Merge tag 'for-linus-4.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section *root = NULL;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(!root);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr <= __highest_present_section_nr));
194
195         return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr)          \
198         for (section_nr = next_present_section_nr(start-1);     \
199              ((section_nr >= 0) &&                              \
200               (section_nr <= __highest_present_section_nr));    \
201              section_nr = next_present_section_nr(section_nr))
202
203 /* Record a memory area against a node. */
204 void __init memory_present(int nid, unsigned long start, unsigned long end)
205 {
206         unsigned long pfn;
207
208 #ifdef CONFIG_SPARSEMEM_EXTREME
209         if (unlikely(!mem_section)) {
210                 unsigned long size, align;
211
212                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
213                 align = 1 << (INTERNODE_CACHE_SHIFT);
214                 mem_section = memblock_virt_alloc(size, align);
215         }
216 #endif
217
218         start &= PAGE_SECTION_MASK;
219         mminit_validate_memmodel_limits(&start, &end);
220         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
221                 unsigned long section = pfn_to_section_nr(pfn);
222                 struct mem_section *ms;
223
224                 sparse_index_init(section, nid);
225                 set_section_nid(section, nid);
226
227                 ms = __nr_to_section(section);
228                 if (!ms->section_mem_map) {
229                         ms->section_mem_map = sparse_encode_early_nid(nid) |
230                                                         SECTION_IS_ONLINE;
231                         section_mark_present(ms);
232                 }
233         }
234 }
235
236 /*
237  * Subtle, we encode the real pfn into the mem_map such that
238  * the identity pfn - section_mem_map will return the actual
239  * physical page frame number.
240  */
241 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
242 {
243         unsigned long coded_mem_map =
244                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
245         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
246         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
247         return coded_mem_map;
248 }
249
250 /*
251  * Decode mem_map from the coded memmap
252  */
253 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
254 {
255         /* mask off the extra low bits of information */
256         coded_mem_map &= SECTION_MAP_MASK;
257         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
258 }
259
260 static int __meminit sparse_init_one_section(struct mem_section *ms,
261                 unsigned long pnum, struct page *mem_map,
262                 unsigned long *pageblock_bitmap)
263 {
264         if (!present_section(ms))
265                 return -EINVAL;
266
267         ms->section_mem_map &= ~SECTION_MAP_MASK;
268         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
269                                                         SECTION_HAS_MEM_MAP;
270         ms->pageblock_flags = pageblock_bitmap;
271
272         return 1;
273 }
274
275 unsigned long usemap_size(void)
276 {
277         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
278 }
279
280 #ifdef CONFIG_MEMORY_HOTPLUG
281 static unsigned long *__kmalloc_section_usemap(void)
282 {
283         return kmalloc(usemap_size(), GFP_KERNEL);
284 }
285 #endif /* CONFIG_MEMORY_HOTPLUG */
286
287 #ifdef CONFIG_MEMORY_HOTREMOVE
288 static unsigned long * __init
289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
290                                          unsigned long size)
291 {
292         unsigned long goal, limit;
293         unsigned long *p;
294         int nid;
295         /*
296          * A page may contain usemaps for other sections preventing the
297          * page being freed and making a section unremovable while
298          * other sections referencing the usemap remain active. Similarly,
299          * a pgdat can prevent a section being removed. If section A
300          * contains a pgdat and section B contains the usemap, both
301          * sections become inter-dependent. This allocates usemaps
302          * from the same section as the pgdat where possible to avoid
303          * this problem.
