mm/page_alloc: make pcpu_drain_mutex and pcpu_drain static
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100  * inode->i_private (with i_mutex making sure that it has only one user at
101  * a time): we would prefer not to enlarge the shmem inode just for that.
102  */
103 struct shmem_falloc {
104         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105         pgoff_t start;          /* start of range currently being fallocated */
106         pgoff_t next;           /* the next page offset to be fallocated */
107         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
108         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112         unsigned long long blocks;
113         unsigned long long inodes;
114         struct mempolicy *mpol;
115         kuid_t uid;
116         kgid_t gid;
117         umode_t mode;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128         return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133         unsigned long nr_pages = totalram_pages();
134
135         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141                                 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143                              struct page **pagep, enum sgp_type sgp,
144                              gfp_t gfp, struct vm_area_struct *vma,
145                              vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147                 struct page **pagep, enum sgp_type sgp,
148                 gfp_t gfp, struct vm_area_struct *vma,
149                 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152                 struct page **pagep, enum sgp_type sgp)
153 {
154         return shmem_getpage_gfp(inode, index, pagep, sgp,
155                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156 }
157
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159 {
160         return sb->s_fs_info;
161 }
162
163 /*
164  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165  * for shared memory and for shared anonymous (/dev/zero) mappings
166  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167  * consistent with the pre-accounting of private mappings ...
168  */
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
170 {
171         return (flags & VM_NORESERVE) ?
172                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173 }
174
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176 {
177         if (!(flags & VM_NORESERVE))
178                 vm_unacct_memory(VM_ACCT(size));
179 }
180
181 static inline int shmem_reacct_size(unsigned long flags,
182                 loff_t oldsize, loff_t newsize)
183 {
184         if (!(flags & VM_NORESERVE)) {
185                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186                         return security_vm_enough_memory_mm(current->mm,
187                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
188                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190         }
191         return 0;
192 }
193
194 /*
195  * ... whereas tmpfs objects are accounted incrementally as
196  * pages are allocated, in order to allow large sparse files.
197  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199  */
200 static inline int shmem_acct_block(unsigned long flags, long pages)
201 {
202         if (!(flags & VM_NORESERVE))
203                 return 0;
204
205         return security_vm_enough_memory_mm(current->mm,
206                         pages * VM_ACCT(PAGE_SIZE));
207 }
208
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210 {
211         if (flags & VM_NORESERVE)
212                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213 }
214
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (shmem_acct_block(info->flags, pages))
221                 return false;
222
223         if (sbinfo->max_blocks) {
224                 if (percpu_counter_compare(&sbinfo->used_blocks,
225                                            sbinfo->max_blocks - pages) > 0)
226                         goto unacct;
227                 percpu_counter_add(&sbinfo->used_blocks, pages);
228         }
229
230         return true;
231
232 unacct:
233         shmem_unacct_blocks(info->flags, pages);
234         return false;
235 }
236
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238 {
239         struct shmem_inode_info *info = SHMEM_I(inode);
240         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242         if (sbinfo->max_blocks)
243                 percpu_counter_sub(&sbinfo->used_blocks, pages);
244         shmem_unacct_blocks(info->flags, pages);
245 }
246
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
255
256 bool vma_is_shmem(struct vm_area_struct *vma)
257 {
258         return vma->vm_ops == &shmem_vm_ops;
259 }
260
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264 static int shmem_reserve_inode(struct super_block *sb)
265 {
266         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267         if (sbinfo->max_inodes) {
268                 spin_lock(&sbinfo->stat_lock);
269                 if (!sbinfo->free_inodes) {
270                         spin_unlock(&sbinfo->stat_lock);
271                         return -ENOSPC;
272                 }
273                 sbinfo->free_inodes--;
274                 spin_unlock(&sbinfo->stat_lock);
275         }
276         return 0;
277 }
278
279 static void shmem_free_inode(struct super_block *sb)
280 {
281         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282         if (sbinfo->max_inodes) {
283                 spin_lock(&sbinfo->stat_lock);
284                 sbinfo->free_inodes++;
285                 spin_unlock(&sbinfo->stat_lock);
286         }
287 }
288
289 /**
290  * shmem_recalc_inode - recalculate the block usage of an inode
291  * @inode: inode to recalc
292  *
293  * We have to calculate the free blocks since the mm can drop
294  * undirtied hole pages behind our back.
295  *
296  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
297  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298  *
299  * It has to be called with the spinlock held.
300  */
301 static void shmem_recalc_inode(struct inode *inode)
302 {
303         struct shmem_inode_info *info = SHMEM_I(inode);
304         long freed;
305
306         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307         if (freed > 0) {
308                 info->alloced -= freed;
309                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310                 shmem_inode_unacct_blocks(inode, freed);
311         }
312 }
313
314 bool shmem_charge(struct inode *inode, long pages)
315 {
316         struct shmem_inode_info *info = SHMEM_I(inode);
317         unsigned long flags;
318
319         if (!shmem_inode_acct_block(inode, pages))
320                 return false;
321
322         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323         inode->i_mapping->nrpages += pages;
324
325         spin_lock_irqsave(&info->lock, flags);
326         info->alloced += pages;
327         inode->i_blocks += pages * BLOCKS_PER_PAGE;
328         shmem_recalc_inode(inode);
329         spin_unlock_irqrestore(&info->lock, flags);
330
331         return true;
332 }
333
334 void shmem_uncharge(struct inode *inode, long pages)
335 {
336         struct shmem_inode_info *info = SHMEM_I(inode);
337         unsigned long flags;
338
339         /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341         spin_lock_irqsave(&info->lock, flags);
342         info->alloced -= pages;
343         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344         shmem_recalc_inode(inode);
345         spin_unlock_irqrestore(&info->lock, flags);
346
347         shmem_inode_unacct_blocks(inode, pages);
348 }
349
350 /*
351  * Replace item expected in xarray by a new item, while holding xa_lock.
352  */
353 static int shmem_replace_entry(struct address_space *mapping,
354                         pgoff_t index, void *expected, void *replacement)
355 {
356         XA_STATE(xas, &mapping->i_pages, index);
357         void *item;
358
359         VM_BUG_ON(!expected);
360         VM_BUG_ON(!replacement);
361         item = xas_load(&xas);
362         if (item != expected)
363                 return -ENOENT;
364         xas_store(&xas, replacement);
365         return 0;
366 }
367
368 /*
369  * Sometimes, before we decide whether to proceed or to fail, we must check
370  * that an entry was not already brought back from swap by a racing thread.
371  *
372  * Checking page is not enough: by the time a SwapCache page is locked, it
373  * might be reused, and again be SwapCache, using the same swap as before.
374  */
375 static bool shmem_confirm_swap(struct address_space *mapping,
376                                pgoff_t index, swp_entry_t swap)
377 {
378         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379 }
380
381 /*
382  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383  *
384  * SHMEM_HUGE_NEVER:
385  *      disables huge pages for the mount;
386  * SHMEM_HUGE_ALWAYS:
387  *      enables huge pages for the mount;
388  * SHMEM_HUGE_WITHIN_SIZE:
389  *      only allocate huge pages if the page will be fully within i_size,
390  *      also respect fadvise()/madvise() hints;
391  * SHMEM_HUGE_ADVISE:
392  *      only allocate huge pages if requested with fadvise()/madvise();
393  */
394
395 #define SHMEM_HUGE_NEVER        0
396 #define SHMEM_HUGE_ALWAYS       1
397 #define SHMEM_HUGE_WITHIN_SIZE  2
398 #define SHMEM_HUGE_ADVISE       3
399
400 /*
401  * Special values.
402  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403  *
404  * SHMEM_HUGE_DENY:
405  *      disables huge on shm_mnt and all mounts, for emergency use;
406  * SHMEM_HUGE_FORCE:
407  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408  *
409  */
410 #define SHMEM_HUGE_DENY         (-1)
411 #define SHMEM_HUGE_FORCE        (-2)
412
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
415
416 static int shmem_huge __read_mostly;
417
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
420 {
421         if (!strcmp(str, "never"))
422                 return SHMEM_HUGE_NEVER;
423         if (!strcmp(str, "always"))
424                 return SHMEM_HUGE_ALWAYS;
425         if (!strcmp(str, "within_size"))
426                 return SHMEM_HUGE_WITHIN_SIZE;
427         if (!strcmp(str, "advise"))
428                 return SHMEM_HUGE_ADVISE;
429         if (!strcmp(str, "deny"))
430                 return SHMEM_HUGE_DENY;
431         if (!strcmp(str, "force"))
432                 return SHMEM_HUGE_FORCE;
433         return -EINVAL;
434 }
435 #endif
436
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
439 {
440         switch (huge) {
441         case SHMEM_HUGE_NEVER:
442                 return "never";
443         case SHMEM_HUGE_ALWAYS:
444                 return "always";
445         case SHMEM_HUGE_WITHIN_SIZE:
446                 return "within_size";
447         case SHMEM_HUGE_ADVISE:
448                 return "advise";
449         case SHMEM_HUGE_DENY:
450                 return "deny";
451         case SHMEM_HUGE_FORCE:
452                 return "force";
453         default:
454                 VM_BUG_ON(1);
455                 return "bad_val";
456         }
457 }
458 #endif
459
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461                 struct shrink_control *sc, unsigned long nr_to_split)
462 {
463         LIST_HEAD(list), *pos, *next;
464         LIST_HEAD(to_remove);
465         struct inode *inode;
466         struct shmem_inode_info *info;
467         struct page *page;
468         unsigned long batch = sc ? sc->nr_to_scan : 128;
469         int removed = 0, split = 0;
470
471         if (list_empty(&sbinfo->shrinklist))
472                 return SHRINK_STOP;
473
474         spin_lock(&sbinfo->shrinklist_lock);
475         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478                 /* pin the inode */
479                 inode = igrab(&info->vfs_inode);
480
481                 /* inode is about to be evicted */
482                 if (!inode) {
483                         list_del_init(&info->shrinklist);
484                         removed++;
485                         goto next;
486                 }
487
488                 /* Check if there's anything to gain */
489                 if (round_up(inode->i_size, PAGE_SIZE) ==
490                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491                         list_move(&info->shrinklist, &to_remove);
492                         removed++;
493                         goto next;
494                 }
495
496                 list_move(&info->shrinklist, &list);
497 next:
498                 if (!--batch)
499                         break;
500         }
501         spin_unlock(&sbinfo->shrinklist_lock);
502
503         list_for_each_safe(pos, next, &to_remove) {
504                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505                 inode = &info->vfs_inode;
506                 list_del_init(&info->shrinklist);
507                 iput(inode);
508         }
509
510         list_for_each_safe(pos, next, &list) {
511                 int ret;
512
513                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514                 inode = &info->vfs_inode;
515
516                 if (nr_to_split && split >= nr_to_split)
517                         goto leave;
518
519                 page = find_get_page(inode->i_mapping,
520                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521                 if (!page)
522                         goto drop;
523
524                 /* No huge page at the end of the file: nothing to split */
525                 if (!PageTransHuge(page)) {
526                         put_page(page);
527                         goto drop;
528                 }
529
530                 /*
531                  * Leave the inode on the list if we failed to lock
532                  * the page at this time.
533                  *
534                  * Waiting for the lock may lead to deadlock in the
535                  * reclaim path.
536                  */
537                 if (!trylock_page(page)) {
538                         put_page(page);
539                         goto leave;
540                 }
541
542                 ret = split_huge_page(page);
543                 unlock_page(page);
544                 put_page(page);
545
546                 /* If split failed leave the inode on the list */
547                 if (ret)
548                         goto leave;
549
550                 split++;
551 drop:
552                 list_del_init(&info->shrinklist);
553                 removed++;
554 leave:
555                 iput(inode);
556         }
557
558         spin_lock(&sbinfo->shrinklist_lock);
559         list_splice_tail(&list, &sbinfo->shrinklist);
560         sbinfo->shrinklist_len -= removed;
561         spin_unlock(&sbinfo->shrinklist_lock);
562
563         return split;
564 }
565
566 static long shmem_unused_huge_scan(struct super_block *sb,
567                 struct shrink_control *sc)
568 {
569         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571         if (!READ_ONCE(sbinfo->shrinklist_len))
572                 return SHRINK_STOP;
573
574         return shmem_unused_huge_shrink(sbinfo, sc, 0);
575 }
576
577 static long shmem_unused_huge_count(struct super_block *sb,
578                 struct shrink_control *sc)
579 {
580         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581         return READ_ONCE(sbinfo->shrinklist_len);
582 }
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
584
585 #define shmem_huge SHMEM_HUGE_DENY
586
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588                 struct shrink_control *sc, unsigned long nr_to_split)
589 {
590         return 0;
591 }
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
593
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595 {
596         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598             shmem_huge != SHMEM_HUGE_DENY)
599                 return true;
600         return false;
601 }
602
603 /*
604  * Like add_to_page_cache_locked, but error if expected item has gone.
605  */
606 static int shmem_add_to_page_cache(struct page *page,
607                                    struct address_space *mapping,
608                                    pgoff_t index, void *expected, gfp_t gfp)
609 {
610         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611         unsigned long i = 0;
612         unsigned long nr = compound_nr(page);
613
614         VM_BUG_ON_PAGE(PageTail(page), page);
615         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618         VM_BUG_ON(expected && PageTransHuge(page));
619
620         page_ref_add(page, nr);
621         page->mapping = mapping;
622         page->index = index;
623
624         do {
625                 void *entry;
626                 xas_lock_irq(&xas);
627                 entry = xas_find_conflict(&xas);
628                 if (entry != expected)
629                         xas_set_err(&xas, -EEXIST);
630                 xas_create_range(&xas);
631                 if (xas_error(&xas))
632                         goto unlock;
633 next:
634                 xas_store(&xas, page);
635                 if (++i < nr) {
636                         xas_next(&xas);
637                         goto next;
638                 }
639                 if (PageTransHuge(page)) {
640                         count_vm_event(THP_FILE_ALLOC);
641                         __inc_node_page_state(page, NR_SHMEM_THPS);
642                 }
643                 mapping->nrpages += nr;
644                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647                 xas_unlock_irq(&xas);
648         } while (xas_nomem(&xas, gfp));
649
650         if (xas_error(&xas)) {
651                 page->mapping = NULL;
652                 page_ref_sub(page, nr);
653                 return xas_error(&xas);
654         }
655
656         return 0;
657 }
658
659 /*
660  * Like delete_from_page_cache, but substitutes swap for page.
661  */
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663 {
664         struct address_space *mapping = page->mapping;
665         int error;
666
667         VM_BUG_ON_PAGE(PageCompound(page), page);
668
669         xa_lock_irq(&mapping->i_pages);
670         error = shmem_replace_entry(mapping, page->index, page, radswap);
671         page->mapping = NULL;
672         mapping->nrpages--;
673         __dec_node_page_state(page, NR_FILE_PAGES);
674         __dec_node_page_state(page, NR_SHMEM);
675         xa_unlock_irq(&mapping->i_pages);
676         put_page(page);
677         BUG_ON(error);
678 }
679
680 /*
681  * Remove swap entry from page cache, free the swap and its page cache.
682  */
683 static int shmem_free_swap(struct address_space *mapping,
684                            pgoff_t index, void *radswap)
685 {
686         void *old;
687
688         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689         if (old != radswap)
690                 return -ENOENT;
691         free_swap_and_cache(radix_to_swp_entry(radswap));
692         return 0;
693 }
694
695 /*
696  * Determine (in bytes) how many of the shmem object's pages mapped by the
697  * given offsets are swapped out.
698  *
699  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700  * as long as the inode doesn't go away and racy results are not a problem.
