KVM: x86/mmu: remove extended bits from mmu_role, rename field
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 static DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 static PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= MAX_SWAPFILES)
104                 return NULL;
105
106         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224         struct swap_info_struct *sis = page_swap_info(page);
225         struct swap_extent *se;
226         sector_t sector;
227         pgoff_t offset;
228
229         offset = __page_file_index(page);
230         se = offset_to_swap_extent(sis, offset);
231         sector = se->start_block + (offset - se->start_page);
232         return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240                                  pgoff_t start_page, pgoff_t nr_pages)
241 {
242         struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244         while (nr_pages) {
245                 pgoff_t offset = start_page - se->start_page;
246                 sector_t start_block = se->start_block + offset;
247                 sector_t nr_blocks = se->nr_pages - offset;
248
249                 if (nr_blocks > nr_pages)
250                         nr_blocks = nr_pages;
251                 start_page += nr_blocks;
252                 nr_pages -= nr_blocks;
253
254                 start_block <<= PAGE_SHIFT - 9;
255                 nr_blocks <<= PAGE_SHIFT - 9;
256                 if (blkdev_issue_discard(si->bdev, start_block,
257                                         nr_blocks, GFP_NOIO, 0))
258                         break;
259
260                 se = next_se(se);
261         }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
266
267 #define swap_entry_size(size)   (size)
268 #else
269 #define SWAPFILE_CLUSTER        256
270
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)   1
276 #endif
277 #define LATENCY_LIMIT           256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280         unsigned int flag)
281 {
282         info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287         return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291                                      unsigned int c)
292 {
293         info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297                                          unsigned int c, unsigned int f)
298 {
299         info->flags = f;
300         info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305         return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309                                     unsigned int n)
310 {
311         info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315                                          unsigned int n, unsigned int f)
316 {
317         info->flags = f;
318         info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323         return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328         return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333         info->flags = CLUSTER_FLAG_NEXT_NULL;
334         info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339         if (IS_ENABLED(CONFIG_THP_SWAP))
340                 return info->flags & CLUSTER_FLAG_HUGE;
341         return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346         info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350                                                      unsigned long offset)
351 {
352         struct swap_cluster_info *ci;
353
354         ci = si->cluster_info;
355         if (ci) {
356                 ci += offset / SWAPFILE_CLUSTER;
357                 spin_lock(&ci->lock);
358         }
359         return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364         if (ci)
365                 spin_unlock(&ci->lock);
366 }
367
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373                 struct swap_info_struct *si, unsigned long offset)
374 {
375         struct swap_cluster_info *ci;
376
377         /* Try to use fine-grained SSD-style locking if available: */
378         ci = lock_cluster(si, offset);
379         /* Otherwise, fall back to traditional, coarse locking: */
380         if (!ci)
381                 spin_lock(&si->lock);
382
383         return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387                                                struct swap_cluster_info *ci)
388 {
389         if (ci)
390                 unlock_cluster(ci);
391         else
392                 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397         return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402         return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407         cluster_set_null(&list->head);
408         cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412                                   struct swap_cluster_info *ci,
413                                   unsigned int idx)
414 {
415         if (cluster_list_empty(list)) {
416                 cluster_set_next_flag(&list->head, idx, 0);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         } else {
419                 struct swap_cluster_info *ci_tail;
420                 unsigned int tail = cluster_next(&list->tail);
421
422                 /*
423                  * Nested cluster lock, but both cluster locks are
424                  * only acquired when we held swap_info_struct->lock
425                  */
426                 ci_tail = ci + tail;
427                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428                 cluster_set_next(ci_tail, idx);
429                 spin_unlock(&ci_tail->lock);
430                 cluster_set_next_flag(&list->tail, idx, 0);
431         }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435                                            struct swap_cluster_info *ci)
436 {
437         unsigned int idx;
438
439         idx = cluster_next(&list->head);
440         if (cluster_next(&list->tail) == idx) {
441                 cluster_set_null(&list->head);
442                 cluster_set_null(&list->tail);
443         } else
444                 cluster_set_next_flag(&list->head,
445                                       cluster_next(&ci[idx]), 0);
446
447         return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452                 unsigned int idx)
453 {
454         /*
455          * If scan_swap_map_slots() can't find a free cluster, it will check
456          * si->swap_map directly. To make sure the discarding cluster isn't
457          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458          * It will be cleared after discard
459          */
460         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465         schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470         struct swap_cluster_info *ci = si->cluster_info;
471
472         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473         cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482         struct swap_cluster_info *info, *ci;
483         unsigned int idx;
484
485         info = si->cluster_info;
486
487         while (!cluster_list_empty(&si->discard_clusters)) {
488                 idx = cluster_list_del_first(&si->discard_clusters, info);
489                 spin_unlock(&si->lock);
490
491                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492                                 SWAPFILE_CLUSTER);
493
494                 spin_lock(&si->lock);
495                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496                 __free_cluster(si, idx);
497                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498                                 0, SWAPFILE_CLUSTER);
499                 unlock_cluster(ci);
500         }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505         struct swap_info_struct *si;
506
507         si = container_of(work, struct swap_info_struct, discard_work);
508
509         spin_lock(&si->lock);
510         swap_do_scheduled_discard(si);
511         spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516         struct swap_info_struct *si;
517
518         si = container_of(ref, struct swap_info_struct, users);
519         complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524         struct swap_cluster_info *ci = si->cluster_info;
525
526         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527         cluster_list_del_first(&si->free_clusters, ci);
528         cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533         struct swap_cluster_info *ci = si->cluster_info + idx;
534
535         VM_BUG_ON(cluster_count(ci) != 0);
536         /*
537          * If the swap is discardable, prepare discard the cluster
538          * instead of free it immediately. The cluster will be freed
539          * after discard.
540          */
541         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543                 swap_cluster_schedule_discard(si, idx);
544                 return;
545         }
546
547         __free_cluster(si, idx);
548 }
549
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555         struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559         if (!cluster_info)
560                 return;
561         if (cluster_is_free(&cluster_info[idx]))
562                 alloc_cluster(p, idx);
563
564         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565         cluster_set_count(&cluster_info[idx],
566                 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575         struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579         if (!cluster_info)
580                 return;
581
582         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583         cluster_set_count(&cluster_info[idx],
584                 cluster_count(&cluster_info[idx]) - 1);
585
586         if (cluster_count(&cluster_info[idx]) == 0)
587                 free_cluster(p, idx);
588 }
589
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596         unsigned long offset)
597 {
598         struct percpu_cluster *percpu_cluster;
599         bool conflict;
600
601         offset /= SWAPFILE_CLUSTER;
602         conflict = !cluster_list_empty(&si->free_clusters) &&
603                 offset != cluster_list_first(&si->free_clusters) &&
604                 cluster_is_free(&si->cluster_info[offset]);
605
606         if (!conflict)
607                 return false;
608
609         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610         cluster_set_null(&percpu_cluster->index);
611         return true;
612 }
613
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619         unsigned long *offset, unsigned long *scan_base)
620 {
621         struct percpu_cluster *cluster;
622         struct swap_cluster_info *ci;
623         unsigned long tmp, max;
624
625 new_cluster:
626         cluster = this_cpu_ptr(si->percpu_cluster);
627         if (cluster_is_null(&cluster->index)) {
628                 if (!cluster_list_empty(&si->free_clusters)) {
629                         cluster->index = si->free_clusters.head;
630                         cluster->next = cluster_next(&cluster->index) *
631                                         SWAPFILE_CLUSTER;
632                 } else if (!cluster_list_empty(&si->discard_clusters)) {
633                         /*
634                          * we don't have free cluster but have some clusters in
635                          * discarding, do discard now and reclaim them, then
636                          * reread cluster_next_cpu since we dropped si->lock
637                          */
638                         swap_do_scheduled_discard(si);
639                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
640                         *offset = *scan_base;
641                         goto new_cluster;
642                 } else
643                         return false;
644         }
645
646         /*
647          * Other CPUs can use our cluster if they can't find a free cluster,
648          * check if there is still free entry in the cluster
649          */
650         tmp = cluster->next;
651         max = min_t(unsigned long, si->max,
652                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653         if (tmp < max) {
654                 ci = lock_cluster(si, tmp);
655                 while (tmp < max) {
656                         if (!si->swap_map[tmp])
657                                 break;
658                         tmp++;
659                 }
660                 unlock_cluster(ci);
661         }
662         if (tmp >= max) {
663                 cluster_set_null(&cluster->index);
664                 goto new_cluster;
665         }
666         cluster->next = tmp + 1;
667         *offset = tmp;
668         *scan_base = tmp;
669         return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674         int nid;
675
676         for_each_node(nid)
677                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682         spin_lock(&swap_avail_lock);
683         __del_from_avail_list(p);
684         spin_unlock(&swap_avail_lock);
685 }
686
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688                              unsigned int nr_entries)
689 {
690         unsigned int end = offset + nr_entries - 1;
691
692         if (offset == si->lowest_bit)
693                 si->lowest_bit += nr_entries;
694         if (end == si->highest_bit)
695                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696         si->inuse_pages += nr_entries;
697         if (si->inuse_pages == si->pages) {
698                 si->lowest_bit = si->max;
699                 si->highest_bit = 0;
700                 del_from_avail_list(si);
701         }
702 }
703
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706         int nid;
707
708         spin_lock(&swap_avail_lock);
709         for_each_node(nid) {
710                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712         }
713         spin_unlock(&swap_avail_lock);
714 }
715
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717                             unsigned int nr_entries)
718 {
719         unsigned long begin = offset;
720         unsigned long end = offset + nr_entries - 1;
721         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723         if (offset < si->lowest_bit)
724                 si->lowest_bit = offset;
725         if (end > si->highest_bit) {
726                 bool was_full = !si->highest_bit;
727
728                 WRITE_ONCE(si->highest_bit, end);
729                 if (was_full && (si->flags & SWP_WRITEOK))
730                         add_to_avail_list(si);
731         }
732         atomic_long_add(nr_entries, &nr_swap_pages);
733         si->inuse_pages -= nr_entries;
734         if (si->flags & SWP_BLKDEV)
735                 swap_slot_free_notify =
736                         si->bdev->bd_disk->fops->swap_slot_free_notify;
737         else
738                 swap_slot_free_notify = NULL;
739         while (offset <= end) {
740                 arch_swap_invalidate_page(si->type, offset);
741                 frontswap_invalidate_page(si->type, offset);
742                 if (swap_slot_free_notify)
743                         swap_slot_free_notify(si->bdev, offset);
744                 offset++;
745         }
746         clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751         unsigned long prev;
752
753         if (!(si->flags & SWP_SOLIDSTATE)) {
754                 si->cluster_next = next;
755                 return;
756         }
757
758         prev = this_cpu_read(*si->cluster_next_cpu);
759         /*
760          * Cross the swap address space size aligned trunk, choose
761          * another trunk randomly to avoid lock contention on swap
762          * address space if possible.
763          */
764         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766                 /* No free swap slots available */
767                 if (si->highest_bit <= si->lowest_bit)
768                         return;
769                 next = si->lowest_bit +
770                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772                 next = max_t(unsigned int, next, si->lowest_bit);
773         }
774         this_cpu_write(*si->cluster_next_cpu, next);
775 }
776
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778                                unsigned char usage, int nr,
779                                swp_entry_t slots[])
780 {
781         struct swap_cluster_info *ci;
782         unsigned long offset;
783         unsigned long scan_base;
784         unsigned long last_in_cluster = 0;
785         int latency_ration = LATENCY_LIMIT;
786         int n_ret = 0;
787         bool scanned_many = false;
788
789         /*
790          * We try to cluster swap pages by allocating them sequentially
791          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792          * way, however, we resort to first-free allocation, starting
793          * a new cluster.  This prevents us from scattering swap pages
794          * all over the entire swap partition, so that we reduce
795          * overall disk seek times between swap pages.  -- sct
796          * But we do now try to find an empty cluster.  -Andrea
797          * And we let swap pages go all over an SSD partition.  Hugh
798          */
799
800         si->flags += SWP_SCANNING;
801         /*
802          * Use percpu scan base for SSD to reduce lock contention on
803          * cluster and swap cache.  For HDD, sequential access is more
804          * important.
