Merge tag 'locking-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102         if (type >= READ_ONCE(nr_swapfiles))
103                 return NULL;
104
105         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
106         return READ_ONCE(swap_info[type]);
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY             0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED           0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL               0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126                                  unsigned long offset, unsigned long flags)
127 {
128         swp_entry_t entry = swp_entry(si->type, offset);
129         struct page *page;
130         int ret = 0;
131
132         page = find_get_page(swap_address_space(entry), offset);
133         if (!page)
134                 return 0;
135         /*
136          * When this function is called from scan_swap_map_slots() and it's
137          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138          * here. We have to use trylock for avoiding deadlock. This is a special
139          * case and you should use try_to_free_swap() with explicit lock_page()
140          * in usual operations.
141          */
142         if (trylock_page(page)) {
143                 if ((flags & TTRS_ANYWAY) ||
144                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146                         ret = try_to_free_swap(page);
147                 unlock_page(page);
148         }
149         put_page(page);
150         return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155         struct rb_node *rb = rb_first(&sis->swap_extent_root);
156         return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161         struct rb_node *rb = rb_next(&se->rb_node);
162         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171         struct swap_extent *se;
172         sector_t start_block;
173         sector_t nr_blocks;
174         int err = 0;
175
176         /* Do not discard the swap header page! */
177         se = first_se(si);
178         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180         if (nr_blocks) {
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         return err;
185                 cond_resched();
186         }
187
188         for (se = next_se(se); se; se = next_se(se)) {
189                 start_block = se->start_block << (PAGE_SHIFT - 9);
190                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192                 err = blkdev_issue_discard(si->bdev, start_block,
193                                 nr_blocks, GFP_KERNEL, 0);
194                 if (err)
195                         break;
196
197                 cond_resched();
198         }
199         return err;             /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205         struct swap_extent *se;
206         struct rb_node *rb;
207
208         rb = sis->swap_extent_root.rb_node;
209         while (rb) {
210                 se = rb_entry(rb, struct swap_extent, rb_node);
211                 if (offset < se->start_page)
212                         rb = rb->rb_left;
213                 else if (offset >= se->start_page + se->nr_pages)
214                         rb = rb->rb_right;
215                 else
216                         return se;
217         }
218         /* It *must* be present */
219         BUG();
220 }
221
222 /*
223  * swap allocation tell device that a cluster of swap can now be discarded,
224  * to allow the swap device to optimize its wear-levelling.
225  */
226 static void discard_swap_cluster(struct swap_info_struct *si,
227                                  pgoff_t start_page, pgoff_t nr_pages)
228 {
229         struct swap_extent *se = offset_to_swap_extent(si, start_page);
230
231         while (nr_pages) {
232                 pgoff_t offset = start_page - se->start_page;
233                 sector_t start_block = se->start_block + offset;
234                 sector_t nr_blocks = se->nr_pages - offset;
235
236                 if (nr_blocks > nr_pages)
237                         nr_blocks = nr_pages;
238                 start_page += nr_blocks;
239                 nr_pages -= nr_blocks;
240
241                 start_block <<= PAGE_SHIFT - 9;
242                 nr_blocks <<= PAGE_SHIFT - 9;
243                 if (blkdev_issue_discard(si->bdev, start_block,
244                                         nr_blocks, GFP_NOIO, 0))
245                         break;
246
247                 se = next_se(se);
248         }
249 }
250
251 #ifdef CONFIG_THP_SWAP
252 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
253
254 #define swap_entry_size(size)   (size)
255 #else
256 #define SWAPFILE_CLUSTER        256
257
258 /*
259  * Define swap_entry_size() as constant to let compiler to optimize
260  * out some code if !CONFIG_THP_SWAP
261  */
262 #define swap_entry_size(size)   1
263 #endif
264 #define LATENCY_LIMIT           256
265
266 static inline void cluster_set_flag(struct swap_cluster_info *info,
267         unsigned int flag)
268 {
269         info->flags = flag;
270 }
271
272 static inline unsigned int cluster_count(struct swap_cluster_info *info)
273 {
274         return info->data;
275 }
276
277 static inline void cluster_set_count(struct swap_cluster_info *info,
278                                      unsigned int c)
279 {
280         info->data = c;
281 }
282
283 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
284                                          unsigned int c, unsigned int f)
285 {
286         info->flags = f;
287         info->data = c;
288 }
289
290 static inline unsigned int cluster_next(struct swap_cluster_info *info)
291 {
292         return info->data;
293 }
294
295 static inline void cluster_set_next(struct swap_cluster_info *info,
296                                     unsigned int n)
297 {
298         info->data = n;
299 }
300
301 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
302                                          unsigned int n, unsigned int f)
303 {
304         info->flags = f;
305         info->data = n;
306 }
307
308 static inline bool cluster_is_free(struct swap_cluster_info *info)
309 {
310         return info->flags & CLUSTER_FLAG_FREE;
311 }
312
313 static inline bool cluster_is_null(struct swap_cluster_info *info)
314 {
315         return info->flags & CLUSTER_FLAG_NEXT_NULL;
316 }
317
318 static inline void cluster_set_null(struct swap_cluster_info *info)
319 {
320         info->flags = CLUSTER_FLAG_NEXT_NULL;
321         info->data = 0;
322 }
323
324 static inline bool cluster_is_huge(struct swap_cluster_info *info)
325 {
326         if (IS_ENABLED(CONFIG_THP_SWAP))
327                 return info->flags & CLUSTER_FLAG_HUGE;
328         return false;
329 }
330
331 static inline void cluster_clear_huge(struct swap_cluster_info *info)
332 {
333         info->flags &= ~CLUSTER_FLAG_HUGE;
334 }
335
336 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
337                                                      unsigned long offset)
338 {
339         struct swap_cluster_info *ci;
340
341         ci = si->cluster_info;
342         if (ci) {
343                 ci += offset / SWAPFILE_CLUSTER;
344                 spin_lock(&ci->lock);
345         }
346         return ci;
347 }
348
349 static inline void unlock_cluster(struct swap_cluster_info *ci)
350 {
351         if (ci)
352                 spin_unlock(&ci->lock);
353 }
354
355 /*
356  * Determine the locking method in use for this device.  Return
357  * swap_cluster_info if SSD-style cluster-based locking is in place.
358  */
359 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
360                 struct swap_info_struct *si, unsigned long offset)
361 {
362         struct swap_cluster_info *ci;
363
364         /* Try to use fine-grained SSD-style locking if available: */
365         ci = lock_cluster(si, offset);
366         /* Otherwise, fall back to traditional, coarse locking: */
367         if (!ci)
368                 spin_lock(&si->lock);
369
370         return ci;
371 }
372
373 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
374                                                struct swap_cluster_info *ci)
375 {
376         if (ci)
377                 unlock_cluster(ci);
378         else
379                 spin_unlock(&si->lock);
380 }
381
382 static inline bool cluster_list_empty(struct swap_cluster_list *list)
383 {
384         return cluster_is_null(&list->head);
385 }
386
387 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
388 {
389         return cluster_next(&list->head);
390 }
391
392 static void cluster_list_init(struct swap_cluster_list *list)
393 {
394         cluster_set_null(&list->head);
395         cluster_set_null(&list->tail);
396 }
397
398 static void cluster_list_add_tail(struct swap_cluster_list *list,
399                                   struct swap_cluster_info *ci,
400                                   unsigned int idx)
401 {
402         if (cluster_list_empty(list)) {
403                 cluster_set_next_flag(&list->head, idx, 0);
404                 cluster_set_next_flag(&list->tail, idx, 0);
405         } else {
406                 struct swap_cluster_info *ci_tail;
407                 unsigned int tail = cluster_next(&list->tail);
408
409                 /*
410                  * Nested cluster lock, but both cluster locks are
411                  * only acquired when we held swap_info_struct->lock
412                  */
413                 ci_tail = ci + tail;
414                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
415                 cluster_set_next(ci_tail, idx);
416                 spin_unlock(&ci_tail->lock);
417                 cluster_set_next_flag(&list->tail, idx, 0);
418         }
419 }
420
421 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
422                                            struct swap_cluster_info *ci)
423 {
424         unsigned int idx;
425
426         idx = cluster_next(&list->head);
427         if (cluster_next(&list->tail) == idx) {
428                 cluster_set_null(&list->head);
429                 cluster_set_null(&list->tail);
430         } else
431                 cluster_set_next_flag(&list->head,
432                                       cluster_next(&ci[idx]), 0);
433
434         return idx;
435 }
436
437 /* Add a cluster to discard list and schedule it to do discard */
438 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
439                 unsigned int idx)
440 {
441         /*
442          * If scan_swap_map() can't find a free cluster, it will check
443          * si->swap_map directly. To make sure the discarding cluster isn't
444          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
445          * will be cleared after discard
446          */
447         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
449
450         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
451
452         schedule_work(&si->discard_work);
453 }
454
455 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457         struct swap_cluster_info *ci = si->cluster_info;
458
459         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
460         cluster_list_add_tail(&si->free_clusters, ci, idx);
461 }
462
463 /*
464  * Doing discard actually. After a cluster discard is finished, the cluster
465  * will be added to free cluster list. caller should hold si->lock.
466 */
467 static void swap_do_scheduled_discard(struct swap_info_struct *si)
468 {
469         struct swap_cluster_info *info, *ci;
470         unsigned int idx;
471
472         info = si->cluster_info;
473
474         while (!cluster_list_empty(&si->discard_clusters)) {
475                 idx = cluster_list_del_first(&si->discard_clusters, info);
476                 spin_unlock(&si->lock);
477
478                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
479                                 SWAPFILE_CLUSTER);
480
481                 spin_lock(&si->lock);
482                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
483                 __free_cluster(si, idx);
484                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
485                                 0, SWAPFILE_CLUSTER);
486                 unlock_cluster(ci);
487         }
488 }
489
490 static void swap_discard_work(struct work_struct *work)
491 {
492         struct swap_info_struct *si;
493
494         si = container_of(work, struct swap_info_struct, discard_work);
495
496         spin_lock(&si->lock);
497         swap_do_scheduled_discard(si);
498         spin_unlock(&si->lock);
499 }
500
501 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
502 {
503         struct swap_cluster_info *ci = si->cluster_info;
504
505         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
506         cluster_list_del_first(&si->free_clusters, ci);
507         cluster_set_count_flag(ci + idx, 0, 0);
508 }
509
510 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
511 {
512         struct swap_cluster_info *ci = si->cluster_info + idx;
513
514         VM_BUG_ON(cluster_count(ci) != 0);
515         /*
516          * If the swap is discardable, prepare discard the cluster
517          * instead of free it immediately. The cluster will be freed
518          * after discard.
519          */
520         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
521             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
522                 swap_cluster_schedule_discard(si, idx);
523                 return;
524         }
525
526         __free_cluster(si, idx);
527 }
528
529 /*
530  * The cluster corresponding to page_nr will be used. The cluster will be
531  * removed from free cluster list and its usage counter will be increased.
532  */
533 static void inc_cluster_info_page(struct swap_info_struct *p,
534         struct swap_cluster_info *cluster_info, unsigned long page_nr)
535 {
536         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
537
538         if (!cluster_info)
539                 return;
540         if (cluster_is_free(&cluster_info[idx]))
541                 alloc_cluster(p, idx);
542
543         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
544         cluster_set_count(&cluster_info[idx],
545                 cluster_count(&cluster_info[idx]) + 1);
546 }
547
548 /*
549  * The cluster corresponding to page_nr decreases one usage. If the usage
550  * counter becomes 0, which means no page in the cluster is in using, we can
551  * optionally discard the cluster and add it to free cluster list.
552  */
553 static void dec_cluster_info_page(struct swap_info_struct *p,
554         struct swap_cluster_info *cluster_info, unsigned long page_nr)
555 {
556         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
557
558         if (!cluster_info)
559                 return;
560
561         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
562         cluster_set_count(&cluster_info[idx],
563                 cluster_count(&cluster_info[idx]) - 1);
564
565         if (cluster_count(&cluster_info[idx]) == 0)
566                 free_cluster(p, idx);
567 }
568
569 /*
570  * It's possible scan_swap_map() uses a free cluster in the middle of free
571  * cluster list. Avoiding such abuse to avoid list corruption.
572  */
573 static bool
574 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
575         unsigned long offset)
576 {
577         struct percpu_cluster *percpu_cluster;
578         bool conflict;
579
580         offset /= SWAPFILE_CLUSTER;
581         conflict = !cluster_list_empty(&si->free_clusters) &&
582                 offset != cluster_list_first(&si->free_clusters) &&
583                 cluster_is_free(&si->cluster_info[offset]);
584
585         if (!conflict)
586                 return false;
587
588         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
589         cluster_set_null(&percpu_cluster->index);
590         return true;
591 }
592
593 /*
594  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
595  * might involve allocating a new cluster for current CPU too.