701  */
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703                                                 pgoff_t start, pgoff_t end)
704 {
705         XA_STATE(xas, &mapping->i_pages, start);
706         struct page *page;
707         unsigned long swapped = 0;
708
709         rcu_read_lock();
710         xas_for_each(&xas, page, end - 1) {
711                 if (xas_retry(&xas, page))
712                         continue;
713                 if (xa_is_value(page))
714                         swapped++;
715
716                 if (need_resched()) {
717                         xas_pause(&xas);
718                         cond_resched_rcu();
719                 }
720         }
721
722         rcu_read_unlock();
723
724         return swapped << PAGE_SHIFT;
725 }
726
727 /*
728  * Determine (in bytes) how many of the shmem object's pages mapped by the
729  * given vma is swapped out.
730  *
731  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732  * as long as the inode doesn't go away and racy results are not a problem.
733  */
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735 {
736         struct inode *inode = file_inode(vma->vm_file);
737         struct shmem_inode_info *info = SHMEM_I(inode);
738         struct address_space *mapping = inode->i_mapping;
739         unsigned long swapped;
740
741         /* Be careful as we don't hold info->lock */
742         swapped = READ_ONCE(info->swapped);
743
744         /*
745          * The easier cases are when the shmem object has nothing in swap, or
746          * the vma maps it whole. Then we can simply use the stats that we
747          * already track.
748          */
749         if (!swapped)
750                 return 0;
751
752         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753                 return swapped << PAGE_SHIFT;
754
755         /* Here comes the more involved part */
756         return shmem_partial_swap_usage(mapping,
757                         linear_page_index(vma, vma->vm_start),
758                         linear_page_index(vma, vma->vm_end));
759 }
760
761 /*
762  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763  */
764 void shmem_unlock_mapping(struct address_space *mapping)
765 {
766         struct pagevec pvec;
767         pgoff_t indices[PAGEVEC_SIZE];
768         pgoff_t index = 0;
769
770         pagevec_init(&pvec);
771         /*
772          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773          */
774         while (!mapping_unevictable(mapping)) {
775                 /*
776                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778                  */
779                 pvec.nr = find_get_entries(mapping, index,
780                                            PAGEVEC_SIZE, pvec.pages, indices);
781                 if (!pvec.nr)
782                         break;
783                 index = indices[pvec.nr - 1] + 1;
784                 pagevec_remove_exceptionals(&pvec);
785                 check_move_unevictable_pages(&pvec);
786                 pagevec_release(&pvec);
787                 cond_resched();
788         }
789 }
790
791 /*
792  * Check whether a hole-punch or truncation needs to split a huge page,
793  * returning true if no split was required, or the split has been successful.
794  *
795  * Eviction (or truncation to 0 size) should never need to split a huge page;
796  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
797  * head, and then succeeded to trylock on tail.
798  *
799  * A split can only succeed when there are no additional references on the
800  * huge page: so the split below relies upon find_get_entries() having stopped
801  * when it found a subpage of the huge page, without getting further references.
802  */
803 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
804 {
805         if (!PageTransCompound(page))
806                 return true;
807
808         /* Just proceed to delete a huge page wholly within the range punched */
809         if (PageHead(page) &&
810             page->index >= start && page->index + HPAGE_PMD_NR <= end)
811                 return true;
812
813         /* Try to split huge page, so we can truly punch the hole or truncate */
814         return split_huge_page(page) >= 0;
815 }
816
817 /*
818  * Remove range of pages and swap entries from page cache, and free them.
819  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
820  */
821 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
822                                                                  bool unfalloc)
823 {
824         struct address_space *mapping = inode->i_mapping;
825         struct shmem_inode_info *info = SHMEM_I(inode);
826         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
827         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
828         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
829         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
830         struct pagevec pvec;
831         pgoff_t indices[PAGEVEC_SIZE];
832         long nr_swaps_freed = 0;
833         pgoff_t index;
834         int i;
835
836         if (lend == -1)
837                 end = -1;       /* unsigned, so actually very big */
838
839         pagevec_init(&pvec);
840         index = start;
841         while (index < end) {
842                 pvec.nr = find_get_entries(mapping, index,
843                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
844                         pvec.pages, indices);
845                 if (!pvec.nr)
846                         break;
847                 for (i = 0; i < pagevec_count(&pvec); i++) {
848                         struct page *page = pvec.pages[i];
849
850                         index = indices[i];
851                         if (index >= end)
852                                 break;
853
854                         if (xa_is_value(page)) {
855                                 if (unfalloc)
856                                         continue;
857                                 nr_swaps_freed += !shmem_free_swap(mapping,
858                                                                 index, page);
859                                 continue;
860                         }
861
862                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
863
864                         if (!trylock_page(page))
865                                 continue;
866
867                         if ((!unfalloc || !PageUptodate(page)) &&
868                             page_mapping(page) == mapping) {
869                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
870                                 if (shmem_punch_compound(page, start, end))
871                                         truncate_inode_page(mapping, page);
872                         }
873                         unlock_page(page);
874                 }
875                 pagevec_remove_exceptionals(&pvec);
876                 pagevec_release(&pvec);
877                 cond_resched();
878                 index++;
879         }
880
881         if (partial_start) {
882                 struct page *page = NULL;
883                 shmem_getpage(inode, start - 1, &page, SGP_READ);
884                 if (page) {
885                         unsigned int top = PAGE_SIZE;
886                         if (start > end) {
887                                 top = partial_end;
888                                 partial_end = 0;
889                         }
890                         zero_user_segment(page, partial_start, top);
891                         set_page_dirty(page);
892                         unlock_page(page);
893                         put_page(page);
894                 }
895         }
896         if (partial_end) {
897                 struct page *page = NULL;
898                 shmem_getpage(inode, end, &page, SGP_READ);
899                 if (page) {
900                         zero_user_segment(page, 0, partial_end);
901                         set_page_dirty(page);
902                         unlock_page(page);
903                         put_page(page);
904                 }
905         }
906         if (start >= end)
907                 return;
908
909         index = start;
910         while (index < end) {
911                 cond_resched();
912
913                 pvec.nr = find_get_entries(mapping, index,
914                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
915                                 pvec.pages, indices);
916                 if (!pvec.nr) {
917                         /* If all gone or hole-punch or unfalloc, we're done */
918                         if (index == start || end != -1)
919                                 break;
920                         /* But if truncating, restart to make sure all gone */
921                         index = start;
922                         continue;
923                 }
924                 for (i = 0; i < pagevec_count(&pvec); i++) {
925                         struct page *page = pvec.pages[i];
926
927                         index = indices[i];
928                         if (index >= end)
929                                 break;
930
931                         if (xa_is_value(page)) {
932                                 if (unfalloc)
933                                         continue;
934                                 if (shmem_free_swap(mapping, index, page)) {
935                                         /* Swap was replaced by page: retry */
936                                         index--;
937                                         break;
938                                 }
939                                 nr_swaps_freed++;
940                                 continue;
941                         }
942
943                         lock_page(page);
944
945                         if (!unfalloc || !PageUptodate(page)) {
946                                 if (page_mapping(page) != mapping) {
947                                         /* Page was replaced by swap: retry */
948                                         unlock_page(page);
949                                         index--;
950                                         break;
951                                 }
952                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
953                                 if (shmem_punch_compound(page, start, end))
954                                         truncate_inode_page(mapping, page);
955                                 else {
956                                         /* Wipe the page and don't get stuck */
957                                         clear_highpage(page);
958                                         flush_dcache_page(page);
959                                         set_page_dirty(page);
960                                         if (index <
961                                             round_up(start, HPAGE_PMD_NR))
962                                                 start = index + 1;
963                                 }
964                         }
965                         unlock_page(page);
966                 }
967                 pagevec_remove_exceptionals(&pvec);
968                 pagevec_release(&pvec);
969                 index++;
970         }
971
972         spin_lock_irq(&info->lock);
973         info->swapped -= nr_swaps_freed;
974         shmem_recalc_inode(inode);
975         spin_unlock_irq(&info->lock);
976 }
977
978 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
979 {
980         shmem_undo_range(inode, lstart, lend, false);
981         inode->i_ctime = inode->i_mtime = current_time(inode);
982 }
983 EXPORT_SYMBOL_GPL(shmem_truncate_range);
984
985 static int shmem_getattr(const struct path *path, struct kstat *stat,
986                          u32 request_mask, unsigned int query_flags)
987 {
988         struct inode *inode = path->dentry->d_inode;
989         struct shmem_inode_info *info = SHMEM_I(inode);
990         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
991
992         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993                 spin_lock_irq(&info->lock);
994                 shmem_recalc_inode(inode);
995                 spin_unlock_irq(&info->lock);
996         }
997         generic_fillattr(inode, stat);
998
999         if (is_huge_enabled(sb_info))
1000                 stat->blksize = HPAGE_PMD_SIZE;
1001
1002         return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007         struct inode *inode = d_inode(dentry);
1008         struct shmem_inode_info *info = SHMEM_I(inode);
1009         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010         int error;
1011
1012         error = setattr_prepare(dentry, attr);
1013         if (error)
1014                 return error;
1015
1016         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017                 loff_t oldsize = inode->i_size;
1018                 loff_t newsize = attr->ia_size;
1019
1020                 /* protected by i_mutex */
1021                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023                         return -EPERM;
1024
1025                 if (newsize != oldsize) {
1026                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027                                         oldsize, newsize);
1028                         if (error)
1029                                 return error;
1030                         i_size_write(inode, newsize);
1031                         inode->i_ctime = inode->i_mtime = current_time(inode);
1032                 }
1033                 if (newsize <= oldsize) {
1034                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035                         if (oldsize > holebegin)
1036                                 unmap_mapping_range(inode->i_mapping,
1037                                                         holebegin, 0, 1);
1038                         if (info->alloced)
1039                                 shmem_truncate_range(inode,
1040                                                         newsize, (loff_t)-1);
1041                         /* unmap again to remove racily COWed private pages */
1042                         if (oldsize > holebegin)
1043                                 unmap_mapping_range(inode->i_mapping,
1044                                                         holebegin, 0, 1);
1045
1046                         /*
1047                          * Part of the huge page can be beyond i_size: subject
1048                          * to shrink under memory pressure.
1049                          */
1050                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1051                                 spin_lock(&sbinfo->shrinklist_lock);
1052                                 /*
1053                                  * _careful to defend against unlocked access to
1054                                  * ->shrink_list in shmem_unused_huge_shrink()
1055                                  */
1056                                 if (list_empty_careful(&info->shrinklist)) {
1057                                         list_add_tail(&info->shrinklist,
1058                                                         &sbinfo->shrinklist);
1059                                         sbinfo->shrinklist_len++;
1060                                 }
1061                                 spin_unlock(&sbinfo->shrinklist_lock);
1062                         }
1063                 }
1064         }
1065
1066         setattr_copy(inode, attr);
1067         if (attr->ia_valid & ATTR_MODE)
1068                 error = posix_acl_chmod(inode, inode->i_mode);
1069         return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074         struct shmem_inode_info *info = SHMEM_I(inode);
1075         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077         if (inode->i_mapping->a_ops == &shmem_aops) {
1078                 shmem_unacct_size(info->flags, inode->i_size);
1079                 inode->i_size = 0;
1080                 shmem_truncate_range(inode, 0, (loff_t)-1);
1081                 if (!list_empty(&info->shrinklist)) {
1082                         spin_lock(&sbinfo->shrinklist_lock);
1083                         if (!list_empty(&info->shrinklist)) {
1084                                 list_del_init(&info->shrinklist);
1085                                 sbinfo->shrinklist_len--;
1086                         }
1087                         spin_unlock(&sbinfo->shrinklist_lock);
1088                 }
1089                 while (!list_empty(&info->swaplist)) {
1090                         /* Wait while shmem_unuse() is scanning this inode... */
1091                         wait_var_event(&info->stop_eviction,
1092                                        !atomic_read(&info->stop_eviction));
1093                         mutex_lock(&shmem_swaplist_mutex);
1094                         /* ...but beware of the race if we peeked too early */
1095                         if (!atomic_read(&info->stop_eviction))
1096                                 list_del_init(&info->swaplist);
1097                         mutex_unlock(&shmem_swaplist_mutex);
1098                 }
1099         }
1100
1101         simple_xattrs_free(&info->xattrs);
1102         WARN_ON(inode->i_blocks);
1103         shmem_free_inode(inode->i_sb);
1104         clear_inode(inode);
1105 }
1106
1107 extern struct swap_info_struct *swap_info[];
1108
1109 static int shmem_find_swap_entries(struct address_space *mapping,
1110                                    pgoff_t start, unsigned int nr_entries,
1111                                    struct page **entries, pgoff_t *indices,
1112                                    unsigned int type, bool frontswap)
1113 {
1114         XA_STATE(xas, &mapping->i_pages, start);
1115         struct page *page;
1116         swp_entry_t entry;
1117         unsigned int ret = 0;
1118
1119         if (!nr_entries)
1120                 return 0;
1121
1122         rcu_read_lock();
1123         xas_for_each(&xas, page, ULONG_MAX) {
1124                 if (xas_retry(&xas, page))
1125                         continue;
1126
1127                 if (!xa_is_value(page))
1128                         continue;
1129
1130                 entry = radix_to_swp_entry(page);
1131                 if (swp_type(entry) != type)
1132                         continue;
1133                 if (frontswap &&
1134                     !frontswap_test(swap_info[type], swp_offset(entry)))
1135                         continue;
1136
1137                 indices[ret] = xas.xa_index;
1138                 entries[ret] = page;
1139
1140                 if (need_resched()) {
1141                         xas_pause(&xas);
1142                         cond_resched_rcu();
1143                 }
1144                 if (++ret == nr_entries)
1145                         break;
1146         }
1147         rcu_read_unlock();
1148
1149         return ret;
1150 }
1151
1152 /*
1153  * Move the swapped pages for an inode to page cache. Returns the count
1154  * of pages swapped in, or the error in case of failure.
1155  */
1156 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1157                                     pgoff_t *indices)
1158 {
1159         int i = 0;
1160         int ret = 0;
1161         int error = 0;
1162         struct address_space *mapping = inode->i_mapping;
1163
1164         for (i = 0; i < pvec.nr; i++) {
1165                 struct page *page = pvec.pages[i];
1166
1167                 if (!xa_is_value(page))
1168                         continue;
1169                 error = shmem_swapin_page(inode, indices[i],
1170                                           &page, SGP_CACHE,
1171                                           mapping_gfp_mask(mapping),
1172                                           NULL, NULL);
1173                 if (error == 0) {
1174                         unlock_page(page);
1175                         put_page(page);
1176                         ret++;
1177                 }
1178                 if (error == -ENOMEM)
1179                         break;
1180                 error = 0;
1181         }
1182         return error ? error : ret;
1183 }
1184
1185 /*
1186  * If swap found in inode, free it and move page from swapcache to filecache.
1187  */
1188 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1189                              bool frontswap, unsigned long *fs_pages_to_unuse)
1190 {
1191         struct address_space *mapping = inode->i_mapping;
1192         pgoff_t start = 0;
1193         struct pagevec pvec;
1194         pgoff_t indices[PAGEVEC_SIZE];
1195         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1196         int ret = 0;
1197
1198         pagevec_init(&pvec);
1199         do {
1200                 unsigned int nr_entries = PAGEVEC_SIZE;
1201
1202                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1203                         nr_entries = *fs_pages_to_unuse;
1204
1205                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1206                                                   pvec.pages, indices,
1207                                                   type, frontswap);
1208                 if (pvec.nr == 0) {
1209                         ret = 0;
1210                         break;
1211                 }
1212
1213                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1214                 if (ret < 0)
1215                         break;
1216
1217                 if (frontswap_partial) {
1218                         *fs_pages_to_unuse -= ret;
1219                         if (*fs_pages_to_unuse == 0) {
1220                                 ret = FRONTSWAP_PAGES_UNUSED;
1221                                 break;
1222                         }
1223                 }
1224
1225                 start = indices[pvec.nr - 1];
1226         } while (true);
1227
1228         return ret;
1229 }
1230
1231 /*
1232  * Read all the shared memory data that resides in the swap
1233  * device 'type' back into memory, so the swap device can be
1234  * unused.