805          */
806         if (si->flags & SWP_SOLIDSTATE)
807                 scan_base = this_cpu_read(*si->cluster_next_cpu);
808         else
809                 scan_base = si->cluster_next;
810         offset = scan_base;
811
812         /* SSD algorithm */
813         if (si->cluster_info) {
814                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto scan;
816         } else if (unlikely(!si->cluster_nr--)) {
817                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
819                         goto checks;
820                 }
821
822                 spin_unlock(&si->lock);
823
824                 /*
825                  * If seek is expensive, start searching for new cluster from
826                  * start of partition, to minimize the span of allocated swap.
827                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
829                  */
830                 scan_base = offset = si->lowest_bit;
831                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833                 /* Locate the first empty (unaligned) cluster */
834                 for (; last_in_cluster <= si->highest_bit; offset++) {
835                         if (si->swap_map[offset])
836                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
837                         else if (offset == last_in_cluster) {
838                                 spin_lock(&si->lock);
839                                 offset -= SWAPFILE_CLUSTER - 1;
840                                 si->cluster_next = offset;
841                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                                 goto checks;
843                         }
844                         if (unlikely(--latency_ration < 0)) {
845                                 cond_resched();
846                                 latency_ration = LATENCY_LIMIT;
847                         }
848                 }
849
850                 offset = scan_base;
851                 spin_lock(&si->lock);
852                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853         }
854
855 checks:
856         if (si->cluster_info) {
857                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858                 /* take a break if we already got some slots */
859                         if (n_ret)
860                                 goto done;
861                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
862                                                         &scan_base))
863                                 goto scan;
864                 }
865         }
866         if (!(si->flags & SWP_WRITEOK))
867                 goto no_page;
868         if (!si->highest_bit)
869                 goto no_page;
870         if (offset > si->highest_bit)
871                 scan_base = offset = si->lowest_bit;
872
873         ci = lock_cluster(si, offset);
874         /* reuse swap entry of cache-only swap if not busy. */
875         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876                 int swap_was_freed;
877                 unlock_cluster(ci);
878                 spin_unlock(&si->lock);
879                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880                 spin_lock(&si->lock);
881                 /* entry was freed successfully, try to use this again */
882                 if (swap_was_freed)
883                         goto checks;
884                 goto scan; /* check next one */
885         }
886
887         if (si->swap_map[offset]) {
888                 unlock_cluster(ci);
889                 if (!n_ret)
890                         goto scan;
891                 else
892                         goto done;
893         }
894         WRITE_ONCE(si->swap_map[offset], usage);
895         inc_cluster_info_page(si, si->cluster_info, offset);
896         unlock_cluster(ci);
897
898         swap_range_alloc(si, offset, 1);
899         slots[n_ret++] = swp_entry(si->type, offset);
900
901         /* got enough slots or reach max slots? */
902         if ((n_ret == nr) || (offset >= si->highest_bit))
903                 goto done;
904
905         /* search for next available slot */
906
907         /* time to take a break? */
908         if (unlikely(--latency_ration < 0)) {
909                 if (n_ret)
910                         goto done;
911                 spin_unlock(&si->lock);
912                 cond_resched();
913                 spin_lock(&si->lock);
914                 latency_ration = LATENCY_LIMIT;
915         }
916
917         /* try to get more slots in cluster */
918         if (si->cluster_info) {
919                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920                         goto checks;
921         } else if (si->cluster_nr && !si->swap_map[++offset]) {
922                 /* non-ssd case, still more slots in cluster? */
923                 --si->cluster_nr;
924                 goto checks;
925         }
926
927         /*
928          * Even if there's no free clusters available (fragmented),
929          * try to scan a little more quickly with lock held unless we
930          * have scanned too many slots already.
931          */
932         if (!scanned_many) {
933                 unsigned long scan_limit;
934
935                 if (offset < scan_base)
936                         scan_limit = scan_base;
937                 else
938                         scan_limit = si->highest_bit;
939                 for (; offset <= scan_limit && --latency_ration > 0;
940                      offset++) {
941                         if (!si->swap_map[offset])
942                                 goto checks;
943                 }
944         }
945
946 done:
947         set_cluster_next(si, offset + 1);
948         si->flags -= SWP_SCANNING;
949         return n_ret;
950
951 scan:
952         spin_unlock(&si->lock);
953         while (++offset <= READ_ONCE(si->highest_bit)) {
954                 if (data_race(!si->swap_map[offset])) {
955                         spin_lock(&si->lock);
956                         goto checks;
957                 }
958                 if (vm_swap_full() &&
959                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960                         spin_lock(&si->lock);
961                         goto checks;
962                 }
963                 if (unlikely(--latency_ration < 0)) {
964                         cond_resched();
965                         latency_ration = LATENCY_LIMIT;
966                         scanned_many = true;
967                 }
968         }
969         offset = si->lowest_bit;
970         while (offset < scan_base) {
971                 if (data_race(!si->swap_map[offset])) {
972                         spin_lock(&si->lock);
973                         goto checks;
974                 }
975                 if (vm_swap_full() &&
976                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977                         spin_lock(&si->lock);
978                         goto checks;
979                 }
980                 if (unlikely(--latency_ration < 0)) {
981                         cond_resched();
982                         latency_ration = LATENCY_LIMIT;
983                         scanned_many = true;
984                 }
985                 offset++;
986         }
987         spin_lock(&si->lock);
988
989 no_page:
990         si->flags -= SWP_SCANNING;
991         return n_ret;
992 }
993
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996         unsigned long idx;
997         struct swap_cluster_info *ci;
998         unsigned long offset;
999
1000         /*
1001          * Should not even be attempting cluster allocations when huge
1002          * page swap is disabled.  Warn and fail the allocation.
1003          */
1004         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005                 VM_WARN_ON_ONCE(1);
1006                 return 0;
1007         }
1008
1009         if (cluster_list_empty(&si->free_clusters))
1010                 return 0;
1011
1012         idx = cluster_list_first(&si->free_clusters);
1013         offset = idx * SWAPFILE_CLUSTER;
1014         ci = lock_cluster(si, offset);
1015         alloc_cluster(si, idx);
1016         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019         unlock_cluster(ci);
1020         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021         *slot = swp_entry(si->type, offset);
1022
1023         return 1;
1024 }
1025
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028         unsigned long offset = idx * SWAPFILE_CLUSTER;
1029         struct swap_cluster_info *ci;
1030
1031         ci = lock_cluster(si, offset);
1032         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033         cluster_set_count_flag(ci, 0, 0);
1034         free_cluster(si, idx);
1035         unlock_cluster(ci);
1036         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041         unsigned long size = swap_entry_size(entry_size);
1042         struct swap_info_struct *si, *next;
1043         long avail_pgs;
1044         int n_ret = 0;
1045         int node;
1046
1047         /* Only single cluster request supported */
1048         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050         spin_lock(&swap_avail_lock);
1051
1052         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053         if (avail_pgs <= 0) {
1054                 spin_unlock(&swap_avail_lock);
1055                 goto noswap;
1056         }
1057
1058         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060         atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062 start_over:
1063         node = numa_node_id();
1064         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065                 /* requeue si to after same-priority siblings */
1066                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067                 spin_unlock(&swap_avail_lock);
1068                 spin_lock(&si->lock);
1069                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070                         spin_lock(&swap_avail_lock);
1071                         if (plist_node_empty(&si->avail_lists[node])) {
1072                                 spin_unlock(&si->lock);
1073                                 goto nextsi;
1074                         }
1075                         WARN(!si->highest_bit,
1076                              "swap_info %d in list but !highest_bit\n",
1077                              si->type);
1078                         WARN(!(si->flags & SWP_WRITEOK),
1079                              "swap_info %d in list but !SWP_WRITEOK\n",
1080                              si->type);
1081                         __del_from_avail_list(si);
1082                         spin_unlock(&si->lock);
1083                         goto nextsi;
1084                 }
1085                 if (size == SWAPFILE_CLUSTER) {
1086                         if (si->flags & SWP_BLKDEV)
1087                                 n_ret = swap_alloc_cluster(si, swp_entries);
1088                 } else
1089                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090                                                     n_goal, swp_entries);
1091                 spin_unlock(&si->lock);
1092                 if (n_ret || size == SWAPFILE_CLUSTER)
1093                         goto check_out;
1094                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095                         si->type);
1096
1097                 spin_lock(&swap_avail_lock);
1098 nextsi:
1099                 /*
1100                  * if we got here, it's likely that si was almost full before,
1101                  * and since scan_swap_map_slots() can drop the si->lock,
1102                  * multiple callers probably all tried to get a page from the
1103                  * same si and it filled up before we could get one; or, the si
1104                  * filled up between us dropping swap_avail_lock and taking
1105                  * si->lock. Since we dropped the swap_avail_lock, the
1106                  * swap_avail_head list may have been modified; so if next is
1107                  * still in the swap_avail_head list then try it, otherwise
1108                  * start over if we have not gotten any slots.
1109                  */
1110                 if (plist_node_empty(&next->avail_lists[node]))
1111                         goto start_over;
1112         }
1113
1114         spin_unlock(&swap_avail_lock);
1115
1116 check_out:
1117         if (n_ret < n_goal)
1118                 atomic_long_add((long)(n_goal - n_ret) * size,
1119                                 &nr_swap_pages);
1120 noswap:
1121         return n_ret;
1122 }
1123
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126         struct swap_info_struct *p;
1127         unsigned long offset;
1128
1129         if (!entry.val)
1130                 goto out;
1131         p = swp_swap_info(entry);
1132         if (!p)
1133                 goto bad_nofile;
1134         if (data_race(!(p->flags & SWP_USED)))
1135                 goto bad_device;
1136         offset = swp_offset(entry);
1137         if (offset >= p->max)
1138                 goto bad_offset;
1139         return p;
1140
1141 bad_offset:
1142         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143         goto out;
1144 bad_device:
1145         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146         goto out;
1147 bad_nofile:
1148         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150         return NULL;
1151 }
1152
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155         struct swap_info_struct *p;
1156
1157         p = __swap_info_get(entry);
1158         if (!p)
1159                 goto out;
1160         if (data_race(!p->swap_map[swp_offset(entry)]))
1161                 goto bad_free;
1162         return p;
1163
1164 bad_free:
1165         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167         return NULL;
1168 }
1169
1170 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1171                                         struct swap_info_struct *q)
1172 {
1173         struct swap_info_struct *p;
1174
1175         p = _swap_info_get(entry);
1176
1177         if (p != q) {
1178                 if (q != NULL)
1179                         spin_unlock(&q->lock);
1180                 if (p != NULL)
1181                         spin_lock(&p->lock);
1182         }
1183         return p;
1184 }
1185
1186 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1187                                               unsigned long offset,
1188                                               unsigned char usage)
1189 {
1190         unsigned char count;
1191         unsigned char has_cache;
1192
1193         count = p->swap_map[offset];
1194
1195         has_cache = count & SWAP_HAS_CACHE;
1196         count &= ~SWAP_HAS_CACHE;
1197
1198         if (usage == SWAP_HAS_CACHE) {
1199                 VM_BUG_ON(!has_cache);
1200                 has_cache = 0;
1201         } else if (count == SWAP_MAP_SHMEM) {
1202                 /*
1203                  * Or we could insist on shmem.c using a special
1204                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1205                  */
1206                 count = 0;
1207         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1208                 if (count == COUNT_CONTINUED) {
1209                         if (swap_count_continued(p, offset, count))
1210                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1211                         else
1212                                 count = SWAP_MAP_MAX;
1213                 } else
1214                         count--;
1215         }
1216
1217         usage = count | has_cache;
1218         if (usage)
1219                 WRITE_ONCE(p->swap_map[offset], usage);
1220         else
1221                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1222
1223         return usage;
1224 }
1225
1226 /*
1227  * Check whether swap entry is valid in the swap device.  If so,
1228  * return pointer to swap_info_struct, and keep the swap entry valid
1229  * via preventing the swap device from being swapoff, until
1230  * put_swap_device() is called.  Otherwise return NULL.
1231  *
1232  * Notice that swapoff or swapoff+swapon can still happen before the
1233  * percpu_ref_tryget_live() in get_swap_device() or after the
1234  * percpu_ref_put() in put_swap_device() if there isn't any other way
1235  * to prevent swapoff, such as page lock, page table lock, etc.  The
1236  * caller must be prepared for that.  For example, the following
1237  * situation is possible.
1238  *
1239  *   CPU1                               CPU2
1240  *   do_swap_page()
1241  *     ...                              swapoff+swapon
1242  *     __read_swap_cache_async()
1243  *       swapcache_prepare()
1244  *         __swap_duplicate()
1245  *           // check swap_map
1246  *     // verify PTE not changed
1247  *
1248  * In __swap_duplicate(), the swap_map need to be checked before
1249  * changing partly because the specified swap entry may be for another
1250  * swap device which has been swapoff.  And in do_swap_page(), after
1251  * the page is read from the swap device, the PTE is verified not
1252  * changed with the page table locked to check whether the swap device
1253  * has been swapoff or swapoff+swapon.
