Merge tag 'memory-controller-drv-tegra-5.14-3' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (sbinfo->max_inodes) {
283                         if (!sbinfo->free_inodes) {
284                                 spin_unlock(&sbinfo->stat_lock);
285                                 return -ENOSPC;
286                         }
287                         sbinfo->free_inodes--;
288                 }
289                 if (inop) {
290                         ino = sbinfo->next_ino++;
291                         if (unlikely(is_zero_ino(ino)))
292                                 ino = sbinfo->next_ino++;
293                         if (unlikely(!sbinfo->full_inums &&
294                                      ino > UINT_MAX)) {
295                                 /*
296                                  * Emulate get_next_ino uint wraparound for
297                                  * compatibility
298                                  */
299                                 if (IS_ENABLED(CONFIG_64BIT))
300                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301                                                 __func__, MINOR(sb->s_dev));
302                                 sbinfo->next_ino = 1;
303                                 ino = sbinfo->next_ino++;
304                         }
305                         *inop = ino;
306                 }
307                 spin_unlock(&sbinfo->stat_lock);
308         } else if (inop) {
309                 /*
310                  * __shmem_file_setup, one of our callers, is lock-free: it
311                  * doesn't hold stat_lock in shmem_reserve_inode since
312                  * max_inodes is always 0, and is called from potentially
313                  * unknown contexts. As such, use a per-cpu batched allocator
314                  * which doesn't require the per-sb stat_lock unless we are at
315                  * the batch boundary.
316                  *
317                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318                  * shmem mounts are not exposed to userspace, so we don't need
319                  * to worry about things like glibc compatibility.
320                  */
321                 ino_t *next_ino;
322                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323                 ino = *next_ino;
324                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325                         spin_lock(&sbinfo->stat_lock);
326                         ino = sbinfo->next_ino;
327                         sbinfo->next_ino += SHMEM_INO_BATCH;
328                         spin_unlock(&sbinfo->stat_lock);
329                         if (unlikely(is_zero_ino(ino)))
330                                 ino++;
331                 }
332                 *inop = ino;
333                 *next_ino = ++ino;
334                 put_cpu();
335         }
336
337         return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343         if (sbinfo->max_inodes) {
344                 spin_lock(&sbinfo->stat_lock);
345                 sbinfo->free_inodes++;
346                 spin_unlock(&sbinfo->stat_lock);
347         }
348 }
349
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364         struct shmem_inode_info *info = SHMEM_I(inode);
365         long freed;
366
367         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368         if (freed > 0) {
369                 info->alloced -= freed;
370                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371                 shmem_inode_unacct_blocks(inode, freed);
372         }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377         struct shmem_inode_info *info = SHMEM_I(inode);
378         unsigned long flags;
379
380         if (!shmem_inode_acct_block(inode, pages))
381                 return false;
382
383         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384         inode->i_mapping->nrpages += pages;
385
386         spin_lock_irqsave(&info->lock, flags);
387         info->alloced += pages;
388         inode->i_blocks += pages * BLOCKS_PER_PAGE;
389         shmem_recalc_inode(inode);
390         spin_unlock_irqrestore(&info->lock, flags);
391
392         return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397         struct shmem_inode_info *info = SHMEM_I(inode);
398         unsigned long flags;
399
400         /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402         spin_lock_irqsave(&info->lock, flags);
403         info->alloced -= pages;
404         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405         shmem_recalc_inode(inode);
406         spin_unlock_irqrestore(&info->lock, flags);
407
408         shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
414 static int shmem_replace_entry(struct address_space *mapping,
415                         pgoff_t index, void *expected, void *replacement)
416 {
417         XA_STATE(xas, &mapping->i_pages, index);
418         void *item;
419
420         VM_BUG_ON(!expected);
421         VM_BUG_ON(!replacement);
422         item = xas_load(&xas);
423         if (item != expected)
424                 return -ENOENT;
425         xas_store(&xas, replacement);
426         return 0;
427 }
428
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437                                pgoff_t index, swp_entry_t swap)
438 {
439         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *      disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *      enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *      only allocate huge pages if the page will be fully within i_size,
451  *      also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *      only allocate huge pages if requested with fadvise()/madvise();
454  */
455
456 #define SHMEM_HUGE_NEVER        0
457 #define SHMEM_HUGE_ALWAYS       1
458 #define SHMEM_HUGE_WITHIN_SIZE  2
459 #define SHMEM_HUGE_ADVISE       3
460
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *      disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY         (-1)
472 #define SHMEM_HUGE_FORCE        (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482         if (!strcmp(str, "never"))
483                 return SHMEM_HUGE_NEVER;
484         if (!strcmp(str, "always"))
485                 return SHMEM_HUGE_ALWAYS;
486         if (!strcmp(str, "within_size"))
487                 return SHMEM_HUGE_WITHIN_SIZE;
488         if (!strcmp(str, "advise"))
489                 return SHMEM_HUGE_ADVISE;
490         if (!strcmp(str, "deny"))
491                 return SHMEM_HUGE_DENY;
492         if (!strcmp(str, "force"))
493                 return SHMEM_HUGE_FORCE;
494         return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501         switch (huge) {
502         case SHMEM_HUGE_NEVER:
503                 return "never";
504         case SHMEM_HUGE_ALWAYS:
505                 return "always";
506         case SHMEM_HUGE_WITHIN_SIZE:
507                 return "within_size";
508         case SHMEM_HUGE_ADVISE:
509                 return "advise";
510         case SHMEM_HUGE_DENY:
511                 return "deny";
512         case SHMEM_HUGE_FORCE:
513                 return "force";
514         default:
515                 VM_BUG_ON(1);
516                 return "bad_val";
517         }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522                 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524         LIST_HEAD(list), *pos, *next;
525         LIST_HEAD(to_remove);
526         struct inode *inode;
527         struct shmem_inode_info *info;
528         struct page *page;
529         unsigned long batch = sc ? sc->nr_to_scan : 128;
530         int removed = 0, split = 0;
531
532         if (list_empty(&sbinfo->shrinklist))
533                 return SHRINK_STOP;
534
535         spin_lock(&sbinfo->shrinklist_lock);
536         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539                 /* pin the inode */
540                 inode = igrab(&info->vfs_inode);
541
542                 /* inode is about to be evicted */
543                 if (!inode) {
544                         list_del_init(&info->shrinklist);
545                         removed++;
546                         goto next;
547                 }
548
549                 /* Check if there's anything to gain */
550                 if (round_up(inode->i_size, PAGE_SIZE) ==
551                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552                         list_move(&info->shrinklist, &to_remove);
553                         removed++;
554                         goto next;
555                 }
556
557                 list_move(&info->shrinklist, &list);
558 next:
559                 if (!--batch)
560                         break;
561         }
562         spin_unlock(&sbinfo->shrinklist_lock);
563
564         list_for_each_safe(pos, next, &to_remove) {
565                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566                 inode = &info->vfs_inode;
567                 list_del_init(&info->shrinklist);
568                 iput(inode);
569         }
570
571         list_for_each_safe(pos, next, &list) {
572                 int ret;
573
574                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575                 inode = &info->vfs_inode;
576
577                 if (nr_to_split && split >= nr_to_split)
578                         goto leave;
579
580                 page = find_get_page(inode->i_mapping,
581                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582                 if (!page)
583                         goto drop;
584
585                 /* No huge page at the end of the file: nothing to split */
586                 if (!PageTransHuge(page)) {
587                         put_page(page);
588                         goto drop;
589                 }
590
591                 /*
592                  * Leave the inode on the list if we failed to lock
593                  * the page at this time.
594                  *
595                  * Waiting for the lock may lead to deadlock in the
596                  * reclaim path.
597                  */
598                 if (!trylock_page(page)) {
599                         put_page(page);
600                         goto leave;
601                 }
602
603                 ret = split_huge_page(page);
604                 unlock_page(page);
605                 put_page(page);
606
607                 /* If split failed leave the inode on the list */
608                 if (ret)
609                         goto leave;
610
611                 split++;
612 drop:
613                 list_del_init(&info->shrinklist);
614                 removed++;
615 leave:
616                 iput(inode);
617         }
618
619         spin_lock(&sbinfo->shrinklist_lock);
620         list_splice_tail(&list, &sbinfo->shrinklist);
621         sbinfo->shrinklist_len -= removed;
622         spin_unlock(&sbinfo->shrinklist_lock);
623
624         return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628                 struct shrink_control *sc)
629 {
630         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632         if (!READ_ONCE(sbinfo->shrinklist_len))
633                 return SHRINK_STOP;
634
635         return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639                 struct shrink_control *sc)
640 {
641         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642         return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649                 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651         return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659             shmem_huge != SHMEM_HUGE_DENY)
660                 return true;
661         return false;
662 }
663
664 /*
665  * Like add_to_page_cache_locked, but error if expected item has gone.
666  */
667 static int shmem_add_to_page_cache(struct page *page,
668                                    struct address_space *mapping,
669                                    pgoff_t index, void *expected, gfp_t gfp,
670                                    struct mm_struct *charge_mm)
671 {
672         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673         unsigned long i = 0;
674         unsigned long nr = compound_nr(page);
675         int error;
676
677         VM_BUG_ON_PAGE(PageTail(page), page);
678         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679         VM_BUG_ON_PAGE(!PageLocked(page), page);
680         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681         VM_BUG_ON(expected && PageTransHuge(page));
682
683         page_ref_add(page, nr);
684         page->mapping = mapping;
685         page->index = index;
686
687         if (!PageSwapCache(page)) {
688                 error = mem_cgroup_charge(page, charge_mm, gfp);
689                 if (error) {
690                         if (PageTransHuge(page)) {
691                                 count_vm_event(THP_FILE_FALLBACK);
692                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693                         }
694                         goto error;
695                 }
696         }
697         cgroup_throttle_swaprate(page, gfp);
698
699         do {
700                 void *entry;
701                 xas_lock_irq(&xas);
702                 entry = xas_find_conflict(&xas);
703                 if (entry != expected)
704                         xas_set_err(&xas, -EEXIST);
705                 xas_create_range(&xas);
706                 if (xas_error(&xas))
707                         goto unlock;
708 next:
709                 xas_store(&xas, page);
710                 if (++i < nr) {
711                         xas_next(&xas);
712                         goto next;
713                 }
714                 if (PageTransHuge(page)) {
715                         count_vm_event(THP_FILE_ALLOC);
716                         __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
717                 }
718                 mapping->nrpages += nr;
719                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722                 xas_unlock_irq(&xas);
723         } while (xas_nomem(&xas, gfp));
724
725         if (xas_error(&xas)) {
726                 error = xas_error(&xas);
727                 goto error;
728         }
729
730         return 0;
731 error:
732         page->mapping = NULL;
733         page_ref_sub(page, nr);
734         return error;
735 }
736
737 /*
738  * Like delete_from_page_cache, but substitutes swap for page.
739  */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742         struct address_space *mapping = page->mapping;
743         int error;
744
745         VM_BUG_ON_PAGE(PageCompound(page), page);
746
747         xa_lock_irq(&mapping->i_pages);
748         error = shmem_replace_entry(mapping, page->index, page, radswap);
749         page->mapping = NULL;
750         mapping->nrpages--;
751         __dec_lruvec_page_state(page, NR_FILE_PAGES);
752         __dec_lruvec_page_state(page, NR_SHMEM);
753         xa_unlock_irq(&mapping->i_pages);
754         put_page(page);
755         BUG_ON(error);
756 }
757
758 /*
759  * Remove swap entry from page cache, free the swap and its page cache.
760  */
761 static int shmem_free_swap(struct address_space *mapping,
762                            pgoff_t index, void *radswap)
763 {
764         void *old;
765
766         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767         if (old != radswap)
768                 return -ENOENT;
769         free_swap_and_cache(radix_to_swp_entry(radswap));
770         return 0;
771 }
772
773 /*
774  * Determine (in bytes) how many of the shmem object's pages mapped by the
775  * given offsets are swapped out.
776  *
777  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778  * as long as the inode doesn't go away and racy results are not a problem.
779  */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781                                                 pgoff_t start, pgoff_t end)
782 {
783         XA_STATE(xas, &mapping->i_pages, start);
784         struct page *page;
785         unsigned long swapped = 0;
786
787         rcu_read_lock();
788         xas_for_each(&xas, page, end - 1) {
789                 if (xas_retry(&xas, page))
790                         continue;
791                 if (xa_is_value(page))
792                         swapped++;
793
794                 if (need_resched()) {
795                         xas_pause(&xas);
796                         cond_resched_rcu();
797                 }
798         }
799
800         rcu_read_unlock();
801
802         return swapped << PAGE_SHIFT;
803 }
804
805 /*
806  * Determine (in bytes) how many of the shmem object's pages mapped by the
807  * given vma is swapped out.
808  *
809  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810  * as long as the inode doesn't go away and racy results are not a problem.
811  */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814         struct inode *inode = file_inode(vma->vm_file);
815         struct shmem_inode_info *info = SHMEM_I(inode);
816         struct address_space *mapping = inode->i_mapping;
817         unsigned long swapped;
818
819         /* Be careful as we don't hold info->lock */
820         swapped = READ_ONCE(info->swapped);
821
822         /*
823          * The easier cases are when the shmem object has nothing in swap, or
824          * the vma maps it whole. Then we can simply use the stats that we
825          * already track.
826          */
827         if (!swapped)
828                 return 0;
829
830         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831                 return swapped << PAGE_SHIFT;
832
833         /* Here comes the more involved part */
834         return shmem_partial_swap_usage(mapping,
835                         linear_page_index(vma, vma->vm_start),
836                         linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841  */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844         struct pagevec pvec;
845         pgoff_t index = 0;
846
847         pagevec_init(&pvec);
848         /*
849          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
850          */
851         while (!mapping_unevictable(mapping)) {
852                 if (!pagevec_lookup(&pvec, mapping, &index))
853                         break;
854                 check_move_unevictable_pages(&pvec);
855                 pagevec_release(&pvec);
856                 cond_resched();
857         }
858 }
859
860 /*
861  * Check whether a hole-punch or truncation needs to split a huge page,
862  * returning true if no split was required, or the split has been successful.
863  *
864  * Eviction (or truncation to 0 size) should never need to split a huge page;
865  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
866  * head, and then succeeded to trylock on tail.
867  *
868  * A split can only succeed when there are no additional references on the
869  * huge page: so the split below relies upon find_get_entries() having stopped
870  * when it found a subpage of the huge page, without getting further references.