596  */
597 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
598         unsigned long *offset, unsigned long *scan_base)
599 {
600         struct percpu_cluster *cluster;
601         struct swap_cluster_info *ci;
602         unsigned long tmp, max;
603
604 new_cluster:
605         cluster = this_cpu_ptr(si->percpu_cluster);
606         if (cluster_is_null(&cluster->index)) {
607                 if (!cluster_list_empty(&si->free_clusters)) {
608                         cluster->index = si->free_clusters.head;
609                         cluster->next = cluster_next(&cluster->index) *
610                                         SWAPFILE_CLUSTER;
611                 } else if (!cluster_list_empty(&si->discard_clusters)) {
612                         /*
613                          * we don't have free cluster but have some clusters in
614                          * discarding, do discard now and reclaim them, then
615                          * reread cluster_next_cpu since we dropped si->lock
616                          */
617                         swap_do_scheduled_discard(si);
618                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
619                         *offset = *scan_base;
620                         goto new_cluster;
621                 } else
622                         return false;
623         }
624
625         /*
626          * Other CPUs can use our cluster if they can't find a free cluster,
627          * check if there is still free entry in the cluster
628          */
629         tmp = cluster->next;
630         max = min_t(unsigned long, si->max,
631                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632         if (tmp < max) {
633                 ci = lock_cluster(si, tmp);
634                 while (tmp < max) {
635                         if (!si->swap_map[tmp])
636                                 break;
637                         tmp++;
638                 }
639                 unlock_cluster(ci);
640         }
641         if (tmp >= max) {
642                 cluster_set_null(&cluster->index);
643                 goto new_cluster;
644         }
645         cluster->next = tmp + 1;
646         *offset = tmp;
647         *scan_base = tmp;
648         return true;
649 }
650
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653         int nid;
654
655         for_each_node(nid)
656                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661         spin_lock(&swap_avail_lock);
662         __del_from_avail_list(p);
663         spin_unlock(&swap_avail_lock);
664 }
665
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667                              unsigned int nr_entries)
668 {
669         unsigned int end = offset + nr_entries - 1;
670
671         if (offset == si->lowest_bit)
672                 si->lowest_bit += nr_entries;
673         if (end == si->highest_bit)
674                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
675         si->inuse_pages += nr_entries;
676         if (si->inuse_pages == si->pages) {
677                 si->lowest_bit = si->max;
678                 si->highest_bit = 0;
679                 del_from_avail_list(si);
680         }
681 }
682
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685         int nid;
686
687         spin_lock(&swap_avail_lock);
688         for_each_node(nid) {
689                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691         }
692         spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696                             unsigned int nr_entries)
697 {
698         unsigned long begin = offset;
699         unsigned long end = offset + nr_entries - 1;
700         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701
702         if (offset < si->lowest_bit)
703                 si->lowest_bit = offset;
704         if (end > si->highest_bit) {
705                 bool was_full = !si->highest_bit;
706
707                 WRITE_ONCE(si->highest_bit, end);
708                 if (was_full && (si->flags & SWP_WRITEOK))
709                         add_to_avail_list(si);
710         }
711         atomic_long_add(nr_entries, &nr_swap_pages);
712         si->inuse_pages -= nr_entries;
713         if (si->flags & SWP_BLKDEV)
714                 swap_slot_free_notify =
715                         si->bdev->bd_disk->fops->swap_slot_free_notify;
716         else
717                 swap_slot_free_notify = NULL;
718         while (offset <= end) {
719                 arch_swap_invalidate_page(si->type, offset);
720                 frontswap_invalidate_page(si->type, offset);
721                 if (swap_slot_free_notify)
722                         swap_slot_free_notify(si->bdev, offset);
723                 offset++;
724         }
725         clear_shadow_from_swap_cache(si->type, begin, end);
726 }
727
728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
729 {
730         unsigned long prev;
731
732         if (!(si->flags & SWP_SOLIDSTATE)) {
733                 si->cluster_next = next;
734                 return;
735         }
736
737         prev = this_cpu_read(*si->cluster_next_cpu);
738         /*
739          * Cross the swap address space size aligned trunk, choose
740          * another trunk randomly to avoid lock contention on swap
741          * address space if possible.
742          */
743         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
744             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
745                 /* No free swap slots available */
746                 if (si->highest_bit <= si->lowest_bit)
747                         return;
748                 next = si->lowest_bit +
749                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
750                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
751                 next = max_t(unsigned int, next, si->lowest_bit);
752         }
753         this_cpu_write(*si->cluster_next_cpu, next);
754 }
755
756 static int scan_swap_map_slots(struct swap_info_struct *si,
757                                unsigned char usage, int nr,
758                                swp_entry_t slots[])
759 {
760         struct swap_cluster_info *ci;
761         unsigned long offset;
762         unsigned long scan_base;
763         unsigned long last_in_cluster = 0;
764         int latency_ration = LATENCY_LIMIT;
765         int n_ret = 0;
766         bool scanned_many = false;
767
768         /*
769          * We try to cluster swap pages by allocating them sequentially
770          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
771          * way, however, we resort to first-free allocation, starting
772          * a new cluster.  This prevents us from scattering swap pages
773          * all over the entire swap partition, so that we reduce
774          * overall disk seek times between swap pages.  -- sct
775          * But we do now try to find an empty cluster.  -Andrea
776          * And we let swap pages go all over an SSD partition.  Hugh
777          */
778
779         si->flags += SWP_SCANNING;
780         /*
781          * Use percpu scan base for SSD to reduce lock contention on
782          * cluster and swap cache.  For HDD, sequential access is more
783          * important.
784          */
785         if (si->flags & SWP_SOLIDSTATE)
786                 scan_base = this_cpu_read(*si->cluster_next_cpu);
787         else
788                 scan_base = si->cluster_next;
789         offset = scan_base;
790
791         /* SSD algorithm */
792         if (si->cluster_info) {
793                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
794                         goto scan;
795         } else if (unlikely(!si->cluster_nr--)) {
796                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
797                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
798                         goto checks;
799                 }
800
801                 spin_unlock(&si->lock);
802
803                 /*
804                  * If seek is expensive, start searching for new cluster from
805                  * start of partition, to minimize the span of allocated swap.
806                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
807                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
808                  */
809                 scan_base = offset = si->lowest_bit;
810                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
811
812                 /* Locate the first empty (unaligned) cluster */
813                 for (; last_in_cluster <= si->highest_bit; offset++) {
814                         if (si->swap_map[offset])
815                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
816                         else if (offset == last_in_cluster) {
817                                 spin_lock(&si->lock);
818                                 offset -= SWAPFILE_CLUSTER - 1;
819                                 si->cluster_next = offset;
820                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
821                                 goto checks;
822                         }
823                         if (unlikely(--latency_ration < 0)) {
824                                 cond_resched();
825                                 latency_ration = LATENCY_LIMIT;
826                         }
827                 }
828
829                 offset = scan_base;
830                 spin_lock(&si->lock);
831                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
832         }
833
834 checks:
835         if (si->cluster_info) {
836                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
837                 /* take a break if we already got some slots */
838                         if (n_ret)
839                                 goto done;
840                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
841                                                         &scan_base))
842                                 goto scan;
843                 }
844         }
845         if (!(si->flags & SWP_WRITEOK))
846                 goto no_page;
847         if (!si->highest_bit)
848                 goto no_page;
849         if (offset > si->highest_bit)
850                 scan_base = offset = si->lowest_bit;
851
852         ci = lock_cluster(si, offset);
853         /* reuse swap entry of cache-only swap if not busy. */
854         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855                 int swap_was_freed;
856                 unlock_cluster(ci);
857                 spin_unlock(&si->lock);
858                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
859                 spin_lock(&si->lock);
860                 /* entry was freed successfully, try to use this again */
861                 if (swap_was_freed)
862                         goto checks;
863                 goto scan; /* check next one */
864         }
865
866         if (si->swap_map[offset]) {
867                 unlock_cluster(ci);
868                 if (!n_ret)
869                         goto scan;
870                 else
871                         goto done;
872         }
873         WRITE_ONCE(si->swap_map[offset], usage);
874         inc_cluster_info_page(si, si->cluster_info, offset);
875         unlock_cluster(ci);
876
877         swap_range_alloc(si, offset, 1);
878         slots[n_ret++] = swp_entry(si->type, offset);
879
880         /* got enough slots or reach max slots? */
881         if ((n_ret == nr) || (offset >= si->highest_bit))
882                 goto done;
883
884         /* search for next available slot */
885
886         /* time to take a break? */
887         if (unlikely(--latency_ration < 0)) {
888                 if (n_ret)
889                         goto done;
890                 spin_unlock(&si->lock);
891                 cond_resched();
892                 spin_lock(&si->lock);
893                 latency_ration = LATENCY_LIMIT;
894         }
895
896         /* try to get more slots in cluster */
897         if (si->cluster_info) {
898                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
899                         goto checks;
900         } else if (si->cluster_nr && !si->swap_map[++offset]) {
901                 /* non-ssd case, still more slots in cluster? */
902                 --si->cluster_nr;
903                 goto checks;
904         }
905
906         /*
907          * Even if there's no free clusters available (fragmented),
908          * try to scan a little more quickly with lock held unless we
909          * have scanned too many slots already.
910          */
911         if (!scanned_many) {
912                 unsigned long scan_limit;
913
914                 if (offset < scan_base)
915                         scan_limit = scan_base;
916                 else
917                         scan_limit = si->highest_bit;
918                 for (; offset <= scan_limit && --latency_ration > 0;
919                      offset++) {
920                         if (!si->swap_map[offset])
921                                 goto checks;
922                 }
923         }
924
925 done:
926         set_cluster_next(si, offset + 1);
927         si->flags -= SWP_SCANNING;
928         return n_ret;
929
930 scan:
931         spin_unlock(&si->lock);
932         while (++offset <= READ_ONCE(si->highest_bit)) {
933                 if (data_race(!si->swap_map[offset])) {
934                         spin_lock(&si->lock);
935                         goto checks;
936                 }
937                 if (vm_swap_full() &&
938                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
939                         spin_lock(&si->lock);
940                         goto checks;
941                 }
942                 if (unlikely(--latency_ration < 0)) {
943                         cond_resched();
944                         latency_ration = LATENCY_LIMIT;
945                         scanned_many = true;
946                 }
947         }
948         offset = si->lowest_bit;
949         while (offset < scan_base) {
950                 if (data_race(!si->swap_map[offset])) {
951                         spin_lock(&si->lock);
952                         goto checks;
953                 }
954                 if (vm_swap_full() &&
955                     READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
956                         spin_lock(&si->lock);
957                         goto checks;
958                 }
959                 if (unlikely(--latency_ration < 0)) {
960                         cond_resched();
961                         latency_ration = LATENCY_LIMIT;
962                         scanned_many = true;
963                 }
964                 offset++;
965         }
966         spin_lock(&si->lock);
967
968 no_page:
969         si->flags -= SWP_SCANNING;
970         return n_ret;
971 }
972
973 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
974 {
975         unsigned long idx;
976         struct swap_cluster_info *ci;
977         unsigned long offset;
978
979         /*
980          * Should not even be attempting cluster allocations when huge
981          * page swap is disabled.  Warn and fail the allocation.
982          */
983         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
984                 VM_WARN_ON_ONCE(1);
985                 return 0;
986         }
987
988         if (cluster_list_empty(&si->free_clusters))
989                 return 0;
990
991         idx = cluster_list_first(&si->free_clusters);
992         offset = idx * SWAPFILE_CLUSTER;
993         ci = lock_cluster(si, offset);
994         alloc_cluster(si, idx);
995         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
996
997         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
998         unlock_cluster(ci);
999         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000         *slot = swp_entry(si->type, offset);
1001
1002         return 1;
1003 }
1004
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007         unsigned long offset = idx * SWAPFILE_CLUSTER;
1008         struct swap_cluster_info *ci;
1009
1010         ci = lock_cluster(si, offset);
1011         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012         cluster_set_count_flag(ci, 0, 0);
1013         free_cluster(si, idx);
1014         unlock_cluster(ci);
1015         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019                                    unsigned char usage)
1020 {
1021         swp_entry_t entry;
1022         int n_ret;
1023
1024         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025
1026         if (n_ret)
1027                 return swp_offset(entry);
1028         else
1029                 return 0;
1030
1031 }
1032
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035         unsigned long size = swap_entry_size(entry_size);
1036         struct swap_info_struct *si, *next;
1037         long avail_pgs;
1038         int n_ret = 0;
1039         int node;
1040
1041         /* Only single cluster request supported */
1042         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043
1044         spin_lock(&swap_avail_lock);
1045
1046         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1047         if (avail_pgs <= 0) {
1048                 spin_unlock(&swap_avail_lock);
1049                 goto noswap;
1050         }
1051
1052         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053
1054         atomic_long_sub(n_goal * size, &nr_swap_pages);
1055
1056 start_over:
1057         node = numa_node_id();
1058         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1059                 /* requeue si to after same-priority siblings */
1060                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1061                 spin_unlock(&swap_avail_lock);
1062                 spin_lock(&si->lock);
1063                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1064                         spin_lock(&swap_avail_lock);
1065                         if (plist_node_empty(&si->avail_lists[node])) {
1066                                 spin_unlock(&si->lock);
1067                                 goto nextsi;
1068                         }
1069                         WARN(!si->highest_bit,
1070                              "swap_info %d in list but !highest_bit\n",
1071                              si->type);
1072                         WARN(!(si->flags & SWP_WRITEOK),
1073                              "swap_info %d in list but !SWP_WRITEOK\n",
1074                              si->type);
1075                         __del_from_avail_list(si);
1076                         spin_unlock(&si->lock);
1077                         goto nextsi;
1078                 }
1079                 if (size == SWAPFILE_CLUSTER) {
1080                         if (si->flags & SWP_BLKDEV)
1081                                 n_ret = swap_alloc_cluster(si, swp_entries);
1082                 } else
1083                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1084                                                     n_goal, swp_entries);
1085                 spin_unlock(&si->lock);
1086                 if (n_ret || size == SWAPFILE_CLUSTER)
1087                         goto check_out;
1088                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1089                         si->type);
1090
1091                 spin_lock(&swap_avail_lock);
1092 nextsi:
1093                 /*
1094                  * if we got here, it's likely that si was almost full before,
1095                  * and since scan_swap_map() can drop the si->lock, multiple
1096                  * callers probably all tried to get a page from the same si
1097                  * and it filled up before we could get one; or, the si filled
1098                  * up between us dropping swap_avail_lock and taking si->lock.
1099                  * Since we dropped the swap_avail_lock, the swap_avail_head
1100                  * list may have been modified; so if next is still in the
1101                  * swap_avail_head list then try it, otherwise start over
1102                  * if we have not gotten any slots.
