Merge tag 'kvmarm-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmar...
[linux-2.6-microblaze.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17
18 #include "internal.h"
19 #include <asm/dma.h>
20
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section       - memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30         ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48         return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54         section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65         struct mem_section *section = NULL;
66         unsigned long array_size = SECTIONS_PER_ROOT *
67                                    sizeof(struct mem_section);
68
69         if (slab_is_available()) {
70                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71         } else {
72                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73                                               nid);
74                 if (!section)
75                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
76                               __func__, array_size, nid);
77         }
78
79         return section;
80 }
81
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85         struct mem_section *section;
86
87         /*
88          * An existing section is possible in the sub-section hotplug
89          * case. First hot-add instantiates, follow-on hot-add reuses
90          * the existing section.
91          *
92          * The mem_hotplug_lock resolves the apparent race below.
93          */
94         if (mem_section[root])
95                 return 0;
96
97         section = sparse_index_alloc(nid);
98         if (!section)
99                 return -ENOMEM;
100
101         mem_section[root] = section;
102
103         return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108         return 0;
109 }
110 #endif
111
112 #ifdef CONFIG_SPARSEMEM_EXTREME
113 unsigned long __section_nr(struct mem_section *ms)
114 {
115         unsigned long root_nr;
116         struct mem_section *root = NULL;
117
118         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
119                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
120                 if (!root)
121                         continue;
122
123                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
124                      break;
125         }
126
127         VM_BUG_ON(!root);
128
129         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
130 }
131 #else
132 unsigned long __section_nr(struct mem_section *ms)
133 {
134         return (unsigned long)(ms - mem_section[0]);
135 }
136 #endif
137
138 /*
139  * During early boot, before section_mem_map is used for an actual
140  * mem_map, we use section_mem_map to store the section's NUMA
141  * node.  This keeps us from having to use another data structure.  The
142  * node information is cleared just before we store the real mem_map.
143  */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146         return (nid << SECTION_NID_SHIFT);
147 }
148
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151         return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156                                                 unsigned long *end_pfn)
157 {
158         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160         /*
161          * Sanity checks - do not allow an architecture to pass
162          * in larger pfns than the maximum scope of sparsemem:
163          */
164         if (*start_pfn > max_sparsemem_pfn) {
165                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167                         *start_pfn, *end_pfn, max_sparsemem_pfn);
168                 WARN_ON_ONCE(1);
169                 *start_pfn = max_sparsemem_pfn;
170                 *end_pfn = max_sparsemem_pfn;
171         } else if (*end_pfn > max_sparsemem_pfn) {
172                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174                         *start_pfn, *end_pfn, max_sparsemem_pfn);
175                 WARN_ON_ONCE(1);
176                 *end_pfn = max_sparsemem_pfn;
177         }
178 }
179
180 /*
181  * There are a number of times that we loop over NR_MEM_SECTIONS,
182  * looking for section_present() on each.  But, when we have very
183  * large physical address spaces, NR_MEM_SECTIONS can also be
184  * very large which makes the loops quite long.
185  *
186  * Keeping track of this gives us an easy way to break out of
187  * those loops early.