304          */
305         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
306         limit = goal + (1UL << PA_SECTION_SHIFT);
307         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
308 again:
309         p = memblock_virt_alloc_try_nid_nopanic(size,
310                                                 SMP_CACHE_BYTES, goal, limit,
311                                                 nid);
312         if (!p && limit) {
313                 limit = 0;
314                 goto again;
315         }
316         return p;
317 }
318
319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
320 {
321         unsigned long usemap_snr, pgdat_snr;
322         static unsigned long old_usemap_snr;
323         static unsigned long old_pgdat_snr;
324         struct pglist_data *pgdat = NODE_DATA(nid);
325         int usemap_nid;
326
327         /* First call */
328         if (!old_usemap_snr) {
329                 old_usemap_snr = NR_MEM_SECTIONS;
330                 old_pgdat_snr = NR_MEM_SECTIONS;
331         }
332
333         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
334         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
335         if (usemap_snr == pgdat_snr)
336                 return;
337
338         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
339                 /* skip redundant message */
340                 return;
341
342         old_usemap_snr = usemap_snr;
343         old_pgdat_snr = pgdat_snr;
344
345         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
346         if (usemap_nid != nid) {
347                 pr_info("node %d must be removed before remove section %ld\n",
348                         nid, usemap_snr);
349                 return;
350         }
351         /*
352          * There is a circular dependency.
353          * Some platforms allow un-removable section because they will just
354          * gather other removable sections for dynamic partitioning.
355          * Just notify un-removable section's number here.
356          */
357         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
358                 usemap_snr, pgdat_snr, nid);
359 }
360 #else
361 static unsigned long * __init
362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
363                                          unsigned long size)
364 {
365         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
366 }
367
368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
369 {
370 }
371 #endif /* CONFIG_MEMORY_HOTREMOVE */
372
373 static void __init sparse_early_usemaps_alloc_node(void *data,
374                                  unsigned long pnum_begin,
375                                  unsigned long pnum_end,
376                                  unsigned long usemap_count, int nodeid)
377 {
378         void *usemap;
379         unsigned long pnum;
380         unsigned long **usemap_map = (unsigned long **)data;
381         int size = usemap_size();
382
383         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
384                                                           size * usemap_count);
385         if (!usemap) {
386                 pr_warn("%s: allocation failed\n", __func__);
387                 return;
388         }
389
390         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
391                 if (!present_section_nr(pnum))
392                         continue;
393                 usemap_map[pnum] = usemap;
394                 usemap += size;
395                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
396         }
397 }
398
399 #ifndef CONFIG_SPARSEMEM_VMEMMAP
400 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
401                 struct vmem_altmap *altmap)
402 {
403         struct page *map;
404         unsigned long size;
405
406         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
407         map = memblock_virt_alloc_try_nid(size,
408                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
409                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
410         return map;
411 }
412 void __init sparse_mem_maps_populate_node(struct page **map_map,
413                                           unsigned long pnum_begin,
414                                           unsigned long pnum_end,
415                                           unsigned long map_count, int nodeid)
416 {
417         void *map;
418         unsigned long pnum;
419         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
420
421         size = PAGE_ALIGN(size);
422         map = memblock_virt_alloc_try_nid_raw(size * map_count,
423                                               PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
424                                               BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
425         if (map) {
426                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
427                         if (!present_section_nr(pnum))
428                                 continue;
429                         map_map[pnum] = map;
430                         map += size;
431                 }
432                 return;
433         }
434
435         /* fallback */
436         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
437                 struct mem_section *ms;
438
439                 if (!present_section_nr(pnum))
440                         continue;
441                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
442                 if (map_map[pnum])
443                         continue;
444                 ms = __nr_to_section(pnum);