871  */
872 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
873 {
874         if (!PageTransCompound(page))
875                 return true;
876
877         /* Just proceed to delete a huge page wholly within the range punched */
878         if (PageHead(page) &&
879             page->index >= start && page->index + HPAGE_PMD_NR <= end)
880                 return true;
881
882         /* Try to split huge page, so we can truly punch the hole or truncate */
883         return split_huge_page(page) >= 0;
884 }
885
886 /*
887  * Remove range of pages and swap entries from page cache, and free them.
888  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
889  */
890 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
891                                                                  bool unfalloc)
892 {
893         struct address_space *mapping = inode->i_mapping;
894         struct shmem_inode_info *info = SHMEM_I(inode);
895         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
896         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
897         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
898         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
899         struct pagevec pvec;
900         pgoff_t indices[PAGEVEC_SIZE];
901         long nr_swaps_freed = 0;
902         pgoff_t index;
903         int i;
904
905         if (lend == -1)
906                 end = -1;       /* unsigned, so actually very big */
907
908         pagevec_init(&pvec);
909         index = start;
910         while (index < end && find_lock_entries(mapping, index, end - 1,
911                         &pvec, indices)) {
912                 for (i = 0; i < pagevec_count(&pvec); i++) {
913                         struct page *page = pvec.pages[i];
914
915                         index = indices[i];
916
917                         if (xa_is_value(page)) {
918                                 if (unfalloc)
919                                         continue;
920                                 nr_swaps_freed += !shmem_free_swap(mapping,
921                                                                 index, page);
922                                 continue;
923                         }
924                         index += thp_nr_pages(page) - 1;
925
926                         if (!unfalloc || !PageUptodate(page))
927                                 truncate_inode_page(mapping, page);
928                         unlock_page(page);
929                 }
930                 pagevec_remove_exceptionals(&pvec);
931                 pagevec_release(&pvec);
932                 cond_resched();
933                 index++;
934         }
935
936         if (partial_start) {
937                 struct page *page = NULL;
938                 shmem_getpage(inode, start - 1, &page, SGP_READ);
939                 if (page) {
940                         unsigned int top = PAGE_SIZE;
941                         if (start > end) {
942                                 top = partial_end;
943                                 partial_end = 0;
944                         }
945                         zero_user_segment(page, partial_start, top);
946                         set_page_dirty(page);
947                         unlock_page(page);
948                         put_page(page);
949                 }
950         }
951         if (partial_end) {
952                 struct page *page = NULL;
953                 shmem_getpage(inode, end, &page, SGP_READ);
954                 if (page) {
955                         zero_user_segment(page, 0, partial_end);
956                         set_page_dirty(page);
957                         unlock_page(page);
958                         put_page(page);
959                 }
960         }
961         if (start >= end)
962                 return;
963
964         index = start;
965         while (index < end) {
966                 cond_resched();
967
968                 if (!find_get_entries(mapping, index, end - 1, &pvec,
969                                 indices)) {
970                         /* If all gone or hole-punch or unfalloc, we're done */
971                         if (index == start || end != -1)
972                                 break;
973                         /* But if truncating, restart to make sure all gone */
974                         index = start;
975                         continue;
976                 }
977                 for (i = 0; i < pagevec_count(&pvec); i++) {
978                         struct page *page = pvec.pages[i];
979
980                         index = indices[i];
981                         if (xa_is_value(page)) {
982                                 if (unfalloc)
983                                         continue;
984                                 if (shmem_free_swap(mapping, index, page)) {
985                                         /* Swap was replaced by page: retry */
986                                         index--;
987                                         break;
988                                 }
989                                 nr_swaps_freed++;
990                                 continue;
991                         }
992
993                         lock_page(page);
994
995                         if (!unfalloc || !PageUptodate(page)) {
996                                 if (page_mapping(page) != mapping) {
997                                         /* Page was replaced by swap: retry */
998                                         unlock_page(page);
999                                         index--;
1000                                         break;
1001                                 }
1002                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1003                                 if (shmem_punch_compound(page, start, end))
1004                                         truncate_inode_page(mapping, page);
1005                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006                                         /* Wipe the page and don't get stuck */
1007                                         clear_highpage(page);
1008                                         flush_dcache_page(page);
1009                                         set_page_dirty(page);
1010                                         if (index <
1011                                             round_up(start, HPAGE_PMD_NR))
1012                                                 start = index + 1;
1013                                 }
1014                         }
1015                         unlock_page(page);
1016                 }
1017                 pagevec_remove_exceptionals(&pvec);
1018                 pagevec_release(&pvec);
1019                 index++;
1020         }
1021
1022         spin_lock_irq(&info->lock);
1023         info->swapped -= nr_swaps_freed;
1024         shmem_recalc_inode(inode);
1025         spin_unlock_irq(&info->lock);
1026 }
1027
1028 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029 {
1030         shmem_undo_range(inode, lstart, lend, false);
1031         inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035 static int shmem_getattr(struct user_namespace *mnt_userns,
1036                          const struct path *path, struct kstat *stat,
1037                          u32 request_mask, unsigned int query_flags)
1038 {
1039         struct inode *inode = path->dentry->d_inode;
1040         struct shmem_inode_info *info = SHMEM_I(inode);
1041         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044                 spin_lock_irq(&info->lock);
1045                 shmem_recalc_inode(inode);
1046                 spin_unlock_irq(&info->lock);
1047         }
1048         generic_fillattr(&init_user_ns, inode, stat);
1049
1050         if (is_huge_enabled(sb_info))
1051                 stat->blksize = HPAGE_PMD_SIZE;
1052
1053         return 0;
1054 }
1055
1056 static int shmem_setattr(struct user_namespace *mnt_userns,
1057                          struct dentry *dentry, struct iattr *attr)
1058 {
1059         struct inode *inode = d_inode(dentry);
1060         struct shmem_inode_info *info = SHMEM_I(inode);
1061         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062         int error;
1063
1064         error = setattr_prepare(&init_user_ns, dentry, attr);
1065         if (error)
1066                 return error;
1067
1068         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069                 loff_t oldsize = inode->i_size;
1070                 loff_t newsize = attr->ia_size;
1071
1072                 /* protected by i_mutex */
1073                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075                         return -EPERM;
1076
1077                 if (newsize != oldsize) {
1078                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079                                         oldsize, newsize);
1080                         if (error)
1081                                 return error;
1082                         i_size_write(inode, newsize);
1083                         inode->i_ctime = inode->i_mtime = current_time(inode);
1084                 }
1085                 if (newsize <= oldsize) {
1086                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087                         if (oldsize > holebegin)
1088                                 unmap_mapping_range(inode->i_mapping,
1089                                                         holebegin, 0, 1);
1090                         if (info->alloced)
1091                                 shmem_truncate_range(inode,
1092                                                         newsize, (loff_t)-1);
1093                         /* unmap again to remove racily COWed private pages */
1094                         if (oldsize > holebegin)
1095                                 unmap_mapping_range(inode->i_mapping,
1096                                                         holebegin, 0, 1);
1097
1098                         /*
1099                          * Part of the huge page can be beyond i_size: subject
1100                          * to shrink under memory pressure.
1101                          */
1102                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103                                 spin_lock(&sbinfo->shrinklist_lock);
1104                                 /*
1105                                  * _careful to defend against unlocked access to
1106                                  * ->shrink_list in shmem_unused_huge_shrink()
1107                                  */
1108                                 if (list_empty_careful(&info->shrinklist)) {
1109                                         list_add_tail(&info->shrinklist,
1110                                                         &sbinfo->shrinklist);
1111                                         sbinfo->shrinklist_len++;
1112                                 }
1113                                 spin_unlock(&sbinfo->shrinklist_lock);
1114                         }
1115                 }
1116         }
1117
1118         setattr_copy(&init_user_ns, inode, attr);
1119         if (attr->ia_valid & ATTR_MODE)
1120                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121         return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126         struct shmem_inode_info *info = SHMEM_I(inode);
1127         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129         if (shmem_mapping(inode->i_mapping)) {
1130                 shmem_unacct_size(info->flags, inode->i_size);
1131                 inode->i_size = 0;
1132                 shmem_truncate_range(inode, 0, (loff_t)-1);
1133                 if (!list_empty(&info->shrinklist)) {
1134                         spin_lock(&sbinfo->shrinklist_lock);
1135                         if (!list_empty(&info->shrinklist)) {
1136                                 list_del_init(&info->shrinklist);
1137                                 sbinfo->shrinklist_len--;
1138                         }
1139                         spin_unlock(&sbinfo->shrinklist_lock);
1140                 }
1141                 while (!list_empty(&info->swaplist)) {
1142                         /* Wait while shmem_unuse() is scanning this inode... */
1143                         wait_var_event(&info->stop_eviction,
1144                                        !atomic_read(&info->stop_eviction));
1145                         mutex_lock(&shmem_swaplist_mutex);
1146                         /* ...but beware of the race if we peeked too early */
1147                         if (!atomic_read(&info->stop_eviction))
1148                                 list_del_init(&info->swaplist);
1149                         mutex_unlock(&shmem_swaplist_mutex);
1150                 }
1151         }
1152
1153         simple_xattrs_free(&info->xattrs);
1154         WARN_ON(inode->i_blocks);
1155         shmem_free_inode(inode->i_sb);
1156         clear_inode(inode);
1157 }
1158
1159 extern struct swap_info_struct *swap_info[];
1160
1161 static int shmem_find_swap_entries(struct address_space *mapping,
1162                                    pgoff_t start, unsigned int nr_entries,
1163                                    struct page **entries, pgoff_t *indices,
1164                                    unsigned int type, bool frontswap)
1165 {
1166         XA_STATE(xas, &mapping->i_pages, start);
1167         struct page *page;
1168         swp_entry_t entry;
1169         unsigned int ret = 0;
1170
1171         if (!nr_entries)
1172                 return 0;
1173
1174         rcu_read_lock();
1175         xas_for_each(&xas, page, ULONG_MAX) {
1176                 if (xas_retry(&xas, page))
1177                         continue;
1178
1179                 if (!xa_is_value(page))
1180                         continue;
1181
1182                 entry = radix_to_swp_entry(page);
1183                 if (swp_type(entry) != type)
1184                         continue;
1185                 if (frontswap &&
1186                     !frontswap_test(swap_info[type], swp_offset(entry)))
1187                         continue;
1188
1189                 indices[ret] = xas.xa_index;
1190                 entries[ret] = page;
1191
1192                 if (need_resched()) {
1193                         xas_pause(&xas);
1194                         cond_resched_rcu();
1195                 }
1196                 if (++ret == nr_entries)
1197                         break;
1198         }
1199         rcu_read_unlock();
1200
1201         return ret;
1202 }
1203
1204 /*
1205  * Move the swapped pages for an inode to page cache. Returns the count
1206  * of pages swapped in, or the error in case of failure.
1207  */
1208 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209                                     pgoff_t *indices)
1210 {
1211         int i = 0;
1212         int ret = 0;
1213         int error = 0;
1214         struct address_space *mapping = inode->i_mapping;
1215
1216         for (i = 0; i < pvec.nr; i++) {
1217                 struct page *page = pvec.pages[i];
1218
1219                 if (!xa_is_value(page))
1220                         continue;
1221                 error = shmem_swapin_page(inode, indices[i],
1222                                           &page, SGP_CACHE,
1223                                           mapping_gfp_mask(mapping),
1224                                           NULL, NULL);
1225                 if (error == 0) {
1226                         unlock_page(page);
1227                         put_page(page);
1228                         ret++;
1229                 }
1230                 if (error == -ENOMEM)
1231                         break;
1232                 error = 0;
1233         }
1234         return error ? error : ret;
1235 }
1236
1237 /*
1238  * If swap found in inode, free it and move page from swapcache to filecache.
1239  */
1240 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241                              bool frontswap, unsigned long *fs_pages_to_unuse)
1242 {
1243         struct address_space *mapping = inode->i_mapping;
1244         pgoff_t start = 0;
1245         struct pagevec pvec;
1246         pgoff_t indices[PAGEVEC_SIZE];
1247         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248         int ret = 0;
1249
1250         pagevec_init(&pvec);
1251         do {
1252                 unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255                         nr_entries = *fs_pages_to_unuse;
1256
1257                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258                                                   pvec.pages, indices,
1259                                                   type, frontswap);
1260                 if (pvec.nr == 0) {
1261                         ret = 0;
1262                         break;
1263                 }
1264
1265                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266                 if (ret < 0)
1267                         break;
1268
1269                 if (frontswap_partial) {
1270                         *fs_pages_to_unuse -= ret;
1271                         if (*fs_pages_to_unuse == 0) {
1272                                 ret = FRONTSWAP_PAGES_UNUSED;
1273                                 break;
1274                         }
1275                 }
1276
1277                 start = indices[pvec.nr - 1];
1278         } while (true);
1279
1280         return ret;
1281 }
1282
1283 /*
1284  * Read all the shared memory data that resides in the swap
1285  * device 'type' back into memory, so the swap device can be
1286  * unused.
1287  */
1288 int shmem_unuse(unsigned int type, bool frontswap,
1289                 unsigned long *fs_pages_to_unuse)
1290 {
1291         struct shmem_inode_info *info, *next;
1292         int error = 0;
1293
1294         if (list_empty(&shmem_swaplist))
1295                 return 0;
1296
1297         mutex_lock(&shmem_swaplist_mutex);
1298         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299                 if (!info->swapped) {
1300                         list_del_init(&info->swaplist);
1301                         continue;
1302                 }
1303                 /*
1304                  * Drop the swaplist mutex while searching the inode for swap;
1305                  * but before doing so, make sure shmem_evict_inode() will not
1306                  * remove placeholder inode from swaplist, nor let it be freed
1307                  * (igrab() would protect from unlink, but not from unmount).
1308                  */
1309                 atomic_inc(&info->stop_eviction);
1310                 mutex_unlock(&shmem_swaplist_mutex);
1311
1312                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313                                           fs_pages_to_unuse);
1314                 cond_resched();
1315
1316                 mutex_lock(&shmem_swaplist_mutex);
1317                 next = list_next_entry(info, swaplist);
1318                 if (!info->swapped)
1319                         list_del_init(&info->swaplist);
1320                 if (atomic_dec_and_test(&info->stop_eviction))
1321                         wake_up_var(&info->stop_eviction);
1322                 if (error)
1323                         break;
1324         }
1325         mutex_unlock(&shmem_swaplist_mutex);
1326
1327         return error;
1328 }
1329
1330 /*
1331  * Move the page from the page cache to the swap cache.
