock);
2180         p = &init_mm.mmlist;
2181         while (READ_ONCE(si->inuse_pages) &&
2182                !signal_pending(current) &&
2183                (p = p->next) != &init_mm.mmlist) {
2184
2185                 mm = list_entry(p, struct mm_struct, mmlist);
2186                 if (!mmget_not_zero(mm))
2187                         continue;
2188                 spin_unlock(&mmlist_lock);
2189                 mmput(prev_mm);
2190                 prev_mm = mm;
2191                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2192
2193                 if (retval) {
2194                         mmput(prev_mm);
2195                         goto out;
2196                 }
2197
2198                 /*
2199                  * Make sure that we aren't completely killing
2200                  * interactive performance.
2201                  */
2202                 cond_resched();
2203                 spin_lock(&mmlist_lock);
2204         }
2205         spin_unlock(&mmlist_lock);
2206
2207         mmput(prev_mm);
2208
2209         i = 0;
2210         while (READ_ONCE(si->inuse_pages) &&
2211                !signal_pending(current) &&
2212                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2213
2214                 entry = swp_entry(type, i);
2215                 page = find_get_page(swap_address_space(entry), i);
2216                 if (!page)
2217                         continue;
2218
2219                 /*
2220                  * It is conceivable that a racing task removed this page from
2221                  * swap cache just before we acquired the page lock. The page
2222                  * might even be back in swap cache on another swap area. But
2223                  * that is okay, try_to_free_swap() only removes stale pages.
2224                  */
2225                 lock_page(page);
2226                 wait_on_page_writeback(page);
2227                 try_to_free_swap(page);
2228                 unlock_page(page);
2229                 put_page(page);
2230
2231                 /*
2232                  * For frontswap, we just need to unuse pages_to_unuse, if
2233                  * it was specified. Need not check frontswap again here as
2234                  * we already zeroed out pages_to_unuse if not frontswap.
2235                  */
2236                 if (pages_to_unuse && --pages_to_unuse == 0)
2237                         goto out;
2238         }
2239
2240         /*
2241          * Lets check again to see if there are still swap entries in the map.
2242          * If yes, we would need to do retry the unuse logic again.
2243          * Under global memory pressure, swap entries can be reinserted back
2244          * into process space after the mmlist loop above passes over them.
2245          *
2246          * Limit the number of retries? No: when mmget_not_zero() above fails,
2247          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2248          * at its own independent pace; and even shmem_writepage() could have
2249          * been preempted after get_swap_page(), temporarily hiding that swap.
2250          * It's easy and robust (though cpu-intensive) just to keep retrying.
2251          */
2252         if (READ_ONCE(si->inuse_pages)) {
2253                 if (!signal_pending(current))
2254                         goto retry;
2255                 retval = -EINTR;
2256         }
2257 out:
2258         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2259 }
2260
2261 /*
2262  * After a successful try_to_unuse, if no swap is now in use, we know
2263  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2264  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2265  * added to the mmlist just after page_duplicate - before would be racy.
2266  */
2267 static void drain_mmlist(void)
2268 {
2269         struct list_head *p, *next;
2270         unsigned int type;
2271
2272         for (type = 0; type < nr_swapfiles; type++)
2273                 if (swap_info[type]->inuse_pages)
2274                         return;
2275         spin_lock(&mmlist_lock);
2276         list_for_each_safe(p, next, &init_mm.mmlist)
2277                 list_del_init(p);
2278         spin_unlock(&mmlist_lock);
2279 }
2280
2281 /*
2282  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2283  * corresponds to page offset for the specified swap entry.
2284  * Note that the type of this function is sector_t, but it returns page offset
2285  * into the bdev, not sector offset.
2286  */
2287 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2288 {
2289         struct swap_info_struct *sis;
2290         struct swap_extent *se;
2291         pgoff_t offset;
2292
2293         sis = swp_swap_info(entry);
2294         *bdev = sis->bdev;
2295
2296         offset = swp_offset(entry);
2297         se = offset_to_swap_extent(sis, offset);
2298         return se->start_block + (offset - se->start_page);
2299 }
2300
2301 /*
2302  * Returns the page offset into bdev for the specified page's swap entry.
2303  */
2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305 {
2306         swp_entry_t entry;
2307         entry.val = page_private(page);
2308         return map_swap_entry(entry, bdev);
2309 }
2310
2311 /*
2312  * Free all of a swapdev's extent information
2313  */
2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2315 {
2316         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2317                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2318                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2319
2320                 rb_erase(rb, &sis->swap_extent_root);
2321                 kfree(se);
2322         }
2323
2324         if (sis->flags & SWP_ACTIVATED) {
2325                 struct file *swap_file = sis->swap_file;
2326                 struct address_space *mapping = swap_file->f_mapping;
2327
2328                 sis->flags &= ~SWP_ACTIVATED;
2329                 if (mapping->a_ops->swap_deactivate)
2330                         mapping->a_ops->swap_deactivate(swap_file);
2331         }
2332 }
2333
2334 /*
2335  * Add a block range (and the corresponding page range) into this swapdev's
2336  * extent tree.
2337  *
2338  * This function rather assumes that it is called in ascending page order.
2339  */
2340 int
2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342                 unsigned long nr_pages, sector_t start_block)
2343 {
2344         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2345         struct swap_extent *se;
2346         struct swap_extent *new_se;
2347
2348         /*
2349          * place the new node at the right most since the
2350          * function is called in ascending page order.
2351          */
2352         while (*link) {
2353                 parent = *link;
2354                 link = &parent->rb_right;
2355         }
2356
2357         if (parent) {
2358                 se = rb_entry(parent, struct swap_extent, rb_node);
2359                 BUG_ON(se->start_page + se->nr_pages != start_page);
2360                 if (se->start_block + se->nr_pages == start_block) {
2361                         /* Merge it */
2362                         se->nr_pages += nr_pages;
2363                         return 0;
2364                 }
2365         }
2366
2367         /* No merge, insert a new extent. */
2368         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369         if (new_se == NULL)
2370                 return -ENOMEM;
2371         new_se->start_page = start_page;
2372         new_se->nr_pages = nr_pages;
2373         new_se->start_block = start_block;
2374
2375         rb_link_node(&new_se->rb_node, parent, link);
2376         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2377         return 1;
2378 }
2379 EXPORT_SYMBOL_GPL(add_swap_extent);
2380
2381 /*
2382  * A `swap extent' is a simple thing which maps a contiguous range of pages
2383  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2384  * is built at swapon time and is then used at swap_writepage/swap_readpage
2385  * time for locating where on disk a page belongs.