1103                  */
1104                 if (plist_node_empty(&next->avail_lists[node]))
1105                         goto start_over;
1106         }
1107
1108         spin_unlock(&swap_avail_lock);
1109
1110 check_out:
1111         if (n_ret < n_goal)
1112                 atomic_long_add((long)(n_goal - n_ret) * size,
1113                                 &nr_swap_pages);
1114 noswap:
1115         return n_ret;
1116 }
1117
1118 /* The only caller of this function is now suspend routine */
1119 swp_entry_t get_swap_page_of_type(int type)
1120 {
1121         struct swap_info_struct *si = swap_type_to_swap_info(type);
1122         pgoff_t offset;
1123
1124         if (!si)
1125                 goto fail;
1126
1127         spin_lock(&si->lock);
1128         if (si->flags & SWP_WRITEOK) {
1129                 /* This is called for allocating swap entry, not cache */
1130                 offset = scan_swap_map(si, 1);
1131                 if (offset) {
1132                         atomic_long_dec(&nr_swap_pages);
1133                         spin_unlock(&si->lock);
1134                         return swp_entry(type, offset);
1135                 }
1136         }
1137         spin_unlock(&si->lock);
1138 fail:
1139         return (swp_entry_t) {0};
1140 }
1141
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144         struct swap_info_struct *p;
1145         unsigned long offset;
1146
1147         if (!entry.val)
1148                 goto out;
1149         p = swp_swap_info(entry);
1150         if (!p)
1151                 goto bad_nofile;
1152         if (data_race(!(p->flags & SWP_USED)))
1153                 goto bad_device;
1154         offset = swp_offset(entry);
1155         if (offset >= p->max)
1156                 goto bad_offset;
1157         return p;
1158
1159 bad_offset:
1160         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1161         goto out;
1162 bad_device:
1163         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1164         goto out;
1165 bad_nofile:
1166         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1167 out:
1168         return NULL;
1169 }
1170
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173         struct swap_info_struct *p;
1174
1175         p = __swap_info_get(entry);
1176         if (!p)
1177                 goto out;
1178         if (data_race(!p->swap_map[swp_offset(entry)]))
1179                 goto bad_free;
1180         return p;
1181
1182 bad_free:
1183         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1184 out:
1185         return NULL;
1186 }
1187
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190         struct swap_info_struct *p;
1191
1192         p = _swap_info_get(entry);
1193         if (p)
1194                 spin_lock(&p->lock);
1195         return p;
1196 }
1197
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199                                         struct swap_info_struct *q)
1200 {
1201         struct swap_info_struct *p;
1202
1203         p = _swap_info_get(entry);
1204
1205         if (p != q) {
1206                 if (q != NULL)
1207                         spin_unlock(&q->lock);
1208                 if (p != NULL)
1209                         spin_lock(&p->lock);
1210         }
1211         return p;
1212 }
1213
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215                                               unsigned long offset,
1216                                               unsigned char usage)
1217 {
1218         unsigned char count;
1219         unsigned char has_cache;
1220
1221         count = p->swap_map[offset];
1222
1223         has_cache = count & SWAP_HAS_CACHE;
1224         count &= ~SWAP_HAS_CACHE;
1225
1226         if (usage == SWAP_HAS_CACHE) {
1227                 VM_BUG_ON(!has_cache);
1228                 has_cache = 0;
1229         } else if (count == SWAP_MAP_SHMEM) {
1230                 /*
1231                  * Or we could insist on shmem.c using a special
1232                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1233                  */
1234                 count = 0;
1235         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236                 if (count == COUNT_CONTINUED) {
1237                         if (swap_count_continued(p, offset, count))
1238                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239                         else
1240                                 count = SWAP_MAP_MAX;
1241                 } else
1242                         count--;
1243         }
1244
1245         usage = count | has_cache;
1246         if (usage)
1247                 WRITE_ONCE(p->swap_map[offset], usage);
1248         else
1249                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1250
1251         return usage;
1252 }
1253
1254 /*
1255  * Check whether swap entry is valid in the swap device.  If so,
1256  * return pointer to swap_info_struct, and keep the swap entry valid
1257  * via preventing the swap device from being swapoff, until
1258  * put_swap_device() is called.  Otherwise return NULL.
1259  *
1260  * The entirety of the RCU read critical section must come before the
1261  * return from or after the call to synchronize_rcu() in
1262  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1263  * true, the si->map, si->cluster_info, etc. must be valid in the
1264  * critical section.
1265  *
1266  * Notice that swapoff or swapoff+swapon can still happen before the
1267  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1268  * in put_swap_device() if there isn't any other way to prevent
1269  * swapoff, such as page lock, page table lock, etc.  The caller must
1270  * be prepared for that.  For example, the following situation is
1271  * possible.
1272  *
1273  *   CPU1                               CPU2
1274  *   do_swap_page()
1275  *     ...                              swapoff+swapon
1276  *     __read_swap_cache_async()
1277  *       swapcache_prepare()
1278  *         __swap_duplicate()
1279  *           // check swap_map
1280  *     // verify PTE not changed
1281  *
1282  * In __swap_duplicate(), the swap_map need to be checked before
1283  * changing partly because the specified swap entry may be for another
1284  * swap device which has been swapoff.  And in do_swap_page(), after
1285  * the page is read from the swap device, the PTE is verified not
1286  * changed with the page table locked to check whether the swap device
1287  * has been swapoff or swapoff+swapon.
1288  */
1289 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1290 {
1291         struct swap_info_struct *si;
1292         unsigned long offset;
1293
1294         if (!entry.val)
1295                 goto out;
1296         si = swp_swap_info(entry);
1297         if (!si)
1298                 goto bad_nofile;
1299
1300         rcu_read_lock();
1301         if (data_race(!(si->flags & SWP_VALID)))
1302                 goto unlock_out;
1303         offset = swp_offset(entry);
1304         if (offset >= si->max)
1305                 goto unlock_out;
1306
1307         return si;
1308 bad_nofile:
1309         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1310 out:
1311         return NULL;
1312 unlock_out:
1313         rcu_read_unlock();
1314         return NULL;
1315 }
1316
1317 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1318                                        swp_entry_t entry)
1319 {
1320         struct swap_cluster_info *ci;
1321         unsigned long offset = swp_offset(entry);
1322         unsigned char usage;
1323
1324         ci = lock_cluster_or_swap_info(p, offset);
1325         usage = __swap_entry_free_locked(p, offset, 1);
1326         unlock_cluster_or_swap_info(p, ci);
1327         if (!usage)
1328                 free_swap_slot(entry);
1329
1330         return usage;
1331 }
1332
1333 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1334 {
1335         struct swap_cluster_info *ci;
1336         unsigned long offset = swp_offset(entry);
1337         unsigned char count;
1338
1339         ci = lock_cluster(p, offset);
1340         count = p->swap_map[offset];
1341         VM_BUG_ON(count != SWAP_HAS_CACHE);
1342         p->swap_map[offset] = 0;
1343         dec_cluster_info_page(p, p->cluster_info, offset);
1344         unlock_cluster(ci);
1345
1346         mem_cgroup_uncharge_swap(entry, 1);
1347         swap_range_free(p, offset, 1);
1348 }
1349
1350 /*
1351  * Caller has made sure that the swap device corresponding to entry
1352  * is still around or has not been recycled.
1353  */
1354 void swap_free(swp_entry_t entry)
1355 {
1356         struct swap_info_struct *p;
1357
1358         p = _swap_info_get(entry);
1359         if (p)
1360                 __swap_entry_free(p, entry);
1361 }
1362
1363 /*
1364  * Called after dropping swapcache to decrease refcnt to swap entries.
1365  */
1366 void put_swap_page(struct page *page, swp_entry_t entry)
1367 {
1368         unsigned long offset = swp_offset(entry);
1369         unsigned long idx = offset / SWAPFILE_CLUSTER;
1370         struct swap_cluster_info *ci;
1371         struct swap_info_struct *si;
1372         unsigned char *map;
1373         unsigned int i, free_entries = 0;
1374         unsigned char val;
1375         int size = swap_entry_size(thp_nr_pages(page));
1376
1377         si = _swap_info_get(entry);
1378         if (!si)
1379                 return;
1380
1381         ci = lock_cluster_or_swap_info(si, offset);
1382         if (size == SWAPFILE_CLUSTER) {
1383                 VM_BUG_ON(!cluster_is_huge(ci));
1384                 map = si->swap_map + offset;
1385                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1386                         val = map[i];
1387                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1388                         if (val == SWAP_HAS_CACHE)
1389                                 free_entries++;
1390                 }
1391                 cluster_clear_huge(ci);
1392                 if (free_entries == SWAPFILE_CLUSTER) {
1393                         unlock_cluster_or_swap_info(si, ci);
1394                         spin_lock(&si->lock);
1395                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1396                         swap_free_cluster(si, idx);
1397                         spin_unlock(&si->lock);
1398                         return;
1399                 }
1400         }
1401         for (i = 0; i < size; i++, entry.val++) {
1402                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1403                         unlock_cluster_or_swap_info(si, ci);
1404                         free_swap_slot(entry);
1405                         if (i == size - 1)
1406                                 return;
1407                         lock_cluster_or_swap_info(si, offset);
1408                 }
1409         }
1410         unlock_cluster_or_swap_info(si, ci);
1411 }
1412
1413 #ifdef CONFIG_THP_SWAP
1414 int split_swap_cluster(swp_entry_t entry)
1415 {
1416         struct swap_info_struct *si;
1417         struct swap_cluster_info *ci;
1418         unsigned long offset = swp_offset(entry);
1419
1420         si = _swap_info_get(entry);
1421         if (!si)
1422                 return -EBUSY;
1423         ci = lock_cluster(si, offset);
1424         cluster_clear_huge(ci);
1425         unlock_cluster(ci);
1426         return 0;
1427 }
1428 #endif
1429
1430 static int swp_entry_cmp(const void *ent1, const void *ent2)
1431 {
1432         const swp_entry_t *e1 = ent1, *e2 = ent2;
1433
1434         return (int)swp_type(*e1) - (int)swp_type(*e2);
1435 }
1436
1437 void swapcache_free_entries(swp_entry_t *entries, int n)
1438 {
1439         struct swap_info_struct *p, *prev;
1440         int i;
1441
1442         if (n <= 0)
1443                 return;
1444
1445         prev = NULL;
1446         p = NULL;
1447
1448         /*
1449          * Sort swap entries by swap device, so each lock is only taken once.
1450          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1451          * so low that it isn't necessary to optimize further.
1452          */
1453         if (nr_swapfiles > 1)
1454                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1455         for (i = 0; i < n; ++i) {
1456                 p = swap_info_get_cont(entries[i], prev);
1457                 if (p)
1458                         swap_entry_free(p, entries[i]);
1459                 prev = p;
1460         }
1461         if (p)
1462                 spin_unlock(&p->lock);
1463 }
1464
1465 /*
1466  * How many references to page are currently swapped out?
1467  * This does not give an exact answer when swap count is continued,
1468  * but does include the high COUNT_CONTINUED flag to allow for that.
1469  */
1470 int page_swapcount(struct page *page)
1471 {
1472         int count = 0;
1473         struct swap_info_struct *p;
1474         struct swap_cluster_info *ci;
1475         swp_entry_t entry;
1476         unsigned long offset;
1477
1478         entry.val = page_private(page);
1479         p = _swap_info_get(entry);
1480         if (p) {
1481                 offset = swp_offset(entry);
1482                 ci = lock_cluster_or_swap_info(p, offset);
1483                 count = swap_count(p->swap_map[offset]);
1484                 unlock_cluster_or_swap_info(p, ci);
1485         }
1486         return count;
1487 }
1488
1489 int __swap_count(swp_entry_t entry)
1490 {
1491         struct swap_info_struct *si;
1492         pgoff_t offset = swp_offset(entry);
1493         int count = 0;
1494
1495         si = get_swap_device(entry);
1496         if (si) {
1497                 count = swap_count(si->swap_map[offset]);
1498                 put_swap_device(si);
1499         }
1500         return count;
1501 }
1502
1503 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1504 {
1505         int count = 0;
1506         pgoff_t offset = swp_offset(entry);
1507         struct swap_cluster_info *ci;
1508
1509         ci = lock_cluster_or_swap_info(si, offset);
1510         count = swap_count(si->swap_map[offset]);
1511         unlock_cluster_or_swap_info(si, ci);
1512         return count;
1513 }
1514
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This does not give an exact answer when swap count is continued,
1518  * but does include the high COUNT_CONTINUED flag to allow for that.
1519  */
1520 int __swp_swapcount(swp_entry_t entry)
1521 {
1522         int count = 0;
1523         struct swap_info_struct *si;
1524
1525         si = get_swap_device(entry);
1526         if (si) {
1527                 count = swap_swapcount(si, entry);
1528                 put_swap_device(si);
1529         }
1530         return count;
1531 }
1532
1533 /*
1534  * How many references to @entry are currently swapped out?
1535  * This considers COUNT_CONTINUED so it returns exact answer.