1235  */
1236 int shmem_unuse(unsigned int type, bool frontswap,
1237                 unsigned long *fs_pages_to_unuse)
1238 {
1239         struct shmem_inode_info *info, *next;
1240         int error = 0;
1241
1242         if (list_empty(&shmem_swaplist))
1243                 return 0;
1244
1245         mutex_lock(&shmem_swaplist_mutex);
1246         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1247                 if (!info->swapped) {
1248                         list_del_init(&info->swaplist);
1249                         continue;
1250                 }
1251                 /*
1252                  * Drop the swaplist mutex while searching the inode for swap;
1253                  * but before doing so, make sure shmem_evict_inode() will not
1254                  * remove placeholder inode from swaplist, nor let it be freed
1255                  * (igrab() would protect from unlink, but not from unmount).
1256                  */
1257                 atomic_inc(&info->stop_eviction);
1258                 mutex_unlock(&shmem_swaplist_mutex);
1259
1260                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1261                                           fs_pages_to_unuse);
1262                 cond_resched();
1263
1264                 mutex_lock(&shmem_swaplist_mutex);
1265                 next = list_next_entry(info, swaplist);
1266                 if (!info->swapped)
1267                         list_del_init(&info->swaplist);
1268                 if (atomic_dec_and_test(&info->stop_eviction))
1269                         wake_up_var(&info->stop_eviction);
1270                 if (error)
1271                         break;
1272         }
1273         mutex_unlock(&shmem_swaplist_mutex);
1274
1275         return error;
1276 }
1277
1278 /*
1279  * Move the page from the page cache to the swap cache.
1280  */
1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1282 {
1283         struct shmem_inode_info *info;
1284         struct address_space *mapping;
1285         struct inode *inode;
1286         swp_entry_t swap;
1287         pgoff_t index;
1288
1289         VM_BUG_ON_PAGE(PageCompound(page), page);
1290         BUG_ON(!PageLocked(page));
1291         mapping = page->mapping;
1292         index = page->index;
1293         inode = mapping->host;
1294         info = SHMEM_I(inode);
1295         if (info->flags & VM_LOCKED)
1296                 goto redirty;
1297         if (!total_swap_pages)
1298                 goto redirty;
1299
1300         /*
1301          * Our capabilities prevent regular writeback or sync from ever calling
1302          * shmem_writepage; but a stacking filesystem might use ->writepage of
1303          * its underlying filesystem, in which case tmpfs should write out to
1304          * swap only in response to memory pressure, and not for the writeback
1305          * threads or sync.
1306          */
1307         if (!wbc->for_reclaim) {
1308                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1309                 goto redirty;
1310         }
1311
1312         /*
1313          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314          * value into swapfile.c, the only way we can correctly account for a
1315          * fallocated page arriving here is now to initialize it and write it.
1316          *
1317          * That's okay for a page already fallocated earlier, but if we have
1318          * not yet completed the fallocation, then (a) we want to keep track
1319          * of this page in case we have to undo it, and (b) it may not be a
1320          * good idea to continue anyway, once we're pushing into swap.  So
1321          * reactivate the page, and let shmem_fallocate() quit when too many.
1322          */
1323         if (!PageUptodate(page)) {
1324                 if (inode->i_private) {
1325                         struct shmem_falloc *shmem_falloc;
1326                         spin_lock(&inode->i_lock);
1327                         shmem_falloc = inode->i_private;
1328                         if (shmem_falloc &&
1329                             !shmem_falloc->waitq &&
1330                             index >= shmem_falloc->start &&
1331                             index < shmem_falloc->next)
1332                                 shmem_falloc->nr_unswapped++;
1333                         else
1334                                 shmem_falloc = NULL;
1335                         spin_unlock(&inode->i_lock);
1336                         if (shmem_falloc)
1337                                 goto redirty;
1338                 }
1339                 clear_highpage(page);
1340                 flush_dcache_page(page);
1341                 SetPageUptodate(page);
1342         }
1343
1344         swap = get_swap_page(page);
1345         if (!swap.val)
1346                 goto redirty;
1347
1348         /*
1349          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1350          * if it's not already there.  Do it now before the page is
1351          * moved to swap cache, when its pagelock no longer protects
1352          * the inode from eviction.  But don't unlock the mutex until
1353          * we've incremented swapped, because shmem_unuse_inode() will
1354          * prune a !swapped inode from the swaplist under this mutex.
1355          */
1356         mutex_lock(&shmem_swaplist_mutex);
1357         if (list_empty(&info->swaplist))
1358                 list_add(&info->swaplist, &shmem_swaplist);
1359
1360         if (add_to_swap_cache(page, swap,
1361                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1362                 spin_lock_irq(&info->lock);
1363                 shmem_recalc_inode(inode);
1364                 info->swapped++;
1365                 spin_unlock_irq(&info->lock);
1366
1367                 swap_shmem_alloc(swap);
1368                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1369
1370                 mutex_unlock(&shmem_swaplist_mutex);
1371                 BUG_ON(page_mapped(page));
1372                 swap_writepage(page, wbc);
1373                 return 0;
1374         }
1375
1376         mutex_unlock(&shmem_swaplist_mutex);
1377         put_swap_page(page, swap);
1378 redirty:
1379         set_page_dirty(page);
1380         if (wbc->for_reclaim)
1381                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1382         unlock_page(page);
1383         return 0;
1384 }
1385
1386 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1387 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1388 {
1389         char buffer[64];
1390
1391         if (!mpol || mpol->mode == MPOL_DEFAULT)
1392                 return;         /* show nothing */
1393
1394         mpol_to_str(buffer, sizeof(buffer), mpol);
1395
1396         seq_printf(seq, ",mpol=%s", buffer);
1397 }
1398
1399 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400 {
1401         struct mempolicy *mpol = NULL;
1402         if (sbinfo->mpol) {
1403                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1404                 mpol = sbinfo->mpol;
1405                 mpol_get(mpol);
1406                 spin_unlock(&sbinfo->stat_lock);
1407         }
1408         return mpol;
1409 }
1410 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1411 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1412 {
1413 }
1414 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1415 {
1416         return NULL;
1417 }
1418 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1419 #ifndef CONFIG_NUMA
1420 #define vm_policy vm_private_data
1421 #endif
1422
1423 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1424                 struct shmem_inode_info *info, pgoff_t index)
1425 {
1426         /* Create a pseudo vma that just contains the policy */
1427         vma_init(vma, NULL);
1428         /* Bias interleave by inode number to distribute better across nodes */
1429         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1430         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1431 }
1432
1433 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1434 {
1435         /* Drop reference taken by mpol_shared_policy_lookup() */
1436         mpol_cond_put(vma->vm_policy);
1437 }
1438
1439 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1440                         struct shmem_inode_info *info, pgoff_t index)
1441 {
1442         struct vm_area_struct pvma;
1443         struct page *page;
1444         struct vm_fault vmf;
1445
1446         shmem_pseudo_vma_init(&pvma, info, index);
1447         vmf.vma = &pvma;
1448         vmf.address = 0;
1449         page = swap_cluster_readahead(swap, gfp, &vmf);
1450         shmem_pseudo_vma_destroy(&pvma);
1451
1452         return page;
1453 }
1454
1455 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1456                 struct shmem_inode_info *info, pgoff_t index)
1457 {
1458         struct vm_area_struct pvma;
1459         struct address_space *mapping = info->vfs_inode.i_mapping;
1460         pgoff_t hindex;
1461         struct page *page;
1462
1463         hindex = round_down(index, HPAGE_PMD_NR);
1464         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1465                                                                 XA_PRESENT))
1466                 return NULL;
1467
1468         shmem_pseudo_vma_init(&pvma, info, hindex);
1469         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1470                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1471         shmem_pseudo_vma_destroy(&pvma);
1472         if (page)
1473                 prep_transhuge_page(page);
1474         else
1475                 count_vm_event(THP_FILE_FALLBACK);
1476         return page;
1477 }
1478
1479 static struct page *shmem_alloc_page(gfp_t gfp,
1480                         struct shmem_inode_info *info, pgoff_t index)
1481 {
1482         struct vm_area_struct pvma;
1483         struct page *page;
1484
1485         shmem_pseudo_vma_init(&pvma, info, index);
1486         page = alloc_page_vma(gfp, &pvma, 0);
1487         shmem_pseudo_vma_destroy(&pvma);
1488
1489         return page;
1490 }
1491
1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1493                 struct inode *inode,
1494                 pgoff_t index, bool huge)
1495 {
1496         struct shmem_inode_info *info = SHMEM_I(inode);
1497         struct page *page;
1498         int nr;
1499         int err = -ENOSPC;
1500
1501         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1502                 huge = false;
1503         nr = huge ? HPAGE_PMD_NR : 1;
1504
1505         if (!shmem_inode_acct_block(inode, nr))
1506                 goto failed;
1507
1508         if (huge)
1509                 page = shmem_alloc_hugepage(gfp, info, index);
1510         else
1511                 page = shmem_alloc_page(gfp, info, index);
1512         if (page) {
1513                 __SetPageLocked(page);
1514                 __SetPageSwapBacked(page);
1515                 return page;
1516         }
1517
1518         err = -ENOMEM;
1519         shmem_inode_unacct_blocks(inode, nr);
1520 failed:
1521         return ERR_PTR(err);
1522 }
1523
1524 /*
1525  * When a page is moved from swapcache to shmem filecache (either by the
1526  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528  * ignorance of the mapping it belongs to.  If that mapping has special
1529  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530  * we may need to copy to a suitable page before moving to filecache.
1531  *
1532  * In a future release, this may well be extended to respect cpuset and
1533  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534  * but for now it is a simple matter of zone.
1535  */
1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1537 {
1538         return page_zonenum(page) > gfp_zone(gfp);
1539 }
1540
1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542                                 struct shmem_inode_info *info, pgoff_t index)
1543 {
1544         struct page *oldpage, *newpage;
1545         struct address_space *swap_mapping;
1546         swp_entry_t entry;
1547         pgoff_t swap_index;
1548         int error;
1549
1550         oldpage = *pagep;
1551         entry.val = page_private(oldpage);
1552         swap_index = swp_offset(entry);
1553         swap_mapping = page_mapping(oldpage);
1554
1555         /*
1556          * We have arrived here because our zones are constrained, so don't
1557          * limit chance of success by further cpuset and node constraints.
1558          */
1559         gfp &= ~GFP_CONSTRAINT_MASK;
1560         newpage = shmem_alloc_page(gfp, info, index);
1561         if (!newpage)
1562                 return -ENOMEM;
1563
1564         get_page(newpage);
1565         copy_highpage(newpage, oldpage);
1566         flush_dcache_page(newpage);
1567
1568         __SetPageLocked(newpage);
1569         __SetPageSwapBacked(newpage);
1570         SetPageUptodate(newpage);
1571         set_page_private(newpage, entry.val);
1572         SetPageSwapCache(newpage);
1573
1574         /*
1575          * Our caller will very soon move newpage out of swapcache, but it's
1576          * a nice clean interface for us to replace oldpage by newpage there.
1577          */
1578         xa_lock_irq(&swap_mapping->i_pages);
1579         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1580         if (!error) {
1581                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1582                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1583         }
1584         xa_unlock_irq(&swap_mapping->i_pages);
1585
1586         if (unlikely(error)) {
1587                 /*
1588                  * Is this possible?  I think not, now that our callers check
1589                  * both PageSwapCache and page_private after getting page lock;
1590                  * but be defensive.  Reverse old to newpage for clear and free.
1591                  */
1592                 oldpage = newpage;
1593         } else {
1594                 mem_cgroup_migrate(oldpage, newpage);
1595                 lru_cache_add_anon(newpage);
1596                 *pagep = newpage;
1597         }
1598
1599         ClearPageSwapCache(oldpage);
1600         set_page_private(oldpage, 0);
1601
1602         unlock_page(oldpage);
1603         put_page(oldpage);
1604         put_page(oldpage);
1605         return error;
1606 }
1607
1608 /*
1609  * Swap in the page pointed to by *pagep.
1610  * Caller has to make sure that *pagep contains a valid swapped page.
1611  * Returns 0 and the page in pagep if success. On failure, returns the
1612  * the error code and NULL in *pagep.
1613  */
1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615                              struct page **pagep, enum sgp_type sgp,
1616                              gfp_t gfp, struct vm_area_struct *vma,
1617                              vm_fault_t *fault_type)
1618 {
1619         struct address_space *mapping = inode->i_mapping;
1620         struct shmem_inode_info *info = SHMEM_I(inode);
1621         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622         struct mem_cgroup *memcg;
1623         struct page *page;
1624         swp_entry_t swap;
1625         int error;
1626
1627         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628         swap = radix_to_swp_entry(*pagep);
1629         *pagep = NULL;
1630
1631         /* Look it up and read it in.. */
1632         page = lookup_swap_cache(swap, NULL, 0);
1633         if (!page) {
1634                 /* Or update major stats only when swapin succeeds?? */
1635                 if (fault_type) {
1636                         *fault_type |= VM_FAULT_MAJOR;
1637                         count_vm_event(PGMAJFAULT);
1638                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1639                 }
1640                 /* Here we actually start the io */
1641                 page = shmem_swapin(swap, gfp, info, index);
1642                 if (!page) {
1643                         error = -ENOMEM;
1644                         goto failed;
1645                 }
1646         }
1647
1648         /* We have to do this with page locked to prevent races */
1649         lock_page(page);
1650         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651             !shmem_confirm_swap(mapping, index, swap)) {
1652                 error = -EEXIST;
1653                 goto unlock;
1654         }
1655         if (!PageUptodate(page)) {
1656                 error = -EIO;
1657                 goto failed;
1658         }
1659         wait_on_page_writeback(page);
1660
1661         if (shmem_should_replace_page(page, gfp)) {
1662                 error = shmem_replace_page(&page, gfp, info, index);
1663                 if (error)
1664                         goto failed;
1665         }
1666
1667         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1668                                             false);
1669         if (!error) {
1670                 error = shmem_add_to_page_cache(page, mapping, index,
1671                                                 swp_to_radix_entry(swap), gfp);
1672                 /*
1673                  * We already confirmed swap under page lock, and make
1674                  * no memory allocation here, so usually no possibility
1675                  * of error; but free_swap_and_cache() only trylocks a
1676                  * page, so it is just possible that the entry has been
1677                  * truncated or holepunched since swap was confirmed.
1678                  * shmem_undo_range() will have done some of the
1679                  * unaccounting, now delete_from_swap_cache() will do
1680                  * the rest.
1681                  */
1682                 if (error) {
1683                         mem_cgroup_cancel_charge(page, memcg, false);
1684                         delete_from_swap_cache(page);
1685                 }
1686         }
1687         if (error)
1688                 goto failed;
1689
1690         mem_cgroup_commit_charge(page, memcg, true, false);
1691
1692         spin_lock_irq(&info->lock);
1693         info->swapped--;
1694         shmem_recalc_inode(inode);
1695         spin_unlock_irq(&info->lock);
1696
1697         if (sgp == SGP_WRITE)
1698                 mark_page_accessed(page);
1699
1700         delete_from_swap_cache(page);
1701         set_page_dirty(page);
1702         swap_free(swap);
1703
1704         *pagep = page;
1705         return 0;
1706 failed:
1707         if (!shmem_confirm_swap(mapping, index, swap))
1708                 error = -EEXIST;
1709 unlock:
1710         if (page) {
1711                 unlock_page(page);
1712                 put_page(page);
1713         }
1714
1715         return error;
1716 }
1717
1718 /*
1719  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1720  *
1721  * If we allocate a new one we do not mark it dirty. That's up to the
1722  * vm. If we swap it in we mark it dirty since we also free the swap
1723  * entry since a page cannot live in both the swap and page cache.
