mm: Change return type int to vm_fault_t for fault handlers
[linux-2.6-microblaze.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125                 struct page **pagep, enum sgp_type sgp,
126                 gfp_t gfp, struct vm_area_struct *vma,
127                 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130                 struct page **pagep, enum sgp_type sgp)
131 {
132         return shmem_getpage_gfp(inode, index, pagep, sgp,
133                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_NORESERVE) ?
150                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (!(flags & VM_NORESERVE))
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160                 loff_t oldsize, loff_t newsize)
161 {
162         if (!(flags & VM_NORESERVE)) {
163                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164                         return security_vm_enough_memory_mm(current->mm,
165                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
166                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168         }
169         return 0;
170 }
171
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180         if (!(flags & VM_NORESERVE))
181                 return 0;
182
183         return security_vm_enough_memory_mm(current->mm,
184                         pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189         if (flags & VM_NORESERVE)
190                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195         struct shmem_inode_info *info = SHMEM_I(inode);
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198         if (shmem_acct_block(info->flags, pages))
199                 return false;
200
201         if (sbinfo->max_blocks) {
202                 if (percpu_counter_compare(&sbinfo->used_blocks,
203                                            sbinfo->max_blocks - pages) > 0)
204                         goto unacct;
205                 percpu_counter_add(&sbinfo->used_blocks, pages);
206         }
207
208         return true;
209
210 unacct:
211         shmem_unacct_blocks(info->flags, pages);
212         return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (sbinfo->max_blocks)
221                 percpu_counter_sub(&sbinfo->used_blocks, pages);
222         shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236         return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245         if (sbinfo->max_inodes) {
246                 spin_lock(&sbinfo->stat_lock);
247                 if (!sbinfo->free_inodes) {
248                         spin_unlock(&sbinfo->stat_lock);
249                         return -ENOSPC;
250                 }
251                 sbinfo->free_inodes--;
252                 spin_unlock(&sbinfo->stat_lock);
253         }
254         return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260         if (sbinfo->max_inodes) {
261                 spin_lock(&sbinfo->stat_lock);
262                 sbinfo->free_inodes++;
263                 spin_unlock(&sbinfo->stat_lock);
264         }
265 }
266
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         long freed;
283
284         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285         if (freed > 0) {
286                 info->alloced -= freed;
287                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288                 shmem_inode_unacct_blocks(inode, freed);
289         }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         unsigned long flags;
296
297         if (!shmem_inode_acct_block(inode, pages))
298                 return false;
299
300         spin_lock_irqsave(&info->lock, flags);
301         info->alloced += pages;
302         inode->i_blocks += pages * BLOCKS_PER_PAGE;
303         shmem_recalc_inode(inode);
304         spin_unlock_irqrestore(&info->lock, flags);
305         inode->i_mapping->nrpages += pages;
306
307         return true;
308 }
309
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312         struct shmem_inode_info *info = SHMEM_I(inode);
313         unsigned long flags;
314
315         spin_lock_irqsave(&info->lock, flags);
316         info->alloced -= pages;
317         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318         shmem_recalc_inode(inode);
319         spin_unlock_irqrestore(&info->lock, flags);
320
321         shmem_inode_unacct_blocks(inode, pages);
322 }
323
324 /*
325  * Replace item expected in radix tree by a new item, while holding tree lock.
326  */
327 static int shmem_radix_tree_replace(struct address_space *mapping,
328                         pgoff_t index, void *expected, void *replacement)
329 {
330         struct radix_tree_node *node;
331         void __rcu **pslot;
332         void *item;
333
334         VM_BUG_ON(!expected);
335         VM_BUG_ON(!replacement);
336         item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
337         if (!item)
338                 return -ENOENT;
339         if (item != expected)
340                 return -ENOENT;
341         __radix_tree_replace(&mapping->i_pages, node, pslot,
342                              replacement, NULL);
343         return 0;
344 }
345
346 /*
347  * Sometimes, before we decide whether to proceed or to fail, we must check
348  * that an entry was not already brought back from swap by a racing thread.
349  *
350  * Checking page is not enough: by the time a SwapCache page is locked, it
351  * might be reused, and again be SwapCache, using the same swap as before.
352  */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354                                pgoff_t index, swp_entry_t swap)
355 {
356         void *item;
357
358         rcu_read_lock();
359         item = radix_tree_lookup(&mapping->i_pages, index);
360         rcu_read_unlock();
361         return item == swp_to_radix_entry(swap);
362 }
363
364 /*
365  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366  *
367  * SHMEM_HUGE_NEVER:
368  *      disables huge pages for the mount;
369  * SHMEM_HUGE_ALWAYS:
370  *      enables huge pages for the mount;
371  * SHMEM_HUGE_WITHIN_SIZE:
372  *      only allocate huge pages if the page will be fully within i_size,
373  *      also respect fadvise()/madvise() hints;
374  * SHMEM_HUGE_ADVISE:
375  *      only allocate huge pages if requested with fadvise()/madvise();
376  */
377
378 #define SHMEM_HUGE_NEVER        0
379 #define SHMEM_HUGE_ALWAYS       1
380 #define SHMEM_HUGE_WITHIN_SIZE  2
381 #define SHMEM_HUGE_ADVISE       3
382
383 /*
384  * Special values.