1332  */
1333 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334 {
1335         struct shmem_inode_info *info;
1336         struct address_space *mapping;
1337         struct inode *inode;
1338         swp_entry_t swap;
1339         pgoff_t index;
1340
1341         VM_BUG_ON_PAGE(PageCompound(page), page);
1342         BUG_ON(!PageLocked(page));
1343         mapping = page->mapping;
1344         index = page->index;
1345         inode = mapping->host;
1346         info = SHMEM_I(inode);
1347         if (info->flags & VM_LOCKED)
1348                 goto redirty;
1349         if (!total_swap_pages)
1350                 goto redirty;
1351
1352         /*
1353          * Our capabilities prevent regular writeback or sync from ever calling
1354          * shmem_writepage; but a stacking filesystem might use ->writepage of
1355          * its underlying filesystem, in which case tmpfs should write out to
1356          * swap only in response to memory pressure, and not for the writeback
1357          * threads or sync.
1358          */
1359         if (!wbc->for_reclaim) {
1360                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1361                 goto redirty;
1362         }
1363
1364         /*
1365          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366          * value into swapfile.c, the only way we can correctly account for a
1367          * fallocated page arriving here is now to initialize it and write it.
1368          *
1369          * That's okay for a page already fallocated earlier, but if we have
1370          * not yet completed the fallocation, then (a) we want to keep track
1371          * of this page in case we have to undo it, and (b) it may not be a
1372          * good idea to continue anyway, once we're pushing into swap.  So
1373          * reactivate the page, and let shmem_fallocate() quit when too many.
1374          */
1375         if (!PageUptodate(page)) {
1376                 if (inode->i_private) {
1377                         struct shmem_falloc *shmem_falloc;
1378                         spin_lock(&inode->i_lock);
1379                         shmem_falloc = inode->i_private;
1380                         if (shmem_falloc &&
1381                             !shmem_falloc->waitq &&
1382                             index >= shmem_falloc->start &&
1383                             index < shmem_falloc->next)
1384                                 shmem_falloc->nr_unswapped++;
1385                         else
1386                                 shmem_falloc = NULL;
1387                         spin_unlock(&inode->i_lock);
1388                         if (shmem_falloc)
1389                                 goto redirty;
1390                 }
1391                 clear_highpage(page);
1392                 flush_dcache_page(page);
1393                 SetPageUptodate(page);
1394         }
1395
1396         swap = get_swap_page(page);
1397         if (!swap.val)
1398                 goto redirty;
1399
1400         /*
1401          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402          * if it's not already there.  Do it now before the page is
1403          * moved to swap cache, when its pagelock no longer protects
1404          * the inode from eviction.  But don't unlock the mutex until
1405          * we've incremented swapped, because shmem_unuse_inode() will
1406          * prune a !swapped inode from the swaplist under this mutex.
1407          */
1408         mutex_lock(&shmem_swaplist_mutex);
1409         if (list_empty(&info->swaplist))
1410                 list_add(&info->swaplist, &shmem_swaplist);
1411
1412         if (add_to_swap_cache(page, swap,
1413                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414                         NULL) == 0) {
1415                 spin_lock_irq(&info->lock);
1416                 shmem_recalc_inode(inode);
1417                 info->swapped++;
1418                 spin_unlock_irq(&info->lock);
1419
1420                 swap_shmem_alloc(swap);
1421                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423                 mutex_unlock(&shmem_swaplist_mutex);
1424                 BUG_ON(page_mapped(page));
1425                 swap_writepage(page, wbc);
1426                 return 0;
1427         }
1428
1429         mutex_unlock(&shmem_swaplist_mutex);
1430         put_swap_page(page, swap);
1431 redirty:
1432         set_page_dirty(page);
1433         if (wbc->for_reclaim)
1434                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1435         unlock_page(page);
1436         return 0;
1437 }
1438
1439 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441 {
1442         char buffer[64];
1443
1444         if (!mpol || mpol->mode == MPOL_DEFAULT)
1445                 return;         /* show nothing */
1446
1447         mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449         seq_printf(seq, ",mpol=%s", buffer);
1450 }
1451
1452 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453 {
1454         struct mempolicy *mpol = NULL;
1455         if (sbinfo->mpol) {
1456                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1457                 mpol = sbinfo->mpol;
1458                 mpol_get(mpol);
1459                 spin_unlock(&sbinfo->stat_lock);
1460         }
1461         return mpol;
1462 }
1463 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 }
1467 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468 {
1469         return NULL;
1470 }
1471 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472 #ifndef CONFIG_NUMA
1473 #define vm_policy vm_private_data
1474 #endif
1475
1476 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477                 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479         /* Create a pseudo vma that just contains the policy */
1480         vma_init(vma, NULL);
1481         /* Bias interleave by inode number to distribute better across nodes */
1482         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484 }
1485
1486 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487 {
1488         /* Drop reference taken by mpol_shared_policy_lookup() */
1489         mpol_cond_put(vma->vm_policy);
1490 }
1491
1492 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493                         struct shmem_inode_info *info, pgoff_t index)
1494 {
1495         struct vm_area_struct pvma;
1496         struct page *page;
1497         struct vm_fault vmf = {
1498                 .vma = &pvma,
1499         };
1500
1501         shmem_pseudo_vma_init(&pvma, info, index);
1502         page = swap_cluster_readahead(swap, gfp, &vmf);
1503         shmem_pseudo_vma_destroy(&pvma);
1504
1505         return page;
1506 }
1507
1508 /*
1509  * Make sure huge_gfp is always more limited than limit_gfp.
1510  * Some of the flags set permissions, while others set limitations.
1511  */
1512 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513 {
1514         gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515         gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516         gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517         gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519         /* Allow allocations only from the originally specified zones. */
1520         result |= zoneflags;
1521
1522         /*
1523          * Minimize the result gfp by taking the union with the deny flags,
1524          * and the intersection of the allow flags.
1525          */
1526         result |= (limit_gfp & denyflags);
1527         result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529         return result;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533                 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535         struct vm_area_struct pvma;
1536         struct address_space *mapping = info->vfs_inode.i_mapping;
1537         pgoff_t hindex;
1538         struct page *page;
1539
1540         hindex = round_down(index, HPAGE_PMD_NR);
1541         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542                                                                 XA_PRESENT))
1543                 return NULL;
1544
1545         shmem_pseudo_vma_init(&pvma, info, hindex);
1546         page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547                                true);
1548         shmem_pseudo_vma_destroy(&pvma);
1549         if (page)
1550                 prep_transhuge_page(page);
1551         else
1552                 count_vm_event(THP_FILE_FALLBACK);
1553         return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557                         struct shmem_inode_info *info, pgoff_t index)
1558 {
1559         struct vm_area_struct pvma;
1560         struct page *page;
1561
1562         shmem_pseudo_vma_init(&pvma, info, index);
1563         page = alloc_page_vma(gfp, &pvma, 0);
1564         shmem_pseudo_vma_destroy(&pvma);
1565
1566         return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570                 struct inode *inode,
1571                 pgoff_t index, bool huge)
1572 {
1573         struct shmem_inode_info *info = SHMEM_I(inode);
1574         struct page *page;
1575         int nr;
1576         int err = -ENOSPC;
1577
1578         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579                 huge = false;
1580         nr = huge ? HPAGE_PMD_NR : 1;
1581
1582         if (!shmem_inode_acct_block(inode, nr))
1583                 goto failed;
1584
1585         if (huge)
1586                 page = shmem_alloc_hugepage(gfp, info, index);
1587         else
1588                 page = shmem_alloc_page(gfp, info, index);
1589         if (page) {
1590                 __SetPageLocked(page);
1591                 __SetPageSwapBacked(page);
1592                 return page;
1593         }
1594
1595         err = -ENOMEM;
1596         shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598         return ERR_PTR(err);
1599 }
1600
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615         return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619                                 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621         struct page *oldpage, *newpage;
1622         struct address_space *swap_mapping;
1623         swp_entry_t entry;
1624         pgoff_t swap_index;
1625         int error;
1626
1627         oldpage = *pagep;
1628         entry.val = page_private(oldpage);
1629         swap_index = swp_offset(entry);
1630         swap_mapping = page_mapping(oldpage);
1631
1632         /*
1633          * We have arrived here because our zones are constrained, so don't
1634          * limit chance of success by further cpuset and node constraints.
1635          */
1636         gfp &= ~GFP_CONSTRAINT_MASK;
1637         newpage = shmem_alloc_page(gfp, info, index);
1638         if (!newpage)
1639                 return -ENOMEM;
1640
1641         get_page(newpage);
1642         copy_highpage(newpage, oldpage);
1643         flush_dcache_page(newpage);
1644
1645         __SetPageLocked(newpage);
1646         __SetPageSwapBacked(newpage);
1647         SetPageUptodate(newpage);
1648         set_page_private(newpage, entry.val);
1649         SetPageSwapCache(newpage);
1650
1651         /*
1652          * Our caller will very soon move newpage out of swapcache, but it's
1653          * a nice clean interface for us to replace oldpage by newpage there.
1654          */
1655         xa_lock_irq(&swap_mapping->i_pages);
1656         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657         if (!error) {
1658                 mem_cgroup_migrate(oldpage, newpage);
1659                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661         }
1662         xa_unlock_irq(&swap_mapping->i_pages);
1663
1664         if (unlikely(error)) {
1665                 /*
1666                  * Is this possible?  I think not, now that our callers check
1667                  * both PageSwapCache and page_private after getting page lock;
1668                  * but be defensive.  Reverse old to newpage for clear and free.
1669                  */
1670                 oldpage = newpage;
1671         } else {
1672                 lru_cache_add(newpage);
1673                 *pagep = newpage;
1674         }
1675
1676         ClearPageSwapCache(oldpage);
1677         set_page_private(oldpage, 0);
1678
1679         unlock_page(oldpage);
1680         put_page(oldpage);
1681         put_page(oldpage);
1682         return error;
1683 }
1684
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692                              struct page **pagep, enum sgp_type sgp,
1693                              gfp_t gfp, struct vm_area_struct *vma,
1694                              vm_fault_t *fault_type)
1695 {
1696         struct address_space *mapping = inode->i_mapping;
1697         struct shmem_inode_info *info = SHMEM_I(inode);
1698         struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699         struct swap_info_struct *si;
1700         struct page *page = NULL;
1701         swp_entry_t swap;
1702         int error;
1703
1704         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1705         swap = radix_to_swp_entry(*pagep);
1706         *pagep = NULL;
1707
1708         /* Prevent swapoff from happening to us. */
1709         si = get_swap_device(swap);
1710         if (!si) {
1711                 error = EINVAL;
1712                 goto failed;
1713         }
1714         /* Look it up and read it in.. */
1715         page = lookup_swap_cache(swap, NULL, 0);
1716         if (!page) {
1717                 /* Or update major stats only when swapin succeeds?? */
1718                 if (fault_type) {
1719                         *fault_type |= VM_FAULT_MAJOR;
1720                         count_vm_event(PGMAJFAULT);
1721                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722                 }
1723                 /* Here we actually start the io */
1724                 page = shmem_swapin(swap, gfp, info, index);
1725                 if (!page) {
1726                         error = -ENOMEM;
1727                         goto failed;
1728                 }
1729         }
1730
1731         /* We have to do this with page locked to prevent races */
1732         lock_page(page);
1733         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734             !shmem_confirm_swap(mapping, index, swap)) {
1735                 error = -EEXIST;
1736                 goto unlock;
1737         }
1738         if (!PageUptodate(page)) {
1739                 error = -EIO;
1740                 goto failed;
1741         }
1742         wait_on_page_writeback(page);
1743
1744         /*
1745          * Some architectures may have to restore extra metadata to the
1746          * physical page after reading from swap.
1747          */
1748         arch_swap_restore(swap, page);
1749
1750         if (shmem_should_replace_page(page, gfp)) {
1751                 error = shmem_replace_page(&page, gfp, info, index);
1752                 if (error)
1753                         goto failed;
1754         }
1755
1756         error = shmem_add_to_page_cache(page, mapping, index,
1757                                         swp_to_radix_entry(swap), gfp,
1758                                         charge_mm);
1759         if (error)
1760                 goto failed;
1761
1762         spin_lock_irq(&info->lock);
1763         info->swapped--;
1764         shmem_recalc_inode(inode);
1765         spin_unlock_irq(&info->lock);
1766
1767         if (sgp == SGP_WRITE)
1768                 mark_page_accessed(page);
1769
1770         delete_from_swap_cache(page);
1771         set_page_dirty(page);
1772         swap_free(swap);
1773
1774         *pagep = page;
1775         if (si)
1776                 put_swap_device(si);
1777         return 0;
1778 failed:
1779         if (!shmem_confirm_swap(mapping, index, swap))
1780                 error = -EEXIST;
1781 unlock:
1782         if (page) {
1783                 unlock_page(page);
1784                 put_page(page);
1785         }
1786
1787         if (si)
1788                 put_swap_device(si);
1789
1790         return error;
1791 }
1792
1793 /*
1794  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1795  *
1796  * If we allocate a new one we do not mark it dirty. That's up to the
1797  * vm. If we swap it in we mark it dirty since we also free the swap
1798  * entry since a page cannot live in both the swap and page cache.
1799  *
1800  * vma, vmf, and fault_type are only supplied by shmem_fault:
1801  * otherwise they are NULL.
1802  */
1803 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1804         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1805         struct vm_area_struct *vma, struct vm_fault *vmf,
1806                         vm_fault_t *fault_type)
1807 {
1808         struct address_space *mapping = inode->i_mapping;
1809         struct shmem_inode_info *info = SHMEM_I(inode);
1810         struct shmem_sb_info *sbinfo;
1811         struct mm_struct *charge_mm;
1812         struct page *page;
1813         enum sgp_type sgp_huge = sgp;
1814         pgoff_t hindex = index;
1815         gfp_t huge_gfp;
1816         int error;
1817         int once = 0;
1818         int alloced = 0;
1819
1820         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1821                 return -EFBIG;
1822         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1823                 sgp = SGP_CACHE;
1824 repeat:
1825         if (sgp <= SGP_CACHE &&
1826             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1827                 return -EINVAL;
1828         }
1829
1830         sbinfo = SHMEM_SB(inode->i_sb);
1831         charge_mm = vma ? vma->vm_mm : NULL;
1832
1833         page = pagecache_get_page(mapping, index,
1834                                         FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1835
1836         if (page && vma && userfaultfd_minor(vma)) {
1837                 if (!xa_is_value(page)) {
1838                         unlock_page(page);
1839                         put_page(page);
1840                 }
1841                 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1842                 return 0;
1843         }
1844
1845         if (xa_is_value(page)) {
1846                 error = shmem_swapin_page(inode, index, &page,
1847                                           sgp, gfp, vma, fault_type);
1848                 if (error == -EEXIST)
1849                         goto repeat;
1850
1851                 *pagep = page;
1852                 return error;
1853         }
1854
1855         if (page)
1856                 hindex = page->index;
1857         if (page && sgp == SGP_WRITE)
1858                 mark_page_accessed(page);
1859
1860         /* fallocated page? */
1861         if (page && !PageUptodate(page)) {
1862                 if (sgp != SGP_READ)
1863                         goto clear;
1864                 unlock_page(page);
1865                 put_page(page);
1866                 page = NULL;
1867                 hindex = index;
1868         }
1869         if (page || sgp == SGP_READ)
1870                 goto out;
1871
1872         /*
1873          * Fast cache lookup did not find it:
1874          * bring it back from swap or allocate.