445                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
446                        __func__);
447                 ms->section_mem_map = 0;
448         }
449 }
450 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
451
452 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
453 static void __init sparse_early_mem_maps_alloc_node(void *data,
454                                  unsigned long pnum_begin,
455                                  unsigned long pnum_end,
456                                  unsigned long map_count, int nodeid)
457 {
458         struct page **map_map = (struct page **)data;
459         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
460                                          map_count, nodeid);
461 }
462 #else
463 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
464 {
465         struct page *map;
466         struct mem_section *ms = __nr_to_section(pnum);
467         int nid = sparse_early_nid(ms);
468
469         map = sparse_mem_map_populate(pnum, nid, NULL);
470         if (map)
471                 return map;
472
473         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
474                __func__);
475         ms->section_mem_map = 0;
476         return NULL;
477 }
478 #endif
479
480 void __weak __meminit vmemmap_populate_print_last(void)
481 {
482 }
483
484 /**
485  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
486  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
487  */
488 static void __init alloc_usemap_and_memmap(void (*alloc_func)
489                                         (void *, unsigned long, unsigned long,
490                                         unsigned long, int), void *data)
491 {
492         unsigned long pnum;
493         unsigned long map_count;
494         int nodeid_begin = 0;
495         unsigned long pnum_begin = 0;
496
497         for_each_present_section_nr(0, pnum) {
498                 struct mem_section *ms;
499
500                 ms = __nr_to_section(pnum);
501                 nodeid_begin = sparse_early_nid(ms);
502                 pnum_begin = pnum;
503                 break;
504         }
505         map_count = 1;
506         for_each_present_section_nr(pnum_begin + 1, pnum) {
507                 struct mem_section *ms;
508                 int nodeid;
509
510                 ms = __nr_to_section(pnum);
511                 nodeid = sparse_early_nid(ms);
512                 if (nodeid == nodeid_begin) {
513                         map_count++;
514                         continue;
515                 }
516                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
517                 alloc_func(data, pnum_begin, pnum,
518                                                 map_count, nodeid_begin);
519                 /* new start, update count etc*/
520                 nodeid_begin = nodeid;
521                 pnum_begin = pnum;
522                 map_count = 1;
523         }
524         /* ok, last chunk */
525         alloc_func(data, pnum_begin, __highest_present_section_nr+1,
526                                                 map_count, nodeid_begin);
527 }
528
529 /*
530  * Allocate the accumulated non-linear sections, allocate a mem_map
531  * for each and record the physical to section mapping.
532  */
533 void __init sparse_init(void)
534 {
535         unsigned long pnum;
536         struct page *map;
537         unsigned long *usemap;
538         unsigned long **usemap_map;
539         int size;
540 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
541         int size2;
542         struct page **map_map;
543 #endif
544
545         /* see include/linux/mmzone.h 'struct mem_section' definition */
546         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
547
548         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
549         set_pageblock_order();
550
551         /*
552          * map is using big page (aka 2M in x86 64 bit)
553          * usemap is less one page (aka 24 bytes)
554          * so alloc 2M (with 2M align) and 24 bytes in turn will
555          * make next 2M slip to one more 2M later.
556          * then in big system, the memory will have a lot of holes...
557          * here try to allocate 2M pages continuously.
558          *
559          * powerpc need to call sparse_init_one_section right after each
560          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
561          */
562         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
563         usemap_map = memblock_virt_alloc(size, 0);
564         if (!usemap_map)
565                 panic("can not allocate usemap_map\n");
566         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
567                                                         (void *)usemap_map);
568
569 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
570         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
571         map_map = memblock_virt_alloc(size2, 0);
572         if (!map_map)
573                 panic("can not allocate map_map\n");
574         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
575                                                         (void *)map_map);
576 #endif
577
578         for_each_present_section_nr(0, pnum) {
579                 usemap = usemap_map[pnum];
580                 if (!usemap)
581                         continue;
582
583 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
584                 map = map_map[pnum];
585 #else
586                 map = sparse_early_mem_map_alloc(pnum);
587 #endif