385  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386  *
387  * SHMEM_HUGE_DENY:
388  *      disables huge on shm_mnt and all mounts, for emergency use;
389  * SHMEM_HUGE_FORCE:
390  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
391  *
392  */
393 #define SHMEM_HUGE_DENY         (-1)
394 #define SHMEM_HUGE_FORCE        (-2)
395
396 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
397 /* ifdef here to avoid bloating shmem.o when not necessary */
398
399 static int shmem_huge __read_mostly;
400
401 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
402 static int shmem_parse_huge(const char *str)
403 {
404         if (!strcmp(str, "never"))
405                 return SHMEM_HUGE_NEVER;
406         if (!strcmp(str, "always"))
407                 return SHMEM_HUGE_ALWAYS;
408         if (!strcmp(str, "within_size"))
409                 return SHMEM_HUGE_WITHIN_SIZE;
410         if (!strcmp(str, "advise"))
411                 return SHMEM_HUGE_ADVISE;
412         if (!strcmp(str, "deny"))
413                 return SHMEM_HUGE_DENY;
414         if (!strcmp(str, "force"))
415                 return SHMEM_HUGE_FORCE;
416         return -EINVAL;
417 }
418
419 static const char *shmem_format_huge(int huge)
420 {
421         switch (huge) {
422         case SHMEM_HUGE_NEVER:
423                 return "never";
424         case SHMEM_HUGE_ALWAYS:
425                 return "always";
426         case SHMEM_HUGE_WITHIN_SIZE:
427                 return "within_size";
428         case SHMEM_HUGE_ADVISE:
429                 return "advise";
430         case SHMEM_HUGE_DENY:
431                 return "deny";
432         case SHMEM_HUGE_FORCE:
433                 return "force";
434         default:
435                 VM_BUG_ON(1);
436                 return "bad_val";
437         }
438 }
439 #endif
440
441 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
442                 struct shrink_control *sc, unsigned long nr_to_split)
443 {
444         LIST_HEAD(list), *pos, *next;
445         LIST_HEAD(to_remove);
446         struct inode *inode;
447         struct shmem_inode_info *info;
448         struct page *page;
449         unsigned long batch = sc ? sc->nr_to_scan : 128;
450         int removed = 0, split = 0;
451
452         if (list_empty(&sbinfo->shrinklist))
453                 return SHRINK_STOP;
454
455         spin_lock(&sbinfo->shrinklist_lock);
456         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
457                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458
459                 /* pin the inode */
460                 inode = igrab(&info->vfs_inode);
461
462                 /* inode is about to be evicted */
463                 if (!inode) {
464                         list_del_init(&info->shrinklist);
465                         removed++;
466                         goto next;
467                 }
468
469                 /* Check if there's anything to gain */
470                 if (round_up(inode->i_size, PAGE_SIZE) ==
471                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
472                         list_move(&info->shrinklist, &to_remove);
473                         removed++;
474                         goto next;
475                 }
476
477                 list_move(&info->shrinklist, &list);
478 next:
479                 if (!--batch)
480                         break;
481         }
482         spin_unlock(&sbinfo->shrinklist_lock);
483
484         list_for_each_safe(pos, next, &to_remove) {
485                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
486                 inode = &info->vfs_inode;
487                 list_del_init(&info->shrinklist);
488                 iput(inode);
489         }
490
491         list_for_each_safe(pos, next, &list) {
492                 int ret;
493
494                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
495                 inode = &info->vfs_inode;
496
497                 if (nr_to_split && split >= nr_to_split)
498                         goto leave;
499
500                 page = find_get_page(inode->i_mapping,
501                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
502                 if (!page)
503                         goto drop;
504
505                 /* No huge page at the end of the file: nothing to split */
506                 if (!PageTransHuge(page)) {
507                         put_page(page);
508                         goto drop;
509                 }
510
511                 /*
512                  * Leave the inode on the list if we failed to lock
513                  * the page at this time.
514                  *
515                  * Waiting for the lock may lead to deadlock in the
516                  * reclaim path.
517                  */
518                 if (!trylock_page(page)) {
519                         put_page(page);
520                         goto leave;
521                 }
522
523                 ret = split_huge_page(page);
524                 unlock_page(page);
525                 put_page(page);
526
527                 /* If split failed leave the inode on the list */
528                 if (ret)
529                         goto leave;
530
531                 split++;
532 drop:
533                 list_del_init(&info->shrinklist);
534                 removed++;
535 leave:
536                 iput(inode);
537         }
538
539         spin_lock(&sbinfo->shrinklist_lock);
540         list_splice_tail(&list, &sbinfo->shrinklist);
541         sbinfo->shrinklist_len -= removed;
542         spin_unlock(&sbinfo->shrinklist_lock);
543
544         return split;
545 }
546
547 static long shmem_unused_huge_scan(struct super_block *sb,
548                 struct shrink_control *sc)
549 {
550         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551
552         if (!READ_ONCE(sbinfo->shrinklist_len))
553                 return SHRINK_STOP;
554
555         return shmem_unused_huge_shrink(sbinfo, sc, 0);
556 }
557
558 static long shmem_unused_huge_count(struct super_block *sb,
559                 struct shrink_control *sc)
560 {
561         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
562         return READ_ONCE(sbinfo->shrinklist_len);
563 }
564 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565
566 #define shmem_huge SHMEM_HUGE_DENY
567
568 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
569                 struct shrink_control *sc, unsigned long nr_to_split)
570 {
571         return 0;
572 }
573 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574
575 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 {
577         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
578             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
579             shmem_huge != SHMEM_HUGE_DENY)
580                 return true;
581         return false;
582 }
583
584 /*
585  * Like add_to_page_cache_locked, but error if expected item has gone.
