Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104         pgoff_t start;          /* start of range currently being fallocated */
105         pgoff_t next;           /* the next page offset to be fallocated */
106         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
107         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111         unsigned long long blocks;
112         unsigned long long inodes;
113         struct mempolicy *mpol;
114         kuid_t uid;
115         kgid_t gid;
116         umode_t mode;
117         bool full_inums;
118         int huge;
119         int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129         return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134         unsigned long nr_pages = totalram_pages();
135
136         return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142                                 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144                              struct page **pagep, enum sgp_type sgp,
145                              gfp_t gfp, struct vm_area_struct *vma,
146                              vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148                 struct page **pagep, enum sgp_type sgp,
149                 gfp_t gfp, struct vm_area_struct *vma,
150                 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153                 struct page **pagep, enum sgp_type sgp)
154 {
155         return shmem_getpage_gfp(inode, index, pagep, sgp,
156                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161         return sb->s_fs_info;
162 }
163
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172         return (flags & VM_NORESERVE) ?
173                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178         if (!(flags & VM_NORESERVE))
179                 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183                 loff_t oldsize, loff_t newsize)
184 {
185         if (!(flags & VM_NORESERVE)) {
186                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187                         return security_vm_enough_memory_mm(current->mm,
188                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
189                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191         }
192         return 0;
193 }
194
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203         if (!(flags & VM_NORESERVE))
204                 return 0;
205
206         return security_vm_enough_memory_mm(current->mm,
207                         pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212         if (flags & VM_NORESERVE)
213                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218         struct shmem_inode_info *info = SHMEM_I(inode);
219         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221         if (shmem_acct_block(info->flags, pages))
222                 return false;
223
224         if (sbinfo->max_blocks) {
225                 if (percpu_counter_compare(&sbinfo->used_blocks,
226                                            sbinfo->max_blocks - pages) > 0)
227                         goto unacct;
228                 percpu_counter_add(&sbinfo->used_blocks, pages);
229         }
230
231         return true;
232
233 unacct:
234         shmem_unacct_blocks(info->flags, pages);
235         return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240         struct shmem_inode_info *info = SHMEM_I(inode);
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243         if (sbinfo->max_blocks)
244                 percpu_counter_sub(&sbinfo->used_blocks, pages);
245         shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259         return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278         ino_t ino;
279
280         if (!(sb->s_flags & SB_KERNMOUNT)) {
281                 spin_lock(&sbinfo->stat_lock);
282                 if (!sbinfo->free_inodes) {
283                         spin_unlock(&sbinfo->stat_lock);
284                         return -ENOSPC;
285                 }
286                 sbinfo->free_inodes--;
287                 if (inop) {
288                         ino = sbinfo->next_ino++;
289                         if (unlikely(is_zero_ino(ino)))
290                                 ino = sbinfo->next_ino++;
291                         if (unlikely(!sbinfo->full_inums &&
292                                      ino > UINT_MAX)) {
293                                 /*
294                                  * Emulate get_next_ino uint wraparound for
295                                  * compatibility
296                                  */
297                                 if (IS_ENABLED(CONFIG_64BIT))
298                                         pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299                                                 __func__, MINOR(sb->s_dev));
300                                 sbinfo->next_ino = 1;
301                                 ino = sbinfo->next_ino++;
302                         }
303                         *inop = ino;
304                 }
305                 spin_unlock(&sbinfo->stat_lock);
306         } else if (inop) {
307                 /*
308                  * __shmem_file_setup, one of our callers, is lock-free: it
309                  * doesn't hold stat_lock in shmem_reserve_inode since
310                  * max_inodes is always 0, and is called from potentially
311                  * unknown contexts. As such, use a per-cpu batched allocator
312                  * which doesn't require the per-sb stat_lock unless we are at
313                  * the batch boundary.
314                  *
315                  * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316                  * shmem mounts are not exposed to userspace, so we don't need
317                  * to worry about things like glibc compatibility.
318                  */
319                 ino_t *next_ino;
320                 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321                 ino = *next_ino;
322                 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323                         spin_lock(&sbinfo->stat_lock);
324                         ino = sbinfo->next_ino;
325                         sbinfo->next_ino += SHMEM_INO_BATCH;
326                         spin_unlock(&sbinfo->stat_lock);
327                         if (unlikely(is_zero_ino(ino)))
328                                 ino++;
329                 }
330                 *inop = ino;
331                 *next_ino = ++ino;
332                 put_cpu();
333         }
334
335         return 0;
336 }
337
338 static void shmem_free_inode(struct super_block *sb)
339 {
340         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341         if (sbinfo->max_inodes) {
342                 spin_lock(&sbinfo->stat_lock);
343                 sbinfo->free_inodes++;
344                 spin_unlock(&sbinfo->stat_lock);
345         }
346 }
347
348 /**
349  * shmem_recalc_inode - recalculate the block usage of an inode
350  * @inode: inode to recalc
351  *
352  * We have to calculate the free blocks since the mm can drop
353  * undirtied hole pages behind our back.
354  *
355  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
356  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357  *
358  * It has to be called with the spinlock held.
359  */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362         struct shmem_inode_info *info = SHMEM_I(inode);
363         long freed;
364
365         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366         if (freed > 0) {
367                 info->alloced -= freed;
368                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369                 shmem_inode_unacct_blocks(inode, freed);
370         }
371 }
372
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375         struct shmem_inode_info *info = SHMEM_I(inode);
376         unsigned long flags;
377
378         if (!shmem_inode_acct_block(inode, pages))
379                 return false;
380
381         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382         inode->i_mapping->nrpages += pages;
383
384         spin_lock_irqsave(&info->lock, flags);
385         info->alloced += pages;
386         inode->i_blocks += pages * BLOCKS_PER_PAGE;
387         shmem_recalc_inode(inode);
388         spin_unlock_irqrestore(&info->lock, flags);
389
390         return true;
391 }
392
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395         struct shmem_inode_info *info = SHMEM_I(inode);
396         unsigned long flags;
397
398         /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
400         spin_lock_irqsave(&info->lock, flags);
401         info->alloced -= pages;
402         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403         shmem_recalc_inode(inode);
404         spin_unlock_irqrestore(&info->lock, flags);
405
406         shmem_inode_unacct_blocks(inode, pages);
407 }
408
409 /*
410  * Replace item expected in xarray by a new item, while holding xa_lock.
411  */
412 static int shmem_replace_entry(struct address_space *mapping,
413                         pgoff_t index, void *expected, void *replacement)
414 {
415         XA_STATE(xas, &mapping->i_pages, index);
416         void *item;
417
418         VM_BUG_ON(!expected);
419         VM_BUG_ON(!replacement);
420         item = xas_load(&xas);
421         if (item != expected)
422                 return -ENOENT;
423         xas_store(&xas, replacement);
424         return 0;
425 }
426
427 /*
428  * Sometimes, before we decide whether to proceed or to fail, we must check
429  * that an entry was not already brought back from swap by a racing thread.
430  *
431  * Checking page is not enough: by the time a SwapCache page is locked, it
432  * might be reused, and again be SwapCache, using the same swap as before.
433  */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435                                pgoff_t index, swp_entry_t swap)
436 {
437         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439
440 /*
441  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442  *
443  * SHMEM_HUGE_NEVER:
444  *      disables huge pages for the mount;
445  * SHMEM_HUGE_ALWAYS:
446  *      enables huge pages for the mount;
447  * SHMEM_HUGE_WITHIN_SIZE:
448  *      only allocate huge pages if the page will be fully within i_size,
449  *      also respect fadvise()/madvise() hints;
450  * SHMEM_HUGE_ADVISE:
451  *      only allocate huge pages if requested with fadvise()/madvise();
452  */
453
454 #define SHMEM_HUGE_NEVER        0
455 #define SHMEM_HUGE_ALWAYS       1
456 #define SHMEM_HUGE_WITHIN_SIZE  2
457 #define SHMEM_HUGE_ADVISE       3
458
459 /*
460  * Special values.
461  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462  *
463  * SHMEM_HUGE_DENY:
464  *      disables huge on shm_mnt and all mounts, for emergency use;
465  * SHMEM_HUGE_FORCE:
466  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467  *
468  */
469 #define SHMEM_HUGE_DENY         (-1)
470 #define SHMEM_HUGE_FORCE        (-2)
471
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474
475 static int shmem_huge __read_mostly;
476
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480         if (!strcmp(str, "never"))
481                 return SHMEM_HUGE_NEVER;
482         if (!strcmp(str, "always"))
483                 return SHMEM_HUGE_ALWAYS;
484         if (!strcmp(str, "within_size"))
485                 return SHMEM_HUGE_WITHIN_SIZE;
486         if (!strcmp(str, "advise"))
487                 return SHMEM_HUGE_ADVISE;
488         if (!strcmp(str, "deny"))
489                 return SHMEM_HUGE_DENY;
490         if (!strcmp(str, "force"))
491                 return SHMEM_HUGE_FORCE;
492         return -EINVAL;
493 }
494 #endif
495
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499         switch (huge) {
500         case SHMEM_HUGE_NEVER:
501                 return "never";
502         case SHMEM_HUGE_ALWAYS:
503                 return "always";
504         case SHMEM_HUGE_WITHIN_SIZE:
505                 return "within_size";
506         case SHMEM_HUGE_ADVISE:
507                 return "advise";
508         case SHMEM_HUGE_DENY:
509                 return "deny";
510         case SHMEM_HUGE_FORCE:
511                 return "force";
512         default:
513                 VM_BUG_ON(1);
514                 return "bad_val";
515         }
516 }
517 #endif
518
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520                 struct shrink_control *sc, unsigned long nr_to_split)
521 {
522         LIST_HEAD(list), *pos, *next;
523         LIST_HEAD(to_remove);
524         struct inode *inode;
525         struct shmem_inode_info *info;
526         struct page *page;
527         unsigned long batch = sc ? sc->nr_to_scan : 128;
528         int removed = 0, split = 0;
529
530         if (list_empty(&sbinfo->shrinklist))
531                 return SHRINK_STOP;
532
533         spin_lock(&sbinfo->shrinklist_lock);
534         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
536
537                 /* pin the inode */
538                 inode = igrab(&info->vfs_inode);
539
540                 /* inode is about to be evicted */
541                 if (!inode) {
542                         list_del_init(&info->shrinklist);
543                         removed++;
544                         goto next;
545                 }
546
547                 /* Check if there's anything to gain */
548                 if (round_up(inode->i_size, PAGE_SIZE) ==
549                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550                         list_move(&info->shrinklist, &to_remove);
551                         removed++;
552                         goto next;
553                 }
554
555                 list_move(&info->shrinklist, &list);
556 next:
557                 if (!--batch)
558                         break;
559         }
560         spin_unlock(&sbinfo->shrinklist_lock);
561
562         list_for_each_safe(pos, next, &to_remove) {
563                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564                 inode = &info->vfs_inode;
565                 list_del_init(&info->shrinklist);
566                 iput(inode);
567         }
568
569         list_for_each_safe(pos, next, &list) {
570                 int ret;
571
572                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
573                 inode = &info->vfs_inode;
574
575                 if (nr_to_split && split >= nr_to_split)
576                         goto leave;
577
578                 page = find_get_page(inode->i_mapping,
579                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580                 if (!page)
581                         goto drop;
582
583                 /* No huge page at the end of the file: nothing to split */
584                 if (!PageTransHuge(page)) {
585                         put_page(page);
586                         goto drop;
587                 }
588
589                 /*
590                  * Leave the inode on the list if we failed to lock
591                  * the page at this time.
592                  *
593                  * Waiting for the lock may lead to deadlock in the
594                  * reclaim path.
595                  */
596                 if (!trylock_page(page)) {
597                         put_page(page);
598                         goto leave;
599                 }
600
601                 ret = split_huge_page(page);
602                 unlock_page(page);
603                 put_page(page);
604
605                 /* If split failed leave the inode on the list */
606                 if (ret)
607                         goto leave;
608
609                 split++;
610 drop:
611                 list_del_init(&info->shrinklist);
612                 removed++;
613 leave:
614                 iput(inode);
615         }
616
617         spin_lock(&sbinfo->shrinklist_lock);
618         list_splice_tail(&list, &sbinfo->shrinklist);
619         sbinfo->shrinklist_len -= removed;
620         spin_unlock(&sbinfo->shrinklist_lock);
621
622         return split;
623 }
624
625 static long shmem_unused_huge_scan(struct super_block *sb,
626                 struct shrink_control *sc)
627 {
628         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629
630         if (!READ_ONCE(sbinfo->shrinklist_len))
631                 return SHRINK_STOP;
632
633         return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635
636 static long shmem_unused_huge_count(struct super_block *sb,
637                 struct shrink_control *sc)
638 {
639         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640         return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643
644 #define shmem_huge SHMEM_HUGE_DENY
645
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647                 struct shrink_control *sc, unsigned long nr_to_split)
648 {
649         return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657             shmem_huge != SHMEM_HUGE_DENY)
658                 return true;
659         return false;
660 }
661
662 /*
663  * Like add_to_page_cache_locked, but error if expected item has gone.
664  */
665 static int shmem_add_to_page_cache(struct page *page,
666                                    struct address_space *mapping,
667                                    pgoff_t index, void *expected, gfp_t gfp,
668                                    struct mm_struct *charge_mm)
669 {
670         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671         unsigned long i = 0;
672         unsigned long nr = compound_nr(page);
673         int error;
674
675         VM_BUG_ON_PAGE(PageTail(page), page);
676         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677         VM_BUG_ON_PAGE(!PageLocked(page), page);
678         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679         VM_BUG_ON(expected && PageTransHuge(page));
680
681         page_ref_add(page, nr);
682         page->mapping = mapping;
683         page->index = index;
684
685         if (!PageSwapCache(page)) {
686                 error = mem_cgroup_charge(page, charge_mm, gfp);
687                 if (error) {
688                         if (PageTransHuge(page)) {
689                                 count_vm_event(THP_FILE_FALLBACK);
690                                 count_vm_event(THP_FILE_FALLBACK_CHARGE);
691                         }
692                         goto error;
693                 }
694         }
695         cgroup_throttle_swaprate(page, gfp);
696
697         do {
698                 void *entry;
699                 xas_lock_irq(&xas);
700                 entry = xas_find_conflict(&xas);
701                 if (entry != expected)
702                         xas_set_err(&xas, -EEXIST);
703                 xas_create_range(&xas);
704                 if (xas_error(&xas))
705                         goto unlock;
706 next:
707                 xas_store(&xas, page);
708                 if (++i < nr) {
709                         xas_next(&xas);
710                         goto next;
711                 }
712                 if (PageTransHuge(page)) {
713                         count_vm_event(THP_FILE_ALLOC);
714                         __inc_node_page_state(page, NR_SHMEM_THPS);
715                 }
716                 mapping->nrpages += nr;
717                 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718                 __mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720                 xas_unlock_irq(&xas);
721         } while (xas_nomem(&xas, gfp));
722
723         if (xas_error(&xas)) {
724                 error = xas_error(&xas);
725                 goto error;
726         }
727
728         return 0;
729 error:
730         page->mapping = NULL;
731         page_ref_sub(page, nr);
732         return error;
733 }
734
735 /*
736  * Like delete_from_page_cache, but substitutes swap for page.
737  */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740         struct address_space *mapping = page->mapping;
741         int error;
742
743         VM_BUG_ON_PAGE(PageCompound(page), page);
744
745         xa_lock_irq(&mapping->i_pages);
746         error = shmem_replace_entry(mapping, page->index, page, radswap);
747         page->mapping = NULL;
748         mapping->nrpages--;
749         __dec_lruvec_page_state(page, NR_FILE_PAGES);
750         __dec_lruvec_page_state(page, NR_SHMEM);
751         xa_unlock_irq(&mapping->i_pages);
752         put_page(page);
753         BUG_ON(error);
754 }
755
756 /*
757  * Remove swap entry from page cache, free the swap and its page cache.