1875          */
1876
1877         if (vma && userfaultfd_missing(vma)) {
1878                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1879                 return 0;
1880         }
1881
1882         /* shmem_symlink() */
1883         if (!shmem_mapping(mapping))
1884                 goto alloc_nohuge;
1885         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1886                 goto alloc_nohuge;
1887         if (shmem_huge == SHMEM_HUGE_FORCE)
1888                 goto alloc_huge;
1889         switch (sbinfo->huge) {
1890         case SHMEM_HUGE_NEVER:
1891                 goto alloc_nohuge;
1892         case SHMEM_HUGE_WITHIN_SIZE: {
1893                 loff_t i_size;
1894                 pgoff_t off;
1895
1896                 off = round_up(index, HPAGE_PMD_NR);
1897                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1898                 if (i_size >= HPAGE_PMD_SIZE &&
1899                     i_size >> PAGE_SHIFT >= off)
1900                         goto alloc_huge;
1901
1902                 fallthrough;
1903         }
1904         case SHMEM_HUGE_ADVISE:
1905                 if (sgp_huge == SGP_HUGE)
1906                         goto alloc_huge;
1907                 /* TODO: implement fadvise() hints */
1908                 goto alloc_nohuge;
1909         }
1910
1911 alloc_huge:
1912         huge_gfp = vma_thp_gfp_mask(vma);
1913         huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1914         page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1915         if (IS_ERR(page)) {
1916 alloc_nohuge:
1917                 page = shmem_alloc_and_acct_page(gfp, inode,
1918                                                  index, false);
1919         }
1920         if (IS_ERR(page)) {
1921                 int retry = 5;
1922
1923                 error = PTR_ERR(page);
1924                 page = NULL;
1925                 if (error != -ENOSPC)
1926                         goto unlock;
1927                 /*
1928                  * Try to reclaim some space by splitting a huge page
1929                  * beyond i_size on the filesystem.
1930                  */
1931                 while (retry--) {
1932                         int ret;
1933
1934                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935                         if (ret == SHRINK_STOP)
1936                                 break;
1937                         if (ret)
1938                                 goto alloc_nohuge;
1939                 }
1940                 goto unlock;
1941         }
1942
1943         if (PageTransHuge(page))
1944                 hindex = round_down(index, HPAGE_PMD_NR);
1945         else
1946                 hindex = index;
1947
1948         if (sgp == SGP_WRITE)
1949                 __SetPageReferenced(page);
1950
1951         error = shmem_add_to_page_cache(page, mapping, hindex,
1952                                         NULL, gfp & GFP_RECLAIM_MASK,
1953                                         charge_mm);
1954         if (error)
1955                 goto unacct;
1956         lru_cache_add(page);
1957
1958         spin_lock_irq(&info->lock);
1959         info->alloced += compound_nr(page);
1960         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1961         shmem_recalc_inode(inode);
1962         spin_unlock_irq(&info->lock);
1963         alloced = true;
1964
1965         if (PageTransHuge(page) &&
1966             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1967                         hindex + HPAGE_PMD_NR - 1) {
1968                 /*
1969                  * Part of the huge page is beyond i_size: subject
1970                  * to shrink under memory pressure.
1971                  */
1972                 spin_lock(&sbinfo->shrinklist_lock);
1973                 /*
1974                  * _careful to defend against unlocked access to
1975                  * ->shrink_list in shmem_unused_huge_shrink()
1976                  */
1977                 if (list_empty_careful(&info->shrinklist)) {
1978                         list_add_tail(&info->shrinklist,
1979                                       &sbinfo->shrinklist);
1980                         sbinfo->shrinklist_len++;
1981                 }
1982                 spin_unlock(&sbinfo->shrinklist_lock);
1983         }
1984
1985         /*
1986          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1987          */
1988         if (sgp == SGP_FALLOC)
1989                 sgp = SGP_WRITE;
1990 clear:
1991         /*
1992          * Let SGP_WRITE caller clear ends if write does not fill page;
1993          * but SGP_FALLOC on a page fallocated earlier must initialize
1994          * it now, lest undo on failure cancel our earlier guarantee.
1995          */
1996         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1997                 int i;
1998
1999                 for (i = 0; i < compound_nr(page); i++) {
2000                         clear_highpage(page + i);
2001                         flush_dcache_page(page + i);
2002                 }
2003                 SetPageUptodate(page);
2004         }
2005
2006         /* Perhaps the file has been truncated since we checked */
2007         if (sgp <= SGP_CACHE &&
2008             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2009                 if (alloced) {
2010                         ClearPageDirty(page);
2011                         delete_from_page_cache(page);
2012                         spin_lock_irq(&info->lock);
2013                         shmem_recalc_inode(inode);
2014                         spin_unlock_irq(&info->lock);
2015                 }
2016                 error = -EINVAL;
2017                 goto unlock;
2018         }
2019 out:
2020         *pagep = page + index - hindex;
2021         return 0;
2022
2023         /*
2024          * Error recovery.
2025          */
2026 unacct:
2027         shmem_inode_unacct_blocks(inode, compound_nr(page));
2028
2029         if (PageTransHuge(page)) {
2030                 unlock_page(page);
2031                 put_page(page);
2032                 goto alloc_nohuge;
2033         }
2034 unlock:
2035         if (page) {
2036                 unlock_page(page);
2037                 put_page(page);
2038         }
2039         if (error == -ENOSPC && !once++) {
2040                 spin_lock_irq(&info->lock);
2041                 shmem_recalc_inode(inode);
2042                 spin_unlock_irq(&info->lock);
2043                 goto repeat;
2044         }
2045         if (error == -EEXIST)
2046                 goto repeat;
2047         return error;
2048 }
2049
2050 /*
2051  * This is like autoremove_wake_function, but it removes the wait queue
2052  * entry unconditionally - even if something else had already woken the
2053  * target.
2054  */
2055 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2056 {
2057         int ret = default_wake_function(wait, mode, sync, key);
2058         list_del_init(&wait->entry);
2059         return ret;
2060 }
2061
2062 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2063 {
2064         struct vm_area_struct *vma = vmf->vma;
2065         struct inode *inode = file_inode(vma->vm_file);
2066         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2067         enum sgp_type sgp;
2068         int err;
2069         vm_fault_t ret = VM_FAULT_LOCKED;
2070
2071         /*
2072          * Trinity finds that probing a hole which tmpfs is punching can
2073          * prevent the hole-punch from ever completing: which in turn
2074          * locks writers out with its hold on i_mutex.  So refrain from
2075          * faulting pages into the hole while it's being punched.  Although
2076          * shmem_undo_range() does remove the additions, it may be unable to
2077          * keep up, as each new page needs its own unmap_mapping_range() call,
2078          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2079          *
2080          * It does not matter if we sometimes reach this check just before the
2081          * hole-punch begins, so that one fault then races with the punch:
2082          * we just need to make racing faults a rare case.
2083          *
2084          * The implementation below would be much simpler if we just used a
2085          * standard mutex or completion: but we cannot take i_mutex in fault,
2086          * and bloating every shmem inode for this unlikely case would be sad.
2087          */
2088         if (unlikely(inode->i_private)) {
2089                 struct shmem_falloc *shmem_falloc;
2090
2091                 spin_lock(&inode->i_lock);
2092                 shmem_falloc = inode->i_private;
2093                 if (shmem_falloc &&
2094                     shmem_falloc->waitq &&
2095                     vmf->pgoff >= shmem_falloc->start &&
2096                     vmf->pgoff < shmem_falloc->next) {
2097                         struct file *fpin;
2098                         wait_queue_head_t *shmem_falloc_waitq;
2099                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2100
2101                         ret = VM_FAULT_NOPAGE;
2102                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2103                         if (fpin)
2104                                 ret = VM_FAULT_RETRY;
2105
2106                         shmem_falloc_waitq = shmem_falloc->waitq;
2107                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2108                                         TASK_UNINTERRUPTIBLE);
2109                         spin_unlock(&inode->i_lock);
2110                         schedule();
2111
2112                         /*
2113                          * shmem_falloc_waitq points into the shmem_fallocate()
2114                          * stack of the hole-punching task: shmem_falloc_waitq
2115                          * is usually invalid by the time we reach here, but
2116                          * finish_wait() does not dereference it in that case;
2117                          * though i_lock needed lest racing with wake_up_all().
2118                          */
2119                         spin_lock(&inode->i_lock);
2120                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2121                         spin_unlock(&inode->i_lock);
2122
2123                         if (fpin)
2124                                 fput(fpin);
2125                         return ret;
2126                 }
2127                 spin_unlock(&inode->i_lock);
2128         }
2129
2130         sgp = SGP_CACHE;
2131
2132         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2133             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2134                 sgp = SGP_NOHUGE;
2135         else if (vma->vm_flags & VM_HUGEPAGE)
2136                 sgp = SGP_HUGE;
2137
2138         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2139                                   gfp, vma, vmf, &ret);
2140         if (err)
2141                 return vmf_error(err);
2142         return ret;
2143 }
2144
2145 unsigned long shmem_get_unmapped_area(struct file *file,
2146                                       unsigned long uaddr, unsigned long len,
2147                                       unsigned long pgoff, unsigned long flags)
2148 {
2149         unsigned long (*get_area)(struct file *,
2150                 unsigned long, unsigned long, unsigned long, unsigned long);
2151         unsigned long addr;
2152         unsigned long offset;
2153         unsigned long inflated_len;
2154         unsigned long inflated_addr;
2155         unsigned long inflated_offset;
2156
2157         if (len > TASK_SIZE)
2158                 return -ENOMEM;
2159
2160         get_area = current->mm->get_unmapped_area;
2161         addr = get_area(file, uaddr, len, pgoff, flags);
2162
2163         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2164                 return addr;
2165         if (IS_ERR_VALUE(addr))
2166                 return addr;
2167         if (addr & ~PAGE_MASK)
2168                 return addr;
2169         if (addr > TASK_SIZE - len)
2170                 return addr;
2171
2172         if (shmem_huge == SHMEM_HUGE_DENY)
2173                 return addr;
2174         if (len < HPAGE_PMD_SIZE)
2175                 return addr;
2176         if (flags & MAP_FIXED)
2177                 return addr;
2178         /*
2179          * Our priority is to support MAP_SHARED mapped hugely;
2180          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2181          * But if caller specified an address hint and we allocated area there
2182          * successfully, respect that as before.
2183          */
2184         if (uaddr == addr)
2185                 return addr;
2186
2187         if (shmem_huge != SHMEM_HUGE_FORCE) {
2188                 struct super_block *sb;
2189
2190                 if (file) {
2191                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2192                         sb = file_inode(file)->i_sb;
2193                 } else {
2194                         /*
2195                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2196                          * for "/dev/zero", to create a shared anonymous object.
2197                          */
2198                         if (IS_ERR(shm_mnt))
2199                                 return addr;
2200                         sb = shm_mnt->mnt_sb;
2201                 }
2202                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2203                         return addr;
2204         }
2205
2206         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2207         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2208                 return addr;
2209         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2210                 return addr;
2211
2212         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2213         if (inflated_len > TASK_SIZE)
2214                 return addr;
2215         if (inflated_len < len)
2216                 return addr;
2217
2218         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2219         if (IS_ERR_VALUE(inflated_addr))
2220                 return addr;
2221         if (inflated_addr & ~PAGE_MASK)
2222                 return addr;
2223
2224         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2225         inflated_addr += offset - inflated_offset;
2226         if (inflated_offset > offset)
2227                 inflated_addr += HPAGE_PMD_SIZE;
2228
2229         if (inflated_addr > TASK_SIZE - len)
2230                 return addr;
2231         return inflated_addr;
2232 }
2233
2234 #ifdef CONFIG_NUMA
2235 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2236 {
2237         struct inode *inode = file_inode(vma->vm_file);
2238         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2239 }
2240
2241 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2242                                           unsigned long addr)
2243 {
2244         struct inode *inode = file_inode(vma->vm_file);
2245         pgoff_t index;
2246
2247         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2248         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2249 }
2250 #endif
2251
2252 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2253 {
2254         struct inode *inode = file_inode(file);
2255         struct shmem_inode_info *info = SHMEM_I(inode);
2256         int retval = -ENOMEM;
2257
2258         /*
2259          * What serializes the accesses to info->flags?
2260          * ipc_lock_object() when called from shmctl_do_lock(),
2261          * no serialization needed when called from shm_destroy().
2262          */
2263         if (lock && !(info->flags & VM_LOCKED)) {
2264                 if (!user_shm_lock(inode->i_size, ucounts))
2265                         goto out_nomem;
2266                 info->flags |= VM_LOCKED;
2267                 mapping_set_unevictable(file->f_mapping);
2268         }
2269         if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2270                 user_shm_unlock(inode->i_size, ucounts);
2271                 info->flags &= ~VM_LOCKED;
2272                 mapping_clear_unevictable(file->f_mapping);
2273         }
2274         retval = 0;
2275
2276 out_nomem:
2277         return retval;
2278 }
2279
2280 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2281 {
2282         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2283         int ret;
2284
2285         ret = seal_check_future_write(info->seals, vma);
2286         if (ret)
2287                 return ret;
2288
2289         /* arm64 - allow memory tagging on RAM-based files */
2290         vma->vm_flags |= VM_MTE_ALLOWED;
2291
2292         file_accessed(file);
2293         vma->vm_ops = &shmem_vm_ops;
2294         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2295                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2296                         (vma->vm_end & HPAGE_PMD_MASK)) {
2297                 khugepaged_enter(vma, vma->vm_flags);
2298         }
2299         return 0;
2300 }
2301
2302 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2303                                      umode_t mode, dev_t dev, unsigned long flags)
2304 {
2305         struct inode *inode;
2306         struct shmem_inode_info *info;
2307         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2308         ino_t ino;
2309
2310         if (shmem_reserve_inode(sb, &ino))
2311                 return NULL;
2312
2313         inode = new_inode(sb);
2314         if (inode) {
2315                 inode->i_ino = ino;
2316                 inode_init_owner(&init_user_ns, inode, dir, mode);
2317                 inode->i_blocks = 0;
2318                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2319                 inode->i_generation = prandom_u32();
2320                 info = SHMEM_I(inode);
2321                 memset(info, 0, (char *)inode - (char *)info);
2322                 spin_lock_init(&info->lock);
2323                 atomic_set(&info->stop_eviction, 0);
2324                 info->seals = F_SEAL_SEAL;
2325                 info->flags = flags & VM_NORESERVE;
2326                 INIT_LIST_HEAD(&info->shrinklist);
2327                 INIT_LIST_HEAD(&info->swaplist);
2328                 simple_xattrs_init(&info->xattrs);
2329                 cache_no_acl(inode);
2330
2331                 switch (mode & S_IFMT) {
2332                 default:
2333                         inode->i_op = &shmem_special_inode_operations;
2334                         init_special_inode(inode, mode, dev);
2335                         break;
2336                 case S_IFREG:
2337                         inode->i_mapping->a_ops = &shmem_aops;
2338                         inode->i_op = &shmem_inode_operations;
2339                         inode->i_fop = &shmem_file_operations;
2340                         mpol_shared_policy_init(&info->policy,
2341                                                  shmem_get_sbmpol(sbinfo));
2342                         break;
2343                 case S_IFDIR:
2344                         inc_nlink(inode);
2345                         /* Some things misbehave if size == 0 on a directory */
2346                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2347                         inode->i_op = &shmem_dir_inode_operations;
2348                         inode->i_fop = &simple_dir_operations;
2349                         break;
2350                 case S_IFLNK:
2351                         /*
2352                          * Must not load anything in the rbtree,
2353                          * mpol_free_shared_policy will not be called.