2386  *
2387  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2388  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2389  * swap files identically.
2390  *
2391  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2392  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2393  * swapfiles are handled *identically* after swapon time.
2394  *
2395  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2396  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2397  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2398  * requirements, they are simply tossed out - we will never use those blocks
2399  * for swapping.
2400  *
2401  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2402  * prevents users from writing to the swap device, which will corrupt memory.
2403  *
2404  * The amount of disk space which a single swap extent represents varies.
2405  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2406  * extents in the list.  To avoid much list walking, we cache the previous
2407  * search location in `curr_swap_extent', and start new searches from there.
2408  * This is extremely effective.  The average number of iterations in
2409  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2410  */
2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2412 {
2413         struct file *swap_file = sis->swap_file;
2414         struct address_space *mapping = swap_file->f_mapping;
2415         struct inode *inode = mapping->host;
2416         int ret;
2417
2418         if (S_ISBLK(inode->i_mode)) {
2419                 ret = add_swap_extent(sis, 0, sis->max, 0);
2420                 *span = sis->pages;
2421                 return ret;
2422         }
2423
2424         if (mapping->a_ops->swap_activate) {
2425                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426                 if (ret >= 0)
2427                         sis->flags |= SWP_ACTIVATED;
2428                 if (!ret) {
2429                         sis->flags |= SWP_FS;
2430                         ret = add_swap_extent(sis, 0, sis->max, 0);
2431                         *span = sis->pages;
2432                 }
2433                 return ret;
2434         }
2435
2436         return generic_swapfile_activate(sis, swap_file, span);
2437 }
2438
2439 static int swap_node(struct swap_info_struct *p)
2440 {
2441         struct block_device *bdev;
2442
2443         if (p->bdev)
2444                 bdev = p->bdev;
2445         else
2446                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2447
2448         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2449 }
2450
2451 static void setup_swap_info(struct swap_info_struct *p, int prio,
2452                             unsigned char *swap_map,
2453                             struct swap_cluster_info *cluster_info)
2454 {
2455         int i;
2456
2457         if (prio >= 0)
2458                 p->prio = prio;
2459         else
2460                 p->prio = --least_priority;
2461         /*
2462          * the plist prio is negated because plist ordering is
2463          * low-to-high, while swap ordering is high-to-low
2464          */
2465         p->list.prio = -p->prio;
2466         for_each_node(i) {
2467                 if (p->prio >= 0)
2468                         p->avail_lists[i].prio = -p->prio;
2469                 else {
2470                         if (swap_node(p) == i)
2471                                 p->avail_lists[i].prio = 1;
2472                         else
2473                                 p->avail_lists[i].prio = -p->prio;
2474                 }
2475         }
2476         p->swap_map = swap_map;
2477         p->cluster_info = cluster_info;
2478 }
2479
2480 static void _enable_swap_info(struct swap_info_struct *p)
2481 {
2482         p->flags |= SWP_WRITEOK | SWP_VALID;
2483         atomic_long_add(p->pages, &nr_swap_pages);
2484         total_swap_pages += p->pages;
2485
2486         assert_spin_locked(&swap_lock);
2487         /*
2488          * both lists are plists, and thus priority ordered.
2489          * swap_active_head needs to be priority ordered for swapoff(),
2490          * which on removal of any swap_info_struct with an auto-assigned
2491          * (i.e. negative) priority increments the auto-assigned priority
2492          * of any lower-priority swap_info_structs.
2493          * swap_avail_head needs to be priority ordered for get_swap_page(),
2494          * which allocates swap pages from the highest available priority
2495          * swap_info_struct.
2496          */
2497         plist_add(&p->list, &swap_active_head);
2498         add_to_avail_list(p);
2499 }
2500
2501 static void enable_swap_info(struct swap_info_struct *p, int prio,
2502                                 unsigned char *swap_map,
2503                                 struct swap_cluster_info *cluster_info,
2504                                 unsigned long *frontswap_map)
2505 {
2506         frontswap_init(p->type, frontswap_map);
2507         spin_lock(&swap_lock);
2508         spin_lock(&p->lock);
2509         setup_swap_info(p, prio, swap_map, cluster_info);
2510         spin_unlock(&p->lock);
2511         spin_unlock(&swap_lock);
2512         /*
2513          * Guarantee swap_map, cluster_info, etc. fields are valid
2514          * between get/put_swap_device() if SWP_VALID bit is set
2515          */
2516         synchronize_rcu();
2517         spin_lock(&swap_lock);
2518         spin_lock(&p->lock);
2519         _enable_swap_info(p);
2520         spin_unlock(&p->lock);
2521         spin_unlock(&swap_lock);
2522 }
2523
2524 static void reinsert_swap_info(struct swap_info_struct *p)
2525 {
2526         spin_lock(&swap_lock);
2527         spin_lock(&p->lock);
2528         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2529         _enable_swap_info(p);
2530         spin_unlock(&p->lock);
2531         spin_unlock(&swap_lock);
2532 }
2533
2534 bool has_usable_swap(void)
2535 {
2536         bool ret = true;
2537
2538         spin_lock(&swap_lock);
2539         if (plist_head_empty(&swap_active_head))
2540                 ret = false;
2541         spin_unlock(&swap_lock);
2542         return ret;
2543 }
2544
2545 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2546 {
2547         struct swap_info_struct *p = NULL;
2548         unsigned char *swap_map;
2549         struct swap_cluster_info *cluster_info;
2550         unsigned long *frontswap_map;
2551         struct file *swap_file, *victim;
2552         struct address_space *mapping;
2553         struct inode *inode;
2554         struct filename *pathname;
2555         int err, found = 0;
2556         unsigned int old_block_size;
2557
2558         if (!capable(CAP_SYS_ADMIN))
2559                 return -EPERM;
2560
2561         BUG_ON(!current->mm);
2562
2563         pathname = getname(specialfile);
2564         if (IS_ERR(pathname))
2565                 return PTR_ERR(pathname);
2566
2567         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2568         err = PTR_ERR(victim);
2569         if (IS_ERR(victim))
2570                 goto out;
2571
2572         mapping = victim->f_mapping;
2573         spin_lock(&swap_lock);
2574         plist_for_each_entry(p, &swap_active_head, list) {
2575                 if (p->flags & SWP_WRITEOK) {
2576                         if (p->swap_file->f_mapping == mapping) {
2577                                 found = 1;
2578                                 break;
2579                         }
2580                 }
2581         }
2582         if (!found) {
2583                 err = -EINVAL;