758  */
759 static int shmem_free_swap(struct address_space *mapping,
760                            pgoff_t index, void *radswap)
761 {
762         void *old;
763
764         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765         if (old != radswap)
766                 return -ENOENT;
767         free_swap_and_cache(radix_to_swp_entry(radswap));
768         return 0;
769 }
770
771 /*
772  * Determine (in bytes) how many of the shmem object's pages mapped by the
773  * given offsets are swapped out.
774  *
775  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776  * as long as the inode doesn't go away and racy results are not a problem.
777  */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779                                                 pgoff_t start, pgoff_t end)
780 {
781         XA_STATE(xas, &mapping->i_pages, start);
782         struct page *page;
783         unsigned long swapped = 0;
784
785         rcu_read_lock();
786         xas_for_each(&xas, page, end - 1) {
787                 if (xas_retry(&xas, page))
788                         continue;
789                 if (xa_is_value(page))
790                         swapped++;
791
792                 if (need_resched()) {
793                         xas_pause(&xas);
794                         cond_resched_rcu();
795                 }
796         }
797
798         rcu_read_unlock();
799
800         return swapped << PAGE_SHIFT;
801 }
802
803 /*
804  * Determine (in bytes) how many of the shmem object's pages mapped by the
805  * given vma is swapped out.
806  *
807  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808  * as long as the inode doesn't go away and racy results are not a problem.
809  */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812         struct inode *inode = file_inode(vma->vm_file);
813         struct shmem_inode_info *info = SHMEM_I(inode);
814         struct address_space *mapping = inode->i_mapping;
815         unsigned long swapped;
816
817         /* Be careful as we don't hold info->lock */
818         swapped = READ_ONCE(info->swapped);
819
820         /*
821          * The easier cases are when the shmem object has nothing in swap, or
822          * the vma maps it whole. Then we can simply use the stats that we
823          * already track.
824          */
825         if (!swapped)
826                 return 0;
827
828         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829                 return swapped << PAGE_SHIFT;
830
831         /* Here comes the more involved part */
832         return shmem_partial_swap_usage(mapping,
833                         linear_page_index(vma, vma->vm_start),
834                         linear_page_index(vma, vma->vm_end));
835 }
836
837 /*
838  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839  */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842         struct pagevec pvec;
843         pgoff_t indices[PAGEVEC_SIZE];
844         pgoff_t index = 0;
845
846         pagevec_init(&pvec);
847         /*
848          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849          */
850         while (!mapping_unevictable(mapping)) {
851                 /*
852                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854                  */
855                 pvec.nr = find_get_entries(mapping, index,
856                                            PAGEVEC_SIZE, pvec.pages, indices);
857                 if (!pvec.nr)
858                         break;
859                 index = indices[pvec.nr - 1] + 1;
860                 pagevec_remove_exceptionals(&pvec);
861                 check_move_unevictable_pages(&pvec);
862                 pagevec_release(&pvec);
863                 cond_resched();
864         }
865 }
866
867 /*
868  * Check whether a hole-punch or truncation needs to split a huge page,
869  * returning true if no split was required, or the split has been successful.
870  *
871  * Eviction (or truncation to 0 size) should never need to split a huge page;
872  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873  * head, and then succeeded to trylock on tail.
874  *
875  * A split can only succeed when there are no additional references on the
876  * huge page: so the split below relies upon find_get_entries() having stopped
877  * when it found a subpage of the huge page, without getting further references.
878  */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881         if (!PageTransCompound(page))
882                 return true;
883
884         /* Just proceed to delete a huge page wholly within the range punched */
885         if (PageHead(page) &&
886             page->index >= start && page->index + HPAGE_PMD_NR <= end)
887                 return true;
888
889         /* Try to split huge page, so we can truly punch the hole or truncate */
890         return split_huge_page(page) >= 0;
891 }
892
893 /*
894  * Remove range of pages and swap entries from page cache, and free them.
895  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896  */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898                                                                  bool unfalloc)
899 {
900         struct address_space *mapping = inode->i_mapping;
901         struct shmem_inode_info *info = SHMEM_I(inode);
902         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906         struct pagevec pvec;
907         pgoff_t indices[PAGEVEC_SIZE];
908         long nr_swaps_freed = 0;
909         pgoff_t index;
910         int i;
911
912         if (lend == -1)
913                 end = -1;       /* unsigned, so actually very big */
914
915         pagevec_init(&pvec);
916         index = start;
917         while (index < end) {
918                 pvec.nr = find_get_entries(mapping, index,
919                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
920                         pvec.pages, indices);
921                 if (!pvec.nr)
922                         break;
923                 for (i = 0; i < pagevec_count(&pvec); i++) {
924                         struct page *page = pvec.pages[i];
925
926                         index = indices[i];
927                         if (index >= end)
928                                 break;
929
930                         if (xa_is_value(page)) {
931                                 if (unfalloc)
932                                         continue;
933                                 nr_swaps_freed += !shmem_free_swap(mapping,
934                                                                 index, page);
935                                 continue;
936                         }
937
938                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939
940                         if (!trylock_page(page))
941                                 continue;
942
943                         if ((!unfalloc || !PageUptodate(page)) &&
944                             page_mapping(page) == mapping) {
945                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
946                                 if (shmem_punch_compound(page, start, end))
947                                         truncate_inode_page(mapping, page);
948                         }
949                         unlock_page(page);
950                 }
951                 pagevec_remove_exceptionals(&pvec);
952                 pagevec_release(&pvec);
953                 cond_resched();
954                 index++;
955         }
956
957         if (partial_start) {
958                 struct page *page = NULL;
959                 shmem_getpage(inode, start - 1, &page, SGP_READ);
960                 if (page) {
961                         unsigned int top = PAGE_SIZE;
962                         if (start > end) {
963                                 top = partial_end;
964                                 partial_end = 0;
965                         }
966                         zero_user_segment(page, partial_start, top);
967                         set_page_dirty(page);
968                         unlock_page(page);
969                         put_page(page);
970                 }
971         }
972         if (partial_end) {
973                 struct page *page = NULL;
974                 shmem_getpage(inode, end, &page, SGP_READ);
975                 if (page) {
976                         zero_user_segment(page, 0, partial_end);
977                         set_page_dirty(page);
978                         unlock_page(page);
979                         put_page(page);
980                 }
981         }
982         if (start >= end)
983                 return;
984
985         index = start;
986         while (index < end) {
987                 cond_resched();
988
989                 pvec.nr = find_get_entries(mapping, index,
990                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
991                                 pvec.pages, indices);
992                 if (!pvec.nr) {
993                         /* If all gone or hole-punch or unfalloc, we're done */
994                         if (index == start || end != -1)
995                                 break;
996                         /* But if truncating, restart to make sure all gone */
997                         index = start;
998                         continue;
999                 }
1000                 for (i = 0; i < pagevec_count(&pvec); i++) {
1001                         struct page *page = pvec.pages[i];
1002
1003                         index = indices[i];
1004                         if (index >= end)
1005                                 break;
1006
1007                         if (xa_is_value(page)) {
1008                                 if (unfalloc)
1009                                         continue;
1010                                 if (shmem_free_swap(mapping, index, page)) {
1011                                         /* Swap was replaced by page: retry */
1012                                         index--;
1013                                         break;
1014                                 }
1015                                 nr_swaps_freed++;
1016                                 continue;
1017                         }
1018
1019                         lock_page(page);
1020
1021                         if (!unfalloc || !PageUptodate(page)) {
1022                                 if (page_mapping(page) != mapping) {
1023                                         /* Page was replaced by swap: retry */
1024                                         unlock_page(page);
1025                                         index--;
1026                                         break;
1027                                 }
1028                                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029                                 if (shmem_punch_compound(page, start, end))
1030                                         truncate_inode_page(mapping, page);
1031                                 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032                                         /* Wipe the page and don't get stuck */
1033                                         clear_highpage(page);
1034                                         flush_dcache_page(page);
1035                                         set_page_dirty(page);
1036                                         if (index <
1037                                             round_up(start, HPAGE_PMD_NR))
1038                                                 start = index + 1;
1039                                 }
1040                         }
1041                         unlock_page(page);
1042                 }
1043                 pagevec_remove_exceptionals(&pvec);
1044                 pagevec_release(&pvec);
1045                 index++;
1046         }
1047
1048         spin_lock_irq(&info->lock);
1049         info->swapped -= nr_swaps_freed;
1050         shmem_recalc_inode(inode);
1051         spin_unlock_irq(&info->lock);
1052 }
1053
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056         shmem_undo_range(inode, lstart, lend, false);
1057         inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062                          u32 request_mask, unsigned int query_flags)
1063 {
1064         struct inode *inode = path->dentry->d_inode;
1065         struct shmem_inode_info *info = SHMEM_I(inode);
1066         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067
1068         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069                 spin_lock_irq(&info->lock);
1070                 shmem_recalc_inode(inode);
1071                 spin_unlock_irq(&info->lock);
1072         }
1073         generic_fillattr(inode, stat);
1074
1075         if (is_huge_enabled(sb_info))
1076                 stat->blksize = HPAGE_PMD_SIZE;
1077
1078         return 0;
1079 }
1080
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083         struct inode *inode = d_inode(dentry);
1084         struct shmem_inode_info *info = SHMEM_I(inode);
1085         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086         int error;
1087
1088         error = setattr_prepare(dentry, attr);
1089         if (error)
1090                 return error;
1091
1092         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093                 loff_t oldsize = inode->i_size;
1094                 loff_t newsize = attr->ia_size;
1095
1096                 /* protected by i_mutex */
1097                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099                         return -EPERM;
1100
1101                 if (newsize != oldsize) {
1102                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103                                         oldsize, newsize);
1104                         if (error)
1105                                 return error;
1106                         i_size_write(inode, newsize);
1107                         inode->i_ctime = inode->i_mtime = current_time(inode);
1108                 }
1109                 if (newsize <= oldsize) {
1110                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111                         if (oldsize > holebegin)
1112                                 unmap_mapping_range(inode->i_mapping,
1113                                                         holebegin, 0, 1);
1114                         if (info->alloced)
1115                                 shmem_truncate_range(inode,
1116                                                         newsize, (loff_t)-1);
1117                         /* unmap again to remove racily COWed private pages */
1118                         if (oldsize > holebegin)
1119                                 unmap_mapping_range(inode->i_mapping,
1120                                                         holebegin, 0, 1);
1121
1122                         /*
1123                          * Part of the huge page can be beyond i_size: subject
1124                          * to shrink under memory pressure.
1125                          */
1126                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127                                 spin_lock(&sbinfo->shrinklist_lock);
1128                                 /*
1129                                  * _careful to defend against unlocked access to
1130                                  * ->shrink_list in shmem_unused_huge_shrink()
1131                                  */
1132                                 if (list_empty_careful(&info->shrinklist)) {
1133                                         list_add_tail(&info->shrinklist,
1134                                                         &sbinfo->shrinklist);
1135                                         sbinfo->shrinklist_len++;
1136                                 }
1137                                 spin_unlock(&sbinfo->shrinklist_lock);
1138                         }
1139                 }
1140         }
1141
1142         setattr_copy(inode, attr);
1143         if (attr->ia_valid & ATTR_MODE)
1144                 error = posix_acl_chmod(inode, inode->i_mode);
1145         return error;
1146 }
1147
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150         struct shmem_inode_info *info = SHMEM_I(inode);
1151         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152
1153         if (inode->i_mapping->a_ops == &shmem_aops) {
1154                 shmem_unacct_size(info->flags, inode->i_size);
1155                 inode->i_size = 0;
1156                 shmem_truncate_range(inode, 0, (loff_t)-1);
1157                 if (!list_empty(&info->shrinklist)) {
1158                         spin_lock(&sbinfo->shrinklist_lock);
1159                         if (!list_empty(&info->shrinklist)) {
1160                                 list_del_init(&info->shrinklist);
1161                                 sbinfo->shrinklist_len--;
1162                         }
1163                         spin_unlock(&sbinfo->shrinklist_lock);
1164                 }
1165                 while (!list_empty(&info->swaplist)) {
1166                         /* Wait while shmem_unuse() is scanning this inode... */
1167                         wait_var_event(&info->stop_eviction,
1168                                        !atomic_read(&info->stop_eviction));
1169                         mutex_lock(&shmem_swaplist_mutex);
1170                         /* ...but beware of the race if we peeked too early */
1171                         if (!atomic_read(&info->stop_eviction))
1172                                 list_del_init(&info->swaplist);
1173                         mutex_unlock(&shmem_swaplist_mutex);
1174                 }
1175         }
1176
1177         simple_xattrs_free(&info->xattrs);
1178         WARN_ON(inode->i_blocks);
1179         shmem_free_inode(inode->i_sb);
1180         clear_inode(inode);
1181 }
1182
1183 extern struct swap_info_struct *swap_info[];
1184
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186                                    pgoff_t start, unsigned int nr_entries,
1187                                    struct page **entries, pgoff_t *indices,
1188                                    unsigned int type, bool frontswap)
1189 {
1190         XA_STATE(xas, &mapping->i_pages, start);
1191         struct page *page;
1192         swp_entry_t entry;
1193         unsigned int ret = 0;
1194
1195         if (!nr_entries)
1196                 return 0;
1197
1198         rcu_read_lock();
1199         xas_for_each(&xas, page, ULONG_MAX) {
1200                 if (xas_retry(&xas, page))
1201                         continue;
1202
1203                 if (!xa_is_value(page))
1204                         continue;
1205
1206                 entry = radix_to_swp_entry(page);
1207                 if (swp_type(entry) != type)
1208                         continue;
1209                 if (frontswap &&
1210                     !frontswap_test(swap_info[type], swp_offset(entry)))
1211                         continue;
1212
1213                 indices[ret] = xas.xa_index;
1214                 entries[ret] = page;
1215
1216                 if (need_resched()) {
1217                         xas_pause(&xas);
1218                         cond_resched_rcu();
1219                 }
1220                 if (++ret == nr_entries)
1221                         break;
1222         }
1223         rcu_read_unlock();
1224
1225         return ret;
1226 }
1227
1228 /*
1229  * Move the swapped pages for an inode to page cache. Returns the count
1230  * of pages swapped in, or the error in case of failure.
1231  */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233                                     pgoff_t *indices)
1234 {
1235         int i = 0;
1236         int ret = 0;
1237         int error = 0;
1238         struct address_space *mapping = inode->i_mapping;
1239
1240         for (i = 0; i < pvec.nr; i++) {
1241                 struct page *page = pvec.pages[i];
1242
1243                 if (!xa_is_value(page))
1244                         continue;
1245                 error = shmem_swapin_page(inode, indices[i],
1246                                           &page, SGP_CACHE,
1247                                           mapping_gfp_mask(mapping),
1248                                           NULL, NULL);
1249                 if (error == 0) {
1250                         unlock_page(page);
1251                         put_page(page);
1252                         ret++;
1253                 }
1254                 if (error == -ENOMEM)
1255                         break;
1256                 error = 0;
1257         }
1258         return error ? error : ret;
1259 }
1260
1261 /*
1262  * If swap found in inode, free it and move page from swapcache to filecache.
1263  */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265                              bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267         struct address_space *mapping = inode->i_mapping;
1268         pgoff_t start = 0;
1269         struct pagevec pvec;
1270         pgoff_t indices[PAGEVEC_SIZE];
1271         bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272         int ret = 0;
1273
1274         pagevec_init(&pvec);
1275         do {
1276                 unsigned int nr_entries = PAGEVEC_SIZE;
1277
1278                 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279                         nr_entries = *fs_pages_to_unuse;
1280
1281                 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282                                                   pvec.pages, indices,
1283                                                   type, frontswap);
1284                 if (pvec.nr == 0) {
1285                         ret = 0;
1286                         break;
1287                 }
1288
1289                 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290                 if (ret < 0)
1291                         break;
1292
1293                 if (frontswap_partial) {
1294                         *fs_pages_to_unuse -= ret;
1295                         if (*fs_pages_to_unuse == 0) {
1296                                 ret = FRONTSWAP_PAGES_UNUSED;
1297                                 break;
1298                         }
1299                 }
1300
1301                 start = indices[pvec.nr - 1];
1302         } while (true);
1303
1304         return ret;
1305 }
1306
1307 /*
1308  * Read all the shared memory data that resides in the swap
1309  * device 'type' back into memory, so the swap device can be
1310  * unused.