586  */
587 static int shmem_add_to_page_cache(struct page *page,
588                                    struct address_space *mapping,
589                                    pgoff_t index, void *expected)
590 {
591         int error, nr = hpage_nr_pages(page);
592
593         VM_BUG_ON_PAGE(PageTail(page), page);
594         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
595         VM_BUG_ON_PAGE(!PageLocked(page), page);
596         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
597         VM_BUG_ON(expected && PageTransHuge(page));
598
599         page_ref_add(page, nr);
600         page->mapping = mapping;
601         page->index = index;
602
603         xa_lock_irq(&mapping->i_pages);
604         if (PageTransHuge(page)) {
605                 void __rcu **results;
606                 pgoff_t idx;
607                 int i;
608
609                 error = 0;
610                 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
611                                         &results, &idx, index, 1) &&
612                                 idx < index + HPAGE_PMD_NR) {
613                         error = -EEXIST;
614                 }
615
616                 if (!error) {
617                         for (i = 0; i < HPAGE_PMD_NR; i++) {
618                                 error = radix_tree_insert(&mapping->i_pages,
619                                                 index + i, page + i);
620                                 VM_BUG_ON(error);
621                         }
622                         count_vm_event(THP_FILE_ALLOC);
623                 }
624         } else if (!expected) {
625                 error = radix_tree_insert(&mapping->i_pages, index, page);
626         } else {
627                 error = shmem_radix_tree_replace(mapping, index, expected,
628                                                                  page);
629         }
630
631         if (!error) {
632                 mapping->nrpages += nr;
633                 if (PageTransHuge(page))
634                         __inc_node_page_state(page, NR_SHMEM_THPS);
635                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
636                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
637                 xa_unlock_irq(&mapping->i_pages);
638         } else {
639                 page->mapping = NULL;
640                 xa_unlock_irq(&mapping->i_pages);
641                 page_ref_sub(page, nr);
642         }
643         return error;
644 }
645
646 /*
647  * Like delete_from_page_cache, but substitutes swap for page.
648  */
649 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 {
651         struct address_space *mapping = page->mapping;
652         int error;
653
654         VM_BUG_ON_PAGE(PageCompound(page), page);
655
656         xa_lock_irq(&mapping->i_pages);
657         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
658         page->mapping = NULL;
659         mapping->nrpages--;
660         __dec_node_page_state(page, NR_FILE_PAGES);
661         __dec_node_page_state(page, NR_SHMEM);
662         xa_unlock_irq(&mapping->i_pages);
663         put_page(page);
664         BUG_ON(error);
665 }
666
667 /*
668  * Remove swap entry from radix tree, free the swap and its page cache.
669  */
670 static int shmem_free_swap(struct address_space *mapping,
671                            pgoff_t index, void *radswap)
672 {
673         void *old;
674
675         xa_lock_irq(&mapping->i_pages);
676         old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
677         xa_unlock_irq(&mapping->i_pages);
678         if (old != radswap)
679                 return -ENOENT;
680         free_swap_and_cache(radix_to_swp_entry(radswap));
681         return 0;
682 }
683
684 /*
685  * Determine (in bytes) how many of the shmem object's pages mapped by the
686  * given offsets are swapped out.
687  *
688  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
689  * as long as the inode doesn't go away and racy results are not a problem.
690  */
691 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
692                                                 pgoff_t start, pgoff_t end)
693 {
694         struct radix_tree_iter iter;
695         void __rcu **slot;
696         struct page *page;
697         unsigned long swapped = 0;
698
699         rcu_read_lock();
700
701         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
702                 if (iter.index >= end)
703                         break;
704
705                 page = radix_tree_deref_slot(slot);
706
707                 if (radix_tree_deref_retry(page)) {
708                         slot = radix_tree_iter_retry(&iter);
709                         continue;
710                 }
711
712                 if (radix_tree_exceptional_entry(page))
713                         swapped++;
714
715                 if (need_resched()) {
716                         slot = radix_tree_iter_resume(slot, &iter);
717                         cond_resched_rcu();
718                 }
719         }
720
721         rcu_read_unlock();
722
723         return swapped << PAGE_SHIFT;
724 }
725
726 /*
727  * Determine (in bytes) how many of the shmem object's pages mapped by the
728  * given vma is swapped out.