2354                          */
2355                         mpol_shared_policy_init(&info->policy, NULL);
2356                         break;
2357                 }
2358
2359                 lockdep_annotate_inode_mutex_key(inode);
2360         } else
2361                 shmem_free_inode(sb);
2362         return inode;
2363 }
2364
2365 #ifdef CONFIG_USERFAULTFD
2366 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2367                            pmd_t *dst_pmd,
2368                            struct vm_area_struct *dst_vma,
2369                            unsigned long dst_addr,
2370                            unsigned long src_addr,
2371                            bool zeropage,
2372                            struct page **pagep)
2373 {
2374         struct inode *inode = file_inode(dst_vma->vm_file);
2375         struct shmem_inode_info *info = SHMEM_I(inode);
2376         struct address_space *mapping = inode->i_mapping;
2377         gfp_t gfp = mapping_gfp_mask(mapping);
2378         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2379         void *page_kaddr;
2380         struct page *page;
2381         int ret;
2382         pgoff_t max_off;
2383
2384         if (!shmem_inode_acct_block(inode, 1)) {
2385                 /*
2386                  * We may have got a page, returned -ENOENT triggering a retry,
2387                  * and now we find ourselves with -ENOMEM. Release the page, to
2388                  * avoid a BUG_ON in our caller.
2389                  */
2390                 if (unlikely(*pagep)) {
2391                         put_page(*pagep);
2392                         *pagep = NULL;
2393                 }
2394                 return -ENOMEM;
2395         }
2396
2397         if (!*pagep) {
2398                 ret = -ENOMEM;
2399                 page = shmem_alloc_page(gfp, info, pgoff);
2400                 if (!page)
2401                         goto out_unacct_blocks;
2402
2403                 if (!zeropage) {        /* COPY */
2404                         page_kaddr = kmap_atomic(page);
2405                         ret = copy_from_user(page_kaddr,
2406                                              (const void __user *)src_addr,
2407                                              PAGE_SIZE);
2408                         kunmap_atomic(page_kaddr);
2409
2410                         /* fallback to copy_from_user outside mmap_lock */
2411                         if (unlikely(ret)) {
2412                                 *pagep = page;
2413                                 ret = -ENOENT;
2414                                 /* don't free the page */
2415                                 goto out_unacct_blocks;
2416                         }
2417                 } else {                /* ZEROPAGE */
2418                         clear_highpage(page);
2419                 }
2420         } else {
2421                 page = *pagep;
2422                 *pagep = NULL;
2423         }
2424
2425         VM_BUG_ON(PageLocked(page));
2426         VM_BUG_ON(PageSwapBacked(page));
2427         __SetPageLocked(page);
2428         __SetPageSwapBacked(page);
2429         __SetPageUptodate(page);
2430
2431         ret = -EFAULT;
2432         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433         if (unlikely(pgoff >= max_off))
2434                 goto out_release;
2435
2436         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2437                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2438         if (ret)
2439                 goto out_release;
2440
2441         ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2442                                        page, true, false);
2443         if (ret)
2444                 goto out_delete_from_cache;
2445
2446         spin_lock_irq(&info->lock);
2447         info->alloced++;
2448         inode->i_blocks += BLOCKS_PER_PAGE;
2449         shmem_recalc_inode(inode);
2450         spin_unlock_irq(&info->lock);
2451
2452         SetPageDirty(page);
2453         unlock_page(page);
2454         return 0;
2455 out_delete_from_cache:
2456         delete_from_page_cache(page);
2457 out_release:
2458         unlock_page(page);
2459         put_page(page);
2460 out_unacct_blocks:
2461         shmem_inode_unacct_blocks(inode, 1);
2462         return ret;
2463 }
2464 #endif /* CONFIG_USERFAULTFD */
2465
2466 #ifdef CONFIG_TMPFS
2467 static const struct inode_operations shmem_symlink_inode_operations;
2468 static const struct inode_operations shmem_short_symlink_operations;
2469
2470 #ifdef CONFIG_TMPFS_XATTR
2471 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2472 #else
2473 #define shmem_initxattrs NULL
2474 #endif
2475
2476 static int
2477 shmem_write_begin(struct file *file, struct address_space *mapping,
2478                         loff_t pos, unsigned len, unsigned flags,
2479                         struct page **pagep, void **fsdata)
2480 {
2481         struct inode *inode = mapping->host;
2482         struct shmem_inode_info *info = SHMEM_I(inode);
2483         pgoff_t index = pos >> PAGE_SHIFT;
2484
2485         /* i_mutex is held by caller */
2486         if (unlikely(info->seals & (F_SEAL_GROW |
2487                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2488                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2489                         return -EPERM;
2490                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2491                         return -EPERM;
2492         }
2493
2494         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2495 }
2496
2497 static int
2498 shmem_write_end(struct file *file, struct address_space *mapping,
2499                         loff_t pos, unsigned len, unsigned copied,
2500                         struct page *page, void *fsdata)
2501 {
2502         struct inode *inode = mapping->host;
2503
2504         if (pos + copied > inode->i_size)
2505                 i_size_write(inode, pos + copied);
2506
2507         if (!PageUptodate(page)) {
2508                 struct page *head = compound_head(page);
2509                 if (PageTransCompound(page)) {
2510                         int i;
2511
2512                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2513                                 if (head + i == page)
2514                                         continue;
2515                                 clear_highpage(head + i);
2516                                 flush_dcache_page(head + i);
2517                         }
2518                 }
2519                 if (copied < PAGE_SIZE) {
2520                         unsigned from = pos & (PAGE_SIZE - 1);
2521                         zero_user_segments(page, 0, from,
2522                                         from + copied, PAGE_SIZE);
2523                 }
2524                 SetPageUptodate(head);
2525         }
2526         set_page_dirty(page);
2527         unlock_page(page);
2528         put_page(page);
2529
2530         return copied;
2531 }
2532
2533 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2534 {
2535         struct file *file = iocb->ki_filp;
2536         struct inode *inode = file_inode(file);
2537         struct address_space *mapping = inode->i_mapping;
2538         pgoff_t index;
2539         unsigned long offset;
2540         enum sgp_type sgp = SGP_READ;
2541         int error = 0;
2542         ssize_t retval = 0;
2543         loff_t *ppos = &iocb->ki_pos;
2544
2545         /*
2546          * Might this read be for a stacking filesystem?  Then when reading
2547          * holes of a sparse file, we actually need to allocate those pages,
2548          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2549          */
2550         if (!iter_is_iovec(to))
2551                 sgp = SGP_CACHE;
2552
2553         index = *ppos >> PAGE_SHIFT;
2554         offset = *ppos & ~PAGE_MASK;
2555
2556         for (;;) {
2557                 struct page *page = NULL;
2558                 pgoff_t end_index;
2559                 unsigned long nr, ret;
2560                 loff_t i_size = i_size_read(inode);
2561
2562                 end_index = i_size >> PAGE_SHIFT;
2563                 if (index > end_index)
2564                         break;
2565                 if (index == end_index) {
2566                         nr = i_size & ~PAGE_MASK;
2567                         if (nr <= offset)
2568                                 break;
2569                 }
2570
2571                 error = shmem_getpage(inode, index, &page, sgp);
2572                 if (error) {
2573                         if (error == -EINVAL)
2574                                 error = 0;
2575                         break;
2576                 }
2577                 if (page) {
2578                         if (sgp == SGP_CACHE)
2579                                 set_page_dirty(page);
2580                         unlock_page(page);
2581                 }
2582
2583                 /*
2584                  * We must evaluate after, since reads (unlike writes)
2585                  * are called without i_mutex protection against truncate
2586                  */
2587                 nr = PAGE_SIZE;
2588                 i_size = i_size_read(inode);
2589                 end_index = i_size >> PAGE_SHIFT;
2590                 if (index == end_index) {
2591                         nr = i_size & ~PAGE_MASK;
2592                         if (nr <= offset) {
2593                                 if (page)
2594                                         put_page(page);
2595                                 break;
2596                         }
2597                 }
2598                 nr -= offset;
2599
2600                 if (page) {
2601                         /*
2602                          * If users can be writing to this page using arbitrary
2603                          * virtual addresses, take care about potential aliasing
2604                          * before reading the page on the kernel side.
2605                          */
2606                         if (mapping_writably_mapped(mapping))
2607                                 flush_dcache_page(page);
2608                         /*
2609                          * Mark the page accessed if we read the beginning.
2610                          */
2611                         if (!offset)
2612                                 mark_page_accessed(page);
2613                 } else {
2614                         page = ZERO_PAGE(0);
2615                         get_page(page);
2616                 }
2617
2618                 /*
2619                  * Ok, we have the page, and it's up-to-date, so
2620                  * now we can copy it to user space...
2621                  */
2622                 ret = copy_page_to_iter(page, offset, nr, to);
2623                 retval += ret;
2624                 offset += ret;
2625                 index += offset >> PAGE_SHIFT;
2626                 offset &= ~PAGE_MASK;
2627
2628                 put_page(page);
2629                 if (!iov_iter_count(to))
2630                         break;
2631                 if (ret < nr) {
2632                         error = -EFAULT;
2633                         break;
2634                 }
2635                 cond_resched();
2636         }
2637
2638         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2639         file_accessed(file);
2640         return retval ? retval : error;
2641 }
2642
2643 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2644 {
2645         struct address_space *mapping = file->f_mapping;
2646         struct inode *inode = mapping->host;
2647
2648         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2649                 return generic_file_llseek_size(file, offset, whence,
2650                                         MAX_LFS_FILESIZE, i_size_read(inode));
2651         if (offset < 0)
2652                 return -ENXIO;
2653
2654         inode_lock(inode);
2655         /* We're holding i_mutex so we can access i_size directly */
2656         offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2657         if (offset >= 0)
2658                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2659         inode_unlock(inode);
2660         return offset;
2661 }
2662
2663 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2664                                                          loff_t len)
2665 {
2666         struct inode *inode = file_inode(file);
2667         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2668         struct shmem_inode_info *info = SHMEM_I(inode);
2669         struct shmem_falloc shmem_falloc;
2670         pgoff_t start, index, end;
2671         int error;
2672
2673         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2674                 return -EOPNOTSUPP;
2675
2676         inode_lock(inode);
2677
2678         if (mode & FALLOC_FL_PUNCH_HOLE) {
2679                 struct address_space *mapping = file->f_mapping;
2680                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2681                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2682                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2683
2684                 /* protected by i_mutex */
2685                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2686                         error = -EPERM;
2687                         goto out;
2688                 }
2689
2690                 shmem_falloc.waitq = &shmem_falloc_waitq;
2691                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2692                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2693                 spin_lock(&inode->i_lock);
2694                 inode->i_private = &shmem_falloc;
2695                 spin_unlock(&inode->i_lock);
2696
2697                 if ((u64)unmap_end > (u64)unmap_start)
2698                         unmap_mapping_range(mapping, unmap_start,
2699                                             1 + unmap_end - unmap_start, 0);
2700                 shmem_truncate_range(inode, offset, offset + len - 1);
2701                 /* No need to unmap again: hole-punching leaves COWed pages */
2702
2703                 spin_lock(&inode->i_lock);
2704                 inode->i_private = NULL;
2705                 wake_up_all(&shmem_falloc_waitq);
2706                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2707                 spin_unlock(&inode->i_lock);
2708                 error = 0;
2709                 goto out;
2710         }
2711
2712         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2713         error = inode_newsize_ok(inode, offset + len);
2714         if (error)
2715                 goto out;
2716
2717         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2718                 error = -EPERM;
2719                 goto out;
2720         }
2721
2722         start = offset >> PAGE_SHIFT;
2723         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2724         /* Try to avoid a swapstorm if len is impossible to satisfy */
2725         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2726                 error = -ENOSPC;
2727                 goto out;
2728         }
2729
2730         shmem_falloc.waitq = NULL;
2731         shmem_falloc.start = start;
2732         shmem_falloc.next  = start;
2733         shmem_falloc.nr_falloced = 0;
2734         shmem_falloc.nr_unswapped = 0;
2735         spin_lock(&inode->i_lock);
2736         inode->i_private = &shmem_falloc;
2737         spin_unlock(&inode->i_lock);
2738
2739         for (index = start; index < end; index++) {
2740                 struct page *page;
2741
2742                 /*
2743                  * Good, the fallocate(2) manpage permits EINTR: we may have
2744                  * been interrupted because we are using up too much memory.
2745                  */
2746                 if (signal_pending(current))
2747                         error = -EINTR;
2748                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2749                         error = -ENOMEM;
2750                 else
2751                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2752                 if (error) {
2753                         /* Remove the !PageUptodate pages we added */
2754                         if (index > start) {
2755                                 shmem_undo_range(inode,
2756                                     (loff_t)start << PAGE_SHIFT,
2757                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2758                         }
2759                         goto undone;
2760                 }
2761
2762                 /*
2763                  * Inform shmem_writepage() how far we have reached.
2764                  * No need for lock or barrier: we have the page lock.
2765                  */
2766                 shmem_falloc.next++;
2767                 if (!PageUptodate(page))
2768                         shmem_falloc.nr_falloced++;
2769
2770                 /*
2771                  * If !PageUptodate, leave it that way so that freeable pages
2772                  * can be recognized if we need to rollback on error later.