1536  */
1537 int swp_swapcount(swp_entry_t entry)
1538 {
1539         int count, tmp_count, n;
1540         struct swap_info_struct *p;
1541         struct swap_cluster_info *ci;
1542         struct page *page;
1543         pgoff_t offset;
1544         unsigned char *map;
1545
1546         p = _swap_info_get(entry);
1547         if (!p)
1548                 return 0;
1549
1550         offset = swp_offset(entry);
1551
1552         ci = lock_cluster_or_swap_info(p, offset);
1553
1554         count = swap_count(p->swap_map[offset]);
1555         if (!(count & COUNT_CONTINUED))
1556                 goto out;
1557
1558         count &= ~COUNT_CONTINUED;
1559         n = SWAP_MAP_MAX + 1;
1560
1561         page = vmalloc_to_page(p->swap_map + offset);
1562         offset &= ~PAGE_MASK;
1563         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1564
1565         do {
1566                 page = list_next_entry(page, lru);
1567                 map = kmap_atomic(page);
1568                 tmp_count = map[offset];
1569                 kunmap_atomic(map);
1570
1571                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1572                 n *= (SWAP_CONT_MAX + 1);
1573         } while (tmp_count & COUNT_CONTINUED);
1574 out:
1575         unlock_cluster_or_swap_info(p, ci);
1576         return count;
1577 }
1578
1579 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1580                                          swp_entry_t entry)
1581 {
1582         struct swap_cluster_info *ci;
1583         unsigned char *map = si->swap_map;
1584         unsigned long roffset = swp_offset(entry);
1585         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1586         int i;
1587         bool ret = false;
1588
1589         ci = lock_cluster_or_swap_info(si, offset);
1590         if (!ci || !cluster_is_huge(ci)) {
1591                 if (swap_count(map[roffset]))
1592                         ret = true;
1593                 goto unlock_out;
1594         }
1595         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1596                 if (swap_count(map[offset + i])) {
1597                         ret = true;
1598                         break;
1599                 }
1600         }
1601 unlock_out:
1602         unlock_cluster_or_swap_info(si, ci);
1603         return ret;
1604 }
1605
1606 static bool page_swapped(struct page *page)
1607 {
1608         swp_entry_t entry;
1609         struct swap_info_struct *si;
1610
1611         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1612                 return page_swapcount(page) != 0;
1613
1614         page = compound_head(page);
1615         entry.val = page_private(page);
1616         si = _swap_info_get(entry);
1617         if (si)
1618                 return swap_page_trans_huge_swapped(si, entry);
1619         return false;
1620 }
1621
1622 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1623                                          int *total_swapcount)
1624 {
1625         int i, map_swapcount, _total_mapcount, _total_swapcount;
1626         unsigned long offset = 0;
1627         struct swap_info_struct *si;
1628         struct swap_cluster_info *ci = NULL;
1629         unsigned char *map = NULL;
1630         int mapcount, swapcount = 0;
1631
1632         /* hugetlbfs shouldn't call it */
1633         VM_BUG_ON_PAGE(PageHuge(page), page);
1634
1635         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1636                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1637                 if (PageSwapCache(page))
1638                         swapcount = page_swapcount(page);
1639                 if (total_swapcount)
1640                         *total_swapcount = swapcount;
1641                 return mapcount + swapcount;
1642         }
1643
1644         page = compound_head(page);
1645
1646         _total_mapcount = _total_swapcount = map_swapcount = 0;
1647         if (PageSwapCache(page)) {
1648                 swp_entry_t entry;
1649
1650                 entry.val = page_private(page);
1651                 si = _swap_info_get(entry);
1652                 if (si) {
1653                         map = si->swap_map;
1654                         offset = swp_offset(entry);
1655                 }
1656         }
1657         if (map)
1658                 ci = lock_cluster(si, offset);
1659         for (i = 0; i < HPAGE_PMD_NR; i++) {
1660                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1661                 _total_mapcount += mapcount;
1662                 if (map) {
1663                         swapcount = swap_count(map[offset + i]);
1664                         _total_swapcount += swapcount;
1665                 }
1666                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1667         }
1668         unlock_cluster(ci);
1669         if (PageDoubleMap(page)) {
1670                 map_swapcount -= 1;
1671                 _total_mapcount -= HPAGE_PMD_NR;
1672         }
1673         mapcount = compound_mapcount(page);
1674         map_swapcount += mapcount;
1675         _total_mapcount += mapcount;
1676         if (total_mapcount)
1677                 *total_mapcount = _total_mapcount;
1678         if (total_swapcount)
1679                 *total_swapcount = _total_swapcount;
1680
1681         return map_swapcount;
1682 }
1683
1684 /*
1685  * We can write to an anon page without COW if there are no other references
1686  * to it.  And as a side-effect, free up its swap: because the old content
1687  * on disk will never be read, and seeking back there to write new content
1688  * later would only waste time away from clustering.
1689  *
1690  * NOTE: total_map_swapcount should not be relied upon by the caller if
1691  * reuse_swap_page() returns false, but it may be always overwritten
1692  * (see the other implementation for CONFIG_SWAP=n).
1693  */
1694 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1695 {
1696         int count, total_mapcount, total_swapcount;
1697
1698         VM_BUG_ON_PAGE(!PageLocked(page), page);
1699         if (unlikely(PageKsm(page)))
1700                 return false;
1701         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1702                                               &total_swapcount);
1703         if (total_map_swapcount)
1704                 *total_map_swapcount = total_mapcount + total_swapcount;
1705         if (count == 1 && PageSwapCache(page) &&
1706             (likely(!PageTransCompound(page)) ||
1707              /* The remaining swap count will be freed soon */
1708              total_swapcount == page_swapcount(page))) {
1709                 if (!PageWriteback(page)) {
1710                         page = compound_head(page);
1711                         delete_from_swap_cache(page);
1712                         SetPageDirty(page);
1713                 } else {
1714                         swp_entry_t entry;
1715                         struct swap_info_struct *p;
1716
1717                         entry.val = page_private(page);
1718                         p = swap_info_get(entry);
1719                         if (p->flags & SWP_STABLE_WRITES) {
1720                                 spin_unlock(&p->lock);
1721                                 return false;
1722                         }
1723                         spin_unlock(&p->lock);
1724                 }
1725         }
1726
1727         return count <= 1;
1728 }
1729
1730 /*
1731  * If swap is getting full, or if there are no more mappings of this page,
1732  * then try_to_free_swap is called to free its swap space.
1733  */
1734 int try_to_free_swap(struct page *page)
1735 {
1736         VM_BUG_ON_PAGE(!PageLocked(page), page);
1737
1738         if (!PageSwapCache(page))
1739                 return 0;
1740         if (PageWriteback(page))
1741                 return 0;
1742         if (page_swapped(page))
1743                 return 0;
1744
1745         /*
1746          * Once hibernation has begun to create its image of memory,
1747          * there's a danger that one of the calls to try_to_free_swap()
1748          * - most probably a call from __try_to_reclaim_swap() while
1749          * hibernation is allocating its own swap pages for the image,
1750          * but conceivably even a call from memory reclaim - will free
1751          * the swap from a page which has already been recorded in the
1752          * image as a clean swapcache page, and then reuse its swap for
1753          * another page of the image.  On waking from hibernation, the
1754          * original page might be freed under memory pressure, then
1755          * later read back in from swap, now with the wrong data.
1756          *
1757          * Hibernation suspends storage while it is writing the image
1758          * to disk so check that here.
1759          */
1760         if (pm_suspended_storage())
1761                 return 0;
1762
1763         page = compound_head(page);
1764         delete_from_swap_cache(page);
1765         SetPageDirty(page);
1766         return 1;
1767 }
1768
1769 /*
1770  * Free the swap entry like above, but also try to
1771  * free the page cache entry if it is the last user.
1772  */
1773 int free_swap_and_cache(swp_entry_t entry)
1774 {
1775         struct swap_info_struct *p;
1776         unsigned char count;
1777
1778         if (non_swap_entry(entry))
1779                 return 1;
1780
1781         p = _swap_info_get(entry);
1782         if (p) {
1783                 count = __swap_entry_free(p, entry);
1784                 if (count == SWAP_HAS_CACHE &&
1785                     !swap_page_trans_huge_swapped(p, entry))
1786                         __try_to_reclaim_swap(p, swp_offset(entry),
1787                                               TTRS_UNMAPPED | TTRS_FULL);
1788         }
1789         return p != NULL;
1790 }
1791
1792 #ifdef CONFIG_HIBERNATION
1793 /*
1794  * Find the swap type that corresponds to given device (if any).
1795  *
1796  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797  * from 0, in which the swap header is expected to be located.
1798  *
1799  * This is needed for the suspend to disk (aka swsusp).
1800  */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803         int type;
1804
1805         if (!device)
1806                 return -1;
1807
1808         spin_lock(&swap_lock);
1809         for (type = 0; type < nr_swapfiles; type++) {
1810                 struct swap_info_struct *sis = swap_info[type];
1811
1812                 if (!(sis->flags & SWP_WRITEOK))
1813                         continue;
1814
1815                 if (device == sis->bdev->bd_dev) {
1816                         struct swap_extent *se = first_se(sis);
1817
1818                         if (se->start_block == offset) {
1819                                 spin_unlock(&swap_lock);
1820                                 return type;
1821                         }
1822                 }
1823         }
1824         spin_unlock(&swap_lock);
1825         return -ENODEV;
1826 }
1827
1828 int find_first_swap(dev_t *device)
1829 {
1830         int type;
1831
1832         spin_lock(&swap_lock);
1833         for (type = 0; type < nr_swapfiles; type++) {
1834                 struct swap_info_struct *sis = swap_info[type];
1835
1836                 if (!(sis->flags & SWP_WRITEOK))
1837                         continue;
1838                 *device = sis->bdev->bd_dev;
1839                 spin_unlock(&swap_lock);
1840                 return type;
1841         }
1842         spin_unlock(&swap_lock);
1843         return -ENODEV;
1844 }
1845
1846 /*
1847  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848  * corresponding to given index in swap_info (swap type).
1849  */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852         struct swap_info_struct *si = swap_type_to_swap_info(type);
1853         struct swap_extent *se;
1854
1855         if (!si || !(si->flags & SWP_WRITEOK))
1856                 return 0;
1857         se = offset_to_swap_extent(si, offset);
1858         return se->start_block + (offset - se->start_page);
1859 }
1860
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869         unsigned int n = 0;
1870
1871         spin_lock(&swap_lock);
1872         if ((unsigned int)type < nr_swapfiles) {
1873                 struct swap_info_struct *sis = swap_info[type];
1874
1875                 spin_lock(&sis->lock);
1876                 if (sis->flags & SWP_WRITEOK) {
1877                         n = sis->pages;
1878                         if (free)
1879                                 n -= sis->inuse_pages;
1880                 }
1881                 spin_unlock(&sis->lock);
1882         }
1883         spin_unlock(&swap_lock);
1884         return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899                 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901         struct page *swapcache;
1902         spinlock_t *ptl;
1903         pte_t *pte;
1904         int ret = 1;
1905
1906         swapcache = page;
1907         page = ksm_might_need_to_copy(page, vma, addr);
1908         if (unlikely(!page))
1909                 return -ENOMEM;
1910
1911         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913                 ret = 0;
1914                 goto out;
1915         }
1916
1917         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919         get_page(page);
1920         set_pte_at(vma->vm_mm, addr, pte,
1921                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922         if (page == swapcache) {
1923                 page_add_anon_rmap(page, vma, addr, false);
1924         } else { /* ksm created a completely new copy */
1925                 page_add_new_anon_rmap(page, vma, addr, false);
1926                 lru_cache_add_inactive_or_unevictable(page, vma);
1927         }
1928         swap_free(entry);
1929 out:
1930         pte_unmap_unlock(pte, ptl);
1931         if (page != swapcache) {
1932                 unlock_page(page);
1933                 put_page(page);
1934         }
1935         return ret;
1936 }
1937
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939                         unsigned long addr, unsigned long end,
1940                         unsigned int type, bool frontswap,
1941                         unsigned long *fs_pages_to_unuse)
1942 {
1943         struct page *page;
1944         swp_entry_t entry;
1945         pte_t *pte;
1946         struct swap_info_struct *si;
1947         unsigned long offset;
1948         int ret = 0;
1949         volatile unsigned char *swap_map;
1950
1951         si = swap_info[type];
1952         pte = pte_offset_map(pmd, addr);
1953         do {
1954                 struct vm_fault vmf;
1955
1956                 if (!is_swap_pte(*pte))
1957                         continue;
1958
1959                 entry = pte_to_swp_entry(*pte);
1960                 if (swp_type(entry) != type)
1961                         continue;
1962
1963                 offset = swp_offset(entry);
1964                 if (frontswap && !frontswap_test(si, offset))
1965                         continue;
1966
1967                 pte_unmap(pte);
1968                 swap_map = &si->swap_map[offset];
1969                 page = lookup_swap_cache(entry, vma, addr);
1970                 if (!page) {
1971                         vmf.vma = vma;
1972                         vmf.address = addr;
1973                         vmf.pmd = pmd;
1974                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1975                                                 &vmf);
1976                 }
1977                 if (!page) {
1978                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1979                                 goto try_next;
1980                         return -ENOMEM;
1981                 }
1982
1983                 lock_page(page);
1984                 wait_on_page_writeback(page);
1985                 ret = unuse_pte(vma, pmd, addr, entry, page);
1986                 if (ret < 0) {
1987                         unlock_page(page);
1988                         put_page(page);
1989                         goto out;
1990                 }
1991
1992                 try_to_free_swap(page);
1993                 unlock_page(page);
1994                 put_page(page);
1995
1996                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1997                         ret = FRONTSWAP_PAGES_UNUSED;
1998                         goto out;
1999                 }
2000 try_next:
2001                 pte = pte_offset_map(pmd, addr);
2002         } while (pte++, addr += PAGE_SIZE, addr != end);
2003         pte_unmap(pte - 1);
2004
2005         ret = 0;
2006 out:
2007         return ret;
2008 }
2009
2010 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2011                                 unsigned long addr, unsigned long end,
2012                                 unsigned int type, bool frontswap,
2013                                 unsigned long *fs_pages_to_unuse)
2014 {
2015         pmd_t *pmd;
2016         unsigned long next;
2017         int ret;
2018
2019         pmd = pmd_offset(pud, addr);
2020         do {
2021                 cond_resched();
2022                 next = pmd_addr_end(addr, end);
2023                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2024                         continue;
2025                 ret = unuse_pte_range(vma, pmd, addr, next, type,
2026                                       frontswap, fs_pages_to_unuse);
2027                 if (ret)
2028                         return ret;
2029         } while (pmd++, addr = next, addr != end);
2030         return 0;
2031 }
2032
2033 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2034                                 unsigned long addr, unsigned long end,
2035                                 unsigned int type, bool frontswap,
2036                                 unsigned long *fs_pages_to_unuse)
2037 {
2038         pud_t *pud;
2039         unsigned long next;
2040         int ret;
2041
2042         pud = pud_offset(p4d, addr);
2043         do {
2044                 next = pud_addr_end(addr, end);
2045                 if (pud_none_or_clear_bad(pud))
2046                         continue;
2047                 ret = unuse_pmd_range(vma, pud, addr, next, type,
2048                                       frontswap, fs_pages_to_unuse);
2049                 if (ret)
2050                         return ret;
2051         } while (pud++, addr = next, addr != end);
2052         return 0;
2053 }
2054
2055 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2056                                 unsigned long addr, unsigned long end,
2057                                 unsigned int type, bool frontswap,
2058                                 unsigned long *fs_pages_to_unuse)
2059 {
2060         p4d_t *p4d;
2061         unsigned long next;
2062         int ret;
2063
2064         p4d = p4d_offset(pgd, addr);
2065         do {
2066                 next = p4d_addr_end(addr, end);
2067                 if (p4d_none_or_clear_bad(p4d))
2068                         continue;
2069                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2070                                       frontswap, fs_pages_to_unuse);
2071                 if (ret)
2072                         return ret;
2073         } while (p4d++, addr = next, addr != end);
2074         return 0;
2075 }
2076
2077 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2078                      bool frontswap, unsigned long *fs_pages_to_unuse)
2079 {
2080         pgd_t *pgd;
2081         unsigned long addr, end, next;
2082         int ret;
2083
2084         addr = vma->vm_start;
2085         end = vma->vm_end;
2086
2087         pgd = pgd_offset(vma->vm_mm, addr);
2088         do {
2089                 next = pgd_addr_end(addr, end);
2090                 if (pgd_none_or_clear_bad(pgd))
2091                         continue;
2092                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2093                                       frontswap, fs_pages_to_unuse);
2094                 if (ret)
2095                         return ret;
2096         } while (pgd++, addr = next, addr != end);
2097         return 0;
2098 }
2099
2100 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2101                     bool frontswap, unsigned long *fs_pages_to_unuse)
2102 {
2103         struct vm_area_struct *vma;
2104         int ret = 0;
2105
2106         mmap_read_lock(mm);
2107         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2108                 if (vma->anon_vma) {
2109                         ret = unuse_vma(vma, type, frontswap,
2110                                         fs_pages_to_unuse);
2111                         if (ret)
2112                                 break;
2113                 }
2114                 cond_resched();
2115         }
2116         mmap_read_unlock(mm);
2117         return ret;
2118 }
2119
2120 /*
2121  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2122  * from current position to next entry still in use. Return 0
2123  * if there are no inuse entries after prev till end of the map.