1724  *
1725  * vmf and fault_type are only supplied by shmem_fault:
1726  * otherwise they are NULL.
1727  */
1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1729         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1730         struct vm_area_struct *vma, struct vm_fault *vmf,
1731                         vm_fault_t *fault_type)
1732 {
1733         struct address_space *mapping = inode->i_mapping;
1734         struct shmem_inode_info *info = SHMEM_I(inode);
1735         struct shmem_sb_info *sbinfo;
1736         struct mm_struct *charge_mm;
1737         struct mem_cgroup *memcg;
1738         struct page *page;
1739         enum sgp_type sgp_huge = sgp;
1740         pgoff_t hindex = index;
1741         int error;
1742         int once = 0;
1743         int alloced = 0;
1744
1745         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1746                 return -EFBIG;
1747         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1748                 sgp = SGP_CACHE;
1749 repeat:
1750         if (sgp <= SGP_CACHE &&
1751             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1752                 return -EINVAL;
1753         }
1754
1755         sbinfo = SHMEM_SB(inode->i_sb);
1756         charge_mm = vma ? vma->vm_mm : current->mm;
1757
1758         page = find_lock_entry(mapping, index);
1759         if (xa_is_value(page)) {
1760                 error = shmem_swapin_page(inode, index, &page,
1761                                           sgp, gfp, vma, fault_type);
1762                 if (error == -EEXIST)
1763                         goto repeat;
1764
1765                 *pagep = page;
1766                 return error;
1767         }
1768
1769         if (page && sgp == SGP_WRITE)
1770                 mark_page_accessed(page);
1771
1772         /* fallocated page? */
1773         if (page && !PageUptodate(page)) {
1774                 if (sgp != SGP_READ)
1775                         goto clear;
1776                 unlock_page(page);
1777                 put_page(page);
1778                 page = NULL;
1779         }
1780         if (page || sgp == SGP_READ) {
1781                 *pagep = page;
1782                 return 0;
1783         }
1784
1785         /*
1786          * Fast cache lookup did not find it:
1787          * bring it back from swap or allocate.
1788          */
1789
1790         if (vma && userfaultfd_missing(vma)) {
1791                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1792                 return 0;
1793         }
1794
1795         /* shmem_symlink() */
1796         if (mapping->a_ops != &shmem_aops)
1797                 goto alloc_nohuge;
1798         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1799                 goto alloc_nohuge;
1800         if (shmem_huge == SHMEM_HUGE_FORCE)
1801                 goto alloc_huge;
1802         switch (sbinfo->huge) {
1803         case SHMEM_HUGE_NEVER:
1804                 goto alloc_nohuge;
1805         case SHMEM_HUGE_WITHIN_SIZE: {
1806                 loff_t i_size;
1807                 pgoff_t off;
1808
1809                 off = round_up(index, HPAGE_PMD_NR);
1810                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1811                 if (i_size >= HPAGE_PMD_SIZE &&
1812                     i_size >> PAGE_SHIFT >= off)
1813                         goto alloc_huge;
1814
1815                 fallthrough;
1816         }
1817         case SHMEM_HUGE_ADVISE:
1818                 if (sgp_huge == SGP_HUGE)
1819                         goto alloc_huge;
1820                 /* TODO: implement fadvise() hints */
1821                 goto alloc_nohuge;
1822         }
1823
1824 alloc_huge:
1825         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1826         if (IS_ERR(page)) {
1827 alloc_nohuge:
1828                 page = shmem_alloc_and_acct_page(gfp, inode,
1829                                                  index, false);
1830         }
1831         if (IS_ERR(page)) {
1832                 int retry = 5;
1833
1834                 error = PTR_ERR(page);
1835                 page = NULL;
1836                 if (error != -ENOSPC)
1837                         goto unlock;
1838                 /*
1839                  * Try to reclaim some space by splitting a huge page
1840                  * beyond i_size on the filesystem.
1841                  */
1842                 while (retry--) {
1843                         int ret;
1844
1845                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1846                         if (ret == SHRINK_STOP)
1847                                 break;
1848                         if (ret)
1849                                 goto alloc_nohuge;
1850                 }
1851                 goto unlock;
1852         }
1853
1854         if (PageTransHuge(page))
1855                 hindex = round_down(index, HPAGE_PMD_NR);
1856         else
1857                 hindex = index;
1858
1859         if (sgp == SGP_WRITE)
1860                 __SetPageReferenced(page);
1861
1862         error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1863                                             PageTransHuge(page));
1864         if (error) {
1865                 if (PageTransHuge(page)) {
1866                         count_vm_event(THP_FILE_FALLBACK);
1867                         count_vm_event(THP_FILE_FALLBACK_CHARGE);
1868                 }
1869                 goto unacct;
1870         }
1871         error = shmem_add_to_page_cache(page, mapping, hindex,
1872                                         NULL, gfp & GFP_RECLAIM_MASK);
1873         if (error) {
1874                 mem_cgroup_cancel_charge(page, memcg,
1875                                          PageTransHuge(page));
1876                 goto unacct;
1877         }
1878         mem_cgroup_commit_charge(page, memcg, false,
1879                                  PageTransHuge(page));
1880         lru_cache_add_anon(page);
1881
1882         spin_lock_irq(&info->lock);
1883         info->alloced += compound_nr(page);
1884         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1885         shmem_recalc_inode(inode);
1886         spin_unlock_irq(&info->lock);
1887         alloced = true;
1888
1889         if (PageTransHuge(page) &&
1890             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1891                         hindex + HPAGE_PMD_NR - 1) {
1892                 /*
1893                  * Part of the huge page is beyond i_size: subject
1894                  * to shrink under memory pressure.
1895                  */
1896                 spin_lock(&sbinfo->shrinklist_lock);
1897                 /*
1898                  * _careful to defend against unlocked access to
1899                  * ->shrink_list in shmem_unused_huge_shrink()
1900                  */
1901                 if (list_empty_careful(&info->shrinklist)) {
1902                         list_add_tail(&info->shrinklist,
1903                                       &sbinfo->shrinklist);
1904                         sbinfo->shrinklist_len++;
1905                 }
1906                 spin_unlock(&sbinfo->shrinklist_lock);
1907         }
1908
1909         /*
1910          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1911          */
1912         if (sgp == SGP_FALLOC)
1913                 sgp = SGP_WRITE;
1914 clear:
1915         /*
1916          * Let SGP_WRITE caller clear ends if write does not fill page;
1917          * but SGP_FALLOC on a page fallocated earlier must initialize
1918          * it now, lest undo on failure cancel our earlier guarantee.
1919          */
1920         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1921                 struct page *head = compound_head(page);
1922                 int i;
1923
1924                 for (i = 0; i < compound_nr(head); i++) {
1925                         clear_highpage(head + i);
1926                         flush_dcache_page(head + i);
1927                 }
1928                 SetPageUptodate(head);
1929         }
1930
1931         /* Perhaps the file has been truncated since we checked */
1932         if (sgp <= SGP_CACHE &&
1933             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1934                 if (alloced) {
1935                         ClearPageDirty(page);
1936                         delete_from_page_cache(page);
1937                         spin_lock_irq(&info->lock);
1938                         shmem_recalc_inode(inode);
1939                         spin_unlock_irq(&info->lock);
1940                 }
1941                 error = -EINVAL;
1942                 goto unlock;
1943         }
1944         *pagep = page + index - hindex;
1945         return 0;
1946
1947         /*
1948          * Error recovery.
1949          */
1950 unacct:
1951         shmem_inode_unacct_blocks(inode, compound_nr(page));
1952
1953         if (PageTransHuge(page)) {
1954                 unlock_page(page);
1955                 put_page(page);
1956                 goto alloc_nohuge;
1957         }
1958 unlock:
1959         if (page) {
1960                 unlock_page(page);
1961                 put_page(page);
1962         }
1963         if (error == -ENOSPC && !once++) {
1964                 spin_lock_irq(&info->lock);
1965                 shmem_recalc_inode(inode);
1966                 spin_unlock_irq(&info->lock);
1967                 goto repeat;
1968         }
1969         if (error == -EEXIST)
1970                 goto repeat;
1971         return error;
1972 }
1973
1974 /*
1975  * This is like autoremove_wake_function, but it removes the wait queue
1976  * entry unconditionally - even if something else had already woken the
1977  * target.
1978  */
1979 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1980 {
1981         int ret = default_wake_function(wait, mode, sync, key);
1982         list_del_init(&wait->entry);
1983         return ret;
1984 }
1985
1986 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1987 {
1988         struct vm_area_struct *vma = vmf->vma;
1989         struct inode *inode = file_inode(vma->vm_file);
1990         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1991         enum sgp_type sgp;
1992         int err;
1993         vm_fault_t ret = VM_FAULT_LOCKED;
1994
1995         /*
1996          * Trinity finds that probing a hole which tmpfs is punching can
1997          * prevent the hole-punch from ever completing: which in turn
1998          * locks writers out with its hold on i_mutex.  So refrain from
1999          * faulting pages into the hole while it's being punched.  Although
2000          * shmem_undo_range() does remove the additions, it may be unable to
2001          * keep up, as each new page needs its own unmap_mapping_range() call,
2002          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2003          *
2004          * It does not matter if we sometimes reach this check just before the
2005          * hole-punch begins, so that one fault then races with the punch:
2006          * we just need to make racing faults a rare case.
2007          *
2008          * The implementation below would be much simpler if we just used a
2009          * standard mutex or completion: but we cannot take i_mutex in fault,
2010          * and bloating every shmem inode for this unlikely case would be sad.
2011          */
2012         if (unlikely(inode->i_private)) {
2013                 struct shmem_falloc *shmem_falloc;
2014
2015                 spin_lock(&inode->i_lock);
2016                 shmem_falloc = inode->i_private;
2017                 if (shmem_falloc &&
2018                     shmem_falloc->waitq &&
2019                     vmf->pgoff >= shmem_falloc->start &&
2020                     vmf->pgoff < shmem_falloc->next) {
2021                         struct file *fpin;
2022                         wait_queue_head_t *shmem_falloc_waitq;
2023                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2024
2025                         ret = VM_FAULT_NOPAGE;
2026                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2027                         if (fpin)
2028                                 ret = VM_FAULT_RETRY;
2029
2030                         shmem_falloc_waitq = shmem_falloc->waitq;
2031                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2032                                         TASK_UNINTERRUPTIBLE);
2033                         spin_unlock(&inode->i_lock);
2034                         schedule();
2035
2036                         /*
2037                          * shmem_falloc_waitq points into the shmem_fallocate()
2038                          * stack of the hole-punching task: shmem_falloc_waitq
2039                          * is usually invalid by the time we reach here, but
2040                          * finish_wait() does not dereference it in that case;
2041                          * though i_lock needed lest racing with wake_up_all().
2042                          */
2043                         spin_lock(&inode->i_lock);
2044                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2045                         spin_unlock(&inode->i_lock);
2046
2047                         if (fpin)
2048                                 fput(fpin);
2049                         return ret;
2050                 }
2051                 spin_unlock(&inode->i_lock);
2052         }
2053
2054         sgp = SGP_CACHE;
2055
2056         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2057             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2058                 sgp = SGP_NOHUGE;
2059         else if (vma->vm_flags & VM_HUGEPAGE)
2060                 sgp = SGP_HUGE;
2061
2062         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2063                                   gfp, vma, vmf, &ret);
2064         if (err)
2065                 return vmf_error(err);
2066         return ret;
2067 }
2068
2069 unsigned long shmem_get_unmapped_area(struct file *file,
2070                                       unsigned long uaddr, unsigned long len,
2071                                       unsigned long pgoff, unsigned long flags)
2072 {
2073         unsigned long (*get_area)(struct file *,
2074                 unsigned long, unsigned long, unsigned long, unsigned long);
2075         unsigned long addr;
2076         unsigned long offset;
2077         unsigned long inflated_len;
2078         unsigned long inflated_addr;
2079         unsigned long inflated_offset;
2080
2081         if (len > TASK_SIZE)
2082                 return -ENOMEM;
2083
2084         get_area = current->mm->get_unmapped_area;
2085         addr = get_area(file, uaddr, len, pgoff, flags);
2086
2087         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2088                 return addr;
2089         if (IS_ERR_VALUE(addr))
2090                 return addr;
2091         if (addr & ~PAGE_MASK)
2092                 return addr;
2093         if (addr > TASK_SIZE - len)
2094                 return addr;
2095
2096         if (shmem_huge == SHMEM_HUGE_DENY)
2097                 return addr;
2098         if (len < HPAGE_PMD_SIZE)
2099                 return addr;
2100         if (flags & MAP_FIXED)
2101                 return addr;
2102         /*
2103          * Our priority is to support MAP_SHARED mapped hugely;
2104          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2105          * But if caller specified an address hint and we allocated area there
2106          * successfully, respect that as before.
2107          */
2108         if (uaddr == addr)
2109                 return addr;
2110
2111         if (shmem_huge != SHMEM_HUGE_FORCE) {
2112                 struct super_block *sb;
2113
2114                 if (file) {
2115                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2116                         sb = file_inode(file)->i_sb;
2117                 } else {
2118                         /*
2119                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2120                          * for "/dev/zero", to create a shared anonymous object.
2121                          */
2122                         if (IS_ERR(shm_mnt))
2123                                 return addr;
2124                         sb = shm_mnt->mnt_sb;
2125                 }
2126                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2127                         return addr;
2128         }
2129
2130         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2131         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2132                 return addr;
2133         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2134                 return addr;
2135
2136         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2137         if (inflated_len > TASK_SIZE)
2138                 return addr;
2139         if (inflated_len < len)
2140                 return addr;
2141
2142         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2143         if (IS_ERR_VALUE(inflated_addr))
2144                 return addr;
2145         if (inflated_addr & ~PAGE_MASK)
2146                 return addr;
2147
2148         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2149         inflated_addr += offset - inflated_offset;
2150         if (inflated_offset > offset)
2151                 inflated_addr += HPAGE_PMD_SIZE;
2152
2153         if (inflated_addr > TASK_SIZE - len)
2154                 return addr;
2155         return inflated_addr;
2156 }
2157
2158 #ifdef CONFIG_NUMA
2159 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2160 {
2161         struct inode *inode = file_inode(vma->vm_file);
2162         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2163 }
2164
2165 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2166                                           unsigned long addr)
2167 {
2168         struct inode *inode = file_inode(vma->vm_file);
2169         pgoff_t index;
2170
2171         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2172         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2173 }
2174 #endif
2175
2176 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2177 {
2178         struct inode *inode = file_inode(file);
2179         struct shmem_inode_info *info = SHMEM_I(inode);
2180         int retval = -ENOMEM;
2181
2182         spin_lock_irq(&info->lock);
2183         if (lock && !(info->flags & VM_LOCKED)) {
2184                 if (!user_shm_lock(inode->i_size, user))
2185                         goto out_nomem;
2186                 info->flags |= VM_LOCKED;
2187                 mapping_set_unevictable(file->f_mapping);
2188         }
2189         if (!lock && (info->flags & VM_LOCKED) && user) {
2190                 user_shm_unlock(inode->i_size, user);
2191                 info->flags &= ~VM_LOCKED;
2192                 mapping_clear_unevictable(file->f_mapping);
2193         }
2194         retval = 0;
2195
2196 out_nomem:
2197         spin_unlock_irq(&info->lock);
2198         return retval;
2199 }
2200
2201 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2202 {
2203         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2204
2205         if (info->seals & F_SEAL_FUTURE_WRITE) {
2206                 /*
2207                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2208                  * "future write" seal active.