729  *
730  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
731  * as long as the inode doesn't go away and racy results are not a problem.
732  */
733 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 {
735         struct inode *inode = file_inode(vma->vm_file);
736         struct shmem_inode_info *info = SHMEM_I(inode);
737         struct address_space *mapping = inode->i_mapping;
738         unsigned long swapped;
739
740         /* Be careful as we don't hold info->lock */
741         swapped = READ_ONCE(info->swapped);
742
743         /*
744          * The easier cases are when the shmem object has nothing in swap, or
745          * the vma maps it whole. Then we can simply use the stats that we
746          * already track.
747          */
748         if (!swapped)
749                 return 0;
750
751         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
752                 return swapped << PAGE_SHIFT;
753
754         /* Here comes the more involved part */
755         return shmem_partial_swap_usage(mapping,
756                         linear_page_index(vma, vma->vm_start),
757                         linear_page_index(vma, vma->vm_end));
758 }
759
760 /*
761  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762  */
763 void shmem_unlock_mapping(struct address_space *mapping)
764 {
765         struct pagevec pvec;
766         pgoff_t indices[PAGEVEC_SIZE];
767         pgoff_t index = 0;
768
769         pagevec_init(&pvec);
770         /*
771          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772          */
773         while (!mapping_unevictable(mapping)) {
774                 /*
775                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
776                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777                  */
778                 pvec.nr = find_get_entries(mapping, index,
779                                            PAGEVEC_SIZE, pvec.pages, indices);
780                 if (!pvec.nr)
781                         break;
782                 index = indices[pvec.nr - 1] + 1;
783                 pagevec_remove_exceptionals(&pvec);
784                 check_move_unevictable_pages(pvec.pages, pvec.nr);
785                 pagevec_release(&pvec);
786                 cond_resched();
787         }
788 }
789
790 /*
791  * Remove range of pages and swap entries from radix tree, and free them.
792  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793  */
794 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
795                                                                  bool unfalloc)
796 {
797         struct address_space *mapping = inode->i_mapping;
798         struct shmem_inode_info *info = SHMEM_I(inode);
799         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
800         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
801         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
802         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
803         struct pagevec pvec;
804         pgoff_t indices[PAGEVEC_SIZE];
805         long nr_swaps_freed = 0;
806         pgoff_t index;
807         int i;
808
809         if (lend == -1)
810                 end = -1;       /* unsigned, so actually very big */
811
812         pagevec_init(&pvec);
813         index = start;
814         while (index < end) {
815                 pvec.nr = find_get_entries(mapping, index,
816                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
817                         pvec.pages, indices);
818                 if (!pvec.nr)
819                         break;
820                 for (i = 0; i < pagevec_count(&pvec); i++) {
821                         struct page *page = pvec.pages[i];
822
823                         index = indices[i];
824                         if (index >= end)
825                                 break;
826
827                         if (radix_tree_exceptional_entry(page)) {
828                                 if (unfalloc)
829                                         continue;
830                                 nr_swaps_freed += !shmem_free_swap(mapping,
831                                                                 index, page);
832                                 continue;
833                         }
834
835                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836
837                         if (!trylock_page(page))
838                                 continue;
839
840                         if (PageTransTail(page)) {
841                                 /* Middle of THP: zero out the page */
842                                 clear_highpage(page);
843                                 unlock_page(page);
844                                 continue;
845                         } else if (PageTransHuge(page)) {
846                                 if (index == round_down(end, HPAGE_PMD_NR)) {
847                                         /*
848                                          * Range ends in the middle of THP:
849                                          * zero out the page
850                                          */
851                                         clear_highpage(page);
852                                         unlock_page(page);
853                                         continue;
854                                 }
855                                 index += HPAGE_PMD_NR - 1;
856                                 i += HPAGE_PMD_NR - 1;
857                         }
858
859                         if (!unfalloc || !PageUptodate(page)) {
860                                 VM_BUG_ON_PAGE(PageTail(page), page);
861                                 if (page_mapping(page) == mapping) {
862                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
863                                         truncate_inode_page(mapping, page);
864                                 }
865                         }
866                         unlock_page(page);
867                 }
868                 pagevec_remove_exceptionals(&pvec);
869                 pagevec_release(&pvec);
870                 cond_resched();
871                 index++;
872         }
873
874         if (partial_start) {
875                 struct page *page = NULL;
876                 shmem_getpage(inode, start - 1, &page, SGP_READ);
877                 if (page) {
878                         unsigned int top = PAGE_SIZE;
879                         if (start > end) {
880                                 top = partial_end;
881                                 partial_end = 0;
882                         }
883                         zero_user_segment(page, partial_start, top);
884                         set_page_dirty(page);
885                         unlock_page(page);
886                         put_page(page);
887                 }
888         }
889         if (partial_end) {
890                 struct page *page = NULL;
891                 shmem_getpage(inode, end, &page, SGP_READ);
892                 if (page) {
893                         zero_user_segment(page, 0, partial_end);
894                         set_page_dirty(page);
895                         unlock_page(page);
896                         put_page(page);
897                 }
898         }
899         if (start >= end)
900                 return;
901
902         index = start;
903         while (index < end) {
904                 cond_resched();
905
906                 pvec.nr = find_get_entries(mapping, index,
907                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
908                                 pvec.pages, indices);
909                 if (!pvec.nr) {
910                         /* If all gone or hole-punch or unfalloc, we're done */
911                         if (index == start || end != -1)
912                                 break;
913                         /* But if truncating, restart to make sure all gone */
914                         index = start;
915                         continue;
916                 }
917                 for (i = 0; i < pagevec_count(&pvec); i++) {
918                         struct page *page = pvec.pages[i];
919
920                         index = indices[i];
921                         if (index >= end)
922                                 break;
923
924                         if (radix_tree_exceptional_entry(page)) {
925                                 if (unfalloc)
926                                         continue;
927                                 if (shmem_free_swap(mapping, index, page)) {
928                                         /* Swap was replaced by page: retry */
929                                         index--;
930                                         break;
931                                 }
932                                 nr_swaps_freed++;
933                                 continue;
934                         }
935
936                         lock_page(page);
937
938                         if (PageTransTail(page)) {
939                                 /* Middle of THP: zero out the page */
940                                 clear_highpage(page);
941                                 unlock_page(page);
942                                 /*
943                                  * Partial thp truncate due 'start' in middle
944                                  * of THP: don't need to look on these pages
945                                  * again on !pvec.nr restart.