2773                  * But set_page_dirty so that memory pressure will swap rather
2774                  * than free the pages we are allocating (and SGP_CACHE pages
2775                  * might still be clean: we now need to mark those dirty too).
2776                  */
2777                 set_page_dirty(page);
2778                 unlock_page(page);
2779                 put_page(page);
2780                 cond_resched();
2781         }
2782
2783         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784                 i_size_write(inode, offset + len);
2785         inode->i_ctime = current_time(inode);
2786 undone:
2787         spin_lock(&inode->i_lock);
2788         inode->i_private = NULL;
2789         spin_unlock(&inode->i_lock);
2790 out:
2791         inode_unlock(inode);
2792         return error;
2793 }
2794
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798
2799         buf->f_type = TMPFS_MAGIC;
2800         buf->f_bsize = PAGE_SIZE;
2801         buf->f_namelen = NAME_MAX;
2802         if (sbinfo->max_blocks) {
2803                 buf->f_blocks = sbinfo->max_blocks;
2804                 buf->f_bavail =
2805                 buf->f_bfree  = sbinfo->max_blocks -
2806                                 percpu_counter_sum(&sbinfo->used_blocks);
2807         }
2808         if (sbinfo->max_inodes) {
2809                 buf->f_files = sbinfo->max_inodes;
2810                 buf->f_ffree = sbinfo->free_inodes;
2811         }
2812         /* else leave those fields 0 like simple_statfs */
2813
2814         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
2816         return 0;
2817 }
2818
2819 /*
2820  * File creation. Allocate an inode, and we're done..
2821  */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824             struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826         struct inode *inode;
2827         int error = -ENOSPC;
2828
2829         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830         if (inode) {
2831                 error = simple_acl_create(dir, inode);
2832                 if (error)
2833                         goto out_iput;
2834                 error = security_inode_init_security(inode, dir,
2835                                                      &dentry->d_name,
2836                                                      shmem_initxattrs, NULL);
2837                 if (error && error != -EOPNOTSUPP)
2838                         goto out_iput;
2839
2840                 error = 0;
2841                 dir->i_size += BOGO_DIRENT_SIZE;
2842                 dir->i_ctime = dir->i_mtime = current_time(dir);
2843                 d_instantiate(dentry, inode);
2844                 dget(dentry); /* Extra count - pin the dentry in core */
2845         }
2846         return error;
2847 out_iput:
2848         iput(inode);
2849         return error;
2850 }
2851
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854               struct dentry *dentry, umode_t mode)
2855 {
2856         struct inode *inode;
2857         int error = -ENOSPC;
2858
2859         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860         if (inode) {
2861                 error = security_inode_init_security(inode, dir,
2862                                                      NULL,
2863                                                      shmem_initxattrs, NULL);
2864                 if (error && error != -EOPNOTSUPP)
2865                         goto out_iput;
2866                 error = simple_acl_create(dir, inode);
2867                 if (error)
2868                         goto out_iput;
2869                 d_tmpfile(dentry, inode);
2870         }
2871         return error;
2872 out_iput:
2873         iput(inode);
2874         return error;
2875 }
2876
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878                        struct dentry *dentry, umode_t mode)
2879 {
2880         int error;
2881
2882         if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883                                  mode | S_IFDIR, 0)))
2884                 return error;
2885         inc_nlink(dir);
2886         return 0;
2887 }
2888
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890                         struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892         return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894
2895 /*
2896  * Link a file..
2897  */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900         struct inode *inode = d_inode(old_dentry);
2901         int ret = 0;
2902
2903         /*
2904          * No ordinary (disk based) filesystem counts links as inodes;
2905          * but each new link needs a new dentry, pinning lowmem, and
2906          * tmpfs dentries cannot be pruned until they are unlinked.
2907          * But if an O_TMPFILE file is linked into the tmpfs, the
2908          * first link must skip that, to get the accounting right.
2909          */
2910         if (inode->i_nlink) {
2911                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2912                 if (ret)
2913                         goto out;
2914         }
2915
2916         dir->i_size += BOGO_DIRENT_SIZE;
2917         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918         inc_nlink(inode);
2919         ihold(inode);   /* New dentry reference */
2920         dget(dentry);           /* Extra pinning count for the created dentry */
2921         d_instantiate(dentry, inode);
2922 out:
2923         return ret;
2924 }
2925
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928         struct inode *inode = d_inode(dentry);
2929
2930         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931                 shmem_free_inode(inode->i_sb);
2932
2933         dir->i_size -= BOGO_DIRENT_SIZE;
2934         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935         drop_nlink(inode);
2936         dput(dentry);   /* Undo the count from "create" - this does all the work */
2937         return 0;
2938 }
2939
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942         if (!simple_empty(dentry))
2943                 return -ENOTEMPTY;
2944
2945         drop_nlink(d_inode(dentry));
2946         drop_nlink(dir);
2947         return shmem_unlink(dir, dentry);
2948 }
2949
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952         bool old_is_dir = d_is_dir(old_dentry);
2953         bool new_is_dir = d_is_dir(new_dentry);
2954
2955         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956                 if (old_is_dir) {
2957                         drop_nlink(old_dir);
2958                         inc_nlink(new_dir);
2959                 } else {
2960                         drop_nlink(new_dir);
2961                         inc_nlink(old_dir);
2962                 }
2963         }
2964         old_dir->i_ctime = old_dir->i_mtime =
2965         new_dir->i_ctime = new_dir->i_mtime =
2966         d_inode(old_dentry)->i_ctime =
2967         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968
2969         return 0;
2970 }
2971
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973                           struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975         struct dentry *whiteout;
2976         int error;
2977
2978         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979         if (!whiteout)
2980                 return -ENOMEM;
2981
2982         error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984         dput(whiteout);
2985         if (error)
2986                 return error;
2987
2988         /*
2989          * Cheat and hash the whiteout while the old dentry is still in
2990          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991          *
2992          * d_lookup() will consistently find one of them at this point,
2993          * not sure which one, but that isn't even important.
2994          */
2995         d_rehash(whiteout);
2996         return 0;
2997 }
2998
2999 /*
3000  * The VFS layer already does all the dentry stuff for rename,
3001  * we just have to decrement the usage count for the target if
3002  * it exists so that the VFS layer correctly free's it when it
3003  * gets overwritten.
3004  */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006                          struct inode *old_dir, struct dentry *old_dentry,
3007                          struct inode *new_dir, struct dentry *new_dentry,
3008                          unsigned int flags)
3009 {
3010         struct inode *inode = d_inode(old_dentry);
3011         int they_are_dirs = S_ISDIR(inode->i_mode);
3012
3013         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014                 return -EINVAL;
3015
3016         if (flags & RENAME_EXCHANGE)
3017                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
3019         if (!simple_empty(new_dentry))
3020                 return -ENOTEMPTY;
3021
3022         if (flags & RENAME_WHITEOUT) {
3023                 int error;
3024
3025                 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026                 if (error)
3027                         return error;
3028         }
3029
3030         if (d_really_is_positive(new_dentry)) {
3031                 (void) shmem_unlink(new_dir, new_dentry);
3032                 if (they_are_dirs) {
3033                         drop_nlink(d_inode(new_dentry));
3034                         drop_nlink(old_dir);
3035                 }
3036         } else if (they_are_dirs) {
3037                 drop_nlink(old_dir);
3038                 inc_nlink(new_dir);
3039         }
3040
3041         old_dir->i_size -= BOGO_DIRENT_SIZE;
3042         new_dir->i_size += BOGO_DIRENT_SIZE;
3043         old_dir->i_ctime = old_dir->i_mtime =
3044         new_dir->i_ctime = new_dir->i_mtime =
3045         inode->i_ctime = current_time(old_dir);
3046         return 0;
3047 }
3048
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050                          struct dentry *dentry, const char *symname)
3051 {
3052         int error;
3053         int len;
3054         struct inode *inode;
3055         struct page *page;
3056
3057         len = strlen(symname) + 1;
3058         if (len > PAGE_SIZE)
3059                 return -ENAMETOOLONG;
3060
3061         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062                                 VM_NORESERVE);
3063         if (!inode)
3064                 return -ENOSPC;
3065
3066         error = security_inode_init_security(inode, dir, &dentry->d_name,
3067                                              shmem_initxattrs, NULL);
3068         if (error && error != -EOPNOTSUPP) {
3069                 iput(inode);
3070                 return error;
3071         }
3072
3073         inode->i_size = len-1;
3074         if (len <= SHORT_SYMLINK_LEN) {
3075                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076                 if (!inode->i_link) {
3077                         iput(inode);
3078                         return -ENOMEM;
3079                 }
3080                 inode->i_op = &shmem_short_symlink_operations;
3081         } else {
3082                 inode_nohighmem(inode);
3083                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084                 if (error) {
3085                         iput(inode);
3086                         return error;
3087                 }
3088                 inode->i_mapping->a_ops = &shmem_aops;
3089                 inode->i_op = &shmem_symlink_inode_operations;
3090                 memcpy(page_address(page), symname, len);
3091                 SetPageUptodate(page);
3092                 set_page_dirty(page);
3093                 unlock_page(page);
3094                 put_page(page);
3095         }
3096         dir->i_size += BOGO_DIRENT_SIZE;
3097         dir->i_ctime = dir->i_mtime = current_time(dir);
3098         d_instantiate(dentry, inode);
3099         dget(dentry);
3100         return 0;
3101 }
3102
3103 static void shmem_put_link(void *arg)
3104 {
3105         mark_page_accessed(arg);
3106         put_page(arg);
3107 }
3108
3109 static const char *shmem_get_link(struct dentry *dentry,
3110                                   struct inode *inode,
3111                                   struct delayed_call *done)
3112 {
3113         struct page *page = NULL;
3114         int error;
3115         if (!dentry) {
3116                 page = find_get_page(inode->i_mapping, 0);
3117                 if (!page)
3118                         return ERR_PTR(-ECHILD);
3119                 if (!PageUptodate(page)) {
3120                         put_page(page);
3121                         return ERR_PTR(-ECHILD);
3122                 }
3123         } else {
3124                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3125                 if (error)
3126                         return ERR_PTR(error);
3127                 unlock_page(page);
3128         }
3129         set_delayed_call(done, shmem_put_link, page);
3130         return page_address(page);
3131 }
3132
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135  * Superblocks without xattr inode operations may get some security.* xattr
3136  * support from the LSM "for free". As soon as we have any other xattrs
3137  * like ACLs, we also need to implement the security.* handlers at
3138  * filesystem level, though.
3139  */
3140
3141 /*
3142  * Callback for security_inode_init_security() for acquiring xattrs.