2209                  */
2210                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2211                         return -EPERM;
2212
2213                 /*
2214                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2215                  * MAP_SHARED and read-only, take care to not allow mprotect to
2216                  * revert protections on such mappings. Do this only for shared
2217                  * mappings. For private mappings, don't need to mask
2218                  * VM_MAYWRITE as we still want them to be COW-writable.
2219                  */
2220                 if (vma->vm_flags & VM_SHARED)
2221                         vma->vm_flags &= ~(VM_MAYWRITE);
2222         }
2223
2224         file_accessed(file);
2225         vma->vm_ops = &shmem_vm_ops;
2226         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2227                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2228                         (vma->vm_end & HPAGE_PMD_MASK)) {
2229                 khugepaged_enter(vma, vma->vm_flags);
2230         }
2231         return 0;
2232 }
2233
2234 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2235                                      umode_t mode, dev_t dev, unsigned long flags)
2236 {
2237         struct inode *inode;
2238         struct shmem_inode_info *info;
2239         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240
2241         if (shmem_reserve_inode(sb))
2242                 return NULL;
2243
2244         inode = new_inode(sb);
2245         if (inode) {
2246                 inode->i_ino = get_next_ino();
2247                 inode_init_owner(inode, dir, mode);
2248                 inode->i_blocks = 0;
2249                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2250                 inode->i_generation = prandom_u32();
2251                 info = SHMEM_I(inode);
2252                 memset(info, 0, (char *)inode - (char *)info);
2253                 spin_lock_init(&info->lock);
2254                 atomic_set(&info->stop_eviction, 0);
2255                 info->seals = F_SEAL_SEAL;
2256                 info->flags = flags & VM_NORESERVE;
2257                 INIT_LIST_HEAD(&info->shrinklist);
2258                 INIT_LIST_HEAD(&info->swaplist);
2259                 simple_xattrs_init(&info->xattrs);
2260                 cache_no_acl(inode);
2261
2262                 switch (mode & S_IFMT) {
2263                 default:
2264                         inode->i_op = &shmem_special_inode_operations;
2265                         init_special_inode(inode, mode, dev);
2266                         break;
2267                 case S_IFREG:
2268                         inode->i_mapping->a_ops = &shmem_aops;
2269                         inode->i_op = &shmem_inode_operations;
2270                         inode->i_fop = &shmem_file_operations;
2271                         mpol_shared_policy_init(&info->policy,
2272                                                  shmem_get_sbmpol(sbinfo));
2273                         break;
2274                 case S_IFDIR:
2275                         inc_nlink(inode);
2276                         /* Some things misbehave if size == 0 on a directory */
2277                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2278                         inode->i_op = &shmem_dir_inode_operations;
2279                         inode->i_fop = &simple_dir_operations;
2280                         break;
2281                 case S_IFLNK:
2282                         /*
2283                          * Must not load anything in the rbtree,
2284                          * mpol_free_shared_policy will not be called.
2285                          */
2286                         mpol_shared_policy_init(&info->policy, NULL);
2287                         break;
2288                 }
2289
2290                 lockdep_annotate_inode_mutex_key(inode);
2291         } else
2292                 shmem_free_inode(sb);
2293         return inode;
2294 }
2295
2296 bool shmem_mapping(struct address_space *mapping)
2297 {
2298         return mapping->a_ops == &shmem_aops;
2299 }
2300
2301 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2302                                   pmd_t *dst_pmd,
2303                                   struct vm_area_struct *dst_vma,
2304                                   unsigned long dst_addr,
2305                                   unsigned long src_addr,
2306                                   bool zeropage,
2307                                   struct page **pagep)
2308 {
2309         struct inode *inode = file_inode(dst_vma->vm_file);
2310         struct shmem_inode_info *info = SHMEM_I(inode);
2311         struct address_space *mapping = inode->i_mapping;
2312         gfp_t gfp = mapping_gfp_mask(mapping);
2313         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2314         struct mem_cgroup *memcg;
2315         spinlock_t *ptl;
2316         void *page_kaddr;
2317         struct page *page;
2318         pte_t _dst_pte, *dst_pte;
2319         int ret;
2320         pgoff_t offset, max_off;
2321
2322         ret = -ENOMEM;
2323         if (!shmem_inode_acct_block(inode, 1))
2324                 goto out;
2325
2326         if (!*pagep) {
2327                 page = shmem_alloc_page(gfp, info, pgoff);
2328                 if (!page)
2329                         goto out_unacct_blocks;
2330
2331                 if (!zeropage) {        /* mcopy_atomic */
2332                         page_kaddr = kmap_atomic(page);
2333                         ret = copy_from_user(page_kaddr,
2334                                              (const void __user *)src_addr,
2335                                              PAGE_SIZE);
2336                         kunmap_atomic(page_kaddr);
2337
2338                         /* fallback to copy_from_user outside mmap_sem */
2339                         if (unlikely(ret)) {
2340                                 *pagep = page;
2341                                 shmem_inode_unacct_blocks(inode, 1);
2342                                 /* don't free the page */
2343                                 return -ENOENT;
2344                         }
2345                 } else {                /* mfill_zeropage_atomic */
2346                         clear_highpage(page);
2347                 }
2348         } else {
2349                 page = *pagep;
2350                 *pagep = NULL;
2351         }
2352
2353         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2354         __SetPageLocked(page);
2355         __SetPageSwapBacked(page);
2356         __SetPageUptodate(page);
2357
2358         ret = -EFAULT;
2359         offset = linear_page_index(dst_vma, dst_addr);
2360         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2361         if (unlikely(offset >= max_off))
2362                 goto out_release;
2363
2364         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2365         if (ret)
2366                 goto out_release;
2367
2368         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2369                                                 gfp & GFP_RECLAIM_MASK);
2370         if (ret)
2371                 goto out_release_uncharge;
2372
2373         mem_cgroup_commit_charge(page, memcg, false, false);
2374
2375         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2376         if (dst_vma->vm_flags & VM_WRITE)
2377                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2378         else {
2379                 /*
2380                  * We don't set the pte dirty if the vma has no
2381                  * VM_WRITE permission, so mark the page dirty or it
2382                  * could be freed from under us. We could do it
2383                  * unconditionally before unlock_page(), but doing it
2384                  * only if VM_WRITE is not set is faster.
2385                  */
2386                 set_page_dirty(page);
2387         }
2388
2389         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2390
2391         ret = -EFAULT;
2392         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2393         if (unlikely(offset >= max_off))
2394                 goto out_release_uncharge_unlock;
2395
2396         ret = -EEXIST;
2397         if (!pte_none(*dst_pte))
2398                 goto out_release_uncharge_unlock;
2399
2400         lru_cache_add_anon(page);
2401
2402         spin_lock(&info->lock);
2403         info->alloced++;
2404         inode->i_blocks += BLOCKS_PER_PAGE;
2405         shmem_recalc_inode(inode);
2406         spin_unlock(&info->lock);
2407
2408         inc_mm_counter(dst_mm, mm_counter_file(page));
2409         page_add_file_rmap(page, false);
2410         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2411
2412         /* No need to invalidate - it was non-present before */
2413         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2414         pte_unmap_unlock(dst_pte, ptl);
2415         unlock_page(page);
2416         ret = 0;
2417 out:
2418         return ret;
2419 out_release_uncharge_unlock:
2420         pte_unmap_unlock(dst_pte, ptl);
2421         ClearPageDirty(page);
2422         delete_from_page_cache(page);
2423 out_release_uncharge:
2424         mem_cgroup_cancel_charge(page, memcg, false);
2425 out_release:
2426         unlock_page(page);
2427         put_page(page);
2428 out_unacct_blocks:
2429         shmem_inode_unacct_blocks(inode, 1);
2430         goto out;
2431 }
2432
2433 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2434                            pmd_t *dst_pmd,
2435                            struct vm_area_struct *dst_vma,
2436                            unsigned long dst_addr,
2437                            unsigned long src_addr,
2438                            struct page **pagep)
2439 {
2440         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2441                                       dst_addr, src_addr, false, pagep);
2442 }
2443
2444 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2445                              pmd_t *dst_pmd,
2446                              struct vm_area_struct *dst_vma,
2447                              unsigned long dst_addr)
2448 {
2449         struct page *page = NULL;
2450
2451         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2452                                       dst_addr, 0, true, &page);
2453 }
2454
2455 #ifdef CONFIG_TMPFS
2456 static const struct inode_operations shmem_symlink_inode_operations;
2457 static const struct inode_operations shmem_short_symlink_operations;
2458
2459 #ifdef CONFIG_TMPFS_XATTR
2460 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2461 #else
2462 #define shmem_initxattrs NULL
2463 #endif
2464
2465 static int
2466 shmem_write_begin(struct file *file, struct address_space *mapping,
2467                         loff_t pos, unsigned len, unsigned flags,
2468                         struct page **pagep, void **fsdata)
2469 {
2470         struct inode *inode = mapping->host;
2471         struct shmem_inode_info *info = SHMEM_I(inode);
2472         pgoff_t index = pos >> PAGE_SHIFT;
2473
2474         /* i_mutex is held by caller */
2475         if (unlikely(info->seals & (F_SEAL_GROW |
2476                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2477                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2478                         return -EPERM;
2479                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2480                         return -EPERM;
2481         }
2482
2483         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2484 }
2485
2486 static int
2487 shmem_write_end(struct file *file, struct address_space *mapping,
2488                         loff_t pos, unsigned len, unsigned copied,
2489                         struct page *page, void *fsdata)
2490 {
2491         struct inode *inode = mapping->host;
2492
2493         if (pos + copied > inode->i_size)
2494                 i_size_write(inode, pos + copied);
2495
2496         if (!PageUptodate(page)) {
2497                 struct page *head = compound_head(page);
2498                 if (PageTransCompound(page)) {
2499                         int i;
2500
2501                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2502                                 if (head + i == page)
2503                                         continue;
2504                                 clear_highpage(head + i);
2505                                 flush_dcache_page(head + i);
2506                         }
2507                 }
2508                 if (copied < PAGE_SIZE) {
2509                         unsigned from = pos & (PAGE_SIZE - 1);
2510                         zero_user_segments(page, 0, from,
2511                                         from + copied, PAGE_SIZE);
2512                 }
2513                 SetPageUptodate(head);
2514         }
2515         set_page_dirty(page);
2516         unlock_page(page);
2517         put_page(page);
2518
2519         return copied;
2520 }
2521
2522 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2523 {
2524         struct file *file = iocb->ki_filp;
2525         struct inode *inode = file_inode(file);
2526         struct address_space *mapping = inode->i_mapping;
2527         pgoff_t index;
2528         unsigned long offset;
2529         enum sgp_type sgp = SGP_READ;
2530         int error = 0;
2531         ssize_t retval = 0;
2532         loff_t *ppos = &iocb->ki_pos;
2533
2534         /*
2535          * Might this read be for a stacking filesystem?  Then when reading
2536          * holes of a sparse file, we actually need to allocate those pages,
2537          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538          */
2539         if (!iter_is_iovec(to))
2540                 sgp = SGP_CACHE;
2541
2542         index = *ppos >> PAGE_SHIFT;
2543         offset = *ppos & ~PAGE_MASK;
2544
2545         for (;;) {
2546                 struct page *page = NULL;
2547                 pgoff_t end_index;
2548                 unsigned long nr, ret;
2549                 loff_t i_size = i_size_read(inode);
2550
2551                 end_index = i_size >> PAGE_SHIFT;
2552                 if (index > end_index)
2553                         break;
2554                 if (index == end_index) {
2555                         nr = i_size & ~PAGE_MASK;
2556                         if (nr <= offset)
2557                                 break;
2558                 }
2559
2560                 error = shmem_getpage(inode, index, &page, sgp);
2561                 if (error) {
2562                         if (error == -EINVAL)
2563                                 error = 0;
2564                         break;
2565                 }
2566                 if (page) {
2567                         if (sgp == SGP_CACHE)
2568                                 set_page_dirty(page);
2569                         unlock_page(page);
2570                 }
2571
2572                 /*
2573                  * We must evaluate after, since reads (unlike writes)
2574                  * are called without i_mutex protection against truncate
2575                  */
2576                 nr = PAGE_SIZE;
2577                 i_size = i_size_read(inode);
2578                 end_index = i_size >> PAGE_SHIFT;
2579                 if (index == end_index) {
2580                         nr = i_size & ~PAGE_MASK;
2581                         if (nr <= offset) {
2582                                 if (page)
2583                                         put_page(page);
2584                                 break;
2585                         }
2586                 }
2587                 nr -= offset;
2588
2589                 if (page) {
2590                         /*
2591                          * If users can be writing to this page using arbitrary
2592                          * virtual addresses, take care about potential aliasing
2593                          * before reading the page on the kernel side.
2594                          */
2595                         if (mapping_writably_mapped(mapping))
2596                                 flush_dcache_page(page);
2597                         /*
2598                          * Mark the page accessed if we read the beginning.
2599                          */
2600                         if (!offset)
2601                                 mark_page_accessed(page);
2602                 } else {
2603                         page = ZERO_PAGE(0);
2604                         get_page(page);
2605                 }
2606
2607                 /*
2608                  * Ok, we have the page, and it's up-to-date, so
2609                  * now we can copy it to user space...