946                                  */
947                                 if (index != round_down(end, HPAGE_PMD_NR))
948                                         start++;
949                                 continue;
950                         } else if (PageTransHuge(page)) {
951                                 if (index == round_down(end, HPAGE_PMD_NR)) {
952                                         /*
953                                          * Range ends in the middle of THP:
954                                          * zero out the page
955                                          */
956                                         clear_highpage(page);
957                                         unlock_page(page);
958                                         continue;
959                                 }
960                                 index += HPAGE_PMD_NR - 1;
961                                 i += HPAGE_PMD_NR - 1;
962                         }
963
964                         if (!unfalloc || !PageUptodate(page)) {
965                                 VM_BUG_ON_PAGE(PageTail(page), page);
966                                 if (page_mapping(page) == mapping) {
967                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
968                                         truncate_inode_page(mapping, page);
969                                 } else {
970                                         /* Page was replaced by swap: retry */
971                                         unlock_page(page);
972                                         index--;
973                                         break;
974                                 }
975                         }
976                         unlock_page(page);
977                 }
978                 pagevec_remove_exceptionals(&pvec);
979                 pagevec_release(&pvec);
980                 index++;
981         }
982
983         spin_lock_irq(&info->lock);
984         info->swapped -= nr_swaps_freed;
985         shmem_recalc_inode(inode);
986         spin_unlock_irq(&info->lock);
987 }
988
989 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 {
991         shmem_undo_range(inode, lstart, lend, false);
992         inode->i_ctime = inode->i_mtime = current_time(inode);
993 }
994 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995
996 static int shmem_getattr(const struct path *path, struct kstat *stat,
997                          u32 request_mask, unsigned int query_flags)
998 {
999         struct inode *inode = path->dentry->d_inode;
1000         struct shmem_inode_info *info = SHMEM_I(inode);
1001         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002
1003         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1004                 spin_lock_irq(&info->lock);
1005                 shmem_recalc_inode(inode);
1006                 spin_unlock_irq(&info->lock);
1007         }
1008         generic_fillattr(inode, stat);
1009
1010         if (is_huge_enabled(sb_info))
1011                 stat->blksize = HPAGE_PMD_SIZE;
1012
1013         return 0;
1014 }
1015
1016 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 {
1018         struct inode *inode = d_inode(dentry);
1019         struct shmem_inode_info *info = SHMEM_I(inode);
1020         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1021         int error;
1022
1023         error = setattr_prepare(dentry, attr);
1024         if (error)
1025                 return error;
1026
1027         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1028                 loff_t oldsize = inode->i_size;
1029                 loff_t newsize = attr->ia_size;
1030
1031                 /* protected by i_mutex */
1032                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1033                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1034                         return -EPERM;
1035
1036                 if (newsize != oldsize) {
1037                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1038                                         oldsize, newsize);
1039                         if (error)
1040                                 return error;
1041                         i_size_write(inode, newsize);
1042                         inode->i_ctime = inode->i_mtime = current_time(inode);
1043                 }
1044                 if (newsize <= oldsize) {
1045                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1046                         if (oldsize > holebegin)
1047                                 unmap_mapping_range(inode->i_mapping,
1048                                                         holebegin, 0, 1);
1049                         if (info->alloced)
1050                                 shmem_truncate_range(inode,
1051                                                         newsize, (loff_t)-1);
1052                         /* unmap again to remove racily COWed private pages */
1053                         if (oldsize > holebegin)
1054                                 unmap_mapping_range(inode->i_mapping,
1055                                                         holebegin, 0, 1);
1056
1057                         /*
1058                          * Part of the huge page can be beyond i_size: subject
1059                          * to shrink under memory pressure.