1254  */
1255 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1256 {
1257         struct swap_info_struct *si;
1258         unsigned long offset;
1259
1260         if (!entry.val)
1261                 goto out;
1262         si = swp_swap_info(entry);
1263         if (!si)
1264                 goto bad_nofile;
1265         if (!percpu_ref_tryget_live(&si->users))
1266                 goto out;
1267         /*
1268          * Guarantee the si->users are checked before accessing other
1269          * fields of swap_info_struct.
1270          *
1271          * Paired with the spin_unlock() after setup_swap_info() in
1272          * enable_swap_info().
1273          */
1274         smp_rmb();
1275         offset = swp_offset(entry);
1276         if (offset >= si->max)
1277                 goto put_out;
1278
1279         return si;
1280 bad_nofile:
1281         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1282 out:
1283         return NULL;
1284 put_out:
1285         percpu_ref_put(&si->users);
1286         return NULL;
1287 }
1288
1289 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1290                                        swp_entry_t entry)
1291 {
1292         struct swap_cluster_info *ci;
1293         unsigned long offset = swp_offset(entry);
1294         unsigned char usage;
1295
1296         ci = lock_cluster_or_swap_info(p, offset);
1297         usage = __swap_entry_free_locked(p, offset, 1);
1298         unlock_cluster_or_swap_info(p, ci);
1299         if (!usage)
1300                 free_swap_slot(entry);
1301
1302         return usage;
1303 }
1304
1305 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1306 {
1307         struct swap_cluster_info *ci;
1308         unsigned long offset = swp_offset(entry);
1309         unsigned char count;
1310
1311         ci = lock_cluster(p, offset);
1312         count = p->swap_map[offset];
1313         VM_BUG_ON(count != SWAP_HAS_CACHE);
1314         p->swap_map[offset] = 0;
1315         dec_cluster_info_page(p, p->cluster_info, offset);
1316         unlock_cluster(ci);
1317
1318         mem_cgroup_uncharge_swap(entry, 1);
1319         swap_range_free(p, offset, 1);
1320 }
1321
1322 /*
1323  * Caller has made sure that the swap device corresponding to entry
1324  * is still around or has not been recycled.
1325  */
1326 void swap_free(swp_entry_t entry)
1327 {
1328         struct swap_info_struct *p;
1329
1330         p = _swap_info_get(entry);
1331         if (p)
1332                 __swap_entry_free(p, entry);
1333 }
1334
1335 /*
1336  * Called after dropping swapcache to decrease refcnt to swap entries.
1337  */
1338 void put_swap_page(struct page *page, swp_entry_t entry)
1339 {
1340         unsigned long offset = swp_offset(entry);
1341         unsigned long idx = offset / SWAPFILE_CLUSTER;
1342         struct swap_cluster_info *ci;
1343         struct swap_info_struct *si;
1344         unsigned char *map;
1345         unsigned int i, free_entries = 0;
1346         unsigned char val;
1347         int size = swap_entry_size(thp_nr_pages(page));
1348
1349         si = _swap_info_get(entry);
1350         if (!si)
1351                 return;
1352
1353         ci = lock_cluster_or_swap_info(si, offset);
1354         if (size == SWAPFILE_CLUSTER) {
1355                 VM_BUG_ON(!cluster_is_huge(ci));
1356                 map = si->swap_map + offset;
1357                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1358                         val = map[i];
1359                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1360                         if (val == SWAP_HAS_CACHE)
1361                                 free_entries++;
1362                 }
1363                 cluster_clear_huge(ci);
1364                 if (free_entries == SWAPFILE_CLUSTER) {
1365                         unlock_cluster_or_swap_info(si, ci);
1366                         spin_lock(&si->lock);
1367                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1368                         swap_free_cluster(si, idx);
1369                         spin_unlock(&si->lock);
1370                         return;
1371                 }
1372         }
1373         for (i = 0; i < size; i++, entry.val++) {
1374                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1375                         unlock_cluster_or_swap_info(si, ci);
1376                         free_swap_slot(entry);
1377                         if (i == size - 1)
1378                                 return;
1379                         lock_cluster_or_swap_info(si, offset);
1380                 }
1381         }
1382         unlock_cluster_or_swap_info(si, ci);
1383 }
1384
1385 #ifdef CONFIG_THP_SWAP
1386 int split_swap_cluster(swp_entry_t entry)
1387 {
1388         struct swap_info_struct *si;
1389         struct swap_cluster_info *ci;
1390         unsigned long offset = swp_offset(entry);
1391
1392         si = _swap_info_get(entry);
1393         if (!si)
1394                 return -EBUSY;
1395         ci = lock_cluster(si, offset);
1396         cluster_clear_huge(ci);
1397         unlock_cluster(ci);
1398         return 0;
1399 }
1400 #endif
1401
1402 static int swp_entry_cmp(const void *ent1, const void *ent2)
1403 {
1404         const swp_entry_t *e1 = ent1, *e2 = ent2;
1405
1406         return (int)swp_type(*e1) - (int)swp_type(*e2);
1407 }
1408
1409 void swapcache_free_entries(swp_entry_t *entries, int n)
1410 {
1411         struct swap_info_struct *p, *prev;
1412         int i;
1413
1414         if (n <= 0)
1415                 return;
1416
1417         prev = NULL;
1418         p = NULL;
1419
1420         /*
1421          * Sort swap entries by swap device, so each lock is only taken once.
1422          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1423          * so low that it isn't necessary to optimize further.
1424          */
1425         if (nr_swapfiles > 1)
1426                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1427         for (i = 0; i < n; ++i) {
1428                 p = swap_info_get_cont(entries[i], prev);
1429                 if (p)
1430                         swap_entry_free(p, entries[i]);
1431                 prev = p;
1432         }
1433         if (p)
1434                 spin_unlock(&p->lock);
1435 }
1436
1437 /*
1438  * How many references to page are currently swapped out?
1439  * This does not give an exact answer when swap count is continued,
1440  * but does include the high COUNT_CONTINUED flag to allow for that.
1441  */
1442 int page_swapcount(struct page *page)
1443 {
1444         int count = 0;
1445         struct swap_info_struct *p;
1446         struct swap_cluster_info *ci;
1447         swp_entry_t entry;
1448         unsigned long offset;
1449
1450         entry.val = page_private(page);
1451         p = _swap_info_get(entry);
1452         if (p) {
1453                 offset = swp_offset(entry);
1454                 ci = lock_cluster_or_swap_info(p, offset);
1455                 count = swap_count(p->swap_map[offset]);
1456                 unlock_cluster_or_swap_info(p, ci);
1457         }
1458         return count;
1459 }
1460
1461 int __swap_count(swp_entry_t entry)
1462 {
1463         struct swap_info_struct *si;
1464         pgoff_t offset = swp_offset(entry);
1465         int count = 0;
1466
1467         si = get_swap_device(entry);
1468         if (si) {
1469                 count = swap_count(si->swap_map[offset]);
1470                 put_swap_device(si);
1471         }
1472         return count;
1473 }
1474
1475 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1476 {
1477         int count = 0;
1478         pgoff_t offset = swp_offset(entry);
1479         struct swap_cluster_info *ci;
1480
1481         ci = lock_cluster_or_swap_info(si, offset);
1482         count = swap_count(si->swap_map[offset]);
1483         unlock_cluster_or_swap_info(si, ci);
1484         return count;
1485 }
1486
1487 /*
1488  * How many references to @entry are currently swapped out?
1489  * This does not give an exact answer when swap count is continued,
1490  * but does include the high COUNT_CONTINUED flag to allow for that.
1491  */
1492 int __swp_swapcount(swp_entry_t entry)
1493 {
1494         int count = 0;
1495         struct swap_info_struct *si;
1496
1497         si = get_swap_device(entry);
1498         if (si) {
1499                 count = swap_swapcount(si, entry);
1500                 put_swap_device(si);
1501         }
1502         return count;
1503 }
1504
1505 /*
1506  * How many references to @entry are currently swapped out?
1507  * This considers COUNT_CONTINUED so it returns exact answer.
1508  */
1509 int swp_swapcount(swp_entry_t entry)
1510 {
1511         int count, tmp_count, n;
1512         struct swap_info_struct *p;
1513         struct swap_cluster_info *ci;
1514         struct page *page;
1515         pgoff_t offset;
1516         unsigned char *map;
1517
1518         p = _swap_info_get(entry);
1519         if (!p)
1520                 return 0;
1521
1522         offset = swp_offset(entry);
1523
1524         ci = lock_cluster_or_swap_info(p, offset);
1525
1526         count = swap_count(p->swap_map[offset]);
1527         if (!(count & COUNT_CONTINUED))
1528                 goto out;
1529
1530         count &= ~COUNT_CONTINUED;
1531         n = SWAP_MAP_MAX + 1;
1532
1533         page = vmalloc_to_page(p->swap_map + offset);
1534         offset &= ~PAGE_MASK;
1535         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536
1537         do {
1538                 page = list_next_entry(page, lru);
1539                 map = kmap_atomic(page);
1540                 tmp_count = map[offset];
1541                 kunmap_atomic(map);
1542
1543                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1544                 n *= (SWAP_CONT_MAX + 1);
1545         } while (tmp_count & COUNT_CONTINUED);
1546 out:
1547         unlock_cluster_or_swap_info(p, ci);
1548         return count;
1549 }
1550
1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552                                          swp_entry_t entry)
1553 {
1554         struct swap_cluster_info *ci;
1555         unsigned char *map = si->swap_map;
1556         unsigned long roffset = swp_offset(entry);
1557         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1558         int i;
1559         bool ret = false;
1560
1561         ci = lock_cluster_or_swap_info(si, offset);
1562         if (!ci || !cluster_is_huge(ci)) {
1563                 if (swap_count(map[roffset]))
1564                         ret = true;
1565                 goto unlock_out;
1566         }
1567         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1568                 if (swap_count(map[offset + i])) {
1569                         ret = true;
1570                         break;
1571                 }
1572         }
1573 unlock_out:
1574         unlock_cluster_or_swap_info(si, ci);
1575         return ret;
1576 }
1577
1578 static bool page_swapped(struct page *page)
1579 {
1580         swp_entry_t entry;
1581         struct swap_info_struct *si;
1582
1583         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1584                 return page_swapcount(page) != 0;
1585
1586         page = compound_head(page);
1587         entry.val = page_private(page);
1588         si = _swap_info_get(entry);
1589         if (si)
1590                 return swap_page_trans_huge_swapped(si, entry);
1591         return false;
1592 }
1593
1594 /*
1595  * If swap is getting full, or if there are no more mappings of this page,
1596  * then try_to_free_swap is called to free its swap space.
1597  */
1598 int try_to_free_swap(struct page *page)
1599 {
1600         VM_BUG_ON_PAGE(!PageLocked(page), page);
1601
1602         if (!PageSwapCache(page))
1603                 return 0;
1604         if (PageWriteback(page))
1605                 return 0;
1606         if (page_swapped(page))
1607                 return 0;
1608
1609         /*
1610          * Once hibernation has begun to create its image of memory,
1611          * there's a danger that one of the calls to try_to_free_swap()
1612          * - most probably a call from __try_to_reclaim_swap() while
1613          * hibernation is allocating its own swap pages for the image,
1614          * but conceivably even a call from memory reclaim - will free
1615          * the swap from a page which has already been recorded in the
1616          * image as a clean swapcache page, and then reuse its swap for
1617          * another page of the image.  On waking from hibernation, the
1618          * original page might be freed under memory pressure, then
1619          * later read back in from swap, now with the wrong data.
1620          *
1621          * Hibernation suspends storage while it is writing the image
1622          * to disk so check that here.
1623          */
1624         if (pm_suspended_storage())
1625                 return 0;
1626
1627         page = compound_head(page);
1628         delete_from_swap_cache(page);
1629         SetPageDirty(page);
1630         return 1;
1631 }
1632
1633 /*
1634  * Free the swap entry like above, but also try to
1635  * free the page cache entry if it is the last user.