2610                  */
2611                 ret = copy_page_to_iter(page, offset, nr, to);
2612                 retval += ret;
2613                 offset += ret;
2614                 index += offset >> PAGE_SHIFT;
2615                 offset &= ~PAGE_MASK;
2616
2617                 put_page(page);
2618                 if (!iov_iter_count(to))
2619                         break;
2620                 if (ret < nr) {
2621                         error = -EFAULT;
2622                         break;
2623                 }
2624                 cond_resched();
2625         }
2626
2627         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2628         file_accessed(file);
2629         return retval ? retval : error;
2630 }
2631
2632 /*
2633  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2634  */
2635 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2636                                     pgoff_t index, pgoff_t end, int whence)
2637 {
2638         struct page *page;
2639         struct pagevec pvec;
2640         pgoff_t indices[PAGEVEC_SIZE];
2641         bool done = false;
2642         int i;
2643
2644         pagevec_init(&pvec);
2645         pvec.nr = 1;            /* start small: we may be there already */
2646         while (!done) {
2647                 pvec.nr = find_get_entries(mapping, index,
2648                                         pvec.nr, pvec.pages, indices);
2649                 if (!pvec.nr) {
2650                         if (whence == SEEK_DATA)
2651                                 index = end;
2652                         break;
2653                 }
2654                 for (i = 0; i < pvec.nr; i++, index++) {
2655                         if (index < indices[i]) {
2656                                 if (whence == SEEK_HOLE) {
2657                                         done = true;
2658                                         break;
2659                                 }
2660                                 index = indices[i];
2661                         }
2662                         page = pvec.pages[i];
2663                         if (page && !xa_is_value(page)) {
2664                                 if (!PageUptodate(page))
2665                                         page = NULL;
2666                         }
2667                         if (index >= end ||
2668                             (page && whence == SEEK_DATA) ||
2669                             (!page && whence == SEEK_HOLE)) {
2670                                 done = true;
2671                                 break;
2672                         }
2673                 }
2674                 pagevec_remove_exceptionals(&pvec);
2675                 pagevec_release(&pvec);
2676                 pvec.nr = PAGEVEC_SIZE;
2677                 cond_resched();
2678         }
2679         return index;
2680 }
2681
2682 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2683 {
2684         struct address_space *mapping = file->f_mapping;
2685         struct inode *inode = mapping->host;
2686         pgoff_t start, end;
2687         loff_t new_offset;
2688
2689         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2690                 return generic_file_llseek_size(file, offset, whence,
2691                                         MAX_LFS_FILESIZE, i_size_read(inode));
2692         inode_lock(inode);
2693         /* We're holding i_mutex so we can access i_size directly */
2694
2695         if (offset < 0 || offset >= inode->i_size)
2696                 offset = -ENXIO;
2697         else {
2698                 start = offset >> PAGE_SHIFT;
2699                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2700                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2701                 new_offset <<= PAGE_SHIFT;
2702                 if (new_offset > offset) {
2703                         if (new_offset < inode->i_size)
2704                                 offset = new_offset;
2705                         else if (whence == SEEK_DATA)
2706                                 offset = -ENXIO;
2707                         else
2708                                 offset = inode->i_size;
2709                 }
2710         }
2711
2712         if (offset >= 0)
2713                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2714         inode_unlock(inode);
2715         return offset;
2716 }
2717
2718 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2719                                                          loff_t len)
2720 {
2721         struct inode *inode = file_inode(file);
2722         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2723         struct shmem_inode_info *info = SHMEM_I(inode);
2724         struct shmem_falloc shmem_falloc;
2725         pgoff_t start, index, end;
2726         int error;
2727
2728         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2729                 return -EOPNOTSUPP;
2730
2731         inode_lock(inode);
2732
2733         if (mode & FALLOC_FL_PUNCH_HOLE) {
2734                 struct address_space *mapping = file->f_mapping;
2735                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2736                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2737                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2738
2739                 /* protected by i_mutex */
2740                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2741                         error = -EPERM;
2742                         goto out;
2743                 }
2744
2745                 shmem_falloc.waitq = &shmem_falloc_waitq;
2746                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2747                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2748                 spin_lock(&inode->i_lock);
2749                 inode->i_private = &shmem_falloc;
2750                 spin_unlock(&inode->i_lock);
2751
2752                 if ((u64)unmap_end > (u64)unmap_start)
2753                         unmap_mapping_range(mapping, unmap_start,
2754                                             1 + unmap_end - unmap_start, 0);
2755                 shmem_truncate_range(inode, offset, offset + len - 1);
2756                 /* No need to unmap again: hole-punching leaves COWed pages */
2757
2758                 spin_lock(&inode->i_lock);
2759                 inode->i_private = NULL;
2760                 wake_up_all(&shmem_falloc_waitq);
2761                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2762                 spin_unlock(&inode->i_lock);
2763                 error = 0;
2764                 goto out;
2765         }
2766
2767         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2768         error = inode_newsize_ok(inode, offset + len);
2769         if (error)
2770                 goto out;
2771
2772         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2773                 error = -EPERM;
2774                 goto out;
2775         }
2776
2777         start = offset >> PAGE_SHIFT;
2778         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2779         /* Try to avoid a swapstorm if len is impossible to satisfy */
2780         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2781                 error = -ENOSPC;
2782                 goto out;
2783         }
2784
2785         shmem_falloc.waitq = NULL;
2786         shmem_falloc.start = start;
2787         shmem_falloc.next  = start;
2788         shmem_falloc.nr_falloced = 0;
2789         shmem_falloc.nr_unswapped = 0;
2790         spin_lock(&inode->i_lock);
2791         inode->i_private = &shmem_falloc;
2792         spin_unlock(&inode->i_lock);
2793
2794         for (index = start; index < end; index++) {
2795                 struct page *page;
2796
2797                 /*
2798                  * Good, the fallocate(2) manpage permits EINTR: we may have
2799                  * been interrupted because we are using up too much memory.
2800                  */
2801                 if (signal_pending(current))
2802                         error = -EINTR;
2803                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2804                         error = -ENOMEM;
2805                 else
2806                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2807                 if (error) {
2808                         /* Remove the !PageUptodate pages we added */
2809                         if (index > start) {
2810                                 shmem_undo_range(inode,
2811                                     (loff_t)start << PAGE_SHIFT,
2812                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2813                         }
2814                         goto undone;
2815                 }
2816
2817                 /*
2818                  * Inform shmem_writepage() how far we have reached.
2819                  * No need for lock or barrier: we have the page lock.
2820                  */
2821                 shmem_falloc.next++;
2822                 if (!PageUptodate(page))
2823                         shmem_falloc.nr_falloced++;
2824
2825                 /*
2826                  * If !PageUptodate, leave it that way so that freeable pages
2827                  * can be recognized if we need to rollback on error later.
2828                  * But set_page_dirty so that memory pressure will swap rather
2829                  * than free the pages we are allocating (and SGP_CACHE pages
2830                  * might still be clean: we now need to mark those dirty too).
2831                  */
2832                 set_page_dirty(page);
2833                 unlock_page(page);
2834                 put_page(page);
2835                 cond_resched();
2836         }
2837
2838         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2839                 i_size_write(inode, offset + len);
2840         inode->i_ctime = current_time(inode);
2841 undone:
2842         spin_lock(&inode->i_lock);
2843         inode->i_private = NULL;
2844         spin_unlock(&inode->i_lock);
2845 out:
2846         inode_unlock(inode);
2847         return error;
2848 }
2849
2850 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2851 {
2852         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2853
2854         buf->f_type = TMPFS_MAGIC;
2855         buf->f_bsize = PAGE_SIZE;
2856         buf->f_namelen = NAME_MAX;
2857         if (sbinfo->max_blocks) {
2858                 buf->f_blocks = sbinfo->max_blocks;
2859                 buf->f_bavail =
2860                 buf->f_bfree  = sbinfo->max_blocks -
2861                                 percpu_counter_sum(&sbinfo->used_blocks);
2862         }
2863         if (sbinfo->max_inodes) {
2864                 buf->f_files = sbinfo->max_inodes;
2865                 buf->f_ffree = sbinfo->free_inodes;
2866         }
2867         /* else leave those fields 0 like simple_statfs */
2868         return 0;
2869 }
2870
2871 /*
2872  * File creation. Allocate an inode, and we're done..
2873  */
2874 static int
2875 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2876 {
2877         struct inode *inode;
2878         int error = -ENOSPC;
2879
2880         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2881         if (inode) {
2882                 error = simple_acl_create(dir, inode);
2883                 if (error)
2884                         goto out_iput;
2885                 error = security_inode_init_security(inode, dir,
2886                                                      &dentry->d_name,
2887                                                      shmem_initxattrs, NULL);
2888                 if (error && error != -EOPNOTSUPP)
2889                         goto out_iput;
2890
2891                 error = 0;
2892                 dir->i_size += BOGO_DIRENT_SIZE;
2893                 dir->i_ctime = dir->i_mtime = current_time(dir);
2894                 d_instantiate(dentry, inode);
2895                 dget(dentry); /* Extra count - pin the dentry in core */
2896         }
2897         return error;
2898 out_iput:
2899         iput(inode);
2900         return error;
2901 }
2902
2903 static int
2904 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 {
2906         struct inode *inode;
2907         int error = -ENOSPC;
2908
2909         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2910         if (inode) {
2911                 error = security_inode_init_security(inode, dir,
2912                                                      NULL,
2913                                                      shmem_initxattrs, NULL);
2914                 if (error && error != -EOPNOTSUPP)
2915                         goto out_iput;
2916                 error = simple_acl_create(dir, inode);
2917                 if (error)
2918                         goto out_iput;
2919                 d_tmpfile(dentry, inode);
2920         }
2921         return error;
2922 out_iput:
2923         iput(inode);
2924         return error;
2925 }
2926
2927 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2928 {
2929         int error;
2930
2931         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2932                 return error;
2933         inc_nlink(dir);
2934         return 0;
2935 }
2936
2937 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2938                 bool excl)
2939 {
2940         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2941 }
2942
2943 /*
2944  * Link a file..
2945  */
2946 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2947 {
2948         struct inode *inode = d_inode(old_dentry);
2949         int ret = 0;
2950
2951         /*
2952          * No ordinary (disk based) filesystem counts links as inodes;
2953          * but each new link needs a new dentry, pinning lowmem, and
2954          * tmpfs dentries cannot be pruned until they are unlinked.
2955          * But if an O_TMPFILE file is linked into the tmpfs, the
2956          * first link must skip that, to get the accounting right.
2957          */
2958         if (inode->i_nlink) {
2959                 ret = shmem_reserve_inode(inode->i_sb);
2960                 if (ret)
2961                         goto out;
2962         }
2963
2964         dir->i_size += BOGO_DIRENT_SIZE;
2965         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2966         inc_nlink(inode);
2967         ihold(inode);   /* New dentry reference */
2968         dget(dentry);           /* Extra pinning count for the created dentry */
2969         d_instantiate(dentry, inode);
2970 out:
2971         return ret;
2972 }
2973
2974 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2975 {
2976         struct inode *inode = d_inode(dentry);
2977
2978         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2979                 shmem_free_inode(inode->i_sb);
2980
2981         dir->i_size -= BOGO_DIRENT_SIZE;
2982         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2983         drop_nlink(inode);
2984         dput(dentry);   /* Undo the count from "create" - this does all the work */
2985         return 0;
2986 }
2987
2988 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2989 {
2990         if (!simple_empty(dentry))
2991                 return -ENOTEMPTY;
2992
2993         drop_nlink(d_inode(dentry));
2994         drop_nlink(dir);
2995         return shmem_unlink(dir, dentry);
2996 }
2997
2998 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2999 {
3000         bool old_is_dir = d_is_dir(old_dentry);
3001         bool new_is_dir = d_is_dir(new_dentry);
3002
3003         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3004                 if (old_is_dir) {
3005                         drop_nlink(old_dir);
3006                         inc_nlink(new_dir);
3007                 } else {
3008                         drop_nlink(new_dir);
3009                         inc_nlink(old_dir);
3010                 }
3011         }
3012         old_dir->i_ctime = old_dir->i_mtime =
3013         new_dir->i_ctime = new_dir->i_mtime =
3014         d_inode(old_dentry)->i_ctime =
3015         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3016
3017         return 0;
3018 }
3019
3020 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3021 {
3022         struct dentry *whiteout;
3023         int error;
3024
3025         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3026         if (!whiteout)
3027                 return -ENOMEM;
3028
3029         error = shmem_mknod(old_dir, whiteout,
3030                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3031         dput(whiteout);
3032         if (error)
3033                 return error;
3034
3035         /*
3036          * Cheat and hash the whiteout while the old dentry is still in
3037          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3038          *
3039          * d_lookup() will consistently find one of them at this point,
3040          * not sure which one, but that isn't even important.
3041          */
3042         d_rehash(whiteout);
3043         return 0;
3044 }
3045
3046 /*
3047  * The VFS layer already does all the dentry stuff for rename,
3048  * we just have to decrement the usage count for the target if
3049  * it exists so that the VFS layer correctly free's it when it
3050  * gets overwritten.
3051  */
3052 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3053 {
3054         struct inode *inode = d_inode(old_dentry);
3055         int they_are_dirs = S_ISDIR(inode->i_mode);
3056
3057         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3058                 return -EINVAL;
3059
3060         if (flags & RENAME_EXCHANGE)
3061                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062
3063         if (!simple_empty(new_dentry))
3064                 return -ENOTEMPTY;
3065
3066         if (flags & RENAME_WHITEOUT) {
3067                 int error;
3068
3069                 error = shmem_whiteout(old_dir, old_dentry);
3070                 if (error)
3071                         return error;
3072         }
3073
3074         if (d_really_is_positive(new_dentry)) {
3075                 (void) shmem_unlink(new_dir, new_dentry);
3076                 if (they_are_dirs) {
3077                         drop_nlink(d_inode(new_dentry));
3078                         drop_nlink(old_dir);
3079                 }
3080         } else if (they_are_dirs) {
3081                 drop_nlink(old_dir);
3082                 inc_nlink(new_dir);
3083         }
3084
3085         old_dir->i_size -= BOGO_DIRENT_SIZE;
3086         new_dir->i_size += BOGO_DIRENT_SIZE;
3087         old_dir->i_ctime = old_dir->i_mtime =
3088         new_dir->i_ctime = new_dir->i_mtime =
3089         inode->i_ctime = current_time(old_dir);
3090         return 0;
3091 }
3092
3093 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3094 {
3095         int error;
3096         int len;
3097         struct inode *inode;
3098         struct page *page;
3099
3100         len = strlen(symname) + 1;
3101         if (len > PAGE_SIZE)
3102                 return -ENAMETOOLONG;
3103
3104         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3105                                 VM_NORESERVE);
3106         if (!inode)
3107                 return -ENOSPC;
3108
3109         error = security_inode_init_security(inode, dir, &dentry->d_name,
3110                                              shmem_initxattrs, NULL);
3111         if (error && error != -EOPNOTSUPP) {
3112                 iput(inode);
3113                 return error;
3114         }
3115
3116         inode->i_size = len-1;
3117         if (len <= SHORT_SYMLINK_LEN) {
3118                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3119                 if (!inode->i_link) {
3120                         iput(inode);
3121                         return -ENOMEM;
3122                 }
3123                 inode->i_op = &shmem_short_symlink_operations;
3124         } else {
3125                 inode_nohighmem(inode);
3126                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3127                 if (error) {
3128                         iput(inode);
3129                         return error;
3130                 }
3131                 inode->i_mapping->a_ops = &shmem_aops;
3132                 inode->i_op = &shmem_symlink_inode_operations;
3133                 memcpy(page_address(page), symname, len);
3134                 SetPageUptodate(page);
3135                 set_page_dirty(page);
3136                 unlock_page(page);
3137                 put_page(page);
3138         }
3139         dir->i_size += BOGO_DIRENT_SIZE;
3140         dir->i_ctime = dir->i_mtime = current_time(dir);
3141         d_instantiate(dentry, inode);
3142         dget(dentry);
3143         return 0;
3144 }
3145
3146 static void shmem_put_link(void *arg)
3147 {
3148         mark_page_accessed(arg);
3149         put_page(arg);
3150 }
3151
3152 static const char *shmem_get_link(struct dentry *dentry,
3153                                   struct inode *inode,
3154                                   struct delayed_call *done)
3155 {
3156         struct page *page = NULL;
3157         int error;
3158         if (!dentry) {
3159                 page = find_get_page(inode->i_mapping, 0);
3160                 if (!page)
3161                         return ERR_PTR(-ECHILD);
3162                 if (!PageUptodate(page)) {
3163                         put_page(page);
3164                         return ERR_PTR(-ECHILD);
3165                 }
3166         } else {
3167                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3168                 if (error)
3169                         return ERR_PTR(error);
3170                 unlock_page(page);
3171         }
3172         set_delayed_call(done, shmem_put_link, page);
3173         return page_address(page);
3174 }
3175
3176 #ifdef CONFIG_TMPFS_XATTR
3177 /*
3178  * Superblocks without xattr inode operations may get some security.* xattr
3179  * support from the LSM "for free". As soon as we have any other xattrs
3180  * like ACLs, we also need to implement the security.* handlers at
3181  * filesystem level, though.
3182  */
3183
3184 /*
3185  * Callback for security_inode_init_security() for acquiring xattrs.