1060                          */
1061                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1062                                 spin_lock(&sbinfo->shrinklist_lock);
1063                                 /*
1064                                  * _careful to defend against unlocked access to
1065                                  * ->shrink_list in shmem_unused_huge_shrink()
1066                                  */
1067                                 if (list_empty_careful(&info->shrinklist)) {
1068                                         list_add_tail(&info->shrinklist,
1069                                                         &sbinfo->shrinklist);
1070                                         sbinfo->shrinklist_len++;
1071                                 }
1072                                 spin_unlock(&sbinfo->shrinklist_lock);
1073                         }
1074                 }
1075         }
1076
1077         setattr_copy(inode, attr);
1078         if (attr->ia_valid & ATTR_MODE)
1079                 error = posix_acl_chmod(inode, inode->i_mode);
1080         return error;
1081 }
1082
1083 static void shmem_evict_inode(struct inode *inode)
1084 {
1085         struct shmem_inode_info *info = SHMEM_I(inode);
1086         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087
1088         if (inode->i_mapping->a_ops == &shmem_aops) {
1089                 shmem_unacct_size(info->flags, inode->i_size);
1090                 inode->i_size = 0;
1091                 shmem_truncate_range(inode, 0, (loff_t)-1);
1092                 if (!list_empty(&info->shrinklist)) {
1093                         spin_lock(&sbinfo->shrinklist_lock);
1094                         if (!list_empty(&info->shrinklist)) {
1095                                 list_del_init(&info->shrinklist);
1096                                 sbinfo->shrinklist_len--;
1097                         }
1098                         spin_unlock(&sbinfo->shrinklist_lock);
1099                 }
1100                 if (!list_empty(&info->swaplist)) {
1101                         mutex_lock(&shmem_swaplist_mutex);
1102                         list_del_init(&info->swaplist);
1103                         mutex_unlock(&shmem_swaplist_mutex);
1104                 }
1105         }
1106
1107         simple_xattrs_free(&info->xattrs);
1108         WARN_ON(inode->i_blocks);
1109         shmem_free_inode(inode->i_sb);
1110         clear_inode(inode);
1111 }
1112
1113 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 {
1115         struct radix_tree_iter iter;
1116         void __rcu **slot;
1117         unsigned long found = -1;
1118         unsigned int checked = 0;
1119
1120         rcu_read_lock();
1121         radix_tree_for_each_slot(slot, root, &iter, 0) {
1122                 void *entry = radix_tree_deref_slot(slot);
1123
1124                 if (radix_tree_deref_retry(entry)) {
1125                         slot = radix_tree_iter_retry(&iter);
1126                         continue;
1127                 }
1128                 if (entry == item) {
1129                         found = iter.index;
1130                         break;
1131                 }
1132                 checked++;
1133                 if ((checked % 4096) != 0)
1134                         continue;
1135                 slot = radix_tree_iter_resume(slot, &iter);
1136                 cond_resched_rcu();
1137         }
1138
1139         rcu_read_unlock();
1140         return found;
1141 }
1142
1143 /*
1144  * If swap found in inode, free it and move page from swapcache to filecache.
1145  */
1146 static int shmem_unuse_inode(struct shmem_inode_info *info,
1147                              swp_entry_t swap, struct page **pagep)
1148 {
1149         struct address_space *mapping = info->vfs_inode.i_mapping;
1150         void *radswap;
1151         pgoff_t index;
1152         gfp_t gfp;
1153         int error = 0;
1154
1155         radswap = swp_to_radix_entry(swap);
1156         index = find_swap_entry(&mapping->i_pages, radswap);
1157         if (index == -1)
1158                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1159
1160         /*
1161          * Move _head_ to start search for next from here.
1162          * But be careful: shmem_evict_inode checks list_empty without taking
1163          * mutex, and there's an instant in list_move_tail when info->swaplist
1164          * would appear empty, if it were the only one on shmem_swaplist.
1165          */
1166         if (shmem_swaplist.next != &info->swaplist)
1167                 list_move_tail(&shmem_swaplist, &info->swaplist);
1168
1169         gfp = mapping_gfp_mask(mapping);
1170         if (shmem_should_replace_page(*pagep, gfp)) {
1171                 mutex_unlock(&shmem_swaplist_mutex);
1172                 error = shmem_replace_page(pagep, gfp, info, index);
1173                 mutex_lock(&shmem_swaplist_mutex);
1174                 /*
1175                  * We needed to drop mutex to make that restrictive page
1176                  * allocation, but the inode might have been freed while we
1177                  * dropped it: although a racing shmem_evict_inode() cannot
1178                  * complete without emptying the radix_tree, our page lock
1179                  * on this swapcache page is not enough to prevent that -
1180                  * free_swap_and_cache() of our swap entry will only
1181                  * trylock_page(), removing swap from radix_tree whatever.
1182                  *
1183                  * We must not proceed to shmem_add_to_page_cache() if the
1184                  * inode has been freed, but of course we cannot rely on
1185                  * inode or mapping or info to check that.  However, we can
1186                  * safely check if our swap entry is still in use (and here
1187                  * it can't have got reused for another page): if it's still
1188                  * in use, then the inode cannot have been freed yet, and we
1189                  * can safely proceed (if it's no longer in use, that tells
1190                  * nothing about the inode, but we don't need to unuse swap).