2584                 spin_unlock(&swap_lock);
2585                 goto out_dput;
2586         }
2587         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2588                 vm_unacct_memory(p->pages);
2589         else {
2590                 err = -ENOMEM;
2591                 spin_unlock(&swap_lock);
2592                 goto out_dput;
2593         }
2594         del_from_avail_list(p);
2595         spin_lock(&p->lock);
2596         if (p->prio < 0) {
2597                 struct swap_info_struct *si = p;
2598                 int nid;
2599
2600                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2601                         si->prio++;
2602                         si->list.prio--;
2603                         for_each_node(nid) {
2604                                 if (si->avail_lists[nid].prio != 1)
2605                                         si->avail_lists[nid].prio--;
2606                         }
2607                 }
2608                 least_priority++;
2609         }
2610         plist_del(&p->list, &swap_active_head);
2611         atomic_long_sub(p->pages, &nr_swap_pages);
2612         total_swap_pages -= p->pages;
2613         p->flags &= ~SWP_WRITEOK;
2614         spin_unlock(&p->lock);
2615         spin_unlock(&swap_lock);
2616
2617         disable_swap_slots_cache_lock();
2618
2619         set_current_oom_origin();
2620         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2621         clear_current_oom_origin();
2622
2623         if (err) {
2624                 /* re-insert swap space back into swap_list */
2625                 reinsert_swap_info(p);
2626                 reenable_swap_slots_cache_unlock();
2627                 goto out_dput;
2628         }
2629
2630         reenable_swap_slots_cache_unlock();
2631
2632         spin_lock(&swap_lock);
2633         spin_lock(&p->lock);
2634         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2635         spin_unlock(&p->lock);
2636         spin_unlock(&swap_lock);
2637         /*
2638          * wait for swap operations protected by get/put_swap_device()
2639          * to complete
2640          */
2641         synchronize_rcu();
2642
2643         flush_work(&p->discard_work);
2644
2645         destroy_swap_extents(p);
2646         if (p->flags & SWP_CONTINUED)
2647                 free_swap_count_continuations(p);
2648
2649         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2650                 atomic_dec(&nr_rotate_swap);
2651
2652         mutex_lock(&swapon_mutex);
2653         spin_lock(&swap_lock);
2654         spin_lock(&p->lock);
2655         drain_mmlist();
2656
2657         /* wait for anyone still in scan_swap_map */
2658         p->highest_bit = 0;             /* cuts scans short */
2659         while (p->flags >= SWP_SCANNING) {
2660                 spin_unlock(&p->lock);
2661                 spin_unlock(&swap_lock);
2662                 schedule_timeout_uninterruptible(1);
2663                 spin_lock(&swap_lock);
2664                 spin_lock(&p->lock);
2665         }
2666
2667         swap_file = p->swap_file;
2668         old_block_size = p->old_block_size;
2669         p->swap_file = NULL;
2670         p->max = 0;
2671         swap_map = p->swap_map;
2672         p->swap_map = NULL;
2673         cluster_info = p->cluster_info;
2674         p->cluster_info = NULL;
2675         frontswap_map = frontswap_map_get(p);
2676         spin_unlock(&p->lock);
2677         spin_unlock(&swap_lock);
2678         frontswap_invalidate_area(p->type);
2679         frontswap_map_set(p, NULL);
2680         mutex_unlock(&swapon_mutex);
2681         free_percpu(p->percpu_cluster);
2682         p->percpu_cluster = NULL;
2683         free_percpu(p->cluster_next_cpu);
2684         p->cluster_next_cpu = NULL;
2685         vfree(swap_map);
2686         kvfree(cluster_info);
2687         kvfree(frontswap_map);
2688         /* Destroy swap account information */
2689         swap_cgroup_swapoff(p->type);
2690         exit_swap_address_space(p->type);
2691
2692         inode = mapping->host;
2693         if (S_ISBLK(inode->i_mode)) {
2694                 struct block_device *bdev = I_BDEV(inode);
2695
2696                 set_blocksize(bdev, old_block_size);
2697                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2698         }
2699
2700         inode_lock(inode);
2701         inode->i_flags &= ~S_SWAPFILE;
2702         inode_unlock(inode);
2703         filp_close(swap_file, NULL);
2704
2705         /*
2706          * Clear the SWP_USED flag after all resources are freed so that swapon
2707          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2708          * not hold p->lock after we cleared its SWP_WRITEOK.
2709          */
2710         spin_lock(&swap_lock);
2711         p->flags = 0;
2712         spin_unlock(&swap_lock);
2713
2714         err = 0;
2715         atomic_inc(&proc_poll_event);
2716         wake_up_interruptible(&proc_poll_wait);
2717
2718 out_dput:
2719         filp_close(victim, NULL);
2720 out:
2721         putname(pathname);
2722         return err;
2723 }
2724
2725 #ifdef CONFIG_PROC_FS
2726 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2727 {
2728         struct seq_file *seq = file->private_data;
2729
2730         poll_wait(file, &proc_poll_wait, wait);
2731
2732         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2733                 seq->poll_event = atomic_read(&proc_poll_event);
2734                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2735         }
2736
2737         return EPOLLIN | EPOLLRDNORM;
2738 }
2739
2740 /* iterator */
2741 static void *swap_start(struct seq_file *swap, loff_t *pos)
2742 {
2743         struct swap_info_struct *si;
2744         int type;
2745         loff_t l = *pos;
2746
2747         mutex_lock(&swapon_mutex);
2748
2749         if (!l)
2750                 return SEQ_START_TOKEN;
2751
2752         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2753                 if (!(si->flags & SWP_USED) || !si->swap_map)
2754                         continue;
2755                 if (!--l)
2756                         return si;
2757         }
2758
2759         return NULL;
2760 }
2761
2762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2763 {
2764         struct swap_info_struct *si = v;
2765         int type;
2766
2767         if (v == SEQ_START_TOKEN)
2768                 type = 0;
2769         else
2770                 type = si->type + 1;
2771
2772         ++(*pos);
2773         for (; (si = swap_type_to_swap_info(type)); type++) {
2774                 if (!(si->flags & SWP_USED) || !si->swap_map)
2775                         continue;
2776                 return si;
2777         }
2778
2779         return NULL;
2780 }
2781
2782 static void swap_stop(struct seq_file *swap, void *v)
2783 {
2784         mutex_unlock(&swapon_mutex);
2785 }
2786
2787 static int swap_show(struct seq_file *swap, void *v)
2788 {
2789         struct swap_info_struct *si = v;
2790         struct file *file;
2791         int len;
2792         unsigned int bytes, inuse;
2793
2794         if (si == SEQ_START_TOKEN) {
2795                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2796                 return 0;
2797         }
2798
2799         bytes = si->pages << (PAGE_SHIFT - 10);
2800         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2801
2802         file = si->swap_file;
2803         len = seq_file_path(swap, file, " \t\n\\");
2804         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2805                         len < 40 ? 40 - len : 1, " ",