2124  */
2125 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2126                                         unsigned int prev, bool frontswap)
2127 {
2128         unsigned int i;
2129         unsigned char count;
2130
2131         /*
2132          * No need for swap_lock here: we're just looking
2133          * for whether an entry is in use, not modifying it; false
2134          * hits are okay, and sys_swapoff() has already prevented new
2135          * allocations from this area (while holding swap_lock).
2136          */
2137         for (i = prev + 1; i < si->max; i++) {
2138                 count = READ_ONCE(si->swap_map[i]);
2139                 if (count && swap_count(count) != SWAP_MAP_BAD)
2140                         if (!frontswap || frontswap_test(si, i))
2141                                 break;
2142                 if ((i % LATENCY_LIMIT) == 0)
2143                         cond_resched();
2144         }
2145
2146         if (i == si->max)
2147                 i = 0;
2148
2149         return i;
2150 }
2151
2152 /*
2153  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2154  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2155  */
2156 int try_to_unuse(unsigned int type, bool frontswap,
2157                  unsigned long pages_to_unuse)
2158 {
2159         struct mm_struct *prev_mm;
2160         struct mm_struct *mm;
2161         struct list_head *p;
2162         int retval = 0;
2163         struct swap_info_struct *si = swap_info[type];
2164         struct page *page;
2165         swp_entry_t entry;
2166         unsigned int i;
2167
2168         if (!READ_ONCE(si->inuse_pages))
2169                 return 0;
2170
2171         if (!frontswap)
2172                 pages_to_unuse = 0;
2173
2174 retry:
2175         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2176         if (retval)
2177                 goto out;
2178
2179         prev_mm = &init_mm;
2180         mmget(prev_mm);
2181
2182         spin_lock(&mmlist_lock);
2183         p = &init_mm.mmlist;
2184         while (READ_ONCE(si->inuse_pages) &&
2185                !signal_pending(current) &&
2186                (p = p->next) != &init_mm.mmlist) {
2187
2188                 mm = list_entry(p, struct mm_struct, mmlist);
2189                 if (!mmget_not_zero(mm))
2190                         continue;
2191                 spin_unlock(&mmlist_lock);
2192                 mmput(prev_mm);
2193                 prev_mm = mm;
2194                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2195
2196                 if (retval) {
2197                         mmput(prev_mm);
2198                         goto out;
2199                 }
2200
2201                 /*
2202                  * Make sure that we aren't completely killing
2203                  * interactive performance.
2204                  */
2205                 cond_resched();
2206                 spin_lock(&mmlist_lock);
2207         }
2208         spin_unlock(&mmlist_lock);
2209
2210         mmput(prev_mm);
2211
2212         i = 0;
2213         while (READ_ONCE(si->inuse_pages) &&
2214                !signal_pending(current) &&
2215                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2216
2217                 entry = swp_entry(type, i);
2218                 page = find_get_page(swap_address_space(entry), i);
2219                 if (!page)
2220                         continue;
2221
2222                 /*
2223                  * It is conceivable that a racing task removed this page from
2224                  * swap cache just before we acquired the page lock. The page
2225                  * might even be back in swap cache on another swap area. But
2226                  * that is okay, try_to_free_swap() only removes stale pages.
2227                  */
2228                 lock_page(page);
2229                 wait_on_page_writeback(page);
2230                 try_to_free_swap(page);
2231                 unlock_page(page);
2232                 put_page(page);
2233
2234                 /*
2235                  * For frontswap, we just need to unuse pages_to_unuse, if
2236                  * it was specified. Need not check frontswap again here as
2237                  * we already zeroed out pages_to_unuse if not frontswap.
2238                  */
2239                 if (pages_to_unuse && --pages_to_unuse == 0)
2240                         goto out;
2241         }
2242
2243         /*
2244          * Lets check again to see if there are still swap entries in the map.
2245          * If yes, we would need to do retry the unuse logic again.
2246          * Under global memory pressure, swap entries can be reinserted back
2247          * into process space after the mmlist loop above passes over them.
2248          *
2249          * Limit the number of retries? No: when mmget_not_zero() above fails,
2250          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2251          * at its own independent pace; and even shmem_writepage() could have
2252          * been preempted after get_swap_page(), temporarily hiding that swap.
2253          * It's easy and robust (though cpu-intensive) just to keep retrying.
2254          */
2255         if (READ_ONCE(si->inuse_pages)) {
2256                 if (!signal_pending(current))
2257                         goto retry;
2258                 retval = -EINTR;
2259         }
2260 out:
2261         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2262 }
2263
2264 /*
2265  * After a successful try_to_unuse, if no swap is now in use, we know
2266  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2267  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2268  * added to the mmlist just after page_duplicate - before would be racy.
2269  */
2270 static void drain_mmlist(void)
2271 {
2272         struct list_head *p, *next;
2273         unsigned int type;
2274
2275         for (type = 0; type < nr_swapfiles; type++)
2276                 if (swap_info[type]->inuse_pages)
2277                         return;
2278         spin_lock(&mmlist_lock);
2279         list_for_each_safe(p, next, &init_mm.mmlist)
2280                 list_del_init(p);
2281         spin_unlock(&mmlist_lock);
2282 }
2283
2284 /*
2285  * Free all of a swapdev's extent information
2286  */
2287 static void destroy_swap_extents(struct swap_info_struct *sis)
2288 {
2289         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2290                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2291                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2292
2293                 rb_erase(rb, &sis->swap_extent_root);
2294                 kfree(se);
2295         }
2296
2297         if (sis->flags & SWP_ACTIVATED) {
2298                 struct file *swap_file = sis->swap_file;
2299                 struct address_space *mapping = swap_file->f_mapping;
2300
2301                 sis->flags &= ~SWP_ACTIVATED;
2302                 if (mapping->a_ops->swap_deactivate)
2303                         mapping->a_ops->swap_deactivate(swap_file);
2304         }
2305 }
2306
2307 /*
2308  * Add a block range (and the corresponding page range) into this swapdev's
2309  * extent tree.
2310  *
2311  * This function rather assumes that it is called in ascending page order.
2312  */
2313 int
2314 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2315                 unsigned long nr_pages, sector_t start_block)
2316 {
2317         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2318         struct swap_extent *se;
2319         struct swap_extent *new_se;
2320
2321         /*
2322          * place the new node at the right most since the
2323          * function is called in ascending page order.
2324          */
2325         while (*link) {
2326                 parent = *link;
2327                 link = &parent->rb_right;
2328         }
2329
2330         if (parent) {
2331                 se = rb_entry(parent, struct swap_extent, rb_node);
2332                 BUG_ON(se->start_page + se->nr_pages != start_page);
2333                 if (se->start_block + se->nr_pages == start_block) {
2334                         /* Merge it */
2335                         se->nr_pages += nr_pages;
2336                         return 0;
2337                 }
2338         }
2339
2340         /* No merge, insert a new extent. */
2341         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2342         if (new_se == NULL)
2343                 return -ENOMEM;
2344         new_se->start_page = start_page;
2345         new_se->nr_pages = nr_pages;
2346         new_se->start_block = start_block;
2347
2348         rb_link_node(&new_se->rb_node, parent, link);
2349         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2350         return 1;
2351 }
2352 EXPORT_SYMBOL_GPL(add_swap_extent);
2353
2354 /*
2355  * A `swap extent' is a simple thing which maps a contiguous range of pages
2356  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2357  * is built at swapon time and is then used at swap_writepage/swap_readpage
2358  * time for locating where on disk a page belongs.
2359  *
2360  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2361  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2362  * swap files identically.
2363  *
2364  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2365  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2366  * swapfiles are handled *identically* after swapon time.
2367  *
2368  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2369  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2370  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2371  * requirements, they are simply tossed out - we will never use those blocks
2372  * for swapping.
2373  *
2374  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2375  * prevents users from writing to the swap device, which will corrupt memory.
2376  *
2377  * The amount of disk space which a single swap extent represents varies.
2378  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2379  * extents in the list.  To avoid much list walking, we cache the previous
2380  * search location in `curr_swap_extent', and start new searches from there.
2381  * This is extremely effective.  The average number of iterations in
2382  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2383  */
2384 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2385 {
2386         struct file *swap_file = sis->swap_file;
2387         struct address_space *mapping = swap_file->f_mapping;
2388         struct inode *inode = mapping->host;
2389         int ret;
2390
2391         if (S_ISBLK(inode->i_mode)) {
2392                 ret = add_swap_extent(sis, 0, sis->max, 0);
2393                 *span = sis->pages;
2394                 return ret;
2395         }
2396
2397         if (mapping->a_ops->swap_activate) {
2398                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2399                 if (ret >= 0)
2400                         sis->flags |= SWP_ACTIVATED;
2401                 if (!ret) {
2402                         sis->flags |= SWP_FS_OPS;
2403                         ret = add_swap_extent(sis, 0, sis->max, 0);
2404                         *span = sis->pages;
2405                 }
2406                 return ret;
2407         }
2408
2409         return generic_swapfile_activate(sis, swap_file, span);
2410 }
2411
2412 static int swap_node(struct swap_info_struct *p)
2413 {
2414         struct block_device *bdev;
2415
2416         if (p->bdev)
2417                 bdev = p->bdev;
2418         else
2419                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2420
2421         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2422 }
2423
2424 static void setup_swap_info(struct swap_info_struct *p, int prio,
2425                             unsigned char *swap_map,
2426                             struct swap_cluster_info *cluster_info)
2427 {
2428         int i;
2429
2430         if (prio >= 0)
2431                 p->prio = prio;
2432         else
2433                 p->prio = --least_priority;
2434         /*
2435          * the plist prio is negated because plist ordering is
2436          * low-to-high, while swap ordering is high-to-low
2437          */
2438         p->list.prio = -p->prio;
2439         for_each_node(i) {
2440                 if (p->prio >= 0)
2441                         p->avail_lists[i].prio = -p->prio;
2442                 else {
2443                         if (swap_node(p) == i)
2444                                 p->avail_lists[i].prio = 1;
2445                         else
2446                                 p->avail_lists[i].prio = -p->prio;
2447                 }
2448         }
2449         p->swap_map = swap_map;
2450         p->cluster_info = cluster_info;
2451 }
2452
2453 static void _enable_swap_info(struct swap_info_struct *p)
2454 {
2455         p->flags |= SWP_WRITEOK | SWP_VALID;
2456         atomic_long_add(p->pages, &nr_swap_pages);
2457         total_swap_pages += p->pages;
2458
2459         assert_spin_locked(&swap_lock);
2460         /*
2461          * both lists are plists, and thus priority ordered.
2462          * swap_active_head needs to be priority ordered for swapoff(),
2463          * which on removal of any swap_info_struct with an auto-assigned
2464          * (i.e. negative) priority increments the auto-assigned priority
2465          * of any lower-priority swap_info_structs.