1636  */
1637 int free_swap_and_cache(swp_entry_t entry)
1638 {
1639         struct swap_info_struct *p;
1640         unsigned char count;
1641
1642         if (non_swap_entry(entry))
1643                 return 1;
1644
1645         p = _swap_info_get(entry);
1646         if (p) {
1647                 count = __swap_entry_free(p, entry);
1648                 if (count == SWAP_HAS_CACHE &&
1649                     !swap_page_trans_huge_swapped(p, entry))
1650                         __try_to_reclaim_swap(p, swp_offset(entry),
1651                                               TTRS_UNMAPPED | TTRS_FULL);
1652         }
1653         return p != NULL;
1654 }
1655
1656 #ifdef CONFIG_HIBERNATION
1657
1658 swp_entry_t get_swap_page_of_type(int type)
1659 {
1660         struct swap_info_struct *si = swap_type_to_swap_info(type);
1661         swp_entry_t entry = {0};
1662
1663         if (!si)
1664                 goto fail;
1665
1666         /* This is called for allocating swap entry, not cache */
1667         spin_lock(&si->lock);
1668         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1669                 atomic_long_dec(&nr_swap_pages);
1670         spin_unlock(&si->lock);
1671 fail:
1672         return entry;
1673 }
1674
1675 /*
1676  * Find the swap type that corresponds to given device (if any).
1677  *
1678  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1679  * from 0, in which the swap header is expected to be located.
1680  *
1681  * This is needed for the suspend to disk (aka swsusp).
1682  */
1683 int swap_type_of(dev_t device, sector_t offset)
1684 {
1685         int type;
1686
1687         if (!device)
1688                 return -1;
1689
1690         spin_lock(&swap_lock);
1691         for (type = 0; type < nr_swapfiles; type++) {
1692                 struct swap_info_struct *sis = swap_info[type];
1693
1694                 if (!(sis->flags & SWP_WRITEOK))
1695                         continue;
1696
1697                 if (device == sis->bdev->bd_dev) {
1698                         struct swap_extent *se = first_se(sis);
1699
1700                         if (se->start_block == offset) {
1701                                 spin_unlock(&swap_lock);
1702                                 return type;
1703                         }
1704                 }
1705         }
1706         spin_unlock(&swap_lock);
1707         return -ENODEV;
1708 }
1709
1710 int find_first_swap(dev_t *device)
1711 {
1712         int type;
1713
1714         spin_lock(&swap_lock);
1715         for (type = 0; type < nr_swapfiles; type++) {
1716                 struct swap_info_struct *sis = swap_info[type];
1717
1718                 if (!(sis->flags & SWP_WRITEOK))
1719                         continue;
1720                 *device = sis->bdev->bd_dev;
1721                 spin_unlock(&swap_lock);
1722                 return type;
1723         }
1724         spin_unlock(&swap_lock);
1725         return -ENODEV;
1726 }
1727
1728 /*
1729  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1730  * corresponding to given index in swap_info (swap type).
1731  */
1732 sector_t swapdev_block(int type, pgoff_t offset)
1733 {
1734         struct swap_info_struct *si = swap_type_to_swap_info(type);
1735         struct swap_extent *se;
1736
1737         if (!si || !(si->flags & SWP_WRITEOK))
1738                 return 0;
1739         se = offset_to_swap_extent(si, offset);
1740         return se->start_block + (offset - se->start_page);
1741 }
1742
1743 /*
1744  * Return either the total number of swap pages of given type, or the number
1745  * of free pages of that type (depending on @free)
1746  *
1747  * This is needed for software suspend
1748  */
1749 unsigned int count_swap_pages(int type, int free)
1750 {
1751         unsigned int n = 0;
1752
1753         spin_lock(&swap_lock);
1754         if ((unsigned int)type < nr_swapfiles) {
1755                 struct swap_info_struct *sis = swap_info[type];
1756
1757                 spin_lock(&sis->lock);
1758                 if (sis->flags & SWP_WRITEOK) {
1759                         n = sis->pages;
1760                         if (free)
1761                                 n -= sis->inuse_pages;
1762                 }
1763                 spin_unlock(&sis->lock);
1764         }
1765         spin_unlock(&swap_lock);
1766         return n;
1767 }
1768 #endif /* CONFIG_HIBERNATION */
1769
1770 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1771 {
1772         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1773 }
1774
1775 /*
1776  * No need to decide whether this PTE shares the swap entry with others,
1777  * just let do_wp_page work it out if a write is requested later - to
1778  * force COW, vm_page_prot omits write permission from any private vma.
1779  */
1780 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1781                 unsigned long addr, swp_entry_t entry, struct page *page)
1782 {
1783         struct page *swapcache;
1784         spinlock_t *ptl;
1785         pte_t *pte;
1786         int ret = 1;
1787
1788         swapcache = page;
1789         page = ksm_might_need_to_copy(page, vma, addr);
1790         if (unlikely(!page))
1791                 return -ENOMEM;
1792
1793         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795                 ret = 0;
1796                 goto out;
1797         }
1798
1799         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1800         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1801         get_page(page);
1802         if (page == swapcache) {
1803                 page_add_anon_rmap(page, vma, addr, false);
1804         } else { /* ksm created a completely new copy */
1805                 page_add_new_anon_rmap(page, vma, addr, false);
1806                 lru_cache_add_inactive_or_unevictable(page, vma);
1807         }
1808         set_pte_at(vma->vm_mm, addr, pte,
1809                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1810         swap_free(entry);
1811 out:
1812         pte_unmap_unlock(pte, ptl);
1813         if (page != swapcache) {
1814                 unlock_page(page);
1815                 put_page(page);
1816         }
1817         return ret;
1818 }
1819
1820 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1821                         unsigned long addr, unsigned long end,
1822                         unsigned int type)
1823 {
1824         struct page *page;
1825         swp_entry_t entry;
1826         pte_t *pte;
1827         struct swap_info_struct *si;
1828         unsigned long offset;
1829         int ret = 0;
1830         volatile unsigned char *swap_map;
1831
1832         si = swap_info[type];
1833         pte = pte_offset_map(pmd, addr);
1834         do {
1835                 if (!is_swap_pte(*pte))
1836                         continue;
1837
1838                 entry = pte_to_swp_entry(*pte);
1839                 if (swp_type(entry) != type)
1840                         continue;
1841
1842                 offset = swp_offset(entry);
1843                 pte_unmap(pte);
1844                 swap_map = &si->swap_map[offset];
1845                 page = lookup_swap_cache(entry, vma, addr);
1846                 if (!page) {
1847                         struct vm_fault vmf = {
1848                                 .vma = vma,
1849                                 .address = addr,
1850                                 .real_address = addr,
1851                                 .pmd = pmd,
1852                         };
1853
1854                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1855                                                 &vmf);
1856                 }
1857                 if (!page) {
1858                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1859                                 goto try_next;
1860                         return -ENOMEM;
1861                 }
1862
1863                 lock_page(page);
1864                 wait_on_page_writeback(page);
1865                 ret = unuse_pte(vma, pmd, addr, entry, page);
1866                 if (ret < 0) {
1867                         unlock_page(page);
1868                         put_page(page);
1869                         goto out;
1870                 }
1871
1872                 try_to_free_swap(page);
1873                 unlock_page(page);
1874                 put_page(page);
1875 try_next:
1876                 pte = pte_offset_map(pmd, addr);
1877         } while (pte++, addr += PAGE_SIZE, addr != end);
1878         pte_unmap(pte - 1);
1879
1880         ret = 0;
1881 out:
1882         return ret;
1883 }
1884
1885 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1886                                 unsigned long addr, unsigned long end,
1887                                 unsigned int type)
1888 {
1889         pmd_t *pmd;
1890         unsigned long next;
1891         int ret;
1892
1893         pmd = pmd_offset(pud, addr);
1894         do {
1895                 cond_resched();
1896                 next = pmd_addr_end(addr, end);
1897                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1898                         continue;
1899                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1900                 if (ret)
1901                         return ret;
1902         } while (pmd++, addr = next, addr != end);
1903         return 0;
1904 }
1905
1906 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1907                                 unsigned long addr, unsigned long end,
1908                                 unsigned int type)
1909 {
1910         pud_t *pud;
1911         unsigned long next;
1912         int ret;
1913
1914         pud = pud_offset(p4d, addr);
1915         do {
1916                 next = pud_addr_end(addr, end);
1917                 if (pud_none_or_clear_bad(pud))
1918                         continue;
1919                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1920                 if (ret)
1921                         return ret;
1922         } while (pud++, addr = next, addr != end);
1923         return 0;
1924 }
1925
1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1927                                 unsigned long addr, unsigned long end,
1928                                 unsigned int type)
1929 {
1930         p4d_t *p4d;
1931         unsigned long next;
1932         int ret;
1933
1934         p4d = p4d_offset(pgd, addr);
1935         do {
1936                 next = p4d_addr_end(addr, end);
1937                 if (p4d_none_or_clear_bad(p4d))
1938                         continue;
1939                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1940                 if (ret)
1941                         return ret;
1942         } while (p4d++, addr = next, addr != end);
1943         return 0;
1944 }
1945
1946 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1947 {
1948         pgd_t *pgd;
1949         unsigned long addr, end, next;
1950         int ret;
1951
1952         addr = vma->vm_start;
1953         end = vma->vm_end;
1954
1955         pgd = pgd_offset(vma->vm_mm, addr);
1956         do {
1957                 next = pgd_addr_end(addr, end);
1958                 if (pgd_none_or_clear_bad(pgd))
1959                         continue;
1960                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1961                 if (ret)
1962                         return ret;
1963         } while (pgd++, addr = next, addr != end);
1964         return 0;
1965 }
1966
1967 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1968 {
1969         struct vm_area_struct *vma;
1970         int ret = 0;
1971
1972         mmap_read_lock(mm);
1973         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1974                 if (vma->anon_vma) {
1975                         ret = unuse_vma(vma, type);
1976                         if (ret)
1977                                 break;
1978                 }
1979                 cond_resched();
1980         }
1981         mmap_read_unlock(mm);
1982         return ret;
1983 }
1984
1985 /*
1986  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1987  * from current position to next entry still in use. Return 0
1988  * if there are no inuse entries after prev till end of the map.
1989  */
1990 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1991                                         unsigned int prev)
1992 {
1993         unsigned int i;
1994         unsigned char count;
1995
1996         /*
1997          * No need for swap_lock here: we're just looking
1998          * for whether an entry is in use, not modifying it; false
1999          * hits are okay, and sys_swapoff() has already prevented new
2000          * allocations from this area (while holding swap_lock).
2001          */
2002         for (i = prev + 1; i < si->max; i++) {
2003                 count = READ_ONCE(si->swap_map[i]);
2004                 if (count && swap_count(count) != SWAP_MAP_BAD)
2005                         break;
2006                 if ((i % LATENCY_LIMIT) == 0)
2007                         cond_resched();
2008         }
2009
2010         if (i == si->max)
2011                 i = 0;
2012
2013         return i;
2014 }
2015
2016 static int try_to_unuse(unsigned int type)
2017 {
2018         struct mm_struct *prev_mm;
2019         struct mm_struct *mm;
2020         struct list_head *p;
2021         int retval = 0;
2022         struct swap_info_struct *si = swap_info[type];
2023         struct page *page;
2024         swp_entry_t entry;
2025         unsigned int i;
2026
2027         if (!READ_ONCE(si->inuse_pages))
2028                 return 0;
2029
2030 retry:
2031         retval = shmem_unuse(type);
2032         if (retval)
2033                 return retval;
2034
2035         prev_mm = &init_mm;
2036         mmget(prev_mm);
2037
2038         spin_lock(&mmlist_lock);
2039         p = &init_mm.mmlist;
2040         while (READ_ONCE(si->inuse_pages) &&
2041                !signal_pending(current) &&
2042                (p = p->next) != &init_mm.mmlist) {
2043
2044                 mm = list_entry(p, struct mm_struct, mmlist);
2045                 if (!mmget_not_zero(mm))
2046                         continue;
2047                 spin_unlock(&mmlist_lock);
2048                 mmput(prev_mm);
2049                 prev_mm = mm;
2050                 retval = unuse_mm(mm, type);
2051                 if (retval) {
2052                         mmput(prev_mm);
2053                         return retval;
2054                 }
2055
2056                 /*
2057                  * Make sure that we aren't completely killing
2058                  * interactive performance.