3143  */
3144 static int shmem_initxattrs(struct inode *inode,
3145                             const struct xattr *xattr_array,
3146                             void *fs_info)
3147 {
3148         struct shmem_inode_info *info = SHMEM_I(inode);
3149         const struct xattr *xattr;
3150         struct simple_xattr *new_xattr;
3151         size_t len;
3152
3153         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155                 if (!new_xattr)
3156                         return -ENOMEM;
3157
3158                 len = strlen(xattr->name) + 1;
3159                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160                                           GFP_KERNEL);
3161                 if (!new_xattr->name) {
3162                         kvfree(new_xattr);
3163                         return -ENOMEM;
3164                 }
3165
3166                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167                        XATTR_SECURITY_PREFIX_LEN);
3168                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169                        xattr->name, len);
3170
3171                 simple_xattr_list_add(&info->xattrs, new_xattr);
3172         }
3173
3174         return 0;
3175 }
3176
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178                                    struct dentry *unused, struct inode *inode,
3179                                    const char *name, void *buffer, size_t size)
3180 {
3181         struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183         name = xattr_full_name(handler, name);
3184         return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188                                    struct user_namespace *mnt_userns,
3189                                    struct dentry *unused, struct inode *inode,
3190                                    const char *name, const void *value,
3191                                    size_t size, int flags)
3192 {
3193         struct shmem_inode_info *info = SHMEM_I(inode);
3194
3195         name = xattr_full_name(handler, name);
3196         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200         .prefix = XATTR_SECURITY_PREFIX,
3201         .get = shmem_xattr_handler_get,
3202         .set = shmem_xattr_handler_set,
3203 };
3204
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206         .prefix = XATTR_TRUSTED_PREFIX,
3207         .get = shmem_xattr_handler_get,
3208         .set = shmem_xattr_handler_set,
3209 };
3210
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213         &posix_acl_access_xattr_handler,
3214         &posix_acl_default_xattr_handler,
3215 #endif
3216         &shmem_security_xattr_handler,
3217         &shmem_trusted_xattr_handler,
3218         NULL
3219 };
3220
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229         .get_link       = simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231         .listxattr      = shmem_listxattr,
3232 #endif
3233 };
3234
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236         .get_link       = shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238         .listxattr      = shmem_listxattr,
3239 #endif
3240 };
3241
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244         return ERR_PTR(-ESTALE);
3245 }
3246
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249         __u32 *fh = vfh;
3250         __u64 inum = fh[2];
3251         inum = (inum << 32) | fh[1];
3252         return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258         struct dentry *alias = d_find_alias(inode);
3259
3260         return alias ?: d_find_any_alias(inode);
3261 }
3262
3263
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265                 struct fid *fid, int fh_len, int fh_type)
3266 {
3267         struct inode *inode;
3268         struct dentry *dentry = NULL;
3269         u64 inum;
3270
3271         if (fh_len < 3)
3272                 return NULL;
3273
3274         inum = fid->raw[2];
3275         inum = (inum << 32) | fid->raw[1];
3276
3277         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278                         shmem_match, fid->raw);
3279         if (inode) {
3280                 dentry = shmem_find_alias(inode);
3281                 iput(inode);
3282         }
3283
3284         return dentry;
3285 }
3286
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288                                 struct inode *parent)
3289 {
3290         if (*len < 3) {
3291                 *len = 3;
3292                 return FILEID_INVALID;
3293         }
3294
3295         if (inode_unhashed(inode)) {
3296                 /* Unfortunately insert_inode_hash is not idempotent,
3297                  * so as we hash inodes here rather than at creation
3298                  * time, we need a lock to ensure we only try
3299                  * to do it once
3300                  */
3301                 static DEFINE_SPINLOCK(lock);
3302                 spin_lock(&lock);
3303                 if (inode_unhashed(inode))
3304                         __insert_inode_hash(inode,
3305                                             inode->i_ino + inode->i_generation);
3306                 spin_unlock(&lock);
3307         }
3308
3309         fh[0] = inode->i_generation;
3310         fh[1] = inode->i_ino;
3311         fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313         *len = 3;
3314         return 1;
3315 }
3316
3317 static const struct export_operations shmem_export_ops = {
3318         .get_parent     = shmem_get_parent,
3319         .encode_fh      = shmem_encode_fh,
3320         .fh_to_dentry   = shmem_fh_to_dentry,
3321 };
3322
3323 enum shmem_param {
3324         Opt_gid,
3325         Opt_huge,
3326         Opt_mode,
3327         Opt_mpol,
3328         Opt_nr_blocks,
3329         Opt_nr_inodes,
3330         Opt_size,
3331         Opt_uid,
3332         Opt_inode32,
3333         Opt_inode64,
3334 };
3335
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337         {"never",       SHMEM_HUGE_NEVER },
3338         {"always",      SHMEM_HUGE_ALWAYS },
3339         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340         {"advise",      SHMEM_HUGE_ADVISE },
3341         {}
3342 };
3343
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345         fsparam_u32   ("gid",           Opt_gid),
3346         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3347         fsparam_u32oct("mode",          Opt_mode),
3348         fsparam_string("mpol",          Opt_mpol),
3349         fsparam_string("nr_blocks",     Opt_nr_blocks),
3350         fsparam_string("nr_inodes",     Opt_nr_inodes),
3351         fsparam_string("size",          Opt_size),
3352         fsparam_u32   ("uid",           Opt_uid),
3353         fsparam_flag  ("inode32",       Opt_inode32),
3354         fsparam_flag  ("inode64",       Opt_inode64),
3355         {}
3356 };
3357
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360         struct shmem_options *ctx = fc->fs_private;
3361         struct fs_parse_result result;
3362         unsigned long long size;
3363         char *rest;
3364         int opt;
3365
3366         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367         if (opt < 0)
3368                 return opt;
3369
3370         switch (opt) {
3371         case Opt_size:
3372                 size = memparse(param->string, &rest);
3373                 if (*rest == '%') {
3374                         size <<= PAGE_SHIFT;
3375                         size *= totalram_pages();
3376                         do_div(size, 100);
3377                         rest++;
3378                 }
3379                 if (*rest)
3380                         goto bad_value;
3381                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3383                 break;
3384         case Opt_nr_blocks:
3385                 ctx->blocks = memparse(param->string, &rest);
3386                 if (*rest)
3387                         goto bad_value;
3388                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3389                 break;
3390         case Opt_nr_inodes:
3391                 ctx->inodes = memparse(param->string, &rest);
3392                 if (*rest)
3393                         goto bad_value;
3394                 ctx->seen |= SHMEM_SEEN_INODES;
3395                 break;
3396         case Opt_mode:
3397                 ctx->mode = result.uint_32 & 07777;
3398                 break;
3399         case Opt_uid:
3400                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401                 if (!uid_valid(ctx->uid))
3402                         goto bad_value;
3403                 break;
3404         case Opt_gid:
3405                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406                 if (!gid_valid(ctx->gid))
3407                         goto bad_value;
3408                 break;
3409         case Opt_huge:
3410                 ctx->huge = result.uint_32;
3411                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3412                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413                       has_transparent_hugepage()))
3414                         goto unsupported_parameter;
3415                 ctx->seen |= SHMEM_SEEN_HUGE;
3416                 break;
3417         case Opt_mpol:
3418                 if (IS_ENABLED(CONFIG_NUMA)) {
3419                         mpol_put(ctx->mpol);
3420                         ctx->mpol = NULL;
3421                         if (mpol_parse_str(param->string, &ctx->mpol))
3422                                 goto bad_value;
3423                         break;
3424                 }
3425                 goto unsupported_parameter;
3426         case Opt_inode32:
3427                 ctx->full_inums = false;
3428                 ctx->seen |= SHMEM_SEEN_INUMS;
3429                 break;
3430         case Opt_inode64:
3431                 if (sizeof(ino_t) < 8) {
3432                         return invalfc(fc,
3433                                        "Cannot use inode64 with <64bit inums in kernel\n");
3434                 }
3435                 ctx->full_inums = true;
3436                 ctx->seen |= SHMEM_SEEN_INUMS;
3437                 break;
3438         }
3439         return 0;
3440
3441 unsupported_parameter:
3442         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444         return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449         char *options = data;
3450
3451         if (options) {
3452                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453                 if (err)
3454                         return err;
3455         }
3456
3457         while (options != NULL) {
3458                 char *this_char = options;
3459                 for (;;) {
3460                         /*
3461                          * NUL-terminate this option: unfortunately,
3462                          * mount options form a comma-separated list,
3463                          * but mpol's nodelist may also contain commas.
3464                          */
3465                         options = strchr(options, ',');
3466                         if (options == NULL)
3467                                 break;
3468                         options++;
3469                         if (!isdigit(*options)) {
3470                                 options[-1] = '\0';
3471                                 break;
3472                         }
3473                 }
3474                 if (*this_char) {
3475                         char *value = strchr(this_char, '=');
3476                         size_t len = 0;
3477                         int err;
3478
3479                         if (value) {
3480                                 *value++ = '\0';
3481                                 len = strlen(value);
3482                         }
3483                         err = vfs_parse_fs_string(fc, this_char, value, len);
3484                         if (err < 0)
3485                                 return err;
3486                 }
3487         }
3488         return 0;
3489 }
3490
3491 /*
3492  * Reconfigure a shmem filesystem.
3493  *
3494  * Note that we disallow change from limited->unlimited blocks/inodes while any
3495  * are in use; but we must separately disallow unlimited->limited, because in
3496  * that case we have no record of how much is already in use.
3497  */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500         struct shmem_options *ctx = fc->fs_private;
3501         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502         unsigned long inodes;
3503         const char *err;
3504
3505         spin_lock(&sbinfo->stat_lock);
3506         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3507         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3508                 if (!sbinfo->max_blocks) {
3509                         err = "Cannot retroactively limit size";
3510                         goto out;
3511                 }
3512                 if (percpu_counter_compare(&sbinfo->used_blocks,
3513                                            ctx->blocks) > 0) {
3514                         err = "Too small a size for current use";
3515                         goto out;
3516                 }
3517         }
3518         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3519                 if (!sbinfo->max_inodes) {
3520                         err = "Cannot retroactively limit inodes";
3521                         goto out;
3522                 }
3523                 if (ctx->inodes < inodes) {
3524                         err = "Too few inodes for current use";
3525                         goto out;
3526                 }
3527         }
3528
3529         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3530             sbinfo->next_ino > UINT_MAX) {
3531                 err = "Current inum too high to switch to 32-bit inums";
3532                 goto out;
3533         }
3534
3535         if (ctx->seen & SHMEM_SEEN_HUGE)
3536                 sbinfo->huge = ctx->huge;
3537         if (ctx->seen & SHMEM_SEEN_INUMS)
3538                 sbinfo->full_inums = ctx->full_inums;
3539         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3540                 sbinfo->max_blocks  = ctx->blocks;
3541         if (ctx->seen & SHMEM_SEEN_INODES) {
3542                 sbinfo->max_inodes  = ctx->inodes;
3543                 sbinfo->free_inodes = ctx->inodes - inodes;
3544         }
3545
3546         /*
3547          * Preserve previous mempolicy unless mpol remount option was specified.
3548          */
3549         if (ctx->mpol) {
3550                 mpol_put(sbinfo->mpol);
3551                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3552                 ctx->mpol = NULL;
3553         }
3554         spin_unlock(&sbinfo->stat_lock);
3555         return 0;
3556 out:
3557         spin_unlock(&sbinfo->stat_lock);
3558         return invalfc(fc, "%s", err);
3559 }
3560
3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3562 {
3563         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3564
3565         if (sbinfo->max_blocks != shmem_default_max_blocks())
3566                 seq_printf(seq, ",size=%luk",
3567                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3568         if (sbinfo->max_inodes != shmem_default_max_inodes())
3569                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3570         if (sbinfo->mode != (0777 | S_ISVTX))
3571                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3572         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573                 seq_printf(seq, ",uid=%u",
3574                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3575         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576                 seq_printf(seq, ",gid=%u",
3577                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3578
3579         /*
3580          * Showing inode{64,32} might be useful even if it's the system default,
3581          * since then people don't have to resort to checking both here and
3582          * /proc/config.gz to confirm 64-bit inums were successfully applied
3583          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584          *
3585          * We hide it when inode64 isn't the default and we are using 32-bit
3586          * inodes, since that probably just means the feature isn't even under
3587          * consideration.
3588          *
3589          * As such:
3590          *
3591          *                     +-----------------+-----------------+
3592          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593          *  +------------------+-----------------+-----------------+
3594          *  | full_inums=true  | show            | show            |
3595          *  | full_inums=false | show            | hide            |
3596          *  +------------------+-----------------+-----------------+
3597          *
3598          */
3599         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3602         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603         if (sbinfo->huge)
3604                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605 #endif
3606         shmem_show_mpol(seq, sbinfo->mpol);
3607         return 0;
3608 }
3609
3610 #endif /* CONFIG_TMPFS */
3611
3612 static void shmem_put_super(struct super_block *sb)
3613 {
3614         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615
3616         free_percpu(sbinfo->ino_batch);
3617         percpu_counter_destroy(&sbinfo->used_blocks);
3618         mpol_put(sbinfo->mpol);
3619         kfree(sbinfo);
3620         sb->s_fs_info = NULL;
3621 }
3622
3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3624 {
3625         struct shmem_options *ctx = fc->fs_private;
3626         struct inode *inode;
3627         struct shmem_sb_info *sbinfo;
3628         int err = -ENOMEM;
3629
3630         /* Round up to L1_CACHE_BYTES to resist false sharing */
3631         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3632                                 L1_CACHE_BYTES), GFP_KERNEL);
3633         if (!sbinfo)
3634                 return -ENOMEM;
3635
3636         sb->s_fs_info = sbinfo;
3637
3638 #ifdef CONFIG_TMPFS
3639         /*
3640          * Per default we only allow half of the physical ram per
3641          * tmpfs instance, limiting inodes to one per page of lowmem;
3642          * but the internal instance is left unlimited.
3643          */
3644         if (!(sb->s_flags & SB_KERNMOUNT)) {
3645                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3646                         ctx->blocks = shmem_default_max_blocks();
3647                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3648                         ctx->inodes = shmem_default_max_inodes();
3649                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3650                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3651         } else {
3652                 sb->s_flags |= SB_NOUSER;
3653         }
3654         sb->s_export_op = &shmem_export_ops;
3655         sb->s_flags |= SB_NOSEC;
3656 #else
3657         sb->s_flags |= SB_NOUSER;
3658 #endif
3659         sbinfo->max_blocks = ctx->blocks;
3660         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661         if (sb->s_flags & SB_KERNMOUNT) {
3662                 sbinfo->ino_batch = alloc_percpu(ino_t);
3663                 if (!sbinfo->ino_batch)
3664                         goto failed;
3665         }
3666         sbinfo->uid = ctx->uid;
3667         sbinfo->gid = ctx->gid;
3668         sbinfo->full_inums = ctx->full_inums;
3669         sbinfo->mode = ctx->mode;
3670         sbinfo->huge = ctx->huge;
3671         sbinfo->mpol = ctx->mpol;
3672         ctx->mpol = NULL;
3673
3674         spin_lock_init(&sbinfo->stat_lock);
3675         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3676                 goto failed;
3677         spin_lock_init(&sbinfo->shrinklist_lock);