588                 if (!map)
589                         continue;
590
591                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
592                                                                 usemap);
593         }
594
595         vmemmap_populate_print_last();
596
597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
598         memblock_free_early(__pa(map_map), size2);
599 #endif
600         memblock_free_early(__pa(usemap_map), size);
601 }
602
603 #ifdef CONFIG_MEMORY_HOTPLUG
604
605 /* Mark all memory sections within the pfn range as online */
606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
607 {
608         unsigned long pfn;
609
610         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
611                 unsigned long section_nr = pfn_to_section_nr(pfn);
612                 struct mem_section *ms;
613
614                 /* onlining code should never touch invalid ranges */
615                 if (WARN_ON(!valid_section_nr(section_nr)))
616                         continue;
617
618                 ms = __nr_to_section(section_nr);
619                 ms->section_mem_map |= SECTION_IS_ONLINE;
620         }
621 }
622
623 #ifdef CONFIG_MEMORY_HOTREMOVE
624 /* Mark all memory sections within the pfn range as online */
625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627         unsigned long pfn;
628
629         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630                 unsigned long section_nr = pfn_to_section_nr(pfn);
631                 struct mem_section *ms;
632
633                 /*
634                  * TODO this needs some double checking. Offlining code makes
635                  * sure to check pfn_valid but those checks might be just bogus
636                  */
637                 if (WARN_ON(!valid_section_nr(section_nr)))
638                         continue;
639
640                 ms = __nr_to_section(section_nr);
641                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
642         }
643 }
644 #endif
645
646 #ifdef CONFIG_SPARSEMEM_VMEMMAP
647 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
648                 struct vmem_altmap *altmap)
649 {
650         /* This will make the necessary allocations eventually. */
651         return sparse_mem_map_populate(pnum, nid, altmap);
652 }
653 static void __kfree_section_memmap(struct page *memmap,
654                 struct vmem_altmap *altmap)
655 {
656         unsigned long start = (unsigned long)memmap;
657         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
658
659         vmemmap_free(start, end, altmap);
660 }
661 #ifdef CONFIG_MEMORY_HOTREMOVE
662 static void free_map_bootmem(struct page *memmap)
663 {
664         unsigned long start = (unsigned long)memmap;
665         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
666
667         vmemmap_free(start, end, NULL);
668 }
669 #endif /* CONFIG_MEMORY_HOTREMOVE */
670 #else
671 static struct page *__kmalloc_section_memmap(void)
672 {
673         struct page *page, *ret;
674         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
675
676         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
677         if (page)
678                 goto got_map_page;
679
680         ret = vmalloc(memmap_size);
681         if (ret)
682                 goto got_map_ptr;
683
684         return NULL;
685 got_map_page:
686         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
687 got_map_ptr:
688
689         return ret;
690 }
691
692 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
693                 struct vmem_altmap *altmap)
694 {
695         return __kmalloc_section_memmap();
696 }
697
698 static void __kfree_section_memmap(struct page *memmap,
699                 struct vmem_altmap *altmap)
700 {
701         if (is_vmalloc_addr(memmap))
702                 vfree(memmap);
703         else
704                 free_pages((unsigned long)memmap,
705                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
706 }
707
708 #ifdef CONFIG_MEMORY_HOTREMOVE
709 static void free_map_bootmem(struct page *memmap)
710 {
711         unsigned long maps_section_nr, removing_section_nr, i;
712         unsigned long magic, nr_pages;
713         struct page *page = virt_to_page(memmap);
714
715         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
716                 >> PAGE_SHIFT;
717
718         for (i = 0; i < nr_pages; i++, page++) {
719                 magic = (unsigned long) page->freelist;
720
721                 BUG_ON(magic == NODE_INFO);
722
723                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
724                 removing_section_nr = page_private(page);
725
726                 /*
727                  * When this function is called, the removing section is
728                  * logical offlined state. This means all pages are isolated
729                  * from page allocator. If removing section's memmap is placed
730                  * on the same section, it must not be freed.
731                  * If it is freed, page allocator may allocate it which will
732                  * be removed physically soon.
733                  */
734                 if (maps_section_nr != removing_section_nr)
735                         put_page_bootmem(page);
736         }
737 }
738 #endif /* CONFIG_MEMORY_HOTREMOVE */
739 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
740
741 /*
742  * returns the number of sections whose mem_maps were properly
743  * set.  If this is <=0, then that means that the passed-in
744  * map was not consumed and must be freed.