2466          * swap_avail_head needs to be priority ordered for get_swap_page(),
2467          * which allocates swap pages from the highest available priority
2468          * swap_info_struct.
2469          */
2470         plist_add(&p->list, &swap_active_head);
2471         add_to_avail_list(p);
2472 }
2473
2474 static void enable_swap_info(struct swap_info_struct *p, int prio,
2475                                 unsigned char *swap_map,
2476                                 struct swap_cluster_info *cluster_info,
2477                                 unsigned long *frontswap_map)
2478 {
2479         frontswap_init(p->type, frontswap_map);
2480         spin_lock(&swap_lock);
2481         spin_lock(&p->lock);
2482         setup_swap_info(p, prio, swap_map, cluster_info);
2483         spin_unlock(&p->lock);
2484         spin_unlock(&swap_lock);
2485         /*
2486          * Guarantee swap_map, cluster_info, etc. fields are valid
2487          * between get/put_swap_device() if SWP_VALID bit is set
2488          */
2489         synchronize_rcu();
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492         _enable_swap_info(p);
2493         spin_unlock(&p->lock);
2494         spin_unlock(&swap_lock);
2495 }
2496
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499         spin_lock(&swap_lock);
2500         spin_lock(&p->lock);
2501         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502         _enable_swap_info(p);
2503         spin_unlock(&p->lock);
2504         spin_unlock(&swap_lock);
2505 }
2506
2507 bool has_usable_swap(void)
2508 {
2509         bool ret = true;
2510
2511         spin_lock(&swap_lock);
2512         if (plist_head_empty(&swap_active_head))
2513                 ret = false;
2514         spin_unlock(&swap_lock);
2515         return ret;
2516 }
2517
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520         struct swap_info_struct *p = NULL;
2521         unsigned char *swap_map;
2522         struct swap_cluster_info *cluster_info;
2523         unsigned long *frontswap_map;
2524         struct file *swap_file, *victim;
2525         struct address_space *mapping;
2526         struct inode *inode;
2527         struct filename *pathname;
2528         int err, found = 0;
2529         unsigned int old_block_size;
2530
2531         if (!capable(CAP_SYS_ADMIN))
2532                 return -EPERM;
2533
2534         BUG_ON(!current->mm);
2535
2536         pathname = getname(specialfile);
2537         if (IS_ERR(pathname))
2538                 return PTR_ERR(pathname);
2539
2540         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541         err = PTR_ERR(victim);
2542         if (IS_ERR(victim))
2543                 goto out;
2544
2545         mapping = victim->f_mapping;
2546         spin_lock(&swap_lock);
2547         plist_for_each_entry(p, &swap_active_head, list) {
2548                 if (p->flags & SWP_WRITEOK) {
2549                         if (p->swap_file->f_mapping == mapping) {
2550                                 found = 1;
2551                                 break;
2552                         }
2553                 }
2554         }
2555         if (!found) {
2556                 err = -EINVAL;
2557                 spin_unlock(&swap_lock);
2558                 goto out_dput;
2559         }
2560         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561                 vm_unacct_memory(p->pages);
2562         else {
2563                 err = -ENOMEM;
2564                 spin_unlock(&swap_lock);
2565                 goto out_dput;
2566         }
2567         del_from_avail_list(p);
2568         spin_lock(&p->lock);
2569         if (p->prio < 0) {
2570                 struct swap_info_struct *si = p;
2571                 int nid;
2572
2573                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2574                         si->prio++;
2575                         si->list.prio--;
2576                         for_each_node(nid) {
2577                                 if (si->avail_lists[nid].prio != 1)
2578                                         si->avail_lists[nid].prio--;
2579                         }
2580                 }
2581                 least_priority++;
2582         }
2583         plist_del(&p->list, &swap_active_head);
2584         atomic_long_sub(p->pages, &nr_swap_pages);
2585         total_swap_pages -= p->pages;
2586         p->flags &= ~SWP_WRITEOK;
2587         spin_unlock(&p->lock);
2588         spin_unlock(&swap_lock);
2589
2590         disable_swap_slots_cache_lock();
2591
2592         set_current_oom_origin();
2593         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594         clear_current_oom_origin();
2595
2596         if (err) {
2597                 /* re-insert swap space back into swap_list */
2598                 reinsert_swap_info(p);
2599                 reenable_swap_slots_cache_unlock();
2600                 goto out_dput;
2601         }
2602
2603         reenable_swap_slots_cache_unlock();
2604
2605         spin_lock(&swap_lock);
2606         spin_lock(&p->lock);
2607         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2608         spin_unlock(&p->lock);
2609         spin_unlock(&swap_lock);
2610         /*
2611          * wait for swap operations protected by get/put_swap_device()
2612          * to complete
2613          */
2614         synchronize_rcu();
2615
2616         flush_work(&p->discard_work);
2617
2618         destroy_swap_extents(p);
2619         if (p->flags & SWP_CONTINUED)
2620                 free_swap_count_continuations(p);
2621
2622         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623                 atomic_dec(&nr_rotate_swap);
2624
2625         mutex_lock(&swapon_mutex);
2626         spin_lock(&swap_lock);
2627         spin_lock(&p->lock);
2628         drain_mmlist();
2629
2630         /* wait for anyone still in scan_swap_map */
2631         p->highest_bit = 0;             /* cuts scans short */
2632         while (p->flags >= SWP_SCANNING) {
2633                 spin_unlock(&p->lock);
2634                 spin_unlock(&swap_lock);
2635                 schedule_timeout_uninterruptible(1);
2636                 spin_lock(&swap_lock);
2637                 spin_lock(&p->lock);
2638         }
2639
2640         swap_file = p->swap_file;
2641         old_block_size = p->old_block_size;
2642         p->swap_file = NULL;
2643         p->max = 0;
2644         swap_map = p->swap_map;
2645         p->swap_map = NULL;
2646         cluster_info = p->cluster_info;
2647         p->cluster_info = NULL;
2648         frontswap_map = frontswap_map_get(p);
2649         spin_unlock(&p->lock);
2650         spin_unlock(&swap_lock);
2651         arch_swap_invalidate_area(p->type);
2652         frontswap_invalidate_area(p->type);
2653         frontswap_map_set(p, NULL);
2654         mutex_unlock(&swapon_mutex);
2655         free_percpu(p->percpu_cluster);
2656         p->percpu_cluster = NULL;
2657         free_percpu(p->cluster_next_cpu);
2658         p->cluster_next_cpu = NULL;
2659         vfree(swap_map);
2660         kvfree(cluster_info);
2661         kvfree(frontswap_map);
2662         /* Destroy swap account information */
2663         swap_cgroup_swapoff(p->type);
2664         exit_swap_address_space(p->type);
2665
2666         inode = mapping->host;
2667         if (S_ISBLK(inode->i_mode)) {
2668                 struct block_device *bdev = I_BDEV(inode);
2669
2670                 set_blocksize(bdev, old_block_size);
2671                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672         }
2673
2674         inode_lock(inode);
2675         inode->i_flags &= ~S_SWAPFILE;
2676         inode_unlock(inode);
2677         filp_close(swap_file, NULL);
2678
2679         /*
2680          * Clear the SWP_USED flag after all resources are freed so that swapon
2681          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682          * not hold p->lock after we cleared its SWP_WRITEOK.
2683          */
2684         spin_lock(&swap_lock);
2685         p->flags = 0;
2686         spin_unlock(&swap_lock);
2687
2688         err = 0;
2689         atomic_inc(&proc_poll_event);
2690         wake_up_interruptible(&proc_poll_wait);
2691
2692 out_dput:
2693         filp_close(victim, NULL);
2694 out:
2695         putname(pathname);
2696         return err;
2697 }
2698
2699 #ifdef CONFIG_PROC_FS
2700 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701 {
2702         struct seq_file *seq = file->private_data;
2703
2704         poll_wait(file, &proc_poll_wait, wait);
2705
2706         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707                 seq->poll_event = atomic_read(&proc_poll_event);
2708                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709         }
2710
2711         return EPOLLIN | EPOLLRDNORM;
2712 }
2713
2714 /* iterator */
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2716 {
2717         struct swap_info_struct *si;
2718         int type;
2719         loff_t l = *pos;
2720
2721         mutex_lock(&swapon_mutex);
2722
2723         if (!l)
2724                 return SEQ_START_TOKEN;
2725
2726         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2727                 if (!(si->flags & SWP_USED) || !si->swap_map)
2728                         continue;
2729                 if (!--l)
2730                         return si;
2731         }
2732
2733         return NULL;
2734 }
2735
2736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2737 {
2738         struct swap_info_struct *si = v;
2739         int type;
2740
2741         if (v == SEQ_START_TOKEN)
2742                 type = 0;
2743         else
2744                 type = si->type + 1;
2745
2746         ++(*pos);
2747         for (; (si = swap_type_to_swap_info(type)); type++) {
2748                 if (!(si->flags & SWP_USED) || !si->swap_map)
2749                         continue;
2750                 return si;
2751         }
2752
2753         return NULL;
2754 }
2755
2756 static void swap_stop(struct seq_file *swap, void *v)
2757 {
2758         mutex_unlock(&swapon_mutex);
2759 }
2760
2761 static int swap_show(struct seq_file *swap, void *v)
2762 {
2763         struct swap_info_struct *si = v;
2764         struct file *file;
2765         int len;
2766         unsigned int bytes, inuse;
2767
2768         if (si == SEQ_START_TOKEN) {
2769                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2770                 return 0;
2771         }
2772
2773         bytes = si->pages << (PAGE_SHIFT - 10);
2774         inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2775
2776         file = si->swap_file;
2777         len = seq_file_path(swap, file, " \t\n\\");
2778         seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779                         len < 40 ? 40 - len : 1, " ",
2780                         S_ISBLK(file_inode(file)->i_mode) ?
2781                                 "partition" : "file\t",
2782                         bytes, bytes < 10000000 ? "\t" : "",
2783                         inuse, inuse < 10000000 ? "\t" : "",
2784                         si->prio);
2785         return 0;
2786 }
2787
2788 static const struct seq_operations swaps_op = {
2789         .start =        swap_start,
2790         .next =         swap_next,
2791         .stop =         swap_stop,
2792         .show =         swap_show
2793 };
2794
2795 static int swaps_open(struct inode *inode, struct file *file)
2796 {
2797         struct seq_file *seq;
2798         int ret;
2799
2800         ret = seq_open(file, &swaps_op);
2801         if (ret)
2802                 return ret;
2803
2804         seq = file->private_data;
2805         seq->poll_event = atomic_read(&proc_poll_event);
2806         return 0;
2807 }
2808
2809 static const struct proc_ops swaps_proc_ops = {
2810         .proc_flags     = PROC_ENTRY_PERMANENT,
2811         .proc_open      = swaps_open,
2812         .proc_read      = seq_read,
2813         .proc_lseek     = seq_lseek,
2814         .proc_release   = seq_release,
2815         .proc_poll      = swaps_poll,
2816 };
2817
2818 static int __init procswaps_init(void)
2819 {
2820         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2821         return 0;
2822 }
2823 __initcall(procswaps_init);
2824 #endif /* CONFIG_PROC_FS */
2825
2826 #ifdef MAX_SWAPFILES_CHECK
2827 static int __init max_swapfiles_check(void)
2828 {
2829         MAX_SWAPFILES_CHECK();
2830         return 0;
2831 }
2832 late_initcall(max_swapfiles_check);
2833 #endif
2834
2835 static struct swap_info_struct *alloc_swap_info(void)
2836 {
2837         struct swap_info_struct *p;
2838         struct swap_info_struct *defer = NULL;
2839         unsigned int type;
2840         int i;
2841
2842         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2843         if (!p)
2844                 return ERR_PTR(-ENOMEM);
2845
2846         spin_lock(&swap_lock);
2847         for (type = 0; type < nr_swapfiles; type++) {
2848                 if (!(swap_info[type]->flags & SWP_USED))
2849                         break;
2850         }
2851         if (type >= MAX_SWAPFILES) {
2852                 spin_unlock(&swap_lock);
2853                 kvfree(p);
2854                 return ERR_PTR(-EPERM);
2855         }
2856         if (type >= nr_swapfiles) {
2857                 p->type = type;
2858                 WRITE_ONCE(swap_info[type], p);
2859                 /*
2860                  * Write swap_info[type] before nr_swapfiles, in case a
2861                  * racing procfs swap_start() or swap_next() is reading them.
2862                  * (We never shrink nr_swapfiles, we never free this entry.)
2863                  */
2864                 smp_wmb();
2865                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2866         } else {
2867                 defer = p;
2868                 p = swap_info[type];
2869                 /*
2870                  * Do not memset this entry: a racing procfs swap_next()
2871                  * would be relying on p->type to remain valid.
2872                  */
2873         }
2874         p->swap_extent_root = RB_ROOT;
2875         plist_node_init(&p->list, 0);
2876         for_each_node(i)
2877                 plist_node_init(&p->avail_lists[i], 0);
2878         p->flags = SWP_USED;
2879         spin_unlock(&swap_lock);
2880         kvfree(defer);
2881         spin_lock_init(&p->lock);
2882         spin_lock_init(&p->cont_lock);
2883
2884         return p;
2885 }
2886
2887 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2888 {
2889         int error;
2890
2891         if (S_ISBLK(inode->i_mode)) {
2892                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2893                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2894                 if (IS_ERR(p->bdev)) {
2895                         error = PTR_ERR(p->bdev);
2896                         p->bdev = NULL;
2897                         return error;
2898                 }
2899                 p->old_block_size = block_size(p->bdev);
2900                 error = set_blocksize(p->bdev, PAGE_SIZE);
2901                 if (error < 0)
2902                         return error;
2903                 /*
2904                  * Zoned block devices contain zones that have a sequential
2905                  * write only restriction.  Hence zoned block devices are not
2906                  * suitable for swapping.  Disallow them here.