188  */
189 unsigned long __highest_present_section_nr;
190 static void section_mark_present(struct mem_section *ms)
191 {
192         unsigned long section_nr = __section_nr(ms);
193
194         if (section_nr > __highest_present_section_nr)
195                 __highest_present_section_nr = section_nr;
196
197         ms->section_mem_map |= SECTION_MARKED_PRESENT;
198 }
199
200 #define for_each_present_section_nr(start, section_nr)          \
201         for (section_nr = next_present_section_nr(start-1);     \
202              ((section_nr != -1) &&                             \
203               (section_nr <= __highest_present_section_nr));    \
204              section_nr = next_present_section_nr(section_nr))
205
206 static inline unsigned long first_present_section_nr(void)
207 {
208         return next_present_section_nr(-1);
209 }
210
211 #ifdef CONFIG_SPARSEMEM_VMEMMAP
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213                 unsigned long nr_pages)
214 {
215         int idx = subsection_map_index(pfn);
216         int end = subsection_map_index(pfn + nr_pages - 1);
217
218         bitmap_set(map, idx, end - idx + 1);
219 }
220
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226         if (!nr_pages)
227                 return;
228
229         for (nr = start_sec; nr <= end_sec; nr++) {
230                 struct mem_section *ms;
231                 unsigned long pfns;
232
233                 pfns = min(nr_pages, PAGES_PER_SECTION
234                                 - (pfn & ~PAGE_SECTION_MASK));
235                 ms = __nr_to_section(nr);
236                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239                                 pfns, subsection_map_index(pfn),
240                                 subsection_map_index(pfn + pfns - 1));
241
242                 pfn += pfns;
243                 nr_pages -= pfns;
244         }
245 }
246 #else
247 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
248 {
249 }
250 #endif
251
252 /* Record a memory area against a node. */
253 static void __init memory_present(int nid, unsigned long start, unsigned long end)
254 {
255         unsigned long pfn;
256
257 #ifdef CONFIG_SPARSEMEM_EXTREME
258         if (unlikely(!mem_section)) {
259                 unsigned long size, align;
260
261                 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
262                 align = 1 << (INTERNODE_CACHE_SHIFT);
263                 mem_section = memblock_alloc(size, align);
264                 if (!mem_section)
265                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266                               __func__, size, align);
267         }
268 #endif
269
270         start &= PAGE_SECTION_MASK;
271         mminit_validate_memmodel_limits(&start, &end);
272         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
273                 unsigned long section = pfn_to_section_nr(pfn);
274                 struct mem_section *ms;
275
276                 sparse_index_init(section, nid);
277                 set_section_nid(section, nid);
278
279                 ms = __nr_to_section(section);
280                 if (!ms->section_mem_map) {
281                         ms->section_mem_map = sparse_encode_early_nid(nid) |
282                                                         SECTION_IS_ONLINE;
283                         section_mark_present(ms);
284                 }
285         }
286 }
287
288 /*
289  * Mark all memblocks as present using memory_present().
290  * This is a convenience function that is useful to mark all of the systems
291  * memory as present during initialization.
292  */
293 static void __init memblocks_present(void)
294 {
295         unsigned long start, end;
296         int i, nid;
297
298         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
299                 memory_present(nid, start, end);
300 }
301
302 /*
303  * Subtle, we encode the real pfn into the mem_map such that
304  * the identity pfn - section_mem_map will return the actual
305  * physical page frame number.
306  */
307 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
308 {
309         unsigned long coded_mem_map =
310                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
311         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
312         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
313         return coded_mem_map;
314 }
315
316 #ifdef CONFIG_MEMORY_HOTPLUG
317 /*
318  * Decode mem_map from the coded memmap
319  */
320 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
321 {
322         /* mask off the extra low bits of information */
323         coded_mem_map &= SECTION_MAP_MASK;
324         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
325 }
326 #endif /* CONFIG_MEMORY_HOTPLUG */
327
328 static void __meminit sparse_init_one_section(struct mem_section *ms,
329                 unsigned long pnum, struct page *mem_map,
330                 struct mem_section_usage *usage, unsigned long flags)
331 {
332         ms->section_mem_map &= ~SECTION_MAP_MASK;
333         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
334                 | SECTION_HAS_MEM_MAP | flags;
335         ms->usage = usage;
336 }
337
338 static unsigned long usemap_size(void)
339 {
340         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
341 }
342
343 size_t mem_section_usage_size(void)
344 {
345         return sizeof(struct mem_section_usage) + usemap_size();
346 }
347
348 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
349 {
350 #ifndef CONFIG_NUMA
351         return __pa_symbol(pgdat);
352 #else
353         return __pa(pgdat);
354 #endif
355 }
356
357 #ifdef CONFIG_MEMORY_HOTREMOVE
358 static struct mem_section_usage * __init
359 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
360                                          unsigned long size)
361 {
362         struct mem_section_usage *usage;
363         unsigned long goal, limit;
364         int nid;
365         /*
366          * A page may contain usemaps for other sections preventing the
367          * page being freed and making a section unremovable while
368          * other sections referencing the usemap remain active. Similarly,
369          * a pgdat can prevent a section being removed. If section A
370          * contains a pgdat and section B contains the usemap, both
371          * sections become inter-dependent. This allocates usemaps
372          * from the same section as the pgdat where possible to avoid
373          * this problem.