3186  */
3187 static int shmem_initxattrs(struct inode *inode,
3188                             const struct xattr *xattr_array,
3189                             void *fs_info)
3190 {
3191         struct shmem_inode_info *info = SHMEM_I(inode);
3192         const struct xattr *xattr;
3193         struct simple_xattr *new_xattr;
3194         size_t len;
3195
3196         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3197                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3198                 if (!new_xattr)
3199                         return -ENOMEM;
3200
3201                 len = strlen(xattr->name) + 1;
3202                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3203                                           GFP_KERNEL);
3204                 if (!new_xattr->name) {
3205                         kfree(new_xattr);
3206                         return -ENOMEM;
3207                 }
3208
3209                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3210                        XATTR_SECURITY_PREFIX_LEN);
3211                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3212                        xattr->name, len);
3213
3214                 simple_xattr_list_add(&info->xattrs, new_xattr);
3215         }
3216
3217         return 0;
3218 }
3219
3220 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3221                                    struct dentry *unused, struct inode *inode,
3222                                    const char *name, void *buffer, size_t size)
3223 {
3224         struct shmem_inode_info *info = SHMEM_I(inode);
3225
3226         name = xattr_full_name(handler, name);
3227         return simple_xattr_get(&info->xattrs, name, buffer, size);
3228 }
3229
3230 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3231                                    struct dentry *unused, struct inode *inode,
3232                                    const char *name, const void *value,
3233                                    size_t size, int flags)
3234 {
3235         struct shmem_inode_info *info = SHMEM_I(inode);
3236
3237         name = xattr_full_name(handler, name);
3238         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3239 }
3240
3241 static const struct xattr_handler shmem_security_xattr_handler = {
3242         .prefix = XATTR_SECURITY_PREFIX,
3243         .get = shmem_xattr_handler_get,
3244         .set = shmem_xattr_handler_set,
3245 };
3246
3247 static const struct xattr_handler shmem_trusted_xattr_handler = {
3248         .prefix = XATTR_TRUSTED_PREFIX,
3249         .get = shmem_xattr_handler_get,
3250         .set = shmem_xattr_handler_set,
3251 };
3252
3253 static const struct xattr_handler *shmem_xattr_handlers[] = {
3254 #ifdef CONFIG_TMPFS_POSIX_ACL
3255         &posix_acl_access_xattr_handler,
3256         &posix_acl_default_xattr_handler,
3257 #endif
3258         &shmem_security_xattr_handler,
3259         &shmem_trusted_xattr_handler,
3260         NULL
3261 };
3262
3263 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3264 {
3265         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3266         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3267 }
3268 #endif /* CONFIG_TMPFS_XATTR */
3269
3270 static const struct inode_operations shmem_short_symlink_operations = {
3271         .get_link       = simple_get_link,
3272 #ifdef CONFIG_TMPFS_XATTR
3273         .listxattr      = shmem_listxattr,
3274 #endif
3275 };
3276
3277 static const struct inode_operations shmem_symlink_inode_operations = {
3278         .get_link       = shmem_get_link,
3279 #ifdef CONFIG_TMPFS_XATTR
3280         .listxattr      = shmem_listxattr,
3281 #endif
3282 };
3283
3284 static struct dentry *shmem_get_parent(struct dentry *child)
3285 {
3286         return ERR_PTR(-ESTALE);
3287 }
3288
3289 static int shmem_match(struct inode *ino, void *vfh)
3290 {
3291         __u32 *fh = vfh;
3292         __u64 inum = fh[2];
3293         inum = (inum << 32) | fh[1];
3294         return ino->i_ino == inum && fh[0] == ino->i_generation;
3295 }
3296
3297 /* Find any alias of inode, but prefer a hashed alias */
3298 static struct dentry *shmem_find_alias(struct inode *inode)
3299 {
3300         struct dentry *alias = d_find_alias(inode);
3301
3302         return alias ?: d_find_any_alias(inode);
3303 }
3304
3305
3306 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3307                 struct fid *fid, int fh_len, int fh_type)
3308 {
3309         struct inode *inode;
3310         struct dentry *dentry = NULL;
3311         u64 inum;
3312
3313         if (fh_len < 3)
3314                 return NULL;
3315
3316         inum = fid->raw[2];
3317         inum = (inum << 32) | fid->raw[1];
3318
3319         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3320                         shmem_match, fid->raw);
3321         if (inode) {
3322                 dentry = shmem_find_alias(inode);
3323                 iput(inode);
3324         }
3325
3326         return dentry;
3327 }
3328
3329 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3330                                 struct inode *parent)
3331 {
3332         if (*len < 3) {
3333                 *len = 3;
3334                 return FILEID_INVALID;
3335         }
3336
3337         if (inode_unhashed(inode)) {
3338                 /* Unfortunately insert_inode_hash is not idempotent,
3339                  * so as we hash inodes here rather than at creation
3340                  * time, we need a lock to ensure we only try
3341                  * to do it once
3342                  */
3343                 static DEFINE_SPINLOCK(lock);
3344                 spin_lock(&lock);
3345                 if (inode_unhashed(inode))
3346                         __insert_inode_hash(inode,
3347                                             inode->i_ino + inode->i_generation);
3348                 spin_unlock(&lock);
3349         }
3350
3351         fh[0] = inode->i_generation;
3352         fh[1] = inode->i_ino;
3353         fh[2] = ((__u64)inode->i_ino) >> 32;
3354
3355         *len = 3;
3356         return 1;
3357 }
3358
3359 static const struct export_operations shmem_export_ops = {
3360         .get_parent     = shmem_get_parent,
3361         .encode_fh      = shmem_encode_fh,
3362         .fh_to_dentry   = shmem_fh_to_dentry,
3363 };
3364
3365 enum shmem_param {
3366         Opt_gid,
3367         Opt_huge,
3368         Opt_mode,
3369         Opt_mpol,
3370         Opt_nr_blocks,
3371         Opt_nr_inodes,
3372         Opt_size,
3373         Opt_uid,
3374 };
3375
3376 static const struct constant_table shmem_param_enums_huge[] = {
3377         {"never",       SHMEM_HUGE_NEVER },
3378         {"always",      SHMEM_HUGE_ALWAYS },
3379         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3380         {"advise",      SHMEM_HUGE_ADVISE },
3381         {}
3382 };
3383
3384 const struct fs_parameter_spec shmem_fs_parameters[] = {
3385         fsparam_u32   ("gid",           Opt_gid),
3386         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3387         fsparam_u32oct("mode",          Opt_mode),
3388         fsparam_string("mpol",          Opt_mpol),
3389         fsparam_string("nr_blocks",     Opt_nr_blocks),
3390         fsparam_string("nr_inodes",     Opt_nr_inodes),
3391         fsparam_string("size",          Opt_size),
3392         fsparam_u32   ("uid",           Opt_uid),
3393         {}
3394 };
3395
3396 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3397 {
3398         struct shmem_options *ctx = fc->fs_private;
3399         struct fs_parse_result result;
3400         unsigned long long size;
3401         char *rest;
3402         int opt;
3403
3404         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3405         if (opt < 0)
3406                 return opt;
3407
3408         switch (opt) {
3409         case Opt_size:
3410                 size = memparse(param->string, &rest);
3411                 if (*rest == '%') {
3412                         size <<= PAGE_SHIFT;
3413                         size *= totalram_pages();
3414                         do_div(size, 100);
3415                         rest++;
3416                 }
3417                 if (*rest)
3418                         goto bad_value;
3419                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3420                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3421                 break;
3422         case Opt_nr_blocks:
3423                 ctx->blocks = memparse(param->string, &rest);
3424                 if (*rest)
3425                         goto bad_value;
3426                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3427                 break;
3428         case Opt_nr_inodes:
3429                 ctx->inodes = memparse(param->string, &rest);
3430                 if (*rest)
3431                         goto bad_value;
3432                 ctx->seen |= SHMEM_SEEN_INODES;
3433                 break;
3434         case Opt_mode:
3435                 ctx->mode = result.uint_32 & 07777;
3436                 break;
3437         case Opt_uid:
3438                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3439                 if (!uid_valid(ctx->uid))
3440                         goto bad_value;
3441                 break;
3442         case Opt_gid:
3443                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3444                 if (!gid_valid(ctx->gid))
3445                         goto bad_value;
3446                 break;
3447         case Opt_huge:
3448                 ctx->huge = result.uint_32;
3449                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3450                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3451                       has_transparent_hugepage()))
3452                         goto unsupported_parameter;
3453                 ctx->seen |= SHMEM_SEEN_HUGE;
3454                 break;
3455         case Opt_mpol:
3456                 if (IS_ENABLED(CONFIG_NUMA)) {
3457                         mpol_put(ctx->mpol);
3458                         ctx->mpol = NULL;
3459                         if (mpol_parse_str(param->string, &ctx->mpol))
3460                                 goto bad_value;
3461                         break;
3462                 }
3463                 goto unsupported_parameter;
3464         }
3465         return 0;
3466
3467 unsupported_parameter:
3468         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3469 bad_value:
3470         return invalfc(fc, "Bad value for '%s'", param->key);
3471 }
3472
3473 static int shmem_parse_options(struct fs_context *fc, void *data)
3474 {
3475         char *options = data;
3476
3477         if (options) {
3478                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3479                 if (err)
3480                         return err;
3481         }
3482
3483         while (options != NULL) {
3484                 char *this_char = options;
3485                 for (;;) {
3486                         /*
3487                          * NUL-terminate this option: unfortunately,
3488                          * mount options form a comma-separated list,
3489                          * but mpol's nodelist may also contain commas.
3490                          */
3491                         options = strchr(options, ',');
3492                         if (options == NULL)
3493                                 break;
3494                         options++;
3495                         if (!isdigit(*options)) {
3496                                 options[-1] = '\0';
3497                                 break;
3498                         }
3499                 }
3500                 if (*this_char) {
3501                         char *value = strchr(this_char,'=');
3502                         size_t len = 0;
3503                         int err;
3504
3505                         if (value) {
3506                                 *value++ = '\0';
3507                                 len = strlen(value);
3508                         }
3509                         err = vfs_parse_fs_string(fc, this_char, value, len);
3510                         if (err < 0)
3511                                 return err;
3512                 }
3513         }
3514         return 0;
3515 }
3516
3517 /*
3518  * Reconfigure a shmem filesystem.
3519  *
3520  * Note that we disallow change from limited->unlimited blocks/inodes while any
3521  * are in use; but we must separately disallow unlimited->limited, because in
3522  * that case we have no record of how much is already in use.
3523  */
3524 static int shmem_reconfigure(struct fs_context *fc)
3525 {
3526         struct shmem_options *ctx = fc->fs_private;
3527         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3528         unsigned long inodes;
3529         const char *err;
3530
3531         spin_lock(&sbinfo->stat_lock);
3532         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3533         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3534                 if (!sbinfo->max_blocks) {
3535                         err = "Cannot retroactively limit size";
3536                         goto out;
3537                 }
3538                 if (percpu_counter_compare(&sbinfo->used_blocks,
3539                                            ctx->blocks) > 0) {
3540                         err = "Too small a size for current use";
3541                         goto out;
3542                 }
3543         }
3544         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3545                 if (!sbinfo->max_inodes) {
3546                         err = "Cannot retroactively limit inodes";
3547                         goto out;
3548                 }
3549                 if (ctx->inodes < inodes) {
3550                         err = "Too few inodes for current use";
3551                         goto out;
3552                 }
3553         }
3554
3555         if (ctx->seen & SHMEM_SEEN_HUGE)
3556                 sbinfo->huge = ctx->huge;
3557         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3558                 sbinfo->max_blocks  = ctx->blocks;
3559         if (ctx->seen & SHMEM_SEEN_INODES) {
3560                 sbinfo->max_inodes  = ctx->inodes;
3561                 sbinfo->free_inodes = ctx->inodes - inodes;
3562         }
3563
3564         /*
3565          * Preserve previous mempolicy unless mpol remount option was specified.
3566          */
3567         if (ctx->mpol) {
3568                 mpol_put(sbinfo->mpol);
3569                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3570                 ctx->mpol = NULL;
3571         }
3572         spin_unlock(&sbinfo->stat_lock);
3573         return 0;
3574 out:
3575         spin_unlock(&sbinfo->stat_lock);
3576         return invalfc(fc, "%s", err);
3577 }
3578
3579 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3580 {
3581         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3582
3583         if (sbinfo->max_blocks != shmem_default_max_blocks())
3584                 seq_printf(seq, ",size=%luk",
3585                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3586         if (sbinfo->max_inodes != shmem_default_max_inodes())
3587                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3588         if (sbinfo->mode != (0777 | S_ISVTX))
3589                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3590         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3591                 seq_printf(seq, ",uid=%u",
3592                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3593         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3594                 seq_printf(seq, ",gid=%u",
3595                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3597         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3598         if (sbinfo->huge)
3599                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3600 #endif
3601         shmem_show_mpol(seq, sbinfo->mpol);
3602         return 0;
3603 }
3604
3605 #endif /* CONFIG_TMPFS */
3606
3607 static void shmem_put_super(struct super_block *sb)
3608 {
3609         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3610
3611         percpu_counter_destroy(&sbinfo->used_blocks);
3612         mpol_put(sbinfo->mpol);
3613         kfree(sbinfo);
3614         sb->s_fs_info = NULL;
3615 }
3616
3617 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3618 {
3619         struct shmem_options *ctx = fc->fs_private;
3620         struct inode *inode;
3621         struct shmem_sb_info *sbinfo;
3622         int err = -ENOMEM;
3623
3624         /* Round up to L1_CACHE_BYTES to resist false sharing */
3625         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3626                                 L1_CACHE_BYTES), GFP_KERNEL);
3627         if (!sbinfo)
3628                 return -ENOMEM;
3629
3630         sb->s_fs_info = sbinfo;
3631
3632 #ifdef CONFIG_TMPFS
3633         /*
3634          * Per default we only allow half of the physical ram per
3635          * tmpfs instance, limiting inodes to one per page of lowmem;
3636          * but the internal instance is left unlimited.