1311  */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313                 unsigned long *fs_pages_to_unuse)
1314 {
1315         struct shmem_inode_info *info, *next;
1316         int error = 0;
1317
1318         if (list_empty(&shmem_swaplist))
1319                 return 0;
1320
1321         mutex_lock(&shmem_swaplist_mutex);
1322         list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323                 if (!info->swapped) {
1324                         list_del_init(&info->swaplist);
1325                         continue;
1326                 }
1327                 /*
1328                  * Drop the swaplist mutex while searching the inode for swap;
1329                  * but before doing so, make sure shmem_evict_inode() will not
1330                  * remove placeholder inode from swaplist, nor let it be freed
1331                  * (igrab() would protect from unlink, but not from unmount).
1332                  */
1333                 atomic_inc(&info->stop_eviction);
1334                 mutex_unlock(&shmem_swaplist_mutex);
1335
1336                 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337                                           fs_pages_to_unuse);
1338                 cond_resched();
1339
1340                 mutex_lock(&shmem_swaplist_mutex);
1341                 next = list_next_entry(info, swaplist);
1342                 if (!info->swapped)
1343                         list_del_init(&info->swaplist);
1344                 if (atomic_dec_and_test(&info->stop_eviction))
1345                         wake_up_var(&info->stop_eviction);
1346                 if (error)
1347                         break;
1348         }
1349         mutex_unlock(&shmem_swaplist_mutex);
1350
1351         return error;
1352 }
1353
1354 /*
1355  * Move the page from the page cache to the swap cache.
1356  */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359         struct shmem_inode_info *info;
1360         struct address_space *mapping;
1361         struct inode *inode;
1362         swp_entry_t swap;
1363         pgoff_t index;
1364
1365         VM_BUG_ON_PAGE(PageCompound(page), page);
1366         BUG_ON(!PageLocked(page));
1367         mapping = page->mapping;
1368         index = page->index;
1369         inode = mapping->host;
1370         info = SHMEM_I(inode);
1371         if (info->flags & VM_LOCKED)
1372                 goto redirty;
1373         if (!total_swap_pages)
1374                 goto redirty;
1375
1376         /*
1377          * Our capabilities prevent regular writeback or sync from ever calling
1378          * shmem_writepage; but a stacking filesystem might use ->writepage of
1379          * its underlying filesystem, in which case tmpfs should write out to
1380          * swap only in response to memory pressure, and not for the writeback
1381          * threads or sync.
1382          */
1383         if (!wbc->for_reclaim) {
1384                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1385                 goto redirty;
1386         }
1387
1388         /*
1389          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390          * value into swapfile.c, the only way we can correctly account for a
1391          * fallocated page arriving here is now to initialize it and write it.
1392          *
1393          * That's okay for a page already fallocated earlier, but if we have
1394          * not yet completed the fallocation, then (a) we want to keep track
1395          * of this page in case we have to undo it, and (b) it may not be a
1396          * good idea to continue anyway, once we're pushing into swap.  So
1397          * reactivate the page, and let shmem_fallocate() quit when too many.
1398          */
1399         if (!PageUptodate(page)) {
1400                 if (inode->i_private) {
1401                         struct shmem_falloc *shmem_falloc;
1402                         spin_lock(&inode->i_lock);
1403                         shmem_falloc = inode->i_private;
1404                         if (shmem_falloc &&
1405                             !shmem_falloc->waitq &&
1406                             index >= shmem_falloc->start &&
1407                             index < shmem_falloc->next)
1408                                 shmem_falloc->nr_unswapped++;
1409                         else
1410                                 shmem_falloc = NULL;
1411                         spin_unlock(&inode->i_lock);
1412                         if (shmem_falloc)
1413                                 goto redirty;
1414                 }
1415                 clear_highpage(page);
1416                 flush_dcache_page(page);
1417                 SetPageUptodate(page);
1418         }
1419
1420         swap = get_swap_page(page);
1421         if (!swap.val)
1422                 goto redirty;
1423
1424         /*
1425          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426          * if it's not already there.  Do it now before the page is
1427          * moved to swap cache, when its pagelock no longer protects
1428          * the inode from eviction.  But don't unlock the mutex until
1429          * we've incremented swapped, because shmem_unuse_inode() will
1430          * prune a !swapped inode from the swaplist under this mutex.
1431          */
1432         mutex_lock(&shmem_swaplist_mutex);
1433         if (list_empty(&info->swaplist))
1434                 list_add(&info->swaplist, &shmem_swaplist);
1435
1436         if (add_to_swap_cache(page, swap,
1437                         __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1438                         NULL) == 0) {
1439                 spin_lock_irq(&info->lock);
1440                 shmem_recalc_inode(inode);
1441                 info->swapped++;
1442                 spin_unlock_irq(&info->lock);
1443
1444                 swap_shmem_alloc(swap);
1445                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1446
1447                 mutex_unlock(&shmem_swaplist_mutex);
1448                 BUG_ON(page_mapped(page));
1449                 swap_writepage(page, wbc);
1450                 return 0;
1451         }
1452
1453         mutex_unlock(&shmem_swaplist_mutex);
1454         put_swap_page(page, swap);
1455 redirty:
1456         set_page_dirty(page);
1457         if (wbc->for_reclaim)
1458                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1459         unlock_page(page);
1460         return 0;
1461 }
1462
1463 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1464 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466         char buffer[64];
1467
1468         if (!mpol || mpol->mode == MPOL_DEFAULT)
1469                 return;         /* show nothing */
1470
1471         mpol_to_str(buffer, sizeof(buffer), mpol);
1472
1473         seq_printf(seq, ",mpol=%s", buffer);
1474 }
1475
1476 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1477 {
1478         struct mempolicy *mpol = NULL;
1479         if (sbinfo->mpol) {
1480                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1481                 mpol = sbinfo->mpol;
1482                 mpol_get(mpol);
1483                 spin_unlock(&sbinfo->stat_lock);
1484         }
1485         return mpol;
1486 }
1487 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1488 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1489 {
1490 }
1491 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493         return NULL;
1494 }
1495 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1496 #ifndef CONFIG_NUMA
1497 #define vm_policy vm_private_data
1498 #endif
1499
1500 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1501                 struct shmem_inode_info *info, pgoff_t index)
1502 {
1503         /* Create a pseudo vma that just contains the policy */
1504         vma_init(vma, NULL);
1505         /* Bias interleave by inode number to distribute better across nodes */
1506         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1507         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1508 }
1509
1510 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1511 {
1512         /* Drop reference taken by mpol_shared_policy_lookup() */
1513         mpol_cond_put(vma->vm_policy);
1514 }
1515
1516 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1517                         struct shmem_inode_info *info, pgoff_t index)
1518 {
1519         struct vm_area_struct pvma;
1520         struct page *page;
1521         struct vm_fault vmf;
1522
1523         shmem_pseudo_vma_init(&pvma, info, index);
1524         vmf.vma = &pvma;
1525         vmf.address = 0;
1526         page = swap_cluster_readahead(swap, gfp, &vmf);
1527         shmem_pseudo_vma_destroy(&pvma);
1528
1529         return page;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533                 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535         struct vm_area_struct pvma;
1536         struct address_space *mapping = info->vfs_inode.i_mapping;
1537         pgoff_t hindex;
1538         struct page *page;
1539
1540         hindex = round_down(index, HPAGE_PMD_NR);
1541         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542                                                                 XA_PRESENT))
1543                 return NULL;
1544
1545         shmem_pseudo_vma_init(&pvma, info, hindex);
1546         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1547                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1548         shmem_pseudo_vma_destroy(&pvma);
1549         if (page)
1550                 prep_transhuge_page(page);
1551         else
1552                 count_vm_event(THP_FILE_FALLBACK);
1553         return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557                         struct shmem_inode_info *info, pgoff_t index)
1558 {
1559         struct vm_area_struct pvma;
1560         struct page *page;
1561
1562         shmem_pseudo_vma_init(&pvma, info, index);
1563         page = alloc_page_vma(gfp, &pvma, 0);
1564         shmem_pseudo_vma_destroy(&pvma);
1565
1566         return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570                 struct inode *inode,
1571                 pgoff_t index, bool huge)
1572 {
1573         struct shmem_inode_info *info = SHMEM_I(inode);
1574         struct page *page;
1575         int nr;
1576         int err = -ENOSPC;
1577
1578         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579                 huge = false;
1580         nr = huge ? HPAGE_PMD_NR : 1;
1581
1582         if (!shmem_inode_acct_block(inode, nr))
1583                 goto failed;
1584
1585         if (huge)
1586                 page = shmem_alloc_hugepage(gfp, info, index);
1587         else
1588                 page = shmem_alloc_page(gfp, info, index);
1589         if (page) {
1590                 __SetPageLocked(page);
1591                 __SetPageSwapBacked(page);
1592                 return page;
1593         }
1594
1595         err = -ENOMEM;
1596         shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598         return ERR_PTR(err);
1599 }
1600
1601 /*
1602  * When a page is moved from swapcache to shmem filecache (either by the
1603  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605  * ignorance of the mapping it belongs to.  If that mapping has special
1606  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607  * we may need to copy to a suitable page before moving to filecache.
1608  *
1609  * In a future release, this may well be extended to respect cpuset and
1610  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611  * but for now it is a simple matter of zone.
1612  */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615         return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619                                 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621         struct page *oldpage, *newpage;
1622         struct address_space *swap_mapping;
1623         swp_entry_t entry;
1624         pgoff_t swap_index;
1625         int error;
1626
1627         oldpage = *pagep;
1628         entry.val = page_private(oldpage);
1629         swap_index = swp_offset(entry);
1630         swap_mapping = page_mapping(oldpage);
1631
1632         /*
1633          * We have arrived here because our zones are constrained, so don't
1634          * limit chance of success by further cpuset and node constraints.
1635          */
1636         gfp &= ~GFP_CONSTRAINT_MASK;
1637         newpage = shmem_alloc_page(gfp, info, index);
1638         if (!newpage)
1639                 return -ENOMEM;
1640
1641         get_page(newpage);
1642         copy_highpage(newpage, oldpage);
1643         flush_dcache_page(newpage);
1644
1645         __SetPageLocked(newpage);
1646         __SetPageSwapBacked(newpage);
1647         SetPageUptodate(newpage);
1648         set_page_private(newpage, entry.val);
1649         SetPageSwapCache(newpage);
1650
1651         /*
1652          * Our caller will very soon move newpage out of swapcache, but it's
1653          * a nice clean interface for us to replace oldpage by newpage there.
1654          */
1655         xa_lock_irq(&swap_mapping->i_pages);
1656         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657         if (!error) {
1658                 mem_cgroup_migrate(oldpage, newpage);
1659                 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660                 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661         }
1662         xa_unlock_irq(&swap_mapping->i_pages);
1663
1664         if (unlikely(error)) {
1665                 /*
1666                  * Is this possible?  I think not, now that our callers check
1667                  * both PageSwapCache and page_private after getting page lock;
1668                  * but be defensive.  Reverse old to newpage for clear and free.
1669                  */
1670                 oldpage = newpage;
1671         } else {
1672                 lru_cache_add(newpage);
1673                 *pagep = newpage;
1674         }
1675
1676         ClearPageSwapCache(oldpage);
1677         set_page_private(oldpage, 0);
1678
1679         unlock_page(oldpage);
1680         put_page(oldpage);
1681         put_page(oldpage);
1682         return error;
1683 }
1684
1685 /*
1686  * Swap in the page pointed to by *pagep.
1687  * Caller has to make sure that *pagep contains a valid swapped page.
1688  * Returns 0 and the page in pagep if success. On failure, returns the
1689  * error code and NULL in *pagep.
1690  */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692                              struct page **pagep, enum sgp_type sgp,
1693                              gfp_t gfp, struct vm_area_struct *vma,
1694                              vm_fault_t *fault_type)
1695 {
1696         struct address_space *mapping = inode->i_mapping;
1697         struct shmem_inode_info *info = SHMEM_I(inode);
1698         struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1699         struct page *page;
1700         swp_entry_t swap;
1701         int error;
1702
1703         VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704         swap = radix_to_swp_entry(*pagep);
1705         *pagep = NULL;
1706
1707         /* Look it up and read it in.. */
1708         page = lookup_swap_cache(swap, NULL, 0);
1709         if (!page) {
1710                 /* Or update major stats only when swapin succeeds?? */
1711                 if (fault_type) {
1712                         *fault_type |= VM_FAULT_MAJOR;
1713                         count_vm_event(PGMAJFAULT);
1714                         count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715                 }
1716                 /* Here we actually start the io */
1717                 page = shmem_swapin(swap, gfp, info, index);
1718                 if (!page) {
1719                         error = -ENOMEM;
1720                         goto failed;
1721                 }
1722         }
1723
1724         /* We have to do this with page locked to prevent races */
1725         lock_page(page);
1726         if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727             !shmem_confirm_swap(mapping, index, swap)) {
1728                 error = -EEXIST;
1729                 goto unlock;
1730         }
1731         if (!PageUptodate(page)) {
1732                 error = -EIO;
1733                 goto failed;
1734         }
1735         wait_on_page_writeback(page);
1736
1737         if (shmem_should_replace_page(page, gfp)) {
1738                 error = shmem_replace_page(&page, gfp, info, index);
1739                 if (error)
1740                         goto failed;
1741         }
1742
1743         error = shmem_add_to_page_cache(page, mapping, index,
1744                                         swp_to_radix_entry(swap), gfp,
1745                                         charge_mm);
1746         if (error)
1747                 goto failed;
1748
1749         spin_lock_irq(&info->lock);
1750         info->swapped--;
1751         shmem_recalc_inode(inode);
1752         spin_unlock_irq(&info->lock);
1753
1754         if (sgp == SGP_WRITE)
1755                 mark_page_accessed(page);
1756
1757         delete_from_swap_cache(page);
1758         set_page_dirty(page);
1759         swap_free(swap);
1760
1761         *pagep = page;
1762         return 0;
1763 failed:
1764         if (!shmem_confirm_swap(mapping, index, swap))
1765                 error = -EEXIST;
1766 unlock:
1767         if (page) {
1768                 unlock_page(page);
1769                 put_page(page);
1770         }
1771
1772         return error;
1773 }
1774
1775 /*
1776  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777  *
1778  * If we allocate a new one we do not mark it dirty. That's up to the
1779  * vm. If we swap it in we mark it dirty since we also free the swap
1780  * entry since a page cannot live in both the swap and page cache.
1781  *
1782  * vmf and fault_type are only supplied by shmem_fault:
1783  * otherwise they are NULL.
1784  */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787         struct vm_area_struct *vma, struct vm_fault *vmf,
1788                         vm_fault_t *fault_type)
1789 {
1790         struct address_space *mapping = inode->i_mapping;
1791         struct shmem_inode_info *info = SHMEM_I(inode);
1792         struct shmem_sb_info *sbinfo;
1793         struct mm_struct *charge_mm;
1794         struct page *page;
1795         enum sgp_type sgp_huge = sgp;
1796         pgoff_t hindex = index;
1797         int error;
1798         int once = 0;
1799         int alloced = 0;
1800
1801         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802                 return -EFBIG;
1803         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1804                 sgp = SGP_CACHE;
1805 repeat:
1806         if (sgp <= SGP_CACHE &&
1807             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1808                 return -EINVAL;
1809         }
1810
1811         sbinfo = SHMEM_SB(inode->i_sb);
1812         charge_mm = vma ? vma->vm_mm : current->mm;
1813
1814         page = find_lock_entry(mapping, index);
1815         if (xa_is_value(page)) {
1816                 error = shmem_swapin_page(inode, index, &page,
1817                                           sgp, gfp, vma, fault_type);
1818                 if (error == -EEXIST)
1819                         goto repeat;
1820
1821                 *pagep = page;
1822                 return error;
1823         }
1824
1825         if (page && sgp == SGP_WRITE)
1826                 mark_page_accessed(page);
1827
1828         /* fallocated page? */
1829         if (page && !PageUptodate(page)) {
1830                 if (sgp != SGP_READ)
1831                         goto clear;
1832                 unlock_page(page);
1833                 put_page(page);
1834                 page = NULL;
1835         }
1836         if (page || sgp == SGP_READ) {
1837                 *pagep = page;
1838                 return 0;
1839         }
1840
1841         /*
1842          * Fast cache lookup did not find it:
1843          * bring it back from swap or allocate.