3678         INIT_LIST_HEAD(&sbinfo->shrinklist);
3679
3680         sb->s_maxbytes = MAX_LFS_FILESIZE;
3681         sb->s_blocksize = PAGE_SIZE;
3682         sb->s_blocksize_bits = PAGE_SHIFT;
3683         sb->s_magic = TMPFS_MAGIC;
3684         sb->s_op = &shmem_ops;
3685         sb->s_time_gran = 1;
3686 #ifdef CONFIG_TMPFS_XATTR
3687         sb->s_xattr = shmem_xattr_handlers;
3688 #endif
3689 #ifdef CONFIG_TMPFS_POSIX_ACL
3690         sb->s_flags |= SB_POSIXACL;
3691 #endif
3692         uuid_gen(&sb->s_uuid);
3693
3694         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3695         if (!inode)
3696                 goto failed;
3697         inode->i_uid = sbinfo->uid;
3698         inode->i_gid = sbinfo->gid;
3699         sb->s_root = d_make_root(inode);
3700         if (!sb->s_root)
3701                 goto failed;
3702         return 0;
3703
3704 failed:
3705         shmem_put_super(sb);
3706         return err;
3707 }
3708
3709 static int shmem_get_tree(struct fs_context *fc)
3710 {
3711         return get_tree_nodev(fc, shmem_fill_super);
3712 }
3713
3714 static void shmem_free_fc(struct fs_context *fc)
3715 {
3716         struct shmem_options *ctx = fc->fs_private;
3717
3718         if (ctx) {
3719                 mpol_put(ctx->mpol);
3720                 kfree(ctx);
3721         }
3722 }
3723
3724 static const struct fs_context_operations shmem_fs_context_ops = {
3725         .free                   = shmem_free_fc,
3726         .get_tree               = shmem_get_tree,
3727 #ifdef CONFIG_TMPFS
3728         .parse_monolithic       = shmem_parse_options,
3729         .parse_param            = shmem_parse_one,
3730         .reconfigure            = shmem_reconfigure,
3731 #endif
3732 };
3733
3734 static struct kmem_cache *shmem_inode_cachep;
3735
3736 static struct inode *shmem_alloc_inode(struct super_block *sb)
3737 {
3738         struct shmem_inode_info *info;
3739         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3740         if (!info)
3741                 return NULL;
3742         return &info->vfs_inode;
3743 }
3744
3745 static void shmem_free_in_core_inode(struct inode *inode)
3746 {
3747         if (S_ISLNK(inode->i_mode))
3748                 kfree(inode->i_link);
3749         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3750 }
3751
3752 static void shmem_destroy_inode(struct inode *inode)
3753 {
3754         if (S_ISREG(inode->i_mode))
3755                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3756 }
3757
3758 static void shmem_init_inode(void *foo)
3759 {
3760         struct shmem_inode_info *info = foo;
3761         inode_init_once(&info->vfs_inode);
3762 }
3763
3764 static void shmem_init_inodecache(void)
3765 {
3766         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3767                                 sizeof(struct shmem_inode_info),
3768                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3769 }
3770
3771 static void shmem_destroy_inodecache(void)
3772 {
3773         kmem_cache_destroy(shmem_inode_cachep);
3774 }
3775
3776 const struct address_space_operations shmem_aops = {
3777         .writepage      = shmem_writepage,
3778         .set_page_dirty = __set_page_dirty_no_writeback,
3779 #ifdef CONFIG_TMPFS
3780         .write_begin    = shmem_write_begin,
3781         .write_end      = shmem_write_end,
3782 #endif
3783 #ifdef CONFIG_MIGRATION
3784         .migratepage    = migrate_page,
3785 #endif
3786         .error_remove_page = generic_error_remove_page,
3787 };
3788 EXPORT_SYMBOL(shmem_aops);
3789
3790 static const struct file_operations shmem_file_operations = {
3791         .mmap           = shmem_mmap,
3792         .get_unmapped_area = shmem_get_unmapped_area,
3793 #ifdef CONFIG_TMPFS
3794         .llseek         = shmem_file_llseek,
3795         .read_iter      = shmem_file_read_iter,
3796         .write_iter     = generic_file_write_iter,
3797         .fsync          = noop_fsync,
3798         .splice_read    = generic_file_splice_read,
3799         .splice_write   = iter_file_splice_write,
3800         .fallocate      = shmem_fallocate,
3801 #endif
3802 };
3803
3804 static const struct inode_operations shmem_inode_operations = {
3805         .getattr        = shmem_getattr,
3806         .setattr        = shmem_setattr,
3807 #ifdef CONFIG_TMPFS_XATTR
3808         .listxattr      = shmem_listxattr,
3809         .set_acl        = simple_set_acl,
3810 #endif
3811 };
3812
3813 static const struct inode_operations shmem_dir_inode_operations = {
3814 #ifdef CONFIG_TMPFS
3815         .create         = shmem_create,
3816         .lookup         = simple_lookup,
3817         .link           = shmem_link,
3818         .unlink         = shmem_unlink,
3819         .symlink        = shmem_symlink,
3820         .mkdir          = shmem_mkdir,
3821         .rmdir          = shmem_rmdir,
3822         .mknod          = shmem_mknod,
3823         .rename         = shmem_rename2,
3824         .tmpfile        = shmem_tmpfile,
3825 #endif
3826 #ifdef CONFIG_TMPFS_XATTR
3827         .listxattr      = shmem_listxattr,
3828 #endif
3829 #ifdef CONFIG_TMPFS_POSIX_ACL
3830         .setattr        = shmem_setattr,
3831         .set_acl        = simple_set_acl,
3832 #endif
3833 };
3834
3835 static const struct inode_operations shmem_special_inode_operations = {
3836 #ifdef CONFIG_TMPFS_XATTR
3837         .listxattr      = shmem_listxattr,
3838 #endif
3839 #ifdef CONFIG_TMPFS_POSIX_ACL
3840         .setattr        = shmem_setattr,
3841         .set_acl        = simple_set_acl,
3842 #endif
3843 };
3844
3845 static const struct super_operations shmem_ops = {
3846         .alloc_inode    = shmem_alloc_inode,
3847         .free_inode     = shmem_free_in_core_inode,
3848         .destroy_inode  = shmem_destroy_inode,
3849 #ifdef CONFIG_TMPFS
3850         .statfs         = shmem_statfs,
3851         .show_options   = shmem_show_options,
3852 #endif
3853         .evict_inode    = shmem_evict_inode,
3854         .drop_inode     = generic_delete_inode,
3855         .put_super      = shmem_put_super,
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857         .nr_cached_objects      = shmem_unused_huge_count,
3858         .free_cached_objects    = shmem_unused_huge_scan,
3859 #endif
3860 };
3861
3862 static const struct vm_operations_struct shmem_vm_ops = {
3863         .fault          = shmem_fault,
3864         .map_pages      = filemap_map_pages,
3865 #ifdef CONFIG_NUMA
3866         .set_policy     = shmem_set_policy,
3867         .get_policy     = shmem_get_policy,
3868 #endif
3869 };
3870
3871 int shmem_init_fs_context(struct fs_context *fc)
3872 {
3873         struct shmem_options *ctx;
3874
3875         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3876         if (!ctx)
3877                 return -ENOMEM;
3878
3879         ctx->mode = 0777 | S_ISVTX;
3880         ctx->uid = current_fsuid();
3881         ctx->gid = current_fsgid();
3882
3883         fc->fs_private = ctx;
3884         fc->ops = &shmem_fs_context_ops;
3885         return 0;
3886 }
3887
3888 static struct file_system_type shmem_fs_type = {
3889         .owner          = THIS_MODULE,
3890         .name           = "tmpfs",
3891         .init_fs_context = shmem_init_fs_context,
3892 #ifdef CONFIG_TMPFS
3893         .parameters     = shmem_fs_parameters,
3894 #endif
3895         .kill_sb        = kill_litter_super,
3896         .fs_flags       = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3897 };
3898
3899 int __init shmem_init(void)
3900 {
3901         int error;
3902
3903         shmem_init_inodecache();
3904
3905         error = register_filesystem(&shmem_fs_type);
3906         if (error) {
3907                 pr_err("Could not register tmpfs\n");
3908                 goto out2;
3909         }
3910
3911         shm_mnt = kern_mount(&shmem_fs_type);
3912         if (IS_ERR(shm_mnt)) {
3913                 error = PTR_ERR(shm_mnt);
3914                 pr_err("Could not kern_mount tmpfs\n");
3915                 goto out1;
3916         }
3917
3918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3919         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3920                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3921         else
3922                 shmem_huge = 0; /* just in case it was patched */
3923 #endif
3924         return 0;
3925
3926 out1:
3927         unregister_filesystem(&shmem_fs_type);
3928 out2:
3929         shmem_destroy_inodecache();
3930         shm_mnt = ERR_PTR(error);
3931         return error;
3932 }
3933
3934 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3935 static ssize_t shmem_enabled_show(struct kobject *kobj,
3936                                   struct kobj_attribute *attr, char *buf)
3937 {
3938         static const int values[] = {
3939                 SHMEM_HUGE_ALWAYS,
3940                 SHMEM_HUGE_WITHIN_SIZE,
3941                 SHMEM_HUGE_ADVISE,
3942                 SHMEM_HUGE_NEVER,
3943                 SHMEM_HUGE_DENY,
3944                 SHMEM_HUGE_FORCE,
3945         };
3946         int len = 0;
3947         int i;
3948
3949         for (i = 0; i < ARRAY_SIZE(values); i++) {
3950                 len += sysfs_emit_at(buf, len,
3951                                      shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3952                                      i ? " " : "",
3953                                      shmem_format_huge(values[i]));
3954         }
3955
3956         len += sysfs_emit_at(buf, len, "\n");
3957
3958         return len;
3959 }
3960
3961 static ssize_t shmem_enabled_store(struct kobject *kobj,
3962                 struct kobj_attribute *attr, const char *buf, size_t count)
3963 {
3964         char tmp[16];
3965         int huge;
3966
3967         if (count + 1 > sizeof(tmp))
3968                 return -EINVAL;
3969         memcpy(tmp, buf, count);
3970         tmp[count] = '\0';
3971         if (count && tmp[count - 1] == '\n')
3972                 tmp[count - 1] = '\0';
3973
3974         huge = shmem_parse_huge(tmp);
3975         if (huge == -EINVAL)
3976                 return -EINVAL;
3977         if (!has_transparent_hugepage() &&
3978                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3979                 return -EINVAL;
3980
3981         shmem_huge = huge;
3982         if (shmem_huge > SHMEM_HUGE_DENY)
3983                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3984         return count;
3985 }
3986
3987 struct kobj_attribute shmem_enabled_attr =
3988         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3990
3991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3992 bool shmem_huge_enabled(struct vm_area_struct *vma)
3993 {
3994         struct inode *inode = file_inode(vma->vm_file);
3995         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3996         loff_t i_size;
3997         pgoff_t off;
3998
3999         if (!transhuge_vma_enabled(vma, vma->vm_flags))
4000                 return false;
4001         if (shmem_huge == SHMEM_HUGE_FORCE)
4002                 return true;
4003         if (shmem_huge == SHMEM_HUGE_DENY)
4004                 return false;
4005         switch (sbinfo->huge) {
4006                 case SHMEM_HUGE_NEVER:
4007                         return false;
4008                 case SHMEM_HUGE_ALWAYS:
4009                         return true;
4010                 case SHMEM_HUGE_WITHIN_SIZE:
4011                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4012                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4013                         if (i_size >= HPAGE_PMD_SIZE &&
4014                                         i_size >> PAGE_SHIFT >= off)
4015                                 return true;
4016                         fallthrough;
4017                 case SHMEM_HUGE_ADVISE:
4018                         /* TODO: implement fadvise() hints */
4019                         return (vma->vm_flags & VM_HUGEPAGE);
4020                 default:
4021                         VM_BUG_ON(1);
4022                         return false;
4023         }
4024 }
4025 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4026
4027 #else /* !CONFIG_SHMEM */
4028
4029 /*
4030  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4031  *
4032  * This is intended for small system where the benefits of the full
4033  * shmem code (swap-backed and resource-limited) are outweighed by
4034  * their complexity. On systems without swap this code should be
4035  * effectively equivalent, but much lighter weight.
4036  */
4037
4038 static struct file_system_type shmem_fs_type = {
4039         .name           = "tmpfs",
4040         .init_fs_context = ramfs_init_fs_context,
4041         .parameters     = ramfs_fs_parameters,
4042         .kill_sb        = kill_litter_super,
4043         .fs_flags       = FS_USERNS_MOUNT,
4044 };
4045
4046 int __init shmem_init(void)
4047 {
4048         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4049
4050         shm_mnt = kern_mount(&shmem_fs_type);
4051         BUG_ON(IS_ERR(shm_mnt));
4052
4053         return 0;
4054 }
4055
4056 int shmem_unuse(unsigned int type, bool frontswap,
4057                 unsigned long *fs_pages_to_unuse)
4058 {
4059         return 0;
4060 }
4061
4062 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4063 {
4064         return 0;
4065 }
4066
4067 void shmem_unlock_mapping(struct address_space *mapping)
4068 {
4069 }
4070
4071 #ifdef CONFIG_MMU
4072 unsigned long shmem_get_unmapped_area(struct file *file,
4073                                       unsigned long addr, unsigned long len,
4074                                       unsigned long pgoff, unsigned long flags)
4075 {
4076         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4077 }
4078 #endif
4079
4080 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4081 {
4082         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4083 }
4084 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4085
4086 #define shmem_vm_ops                            generic_file_vm_ops
4087 #define shmem_file_operations                   ramfs_file_operations
4088 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4089 #define shmem_acct_size(flags, size)            0
4090 #define shmem_unacct_size(flags, size)          do {} while (0)
4091
4092 #endif /* CONFIG_SHMEM */
4093
4094 /* common code */
4095
4096 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4097                                        unsigned long flags, unsigned int i_flags)
4098 {
4099         struct inode *inode;
4100         struct file *res;
4101
4102         if (IS_ERR(mnt))
4103                 return ERR_CAST(mnt);
4104
4105         if (size < 0 || size > MAX_LFS_FILESIZE)
4106                 return ERR_PTR(-EINVAL);
4107
4108         if (shmem_acct_size(flags, size))
4109                 return ERR_PTR(-ENOMEM);
4110
4111         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4112                                 flags);
4113         if (unlikely(!inode)) {
4114                 shmem_unacct_size(flags, size);
4115                 return ERR_PTR(-ENOSPC);
4116         }
4117         inode->i_flags |= i_flags;
4118         inode->i_size = size;
4119         clear_nlink(inode);     /* It is unlinked */
4120         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4121         if (!IS_ERR(res))
4122                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4123                                 &shmem_file_operations);
4124         if (IS_ERR(res))
4125                 iput(inode);
4126         return res;
4127 }
4128
4129 /**
4130  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4131  *      kernel internal.  There will be NO LSM permission checks against the
4132  *      underlying inode.  So users of this interface must do LSM checks at a
4133  *      higher layer.  The users are the big_key and shm implementations.  LSM
4134  *      checks are provided at the key or shm level rather than the inode.
4135  * @name: name for dentry (to be seen in /proc/<pid>/maps
4136  * @size: size to be set for the file
4137  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4138  */
4139 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4140 {
4141         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4142 }
4143
4144 /**
4145  * shmem_file_setup - get an unlinked file living in tmpfs
4146  * @name: name for dentry (to be seen in /proc/<pid>/maps
4147  * @size: size to be set for the file
4148  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4149  */
4150 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4151 {
4152         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4153 }
4154 EXPORT_SYMBOL_GPL(shmem_file_setup);
4155
4156 /**
4157  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4158  * @mnt: the tmpfs mount where the file will be created
4159  * @name: name for dentry (to be seen in /proc/<pid>/maps
4160  * @size: size to be set for the file
4161  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4162  */
4163 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4164                                        loff_t size, unsigned long flags)
4165 {
4166         return __shmem_file_setup(mnt, name, size, flags, 0);
4167 }
4168 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4169
4170 /**
4171  * shmem_zero_setup - setup a shared anonymous mapping
4172  * @vma: the vma to be mmapped is prepared by do_mmap
4173  */
4174 int shmem_zero_setup(struct vm_area_struct *vma)
4175 {
4176         struct file *file;
4177         loff_t size = vma->vm_end - vma->vm_start;
4178
4179         /*
4180          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4181          * between XFS directory reading and selinux: since this file is only
4182          * accessible to the user through its mapping, use S_PRIVATE flag to
4183          * bypass file security, in the same way as shmem_kernel_file_setup().
4184          */
4185         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4186         if (IS_ERR(file))
4187                 return PTR_ERR(file);
4188
4189         if (vma->vm_file)
4190                 fput(vma->vm_file);
4191         vma->vm_file = file;
4192         vma->vm_ops = &shmem_vm_ops;
4193
4194         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4195                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4196                         (vma->vm_end & HPAGE_PMD_MASK)) {
4197                 khugepaged_enter(vma, vma->vm_flags);
4198         }
4199
4200         return 0;
4201 }
4202
4203 /**
4204  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4205  * @mapping:    the page's address_space
4206  * @index:      the page index
4207  * @gfp:        the page allocator flags to use if allocating
4208  *
4209  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4210  * with any new page allocations done using the specified allocation flags.
4211  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4212  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4213  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4214  *
4215  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4216  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4217  */
4218 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4219                                          pgoff_t index, gfp_t gfp)
4220 {
4221 #ifdef CONFIG_SHMEM
4222         struct inode *inode = mapping->host;
4223         struct page *page;
4224         int error;
4225
4226         BUG_ON(!shmem_mapping(mapping));
4227         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4228                                   gfp, NULL, NULL, NULL);
4229         if (error)
4230                 page = ERR_PTR(error);
4231         else
4232                 unlock_page(page);
4233         return page;
4234 #else
4235         /*
4236          * The tiny !SHMEM case uses ramfs without swap
4237          */
4238         return read_cache_page_gfp(mapping, index, gfp);
4239 #endif
4240 }
4241 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);