3637          */
3638         if (!(sb->s_flags & SB_KERNMOUNT)) {
3639                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3640                         ctx->blocks = shmem_default_max_blocks();
3641                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3642                         ctx->inodes = shmem_default_max_inodes();
3643         } else {
3644                 sb->s_flags |= SB_NOUSER;
3645         }
3646         sb->s_export_op = &shmem_export_ops;
3647         sb->s_flags |= SB_NOSEC;
3648 #else
3649         sb->s_flags |= SB_NOUSER;
3650 #endif
3651         sbinfo->max_blocks = ctx->blocks;
3652         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3653         sbinfo->uid = ctx->uid;
3654         sbinfo->gid = ctx->gid;
3655         sbinfo->mode = ctx->mode;
3656         sbinfo->huge = ctx->huge;
3657         sbinfo->mpol = ctx->mpol;
3658         ctx->mpol = NULL;
3659
3660         spin_lock_init(&sbinfo->stat_lock);
3661         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3662                 goto failed;
3663         spin_lock_init(&sbinfo->shrinklist_lock);
3664         INIT_LIST_HEAD(&sbinfo->shrinklist);
3665
3666         sb->s_maxbytes = MAX_LFS_FILESIZE;
3667         sb->s_blocksize = PAGE_SIZE;
3668         sb->s_blocksize_bits = PAGE_SHIFT;
3669         sb->s_magic = TMPFS_MAGIC;
3670         sb->s_op = &shmem_ops;
3671         sb->s_time_gran = 1;
3672 #ifdef CONFIG_TMPFS_XATTR
3673         sb->s_xattr = shmem_xattr_handlers;
3674 #endif
3675 #ifdef CONFIG_TMPFS_POSIX_ACL
3676         sb->s_flags |= SB_POSIXACL;
3677 #endif
3678         uuid_gen(&sb->s_uuid);
3679
3680         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3681         if (!inode)
3682                 goto failed;
3683         inode->i_uid = sbinfo->uid;
3684         inode->i_gid = sbinfo->gid;
3685         sb->s_root = d_make_root(inode);
3686         if (!sb->s_root)
3687                 goto failed;
3688         return 0;
3689
3690 failed:
3691         shmem_put_super(sb);
3692         return err;
3693 }
3694
3695 static int shmem_get_tree(struct fs_context *fc)
3696 {
3697         return get_tree_nodev(fc, shmem_fill_super);
3698 }
3699
3700 static void shmem_free_fc(struct fs_context *fc)
3701 {
3702         struct shmem_options *ctx = fc->fs_private;
3703
3704         if (ctx) {
3705                 mpol_put(ctx->mpol);
3706                 kfree(ctx);
3707         }
3708 }
3709
3710 static const struct fs_context_operations shmem_fs_context_ops = {
3711         .free                   = shmem_free_fc,
3712         .get_tree               = shmem_get_tree,
3713 #ifdef CONFIG_TMPFS
3714         .parse_monolithic       = shmem_parse_options,
3715         .parse_param            = shmem_parse_one,
3716         .reconfigure            = shmem_reconfigure,
3717 #endif
3718 };
3719
3720 static struct kmem_cache *shmem_inode_cachep;
3721
3722 static struct inode *shmem_alloc_inode(struct super_block *sb)
3723 {
3724         struct shmem_inode_info *info;
3725         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3726         if (!info)
3727                 return NULL;
3728         return &info->vfs_inode;
3729 }
3730
3731 static void shmem_free_in_core_inode(struct inode *inode)
3732 {
3733         if (S_ISLNK(inode->i_mode))
3734                 kfree(inode->i_link);
3735         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3736 }
3737
3738 static void shmem_destroy_inode(struct inode *inode)
3739 {
3740         if (S_ISREG(inode->i_mode))
3741                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3742 }
3743
3744 static void shmem_init_inode(void *foo)
3745 {
3746         struct shmem_inode_info *info = foo;
3747         inode_init_once(&info->vfs_inode);
3748 }
3749
3750 static void shmem_init_inodecache(void)
3751 {
3752         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3753                                 sizeof(struct shmem_inode_info),
3754                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3755 }
3756
3757 static void shmem_destroy_inodecache(void)
3758 {
3759         kmem_cache_destroy(shmem_inode_cachep);
3760 }
3761
3762 static const struct address_space_operations shmem_aops = {
3763         .writepage      = shmem_writepage,
3764         .set_page_dirty = __set_page_dirty_no_writeback,
3765 #ifdef CONFIG_TMPFS
3766         .write_begin    = shmem_write_begin,
3767         .write_end      = shmem_write_end,
3768 #endif
3769 #ifdef CONFIG_MIGRATION
3770         .migratepage    = migrate_page,
3771 #endif
3772         .error_remove_page = generic_error_remove_page,
3773 };
3774
3775 static const struct file_operations shmem_file_operations = {
3776         .mmap           = shmem_mmap,
3777         .get_unmapped_area = shmem_get_unmapped_area,
3778 #ifdef CONFIG_TMPFS
3779         .llseek         = shmem_file_llseek,
3780         .read_iter      = shmem_file_read_iter,
3781         .write_iter     = generic_file_write_iter,
3782         .fsync          = noop_fsync,
3783         .splice_read    = generic_file_splice_read,
3784         .splice_write   = iter_file_splice_write,
3785         .fallocate      = shmem_fallocate,
3786 #endif
3787 };
3788
3789 static const struct inode_operations shmem_inode_operations = {
3790         .getattr        = shmem_getattr,
3791         .setattr        = shmem_setattr,
3792 #ifdef CONFIG_TMPFS_XATTR
3793         .listxattr      = shmem_listxattr,
3794         .set_acl        = simple_set_acl,
3795 #endif
3796 };
3797
3798 static const struct inode_operations shmem_dir_inode_operations = {
3799 #ifdef CONFIG_TMPFS
3800         .create         = shmem_create,
3801         .lookup         = simple_lookup,
3802         .link           = shmem_link,
3803         .unlink         = shmem_unlink,
3804         .symlink        = shmem_symlink,
3805         .mkdir          = shmem_mkdir,
3806         .rmdir          = shmem_rmdir,
3807         .mknod          = shmem_mknod,
3808         .rename         = shmem_rename2,
3809         .tmpfile        = shmem_tmpfile,
3810 #endif
3811 #ifdef CONFIG_TMPFS_XATTR
3812         .listxattr      = shmem_listxattr,
3813 #endif
3814 #ifdef CONFIG_TMPFS_POSIX_ACL
3815         .setattr        = shmem_setattr,
3816         .set_acl        = simple_set_acl,
3817 #endif
3818 };
3819
3820 static const struct inode_operations shmem_special_inode_operations = {
3821 #ifdef CONFIG_TMPFS_XATTR
3822         .listxattr      = shmem_listxattr,
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825         .setattr        = shmem_setattr,
3826         .set_acl        = simple_set_acl,
3827 #endif
3828 };
3829
3830 static const struct super_operations shmem_ops = {
3831         .alloc_inode    = shmem_alloc_inode,
3832         .free_inode     = shmem_free_in_core_inode,
3833         .destroy_inode  = shmem_destroy_inode,
3834 #ifdef CONFIG_TMPFS
3835         .statfs         = shmem_statfs,
3836         .show_options   = shmem_show_options,
3837 #endif
3838         .evict_inode    = shmem_evict_inode,
3839         .drop_inode     = generic_delete_inode,
3840         .put_super      = shmem_put_super,
3841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3842         .nr_cached_objects      = shmem_unused_huge_count,
3843         .free_cached_objects    = shmem_unused_huge_scan,
3844 #endif
3845 };
3846
3847 static const struct vm_operations_struct shmem_vm_ops = {
3848         .fault          = shmem_fault,
3849         .map_pages      = filemap_map_pages,
3850 #ifdef CONFIG_NUMA
3851         .set_policy     = shmem_set_policy,
3852         .get_policy     = shmem_get_policy,
3853 #endif
3854 };
3855
3856 int shmem_init_fs_context(struct fs_context *fc)
3857 {
3858         struct shmem_options *ctx;
3859
3860         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3861         if (!ctx)
3862                 return -ENOMEM;
3863
3864         ctx->mode = 0777 | S_ISVTX;
3865         ctx->uid = current_fsuid();
3866         ctx->gid = current_fsgid();
3867
3868         fc->fs_private = ctx;
3869         fc->ops = &shmem_fs_context_ops;
3870         return 0;
3871 }
3872
3873 static struct file_system_type shmem_fs_type = {
3874         .owner          = THIS_MODULE,
3875         .name           = "tmpfs",
3876         .init_fs_context = shmem_init_fs_context,
3877 #ifdef CONFIG_TMPFS
3878         .parameters     = shmem_fs_parameters,
3879 #endif
3880         .kill_sb        = kill_litter_super,
3881         .fs_flags       = FS_USERNS_MOUNT,
3882 };
3883
3884 int __init shmem_init(void)
3885 {
3886         int error;
3887
3888         shmem_init_inodecache();
3889
3890         error = register_filesystem(&shmem_fs_type);
3891         if (error) {
3892                 pr_err("Could not register tmpfs\n");
3893                 goto out2;
3894         }
3895
3896         shm_mnt = kern_mount(&shmem_fs_type);
3897         if (IS_ERR(shm_mnt)) {
3898                 error = PTR_ERR(shm_mnt);
3899                 pr_err("Could not kern_mount tmpfs\n");
3900                 goto out1;
3901         }
3902
3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3904         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3905                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3906         else
3907                 shmem_huge = 0; /* just in case it was patched */
3908 #endif
3909         return 0;
3910
3911 out1:
3912         unregister_filesystem(&shmem_fs_type);
3913 out2:
3914         shmem_destroy_inodecache();
3915         shm_mnt = ERR_PTR(error);
3916         return error;
3917 }
3918
3919 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3920 static ssize_t shmem_enabled_show(struct kobject *kobj,
3921                 struct kobj_attribute *attr, char *buf)
3922 {
3923         static const int values[] = {
3924                 SHMEM_HUGE_ALWAYS,
3925                 SHMEM_HUGE_WITHIN_SIZE,
3926                 SHMEM_HUGE_ADVISE,
3927                 SHMEM_HUGE_NEVER,
3928                 SHMEM_HUGE_DENY,
3929                 SHMEM_HUGE_FORCE,
3930         };
3931         int i, count;
3932
3933         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3934                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3935
3936                 count += sprintf(buf + count, fmt,
3937                                 shmem_format_huge(values[i]));
3938         }
3939         buf[count - 1] = '\n';
3940         return count;
3941 }
3942
3943 static ssize_t shmem_enabled_store(struct kobject *kobj,
3944                 struct kobj_attribute *attr, const char *buf, size_t count)
3945 {
3946         char tmp[16];
3947         int huge;
3948
3949         if (count + 1 > sizeof(tmp))
3950                 return -EINVAL;
3951         memcpy(tmp, buf, count);
3952         tmp[count] = '\0';
3953         if (count && tmp[count - 1] == '\n')
3954                 tmp[count - 1] = '\0';
3955
3956         huge = shmem_parse_huge(tmp);
3957         if (huge == -EINVAL)
3958                 return -EINVAL;
3959         if (!has_transparent_hugepage() &&
3960                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3961                 return -EINVAL;
3962
3963         shmem_huge = huge;
3964         if (shmem_huge > SHMEM_HUGE_DENY)
3965                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3966         return count;
3967 }
3968
3969 struct kobj_attribute shmem_enabled_attr =
3970         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3972
3973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3974 bool shmem_huge_enabled(struct vm_area_struct *vma)
3975 {
3976         struct inode *inode = file_inode(vma->vm_file);
3977         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3978         loff_t i_size;
3979         pgoff_t off;
3980
3981         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3982             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3983                 return false;
3984         if (shmem_huge == SHMEM_HUGE_FORCE)
3985                 return true;
3986         if (shmem_huge == SHMEM_HUGE_DENY)
3987                 return false;
3988         switch (sbinfo->huge) {
3989                 case SHMEM_HUGE_NEVER:
3990                         return false;
3991                 case SHMEM_HUGE_ALWAYS:
3992                         return true;
3993                 case SHMEM_HUGE_WITHIN_SIZE:
3994                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3995                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3996                         if (i_size >= HPAGE_PMD_SIZE &&
3997                                         i_size >> PAGE_SHIFT >= off)
3998                                 return true;
3999                         fallthrough;
4000                 case SHMEM_HUGE_ADVISE:
4001                         /* TODO: implement fadvise() hints */
4002                         return (vma->vm_flags & VM_HUGEPAGE);
4003                 default:
4004                         VM_BUG_ON(1);
4005                         return false;
4006         }
4007 }
4008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4009
4010 #else /* !CONFIG_SHMEM */
4011
4012 /*
4013  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4014  *
4015  * This is intended for small system where the benefits of the full
4016  * shmem code (swap-backed and resource-limited) are outweighed by
4017  * their complexity. On systems without swap this code should be
4018  * effectively equivalent, but much lighter weight.
4019  */
4020
4021 static struct file_system_type shmem_fs_type = {
4022         .name           = "tmpfs",
4023         .init_fs_context = ramfs_init_fs_context,
4024         .parameters     = ramfs_fs_parameters,
4025         .kill_sb        = kill_litter_super,
4026         .fs_flags       = FS_USERNS_MOUNT,
4027 };
4028
4029 int __init shmem_init(void)
4030 {
4031         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4032
4033         shm_mnt = kern_mount(&shmem_fs_type);
4034         BUG_ON(IS_ERR(shm_mnt));
4035
4036         return 0;
4037 }
4038
4039 int shmem_unuse(unsigned int type, bool frontswap,
4040                 unsigned long *fs_pages_to_unuse)
4041 {
4042         return 0;
4043 }
4044
4045 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4046 {
4047         return 0;
4048 }
4049
4050 void shmem_unlock_mapping(struct address_space *mapping)
4051 {
4052 }
4053
4054 #ifdef CONFIG_MMU
4055 unsigned long shmem_get_unmapped_area(struct file *file,
4056                                       unsigned long addr, unsigned long len,
4057                                       unsigned long pgoff, unsigned long flags)
4058 {
4059         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4060 }
4061 #endif
4062
4063 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4064 {
4065         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4066 }
4067 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4068
4069 #define shmem_vm_ops                            generic_file_vm_ops
4070 #define shmem_file_operations                   ramfs_file_operations
4071 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4072 #define shmem_acct_size(flags, size)            0
4073 #define shmem_unacct_size(flags, size)          do {} while (0)
4074
4075 #endif /* CONFIG_SHMEM */
4076
4077 /* common code */
4078
4079 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4080                                        unsigned long flags, unsigned int i_flags)
4081 {
4082         struct inode *inode;
4083         struct file *res;
4084
4085         if (IS_ERR(mnt))
4086                 return ERR_CAST(mnt);
4087
4088         if (size < 0 || size > MAX_LFS_FILESIZE)
4089                 return ERR_PTR(-EINVAL);
4090
4091         if (shmem_acct_size(flags, size))
4092                 return ERR_PTR(-ENOMEM);
4093
4094         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4095                                 flags);
4096         if (unlikely(!inode)) {
4097                 shmem_unacct_size(flags, size);
4098                 return ERR_PTR(-ENOSPC);
4099         }
4100         inode->i_flags |= i_flags;
4101         inode->i_size = size;
4102         clear_nlink(inode);     /* It is unlinked */
4103         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4104         if (!IS_ERR(res))
4105                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4106                                 &shmem_file_operations);
4107         if (IS_ERR(res))
4108                 iput(inode);
4109         return res;
4110 }
4111
4112 /**
4113  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4114  *      kernel internal.  There will be NO LSM permission checks against the
4115  *      underlying inode.  So users of this interface must do LSM checks at a
4116  *      higher layer.  The users are the big_key and shm implementations.  LSM
4117  *      checks are provided at the key or shm level rather than the inode.
4118  * @name: name for dentry (to be seen in /proc/<pid>/maps
4119  * @size: size to be set for the file
4120  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121  */
4122 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4123 {
4124         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4125 }
4126
4127 /**
4128  * shmem_file_setup - get an unlinked file living in tmpfs
4129  * @name: name for dentry (to be seen in /proc/<pid>/maps
4130  * @size: size to be set for the file
4131  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4132  */
4133 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4134 {
4135         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4136 }
4137 EXPORT_SYMBOL_GPL(shmem_file_setup);
4138
4139 /**
4140  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4141  * @mnt: the tmpfs mount where the file will be created
4142  * @name: name for dentry (to be seen in /proc/<pid>/maps
4143  * @size: size to be set for the file
4144  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4145  */
4146 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4147                                        loff_t size, unsigned long flags)
4148 {
4149         return __shmem_file_setup(mnt, name, size, flags, 0);
4150 }
4151 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4152
4153 /**
4154  * shmem_zero_setup - setup a shared anonymous mapping
4155  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4156  */
4157 int shmem_zero_setup(struct vm_area_struct *vma)
4158 {
4159         struct file *file;
4160         loff_t size = vma->vm_end - vma->vm_start;
4161
4162         /*
4163          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4164          * between XFS directory reading and selinux: since this file is only
4165          * accessible to the user through its mapping, use S_PRIVATE flag to
4166          * bypass file security, in the same way as shmem_kernel_file_setup().
4167          */
4168         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4169         if (IS_ERR(file))
4170                 return PTR_ERR(file);
4171
4172         if (vma->vm_file)
4173                 fput(vma->vm_file);
4174         vma->vm_file = file;
4175         vma->vm_ops = &shmem_vm_ops;
4176
4177         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4178                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4179                         (vma->vm_end & HPAGE_PMD_MASK)) {
4180                 khugepaged_enter(vma, vma->vm_flags);
4181         }
4182
4183         return 0;
4184 }
4185
4186 /**
4187  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4188  * @mapping:    the page's address_space
4189  * @index:      the page index
4190  * @gfp:        the page allocator flags to use if allocating
4191  *
4192  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4193  * with any new page allocations done using the specified allocation flags.
4194  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4195  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4196  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4197  *
4198  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4199  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4200  */
4201 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4202                                          pgoff_t index, gfp_t gfp)
4203 {
4204 #ifdef CONFIG_SHMEM
4205         struct inode *inode = mapping->host;
4206         struct page *page;
4207         int error;
4208
4209         BUG_ON(mapping->a_ops != &shmem_aops);
4210         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4211                                   gfp, NULL, NULL, NULL);
4212         if (error)
4213                 page = ERR_PTR(error);
4214         else
4215                 unlock_page(page);
4216         return page;
4217 #else
4218         /*
4219          * The tiny !SHMEM case uses ramfs without swap
4220          */
4221         return read_cache_page_gfp(mapping, index, gfp);
4222 #endif
4223 }
4224 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);