1844          */
1845
1846         if (vma && userfaultfd_missing(vma)) {
1847                 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1848                 return 0;
1849         }
1850
1851         /* shmem_symlink() */
1852         if (mapping->a_ops != &shmem_aops)
1853                 goto alloc_nohuge;
1854         if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1855                 goto alloc_nohuge;
1856         if (shmem_huge == SHMEM_HUGE_FORCE)
1857                 goto alloc_huge;
1858         switch (sbinfo->huge) {
1859         case SHMEM_HUGE_NEVER:
1860                 goto alloc_nohuge;
1861         case SHMEM_HUGE_WITHIN_SIZE: {
1862                 loff_t i_size;
1863                 pgoff_t off;
1864
1865                 off = round_up(index, HPAGE_PMD_NR);
1866                 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1867                 if (i_size >= HPAGE_PMD_SIZE &&
1868                     i_size >> PAGE_SHIFT >= off)
1869                         goto alloc_huge;
1870
1871                 fallthrough;
1872         }
1873         case SHMEM_HUGE_ADVISE:
1874                 if (sgp_huge == SGP_HUGE)
1875                         goto alloc_huge;
1876                 /* TODO: implement fadvise() hints */
1877                 goto alloc_nohuge;
1878         }
1879
1880 alloc_huge:
1881         page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1882         if (IS_ERR(page)) {
1883 alloc_nohuge:
1884                 page = shmem_alloc_and_acct_page(gfp, inode,
1885                                                  index, false);
1886         }
1887         if (IS_ERR(page)) {
1888                 int retry = 5;
1889
1890                 error = PTR_ERR(page);
1891                 page = NULL;
1892                 if (error != -ENOSPC)
1893                         goto unlock;
1894                 /*
1895                  * Try to reclaim some space by splitting a huge page
1896                  * beyond i_size on the filesystem.
1897                  */
1898                 while (retry--) {
1899                         int ret;
1900
1901                         ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1902                         if (ret == SHRINK_STOP)
1903                                 break;
1904                         if (ret)
1905                                 goto alloc_nohuge;
1906                 }
1907                 goto unlock;
1908         }
1909
1910         if (PageTransHuge(page))
1911                 hindex = round_down(index, HPAGE_PMD_NR);
1912         else
1913                 hindex = index;
1914
1915         if (sgp == SGP_WRITE)
1916                 __SetPageReferenced(page);
1917
1918         error = shmem_add_to_page_cache(page, mapping, hindex,
1919                                         NULL, gfp & GFP_RECLAIM_MASK,
1920                                         charge_mm);
1921         if (error)
1922                 goto unacct;
1923         lru_cache_add(page);
1924
1925         spin_lock_irq(&info->lock);
1926         info->alloced += compound_nr(page);
1927         inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1928         shmem_recalc_inode(inode);
1929         spin_unlock_irq(&info->lock);
1930         alloced = true;
1931
1932         if (PageTransHuge(page) &&
1933             DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1934                         hindex + HPAGE_PMD_NR - 1) {
1935                 /*
1936                  * Part of the huge page is beyond i_size: subject
1937                  * to shrink under memory pressure.
1938                  */
1939                 spin_lock(&sbinfo->shrinklist_lock);
1940                 /*
1941                  * _careful to defend against unlocked access to
1942                  * ->shrink_list in shmem_unused_huge_shrink()
1943                  */
1944                 if (list_empty_careful(&info->shrinklist)) {
1945                         list_add_tail(&info->shrinklist,
1946                                       &sbinfo->shrinklist);
1947                         sbinfo->shrinklist_len++;
1948                 }
1949                 spin_unlock(&sbinfo->shrinklist_lock);
1950         }
1951
1952         /*
1953          * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1954          */
1955         if (sgp == SGP_FALLOC)
1956                 sgp = SGP_WRITE;
1957 clear:
1958         /*
1959          * Let SGP_WRITE caller clear ends if write does not fill page;
1960          * but SGP_FALLOC on a page fallocated earlier must initialize
1961          * it now, lest undo on failure cancel our earlier guarantee.
1962          */
1963         if (sgp != SGP_WRITE && !PageUptodate(page)) {
1964                 struct page *head = compound_head(page);
1965                 int i;
1966
1967                 for (i = 0; i < compound_nr(head); i++) {
1968                         clear_highpage(head + i);
1969                         flush_dcache_page(head + i);
1970                 }
1971                 SetPageUptodate(head);
1972         }
1973
1974         /* Perhaps the file has been truncated since we checked */
1975         if (sgp <= SGP_CACHE &&
1976             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1977                 if (alloced) {
1978                         ClearPageDirty(page);
1979                         delete_from_page_cache(page);
1980                         spin_lock_irq(&info->lock);
1981                         shmem_recalc_inode(inode);
1982                         spin_unlock_irq(&info->lock);
1983                 }
1984                 error = -EINVAL;
1985                 goto unlock;
1986         }
1987         *pagep = page + index - hindex;
1988         return 0;
1989
1990         /*
1991          * Error recovery.
1992          */
1993 unacct:
1994         shmem_inode_unacct_blocks(inode, compound_nr(page));
1995
1996         if (PageTransHuge(page)) {
1997                 unlock_page(page);
1998                 put_page(page);
1999                 goto alloc_nohuge;
2000         }
2001 unlock:
2002         if (page) {
2003                 unlock_page(page);
2004                 put_page(page);
2005         }
2006         if (error == -ENOSPC && !once++) {
2007                 spin_lock_irq(&info->lock);
2008                 shmem_recalc_inode(inode);
2009                 spin_unlock_irq(&info->lock);
2010                 goto repeat;
2011         }
2012         if (error == -EEXIST)
2013                 goto repeat;
2014         return error;
2015 }
2016
2017 /*
2018  * This is like autoremove_wake_function, but it removes the wait queue
2019  * entry unconditionally - even if something else had already woken the
2020  * target.
2021  */
2022 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2023 {
2024         int ret = default_wake_function(wait, mode, sync, key);
2025         list_del_init(&wait->entry);
2026         return ret;
2027 }
2028
2029 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2030 {
2031         struct vm_area_struct *vma = vmf->vma;
2032         struct inode *inode = file_inode(vma->vm_file);
2033         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2034         enum sgp_type sgp;
2035         int err;
2036         vm_fault_t ret = VM_FAULT_LOCKED;
2037
2038         /*
2039          * Trinity finds that probing a hole which tmpfs is punching can
2040          * prevent the hole-punch from ever completing: which in turn
2041          * locks writers out with its hold on i_mutex.  So refrain from
2042          * faulting pages into the hole while it's being punched.  Although
2043          * shmem_undo_range() does remove the additions, it may be unable to
2044          * keep up, as each new page needs its own unmap_mapping_range() call,
2045          * and the i_mmap tree grows ever slower to scan if new vmas are added.
2046          *
2047          * It does not matter if we sometimes reach this check just before the
2048          * hole-punch begins, so that one fault then races with the punch:
2049          * we just need to make racing faults a rare case.
2050          *
2051          * The implementation below would be much simpler if we just used a
2052          * standard mutex or completion: but we cannot take i_mutex in fault,
2053          * and bloating every shmem inode for this unlikely case would be sad.
2054          */
2055         if (unlikely(inode->i_private)) {
2056                 struct shmem_falloc *shmem_falloc;
2057
2058                 spin_lock(&inode->i_lock);
2059                 shmem_falloc = inode->i_private;
2060                 if (shmem_falloc &&
2061                     shmem_falloc->waitq &&
2062                     vmf->pgoff >= shmem_falloc->start &&
2063                     vmf->pgoff < shmem_falloc->next) {
2064                         struct file *fpin;
2065                         wait_queue_head_t *shmem_falloc_waitq;
2066                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2067
2068                         ret = VM_FAULT_NOPAGE;
2069                         fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2070                         if (fpin)
2071                                 ret = VM_FAULT_RETRY;
2072
2073                         shmem_falloc_waitq = shmem_falloc->waitq;
2074                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2075                                         TASK_UNINTERRUPTIBLE);
2076                         spin_unlock(&inode->i_lock);
2077                         schedule();
2078
2079                         /*
2080                          * shmem_falloc_waitq points into the shmem_fallocate()
2081                          * stack of the hole-punching task: shmem_falloc_waitq
2082                          * is usually invalid by the time we reach here, but
2083                          * finish_wait() does not dereference it in that case;
2084                          * though i_lock needed lest racing with wake_up_all().
2085                          */
2086                         spin_lock(&inode->i_lock);
2087                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2088                         spin_unlock(&inode->i_lock);
2089
2090                         if (fpin)
2091                                 fput(fpin);
2092                         return ret;
2093                 }
2094                 spin_unlock(&inode->i_lock);
2095         }
2096
2097         sgp = SGP_CACHE;
2098
2099         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2100             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2101                 sgp = SGP_NOHUGE;
2102         else if (vma->vm_flags & VM_HUGEPAGE)
2103                 sgp = SGP_HUGE;
2104
2105         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2106                                   gfp, vma, vmf, &ret);
2107         if (err)
2108                 return vmf_error(err);
2109         return ret;
2110 }
2111
2112 unsigned long shmem_get_unmapped_area(struct file *file,
2113                                       unsigned long uaddr, unsigned long len,
2114                                       unsigned long pgoff, unsigned long flags)
2115 {
2116         unsigned long (*get_area)(struct file *,
2117                 unsigned long, unsigned long, unsigned long, unsigned long);
2118         unsigned long addr;
2119         unsigned long offset;
2120         unsigned long inflated_len;
2121         unsigned long inflated_addr;
2122         unsigned long inflated_offset;
2123
2124         if (len > TASK_SIZE)
2125                 return -ENOMEM;
2126
2127         get_area = current->mm->get_unmapped_area;
2128         addr = get_area(file, uaddr, len, pgoff, flags);
2129
2130         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2131                 return addr;
2132         if (IS_ERR_VALUE(addr))
2133                 return addr;
2134         if (addr & ~PAGE_MASK)
2135                 return addr;
2136         if (addr > TASK_SIZE - len)
2137                 return addr;
2138
2139         if (shmem_huge == SHMEM_HUGE_DENY)
2140                 return addr;
2141         if (len < HPAGE_PMD_SIZE)
2142                 return addr;
2143         if (flags & MAP_FIXED)
2144                 return addr;
2145         /*
2146          * Our priority is to support MAP_SHARED mapped hugely;
2147          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2148          * But if caller specified an address hint and we allocated area there
2149          * successfully, respect that as before.
2150          */
2151         if (uaddr == addr)
2152                 return addr;
2153
2154         if (shmem_huge != SHMEM_HUGE_FORCE) {
2155                 struct super_block *sb;
2156
2157                 if (file) {
2158                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2159                         sb = file_inode(file)->i_sb;
2160                 } else {
2161                         /*
2162                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2163                          * for "/dev/zero", to create a shared anonymous object.
2164                          */
2165                         if (IS_ERR(shm_mnt))
2166                                 return addr;
2167                         sb = shm_mnt->mnt_sb;
2168                 }
2169                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2170                         return addr;
2171         }
2172
2173         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2174         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2175                 return addr;
2176         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2177                 return addr;
2178
2179         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2180         if (inflated_len > TASK_SIZE)
2181                 return addr;
2182         if (inflated_len < len)
2183                 return addr;
2184
2185         inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2186         if (IS_ERR_VALUE(inflated_addr))
2187                 return addr;
2188         if (inflated_addr & ~PAGE_MASK)
2189                 return addr;
2190
2191         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2192         inflated_addr += offset - inflated_offset;
2193         if (inflated_offset > offset)
2194                 inflated_addr += HPAGE_PMD_SIZE;
2195
2196         if (inflated_addr > TASK_SIZE - len)
2197                 return addr;
2198         return inflated_addr;
2199 }
2200
2201 #ifdef CONFIG_NUMA
2202 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2203 {
2204         struct inode *inode = file_inode(vma->vm_file);
2205         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2206 }
2207
2208 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2209                                           unsigned long addr)
2210 {
2211         struct inode *inode = file_inode(vma->vm_file);
2212         pgoff_t index;
2213
2214         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2215         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2216 }
2217 #endif
2218
2219 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2220 {
2221         struct inode *inode = file_inode(file);
2222         struct shmem_inode_info *info = SHMEM_I(inode);
2223         int retval = -ENOMEM;
2224
2225         /*
2226          * What serializes the accesses to info->flags?
2227          * ipc_lock_object() when called from shmctl_do_lock(),
2228          * no serialization needed when called from shm_destroy().
2229          */
2230         if (lock && !(info->flags & VM_LOCKED)) {
2231                 if (!user_shm_lock(inode->i_size, user))
2232                         goto out_nomem;
2233                 info->flags |= VM_LOCKED;
2234                 mapping_set_unevictable(file->f_mapping);
2235         }
2236         if (!lock && (info->flags & VM_LOCKED) && user) {
2237                 user_shm_unlock(inode->i_size, user);
2238                 info->flags &= ~VM_LOCKED;
2239                 mapping_clear_unevictable(file->f_mapping);
2240         }
2241         retval = 0;
2242
2243 out_nomem:
2244         return retval;
2245 }
2246
2247 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2248 {
2249         struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2250
2251         if (info->seals & F_SEAL_FUTURE_WRITE) {
2252                 /*
2253                  * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2254                  * "future write" seal active.
2255                  */
2256                 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2257                         return -EPERM;
2258
2259                 /*
2260                  * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2261                  * MAP_SHARED and read-only, take care to not allow mprotect to
2262                  * revert protections on such mappings. Do this only for shared
2263                  * mappings. For private mappings, don't need to mask
2264                  * VM_MAYWRITE as we still want them to be COW-writable.
2265                  */
2266                 if (vma->vm_flags & VM_SHARED)
2267                         vma->vm_flags &= ~(VM_MAYWRITE);
2268         }
2269
2270         file_accessed(file);
2271         vma->vm_ops = &shmem_vm_ops;
2272         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2273                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2274                         (vma->vm_end & HPAGE_PMD_MASK)) {
2275                 khugepaged_enter(vma, vma->vm_flags);
2276         }
2277         return 0;
2278 }
2279
2280 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2281                                      umode_t mode, dev_t dev, unsigned long flags)
2282 {
2283         struct inode *inode;
2284         struct shmem_inode_info *info;
2285         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2286         ino_t ino;
2287
2288         if (shmem_reserve_inode(sb, &ino))
2289                 return NULL;
2290
2291         inode = new_inode(sb);
2292         if (inode) {
2293                 inode->i_ino = ino;
2294                 inode_init_owner(inode, dir, mode);
2295                 inode->i_blocks = 0;
2296                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2297                 inode->i_generation = prandom_u32();
2298                 info = SHMEM_I(inode);
2299                 memset(info, 0, (char *)inode - (char *)info);
2300                 spin_lock_init(&info->lock);
2301                 atomic_set(&info->stop_eviction, 0);
2302                 info->seals = F_SEAL_SEAL;
2303                 info->flags = flags & VM_NORESERVE;
2304                 INIT_LIST_HEAD(&info->shrinklist);
2305                 INIT_LIST_HEAD(&info->swaplist);
2306                 simple_xattrs_init(&info->xattrs);
2307                 cache_no_acl(inode);
2308
2309                 switch (mode & S_IFMT) {
2310                 default:
2311                         inode->i_op = &shmem_special_inode_operations;
2312                         init_special_inode(inode, mode, dev);
2313                         break;
2314                 case S_IFREG:
2315                         inode->i_mapping->a_ops = &shmem_aops;
2316                         inode->i_op = &shmem_inode_operations;
2317                         inode->i_fop = &shmem_file_operations;
2318                         mpol_shared_policy_init(&info->policy,
2319                                                  shmem_get_sbmpol(sbinfo));
2320                         break;
2321                 case S_IFDIR:
2322                         inc_nlink(inode);
2323                         /* Some things misbehave if size == 0 on a directory */
2324                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2325                         inode->i_op = &shmem_dir_inode_operations;
2326                         inode->i_fop = &simple_dir_operations;
2327                         break;
2328                 case S_IFLNK:
2329                         /*
2330                          * Must not load anything in the rbtree,
2331                          * mpol_free_shared_policy will not be called.