374          */
375         goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
376         limit = goal + (1UL << PA_SECTION_SHIFT);
377         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
378 again:
379         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
380         if (!usage && limit) {
381                 limit = 0;
382                 goto again;
383         }
384         return usage;
385 }
386
387 static void __init check_usemap_section_nr(int nid,
388                 struct mem_section_usage *usage)
389 {
390         unsigned long usemap_snr, pgdat_snr;
391         static unsigned long old_usemap_snr;
392         static unsigned long old_pgdat_snr;
393         struct pglist_data *pgdat = NODE_DATA(nid);
394         int usemap_nid;
395
396         /* First call */
397         if (!old_usemap_snr) {
398                 old_usemap_snr = NR_MEM_SECTIONS;
399                 old_pgdat_snr = NR_MEM_SECTIONS;
400         }
401
402         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
403         pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
404         if (usemap_snr == pgdat_snr)
405                 return;
406
407         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
408                 /* skip redundant message */
409                 return;
410
411         old_usemap_snr = usemap_snr;
412         old_pgdat_snr = pgdat_snr;
413
414         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
415         if (usemap_nid != nid) {
416                 pr_info("node %d must be removed before remove section %ld\n",
417                         nid, usemap_snr);
418                 return;
419         }
420         /*
421          * There is a circular dependency.
422          * Some platforms allow un-removable section because they will just
423          * gather other removable sections for dynamic partitioning.
424          * Just notify un-removable section's number here.
425          */
426         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
427                 usemap_snr, pgdat_snr, nid);
428 }
429 #else
430 static struct mem_section_usage * __init
431 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
432                                          unsigned long size)
433 {
434         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
435 }
436
437 static void __init check_usemap_section_nr(int nid,
438                 struct mem_section_usage *usage)
439 {
440 }
441 #endif /* CONFIG_MEMORY_HOTREMOVE */
442
443 #ifdef CONFIG_SPARSEMEM_VMEMMAP
444 static unsigned long __init section_map_size(void)
445 {
446         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
447 }
448
449 #else
450 static unsigned long __init section_map_size(void)
451 {
452         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
453 }
454
455 struct page __init *__populate_section_memmap(unsigned long pfn,
456                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
457 {
458         unsigned long size = section_map_size();
459         struct page *map = sparse_buffer_alloc(size);
460         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461
462         if (map)
463                 return map;
464
465         map = memblock_alloc_try_nid_raw(size, size, addr,
466                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
467         if (!map)
468                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
469                       __func__, size, PAGE_SIZE, nid, &addr);
470
471         return map;
472 }
473 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
474
475 static void *sparsemap_buf __meminitdata;
476 static void *sparsemap_buf_end __meminitdata;
477
478 static inline void __meminit sparse_buffer_free(unsigned long size)
479 {
480         WARN_ON(!sparsemap_buf || size == 0);
481         memblock_free_early(__pa(sparsemap_buf), size);
482 }
483
484 static void __init sparse_buffer_init(unsigned long size, int nid)
485 {
486         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
487         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
488         /*
489          * Pre-allocated buffer is mainly used by __populate_section_memmap
490          * and we want it to be properly aligned to the section size - this is
491          * especially the case for VMEMMAP which maps memmap to PMDs
492          */
493         sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
494                                         addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
495         sparsemap_buf_end = sparsemap_buf + size;
496 }
497
498 static void __init sparse_buffer_fini(void)
499 {
500         unsigned long size = sparsemap_buf_end - sparsemap_buf;
501
502         if (sparsemap_buf && size > 0)
503                 sparse_buffer_free(size);
504         sparsemap_buf = NULL;
505 }
506
507 void * __meminit sparse_buffer_alloc(unsigned long size)
508 {
509         void *ptr = NULL;
510
511         if (sparsemap_buf) {
512                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
513                 if (ptr + size > sparsemap_buf_end)
514                         ptr = NULL;
515                 else {
516                         /* Free redundant aligned space */
517                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
518                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
519                         sparsemap_buf = ptr + size;
520                 }
521         }
522         return ptr;
523 }
524
525 void __weak __meminit vmemmap_populate_print_last(void)
526 {
527 }
528
529 /*
530  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
531  * And number of present sections in this node is map_count.