2806                         S_ISBLK(file_inode(file)->i_mode) ?
2807                                 "partition" : "file\t",
2808                         bytes, bytes < 10000000 ? "\t" : "",
2809                         inuse, inuse < 10000000 ? "\t" : "",
2810                         si->prio);
2811         return 0;
2812 }
2813
2814 static const struct seq_operations swaps_op = {
2815         .start =        swap_start,
2816         .next =         swap_next,
2817         .stop =         swap_stop,
2818         .show =         swap_show
2819 };
2820
2821 static int swaps_open(struct inode *inode, struct file *file)
2822 {
2823         struct seq_file *seq;
2824         int ret;
2825
2826         ret = seq_open(file, &swaps_op);
2827         if (ret)
2828                 return ret;
2829
2830         seq = file->private_data;
2831         seq->poll_event = atomic_read(&proc_poll_event);
2832         return 0;
2833 }
2834
2835 static const struct proc_ops swaps_proc_ops = {
2836         .proc_flags     = PROC_ENTRY_PERMANENT,
2837         .proc_open      = swaps_open,
2838         .proc_read      = seq_read,
2839         .proc_lseek     = seq_lseek,
2840         .proc_release   = seq_release,
2841         .proc_poll      = swaps_poll,
2842 };
2843
2844 static int __init procswaps_init(void)
2845 {
2846         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2847         return 0;
2848 }
2849 __initcall(procswaps_init);
2850 #endif /* CONFIG_PROC_FS */
2851
2852 #ifdef MAX_SWAPFILES_CHECK
2853 static int __init max_swapfiles_check(void)
2854 {
2855         MAX_SWAPFILES_CHECK();
2856         return 0;
2857 }
2858 late_initcall(max_swapfiles_check);
2859 #endif
2860
2861 static struct swap_info_struct *alloc_swap_info(void)
2862 {
2863         struct swap_info_struct *p;
2864         unsigned int type;
2865         int i;
2866
2867         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2868         if (!p)
2869                 return ERR_PTR(-ENOMEM);
2870
2871         spin_lock(&swap_lock);
2872         for (type = 0; type < nr_swapfiles; type++) {
2873                 if (!(swap_info[type]->flags & SWP_USED))
2874                         break;
2875         }
2876         if (type >= MAX_SWAPFILES) {
2877                 spin_unlock(&swap_lock);
2878                 kvfree(p);
2879                 return ERR_PTR(-EPERM);
2880         }
2881         if (type >= nr_swapfiles) {
2882                 p->type = type;
2883                 WRITE_ONCE(swap_info[type], p);
2884                 /*
2885                  * Write swap_info[type] before nr_swapfiles, in case a
2886                  * racing procfs swap_start() or swap_next() is reading them.
2887                  * (We never shrink nr_swapfiles, we never free this entry.)
2888                  */
2889                 smp_wmb();
2890                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2891         } else {
2892                 kvfree(p);
2893                 p = swap_info[type];
2894                 /*
2895                  * Do not memset this entry: a racing procfs swap_next()
2896                  * would be relying on p->type to remain valid.
2897                  */
2898         }
2899         p->swap_extent_root = RB_ROOT;
2900         plist_node_init(&p->list, 0);
2901         for_each_node(i)
2902                 plist_node_init(&p->avail_lists[i], 0);
2903         p->flags = SWP_USED;
2904         spin_unlock(&swap_lock);
2905         spin_lock_init(&p->lock);
2906         spin_lock_init(&p->cont_lock);
2907
2908         return p;
2909 }
2910
2911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2912 {
2913         int error;
2914
2915         if (S_ISBLK(inode->i_mode)) {
2916                 p->bdev = bdgrab(I_BDEV(inode));
2917                 error = blkdev_get(p->bdev,
2918                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2919                 if (error < 0) {
2920                         p->bdev = NULL;
2921                         return error;
2922                 }
2923                 p->old_block_size = block_size(p->bdev);
2924                 error = set_blocksize(p->bdev, PAGE_SIZE);
2925                 if (error < 0)
2926                         return error;
2927                 /*
2928                  * Zoned block devices contain zones that have a sequential
2929                  * write only restriction.  Hence zoned block devices are not
2930                  * suitable for swapping.  Disallow them here.
2931                  */
2932                 if (blk_queue_is_zoned(p->bdev->bd_queue))
2933                         return -EINVAL;
2934                 p->flags |= SWP_BLKDEV;
2935         } else if (S_ISREG(inode->i_mode)) {
2936                 p->bdev = inode->i_sb->s_bdev;
2937         }
2938
2939         return 0;
2940 }
2941
2942
2943 /*
2944  * Find out how many pages are allowed for a single swap device. There
2945  * are two limiting factors:
2946  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2947  * 2) the number of bits in the swap pte, as defined by the different
2948  * architectures.
2949  *
2950  * In order to find the largest possible bit mask, a swap entry with
2951  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2952  * decoded to a swp_entry_t again, and finally the swap offset is
2953  * extracted.
2954  *
2955  * This will mask all the bits from the initial ~0UL mask that can't
2956  * be encoded in either the swp_entry_t or the architecture definition
2957  * of a swap pte.