2332                          */
2333                         mpol_shared_policy_init(&info->policy, NULL);
2334                         break;
2335                 }
2336
2337                 lockdep_annotate_inode_mutex_key(inode);
2338         } else
2339                 shmem_free_inode(sb);
2340         return inode;
2341 }
2342
2343 bool shmem_mapping(struct address_space *mapping)
2344 {
2345         return mapping->a_ops == &shmem_aops;
2346 }
2347
2348 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2349                                   pmd_t *dst_pmd,
2350                                   struct vm_area_struct *dst_vma,
2351                                   unsigned long dst_addr,
2352                                   unsigned long src_addr,
2353                                   bool zeropage,
2354                                   struct page **pagep)
2355 {
2356         struct inode *inode = file_inode(dst_vma->vm_file);
2357         struct shmem_inode_info *info = SHMEM_I(inode);
2358         struct address_space *mapping = inode->i_mapping;
2359         gfp_t gfp = mapping_gfp_mask(mapping);
2360         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2361         spinlock_t *ptl;
2362         void *page_kaddr;
2363         struct page *page;
2364         pte_t _dst_pte, *dst_pte;
2365         int ret;
2366         pgoff_t offset, max_off;
2367
2368         ret = -ENOMEM;
2369         if (!shmem_inode_acct_block(inode, 1))
2370                 goto out;
2371
2372         if (!*pagep) {
2373                 page = shmem_alloc_page(gfp, info, pgoff);
2374                 if (!page)
2375                         goto out_unacct_blocks;
2376
2377                 if (!zeropage) {        /* mcopy_atomic */
2378                         page_kaddr = kmap_atomic(page);
2379                         ret = copy_from_user(page_kaddr,
2380                                              (const void __user *)src_addr,
2381                                              PAGE_SIZE);
2382                         kunmap_atomic(page_kaddr);
2383
2384                         /* fallback to copy_from_user outside mmap_lock */
2385                         if (unlikely(ret)) {
2386                                 *pagep = page;
2387                                 shmem_inode_unacct_blocks(inode, 1);
2388                                 /* don't free the page */
2389                                 return -ENOENT;
2390                         }
2391                 } else {                /* mfill_zeropage_atomic */
2392                         clear_highpage(page);
2393                 }
2394         } else {
2395                 page = *pagep;
2396                 *pagep = NULL;
2397         }
2398
2399         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2400         __SetPageLocked(page);
2401         __SetPageSwapBacked(page);
2402         __SetPageUptodate(page);
2403
2404         ret = -EFAULT;
2405         offset = linear_page_index(dst_vma, dst_addr);
2406         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407         if (unlikely(offset >= max_off))
2408                 goto out_release;
2409
2410         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411                                       gfp & GFP_RECLAIM_MASK, dst_mm);
2412         if (ret)
2413                 goto out_release;
2414
2415         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2416         if (dst_vma->vm_flags & VM_WRITE)
2417                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2418         else {
2419                 /*
2420                  * We don't set the pte dirty if the vma has no
2421                  * VM_WRITE permission, so mark the page dirty or it
2422                  * could be freed from under us. We could do it
2423                  * unconditionally before unlock_page(), but doing it
2424                  * only if VM_WRITE is not set is faster.
2425                  */
2426                 set_page_dirty(page);
2427         }
2428
2429         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2430
2431         ret = -EFAULT;
2432         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433         if (unlikely(offset >= max_off))
2434                 goto out_release_unlock;
2435
2436         ret = -EEXIST;
2437         if (!pte_none(*dst_pte))
2438                 goto out_release_unlock;
2439
2440         lru_cache_add(page);
2441
2442         spin_lock_irq(&info->lock);
2443         info->alloced++;
2444         inode->i_blocks += BLOCKS_PER_PAGE;
2445         shmem_recalc_inode(inode);
2446         spin_unlock_irq(&info->lock);
2447
2448         inc_mm_counter(dst_mm, mm_counter_file(page));
2449         page_add_file_rmap(page, false);
2450         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2451
2452         /* No need to invalidate - it was non-present before */
2453         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2454         pte_unmap_unlock(dst_pte, ptl);
2455         unlock_page(page);
2456         ret = 0;
2457 out:
2458         return ret;
2459 out_release_unlock:
2460         pte_unmap_unlock(dst_pte, ptl);
2461         ClearPageDirty(page);
2462         delete_from_page_cache(page);
2463 out_release:
2464         unlock_page(page);
2465         put_page(page);
2466 out_unacct_blocks:
2467         shmem_inode_unacct_blocks(inode, 1);
2468         goto out;
2469 }
2470
2471 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2472                            pmd_t *dst_pmd,
2473                            struct vm_area_struct *dst_vma,
2474                            unsigned long dst_addr,
2475                            unsigned long src_addr,
2476                            struct page **pagep)
2477 {
2478         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2479                                       dst_addr, src_addr, false, pagep);
2480 }
2481
2482 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2483                              pmd_t *dst_pmd,
2484                              struct vm_area_struct *dst_vma,
2485                              unsigned long dst_addr)
2486 {
2487         struct page *page = NULL;
2488
2489         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490                                       dst_addr, 0, true, &page);
2491 }
2492
2493 #ifdef CONFIG_TMPFS
2494 static const struct inode_operations shmem_symlink_inode_operations;
2495 static const struct inode_operations shmem_short_symlink_operations;
2496
2497 #ifdef CONFIG_TMPFS_XATTR
2498 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2499 #else
2500 #define shmem_initxattrs NULL
2501 #endif
2502
2503 static int
2504 shmem_write_begin(struct file *file, struct address_space *mapping,
2505                         loff_t pos, unsigned len, unsigned flags,
2506                         struct page **pagep, void **fsdata)
2507 {
2508         struct inode *inode = mapping->host;
2509         struct shmem_inode_info *info = SHMEM_I(inode);
2510         pgoff_t index = pos >> PAGE_SHIFT;
2511
2512         /* i_mutex is held by caller */
2513         if (unlikely(info->seals & (F_SEAL_GROW |
2514                                    F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2515                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2516                         return -EPERM;
2517                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2518                         return -EPERM;
2519         }
2520
2521         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2522 }
2523
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526                         loff_t pos, unsigned len, unsigned copied,
2527                         struct page *page, void *fsdata)
2528 {
2529         struct inode *inode = mapping->host;
2530
2531         if (pos + copied > inode->i_size)
2532                 i_size_write(inode, pos + copied);
2533
2534         if (!PageUptodate(page)) {
2535                 struct page *head = compound_head(page);
2536                 if (PageTransCompound(page)) {
2537                         int i;
2538
2539                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2540                                 if (head + i == page)
2541                                         continue;
2542                                 clear_highpage(head + i);
2543                                 flush_dcache_page(head + i);
2544                         }
2545                 }
2546                 if (copied < PAGE_SIZE) {
2547                         unsigned from = pos & (PAGE_SIZE - 1);
2548                         zero_user_segments(page, 0, from,
2549                                         from + copied, PAGE_SIZE);
2550                 }
2551                 SetPageUptodate(head);
2552         }
2553         set_page_dirty(page);
2554         unlock_page(page);
2555         put_page(page);
2556
2557         return copied;
2558 }
2559
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562         struct file *file = iocb->ki_filp;
2563         struct inode *inode = file_inode(file);
2564         struct address_space *mapping = inode->i_mapping;
2565         pgoff_t index;
2566         unsigned long offset;
2567         enum sgp_type sgp = SGP_READ;
2568         int error = 0;
2569         ssize_t retval = 0;
2570         loff_t *ppos = &iocb->ki_pos;
2571
2572         /*
2573          * Might this read be for a stacking filesystem?  Then when reading
2574          * holes of a sparse file, we actually need to allocate those pages,
2575          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2576          */
2577         if (!iter_is_iovec(to))
2578                 sgp = SGP_CACHE;
2579
2580         index = *ppos >> PAGE_SHIFT;
2581         offset = *ppos & ~PAGE_MASK;
2582
2583         for (;;) {
2584                 struct page *page = NULL;
2585                 pgoff_t end_index;
2586                 unsigned long nr, ret;
2587                 loff_t i_size = i_size_read(inode);
2588
2589                 end_index = i_size >> PAGE_SHIFT;
2590                 if (index > end_index)
2591                         break;
2592                 if (index == end_index) {
2593                         nr = i_size & ~PAGE_MASK;
2594                         if (nr <= offset)
2595                                 break;
2596                 }
2597
2598                 error = shmem_getpage(inode, index, &page, sgp);
2599                 if (error) {
2600                         if (error == -EINVAL)
2601                                 error = 0;
2602                         break;
2603                 }
2604                 if (page) {
2605                         if (sgp == SGP_CACHE)
2606                                 set_page_dirty(page);
2607                         unlock_page(page);
2608                 }
2609
2610                 /*
2611                  * We must evaluate after, since reads (unlike writes)
2612                  * are called without i_mutex protection against truncate
2613                  */
2614                 nr = PAGE_SIZE;
2615                 i_size = i_size_read(inode);
2616                 end_index = i_size >> PAGE_SHIFT;
2617                 if (index == end_index) {
2618                         nr = i_size & ~PAGE_MASK;
2619                         if (nr <= offset) {
2620                                 if (page)
2621                                         put_page(page);
2622                                 break;
2623                         }
2624                 }
2625                 nr -= offset;
2626
2627                 if (page) {
2628                         /*
2629                          * If users can be writing to this page using arbitrary
2630                          * virtual addresses, take care about potential aliasing
2631                          * before reading the page on the kernel side.
2632                          */
2633                         if (mapping_writably_mapped(mapping))
2634                                 flush_dcache_page(page);
2635                         /*
2636                          * Mark the page accessed if we read the beginning.
2637                          */
2638                         if (!offset)
2639                                 mark_page_accessed(page);
2640                 } else {
2641                         page = ZERO_PAGE(0);
2642                         get_page(page);
2643                 }
2644
2645                 /*
2646                  * Ok, we have the page, and it's up-to-date, so
2647                  * now we can copy it to user space...
2648                  */
2649                 ret = copy_page_to_iter(page, offset, nr, to);
2650                 retval += ret;
2651                 offset += ret;
2652                 index += offset >> PAGE_SHIFT;
2653                 offset &= ~PAGE_MASK;
2654
2655                 put_page(page);
2656                 if (!iov_iter_count(to))
2657                         break;
2658                 if (ret < nr) {
2659                         error = -EFAULT;
2660                         break;
2661                 }
2662                 cond_resched();
2663         }
2664
2665         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2666         file_accessed(file);
2667         return retval ? retval : error;
2668 }
2669
2670 /*
2671  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2672  */
2673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2674                                     pgoff_t index, pgoff_t end, int whence)
2675 {
2676         struct page *page;
2677         struct pagevec pvec;
2678         pgoff_t indices[PAGEVEC_SIZE];
2679         bool done = false;
2680         int i;
2681
2682         pagevec_init(&pvec);
2683         pvec.nr = 1;            /* start small: we may be there already */
2684         while (!done) {
2685                 pvec.nr = find_get_entries(mapping, index,
2686                                         pvec.nr, pvec.pages, indices);
2687                 if (!pvec.nr) {
2688                         if (whence == SEEK_DATA)
2689                                 index = end;
2690                         break;
2691                 }
2692                 for (i = 0; i < pvec.nr; i++, index++) {
2693                         if (index < indices[i]) {
2694                                 if (whence == SEEK_HOLE) {
2695                                         done = true;
2696                                         break;
2697                                 }
2698                                 index = indices[i];
2699                         }
2700                         page = pvec.pages[i];
2701                         if (page && !xa_is_value(page)) {
2702                                 if (!PageUptodate(page))
2703                                         page = NULL;
2704                         }
2705                         if (index >= end ||
2706                             (page && whence == SEEK_DATA) ||
2707                             (!page && whence == SEEK_HOLE)) {
2708                                 done = true;
2709                                 break;
2710                         }
2711                 }
2712                 pagevec_remove_exceptionals(&pvec);
2713                 pagevec_release(&pvec);
2714                 pvec.nr = PAGEVEC_SIZE;
2715                 cond_resched();
2716         }
2717         return index;
2718 }
2719
2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2721 {
2722         struct address_space *mapping = file->f_mapping;
2723         struct inode *inode = mapping->host;
2724         pgoff_t start, end;
2725         loff_t new_offset;
2726
2727         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728                 return generic_file_llseek_size(file, offset, whence,
2729                                         MAX_LFS_FILESIZE, i_size_read(inode));
2730         inode_lock(inode);
2731         /* We're holding i_mutex so we can access i_size directly */
2732
2733         if (offset < 0 || offset >= inode->i_size)
2734                 offset = -ENXIO;
2735         else {
2736                 start = offset >> PAGE_SHIFT;
2737                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2738                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2739                 new_offset <<= PAGE_SHIFT;
2740                 if (new_offset > offset) {
2741                         if (new_offset < inode->i_size)
2742                                 offset = new_offset;
2743                         else if (whence == SEEK_DATA)
2744                                 offset = -ENXIO;
2745                         else
2746                                 offset = inode->i_size;
2747                 }
2748         }
2749
2750         if (offset >= 0)
2751                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2752         inode_unlock(inode);
2753         return offset;
2754 }
2755
2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2757                                                          loff_t len)
2758 {
2759         struct inode *inode = file_inode(file);
2760         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2761         struct shmem_inode_info *info = SHMEM_I(inode);
2762         struct shmem_falloc shmem_falloc;
2763         pgoff_t start, index, end;
2764         int error;
2765
2766         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2767                 return -EOPNOTSUPP;
2768
2769         inode_lock(inode);
2770
2771         if (mode & FALLOC_FL_PUNCH_HOLE) {
2772                 struct address_space *mapping = file->f_mapping;
2773                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2774                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2775                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2776
2777                 /* protected by i_mutex */
2778                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2779                         error = -EPERM;
2780                         goto out;
2781                 }
2782
2783                 shmem_falloc.waitq = &shmem_falloc_waitq;
2784                 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2785                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2786                 spin_lock(&inode->i_lock);
2787                 inode->i_private = &shmem_falloc;
2788                 spin_unlock(&inode->i_lock);
2789
2790                 if ((u64)unmap_end > (u64)unmap_start)
2791                         unmap_mapping_range(mapping, unmap_start,
2792                                             1 + unmap_end - unmap_start, 0);
2793                 shmem_truncate_range(inode, offset, offset + len - 1);
2794                 /* No need to unmap again: hole-punching leaves COWed pages */
2795
2796                 spin_lock(&inode->i_lock);
2797                 inode->i_private = NULL;
2798                 wake_up_all(&shmem_falloc_waitq);
2799                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2800                 spin_unlock(&inode->i_lock);
2801                 error = 0;
2802                 goto out;
2803         }
2804
2805         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2806         error = inode_newsize_ok(inode, offset + len);
2807         if (error)
2808                 goto out;
2809
2810         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2811                 error = -EPERM;
2812                 goto out;
2813         }
2814
2815         start = offset >> PAGE_SHIFT;
2816         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817         /* Try to avoid a swapstorm if len is impossible to satisfy */
2818         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2819                 error = -ENOSPC;
2820                 goto out;
2821         }
2822
2823         shmem_falloc.waitq = NULL;
2824         shmem_falloc.start = start;
2825         shmem_falloc.next  = start;
2826         shmem_falloc.nr_falloced = 0;
2827         shmem_falloc.nr_unswapped = 0;
2828         spin_lock(&inode->i_lock);
2829         inode->i_private = &shmem_falloc;
2830         spin_unlock(&inode->i_lock);
2831
2832         for (index = start; index < end; index++) {
2833                 struct page *page;
2834
2835                 /*
2836                  * Good, the fallocate(2) manpage permits EINTR: we may have
2837                  * been interrupted because we are using up too much memory.