2059                  */
2060                 cond_resched();
2061                 spin_lock(&mmlist_lock);
2062         }
2063         spin_unlock(&mmlist_lock);
2064
2065         mmput(prev_mm);
2066
2067         i = 0;
2068         while (READ_ONCE(si->inuse_pages) &&
2069                !signal_pending(current) &&
2070                (i = find_next_to_unuse(si, i)) != 0) {
2071
2072                 entry = swp_entry(type, i);
2073                 page = find_get_page(swap_address_space(entry), i);
2074                 if (!page)
2075                         continue;
2076
2077                 /*
2078                  * It is conceivable that a racing task removed this page from
2079                  * swap cache just before we acquired the page lock. The page
2080                  * might even be back in swap cache on another swap area. But
2081                  * that is okay, try_to_free_swap() only removes stale pages.
2082                  */
2083                 lock_page(page);
2084                 wait_on_page_writeback(page);
2085                 try_to_free_swap(page);
2086                 unlock_page(page);
2087                 put_page(page);
2088         }
2089
2090         /*
2091          * Lets check again to see if there are still swap entries in the map.
2092          * If yes, we would need to do retry the unuse logic again.
2093          * Under global memory pressure, swap entries can be reinserted back
2094          * into process space after the mmlist loop above passes over them.
2095          *
2096          * Limit the number of retries? No: when mmget_not_zero() above fails,
2097          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2098          * at its own independent pace; and even shmem_writepage() could have
2099          * been preempted after get_swap_page(), temporarily hiding that swap.
2100          * It's easy and robust (though cpu-intensive) just to keep retrying.
2101          */
2102         if (READ_ONCE(si->inuse_pages)) {
2103                 if (!signal_pending(current))
2104                         goto retry;
2105                 return -EINTR;
2106         }
2107
2108         return 0;
2109 }
2110
2111 /*
2112  * After a successful try_to_unuse, if no swap is now in use, we know
2113  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2114  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2115  * added to the mmlist just after page_duplicate - before would be racy.
2116  */
2117 static void drain_mmlist(void)
2118 {
2119         struct list_head *p, *next;
2120         unsigned int type;
2121
2122         for (type = 0; type < nr_swapfiles; type++)
2123                 if (swap_info[type]->inuse_pages)
2124                         return;
2125         spin_lock(&mmlist_lock);
2126         list_for_each_safe(p, next, &init_mm.mmlist)
2127                 list_del_init(p);
2128         spin_unlock(&mmlist_lock);
2129 }
2130
2131 /*
2132  * Free all of a swapdev's extent information
2133  */
2134 static void destroy_swap_extents(struct swap_info_struct *sis)
2135 {
2136         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2137                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2138                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2139
2140                 rb_erase(rb, &sis->swap_extent_root);
2141                 kfree(se);
2142         }
2143
2144         if (sis->flags & SWP_ACTIVATED) {
2145                 struct file *swap_file = sis->swap_file;
2146                 struct address_space *mapping = swap_file->f_mapping;
2147
2148                 sis->flags &= ~SWP_ACTIVATED;
2149                 if (mapping->a_ops->swap_deactivate)
2150                         mapping->a_ops->swap_deactivate(swap_file);
2151         }
2152 }
2153
2154 /*
2155  * Add a block range (and the corresponding page range) into this swapdev's
2156  * extent tree.
2157  *
2158  * This function rather assumes that it is called in ascending page order.
2159  */
2160 int
2161 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2162                 unsigned long nr_pages, sector_t start_block)
2163 {
2164         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2165         struct swap_extent *se;
2166         struct swap_extent *new_se;
2167
2168         /*
2169          * place the new node at the right most since the
2170          * function is called in ascending page order.
2171          */
2172         while (*link) {
2173                 parent = *link;
2174                 link = &parent->rb_right;
2175         }
2176
2177         if (parent) {
2178                 se = rb_entry(parent, struct swap_extent, rb_node);
2179                 BUG_ON(se->start_page + se->nr_pages != start_page);
2180                 if (se->start_block + se->nr_pages == start_block) {
2181                         /* Merge it */
2182                         se->nr_pages += nr_pages;
2183                         return 0;
2184                 }
2185         }
2186
2187         /* No merge, insert a new extent. */
2188         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2189         if (new_se == NULL)
2190                 return -ENOMEM;
2191         new_se->start_page = start_page;
2192         new_se->nr_pages = nr_pages;
2193         new_se->start_block = start_block;
2194
2195         rb_link_node(&new_se->rb_node, parent, link);
2196         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2197         return 1;
2198 }
2199 EXPORT_SYMBOL_GPL(add_swap_extent);
2200
2201 /*
2202  * A `swap extent' is a simple thing which maps a contiguous range of pages
2203  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2204  * is built at swapon time and is then used at swap_writepage/swap_readpage
2205  * time for locating where on disk a page belongs.
2206  *
2207  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2208  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2209  * swap files identically.
2210  *
2211  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2212  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2213  * swapfiles are handled *identically* after swapon time.
2214  *
2215  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2216  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2217  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2218  * requirements, they are simply tossed out - we will never use those blocks
2219  * for swapping.
2220  *
2221  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2222  * prevents users from writing to the swap device, which will corrupt memory.
2223  *
2224  * The amount of disk space which a single swap extent represents varies.
2225  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2226  * extents in the list.  To avoid much list walking, we cache the previous
2227  * search location in `curr_swap_extent', and start new searches from there.
2228  * This is extremely effective.  The average number of iterations in
2229  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2230  */
2231 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2232 {
2233         struct file *swap_file = sis->swap_file;
2234         struct address_space *mapping = swap_file->f_mapping;
2235         struct inode *inode = mapping->host;
2236         int ret;
2237
2238         if (S_ISBLK(inode->i_mode)) {
2239                 ret = add_swap_extent(sis, 0, sis->max, 0);
2240                 *span = sis->pages;
2241                 return ret;
2242         }
2243
2244         if (mapping->a_ops->swap_activate) {
2245                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2246                 if (ret >= 0)
2247                         sis->flags |= SWP_ACTIVATED;
2248                 if (!ret) {
2249                         sis->flags |= SWP_FS_OPS;
2250                         ret = add_swap_extent(sis, 0, sis->max, 0);
2251                         *span = sis->pages;
2252                 }
2253                 return ret;
2254         }
2255
2256         return generic_swapfile_activate(sis, swap_file, span);
2257 }
2258
2259 static int swap_node(struct swap_info_struct *p)
2260 {
2261         struct block_device *bdev;
2262
2263         if (p->bdev)
2264                 bdev = p->bdev;
2265         else
2266                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2267
2268         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2269 }
2270
2271 static void setup_swap_info(struct swap_info_struct *p, int prio,
2272                             unsigned char *swap_map,
2273                             struct swap_cluster_info *cluster_info)
2274 {
2275         int i;
2276
2277         if (prio >= 0)
2278                 p->prio = prio;
2279         else
2280                 p->prio = --least_priority;
2281         /*
2282          * the plist prio is negated because plist ordering is
2283          * low-to-high, while swap ordering is high-to-low
2284          */
2285         p->list.prio = -p->prio;
2286         for_each_node(i) {
2287                 if (p->prio >= 0)
2288                         p->avail_lists[i].prio = -p->prio;
2289                 else {
2290                         if (swap_node(p) == i)
2291                                 p->avail_lists[i].prio = 1;
2292                         else
2293                                 p->avail_lists[i].prio = -p->prio;
2294                 }
2295         }
2296         p->swap_map = swap_map;
2297         p->cluster_info = cluster_info;
2298 }
2299
2300 static void _enable_swap_info(struct swap_info_struct *p)
2301 {
2302         p->flags |= SWP_WRITEOK;
2303         atomic_long_add(p->pages, &nr_swap_pages);
2304         total_swap_pages += p->pages;
2305
2306         assert_spin_locked(&swap_lock);
2307         /*
2308          * both lists are plists, and thus priority ordered.
2309          * swap_active_head needs to be priority ordered for swapoff(),
2310          * which on removal of any swap_info_struct with an auto-assigned
2311          * (i.e. negative) priority increments the auto-assigned priority
2312          * of any lower-priority swap_info_structs.
2313          * swap_avail_head needs to be priority ordered for get_swap_page(),
2314          * which allocates swap pages from the highest available priority
2315          * swap_info_struct.
2316          */
2317         plist_add(&p->list, &swap_active_head);
2318         add_to_avail_list(p);
2319 }
2320
2321 static void enable_swap_info(struct swap_info_struct *p, int prio,
2322                                 unsigned char *swap_map,
2323                                 struct swap_cluster_info *cluster_info,
2324                                 unsigned long *frontswap_map)
2325 {
2326         if (IS_ENABLED(CONFIG_FRONTSWAP))
2327                 frontswap_init(p->type, frontswap_map);
2328         spin_lock(&swap_lock);
2329         spin_lock(&p->lock);
2330         setup_swap_info(p, prio, swap_map, cluster_info);
2331         spin_unlock(&p->lock);
2332         spin_unlock(&swap_lock);
2333         /*
2334          * Finished initializing swap device, now it's safe to reference it.
2335          */
2336         percpu_ref_resurrect(&p->users);
2337         spin_lock(&swap_lock);
2338         spin_lock(&p->lock);
2339         _enable_swap_info(p);
2340         spin_unlock(&p->lock);
2341         spin_unlock(&swap_lock);
2342 }
2343
2344 static void reinsert_swap_info(struct swap_info_struct *p)
2345 {
2346         spin_lock(&swap_lock);
2347         spin_lock(&p->lock);
2348         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2349         _enable_swap_info(p);
2350         spin_unlock(&p->lock);
2351         spin_unlock(&swap_lock);
2352 }
2353
2354 bool has_usable_swap(void)
2355 {
2356         bool ret = true;
2357
2358         spin_lock(&swap_lock);
2359         if (plist_head_empty(&swap_active_head))
2360                 ret = false;
2361         spin_unlock(&swap_lock);
2362         return ret;
2363 }
2364
2365 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2366 {
2367         struct swap_info_struct *p = NULL;
2368         unsigned char *swap_map;
2369         struct swap_cluster_info *cluster_info;
2370         unsigned long *frontswap_map;
2371         struct file *swap_file, *victim;
2372         struct address_space *mapping;
2373         struct inode *inode;
2374         struct filename *pathname;
2375         int err, found = 0;
2376         unsigned int old_block_size;
2377
2378         if (!capable(CAP_SYS_ADMIN))
2379                 return -EPERM;
2380
2381         BUG_ON(!current->mm);
2382
2383         pathname = getname(specialfile);
2384         if (IS_ERR(pathname))
2385                 return PTR_ERR(pathname);
2386
2387         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2388         err = PTR_ERR(victim);
2389         if (IS_ERR(victim))
2390                 goto out;
2391
2392         mapping = victim->f_mapping;
2393         spin_lock(&swap_lock);
2394         plist_for_each_entry(p, &swap_active_head, list) {
2395                 if (p->flags & SWP_WRITEOK) {
2396                         if (p->swap_file->f_mapping == mapping) {
2397                                 found = 1;
2398                                 break;
2399                         }
2400                 }
2401         }
2402         if (!found) {
2403                 err = -EINVAL;
2404                 spin_unlock(&swap_lock);
2405                 goto out_dput;
2406         }
2407         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2408                 vm_unacct_memory(p->pages);
2409         else {
2410                 err = -ENOMEM;
2411                 spin_unlock(&swap_lock);
2412                 goto out_dput;
2413         }
2414         del_from_avail_list(p);
2415         spin_lock(&p->lock);
2416         if (p->prio < 0) {
2417                 struct swap_info_struct *si = p;
2418                 int nid;
2419
2420                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2421                         si->prio++;
2422                         si->list.prio--;
2423                         for_each_node(nid) {
2424                                 if (si->avail_lists[nid].prio != 1)
2425                                         si->avail_lists[nid].prio--;
2426                         }
2427                 }
2428                 least_priority++;
2429         }
2430         plist_del(&p->list, &swap_active_head);
2431         atomic_long_sub(p->pages, &nr_swap_pages);
2432         total_swap_pages -= p->pages;
2433         p->flags &= ~SWP_WRITEOK;
2434         spin_unlock(&p->lock);
2435         spin_unlock(&swap_lock);
2436
2437         disable_swap_slots_cache_lock();
2438
2439         set_current_oom_origin();
2440         err = try_to_unuse(p->type);
2441         clear_current_oom_origin();
2442
2443         if (err) {
2444                 /* re-insert swap space back into swap_list */
2445                 reinsert_swap_info(p);
2446                 reenable_swap_slots_cache_unlock();
2447                 goto out_dput;
2448         }
2449
2450         reenable_swap_slots_cache_unlock();
2451
2452         /*
2453          * Wait for swap operations protected by get/put_swap_device()
2454          * to complete.