532  */
533 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
534                                    unsigned long pnum_end,
535                                    unsigned long map_count)
536 {
537         struct mem_section_usage *usage;
538         unsigned long pnum;
539         struct page *map;
540
541         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
542                         mem_section_usage_size() * map_count);
543         if (!usage) {
544                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
545                 goto failed;
546         }
547         sparse_buffer_init(map_count * section_map_size(), nid);
548         for_each_present_section_nr(pnum_begin, pnum) {
549                 unsigned long pfn = section_nr_to_pfn(pnum);
550
551                 if (pnum >= pnum_end)
552                         break;
553
554                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
555                                 nid, NULL);
556                 if (!map) {
557                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
558                                __func__, nid);
559                         pnum_begin = pnum;
560                         sparse_buffer_fini();
561                         goto failed;
562                 }
563                 check_usemap_section_nr(nid, usage);
564                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
565                                 SECTION_IS_EARLY);
566                 usage = (void *) usage + mem_section_usage_size();
567         }
568         sparse_buffer_fini();
569         return;
570 failed:
571         /* We failed to allocate, mark all the following pnums as not present */
572         for_each_present_section_nr(pnum_begin, pnum) {
573                 struct mem_section *ms;
574
575                 if (pnum >= pnum_end)
576                         break;
577                 ms = __nr_to_section(pnum);
578                 ms->section_mem_map = 0;
579         }
580 }
581
582 /*
583  * Allocate the accumulated non-linear sections, allocate a mem_map
584  * for each and record the physical to section mapping.
585  */
586 void __init sparse_init(void)
587 {
588         unsigned long pnum_end, pnum_begin, map_count = 1;
589         int nid_begin;
590
591         memblocks_present();
592
593         pnum_begin = first_present_section_nr();
594         nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
595
596         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
597         set_pageblock_order();
598
599         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
600                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
601
602                 if (nid == nid_begin) {
603                         map_count++;
604                         continue;
605                 }
606                 /* Init node with sections in range [pnum_begin, pnum_end) */
607                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
608                 nid_begin = nid;
609                 pnum_begin = pnum_end;
610                 map_count = 1;
611         }
612         /* cover the last node */
613         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
614         vmemmap_populate_print_last();
615 }
616
617 #ifdef CONFIG_MEMORY_HOTPLUG
618
619 /* Mark all memory sections within the pfn range as online */
620 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622         unsigned long pfn;
623
624         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625                 unsigned long section_nr = pfn_to_section_nr(pfn);
626                 struct mem_section *ms;
627
628                 /* onlining code should never touch invalid ranges */
629                 if (WARN_ON(!valid_section_nr(section_nr)))
630                         continue;
631
632                 ms = __nr_to_section(section_nr);
633                 ms->section_mem_map |= SECTION_IS_ONLINE;
634         }
635 }
636
637 /* Mark all memory sections within the pfn range as offline */
638 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
639 {
640         unsigned long pfn;
641
642         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
643                 unsigned long section_nr = pfn_to_section_nr(pfn);
644                 struct mem_section *ms;
645
646                 /*
647                  * TODO this needs some double checking. Offlining code makes
648                  * sure to check pfn_valid but those checks might be just bogus
649                  */
650                 if (WARN_ON(!valid_section_nr(section_nr)))
651                         continue;
652
653                 ms = __nr_to_section(section_nr);
654                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
655         }
656 }
657
658 #ifdef CONFIG_SPARSEMEM_VMEMMAP
659 static struct page * __meminit populate_section_memmap(unsigned long pfn,
660                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
661 {
662         return __populate_section_memmap(pfn, nr_pages, nid, altmap);
663 }
664
665 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
666                 struct vmem_altmap *altmap)
667 {
668         unsigned long start = (unsigned long) pfn_to_page(pfn);
669         unsigned long end = start + nr_pages * sizeof(struct page);
670
671         vmemmap_free(start, end, altmap);
672 }
673 static void free_map_bootmem(struct page *memmap)
674 {
675         unsigned long start = (unsigned long)memmap;
676         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
677
678         vmemmap_free(start, end, NULL);
679 }
680
681 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
682 {
683         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
684         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
685         struct mem_section *ms = __pfn_to_section(pfn);
686         unsigned long *subsection_map = ms->usage