2838                  */
2839                 if (signal_pending(current))
2840                         error = -EINTR;
2841                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2842                         error = -ENOMEM;
2843                 else
2844                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2845                 if (error) {
2846                         /* Remove the !PageUptodate pages we added */
2847                         if (index > start) {
2848                                 shmem_undo_range(inode,
2849                                     (loff_t)start << PAGE_SHIFT,
2850                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2851                         }
2852                         goto undone;
2853                 }
2854
2855                 /*
2856                  * Inform shmem_writepage() how far we have reached.
2857                  * No need for lock or barrier: we have the page lock.
2858                  */
2859                 shmem_falloc.next++;
2860                 if (!PageUptodate(page))
2861                         shmem_falloc.nr_falloced++;
2862
2863                 /*
2864                  * If !PageUptodate, leave it that way so that freeable pages
2865                  * can be recognized if we need to rollback on error later.
2866                  * But set_page_dirty so that memory pressure will swap rather
2867                  * than free the pages we are allocating (and SGP_CACHE pages
2868                  * might still be clean: we now need to mark those dirty too).
2869                  */
2870                 set_page_dirty(page);
2871                 unlock_page(page);
2872                 put_page(page);
2873                 cond_resched();
2874         }
2875
2876         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2877                 i_size_write(inode, offset + len);
2878         inode->i_ctime = current_time(inode);
2879 undone:
2880         spin_lock(&inode->i_lock);
2881         inode->i_private = NULL;
2882         spin_unlock(&inode->i_lock);
2883 out:
2884         inode_unlock(inode);
2885         return error;
2886 }
2887
2888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889 {
2890         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892         buf->f_type = TMPFS_MAGIC;
2893         buf->f_bsize = PAGE_SIZE;
2894         buf->f_namelen = NAME_MAX;
2895         if (sbinfo->max_blocks) {
2896                 buf->f_blocks = sbinfo->max_blocks;
2897                 buf->f_bavail =
2898                 buf->f_bfree  = sbinfo->max_blocks -
2899                                 percpu_counter_sum(&sbinfo->used_blocks);
2900         }
2901         if (sbinfo->max_inodes) {
2902                 buf->f_files = sbinfo->max_inodes;
2903                 buf->f_ffree = sbinfo->free_inodes;
2904         }
2905         /* else leave those fields 0 like simple_statfs */
2906         return 0;
2907 }
2908
2909 /*
2910  * File creation. Allocate an inode, and we're done..
2911  */
2912 static int
2913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2914 {
2915         struct inode *inode;
2916         int error = -ENOSPC;
2917
2918         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2919         if (inode) {
2920                 error = simple_acl_create(dir, inode);
2921                 if (error)
2922                         goto out_iput;
2923                 error = security_inode_init_security(inode, dir,
2924                                                      &dentry->d_name,
2925                                                      shmem_initxattrs, NULL);
2926                 if (error && error != -EOPNOTSUPP)
2927                         goto out_iput;
2928
2929                 error = 0;
2930                 dir->i_size += BOGO_DIRENT_SIZE;
2931                 dir->i_ctime = dir->i_mtime = current_time(dir);
2932                 d_instantiate(dentry, inode);
2933                 dget(dentry); /* Extra count - pin the dentry in core */
2934         }
2935         return error;
2936 out_iput:
2937         iput(inode);
2938         return error;
2939 }
2940
2941 static int
2942 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944         struct inode *inode;
2945         int error = -ENOSPC;
2946
2947         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2948         if (inode) {
2949                 error = security_inode_init_security(inode, dir,
2950                                                      NULL,
2951                                                      shmem_initxattrs, NULL);
2952                 if (error && error != -EOPNOTSUPP)
2953                         goto out_iput;
2954                 error = simple_acl_create(dir, inode);
2955                 if (error)
2956                         goto out_iput;
2957                 d_tmpfile(dentry, inode);
2958         }
2959         return error;
2960 out_iput:
2961         iput(inode);
2962         return error;
2963 }
2964
2965 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2966 {
2967         int error;
2968
2969         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2970                 return error;
2971         inc_nlink(dir);
2972         return 0;
2973 }
2974
2975 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2976                 bool excl)
2977 {
2978         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2979 }
2980
2981 /*
2982  * Link a file..
2983  */
2984 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2985 {
2986         struct inode *inode = d_inode(old_dentry);
2987         int ret = 0;
2988
2989         /*
2990          * No ordinary (disk based) filesystem counts links as inodes;
2991          * but each new link needs a new dentry, pinning lowmem, and
2992          * tmpfs dentries cannot be pruned until they are unlinked.
2993          * But if an O_TMPFILE file is linked into the tmpfs, the
2994          * first link must skip that, to get the accounting right.
2995          */
2996         if (inode->i_nlink) {
2997                 ret = shmem_reserve_inode(inode->i_sb, NULL);
2998                 if (ret)
2999                         goto out;
3000         }
3001
3002         dir->i_size += BOGO_DIRENT_SIZE;
3003         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3004         inc_nlink(inode);
3005         ihold(inode);   /* New dentry reference */
3006         dget(dentry);           /* Extra pinning count for the created dentry */
3007         d_instantiate(dentry, inode);
3008 out:
3009         return ret;
3010 }
3011
3012 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3013 {
3014         struct inode *inode = d_inode(dentry);
3015
3016         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3017                 shmem_free_inode(inode->i_sb);
3018
3019         dir->i_size -= BOGO_DIRENT_SIZE;
3020         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3021         drop_nlink(inode);
3022         dput(dentry);   /* Undo the count from "create" - this does all the work */
3023         return 0;
3024 }
3025
3026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3027 {
3028         if (!simple_empty(dentry))
3029                 return -ENOTEMPTY;
3030
3031         drop_nlink(d_inode(dentry));
3032         drop_nlink(dir);
3033         return shmem_unlink(dir, dentry);
3034 }
3035
3036 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3037 {
3038         bool old_is_dir = d_is_dir(old_dentry);
3039         bool new_is_dir = d_is_dir(new_dentry);
3040
3041         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3042                 if (old_is_dir) {
3043                         drop_nlink(old_dir);
3044                         inc_nlink(new_dir);
3045                 } else {
3046                         drop_nlink(new_dir);
3047                         inc_nlink(old_dir);
3048                 }
3049         }
3050         old_dir->i_ctime = old_dir->i_mtime =
3051         new_dir->i_ctime = new_dir->i_mtime =
3052         d_inode(old_dentry)->i_ctime =
3053         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3054
3055         return 0;
3056 }
3057
3058 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3059 {
3060         struct dentry *whiteout;
3061         int error;
3062
3063         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3064         if (!whiteout)
3065                 return -ENOMEM;
3066
3067         error = shmem_mknod(old_dir, whiteout,
3068                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3069         dput(whiteout);
3070         if (error)
3071                 return error;
3072
3073         /*
3074          * Cheat and hash the whiteout while the old dentry is still in
3075          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3076          *
3077          * d_lookup() will consistently find one of them at this point,
3078          * not sure which one, but that isn't even important.
3079          */
3080         d_rehash(whiteout);
3081         return 0;
3082 }
3083
3084 /*
3085  * The VFS layer already does all the dentry stuff for rename,
3086  * we just have to decrement the usage count for the target if
3087  * it exists so that the VFS layer correctly free's it when it
3088  * gets overwritten.
3089  */
3090 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3091 {
3092         struct inode *inode = d_inode(old_dentry);
3093         int they_are_dirs = S_ISDIR(inode->i_mode);
3094
3095         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3096                 return -EINVAL;
3097
3098         if (flags & RENAME_EXCHANGE)
3099                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3100
3101         if (!simple_empty(new_dentry))
3102                 return -ENOTEMPTY;
3103
3104         if (flags & RENAME_WHITEOUT) {
3105                 int error;
3106
3107                 error = shmem_whiteout(old_dir, old_dentry);
3108                 if (error)
3109                         return error;
3110         }
3111
3112         if (d_really_is_positive(new_dentry)) {
3113                 (void) shmem_unlink(new_dir, new_dentry);
3114                 if (they_are_dirs) {
3115                         drop_nlink(d_inode(new_dentry));
3116                         drop_nlink(old_dir);
3117                 }
3118         } else if (they_are_dirs) {
3119                 drop_nlink(old_dir);
3120                 inc_nlink(new_dir);
3121         }
3122
3123         old_dir->i_size -= BOGO_DIRENT_SIZE;
3124         new_dir->i_size += BOGO_DIRENT_SIZE;
3125         old_dir->i_ctime = old_dir->i_mtime =
3126         new_dir->i_ctime = new_dir->i_mtime =
3127         inode->i_ctime = current_time(old_dir);
3128         return 0;
3129 }
3130
3131 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3132 {
3133         int error;
3134         int len;
3135         struct inode *inode;
3136         struct page *page;
3137
3138         len = strlen(symname) + 1;
3139         if (len > PAGE_SIZE)
3140                 return -ENAMETOOLONG;
3141
3142         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3143                                 VM_NORESERVE);
3144         if (!inode)
3145                 return -ENOSPC;
3146
3147         error = security_inode_init_security(inode, dir, &dentry->d_name,
3148                                              shmem_initxattrs, NULL);
3149         if (error && error != -EOPNOTSUPP) {
3150                 iput(inode);
3151                 return error;
3152         }
3153
3154         inode->i_size = len-1;
3155         if (len <= SHORT_SYMLINK_LEN) {
3156                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3157                 if (!inode->i_link) {
3158                         iput(inode);
3159                         return -ENOMEM;
3160                 }
3161                 inode->i_op = &shmem_short_symlink_operations;
3162         } else {
3163                 inode_nohighmem(inode);
3164                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3165                 if (error) {
3166                         iput(inode);
3167                         return error;
3168                 }
3169                 inode->i_mapping->a_ops = &shmem_aops;
3170                 inode->i_op = &shmem_symlink_inode_operations;
3171                 memcpy(page_address(page), symname, len);
3172                 SetPageUptodate(page);
3173                 set_page_dirty(page);
3174                 unlock_page(page);
3175                 put_page(page);
3176         }
3177         dir->i_size += BOGO_DIRENT_SIZE;
3178         dir->i_ctime = dir->i_mtime = current_time(dir);
3179         d_instantiate(dentry, inode);
3180         dget(dentry);
3181         return 0;
3182 }
3183
3184 static void shmem_put_link(void *arg)
3185 {
3186         mark_page_accessed(arg);
3187         put_page(arg);
3188 }
3189
3190 static const char *shmem_get_link(struct dentry *dentry,
3191                                   struct inode *inode,
3192                                   struct delayed_call *done)
3193 {
3194         struct page *page = NULL;
3195         int error;
3196         if (!dentry) {
3197                 page = find_get_page(inode->i_mapping, 0);
3198                 if (!page)
3199                         return ERR_PTR(-ECHILD);
3200                 if (!PageUptodate(page)) {
3201                         put_page(page);
3202                         return ERR_PTR(-ECHILD);
3203                 }
3204         } else {
3205                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3206                 if (error)
3207                         return ERR_PTR(error);
3208                 unlock_page(page);
3209         }
3210         set_delayed_call(done, shmem_put_link, page);
3211         return page_address(page);
3212 }
3213
3214 #ifdef CONFIG_TMPFS_XATTR
3215 /*
3216  * Superblocks without xattr inode operations may get some security.* xattr
3217  * support from the LSM "for free". As soon as we have any other xattrs
3218  * like ACLs, we also need to implement the security.* handlers at
3219  * filesystem level, though.
3220  */
3221
3222 /*
3223  * Callback for security_inode_init_security() for acquiring xattrs.