2455          *
2456          * We need synchronize_rcu() here to protect the accessing to
2457          * the swap cache data structure.
2458          */
2459         percpu_ref_kill(&p->users);
2460         synchronize_rcu();
2461         wait_for_completion(&p->comp);
2462
2463         flush_work(&p->discard_work);
2464
2465         destroy_swap_extents(p);
2466         if (p->flags & SWP_CONTINUED)
2467                 free_swap_count_continuations(p);
2468
2469         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2470                 atomic_dec(&nr_rotate_swap);
2471
2472         mutex_lock(&swapon_mutex);
2473         spin_lock(&swap_lock);
2474         spin_lock(&p->lock);
2475         drain_mmlist();
2476
2477         /* wait for anyone still in scan_swap_map_slots */
2478         p->highest_bit = 0;             /* cuts scans short */
2479         while (p->flags >= SWP_SCANNING) {
2480                 spin_unlock(&p->lock);
2481                 spin_unlock(&swap_lock);
2482                 schedule_timeout_uninterruptible(1);
2483                 spin_lock(&swap_lock);
2484                 spin_lock(&p->lock);
2485         }
2486
2487         swap_file = p->swap_file;
2488         old_block_size = p->old_block_size;
2489         p->swap_file = NULL;
2490         p->max = 0;
2491         swap_map = p->swap_map;
2492         p->swap_map = NULL;
2493         cluster_info = p->cluster_info;
2494         p->cluster_info = NULL;
2495         frontswap_map = frontswap_map_get(p);
2496         spin_unlock(&p->lock);
2497         spin_unlock(&swap_lock);
2498         arch_swap_invalidate_area(p->type);
2499         frontswap_invalidate_area(p->type);
2500         frontswap_map_set(p, NULL);
2501         mutex_unlock(&swapon_mutex);
2502         free_percpu(p->percpu_cluster);
2503         p->percpu_cluster = NULL;
2504         free_percpu(p->cluster_next_cpu);
2505         p->cluster_next_cpu = NULL;
2506         vfree(swap_map);
2507         kvfree(cluster_info);
2508         kvfree(frontswap_map);
2509         /* Destroy swap account information */
2510         swap_cgroup_swapoff(p->type);
2511         exit_swap_address_space(p->type);
2512
2513         inode = mapping->host;
2514         if (S_ISBLK(inode->i_mode)) {
2515                 struct block_device *bdev = I_BDEV(inode);
2516
2517                 set_blocksize(bdev, old_block_size);
2518                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2519         }
2520
2521         inode_lock(inode);
2522         inode->i_flags &= ~S_SWAPFILE;
2523         inode_unlock(inode);
2524         filp_close(swap_file, NULL);
2525
2526         /*
2527          * Clear the SWP_USED flag after all resources are freed so that swapon
2528          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2529          * not hold p->lock after we cleared its SWP_WRITEOK.
2530          */
2531         spin_lock(&swap_lock);
2532         p->flags = 0;
2533         spin_unlock(&swap_lock);
2534
2535         err = 0;
2536         atomic_inc(&proc_poll_event);
2537         wake_up_interruptible(&proc_poll_wait);
2538
2539 out_dput:
2540         filp_close(victim, NULL);
2541 out:
2542         putname(pathname);
2543         return err;
2544 }
2545
2546 #ifdef CONFIG_PROC_FS
2547 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2548 {
2549         struct seq_file *seq = file->private_data;
2550
2551         poll_wait(file, &proc_poll_wait, wait);
2552
2553         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2554                 seq->poll_event = atomic_read(&proc_poll_event);
2555                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2556         }
2557
2558         return EPOLLIN | EPOLLRDNORM;
2559 }
2560
2561 /* iterator */
2562 static void *swap_start(struct seq_file *swap, loff_t *pos)
2563 {
2564         struct swap_info_struct *si;
2565         int type;
2566         loff_t l = *pos;
2567
2568         mutex_lock(&swapon_mutex);
2569
2570         if (!l)
2571                 return SEQ_START_TOKEN;
2572
2573         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2574                 if (!(si->flags & SWP_USED) || !si->swap_map)
2575                         continue;
2576                 if (!--l)
2577                         return si;
2578         }
2579
2580         return NULL;
2581 }
2582
2583 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2584 {
2585         struct swap_info_struct *si = v;
2586         int type;
2587
2588         if (v == SEQ_START_TOKEN)
2589                 type = 0;
2590         else
2591                 type = si->type + 1;
2592
2593         ++(*pos);
2594         for (; (si = swap_type_to_swap_info(type)); type++) {
2595                 if (!(si->flags & SWP_USED) || !si->swap_map)
2596                         continue;
2597                 return si;
2598         }
2599
2600         return NULL;
2601 }
2602
2603 static void swap_stop(struct seq_file *swap, void *v)
2604 {
2605         mutex_unlock(&swapon_mutex);
2606 }
2607
2608 static int swap_show(struct seq_file *swap, void *v)
2609 {
2610         struct swap_info_struct *si = v;
2611         struct file *file;
2612         int len;
2613         unsigned long bytes, inuse;
2614
2615         if (si == SEQ_START_TOKEN) {
2616                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2617                 return 0;
2618         }
2619
2620         bytes = si->pages << (PAGE_SHIFT - 10);
2621         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2622
2623         file = si->swap_file;
2624         len = seq_file_path(swap, file, " \t\n\\");
2625         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2626                         len < 40 ? 40 - len : 1, " ",
2627                         S_ISBLK(file_inode(file)->i_mode) ?
2628                                 "partition" : "file\t",
2629                         bytes, bytes < 10000000 ? "\t" : "",
2630                         inuse, inuse < 10000000 ? "\t" : "",
2631                         si->prio);
2632         return 0;
2633 }
2634
2635 static const struct seq_operations swaps_op = {
2636         .start =        swap_start,
2637         .next =         swap_next,
2638         .stop =         swap_stop,
2639         .show =         swap_show
2640 };
2641
2642 static int swaps_open(struct inode *inode, struct file *file)
2643 {
2644         struct seq_file *seq;
2645         int ret;
2646
2647         ret = seq_open(file, &swaps_op);
2648         if (ret)
2649                 return ret;
2650
2651         seq = file->private_data;
2652         seq->poll_event = atomic_read(&proc_poll_event);
2653         return 0;
2654 }
2655
2656 static const struct proc_ops swaps_proc_ops = {
2657         .proc_flags     = PROC_ENTRY_PERMANENT,
2658         .proc_open      = swaps_open,
2659         .proc_read      = seq_read,
2660         .proc_lseek     = seq_lseek,
2661         .proc_release   = seq_release,
2662         .proc_poll      = swaps_poll,
2663 };
2664
2665 static int __init procswaps_init(void)
2666 {
2667         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2668         return 0;
2669 }
2670 __initcall(procswaps_init);
2671 #endif /* CONFIG_PROC_FS */
2672
2673 #ifdef MAX_SWAPFILES_CHECK
2674 static int __init max_swapfiles_check(void)
2675 {
2676         MAX_SWAPFILES_CHECK();
2677         return 0;
2678 }
2679 late_initcall(max_swapfiles_check);
2680 #endif
2681
2682 static struct swap_info_struct *alloc_swap_info(void)
2683 {
2684         struct swap_info_struct *p;
2685         struct swap_info_struct *defer = NULL;
2686         unsigned int type;
2687         int i;
2688
2689         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2690         if (!p)
2691                 return ERR_PTR(-ENOMEM);
2692
2693         if (percpu_ref_init(&p->users, swap_users_ref_free,
2694                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2695                 kvfree(p);
2696                 return ERR_PTR(-ENOMEM);
2697         }
2698
2699         spin_lock(&swap_lock);
2700         for (type = 0; type < nr_swapfiles; type++) {
2701                 if (!(swap_info[type]->flags & SWP_USED))
2702                         break;
2703         }
2704         if (type >= MAX_SWAPFILES) {
2705                 spin_unlock(&swap_lock);
2706                 percpu_ref_exit(&p->users);
2707                 kvfree(p);
2708                 return ERR_PTR(-EPERM);
2709         }
2710         if (type >= nr_swapfiles) {
2711                 p->type = type;
2712                 /*
2713                  * Publish the swap_info_struct after initializing it.
2714                  * Note that kvzalloc() above zeroes all its fields.
2715                  */
2716                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2717                 nr_swapfiles++;
2718         } else {
2719                 defer = p;
2720                 p = swap_info[type];
2721                 /*
2722                  * Do not memset this entry: a racing procfs swap_next()
2723                  * would be relying on p->type to remain valid.
2724                  */
2725         }
2726         p->swap_extent_root = RB_ROOT;
2727         plist_node_init(&p->list, 0);
2728         for_each_node(i)
2729                 plist_node_init(&p->avail_lists[i], 0);
2730         p->flags = SWP_USED;
2731         spin_unlock(&swap_lock);
2732         if (defer) {
2733                 percpu_ref_exit(&defer->users);
2734                 kvfree(defer);
2735         }
2736         spin_lock_init(&p->lock);
2737         spin_lock_init(&p->cont_lock);
2738         init_completion(&p->comp);
2739
2740         return p;
2741 }
2742
2743 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2744 {
2745         int error;
2746
2747         if (S_ISBLK(inode->i_mode)) {
2748                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2749                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2750                 if (IS_ERR(p->bdev)) {
2751                         error = PTR_ERR(p->bdev);
2752                         p->bdev = NULL;
2753                         return error;
2754                 }
2755                 p->old_block_size = block_size(p->bdev);
2756                 error = set_blocksize(p->bdev, PAGE_SIZE);
2757                 if (error < 0)
2758                         return error;
2759                 /*
2760                  * Zoned block devices contain zones that have a sequential
2761                  * write only restriction.  Hence zoned block devices are not
2762                  * suitable for swapping.  Disallow them here.
2763                  */
2764                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2765                         return -EINVAL;
2766                 p->flags |= SWP_BLKDEV;
2767         } else if (S_ISREG(inode->i_mode)) {
2768                 p->bdev = inode->i_sb->s_bdev;
2769         }
2770
2771         return 0;
2772 }
2773
2774
2775 /*
2776  * Find out how many pages are allowed for a single swap device. There
2777  * are two limiting factors:
2778  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2779  * 2) the number of bits in the swap pte, as defined by the different
2780  * architectures.
2781  *
2782  * In order to find the largest possible bit mask, a swap entry with
2783  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2784  * decoded to a swp_entry_t again, and finally the swap offset is
2785  * extracted.
2786  *
2787  * This will mask all the bits from the initial ~0UL mask that can't
2788  * be encoded in either the swp_entry_t or the architecture definition
2789  * of a swap pte.