2907                  */
2908                 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2909                         return -EINVAL;
2910                 p->flags |= SWP_BLKDEV;
2911         } else if (S_ISREG(inode->i_mode)) {
2912                 p->bdev = inode->i_sb->s_bdev;
2913         }
2914
2915         return 0;
2916 }
2917
2918
2919 /*
2920  * Find out how many pages are allowed for a single swap device. There
2921  * are two limiting factors:
2922  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2923  * 2) the number of bits in the swap pte, as defined by the different
2924  * architectures.
2925  *
2926  * In order to find the largest possible bit mask, a swap entry with
2927  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2928  * decoded to a swp_entry_t again, and finally the swap offset is
2929  * extracted.
2930  *
2931  * This will mask all the bits from the initial ~0UL mask that can't
2932  * be encoded in either the swp_entry_t or the architecture definition
2933  * of a swap pte.
2934  */
2935 unsigned long generic_max_swapfile_size(void)
2936 {
2937         return swp_offset(pte_to_swp_entry(
2938                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2939 }
2940
2941 /* Can be overridden by an architecture for additional checks. */
2942 __weak unsigned long max_swapfile_size(void)
2943 {
2944         return generic_max_swapfile_size();
2945 }
2946
2947 static unsigned long read_swap_header(struct swap_info_struct *p,
2948                                         union swap_header *swap_header,
2949                                         struct inode *inode)
2950 {
2951         int i;
2952         unsigned long maxpages;
2953         unsigned long swapfilepages;
2954         unsigned long last_page;
2955
2956         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2957                 pr_err("Unable to find swap-space signature\n");
2958                 return 0;
2959         }
2960
2961         /* swap partition endianess hack... */
2962         if (swab32(swap_header->info.version) == 1) {
2963                 swab32s(&swap_header->info.version);
2964                 swab32s(&swap_header->info.last_page);
2965                 swab32s(&swap_header->info.nr_badpages);
2966                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2967                         return 0;
2968                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2969                         swab32s(&swap_header->info.badpages[i]);
2970         }
2971         /* Check the swap header's sub-version */
2972         if (swap_header->info.version != 1) {
2973                 pr_warn("Unable to handle swap header version %d\n",
2974                         swap_header->info.version);
2975                 return 0;
2976         }
2977
2978         p->lowest_bit  = 1;
2979         p->cluster_next = 1;
2980         p->cluster_nr = 0;
2981
2982         maxpages = max_swapfile_size();
2983         last_page = swap_header->info.last_page;
2984         if (!last_page) {
2985                 pr_warn("Empty swap-file\n");
2986                 return 0;
2987         }
2988         if (last_page > maxpages) {
2989                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2990                         maxpages << (PAGE_SHIFT - 10),
2991                         last_page << (PAGE_SHIFT - 10));
2992         }
2993         if (maxpages > last_page) {
2994                 maxpages = last_page + 1;
2995                 /* p->max is an unsigned int: don't overflow it */
2996                 if ((unsigned int)maxpages == 0)
2997                         maxpages = UINT_MAX;
2998         }
2999         p->highest_bit = maxpages - 1;
3000
3001         if (!maxpages)
3002                 return 0;
3003         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3004         if (swapfilepages && maxpages > swapfilepages) {
3005                 pr_warn("Swap area shorter than signature indicates\n");
3006                 return 0;
3007         }
3008         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3009                 return 0;
3010         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3011                 return 0;
3012
3013         return maxpages;
3014 }
3015
3016 #define SWAP_CLUSTER_INFO_COLS                                          \
3017         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3018 #define SWAP_CLUSTER_SPACE_COLS                                         \
3019         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3020 #define SWAP_CLUSTER_COLS                                               \
3021         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3022
3023 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3024                                         union swap_header *swap_header,
3025                                         unsigned char *swap_map,
3026                                         struct swap_cluster_info *cluster_info,
3027                                         unsigned long maxpages,
3028                                         sector_t *span)
3029 {
3030         unsigned int j, k;
3031         unsigned int nr_good_pages;
3032         int nr_extents;
3033         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3034         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3035         unsigned long i, idx;
3036
3037         nr_good_pages = maxpages - 1;   /* omit header page */
3038
3039         cluster_list_init(&p->free_clusters);
3040         cluster_list_init(&p->discard_clusters);
3041
3042         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3043                 unsigned int page_nr = swap_header->info.badpages[i];
3044                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3045                         return -EINVAL;
3046                 if (page_nr < maxpages) {
3047                         swap_map[page_nr] = SWAP_MAP_BAD;
3048                         nr_good_pages--;
3049                         /*
3050                          * Haven't marked the cluster free yet, no list
3051                          * operation involved
3052                          */
3053                         inc_cluster_info_page(p, cluster_info, page_nr);
3054                 }
3055         }
3056
3057         /* Haven't marked the cluster free yet, no list operation involved */
3058         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3059                 inc_cluster_info_page(p, cluster_info, i);
3060
3061         if (nr_good_pages) {
3062                 swap_map[0] = SWAP_MAP_BAD;
3063                 /*
3064                  * Not mark the cluster free yet, no list
3065                  * operation involved
3066                  */
3067                 inc_cluster_info_page(p, cluster_info, 0);
3068                 p->max = maxpages;
3069                 p->pages = nr_good_pages;
3070                 nr_extents = setup_swap_extents(p, span);
3071                 if (nr_extents < 0)
3072                         return nr_extents;
3073                 nr_good_pages = p->pages;
3074         }
3075         if (!nr_good_pages) {
3076                 pr_warn("Empty swap-file\n");
3077                 return -EINVAL;
3078         }
3079
3080         if (!cluster_info)
3081                 return nr_extents;
3082
3083
3084         /*
3085          * Reduce false cache line sharing between cluster_info and
3086          * sharing same address space.
3087          */
3088         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3089                 j = (k + col) % SWAP_CLUSTER_COLS;
3090                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3091                         idx = i * SWAP_CLUSTER_COLS + j;
3092                         if (idx >= nr_clusters)
3093                                 continue;
3094                         if (cluster_count(&cluster_info[idx]))
3095                                 continue;
3096                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3097                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3098                                               idx);
3099                 }
3100         }
3101         return nr_extents;
3102 }
3103
3104 /*
3105  * Helper to sys_swapon determining if a given swap
3106  * backing device queue supports DISCARD operations.
3107  */
3108 static bool swap_discardable(struct swap_info_struct *si)
3109 {
3110         struct request_queue *q = bdev_get_queue(si->bdev);
3111
3112         if (!q || !blk_queue_discard(q))
3113                 return false;
3114
3115         return true;
3116 }
3117
3118 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3119 {
3120         struct swap_info_struct *p;
3121         struct filename *name;
3122         struct file *swap_file = NULL;
3123         struct address_space *mapping;
3124         int prio;
3125         int error;
3126         union swap_header *swap_header;
3127         int nr_extents;
3128         sector_t span;
3129         unsigned long maxpages;
3130         unsigned char *swap_map = NULL;
3131         struct swap_cluster_info *cluster_info = NULL;
3132         unsigned long *frontswap_map = NULL;
3133         struct page *page = NULL;
3134         struct inode *inode = NULL;
3135         bool inced_nr_rotate_swap = false;
3136
3137         if (swap_flags & ~SWAP_FLAGS_VALID)
3138                 return -EINVAL;
3139
3140         if (!capable(CAP_SYS_ADMIN))
3141                 return -EPERM;
3142
3143         if (!swap_avail_heads)
3144                 return -ENOMEM;
3145
3146         p = alloc_swap_info();
3147         if (IS_ERR(p))
3148                 return PTR_ERR(p);
3149
3150         INIT_WORK(&p->discard_work, swap_discard_work);
3151
3152         name = getname(specialfile);
3153         if (IS_ERR(name)) {
3154                 error = PTR_ERR(name);
3155                 name = NULL;
3156                 goto bad_swap;
3157         }
3158         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3159         if (IS_ERR(swap_file)) {
3160                 error = PTR_ERR(swap_file);
3161                 swap_file = NULL;
3162                 goto bad_swap;
3163         }
3164
3165         p->swap_file = swap_file;
3166         mapping = swap_file->f_mapping;
3167         inode = mapping->host;
3168
3169         error = claim_swapfile(p, inode);
3170         if (unlikely(error))
3171                 goto bad_swap;
3172
3173         inode_lock(inode);
3174         if (IS_SWAPFILE(inode)) {
3175                 error = -EBUSY;
3176                 goto bad_swap_unlock_inode;
3177         }
3178
3179         /*
3180          * Read the swap header.
3181          */
3182         if (!mapping->a_ops->readpage) {
3183                 error = -EINVAL;
3184                 goto bad_swap_unlock_inode;
3185         }
3186         page = read_mapping_page(mapping, 0, swap_file);
3187         if (IS_ERR(page)) {
3188                 error = PTR_ERR(page);
3189                 goto bad_swap_unlock_inode;
3190         }
3191         swap_header = kmap(page);
3192
3193         maxpages = read_swap_header(p, swap_header, inode);
3194         if (unlikely(!maxpages)) {
3195                 error = -EINVAL;
3196                 goto bad_swap_unlock_inode;
3197         }
3198
3199         /* OK, set up the swap map and apply the bad block list */
3200         swap_map = vzalloc(maxpages);
3201         if (!swap_map) {
3202                 error = -ENOMEM;
3203                 goto bad_swap_unlock_inode;
3204         }
3205
3206         if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3207                 p->flags |= SWP_STABLE_WRITES;
3208
3209         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3210                 p->flags |= SWP_SYNCHRONOUS_IO;
3211
3212         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3213                 int cpu;
3214                 unsigned long ci, nr_cluster;
3215
3216                 p->flags |= SWP_SOLIDSTATE;
3217                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3218                 if (!p->cluster_next_cpu) {
3219                         error = -ENOMEM;
3220                         goto bad_swap_unlock_inode;
3221                 }
3222                 /*
3223                  * select a random position to start with to help wear leveling
3224                  * SSD
3225                  */
3226                 for_each_possible_cpu(cpu) {
3227                         per_cpu(*p->cluster_next_cpu, cpu) =
3228                                 1 + prandom_u32_max(p->highest_bit);
3229                 }
3230                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3231
3232                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3233                                         GFP_KERNEL);
3234                 if (!cluster_info) {
3235                         error = -ENOMEM;
3236                         goto bad_swap_unlock_inode;
3237                 }
3238
3239                 for (ci = 0; ci < nr_cluster; ci++)
3240                         spin_lock_init(&((cluster_info + ci)->lock));
3241
3242                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3243                 if (!p->percpu_cluster) {
3244                         error = -ENOMEM;
3245                         goto bad_swap_unlock_inode;
3246                 }
3247                 for_each_possible_cpu(cpu) {
3248                         struct percpu_cluster *cluster;
3249                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3250                         cluster_set_null(&cluster->index);
3251                 }
3252         } else {
3253                 atomic_inc(&nr_rotate_swap);
3254                 inced_nr_rotate_swap = true;
3255         }
3256
3257         error = swap_cgroup_swapon(p->type, maxpages);
3258         if (error)
3259                 goto bad_swap_unlock_inode;
3260
3261         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3262                 cluster_info, maxpages, &span);
3263         if (unlikely(nr_extents < 0)) {
3264                 error = nr_extents;
3265                 goto bad_swap_unlock_inode;
3266         }
3267         /* frontswap enabled? set up bit-per-page map for frontswap */
3268         if (IS_ENABLED(CONFIG_FRONTSWAP))
3269                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3270                                          sizeof(long),
3271                                          GFP_KERNEL);
3272
3273         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3274                 /*
3275                  * When discard is enabled for swap with no particular
3276                  * policy flagged, we set all swap discard flags here in
3277                  * order to sustain backward compatibility with older
3278                  * swapon(8) releases.
3279                  */
3280                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3281                              SWP_PAGE_DISCARD);
3282
3283                 /*
3284                  * By flagging sys_swapon, a sysadmin can tell us to
3285                  * either do single-time area discards only, or to just
3286                  * perform discards for released swap page-clusters.
3287                  * Now it's time to adjust the p->flags accordingly.
3288                  */
3289                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3290                         p->flags &= ~SWP_PAGE_DISCARD;
3291                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3292                         p->flags &= ~SWP_AREA_DISCARD;
3293
3294                 /* issue a swapon-time discard if it's still required */
3295                 if (p->flags & SWP_AREA_DISCARD) {
3296                         int err = discard_swap(p);
3297                         if (unlikely(err))
3298                                 pr_err("swapon: discard_swap(%p): %d\n",
3299                                         p, err);
3300                 }
3301         }
3302
3303         error = init_swap_address_space(p->type, maxpages);
3304         if (error)
3305                 goto bad_swap_unlock_inode;
3306
3307         /*
3308          * Flush any pending IO and dirty mappings before we start using this
3309          * swap device.