3224  */
3225 static int shmem_initxattrs(struct inode *inode,
3226                             const struct xattr *xattr_array,
3227                             void *fs_info)
3228 {
3229         struct shmem_inode_info *info = SHMEM_I(inode);
3230         const struct xattr *xattr;
3231         struct simple_xattr *new_xattr;
3232         size_t len;
3233
3234         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3235                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3236                 if (!new_xattr)
3237                         return -ENOMEM;
3238
3239                 len = strlen(xattr->name) + 1;
3240                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3241                                           GFP_KERNEL);
3242                 if (!new_xattr->name) {
3243                         kvfree(new_xattr);
3244                         return -ENOMEM;
3245                 }
3246
3247                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3248                        XATTR_SECURITY_PREFIX_LEN);
3249                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3250                        xattr->name, len);
3251
3252                 simple_xattr_list_add(&info->xattrs, new_xattr);
3253         }
3254
3255         return 0;
3256 }
3257
3258 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3259                                    struct dentry *unused, struct inode *inode,
3260                                    const char *name, void *buffer, size_t size)
3261 {
3262         struct shmem_inode_info *info = SHMEM_I(inode);
3263
3264         name = xattr_full_name(handler, name);
3265         return simple_xattr_get(&info->xattrs, name, buffer, size);
3266 }
3267
3268 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3269                                    struct dentry *unused, struct inode *inode,
3270                                    const char *name, const void *value,
3271                                    size_t size, int flags)
3272 {
3273         struct shmem_inode_info *info = SHMEM_I(inode);
3274
3275         name = xattr_full_name(handler, name);
3276         return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3277 }
3278
3279 static const struct xattr_handler shmem_security_xattr_handler = {
3280         .prefix = XATTR_SECURITY_PREFIX,
3281         .get = shmem_xattr_handler_get,
3282         .set = shmem_xattr_handler_set,
3283 };
3284
3285 static const struct xattr_handler shmem_trusted_xattr_handler = {
3286         .prefix = XATTR_TRUSTED_PREFIX,
3287         .get = shmem_xattr_handler_get,
3288         .set = shmem_xattr_handler_set,
3289 };
3290
3291 static const struct xattr_handler *shmem_xattr_handlers[] = {
3292 #ifdef CONFIG_TMPFS_POSIX_ACL
3293         &posix_acl_access_xattr_handler,
3294         &posix_acl_default_xattr_handler,
3295 #endif
3296         &shmem_security_xattr_handler,
3297         &shmem_trusted_xattr_handler,
3298         NULL
3299 };
3300
3301 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3302 {
3303         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3304         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3305 }
3306 #endif /* CONFIG_TMPFS_XATTR */
3307
3308 static const struct inode_operations shmem_short_symlink_operations = {
3309         .get_link       = simple_get_link,
3310 #ifdef CONFIG_TMPFS_XATTR
3311         .listxattr      = shmem_listxattr,
3312 #endif
3313 };
3314
3315 static const struct inode_operations shmem_symlink_inode_operations = {
3316         .get_link       = shmem_get_link,
3317 #ifdef CONFIG_TMPFS_XATTR
3318         .listxattr      = shmem_listxattr,
3319 #endif
3320 };
3321
3322 static struct dentry *shmem_get_parent(struct dentry *child)
3323 {
3324         return ERR_PTR(-ESTALE);
3325 }
3326
3327 static int shmem_match(struct inode *ino, void *vfh)
3328 {
3329         __u32 *fh = vfh;
3330         __u64 inum = fh[2];
3331         inum = (inum << 32) | fh[1];
3332         return ino->i_ino == inum && fh[0] == ino->i_generation;
3333 }
3334
3335 /* Find any alias of inode, but prefer a hashed alias */
3336 static struct dentry *shmem_find_alias(struct inode *inode)
3337 {
3338         struct dentry *alias = d_find_alias(inode);
3339
3340         return alias ?: d_find_any_alias(inode);
3341 }
3342
3343
3344 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3345                 struct fid *fid, int fh_len, int fh_type)
3346 {
3347         struct inode *inode;
3348         struct dentry *dentry = NULL;
3349         u64 inum;
3350
3351         if (fh_len < 3)
3352                 return NULL;
3353
3354         inum = fid->raw[2];
3355         inum = (inum << 32) | fid->raw[1];
3356
3357         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3358                         shmem_match, fid->raw);
3359         if (inode) {
3360                 dentry = shmem_find_alias(inode);
3361                 iput(inode);
3362         }
3363
3364         return dentry;
3365 }
3366
3367 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3368                                 struct inode *parent)
3369 {
3370         if (*len < 3) {
3371                 *len = 3;
3372                 return FILEID_INVALID;
3373         }
3374
3375         if (inode_unhashed(inode)) {
3376                 /* Unfortunately insert_inode_hash is not idempotent,
3377                  * so as we hash inodes here rather than at creation
3378                  * time, we need a lock to ensure we only try
3379                  * to do it once
3380                  */
3381                 static DEFINE_SPINLOCK(lock);
3382                 spin_lock(&lock);
3383                 if (inode_unhashed(inode))
3384                         __insert_inode_hash(inode,
3385                                             inode->i_ino + inode->i_generation);
3386                 spin_unlock(&lock);
3387         }
3388
3389         fh[0] = inode->i_generation;
3390         fh[1] = inode->i_ino;
3391         fh[2] = ((__u64)inode->i_ino) >> 32;
3392
3393         *len = 3;
3394         return 1;
3395 }
3396
3397 static const struct export_operations shmem_export_ops = {
3398         .get_parent     = shmem_get_parent,
3399         .encode_fh      = shmem_encode_fh,
3400         .fh_to_dentry   = shmem_fh_to_dentry,
3401 };
3402
3403 enum shmem_param {
3404         Opt_gid,
3405         Opt_huge,
3406         Opt_mode,
3407         Opt_mpol,
3408         Opt_nr_blocks,
3409         Opt_nr_inodes,
3410         Opt_size,
3411         Opt_uid,
3412         Opt_inode32,
3413         Opt_inode64,
3414 };
3415
3416 static const struct constant_table shmem_param_enums_huge[] = {
3417         {"never",       SHMEM_HUGE_NEVER },
3418         {"always",      SHMEM_HUGE_ALWAYS },
3419         {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3420         {"advise",      SHMEM_HUGE_ADVISE },
3421         {}
3422 };
3423
3424 const struct fs_parameter_spec shmem_fs_parameters[] = {
3425         fsparam_u32   ("gid",           Opt_gid),
3426         fsparam_enum  ("huge",          Opt_huge,  shmem_param_enums_huge),
3427         fsparam_u32oct("mode",          Opt_mode),
3428         fsparam_string("mpol",          Opt_mpol),
3429         fsparam_string("nr_blocks",     Opt_nr_blocks),
3430         fsparam_string("nr_inodes",     Opt_nr_inodes),
3431         fsparam_string("size",          Opt_size),
3432         fsparam_u32   ("uid",           Opt_uid),
3433         fsparam_flag  ("inode32",       Opt_inode32),
3434         fsparam_flag  ("inode64",       Opt_inode64),
3435         {}
3436 };
3437
3438 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3439 {
3440         struct shmem_options *ctx = fc->fs_private;
3441         struct fs_parse_result result;
3442         unsigned long long size;
3443         char *rest;
3444         int opt;
3445
3446         opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3447         if (opt < 0)
3448                 return opt;
3449
3450         switch (opt) {
3451         case Opt_size:
3452                 size = memparse(param->string, &rest);
3453                 if (*rest == '%') {
3454                         size <<= PAGE_SHIFT;
3455                         size *= totalram_pages();
3456                         do_div(size, 100);
3457                         rest++;
3458                 }
3459                 if (*rest)
3460                         goto bad_value;
3461                 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3462                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3463                 break;
3464         case Opt_nr_blocks:
3465                 ctx->blocks = memparse(param->string, &rest);
3466                 if (*rest)
3467                         goto bad_value;
3468                 ctx->seen |= SHMEM_SEEN_BLOCKS;
3469                 break;
3470         case Opt_nr_inodes:
3471                 ctx->inodes = memparse(param->string, &rest);
3472                 if (*rest)
3473                         goto bad_value;
3474                 ctx->seen |= SHMEM_SEEN_INODES;
3475                 break;
3476         case Opt_mode:
3477                 ctx->mode = result.uint_32 & 07777;
3478                 break;
3479         case Opt_uid:
3480                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3481                 if (!uid_valid(ctx->uid))
3482                         goto bad_value;
3483                 break;
3484         case Opt_gid:
3485                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3486                 if (!gid_valid(ctx->gid))
3487                         goto bad_value;
3488                 break;
3489         case Opt_huge:
3490                 ctx->huge = result.uint_32;
3491                 if (ctx->huge != SHMEM_HUGE_NEVER &&
3492                     !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3493                       has_transparent_hugepage()))
3494                         goto unsupported_parameter;
3495                 ctx->seen |= SHMEM_SEEN_HUGE;
3496                 break;
3497         case Opt_mpol:
3498                 if (IS_ENABLED(CONFIG_NUMA)) {
3499                         mpol_put(ctx->mpol);
3500                         ctx->mpol = NULL;
3501                         if (mpol_parse_str(param->string, &ctx->mpol))
3502                                 goto bad_value;
3503                         break;
3504                 }
3505                 goto unsupported_parameter;
3506         case Opt_inode32:
3507                 ctx->full_inums = false;
3508                 ctx->seen |= SHMEM_SEEN_INUMS;
3509                 break;
3510         case Opt_inode64:
3511                 if (sizeof(ino_t) < 8) {
3512                         return invalfc(fc,
3513                                        "Cannot use inode64 with <64bit inums in kernel\n");
3514                 }
3515                 ctx->full_inums = true;
3516                 ctx->seen |= SHMEM_SEEN_INUMS;
3517                 break;
3518         }
3519         return 0;
3520
3521 unsupported_parameter:
3522         return invalfc(fc, "Unsupported parameter '%s'", param->key);
3523 bad_value:
3524         return invalfc(fc, "Bad value for '%s'", param->key);
3525 }
3526
3527 static int shmem_parse_options(struct fs_context *fc, void *data)
3528 {
3529         char *options = data;
3530
3531         if (options) {
3532                 int err = security_sb_eat_lsm_opts(options, &fc->security);
3533                 if (err)
3534                         return err;
3535         }
3536
3537         while (options != NULL) {
3538                 char *this_char = options;
3539                 for (;;) {
3540                         /*
3541                          * NUL-terminate this option: unfortunately,
3542                          * mount options form a comma-separated list,
3543                          * but mpol's nodelist may also contain commas.
3544                          */
3545                         options = strchr(options, ',');
3546                         if (options == NULL)
3547                                 break;
3548                         options++;
3549                         if (!isdigit(*options)) {
3550                                 options[-1] = '\0';
3551                                 break;
3552                         }
3553                 }
3554                 if (*this_char) {
3555                         char *value = strchr(this_char,'=');
3556                         size_t len = 0;
3557                         int err;
3558
3559                         if (value) {
3560                                 *value++ = '\0';
3561                                 len = strlen(value);
3562                         }
3563                         err = vfs_parse_fs_string(fc, this_char, value, len);
3564                         if (err < 0)
3565                                 return err;
3566                 }
3567         }
3568         return 0;
3569 }
3570
3571 /*
3572  * Reconfigure a shmem filesystem.
3573  *
3574  * Note that we disallow change from limited->unlimited blocks/inodes while any
3575  * are in use; but we must separately disallow unlimited->limited, because in
3576  * that case we have no record of how much is already in use.
3577  */
3578 static int shmem_reconfigure(struct fs_context *fc)
3579 {
3580         struct shmem_options *ctx = fc->fs_private;
3581         struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3582         unsigned long inodes;
3583         const char *err;
3584
3585         spin_lock(&sbinfo->stat_lock);
3586         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3587         if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3588                 if (!sbinfo->max_blocks) {
3589                         err = "Cannot retroactively limit size";
3590                         goto out;
3591                 }
3592                 if (percpu_counter_compare(&sbinfo->used_blocks,
3593                                            ctx->blocks) > 0) {
3594                         err = "Too small a size for current use";
3595                         goto out;
3596                 }
3597         }
3598         if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3599                 if (!sbinfo->max_inodes) {
3600                         err = "Cannot retroactively limit inodes";
3601                         goto out;
3602                 }
3603                 if (ctx->inodes < inodes) {
3604                         err = "Too few inodes for current use";
3605                         goto out;
3606                 }
3607         }
3608
3609         if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3610             sbinfo->next_ino > UINT_MAX) {
3611                 err = "Current inum too high to switch to 32-bit inums";
3612                 goto out;
3613         }
3614
3615         if (ctx->seen & SHMEM_SEEN_HUGE)
3616                 sbinfo->huge = ctx->huge;
3617         if (ctx->seen & SHMEM_SEEN_INUMS)
3618                 sbinfo->full_inums = ctx->full_inums;
3619         if (ctx->seen & SHMEM_SEEN_BLOCKS)
3620                 sbinfo->max_blocks  = ctx->blocks;
3621         if (ctx->seen & SHMEM_SEEN_INODES) {
3622                 sbinfo->max_inodes  = ctx->inodes;
3623                 sbinfo->free_inodes = ctx->inodes - inodes;
3624         }
3625
3626         /*
3627          * Preserve previous mempolicy unless mpol remount option was specified.
3628          */
3629         if (ctx->mpol) {
3630                 mpol_put(sbinfo->mpol);
3631                 sbinfo->mpol = ctx->mpol;       /* transfers initial ref */
3632                 ctx->mpol = NULL;
3633         }
3634         spin_unlock(&sbinfo->stat_lock);
3635         return 0;
3636 out:
3637         spin_unlock(&sbinfo->stat_lock);
3638         return invalfc(fc, "%s", err);
3639 }
3640
3641 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3642 {
3643         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3644
3645         if (sbinfo->max_blocks != shmem_default_max_blocks())
3646                 seq_printf(seq, ",size=%luk",
3647                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3648         if (sbinfo->max_inodes != shmem_default_max_inodes())
3649                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3650         if (sbinfo->mode != (0777 | S_ISVTX))
3651                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3652         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3653                 seq_printf(seq, ",uid=%u",
3654                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3655         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3656                 seq_printf(seq, ",gid=%u",
3657                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3658
3659         /*
3660          * Showing inode{64,32} might be useful even if it's the system default,
3661          * since then people don't have to resort to checking both here and
3662          * /proc/config.gz to confirm 64-bit inums were successfully applied
3663          * (which may not even exist if IKCONFIG_PROC isn't enabled).
3664          *
3665          * We hide it when inode64 isn't the default and we are using 32-bit
3666          * inodes, since that probably just means the feature isn't even under
3667          * consideration.
3668          *
3669          * As such:
3670          *
3671          *                     +-----------------+-----------------+
3672          *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3673          *  +------------------+-----------------+-----------------+
3674          *  | full_inums=true  | show            | show            |
3675          *  | full_inums=false | show            | hide            |
3676          *  +------------------+-----------------+-----------------+
3677          *
3678          */
3679         if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3680                 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3682         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3683         if (sbinfo->huge)
3684                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3685 #endif
3686         shmem_show_mpol(seq, sbinfo->mpol);
3687         return 0;
3688 }
3689
3690 #endif /* CONFIG_TMPFS */
3691
3692 static void shmem_put_super(struct super_block *sb)
3693 {
3694         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3695
3696         free_percpu(sbinfo->ino_batch);
3697         percpu_counter_destroy(&sbinfo->used_blocks);
3698         mpol_put(sbinfo->mpol);
3699         kfree(sbinfo);
3700         sb->s_fs_info = NULL;
3701 }
3702
3703 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3704 {
3705         struct shmem_options *ctx = fc->fs_private;
3706         struct inode *inode;
3707         struct shmem_sb_info *sbinfo;
3708         int err = -ENOMEM;
3709
3710         /* Round up to L1_CACHE_BYTES to resist false sharing */
3711         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3712                                 L1_CACHE_BYTES), GFP_KERNEL);
3713         if (!sbinfo)
3714                 return -ENOMEM;
3715
3716         sb->s_fs_info = sbinfo;
3717
3718 #ifdef CONFIG_TMPFS
3719         /*
3720          * Per default we only allow half of the physical ram per
3721          * tmpfs instance, limiting inodes to one per page of lowmem;
3722          * but the internal instance is left unlimited.