2790  */
2791 unsigned long generic_max_swapfile_size(void)
2792 {
2793         return swp_offset(pte_to_swp_entry(
2794                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2795 }
2796
2797 /* Can be overridden by an architecture for additional checks. */
2798 __weak unsigned long max_swapfile_size(void)
2799 {
2800         return generic_max_swapfile_size();
2801 }
2802
2803 static unsigned long read_swap_header(struct swap_info_struct *p,
2804                                         union swap_header *swap_header,
2805                                         struct inode *inode)
2806 {
2807         int i;
2808         unsigned long maxpages;
2809         unsigned long swapfilepages;
2810         unsigned long last_page;
2811
2812         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2813                 pr_err("Unable to find swap-space signature\n");
2814                 return 0;
2815         }
2816
2817         /* swap partition endianness hack... */
2818         if (swab32(swap_header->info.version) == 1) {
2819                 swab32s(&swap_header->info.version);
2820                 swab32s(&swap_header->info.last_page);
2821                 swab32s(&swap_header->info.nr_badpages);
2822                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2823                         return 0;
2824                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2825                         swab32s(&swap_header->info.badpages[i]);
2826         }
2827         /* Check the swap header's sub-version */
2828         if (swap_header->info.version != 1) {
2829                 pr_warn("Unable to handle swap header version %d\n",
2830                         swap_header->info.version);
2831                 return 0;
2832         }
2833
2834         p->lowest_bit  = 1;
2835         p->cluster_next = 1;
2836         p->cluster_nr = 0;
2837
2838         maxpages = max_swapfile_size();
2839         last_page = swap_header->info.last_page;
2840         if (!last_page) {
2841                 pr_warn("Empty swap-file\n");
2842                 return 0;
2843         }
2844         if (last_page > maxpages) {
2845                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2846                         maxpages << (PAGE_SHIFT - 10),
2847                         last_page << (PAGE_SHIFT - 10));
2848         }
2849         if (maxpages > last_page) {
2850                 maxpages = last_page + 1;
2851                 /* p->max is an unsigned int: don't overflow it */
2852                 if ((unsigned int)maxpages == 0)
2853                         maxpages = UINT_MAX;
2854         }
2855         p->highest_bit = maxpages - 1;
2856
2857         if (!maxpages)
2858                 return 0;
2859         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2860         if (swapfilepages && maxpages > swapfilepages) {
2861                 pr_warn("Swap area shorter than signature indicates\n");
2862                 return 0;
2863         }
2864         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2865                 return 0;
2866         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2867                 return 0;
2868
2869         return maxpages;
2870 }
2871
2872 #define SWAP_CLUSTER_INFO_COLS                                          \
2873         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2874 #define SWAP_CLUSTER_SPACE_COLS                                         \
2875         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2876 #define SWAP_CLUSTER_COLS                                               \
2877         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2878
2879 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2880                                         union swap_header *swap_header,
2881                                         unsigned char *swap_map,
2882                                         struct swap_cluster_info *cluster_info,
2883                                         unsigned long maxpages,
2884                                         sector_t *span)
2885 {
2886         unsigned int j, k;
2887         unsigned int nr_good_pages;
2888         int nr_extents;
2889         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2890         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2891         unsigned long i, idx;
2892
2893         nr_good_pages = maxpages - 1;   /* omit header page */
2894
2895         cluster_list_init(&p->free_clusters);
2896         cluster_list_init(&p->discard_clusters);
2897
2898         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2899                 unsigned int page_nr = swap_header->info.badpages[i];
2900                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2901                         return -EINVAL;
2902                 if (page_nr < maxpages) {
2903                         swap_map[page_nr] = SWAP_MAP_BAD;
2904                         nr_good_pages--;
2905                         /*
2906                          * Haven't marked the cluster free yet, no list
2907                          * operation involved
2908                          */
2909                         inc_cluster_info_page(p, cluster_info, page_nr);
2910                 }
2911         }
2912
2913         /* Haven't marked the cluster free yet, no list operation involved */
2914         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2915                 inc_cluster_info_page(p, cluster_info, i);
2916
2917         if (nr_good_pages) {
2918                 swap_map[0] = SWAP_MAP_BAD;
2919                 /*
2920                  * Not mark the cluster free yet, no list
2921                  * operation involved
2922                  */
2923                 inc_cluster_info_page(p, cluster_info, 0);
2924                 p->max = maxpages;
2925                 p->pages = nr_good_pages;
2926                 nr_extents = setup_swap_extents(p, span);
2927                 if (nr_extents < 0)
2928                         return nr_extents;
2929                 nr_good_pages = p->pages;
2930         }
2931         if (!nr_good_pages) {
2932                 pr_warn("Empty swap-file\n");
2933                 return -EINVAL;
2934         }
2935
2936         if (!cluster_info)
2937                 return nr_extents;
2938
2939
2940         /*
2941          * Reduce false cache line sharing between cluster_info and
2942          * sharing same address space.
2943          */
2944         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2945                 j = (k + col) % SWAP_CLUSTER_COLS;
2946                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2947                         idx = i * SWAP_CLUSTER_COLS + j;
2948                         if (idx >= nr_clusters)
2949                                 continue;
2950                         if (cluster_count(&cluster_info[idx]))
2951                                 continue;
2952                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2953                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2954                                               idx);
2955                 }
2956         }
2957         return nr_extents;
2958 }
2959
2960 /*
2961  * Helper to sys_swapon determining if a given swap
2962  * backing device queue supports DISCARD operations.
2963  */
2964 static bool swap_discardable(struct swap_info_struct *si)
2965 {
2966         struct request_queue *q = bdev_get_queue(si->bdev);
2967
2968         if (!blk_queue_discard(q))
2969                 return false;
2970
2971         return true;
2972 }
2973
2974 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2975 {
2976         struct swap_info_struct *p;
2977         struct filename *name;
2978         struct file *swap_file = NULL;
2979         struct address_space *mapping;
2980         struct dentry *dentry;
2981         int prio;
2982         int error;
2983         union swap_header *swap_header;
2984         int nr_extents;
2985         sector_t span;
2986         unsigned long maxpages;
2987         unsigned char *swap_map = NULL;
2988         struct swap_cluster_info *cluster_info = NULL;
2989         unsigned long *frontswap_map = NULL;
2990         struct page *page = NULL;
2991         struct inode *inode = NULL;
2992         bool inced_nr_rotate_swap = false;
2993
2994         if (swap_flags & ~SWAP_FLAGS_VALID)
2995                 return -EINVAL;
2996
2997         if (!capable(CAP_SYS_ADMIN))
2998                 return -EPERM;
2999
3000         if (!swap_avail_heads)
3001                 return -ENOMEM;
3002
3003         p = alloc_swap_info();
3004         if (IS_ERR(p))
3005                 return PTR_ERR(p);
3006
3007         INIT_WORK(&p->discard_work, swap_discard_work);
3008
3009         name = getname(specialfile);
3010         if (IS_ERR(name)) {
3011                 error = PTR_ERR(name);
3012                 name = NULL;
3013                 goto bad_swap;
3014         }
3015         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3016         if (IS_ERR(swap_file)) {
3017                 error = PTR_ERR(swap_file);
3018                 swap_file = NULL;
3019                 goto bad_swap;
3020         }
3021
3022         p->swap_file = swap_file;
3023         mapping = swap_file->f_mapping;
3024         dentry = swap_file->f_path.dentry;
3025         inode = mapping->host;
3026
3027         error = claim_swapfile(p, inode);
3028         if (unlikely(error))
3029                 goto bad_swap;
3030
3031         inode_lock(inode);
3032         if (d_unlinked(dentry) || cant_mount(dentry)) {
3033                 error = -ENOENT;
3034                 goto bad_swap_unlock_inode;
3035         }
3036         if (IS_SWAPFILE(inode)) {
3037                 error = -EBUSY;
3038                 goto bad_swap_unlock_inode;
3039         }
3040
3041         /*
3042          * Read the swap header.
3043          */
3044         if (!mapping->a_ops->readpage) {
3045                 error = -EINVAL;
3046                 goto bad_swap_unlock_inode;
3047         }
3048         page = read_mapping_page(mapping, 0, swap_file);
3049         if (IS_ERR(page)) {
3050                 error = PTR_ERR(page);
3051                 goto bad_swap_unlock_inode;
3052         }
3053         swap_header = kmap(page);
3054
3055         maxpages = read_swap_header(p, swap_header, inode);
3056         if (unlikely(!maxpages)) {
3057                 error = -EINVAL;
3058                 goto bad_swap_unlock_inode;
3059         }
3060
3061         /* OK, set up the swap map and apply the bad block list */
3062         swap_map = vzalloc(maxpages);
3063         if (!swap_map) {
3064                 error = -ENOMEM;
3065                 goto bad_swap_unlock_inode;
3066         }
3067
3068         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3069                 p->flags |= SWP_STABLE_WRITES;
3070
3071         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3072                 p->flags |= SWP_SYNCHRONOUS_IO;
3073
3074         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3075                 int cpu;
3076                 unsigned long ci, nr_cluster;
3077
3078                 p->flags |= SWP_SOLIDSTATE;
3079                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3080                 if (!p->cluster_next_cpu) {
3081                         error = -ENOMEM;
3082                         goto bad_swap_unlock_inode;
3083                 }
3084                 /*
3085                  * select a random position to start with to help wear leveling
3086                  * SSD
3087                  */
3088                 for_each_possible_cpu(cpu) {
3089                         per_cpu(*p->cluster_next_cpu, cpu) =
3090                                 1 + prandom_u32_max(p->highest_bit);
3091                 }
3092                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3093
3094                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3095                                         GFP_KERNEL);
3096                 if (!cluster_info) {
3097                         error = -ENOMEM;
3098                         goto bad_swap_unlock_inode;
3099                 }
3100
3101                 for (ci = 0; ci < nr_cluster; ci++)
3102                         spin_lock_init(&((cluster_info + ci)->lock));
3103
3104                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3105                 if (!p->percpu_cluster) {
3106                         error = -ENOMEM;
3107                         goto bad_swap_unlock_inode;
3108                 }
3109                 for_each_possible_cpu(cpu) {
3110                         struct percpu_cluster *cluster;
3111                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3112                         cluster_set_null(&cluster->index);
3113                 }
3114         } else {
3115                 atomic_inc(&nr_rotate_swap);
3116                 inced_nr_rotate_swap = true;
3117         }
3118
3119         error = swap_cgroup_swapon(p->type, maxpages);
3120         if (error)
3121                 goto bad_swap_unlock_inode;
3122
3123         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3124                 cluster_info, maxpages, &span);
3125         if (unlikely(nr_extents < 0)) {
3126                 error = nr_extents;
3127                 goto bad_swap_unlock_inode;
3128         }
3129         /* frontswap enabled? set up bit-per-page map for frontswap */
3130         if (IS_ENABLED(CONFIG_FRONTSWAP))
3131                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3132                                          sizeof(long),
3133                                          GFP_KERNEL);
3134
3135         if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3136                 /*
3137                  * When discard is enabled for swap with no particular
3138                  * policy flagged, we set all swap discard flags here in
3139                  * order to sustain backward compatibility with older
3140                  * swapon(8) releases.
3141                  */
3142                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3143                              SWP_PAGE_DISCARD);
3144
3145                 /*
3146                  * By flagging sys_swapon, a sysadmin can tell us to
3147                  * either do single-time area discards only, or to just
3148                  * perform discards for released swap page-clusters.
3149                  * Now it's time to adjust the p->flags accordingly.
3150                  */
3151                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3152                         p->flags &= ~SWP_PAGE_DISCARD;
3153                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3154                         p->flags &= ~SWP_AREA_DISCARD;
3155
3156                 /* issue a swapon-time discard if it's still required */
3157                 if (p->flags & SWP_AREA_DISCARD) {
3158                         int err = discard_swap(p);
3159                         if (unlikely(err))
3160                                 pr_err("swapon: discard_swap(%p): %d\n",
3161                                         p, err);
3162                 }
3163         }
3164
3165         error = init_swap_address_space(p->type, maxpages);
3166         if (error)
3167                 goto bad_swap_unlock_inode;
3168
3169         /*
3170          * Flush any pending IO and dirty mappings before we start using this
3171          * swap device.
3172          */
3173         inode->i_flags |= S_SWAPFILE;
3174         error = inode_drain_writes(inode);
3175         if (error) {
3176                 inode->i_flags &= ~S_SWAPFILE;
3177                 goto free_swap_address_space;
3178         }
3179
3180         mutex_lock(&swapon_mutex);
3181         prio = -1;
3182         if (swap_flags & SWAP_FLAG_PREFER)
3183                 prio =
3184                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3185         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3186
3187         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3188                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3189                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3190                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3191                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3192                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3193                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3194                 (frontswap_map) ? "FS" : "");
3195
3196         mutex_unlock(&swapon_mutex);
3197         atomic_inc(&proc_poll_event);
3198         wake_up_interruptible(&proc_poll_wait);
3199
3200         error = 0;
3201         goto out;
3202 free_swap_address_space:
3203         exit_swap_address_space(p->type);
3204 bad_swap_unlock_inode:
3205         inode_unlock(inode);
3206 bad_swap:
3207         free_percpu(p->percpu_cluster);
3208         p->percpu_cluster = NULL;
3209         free_percpu(p->cluster_next_cpu);
3210         p->cluster_next_cpu = NULL;
3211         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3212                 set_blocksize(p->bdev, p->old_block_size);
3213                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3214         }
3215         inode = NULL;
3216         destroy_swap_extents(p);
3217         swap_cgroup_swapoff(p->type);
3218         spin_lock(&swap_lock);
3219         p->swap_file = NULL;
3220         p->flags = 0;
3221         spin_unlock(&swap_lock);
3222         vfree(swap_map);
3223         kvfree(cluster_info);
3224         kvfree(frontswap_map);
3225         if (inced_nr_rotate_swap)
3226                 atomic_dec(&nr_rotate_swap);
3227         if (swap_file)
3228                 filp_close(swap_file, NULL);
3229 out:
3230         if (page && !IS_ERR(page)) {
3231                 kunmap(page);
3232                 put_page(page);
3233         }
3234         if (name)
3235                 putname(name);
3236         if (inode)
3237                 inode_unlock(inode);
3238         if (!error)
3239                 enable_swap_slots_cache();
3240         return error;
3241 }
3242
3243 void si_swapinfo(struct sysinfo *val)
3244 {
3245         unsigned int type;
3246         unsigned long nr_to_be_unused = 0;
3247
3248         spin_lock(&swap_lock);
3249         for (type = 0; type < nr_swapfiles; type++) {
3250                 struct swap_info_struct *si = swap_info[type];
3251
3252                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253                         nr_to_be_unused += si->inuse_pages;
3254         }
3255         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256         val->totalswap = total_swap_pages + nr_to_be_unused;
3257         spin_unlock(&swap_lock);
3258 }
3259
3260 /*
3261  * Verify that a swap entry is valid and increment its swap map count.