1191                  */
1192                 if (!page_swapcount(*pagep))
1193                         error = -ENOENT;
1194         }
1195
1196         /*
1197          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199          * beneath us (pagelock doesn't help until the page is in pagecache).
1200          */
1201         if (!error)
1202                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1203                                                 radswap);
1204         if (error != -ENOMEM) {
1205                 /*
1206                  * Truncation and eviction use free_swap_and_cache(), which
1207                  * only does trylock page: if we raced, best clean up here.
1208                  */
1209                 delete_from_swap_cache(*pagep);
1210                 set_page_dirty(*pagep);
1211                 if (!error) {
1212                         spin_lock_irq(&info->lock);
1213                         info->swapped--;
1214                         spin_unlock_irq(&info->lock);
1215                         swap_free(swap);
1216                 }
1217         }
1218         return error;
1219 }
1220
1221 /*
1222  * Search through swapped inodes to find and replace swap by page.
1223  */
1224 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 {
1226         struct list_head *this, *next;
1227         struct shmem_inode_info *info;
1228         struct mem_cgroup *memcg;
1229         int error = 0;
1230
1231         /*
1232          * There's a faint possibility that swap page was replaced before
1233          * caller locked it: caller will come back later with the right page.
1234          */
1235         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1236                 goto out;
1237
1238         /*
1239          * Charge page using GFP_KERNEL while we can wait, before taking
1240          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241          * Charged back to the user (not to caller) when swap account is used.
1242          */
1243         error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1244                                             &memcg, false);
1245         if (error)
1246                 goto out;
1247         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1248         error = -EAGAIN;
1249
1250         mutex_lock(&shmem_swaplist_mutex);
1251         list_for_each_safe(this, next, &shmem_swaplist) {
1252                 info = list_entry(this, struct shmem_inode_info, swaplist);
1253                 if (info->swapped)
1254                         error = shmem_unuse_inode(info, swap, &page);
1255                 else
1256                         list_del_init(&info->swaplist);
1257                 cond_resched();
1258                 if (error != -EAGAIN)
1259                         break;
1260                 /* found nothing in this: move on to search the next */
1261         }
1262         mutex_unlock(&shmem_swaplist_mutex);
1263
1264         if (error) {
1265                 if (error != -ENOMEM)
1266                         error = 0;
1267                 mem_cgroup_cancel_charge(page, memcg, false);
1268         } else
1269                 mem_cgroup_commit_charge(page, memcg, true, false);
1270 out:
1271         unlock_page(page);
1272         put_page(page);
1273         return error;
1274 }
1275
1276 /*
1277  * Move the page from the page cache to the swap cache.
1278  */
1279 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 {
1281         struct shmem_inode_info *info;
1282         struct address_space *mapping;
1283         struct inode *inode;
1284         swp_entry_t swap;
1285         pgoff_t index;
1286
1287         VM_BUG_ON_PAGE(PageCompound(page), page);
1288         BUG_ON(!PageLocked(page));
1289         mapping = page->mapping;
1290         index = page->index;
1291         inode = mapping->host;
1292         info = SHMEM_I(inode);
1293         if (info->flags & VM_LOCKED)
1294                 goto redirty;
1295         if (!total_swap_pages)
1296                 goto redirty;
1297
1298         /*
1299          * Our capabilities prevent regular writeback or sync from ever calling
1300          * shmem_writepage; but a stacking filesystem might use ->writepage of
1301          * its underlying filesystem, in which case tmpfs should write out to
1302          * swap only in response to memory pressure, and not for the writeback
1303          * threads or sync.
1304          */
1305         if (!wbc->for_reclaim) {
1306                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1307                 goto redirty;
1308         }
1309
1310         /*
1311          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312          * value into swapfile.c, the only way we can correctly account for a
1313          * fallocated page arriving here is now to initialize it and write it.
1314          *
1315          * That's okay for a page already fallocated earlier, but if we have
1316          * not yet completed the fallocation, then (a) we want to keep track
1317          * of this page in case we have to undo it, and (b) it may not be a
1318          * good idea to continue anyway, once we're pushing into swap.  So
1319          * reactivate the page, and let shmem_fallocate() quit when too many.
1320          */
1321         if (!PageUptodate(page)) {
1322                 if (inode->i_private) {
1323                         struct shmem_falloc *shmem_falloc;
1324                         spin_lock(&inode->i_lock);
1325                         shmem_falloc = inode->i_private;
1326                         if (shmem_falloc &&
1327                             !shmem_falloc->waitq &&
1328                             index >= shmem_falloc->start &&
1329                             index < shmem_falloc->next)
1330                                 shmem_falloc->nr_unswapped++;
1331                         else
1332                                 shmem_falloc = NULL;
1333                         spin_unlock(&inode->i_lock);
1334                         if (shmem_falloc)
1335                                 goto redirty;
1336                 }
1337                 clear_highpage(page);
1338                 flush_dcache_page(page);
1339                 SetPageUptodate(page);
1340         }
1341
1342         swap = get_swap_page(page);
1343         if (!swap.val)
1344                 goto redirty;
1345
1346         /*
1347          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348          * if it's not already there.  Do it now before the page is
1349          * moved to swap cache, when its pagelock no longer protects
1350          * the inode from eviction.  But don't unlock the mutex until
1351          * we've incremented swapped, because shmem_unuse_inode() will
1352          * prune a !swapped inode from the swaplist under this mutex.