687                 ? &ms->usage->subsection_map[0] : NULL;
688
689         subsection_mask_set(map, pfn, nr_pages);
690         if (subsection_map)
691                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
692
693         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
694                                 "section already deactivated (%#lx + %ld)\n",
695                                 pfn, nr_pages))
696                 return -EINVAL;
697
698         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
699         return 0;
700 }
701
702 static bool is_subsection_map_empty(struct mem_section *ms)
703 {
704         return bitmap_empty(&ms->usage->subsection_map[0],
705                             SUBSECTIONS_PER_SECTION);
706 }
707
708 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
709 {
710         struct mem_section *ms = __pfn_to_section(pfn);
711         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712         unsigned long *subsection_map;
713         int rc = 0;
714
715         subsection_mask_set(map, pfn, nr_pages);
716
717         subsection_map = &ms->usage->subsection_map[0];
718
719         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
720                 rc = -EINVAL;
721         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
722                 rc = -EEXIST;
723         else
724                 bitmap_or(subsection_map, map, subsection_map,
725                                 SUBSECTIONS_PER_SECTION);
726
727         return rc;
728 }
729 #else
730 struct page * __meminit populate_section_memmap(unsigned long pfn,
731                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
732 {
733         return kvmalloc_node(array_size(sizeof(struct page),
734                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
735 }
736
737 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
738                 struct vmem_altmap *altmap)
739 {
740         kvfree(pfn_to_page(pfn));
741 }
742
743 static void free_map_bootmem(struct page *memmap)
744 {
745         unsigned long maps_section_nr, removing_section_nr, i;
746         unsigned long magic, nr_pages;
747         struct page *page = virt_to_page(memmap);
748
749         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
750                 >> PAGE_SHIFT;
751
752         for (i = 0; i < nr_pages; i++, page++) {
753                 magic = (unsigned long) page->freelist;
754
755                 BUG_ON(magic == NODE_INFO);
756
757                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
758                 removing_section_nr = page_private(page);
759
760                 /*
761                  * When this function is called, the removing section is
762                  * logical offlined state. This means all pages are isolated
763                  * from page allocator. If removing section's memmap is placed
764                  * on the same section, it must not be freed.
765                  * If it is freed, page allocator may allocate it which will
766                  * be removed physically soon.
767                  */
768                 if (maps_section_nr != removing_section_nr)
769                         put_page_bootmem(page);
770         }
771 }
772
773 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
774 {
775         return 0;
776 }
777
778 static bool is_subsection_map_empty(struct mem_section *ms)
779 {
780         return true;
781 }
782
783 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
784 {
785         return 0;
786 }
787 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
788
789 /*
790  * To deactivate a memory region, there are 3 cases to handle across
791  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
792  *
793  * 1. deactivation of a partial hot-added section (only possible in
794  *    the SPARSEMEM_VMEMMAP=y case).
795  *      a) section was present at memory init.
796  *      b) section was hot-added post memory init.
797  * 2. deactivation of a complete hot-added section.
798  * 3. deactivation of a complete section from memory init.
799  *
800  * For 1, when subsection_map does not empty we will not be freeing the
801  * usage map, but still need to free the vmemmap range.
802  *
803  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
804  */
805 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
806                 struct vmem_altmap *altmap)
807 {
808         struct mem_section *ms = __pfn_to_section(pfn);
809         bool section_is_early = early_section(ms);
810         struct page *memmap = NULL;
811         bool empty;
812
813         if (clear_subsection_map(pfn, nr_pages))
814                 return;
815
816         empty = is_subsection_map_empty(ms);
817         if (empty) {
818                 unsigned long section_nr = pfn_to_section_nr(pfn);
819
820                 /*
821                  * When removing an early section, the usage map is kept (as the
822                  * usage maps of other sections fall into the same page). It
823                  * will be re-used when re-adding the section - which is then no
824                  * longer an early section. If the usage map is PageReserved, it
825                  * was allocated during boot.
826                  */
827                 if (!PageReserved(virt_to_page(ms->usage))) {
828                         kfree(ms->usage);
829                         ms->usage = NULL;
830                 }
831                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
832                 /*
833                  * Mark the section invalid so that valid_section()
834                  * return false. This prevents code from dereferencing
835                  * ms->usage array.
836                  */
837                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
838         }
839
840         /*
841          * The memmap of early sections is always fully populated. See
842          * section_activate() and pfn_valid() .