2958  */
2959 unsigned long generic_max_swapfile_size(void)
2960 {
2961         return swp_offset(pte_to_swp_entry(
2962                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963 }
2964
2965 /* Can be overridden by an architecture for additional checks. */
2966 __weak unsigned long max_swapfile_size(void)
2967 {
2968         return generic_max_swapfile_size();
2969 }
2970
2971 static unsigned long read_swap_header(struct swap_info_struct *p,
2972                                         union swap_header *swap_header,
2973                                         struct inode *inode)
2974 {
2975         int i;
2976         unsigned long maxpages;
2977         unsigned long swapfilepages;
2978         unsigned long last_page;
2979
2980         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2981                 pr_err("Unable to find swap-space signature\n");
2982                 return 0;
2983         }
2984
2985         /* swap partition endianess hack... */
2986         if (swab32(swap_header->info.version) == 1) {
2987                 swab32s(&swap_header->info.version);
2988                 swab32s(&swap_header->info.last_page);
2989                 swab32s(&swap_header->info.nr_badpages);
2990                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991                         return 0;
2992                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2993                         swab32s(&swap_header->info.badpages[i]);
2994         }
2995         /* Check the swap header's sub-version */
2996         if (swap_header->info.version != 1) {
2997                 pr_warn("Unable to handle swap header version %d\n",
2998                         swap_header->info.version);
2999                 return 0;
3000         }
3001
3002         p->lowest_bit  = 1;
3003         p->cluster_next = 1;
3004         p->cluster_nr = 0;
3005
3006         maxpages = max_swapfile_size();
3007         last_page = swap_header->info.last_page;
3008         if (!last_page) {
3009                 pr_warn("Empty swap-file\n");
3010                 return 0;
3011         }
3012         if (last_page > maxpages) {
3013                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3014                         maxpages << (PAGE_SHIFT - 10),
3015                         last_page << (PAGE_SHIFT - 10));
3016         }
3017         if (maxpages > last_page) {
3018                 maxpages = last_page + 1;
3019                 /* p->max is an unsigned int: don't overflow it */
3020                 if ((unsigned int)maxpages == 0)
3021                         maxpages = UINT_MAX;
3022         }
3023         p->highest_bit = maxpages - 1;
3024
3025         if (!maxpages)
3026                 return 0;
3027         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3028         if (swapfilepages && maxpages > swapfilepages) {
3029                 pr_warn("Swap area shorter than signature indicates\n");
3030                 return 0;
3031         }
3032         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3033                 return 0;
3034         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3035                 return 0;
3036
3037         return maxpages;
3038 }
3039
3040 #define SWAP_CLUSTER_INFO_COLS                                          \
3041         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3042 #define SWAP_CLUSTER_SPACE_COLS                                         \
3043         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3044 #define SWAP_CLUSTER_COLS                                               \
3045         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3046
3047 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3048                                         union swap_header *swap_header,
3049                                         unsigned char *swap_map,
3050                                         struct swap_cluster_info *cluster_info,
3051                                         unsigned long maxpages,
3052                                         sector_t *span)
3053 {
3054         unsigned int j, k;
3055         unsigned int nr_good_pages;
3056         int nr_extents;
3057         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3058         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3059         unsigned long i, idx;
3060
3061         nr_good_pages = maxpages - 1;   /* omit header page */
3062
3063         cluster_list_init(&p->free_clusters);
3064         cluster_list_init(&p->discard_clusters);
3065
3066         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3067                 unsigned int page_nr = swap_header->info.badpages[i];
3068                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3069                         return -EINVAL;
3070                 if (page_nr < maxpages) {
3071                         swap_map[page_nr] = SWAP_MAP_BAD;
3072                         nr_good_pages--;
3073                         /*
3074                          * Haven't marked the cluster free yet, no list
3075                          * operation involved
3076                          */
3077                         inc_cluster_info_page(p, cluster_info, page_nr);
3078                 }
3079         }
3080
3081         /* Haven't marked the cluster free yet, no list operation involved */
3082         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3083                 inc_cluster_info_page(p, cluster_info, i);
3084
3085         if (nr_good_pages) {
3086                 swap_map[0] = SWAP_MAP_BAD;
3087                 /*
3088                  * Not mark the cluster free yet, no list
3089                  * operation involved
3090                  */
3091                 inc_cluster_info_page(p, cluster_info, 0);
3092                 p->max = maxpages;
3093                 p->pages = nr_good_pages;
3094                 nr_extents = setup_swap_extents(p, span);
3095                 if (nr_extents < 0)
3096                         return nr_extents;
3097                 nr_good_pages = p->pages;
3098         }
3099         if (!nr_good_pages) {
3100                 pr_warn("Empty swap-file\n");
3101                 return -EINVAL;
3102         }
3103
3104         if (!cluster_info)
3105                 return nr_extents;
3106
3107
3108         /*
3109          * Reduce false cache line sharing between cluster_info and
3110          * sharing same address space.
3111          */
3112         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3113                 j = (k + col) % SWAP_CLUSTER_COLS;
3114                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3115                         idx = i * SWAP_CLUSTER_COLS + j;
3116                         if (idx >= nr_clusters)
3117                                 continue;
3118                         if (cluster_count(&cluster_info[idx]))
3119                                 continue;
3120                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3121                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3122                                               idx);
3123                 }
3124         }
3125         return nr_extents;
3126 }
3127
3128 /*
3129  * Helper to sys_swapon determining if a given swap
3130  * backing device queue supports DISCARD operations.
3131  */
3132 static bool swap_discardable(struct swap_info_struct *si)
3133 {
3134         struct request_queue *q = bdev_get_queue(si->bdev);
3135
3136         if (!q || !blk_queue_discard(q))
3137                 return false;
3138
3139         return true;
3140 }
3141
3142 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3143 {
3144         struct swap_info_struct *p;
3145         struct filename *name;
3146         struct file *swap_file = NULL;
3147         struct address_space *mapping;
3148         int prio;
3149         int error;
3150         union swap_header *swap_header;
3151         int nr_extents;
3152         sector_t span;
3153         unsigned long maxpages;
3154         unsigned char *swap_map = NULL;
3155         struct swap_cluster_info *cluster_info = NULL;
3156         unsigned long *frontswap_map = NULL;
3157         struct page *page = NULL;
3158         struct inode *inode = NULL;
3159         bool inced_nr_rotate_swap = false;
3160
3161         if (swap_flags & ~SWAP_FLAGS_VALID)
3162                 return -EINVAL;
3163
3164         if (!capable(CAP_SYS_ADMIN))
3165                 return -EPERM;
3166
3167         if (!swap_avail_heads)
3168                 return -ENOMEM;
3169
3170         p = alloc_swap_info();
3171         if (IS_ERR(p))
3172                 return PTR_ERR(p);
3173
3174         INIT_WORK(&p->discard_work, swap_discard_work);
3175
3176         name = getname(specialfile);
3177         if (IS_ERR(name)) {
3178                 error = PTR_ERR(name);
3179                 name = NULL;
3180                 goto bad_swap;
3181         }
3182         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3183         if (IS_ERR(swap_file)) {
3184                 error = PTR_ERR(swap_file);
3185                 swap_file = NULL;
3186                 goto bad_swap;
3187         }
3188
3189         p->swap_file = swap_file;
3190         mapping = swap_file->f_mapping;
3191         inode = mapping->host;
3192
3193         error = claim_swapfile(p, inode);
3194         if (unlikely(error))
3195                 goto bad_swap;
3196
3197         inode_lock(inode);
3198         if (IS_SWAPFILE(inode)) {
3199                 error = -EBUSY;
3200                 goto bad_swap_unlock_inode;
3201         }
3202
3203         /*
3204          * Read the swap header.