745  */
746 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
747                 unsigned long start_pfn, struct vmem_altmap *altmap)
748 {
749         unsigned long section_nr = pfn_to_section_nr(start_pfn);
750         struct mem_section *ms;
751         struct page *memmap;
752         unsigned long *usemap;
753         unsigned long flags;
754         int ret;
755
756         /*
757          * no locking for this, because it does its own
758          * plus, it does a kmalloc
759          */
760         ret = sparse_index_init(section_nr, pgdat->node_id);
761         if (ret < 0 && ret != -EEXIST)
762                 return ret;
763         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
764         if (!memmap)
765                 return -ENOMEM;
766         usemap = __kmalloc_section_usemap();
767         if (!usemap) {
768                 __kfree_section_memmap(memmap, altmap);
769                 return -ENOMEM;
770         }
771
772         pgdat_resize_lock(pgdat, &flags);
773
774         ms = __pfn_to_section(start_pfn);
775         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
776                 ret = -EEXIST;
777                 goto out;
778         }
779
780 #ifdef CONFIG_DEBUG_VM
781         /*
782          * Poison uninitialized struct pages in order to catch invalid flags
783          * combinations.
784          */
785         memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
786 #endif
787
788         section_mark_present(ms);
789
790         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
791
792 out:
793         pgdat_resize_unlock(pgdat, &flags);
794         if (ret <= 0) {
795                 kfree(usemap);
796                 __kfree_section_memmap(memmap, altmap);
797         }
798         return ret;
799 }
800
801 #ifdef CONFIG_MEMORY_HOTREMOVE
802 #ifdef CONFIG_MEMORY_FAILURE
803 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
804 {
805         int i;
806
807         if (!memmap)
808                 return;
809
810         for (i = 0; i < nr_pages; i++) {
811                 if (PageHWPoison(&memmap[i])) {
812                         atomic_long_sub(1, &num_poisoned_pages);
813                         ClearPageHWPoison(&memmap[i]);
814                 }
815         }
816 }
817 #else
818 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
819 {
820 }
821 #endif
822
823 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
824                 struct vmem_altmap *altmap)
825 {
826         struct page *usemap_page;
827
828         if (!usemap)
829                 return;
830
831         usemap_page = virt_to_page(usemap);
832         /*
833          * Check to see if allocation came from hot-plug-add
834          */
835         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
836                 kfree(usemap);
837                 if (memmap)
838                         __kfree_section_memmap(memmap, altmap);
839                 return;
840         }
841
842         /*
843          * The usemap came from bootmem. This is packed with other usemaps
844          * on the section which has pgdat at boot time. Just keep it as is now.
845          */
846
847         if (memmap)
848                 free_map_bootmem(memmap);
849 }
850
851 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
852                 unsigned long map_offset, struct vmem_altmap *altmap)
853 {
854         struct page *memmap = NULL;
855         unsigned long *usemap = NULL, flags;
856         struct pglist_data *pgdat = zone->zone_pgdat;
857
858         pgdat_resize_lock(pgdat, &flags);
859         if (ms->section_mem_map) {
860                 usemap = ms->pageblock_flags;
861                 memmap = sparse_decode_mem_map(ms->section_mem_map,
862                                                 __section_nr(ms));
863                 ms->section_mem_map = 0;
864                 ms->pageblock_flags = NULL;
865         }
866         pgdat_resize_unlock(pgdat, &flags);
867
868         clear_hwpoisoned_pages(memmap + map_offset,
869                         PAGES_PER_SECTION - map_offset);
870         free_section_usemap(memmap, usemap, altmap);
871 }
872 #endif /* CONFIG_MEMORY_HOTREMOVE */
873 #endif /* CONFIG_MEMORY_HOTPLUG */