843          */
844         if (!section_is_early)
845                 depopulate_section_memmap(pfn, nr_pages, altmap);
846         else if (memmap)
847                 free_map_bootmem(memmap);
848
849         if (empty)
850                 ms->section_mem_map = (unsigned long)NULL;
851 }
852
853 static struct page * __meminit section_activate(int nid, unsigned long pfn,
854                 unsigned long nr_pages, struct vmem_altmap *altmap)
855 {
856         struct mem_section *ms = __pfn_to_section(pfn);
857         struct mem_section_usage *usage = NULL;
858         struct page *memmap;
859         int rc = 0;
860
861         if (!ms->usage) {
862                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
863                 if (!usage)
864                         return ERR_PTR(-ENOMEM);
865                 ms->usage = usage;
866         }
867
868         rc = fill_subsection_map(pfn, nr_pages);
869         if (rc) {
870                 if (usage)
871                         ms->usage = NULL;
872                 kfree(usage);
873                 return ERR_PTR(rc);
874         }
875
876         /*
877          * The early init code does not consider partially populated
878          * initial sections, it simply assumes that memory will never be
879          * referenced.  If we hot-add memory into such a section then we
880          * do not need to populate the memmap and can simply reuse what
881          * is already there.
882          */
883         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
884                 return pfn_to_page(pfn);
885
886         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
887         if (!memmap) {
888                 section_deactivate(pfn, nr_pages, altmap);
889                 return ERR_PTR(-ENOMEM);
890         }
891
892         return memmap;
893 }
894
895 /**
896  * sparse_add_section - add a memory section, or populate an existing one
897  * @nid: The node to add section on
898  * @start_pfn: start pfn of the memory range
899  * @nr_pages: number of pfns to add in the section
900  * @altmap: device page map
901  *
902  * This is only intended for hotplug.
903  *
904  * Note that only VMEMMAP supports sub-section aligned hotplug,
905  * the proper alignment and size are gated by check_pfn_span().
906  *
907  *
908  * Return:
909  * * 0          - On success.
910  * * -EEXIST    - Section has been present.
911  * * -ENOMEM    - Out of memory.
912  */
913 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
914                 unsigned long nr_pages, struct vmem_altmap *altmap)
915 {
916         unsigned long section_nr = pfn_to_section_nr(start_pfn);
917         struct mem_section *ms;
918         struct page *memmap;
919         int ret;
920
921         ret = sparse_index_init(section_nr, nid);
922         if (ret < 0)
923                 return ret;
924
925         memmap = section_activate(nid, start_pfn, nr_pages, altmap);
926         if (IS_ERR(memmap))
927                 return PTR_ERR(memmap);
928
929         /*
930          * Poison uninitialized struct pages in order to catch invalid flags
931          * combinations.
932          */
933         page_init_poison(memmap, sizeof(struct page) * nr_pages);
934
935         ms = __nr_to_section(section_nr);
936         set_section_nid(section_nr, nid);
937         section_mark_present(ms);
938
939         /* Align memmap to section boundary in the subsection case */
940         if (section_nr_to_pfn(section_nr) != start_pfn)
941                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
942         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
943
944         return 0;
945 }
946
947 #ifdef CONFIG_MEMORY_FAILURE
948 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
949 {
950         int i;
951
952         /*
953          * A further optimization is to have per section refcounted
954          * num_poisoned_pages.  But that would need more space per memmap, so
955          * for now just do a quick global check to speed up this routine in the
956          * absence of bad pages.
957          */
958         if (atomic_long_read(&num_poisoned_pages) == 0)
959                 return;
960
961         for (i = 0; i < nr_pages; i++) {
962                 if (PageHWPoison(&memmap[i])) {
963                         num_poisoned_pages_dec();
964                         ClearPageHWPoison(&memmap[i]);
965                 }
966         }
967 }
968 #else
969 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
970 {
971 }
972 #endif
973
974 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
975                 unsigned long nr_pages, unsigned long map_offset,
976                 struct vmem_altmap *altmap)
977 {
978         clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
979                         nr_pages - map_offset);
980         section_deactivate(pfn, nr_pages, altmap);
981 }
982 #endif /* CONFIG_MEMORY_HOTPLUG */