3205          */
3206         if (!mapping->a_ops->readpage) {
3207                 error = -EINVAL;
3208                 goto bad_swap_unlock_inode;
3209         }
3210         page = read_mapping_page(mapping, 0, swap_file);
3211         if (IS_ERR(page)) {
3212                 error = PTR_ERR(page);
3213                 goto bad_swap_unlock_inode;
3214         }
3215         swap_header = kmap(page);
3216
3217         maxpages = read_swap_header(p, swap_header, inode);
3218         if (unlikely(!maxpages)) {
3219                 error = -EINVAL;
3220                 goto bad_swap_unlock_inode;
3221         }
3222
3223         /* OK, set up the swap map and apply the bad block list */
3224         swap_map = vzalloc(maxpages);
3225         if (!swap_map) {
3226                 error = -ENOMEM;
3227                 goto bad_swap_unlock_inode;
3228         }
3229
3230         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3231                 p->flags |= SWP_STABLE_WRITES;
3232
3233         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3234                 p->flags |= SWP_SYNCHRONOUS_IO;
3235
3236         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3237                 int cpu;
3238                 unsigned long ci, nr_cluster;
3239
3240                 p->flags |= SWP_SOLIDSTATE;
3241                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3242                 if (!p->cluster_next_cpu) {
3243                         error = -ENOMEM;
3244                         goto bad_swap_unlock_inode;
3245                 }
3246                 /*
3247                  * select a random position to start with to help wear leveling
3248                  * SSD
3249                  */
3250                 for_each_possible_cpu(cpu) {
3251                         per_cpu(*p->cluster_next_cpu, cpu) =
3252                                 1 + prandom_u32_max(p->highest_bit);
3253                 }
3254                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3255
3256                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3257                                         GFP_KERNEL);
3258                 if (!cluster_info) {
3259                         error = -ENOMEM;
3260                         goto bad_swap_unlock_inode;
3261                 }
3262
3263                 for (ci = 0; ci < nr_cluster; ci++)
3264                         spin_lock_init(&((cluster_info + ci)->lock));
3265
3266                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3267                 if (!p->percpu_cluster) {
3268                         error = -ENOMEM;
3269                         goto bad_swap_unlock_inode;
3270                 }
3271                 for_each_possible_cpu(cpu) {
3272                         struct percpu_cluster *cluster;
3273                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3274                         cluster_set_null(&cluster->index);
3275                 }
3276         } else {
3277                 atomic_inc(&nr_rotate_swap);
3278                 inced_nr_rotate_swap = true;
3279         }
3280
3281         error = swap_cgroup_swapon(p->type, maxpages);
3282         if (error)
3283                 goto bad_swap_unlock_inode;
3284
3285         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3286                 cluster_info, maxpages, &span);
3287         if (unlikely(nr_extents < 0)) {
3288                 error = nr_extents;
3289                 goto bad_swap_unlock_inode;
3290         }
3291         /* frontswap enabled? set up bit-per-page map for frontswap */
3292         if (IS_ENABLED(CONFIG_FRONTSWAP))
3293                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3294                                          sizeof(long),
3295                                          GFP_KERNEL);
3296
3297         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3298                 /*
3299                  * When discard is enabled for swap with no particular
3300                  * policy flagged, we set all swap discard flags here in
3301                  * order to sustain backward compatibility with older
3302                  * swapon(8) releases.
3303                  */
3304                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3305                              SWP_PAGE_DISCARD);
3306
3307                 /*
3308                  * By flagging sys_swapon, a sysadmin can tell us to
3309                  * either do single-time area discards only, or to just
3310                  * perform discards for released swap page-clusters.
3311                  * Now it's time to adjust the p->flags accordingly.
3312                  */
3313                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3314                         p->flags &= ~SWP_PAGE_DISCARD;
3315                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3316                         p->flags &= ~SWP_AREA_DISCARD;
3317
3318                 /* issue a swapon-time discard if it's still required */
3319                 if (p->flags & SWP_AREA_DISCARD) {
3320                         int err = discard_swap(p);
3321                         if (unlikely(err))
3322                                 pr_err("swapon: discard_swap(%p): %d\n",
3323                                         p, err);
3324                 }
3325         }
3326
3327         error = init_swap_address_space(p->type, maxpages);
3328         if (error)
3329                 goto bad_swap_unlock_inode;
3330
3331         /*
3332          * Flush any pending IO and dirty mappings before we start using this
3333          * swap device.
3334          */
3335         inode->i_flags |= S_SWAPFILE;
3336         error = inode_drain_writes(inode);
3337         if (error) {
3338                 inode->i_flags &= ~S_SWAPFILE;
3339                 goto bad_swap_unlock_inode;
3340         }
3341
3342         mutex_lock(&swapon_mutex);
3343         prio = -1;
3344         if (swap_flags & SWAP_FLAG_PREFER)
3345                 prio =
3346                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3347         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3348
3349         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3350                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3351                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3352                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3353                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3354                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3355                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3356                 (frontswap_map) ? "FS" : "");
3357
3358         mutex_unlock(&swapon_mutex);
3359         atomic_inc(&proc_poll_event);
3360         wake_up_interruptible(&proc_poll_wait);
3361
3362         error = 0;
3363         goto out;
3364 bad_swap_unlock_inode:
3365         inode_unlock(inode);
3366 bad_swap:
3367         free_percpu(p->percpu_cluster);
3368         p->percpu_cluster = NULL;
3369         free_percpu(p->cluster_next_cpu);
3370         p->cluster_next_cpu = NULL;
3371         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3372                 set_blocksize(p->bdev, p->old_block_size);
3373                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3374         }
3375         inode = NULL;
3376         destroy_swap_extents(p);
3377         swap_cgroup_swapoff(p->type);
3378         spin_lock(&swap_lock);
3379         p->swap_file = NULL;
3380         p->flags = 0;
3381         spin_unlock(&swap_lock);
3382         vfree(swap_map);
3383         kvfree(cluster_info);
3384         kvfree(frontswap_map);
3385         if (inced_nr_rotate_swap)
3386                 atomic_dec(&nr_rotate_swap);
3387         if (swap_file)
3388                 filp_close(swap_file, NULL);
3389 out:
3390         if (page && !IS_ERR(page)) {
3391                 kunmap(page);
3392                 put_page(page);
3393         }
3394         if (name)
3395                 putname(name);
3396         if (inode)
3397                 inode_unlock(inode);
3398         if (!error)
3399                 enable_swap_slots_cache();
3400         return error;
3401 }
3402
3403 void si_swapinfo(struct sysinfo *val)
3404 {
3405         unsigned int type;
3406         unsigned long nr_to_be_unused = 0;
3407
3408         spin_lock(&swap_lock);
3409         for (type = 0; type < nr_swapfiles; type++) {
3410                 struct swap_info_struct *si = swap_info[type];
3411
3412                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3413                         nr_to_be_unused += si->inuse_pages;
3414         }
3415         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3416         val->totalswap = total_swap_pages + nr_to_be_unused;
3417         spin_unlock(&swap_lock);
3418 }
3419
3420 /*
3421  * Verify that a swap entry is valid and increment its swap map count.