3310          */
3311         inode->i_flags |= S_SWAPFILE;
3312         error = inode_drain_writes(inode);
3313         if (error) {
3314                 inode->i_flags &= ~S_SWAPFILE;
3315                 goto free_swap_address_space;
3316         }
3317
3318         mutex_lock(&swapon_mutex);
3319         prio = -1;
3320         if (swap_flags & SWAP_FLAG_PREFER)
3321                 prio =
3322                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3323         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3324
3325         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3326                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3327                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3328                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3329                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3330                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3331                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3332                 (frontswap_map) ? "FS" : "");
3333
3334         mutex_unlock(&swapon_mutex);
3335         atomic_inc(&proc_poll_event);
3336         wake_up_interruptible(&proc_poll_wait);
3337
3338         error = 0;
3339         goto out;
3340 free_swap_address_space:
3341         exit_swap_address_space(p->type);
3342 bad_swap_unlock_inode:
3343         inode_unlock(inode);
3344 bad_swap:
3345         free_percpu(p->percpu_cluster);
3346         p->percpu_cluster = NULL;
3347         free_percpu(p->cluster_next_cpu);
3348         p->cluster_next_cpu = NULL;
3349         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3350                 set_blocksize(p->bdev, p->old_block_size);
3351                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3352         }
3353         inode = NULL;
3354         destroy_swap_extents(p);
3355         swap_cgroup_swapoff(p->type);
3356         spin_lock(&swap_lock);
3357         p->swap_file = NULL;
3358         p->flags = 0;
3359         spin_unlock(&swap_lock);
3360         vfree(swap_map);
3361         kvfree(cluster_info);
3362         kvfree(frontswap_map);
3363         if (inced_nr_rotate_swap)
3364                 atomic_dec(&nr_rotate_swap);
3365         if (swap_file)
3366                 filp_close(swap_file, NULL);
3367 out:
3368         if (page && !IS_ERR(page)) {
3369                 kunmap(page);
3370                 put_page(page);
3371         }
3372         if (name)
3373                 putname(name);
3374         if (inode)
3375                 inode_unlock(inode);
3376         if (!error)
3377                 enable_swap_slots_cache();
3378         return error;
3379 }
3380
3381 void si_swapinfo(struct sysinfo *val)
3382 {
3383         unsigned int type;
3384         unsigned long nr_to_be_unused = 0;
3385
3386         spin_lock(&swap_lock);
3387         for (type = 0; type < nr_swapfiles; type++) {
3388                 struct swap_info_struct *si = swap_info[type];
3389
3390                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3391                         nr_to_be_unused += si->inuse_pages;
3392         }
3393         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3394         val->totalswap = total_swap_pages + nr_to_be_unused;
3395         spin_unlock(&swap_lock);
3396 }
3397
3398 /*
3399  * Verify that a swap entry is valid and increment its swap map count.
3400  *
3401  * Returns error code in following case.
3402  * - success -> 0
3403  * - swp_entry is invalid -> EINVAL
3404  * - swp_entry is migration entry -> EINVAL
3405  * - swap-cache reference is requested but there is already one. -> EEXIST
3406  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3407  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3408  */
3409 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3410 {
3411         struct swap_info_struct *p;
3412         struct swap_cluster_info *ci;
3413         unsigned long offset;
3414         unsigned char count;
3415         unsigned char has_cache;
3416         int err;
3417
3418         p = get_swap_device(entry);
3419         if (!p)
3420                 return -EINVAL;
3421
3422         offset = swp_offset(entry);
3423         ci = lock_cluster_or_swap_info(p, offset);
3424
3425         count = p->swap_map[offset];
3426
3427         /*
3428          * swapin_readahead() doesn't check if a swap entry is valid, so the
3429          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3430          */
3431         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3432                 err = -ENOENT;
3433                 goto unlock_out;
3434         }
3435
3436         has_cache = count & SWAP_HAS_CACHE;
3437         count &= ~SWAP_HAS_CACHE;
3438         err = 0;
3439
3440         if (usage == SWAP_HAS_CACHE) {
3441
3442                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3443                 if (!has_cache && count)
3444                         has_cache = SWAP_HAS_CACHE;
3445                 else if (has_cache)             /* someone else added cache */
3446                         err = -EEXIST;
3447                 else                            /* no users remaining */
3448                         err = -ENOENT;
3449
3450         } else if (count || has_cache) {
3451
3452                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3453                         count += usage;
3454                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3455                         err = -EINVAL;
3456                 else if (swap_count_continued(p, offset, count))
3457                         count = COUNT_CONTINUED;
3458                 else
3459                         err = -ENOMEM;
3460         } else
3461                 err = -ENOENT;                  /* unused swap entry */
3462
3463         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3464
3465 unlock_out:
3466         unlock_cluster_or_swap_info(p, ci);
3467         if (p)
3468                 put_swap_device(p);
3469         return err;
3470 }
3471
3472 /*
3473  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3474  * (in which case its reference count is never incremented).
3475  */
3476 void swap_shmem_alloc(swp_entry_t entry)
3477 {
3478         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3479 }
3480
3481 /*
3482  * Increase reference count of swap entry by 1.
3483  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3484  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3485  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3486  * might occur if a page table entry has got corrupted.
3487  */
3488 int swap_duplicate(swp_entry_t entry)
3489 {
3490         int err = 0;
3491
3492         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3493                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3494         return err;
3495 }
3496
3497 /*
3498  * @entry: swap entry for which we allocate swap cache.
3499  *
3500  * Called when allocating swap cache for existing swap entry,
3501  * This can return error codes. Returns 0 at success.
3502  * -EEXIST means there is a swap cache.
3503  * Note: return code is different from swap_duplicate().
3504  */
3505 int swapcache_prepare(swp_entry_t entry)
3506 {
3507         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3508 }
3509
3510 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3511 {
3512         return swap_type_to_swap_info(swp_type(entry));
3513 }
3514
3515 struct swap_info_struct *page_swap_info(struct page *page)
3516 {
3517         swp_entry_t entry = { .val = page_private(page) };
3518         return swp_swap_info(entry);
3519 }
3520
3521 /*
3522  * out-of-line __page_file_ methods to avoid include hell.
3523  */
3524 struct address_space *__page_file_mapping(struct page *page)
3525 {
3526         return page_swap_info(page)->swap_file->f_mapping;
3527 }
3528 EXPORT_SYMBOL_GPL(__page_file_mapping);
3529
3530 pgoff_t __page_file_index(struct page *page)
3531 {
3532         swp_entry_t swap = { .val = page_private(page) };
3533         return swp_offset(swap);
3534 }
3535 EXPORT_SYMBOL_GPL(__page_file_index);
3536
3537 /*
3538  * add_swap_count_continuation - called when a swap count is duplicated
3539  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3540  * page of the original vmalloc'ed swap_map, to hold the continuation count
3541  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3542  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3543  *
3544  * These continuation pages are seldom referenced: the common paths all work
3545  * on the original swap_map, only referring to a continuation page when the
3546  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3547  *
3548  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3549  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3550  * can be called after dropping locks.
3551  */
3552 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3553 {
3554         struct swap_info_struct *si;
3555         struct swap_cluster_info *ci;
3556         struct page *head;
3557         struct page *page;
3558         struct page *list_page;
3559         pgoff_t offset;
3560         unsigned char count;
3561         int ret = 0;
3562
3563         /*
3564          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3565          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3566          */
3567         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3568
3569         si = get_swap_device(entry);
3570         if (!si) {
3571                 /*
3572                  * An acceptable race has occurred since the failing
3573                  * __swap_duplicate(): the swap device may be swapoff
3574                  */
3575                 goto outer;
3576         }
3577         spin_lock(&si->lock);
3578
3579         offset = swp_offset(entry);
3580
3581         ci = lock_cluster(si, offset);
3582
3583         count = swap_count(si->swap_map[offset]);
3584
3585         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3586                 /*
3587                  * The higher the swap count, the more likely it is that tasks
3588                  * will race to add swap count continuation: we need to avoid
3589                  * over-provisioning.
3590                  */
3591                 goto out;
3592         }
3593
3594         if (!page) {
3595                 ret = -ENOMEM;
3596                 goto out;
3597         }
3598
3599         /*
3600          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3601          * no architecture is using highmem pages for kernel page tables: so it
3602          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3603          */
3604         head = vmalloc_to_page(si->swap_map + offset);
3605         offset &= ~PAGE_MASK;
3606
3607         spin_lock(&si->cont_lock);
3608         /*
3609          * Page allocation does not initialize the page's lru field,
3610          * but it does always reset its private field.
3611          */
3612         if (!page_private(head)) {
3613                 BUG_ON(count & COUNT_CONTINUED);
3614                 INIT_LIST_HEAD(&head->lru);
3615                 set_page_private(head, SWP_CONTINUED);
3616                 si->flags |= SWP_CONTINUED;
3617         }
3618
3619         list_for_each_entry(list_page, &head->lru, lru) {
3620                 unsigned char *map;
3621
3622                 /*
3623                  * If the previous map said no continuation, but we've found
3624                  * a continuation page, free our allocation and use this one.
3625                  */
3626                 if (!(count & COUNT_CONTINUED))
3627                         goto out_unlock_cont;
3628
3629                 map = kmap_atomic(list_page) + offset;
3630                 count = *map;
3631                 kunmap_atomic(map);
3632
3633                 /*
3634                  * If this continuation count now has some space in it,
3635                  * free our allocation and use this one.
3636                  */
3637                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3638                         goto out_unlock_cont;
3639         }
3640
3641         list_add_tail(&page->lru, &head->lru);
3642         page = NULL;                    /* now it's attached, don't free it */
3643 out_unlock_cont:
3644         spin_unlock(&si->cont_lock);
3645 out:
3646         unlock_cluster(ci);
3647         spin_unlock(&si->lock);
3648         put_swap_device(si);
3649 outer:
3650         if (page)
3651                 __free_page(page);
3652         return ret;
3653 }
3654
3655 /*
3656  * swap_count_continued - when the original swap_map count is incremented
3657  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3658  * into, carry if so, or else fail until a new continuation page is allocated;
3659  * when the original swap_map count is decremented from 0 with continuation,
3660  * borrow from the continuation and report whether it still holds more.
3661  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3662  * lock.
3663  */
3664 static bool swap_count_continued(struct swap_info_struct *si,
3665                                  pgoff_t offset, unsigned char count)
3666 {
3667         struct page *head;
3668         struct page *page;
3669         unsigned char *map;
3670         bool ret;
3671
3672         head = vmalloc_to_page(si->swap_map + offset);
3673         if (page_private(head) != SWP_CONTINUED) {
3674                 BUG_ON(count & COUNT_CONTINUED);
3675                 return false;           /* need to add count continuation */
3676         }
3677
3678         spin_lock(&si->cont_lock);
3679         offset &= ~PAGE_MASK;
3680         page = list_next_entry(head, lru);
3681         map = kmap_atomic(page) + offset;
3682
3683         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3684                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3685
3686         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3687                 /*
3688                  * Think of how you add 1 to 999
3689                  */
3690                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3691                         kunmap_atomic(map);
3692                         page = list_next_entry(page, lru);
3693                         BUG_ON(page == head);
3694                         map = kmap_atomic(page) + offset;
3695                 }
3696                 if (*map == SWAP_CONT_MAX) {
3697                         kunmap_atomic(map);
3698                         page = list_next_entry(page, lru);
3699                         if (page == head) {
3700                                 ret = false;    /* add count continuation */
3701                                 goto out;
3702                         }
3703                         map = kmap_atomic(page) + offset;
3704 init_map:               *map = 0;               /* we didn't zero the page */
3705                 }
3706                 *map += 1;
3707                 kunmap_atomic(map);
3708                 while ((page = list_prev_entry(page, lru)) != head) {
3709                         map = kmap_atomic(page) + offset;
3710                         *map = COUNT_CONTINUED;
3711                         kunmap_atomic(map);
3712                 }
3713                 ret = true;                     /* incremented */
3714
3715         } else {                                /* decrementing */
3716                 /*
3717                  * Think of how you subtract 1 from 1000
3718                  */
3719                 BUG_ON(count != COUNT_CONTINUED);
3720                 while (*map == COUNT_CONTINUED) {
3721                         kunmap_atomic(map);
3722                         page = list_next_entry(page, lru);
3723                         BUG_ON(page == head);
3724                         map = kmap_atomic(page) + offset;
3725                 }
3726                 BUG_ON(*map == 0);
3727                 *map -= 1;
3728                 if (*map == 0)
3729                         count = 0;
3730                 kunmap_atomic(map);
3731                 while ((page = list_prev_entry(page, lru)) != head) {
3732                         map = kmap_atomic(page) + offset;
3733                         *map = SWAP_CONT_MAX | count;
3734                         count = COUNT_CONTINUED;
3735                         kunmap_atomic(map);
3736                 }
3737                 ret = count == COUNT_CONTINUED;
3738         }
3739 out:
3740         spin_unlock(&si->cont_lock);
3741         return ret;
3742 }
3743
3744 /*
3745  * free_swap_count_continuations - swapoff free all the continuation pages
3746  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3747  */
3748 static void free_swap_count_continuations(struct swap_info_struct *si)
3749 {
3750         pgoff_t offset;
3751
3752         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3753                 struct page *head;
3754                 head = vmalloc_to_page(si->swap_map + offset);
3755                 if (page_private(head)) {
3756                         struct page *page, *next;
3757
3758                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3759                                 list_del(&page->lru);
3760                                 __free_page(page);
3761                         }
3762                 }
3763         }
3764 }
3765
3766 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3767 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3768 {
3769         struct swap_info_struct *si, *next;
3770         int nid = page_to_nid(page);
3771
3772         if (!(gfp_mask & __GFP_IO))
3773                 return;
3774
3775         if (!blk_cgroup_congested())
3776                 return;
3777
3778         /*
3779          * We've already scheduled a throttle, avoid taking the global swap
3780          * lock.
3781          */
3782         if (current->throttle_queue)
3783                 return;
3784
3785         spin_lock(&swap_avail_lock);
3786         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3787                                   avail_lists[nid]) {
3788                 if (si->bdev) {
3789                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3790                         break;
3791                 }
3792         }
3793         spin_unlock(&swap_avail_lock);
3794 }
3795 #endif
3796
3797 static int __init swapfile_init(void)
3798 {
3799         int nid;
3800
3801         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3802                                          GFP_KERNEL);
3803         if (!swap_avail_heads) {
3804                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3805                 return -ENOMEM;
3806         }
3807
3808         for_each_node(nid)
3809                 plist_head_init(&swap_avail_heads[nid]);
3810
3811         return 0;
3812 }
3813 subsys_initcall(swapfile_init);