3723          */
3724         if (!(sb->s_flags & SB_KERNMOUNT)) {
3725                 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3726                         ctx->blocks = shmem_default_max_blocks();
3727                 if (!(ctx->seen & SHMEM_SEEN_INODES))
3728                         ctx->inodes = shmem_default_max_inodes();
3729                 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3730                         ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3731         } else {
3732                 sb->s_flags |= SB_NOUSER;
3733         }
3734         sb->s_export_op = &shmem_export_ops;
3735         sb->s_flags |= SB_NOSEC;
3736 #else
3737         sb->s_flags |= SB_NOUSER;
3738 #endif
3739         sbinfo->max_blocks = ctx->blocks;
3740         sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3741         if (sb->s_flags & SB_KERNMOUNT) {
3742                 sbinfo->ino_batch = alloc_percpu(ino_t);
3743                 if (!sbinfo->ino_batch)
3744                         goto failed;
3745         }
3746         sbinfo->uid = ctx->uid;
3747         sbinfo->gid = ctx->gid;
3748         sbinfo->full_inums = ctx->full_inums;
3749         sbinfo->mode = ctx->mode;
3750         sbinfo->huge = ctx->huge;
3751         sbinfo->mpol = ctx->mpol;
3752         ctx->mpol = NULL;
3753
3754         spin_lock_init(&sbinfo->stat_lock);
3755         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3756                 goto failed;
3757         spin_lock_init(&sbinfo->shrinklist_lock);
3758         INIT_LIST_HEAD(&sbinfo->shrinklist);
3759
3760         sb->s_maxbytes = MAX_LFS_FILESIZE;
3761         sb->s_blocksize = PAGE_SIZE;
3762         sb->s_blocksize_bits = PAGE_SHIFT;
3763         sb->s_magic = TMPFS_MAGIC;
3764         sb->s_op = &shmem_ops;
3765         sb->s_time_gran = 1;
3766 #ifdef CONFIG_TMPFS_XATTR
3767         sb->s_xattr = shmem_xattr_handlers;
3768 #endif
3769 #ifdef CONFIG_TMPFS_POSIX_ACL
3770         sb->s_flags |= SB_POSIXACL;
3771 #endif
3772         uuid_gen(&sb->s_uuid);
3773
3774         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3775         if (!inode)
3776                 goto failed;
3777         inode->i_uid = sbinfo->uid;
3778         inode->i_gid = sbinfo->gid;
3779         sb->s_root = d_make_root(inode);
3780         if (!sb->s_root)
3781                 goto failed;
3782         return 0;
3783
3784 failed:
3785         shmem_put_super(sb);
3786         return err;
3787 }
3788
3789 static int shmem_get_tree(struct fs_context *fc)
3790 {
3791         return get_tree_nodev(fc, shmem_fill_super);
3792 }
3793
3794 static void shmem_free_fc(struct fs_context *fc)
3795 {
3796         struct shmem_options *ctx = fc->fs_private;
3797
3798         if (ctx) {
3799                 mpol_put(ctx->mpol);
3800                 kfree(ctx);
3801         }
3802 }
3803
3804 static const struct fs_context_operations shmem_fs_context_ops = {
3805         .free                   = shmem_free_fc,
3806         .get_tree               = shmem_get_tree,
3807 #ifdef CONFIG_TMPFS
3808         .parse_monolithic       = shmem_parse_options,
3809         .parse_param            = shmem_parse_one,
3810         .reconfigure            = shmem_reconfigure,
3811 #endif
3812 };
3813
3814 static struct kmem_cache *shmem_inode_cachep;
3815
3816 static struct inode *shmem_alloc_inode(struct super_block *sb)
3817 {
3818         struct shmem_inode_info *info;
3819         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3820         if (!info)
3821                 return NULL;
3822         return &info->vfs_inode;
3823 }
3824
3825 static void shmem_free_in_core_inode(struct inode *inode)
3826 {
3827         if (S_ISLNK(inode->i_mode))
3828                 kfree(inode->i_link);
3829         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3830 }
3831
3832 static void shmem_destroy_inode(struct inode *inode)
3833 {
3834         if (S_ISREG(inode->i_mode))
3835                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3836 }
3837
3838 static void shmem_init_inode(void *foo)
3839 {
3840         struct shmem_inode_info *info = foo;
3841         inode_init_once(&info->vfs_inode);
3842 }
3843
3844 static void shmem_init_inodecache(void)
3845 {
3846         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3847                                 sizeof(struct shmem_inode_info),
3848                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3849 }
3850
3851 static void shmem_destroy_inodecache(void)
3852 {
3853         kmem_cache_destroy(shmem_inode_cachep);
3854 }
3855
3856 static const struct address_space_operations shmem_aops = {
3857         .writepage      = shmem_writepage,
3858         .set_page_dirty = __set_page_dirty_no_writeback,
3859 #ifdef CONFIG_TMPFS
3860         .write_begin    = shmem_write_begin,
3861         .write_end      = shmem_write_end,
3862 #endif
3863 #ifdef CONFIG_MIGRATION
3864         .migratepage    = migrate_page,
3865 #endif
3866         .error_remove_page = generic_error_remove_page,
3867 };
3868
3869 static const struct file_operations shmem_file_operations = {
3870         .mmap           = shmem_mmap,
3871         .get_unmapped_area = shmem_get_unmapped_area,
3872 #ifdef CONFIG_TMPFS
3873         .llseek         = shmem_file_llseek,
3874         .read_iter      = shmem_file_read_iter,
3875         .write_iter     = generic_file_write_iter,
3876         .fsync          = noop_fsync,
3877         .splice_read    = generic_file_splice_read,
3878         .splice_write   = iter_file_splice_write,
3879         .fallocate      = shmem_fallocate,
3880 #endif
3881 };
3882
3883 static const struct inode_operations shmem_inode_operations = {
3884         .getattr        = shmem_getattr,
3885         .setattr        = shmem_setattr,
3886 #ifdef CONFIG_TMPFS_XATTR
3887         .listxattr      = shmem_listxattr,
3888         .set_acl        = simple_set_acl,
3889 #endif
3890 };
3891
3892 static const struct inode_operations shmem_dir_inode_operations = {
3893 #ifdef CONFIG_TMPFS
3894         .create         = shmem_create,
3895         .lookup         = simple_lookup,
3896         .link           = shmem_link,
3897         .unlink         = shmem_unlink,
3898         .symlink        = shmem_symlink,
3899         .mkdir          = shmem_mkdir,
3900         .rmdir          = shmem_rmdir,
3901         .mknod          = shmem_mknod,
3902         .rename         = shmem_rename2,
3903         .tmpfile        = shmem_tmpfile,
3904 #endif
3905 #ifdef CONFIG_TMPFS_XATTR
3906         .listxattr      = shmem_listxattr,
3907 #endif
3908 #ifdef CONFIG_TMPFS_POSIX_ACL
3909         .setattr        = shmem_setattr,
3910         .set_acl        = simple_set_acl,
3911 #endif
3912 };
3913
3914 static const struct inode_operations shmem_special_inode_operations = {
3915 #ifdef CONFIG_TMPFS_XATTR
3916         .listxattr      = shmem_listxattr,
3917 #endif
3918 #ifdef CONFIG_TMPFS_POSIX_ACL
3919         .setattr        = shmem_setattr,
3920         .set_acl        = simple_set_acl,
3921 #endif
3922 };
3923
3924 static const struct super_operations shmem_ops = {
3925         .alloc_inode    = shmem_alloc_inode,
3926         .free_inode     = shmem_free_in_core_inode,
3927         .destroy_inode  = shmem_destroy_inode,
3928 #ifdef CONFIG_TMPFS
3929         .statfs         = shmem_statfs,
3930         .show_options   = shmem_show_options,
3931 #endif
3932         .evict_inode    = shmem_evict_inode,
3933         .drop_inode     = generic_delete_inode,
3934         .put_super      = shmem_put_super,
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936         .nr_cached_objects      = shmem_unused_huge_count,
3937         .free_cached_objects    = shmem_unused_huge_scan,
3938 #endif
3939 };
3940
3941 static const struct vm_operations_struct shmem_vm_ops = {
3942         .fault          = shmem_fault,
3943         .map_pages      = filemap_map_pages,
3944 #ifdef CONFIG_NUMA
3945         .set_policy     = shmem_set_policy,
3946         .get_policy     = shmem_get_policy,
3947 #endif
3948 };
3949
3950 int shmem_init_fs_context(struct fs_context *fc)
3951 {
3952         struct shmem_options *ctx;
3953
3954         ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3955         if (!ctx)
3956                 return -ENOMEM;
3957
3958         ctx->mode = 0777 | S_ISVTX;
3959         ctx->uid = current_fsuid();
3960         ctx->gid = current_fsgid();
3961
3962         fc->fs_private = ctx;
3963         fc->ops = &shmem_fs_context_ops;
3964         return 0;
3965 }
3966
3967 static struct file_system_type shmem_fs_type = {
3968         .owner          = THIS_MODULE,
3969         .name           = "tmpfs",
3970         .init_fs_context = shmem_init_fs_context,
3971 #ifdef CONFIG_TMPFS
3972         .parameters     = shmem_fs_parameters,
3973 #endif
3974         .kill_sb        = kill_litter_super,
3975         .fs_flags       = FS_USERNS_MOUNT,
3976 };
3977
3978 int __init shmem_init(void)
3979 {
3980         int error;
3981
3982         shmem_init_inodecache();
3983
3984         error = register_filesystem(&shmem_fs_type);
3985         if (error) {
3986                 pr_err("Could not register tmpfs\n");
3987                 goto out2;
3988         }
3989
3990         shm_mnt = kern_mount(&shmem_fs_type);
3991         if (IS_ERR(shm_mnt)) {
3992                 error = PTR_ERR(shm_mnt);
3993                 pr_err("Could not kern_mount tmpfs\n");
3994                 goto out1;
3995         }
3996
3997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3998         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3999                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4000         else
4001                 shmem_huge = 0; /* just in case it was patched */
4002 #endif
4003         return 0;
4004
4005 out1:
4006         unregister_filesystem(&shmem_fs_type);
4007 out2:
4008         shmem_destroy_inodecache();
4009         shm_mnt = ERR_PTR(error);
4010         return error;
4011 }
4012
4013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4014 static ssize_t shmem_enabled_show(struct kobject *kobj,
4015                 struct kobj_attribute *attr, char *buf)
4016 {
4017         static const int values[] = {
4018                 SHMEM_HUGE_ALWAYS,
4019                 SHMEM_HUGE_WITHIN_SIZE,
4020                 SHMEM_HUGE_ADVISE,
4021                 SHMEM_HUGE_NEVER,
4022                 SHMEM_HUGE_DENY,
4023                 SHMEM_HUGE_FORCE,
4024         };
4025         int i, count;
4026
4027         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4028                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4029
4030                 count += sprintf(buf + count, fmt,
4031                                 shmem_format_huge(values[i]));
4032         }
4033         buf[count - 1] = '\n';
4034         return count;
4035 }
4036
4037 static ssize_t shmem_enabled_store(struct kobject *kobj,
4038                 struct kobj_attribute *attr, const char *buf, size_t count)
4039 {
4040         char tmp[16];
4041         int huge;
4042
4043         if (count + 1 > sizeof(tmp))
4044                 return -EINVAL;
4045         memcpy(tmp, buf, count);
4046         tmp[count] = '\0';
4047         if (count && tmp[count - 1] == '\n')
4048                 tmp[count - 1] = '\0';
4049
4050         huge = shmem_parse_huge(tmp);
4051         if (huge == -EINVAL)
4052                 return -EINVAL;
4053         if (!has_transparent_hugepage() &&
4054                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4055                 return -EINVAL;
4056
4057         shmem_huge = huge;
4058         if (shmem_huge > SHMEM_HUGE_DENY)
4059                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4060         return count;
4061 }
4062
4063 struct kobj_attribute shmem_enabled_attr =
4064         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4065 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4066
4067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068 bool shmem_huge_enabled(struct vm_area_struct *vma)
4069 {
4070         struct inode *inode = file_inode(vma->vm_file);
4071         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4072         loff_t i_size;
4073         pgoff_t off;
4074
4075         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4076             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4077                 return false;
4078         if (shmem_huge == SHMEM_HUGE_FORCE)
4079                 return true;
4080         if (shmem_huge == SHMEM_HUGE_DENY)
4081                 return false;
4082         switch (sbinfo->huge) {
4083                 case SHMEM_HUGE_NEVER:
4084                         return false;
4085                 case SHMEM_HUGE_ALWAYS:
4086                         return true;
4087                 case SHMEM_HUGE_WITHIN_SIZE:
4088                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4089                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4090                         if (i_size >= HPAGE_PMD_SIZE &&
4091                                         i_size >> PAGE_SHIFT >= off)
4092                                 return true;
4093                         fallthrough;
4094                 case SHMEM_HUGE_ADVISE:
4095                         /* TODO: implement fadvise() hints */
4096                         return (vma->vm_flags & VM_HUGEPAGE);
4097                 default:
4098                         VM_BUG_ON(1);
4099                         return false;
4100         }
4101 }
4102 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4103
4104 #else /* !CONFIG_SHMEM */
4105
4106 /*
4107  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4108  *
4109  * This is intended for small system where the benefits of the full
4110  * shmem code (swap-backed and resource-limited) are outweighed by
4111  * their complexity. On systems without swap this code should be
4112  * effectively equivalent, but much lighter weight.
4113  */
4114
4115 static struct file_system_type shmem_fs_type = {
4116         .name           = "tmpfs",
4117         .init_fs_context = ramfs_init_fs_context,
4118         .parameters     = ramfs_fs_parameters,
4119         .kill_sb        = kill_litter_super,
4120         .fs_flags       = FS_USERNS_MOUNT,
4121 };
4122
4123 int __init shmem_init(void)
4124 {
4125         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4126
4127         shm_mnt = kern_mount(&shmem_fs_type);
4128         BUG_ON(IS_ERR(shm_mnt));
4129
4130         return 0;
4131 }
4132
4133 int shmem_unuse(unsigned int type, bool frontswap,
4134                 unsigned long *fs_pages_to_unuse)
4135 {
4136         return 0;
4137 }
4138
4139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4140 {
4141         return 0;
4142 }
4143
4144 void shmem_unlock_mapping(struct address_space *mapping)
4145 {
4146 }
4147
4148 #ifdef CONFIG_MMU
4149 unsigned long shmem_get_unmapped_area(struct file *file,
4150                                       unsigned long addr, unsigned long len,
4151                                       unsigned long pgoff, unsigned long flags)
4152 {
4153         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4154 }
4155 #endif
4156
4157 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4158 {
4159         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4160 }
4161 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4162
4163 #define shmem_vm_ops                            generic_file_vm_ops
4164 #define shmem_file_operations                   ramfs_file_operations
4165 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4166 #define shmem_acct_size(flags, size)            0
4167 #define shmem_unacct_size(flags, size)          do {} while (0)
4168
4169 #endif /* CONFIG_SHMEM */
4170
4171 /* common code */
4172
4173 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4174                                        unsigned long flags, unsigned int i_flags)
4175 {
4176         struct inode *inode;
4177         struct file *res;
4178
4179         if (IS_ERR(mnt))
4180                 return ERR_CAST(mnt);
4181
4182         if (size < 0 || size > MAX_LFS_FILESIZE)
4183                 return ERR_PTR(-EINVAL);
4184
4185         if (shmem_acct_size(flags, size))
4186                 return ERR_PTR(-ENOMEM);
4187
4188         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4189                                 flags);
4190         if (unlikely(!inode)) {
4191                 shmem_unacct_size(flags, size);
4192                 return ERR_PTR(-ENOSPC);
4193         }
4194         inode->i_flags |= i_flags;
4195         inode->i_size = size;
4196         clear_nlink(inode);     /* It is unlinked */
4197         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4198         if (!IS_ERR(res))
4199                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4200                                 &shmem_file_operations);
4201         if (IS_ERR(res))
4202                 iput(inode);
4203         return res;
4204 }
4205
4206 /**
4207  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4208  *      kernel internal.  There will be NO LSM permission checks against the
4209  *      underlying inode.  So users of this interface must do LSM checks at a
4210  *      higher layer.  The users are the big_key and shm implementations.  LSM
4211  *      checks are provided at the key or shm level rather than the inode.
4212  * @name: name for dentry (to be seen in /proc/<pid>/maps
4213  * @size: size to be set for the file
4214  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4215  */
4216 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4217 {
4218         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4219 }
4220
4221 /**
4222  * shmem_file_setup - get an unlinked file living in tmpfs
4223  * @name: name for dentry (to be seen in /proc/<pid>/maps
4224  * @size: size to be set for the file
4225  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4226  */
4227 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4228 {
4229         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4230 }
4231 EXPORT_SYMBOL_GPL(shmem_file_setup);
4232
4233 /**
4234  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4235  * @mnt: the tmpfs mount where the file will be created
4236  * @name: name for dentry (to be seen in /proc/<pid>/maps
4237  * @size: size to be set for the file
4238  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4239  */
4240 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4241                                        loff_t size, unsigned long flags)
4242 {
4243         return __shmem_file_setup(mnt, name, size, flags, 0);
4244 }
4245 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4246
4247 /**
4248  * shmem_zero_setup - setup a shared anonymous mapping
4249  * @vma: the vma to be mmapped is prepared by do_mmap
4250  */
4251 int shmem_zero_setup(struct vm_area_struct *vma)
4252 {
4253         struct file *file;
4254         loff_t size = vma->vm_end - vma->vm_start;
4255
4256         /*
4257          * Cloning a new file under mmap_lock leads to a lock ordering conflict
4258          * between XFS directory reading and selinux: since this file is only
4259          * accessible to the user through its mapping, use S_PRIVATE flag to
4260          * bypass file security, in the same way as shmem_kernel_file_setup().
4261          */
4262         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4263         if (IS_ERR(file))
4264                 return PTR_ERR(file);
4265
4266         if (vma->vm_file)
4267                 fput(vma->vm_file);
4268         vma->vm_file = file;
4269         vma->vm_ops = &shmem_vm_ops;
4270
4271         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4272                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4273                         (vma->vm_end & HPAGE_PMD_MASK)) {
4274                 khugepaged_enter(vma, vma->vm_flags);
4275         }
4276
4277         return 0;
4278 }
4279
4280 /**
4281  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4282  * @mapping:    the page's address_space
4283  * @index:      the page index
4284  * @gfp:        the page allocator flags to use if allocating
4285  *
4286  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4287  * with any new page allocations done using the specified allocation flags.
4288  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4289  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4290  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4291  *
4292  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4293  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4294  */
4295 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4296                                          pgoff_t index, gfp_t gfp)
4297 {
4298 #ifdef CONFIG_SHMEM
4299         struct inode *inode = mapping->host;
4300         struct page *page;
4301         int error;
4302
4303         BUG_ON(mapping->a_ops != &shmem_aops);
4304         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4305                                   gfp, NULL, NULL, NULL);
4306         if (error)
4307                 page = ERR_PTR(error);
4308         else
4309                 unlock_page(page);
4310         return page;
4311 #else
4312         /*
4313          * The tiny !SHMEM case uses ramfs without swap
4314          */
4315         return read_cache_page_gfp(mapping, index, gfp);
4316 #endif
4317 }
4318 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);