3422  *
3423  * Returns error code in following case.
3424  * - success -> 0
3425  * - swp_entry is invalid -> EINVAL
3426  * - swp_entry is migration entry -> EINVAL
3427  * - swap-cache reference is requested but there is already one. -> EEXIST
3428  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3429  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3430  */
3431 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3432 {
3433         struct swap_info_struct *p;
3434         struct swap_cluster_info *ci;
3435         unsigned long offset;
3436         unsigned char count;
3437         unsigned char has_cache;
3438         int err = -EINVAL;
3439
3440         p = get_swap_device(entry);
3441         if (!p)
3442                 goto out;
3443
3444         offset = swp_offset(entry);
3445         ci = lock_cluster_or_swap_info(p, offset);
3446
3447         count = p->swap_map[offset];
3448
3449         /*
3450          * swapin_readahead() doesn't check if a swap entry is valid, so the
3451          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3452          */
3453         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3454                 err = -ENOENT;
3455                 goto unlock_out;
3456         }
3457
3458         has_cache = count & SWAP_HAS_CACHE;
3459         count &= ~SWAP_HAS_CACHE;
3460         err = 0;
3461
3462         if (usage == SWAP_HAS_CACHE) {
3463
3464                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3465                 if (!has_cache && count)
3466                         has_cache = SWAP_HAS_CACHE;
3467                 else if (has_cache)             /* someone else added cache */
3468                         err = -EEXIST;
3469                 else                            /* no users remaining */
3470                         err = -ENOENT;
3471
3472         } else if (count || has_cache) {
3473
3474                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3475                         count += usage;
3476                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3477                         err = -EINVAL;
3478                 else if (swap_count_continued(p, offset, count))
3479                         count = COUNT_CONTINUED;
3480                 else
3481                         err = -ENOMEM;
3482         } else
3483                 err = -ENOENT;                  /* unused swap entry */
3484
3485         p->swap_map[offset] = count | has_cache;
3486
3487 unlock_out:
3488         unlock_cluster_or_swap_info(p, ci);
3489 out:
3490         if (p)
3491                 put_swap_device(p);
3492         return err;
3493 }
3494
3495 /*
3496  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3497  * (in which case its reference count is never incremented).
3498  */
3499 void swap_shmem_alloc(swp_entry_t entry)
3500 {
3501         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3502 }
3503
3504 /*
3505  * Increase reference count of swap entry by 1.
3506  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3507  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3508  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3509  * might occur if a page table entry has got corrupted.
3510  */
3511 int swap_duplicate(swp_entry_t entry)
3512 {
3513         int err = 0;
3514
3515         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3516                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3517         return err;
3518 }
3519
3520 /*
3521  * @entry: swap entry for which we allocate swap cache.
3522  *
3523  * Called when allocating swap cache for existing swap entry,
3524  * This can return error codes. Returns 0 at success.
3525  * -EEXIST means there is a swap cache.
3526  * Note: return code is different from swap_duplicate().
3527  */
3528 int swapcache_prepare(swp_entry_t entry)
3529 {
3530         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3531 }
3532
3533 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3534 {
3535         return swap_type_to_swap_info(swp_type(entry));
3536 }
3537
3538 struct swap_info_struct *page_swap_info(struct page *page)
3539 {
3540         swp_entry_t entry = { .val = page_private(page) };
3541         return swp_swap_info(entry);
3542 }
3543
3544 /*
3545  * out-of-line __page_file_ methods to avoid include hell.
3546  */
3547 struct address_space *__page_file_mapping(struct page *page)
3548 {
3549         return page_swap_info(page)->swap_file->f_mapping;
3550 }
3551 EXPORT_SYMBOL_GPL(__page_file_mapping);
3552
3553 pgoff_t __page_file_index(struct page *page)
3554 {
3555         swp_entry_t swap = { .val = page_private(page) };
3556         return swp_offset(swap);
3557 }
3558 EXPORT_SYMBOL_GPL(__page_file_index);
3559
3560 /*
3561  * add_swap_count_continuation - called when a swap count is duplicated
3562  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3563  * page of the original vmalloc'ed swap_map, to hold the continuation count
3564  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3565  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3566  *
3567  * These continuation pages are seldom referenced: the common paths all work
3568  * on the original swap_map, only referring to a continuation page when the
3569  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3570  *
3571  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3572  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3573  * can be called after dropping locks.
3574  */
3575 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3576 {
3577         struct swap_info_struct *si;
3578         struct swap_cluster_info *ci;
3579         struct page *head;
3580         struct page *page;
3581         struct page *list_page;
3582         pgoff_t offset;
3583         unsigned char count;
3584         int ret = 0;
3585
3586         /*
3587          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3588          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3589          */
3590         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3591
3592         si = get_swap_device(entry);
3593         if (!si) {
3594                 /*
3595                  * An acceptable race has occurred since the failing
3596                  * __swap_duplicate(): the swap device may be swapoff
3597                  */
3598                 goto outer;
3599         }
3600         spin_lock(&si->lock);
3601
3602         offset = swp_offset(entry);
3603
3604         ci = lock_cluster(si, offset);
3605
3606         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3607
3608         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3609                 /*
3610                  * The higher the swap count, the more likely it is that tasks
3611                  * will race to add swap count continuation: we need to avoid
3612                  * over-provisioning.
3613                  */
3614                 goto out;
3615         }
3616
3617         if (!page) {
3618                 ret = -ENOMEM;
3619                 goto out;
3620         }
3621
3622         /*
3623          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3624          * no architecture is using highmem pages for kernel page tables: so it
3625          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3626          */
3627         head = vmalloc_to_page(si->swap_map + offset);
3628         offset &= ~PAGE_MASK;
3629
3630         spin_lock(&si->cont_lock);
3631         /*
3632          * Page allocation does not initialize the page's lru field,
3633          * but it does always reset its private field.