3262  *
3263  * Returns error code in following case.
3264  * - success -> 0
3265  * - swp_entry is invalid -> EINVAL
3266  * - swp_entry is migration entry -> EINVAL
3267  * - swap-cache reference is requested but there is already one. -> EEXIST
3268  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270  */
3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272 {
3273         struct swap_info_struct *p;
3274         struct swap_cluster_info *ci;
3275         unsigned long offset;
3276         unsigned char count;
3277         unsigned char has_cache;
3278         int err;
3279
3280         p = get_swap_device(entry);
3281         if (!p)
3282                 return -EINVAL;
3283
3284         offset = swp_offset(entry);
3285         ci = lock_cluster_or_swap_info(p, offset);
3286
3287         count = p->swap_map[offset];
3288
3289         /*
3290          * swapin_readahead() doesn't check if a swap entry is valid, so the
3291          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3292          */
3293         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3294                 err = -ENOENT;
3295                 goto unlock_out;
3296         }
3297
3298         has_cache = count & SWAP_HAS_CACHE;
3299         count &= ~SWAP_HAS_CACHE;
3300         err = 0;
3301
3302         if (usage == SWAP_HAS_CACHE) {
3303
3304                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3305                 if (!has_cache && count)
3306                         has_cache = SWAP_HAS_CACHE;
3307                 else if (has_cache)             /* someone else added cache */
3308                         err = -EEXIST;
3309                 else                            /* no users remaining */
3310                         err = -ENOENT;
3311
3312         } else if (count || has_cache) {
3313
3314                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3315                         count += usage;
3316                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3317                         err = -EINVAL;
3318                 else if (swap_count_continued(p, offset, count))
3319                         count = COUNT_CONTINUED;
3320                 else
3321                         err = -ENOMEM;
3322         } else
3323                 err = -ENOENT;                  /* unused swap entry */
3324
3325         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3326
3327 unlock_out:
3328         unlock_cluster_or_swap_info(p, ci);
3329         if (p)
3330                 put_swap_device(p);
3331         return err;
3332 }
3333
3334 /*
3335  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3336  * (in which case its reference count is never incremented).
3337  */
3338 void swap_shmem_alloc(swp_entry_t entry)
3339 {
3340         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3341 }
3342
3343 /*
3344  * Increase reference count of swap entry by 1.
3345  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3346  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3347  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3348  * might occur if a page table entry has got corrupted.
3349  */
3350 int swap_duplicate(swp_entry_t entry)
3351 {
3352         int err = 0;
3353
3354         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3355                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3356         return err;
3357 }
3358
3359 /*
3360  * @entry: swap entry for which we allocate swap cache.
3361  *
3362  * Called when allocating swap cache for existing swap entry,
3363  * This can return error codes. Returns 0 at success.
3364  * -EEXIST means there is a swap cache.
3365  * Note: return code is different from swap_duplicate().
3366  */
3367 int swapcache_prepare(swp_entry_t entry)
3368 {
3369         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3370 }
3371
3372 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3373 {
3374         return swap_type_to_swap_info(swp_type(entry));
3375 }
3376
3377 struct swap_info_struct *page_swap_info(struct page *page)
3378 {
3379         swp_entry_t entry = { .val = page_private(page) };
3380         return swp_swap_info(entry);
3381 }
3382
3383 /*
3384  * out-of-line methods to avoid include hell.
3385  */
3386 struct address_space *swapcache_mapping(struct folio *folio)
3387 {
3388         return page_swap_info(&folio->page)->swap_file->f_mapping;
3389 }
3390 EXPORT_SYMBOL_GPL(swapcache_mapping);
3391
3392 pgoff_t __page_file_index(struct page *page)
3393 {
3394         swp_entry_t swap = { .val = page_private(page) };
3395         return swp_offset(swap);
3396 }
3397 EXPORT_SYMBOL_GPL(__page_file_index);
3398
3399 /*
3400  * add_swap_count_continuation - called when a swap count is duplicated
3401  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3402  * page of the original vmalloc'ed swap_map, to hold the continuation count
3403  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3404  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3405  *
3406  * These continuation pages are seldom referenced: the common paths all work
3407  * on the original swap_map, only referring to a continuation page when the
3408  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3409  *
3410  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3411  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3412  * can be called after dropping locks.
3413  */
3414 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3415 {
3416         struct swap_info_struct *si;
3417         struct swap_cluster_info *ci;
3418         struct page *head;
3419         struct page *page;
3420         struct page *list_page;
3421         pgoff_t offset;
3422         unsigned char count;
3423         int ret = 0;
3424
3425         /*
3426          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3427          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3428          */
3429         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3430
3431         si = get_swap_device(entry);
3432         if (!si) {
3433                 /*
3434                  * An acceptable race has occurred since the failing
3435                  * __swap_duplicate(): the swap device may be swapoff
3436                  */
3437                 goto outer;
3438         }
3439         spin_lock(&si->lock);
3440
3441         offset = swp_offset(entry);
3442
3443         ci = lock_cluster(si, offset);
3444
3445         count = swap_count(si->swap_map[offset]);
3446
3447         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3448                 /*
3449                  * The higher the swap count, the more likely it is that tasks
3450                  * will race to add swap count continuation: we need to avoid
3451                  * over-provisioning.
3452                  */
3453                 goto out;
3454         }
3455
3456         if (!page) {
3457                 ret = -ENOMEM;
3458                 goto out;
3459         }
3460
3461         /*
3462          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3463          * no architecture is using highmem pages for kernel page tables: so it
3464          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3465          */
3466         head = vmalloc_to_page(si->swap_map + offset);
3467         offset &= ~PAGE_MASK;
3468
3469         spin_lock(&si->cont_lock);
3470         /*
3471          * Page allocation does not initialize the page's lru field,
3472          * but it does always reset its private field.
3473          */
3474         if (!page_private(head)) {
3475                 BUG_ON(count & COUNT_CONTINUED);
3476                 INIT_LIST_HEAD(&head->lru);
3477                 set_page_private(head, SWP_CONTINUED);
3478                 si->flags |= SWP_CONTINUED;
3479         }
3480
3481         list_for_each_entry(list_page, &head->lru, lru) {
3482                 unsigned char *map;
3483
3484                 /*
3485                  * If the previous map said no continuation, but we've found
3486                  * a continuation page, free our allocation and use this one.
3487                  */
3488                 if (!(count & COUNT_CONTINUED))
3489                         goto out_unlock_cont;
3490
3491                 map = kmap_atomic(list_page) + offset;
3492                 count = *map;
3493                 kunmap_atomic(map);
3494
3495                 /*
3496                  * If this continuation count now has some space in it,
3497                  * free our allocation and use this one.
3498                  */
3499                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3500                         goto out_unlock_cont;
3501         }
3502
3503         list_add_tail(&page->lru, &head->lru);
3504         page = NULL;                    /* now it's attached, don't free it */
3505 out_unlock_cont:
3506         spin_unlock(&si->cont_lock);
3507 out:
3508         unlock_cluster(ci);
3509         spin_unlock(&si->lock);
3510         put_swap_device(si);
3511 outer:
3512         if (page)
3513                 __free_page(page);
3514         return ret;
3515 }
3516
3517 /*
3518  * swap_count_continued - when the original swap_map count is incremented
3519  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3520  * into, carry if so, or else fail until a new continuation page is allocated;
3521  * when the original swap_map count is decremented from 0 with continuation,
3522  * borrow from the continuation and report whether it still holds more.
3523  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3524  * lock.
3525  */
3526 static bool swap_count_continued(struct swap_info_struct *si,
3527                                  pgoff_t offset, unsigned char count)
3528 {
3529         struct page *head;
3530         struct page *page;
3531         unsigned char *map;
3532         bool ret;
3533
3534         head = vmalloc_to_page(si->swap_map + offset);
3535         if (page_private(head) != SWP_CONTINUED) {
3536                 BUG_ON(count & COUNT_CONTINUED);
3537                 return false;           /* need to add count continuation */
3538         }
3539
3540         spin_lock(&si->cont_lock);
3541         offset &= ~PAGE_MASK;
3542         page = list_next_entry(head, lru);
3543         map = kmap_atomic(page) + offset;
3544
3545         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3546                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3547
3548         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3549                 /*
3550                  * Think of how you add 1 to 999
3551                  */
3552                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3553                         kunmap_atomic(map);
3554                         page = list_next_entry(page, lru);
3555                         BUG_ON(page == head);
3556                         map = kmap_atomic(page) + offset;
3557                 }
3558                 if (*map == SWAP_CONT_MAX) {
3559                         kunmap_atomic(map);
3560                         page = list_next_entry(page, lru);
3561                         if (page == head) {
3562                                 ret = false;    /* add count continuation */
3563                                 goto out;
3564                         }
3565                         map = kmap_atomic(page) + offset;
3566 init_map:               *map = 0;               /* we didn't zero the page */
3567                 }
3568                 *map += 1;
3569                 kunmap_atomic(map);
3570                 while ((page = list_prev_entry(page, lru)) != head) {
3571                         map = kmap_atomic(page) + offset;
3572                         *map = COUNT_CONTINUED;
3573                         kunmap_atomic(map);
3574                 }
3575                 ret = true;                     /* incremented */
3576
3577         } else {                                /* decrementing */
3578                 /*
3579                  * Think of how you subtract 1 from 1000
3580                  */
3581                 BUG_ON(count != COUNT_CONTINUED);
3582                 while (*map == COUNT_CONTINUED) {
3583                         kunmap_atomic(map);
3584                         page = list_next_entry(page, lru);
3585                         BUG_ON(page == head);
3586                         map = kmap_atomic(page) + offset;
3587                 }
3588                 BUG_ON(*map == 0);
3589                 *map -= 1;
3590                 if (*map == 0)
3591                         count = 0;
3592                 kunmap_atomic(map);
3593                 while ((page = list_prev_entry(page, lru)) != head) {
3594                         map = kmap_atomic(page) + offset;
3595                         *map = SWAP_CONT_MAX | count;
3596                         count = COUNT_CONTINUED;
3597                         kunmap_atomic(map);
3598                 }
3599                 ret = count == COUNT_CONTINUED;
3600         }
3601 out:
3602         spin_unlock(&si->cont_lock);
3603         return ret;
3604 }
3605
3606 /*
3607  * free_swap_count_continuations - swapoff free all the continuation pages
3608  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609  */
3610 static void free_swap_count_continuations(struct swap_info_struct *si)
3611 {
3612         pgoff_t offset;
3613
3614         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615                 struct page *head;
3616                 head = vmalloc_to_page(si->swap_map + offset);
3617                 if (page_private(head)) {
3618                         struct page *page, *next;
3619
3620                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3621                                 list_del(&page->lru);
3622                                 __free_page(page);
3623                         }
3624                 }
3625         }
3626 }
3627
3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3630 {
3631         struct swap_info_struct *si, *next;
3632         int nid = page_to_nid(page);
3633
3634         if (!(gfp_mask & __GFP_IO))
3635                 return;
3636
3637         if (!blk_cgroup_congested())
3638                 return;
3639
3640         /*
3641          * We've already scheduled a throttle, avoid taking the global swap
3642          * lock.
3643          */
3644         if (current->throttle_queue)
3645                 return;
3646
3647         spin_lock(&swap_avail_lock);
3648         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3649                                   avail_lists[nid]) {
3650                 if (si->bdev) {
3651                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3652                         break;
3653                 }
3654         }
3655         spin_unlock(&swap_avail_lock);
3656 }
3657 #endif
3658
3659 static int __init swapfile_init(void)
3660 {
3661         int nid;
3662
3663         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664                                          GFP_KERNEL);
3665         if (!swap_avail_heads) {
3666                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667                 return -ENOMEM;
3668         }
3669
3670         for_each_node(nid)
3671                 plist_head_init(&swap_avail_heads[nid]);
3672
3673         return 0;
3674 }
3675 subsys_initcall(swapfile_init);