3634          */
3635         if (!page_private(head)) {
3636                 BUG_ON(count & COUNT_CONTINUED);
3637                 INIT_LIST_HEAD(&head->lru);
3638                 set_page_private(head, SWP_CONTINUED);
3639                 si->flags |= SWP_CONTINUED;
3640         }
3641
3642         list_for_each_entry(list_page, &head->lru, lru) {
3643                 unsigned char *map;
3644
3645                 /*
3646                  * If the previous map said no continuation, but we've found
3647                  * a continuation page, free our allocation and use this one.
3648                  */
3649                 if (!(count & COUNT_CONTINUED))
3650                         goto out_unlock_cont;
3651
3652                 map = kmap_atomic(list_page) + offset;
3653                 count = *map;
3654                 kunmap_atomic(map);
3655
3656                 /*
3657                  * If this continuation count now has some space in it,
3658                  * free our allocation and use this one.
3659                  */
3660                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3661                         goto out_unlock_cont;
3662         }
3663
3664         list_add_tail(&page->lru, &head->lru);
3665         page = NULL;                    /* now it's attached, don't free it */
3666 out_unlock_cont:
3667         spin_unlock(&si->cont_lock);
3668 out:
3669         unlock_cluster(ci);
3670         spin_unlock(&si->lock);
3671         put_swap_device(si);
3672 outer:
3673         if (page)
3674                 __free_page(page);
3675         return ret;
3676 }
3677
3678 /*
3679  * swap_count_continued - when the original swap_map count is incremented
3680  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3681  * into, carry if so, or else fail until a new continuation page is allocated;
3682  * when the original swap_map count is decremented from 0 with continuation,
3683  * borrow from the continuation and report whether it still holds more.
3684  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3685  * lock.
3686  */
3687 static bool swap_count_continued(struct swap_info_struct *si,
3688                                  pgoff_t offset, unsigned char count)
3689 {
3690         struct page *head;
3691         struct page *page;
3692         unsigned char *map;
3693         bool ret;
3694
3695         head = vmalloc_to_page(si->swap_map + offset);
3696         if (page_private(head) != SWP_CONTINUED) {
3697                 BUG_ON(count & COUNT_CONTINUED);
3698                 return false;           /* need to add count continuation */
3699         }
3700
3701         spin_lock(&si->cont_lock);
3702         offset &= ~PAGE_MASK;
3703         page = list_next_entry(head, lru);
3704         map = kmap_atomic(page) + offset;
3705
3706         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3707                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3708
3709         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3710                 /*
3711                  * Think of how you add 1 to 999
3712                  */
3713                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3714                         kunmap_atomic(map);
3715                         page = list_next_entry(page, lru);
3716                         BUG_ON(page == head);
3717                         map = kmap_atomic(page) + offset;
3718                 }
3719                 if (*map == SWAP_CONT_MAX) {
3720                         kunmap_atomic(map);
3721                         page = list_next_entry(page, lru);
3722                         if (page == head) {
3723                                 ret = false;    /* add count continuation */
3724                                 goto out;
3725                         }
3726                         map = kmap_atomic(page) + offset;
3727 init_map:               *map = 0;               /* we didn't zero the page */
3728                 }
3729                 *map += 1;
3730                 kunmap_atomic(map);
3731                 while ((page = list_prev_entry(page, lru)) != head) {
3732                         map = kmap_atomic(page) + offset;
3733                         *map = COUNT_CONTINUED;
3734                         kunmap_atomic(map);
3735                 }
3736                 ret = true;                     /* incremented */
3737
3738         } else {                                /* decrementing */
3739                 /*
3740                  * Think of how you subtract 1 from 1000
3741                  */
3742                 BUG_ON(count != COUNT_CONTINUED);
3743                 while (*map == COUNT_CONTINUED) {
3744                         kunmap_atomic(map);
3745                         page = list_next_entry(page, lru);
3746                         BUG_ON(page == head);
3747                         map = kmap_atomic(page) + offset;
3748                 }
3749                 BUG_ON(*map == 0);
3750                 *map -= 1;
3751                 if (*map == 0)
3752                         count = 0;
3753                 kunmap_atomic(map);
3754                 while ((page = list_prev_entry(page, lru)) != head) {
3755                         map = kmap_atomic(page) + offset;
3756                         *map = SWAP_CONT_MAX | count;
3757                         count = COUNT_CONTINUED;
3758                         kunmap_atomic(map);
3759                 }
3760                 ret = count == COUNT_CONTINUED;
3761         }
3762 out:
3763         spin_unlock(&si->cont_lock);
3764         return ret;
3765 }
3766
3767 /*
3768  * free_swap_count_continuations - swapoff free all the continuation pages
3769  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3770  */
3771 static void free_swap_count_continuations(struct swap_info_struct *si)
3772 {
3773         pgoff_t offset;
3774
3775         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3776                 struct page *head;
3777                 head = vmalloc_to_page(si->swap_map + offset);
3778                 if (page_private(head)) {
3779                         struct page *page, *next;
3780
3781                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3782                                 list_del(&page->lru);
3783                                 __free_page(page);
3784                         }
3785                 }
3786         }
3787 }
3788
3789 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3790 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3791 {
3792         struct swap_info_struct *si, *next;
3793         int nid = page_to_nid(page);
3794
3795         if (!(gfp_mask & __GFP_IO))
3796                 return;
3797
3798         if (!blk_cgroup_congested())
3799                 return;
3800
3801         /*
3802          * We've already scheduled a throttle, avoid taking the global swap
3803          * lock.
3804          */
3805         if (current->throttle_queue)
3806                 return;
3807
3808         spin_lock(&swap_avail_lock);
3809         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3810                                   avail_lists[nid]) {
3811                 if (si->bdev) {
3812                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3813                         break;
3814                 }
3815         }
3816         spin_unlock(&swap_avail_lock);
3817 }
3818 #endif
3819
3820 static int __init swapfile_init(void)
3821 {
3822         int nid;
3823
3824         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3825                                          GFP_KERNEL);
3826         if (!swap_avail_heads) {
3827                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3828                 return -ENOMEM;
3829         }
3830
3831         for_each_node(nid)
3832                 plist_head_init(&swap_avail_heads[nid]);
3833
3834         return 0;
3835 }
3836 subsys_initcall(swapfile_init);