1353          */
1354         mutex_lock(&shmem_swaplist_mutex);
1355         if (list_empty(&info->swaplist))
1356                 list_add_tail(&info->swaplist, &shmem_swaplist);
1357
1358         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1359                 spin_lock_irq(&info->lock);
1360                 shmem_recalc_inode(inode);
1361                 info->swapped++;
1362                 spin_unlock_irq(&info->lock);
1363
1364                 swap_shmem_alloc(swap);
1365                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366
1367                 mutex_unlock(&shmem_swaplist_mutex);
1368                 BUG_ON(page_mapped(page));
1369                 swap_writepage(page, wbc);
1370                 return 0;
1371         }
1372
1373         mutex_unlock(&shmem_swaplist_mutex);
1374         put_swap_page(page, swap);
1375 redirty:
1376         set_page_dirty(page);
1377         if (wbc->for_reclaim)
1378                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1379         unlock_page(page);
1380         return 0;
1381 }
1382
1383 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 {
1386         char buffer[64];
1387
1388         if (!mpol || mpol->mode == MPOL_DEFAULT)
1389                 return;         /* show nothing */
1390
1391         mpol_to_str(buffer, sizeof(buffer), mpol);
1392
1393         seq_printf(seq, ",mpol=%s", buffer);
1394 }
1395
1396 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 {
1398         struct mempolicy *mpol = NULL;
1399         if (sbinfo->mpol) {
1400                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1401                 mpol = sbinfo->mpol;
1402                 mpol_get(mpol);
1403                 spin_unlock(&sbinfo->stat_lock);
1404         }
1405         return mpol;
1406 }
1407 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1409 {
1410 }
1411 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 {
1413         return NULL;
1414 }
1415 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #ifndef CONFIG_NUMA
1417 #define vm_policy vm_private_data
1418 #endif
1419
1420 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1421                 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423         /* Create a pseudo vma that just contains the policy */
1424         vma_init(vma, NULL);
1425         /* Bias interleave by inode number to distribute better across nodes */
1426         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428 }
1429
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431 {
1432         /* Drop reference taken by mpol_shared_policy_lookup() */
1433         mpol_cond_put(vma->vm_policy);
1434 }
1435
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437                         struct shmem_inode_info *info, pgoff_t index)
1438 {
1439         struct vm_area_struct pvma;
1440         struct page *page;
1441         struct vm_fault vmf;
1442
1443         shmem_pseudo_vma_init(&pvma, info, index);
1444         vmf.vma = &pvma;
1445         vmf.address = 0;
1446         page = swap_cluster_readahead(swap, gfp, &vmf);
1447         shmem_pseudo_vma_destroy(&pvma);
1448
1449         return page;
1450 }
1451
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453                 struct shmem_inode_info *info, pgoff_t index)
1454 {
1455         struct vm_area_struct pvma;
1456         struct inode *inode = &info->vfs_inode;
1457         struct address_space *mapping = inode->i_mapping;
1458         pgoff_t idx, hindex;
1459         void __rcu **results;
1460         struct page *page;
1461
1462         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463                 return NULL;
1464
1465         hindex = round_down(index, HPAGE_PMD_NR);
1466         rcu_read_lock();
1467         if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469                 rcu_read_unlock();
1470                 return NULL;
1471         }
1472         rcu_read_unlock();
1473
1474         shmem_pseudo_vma_init(&pvma, info, hindex);
1475         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477         shmem_pseudo_vma_destroy(&pvma);
1478         if (page)
1479                 prep_transhuge_page(page);
1480         return page;
1481 }
1482
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484                         struct shmem_inode_info *info, pgoff_t index)
1485 {
1486         struct vm_area_struct pvma;
1487         struct page *page;
1488
1489         shmem_pseudo_vma_init(&pvma, info, index);
1490         page = alloc_page_vma(gfp, &pvma, 0);
1491         shmem_pseudo_vma_destroy(&pvma);
1492
1493         return page;
1494 }
1495
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497                 struct inode *inode,
1498                 pgoff_t index, bool huge)
1499 {
1500         struct shmem_inode_info *info = SHMEM_I(inode);
1501         struct page *page;
1502         int nr;
1503         int err = -ENOSPC;
1504
1505         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506                 huge = false;
1507         nr = huge ? HPAGE_PMD_NR : 1;
1508
1509         if (!shmem_inode_acct_block(inode, nr))
1510                 goto failed;
1511
1512         if (huge)
1513                 page = shmem_alloc_hugepage(gfp, info, index);
1514         else
1515                 page = shmem_alloc_page(gfp, info, index);
1516         if (page) {
1517                 __SetPageLocked(page);
1518                 __SetPageSwapBacked(page);
1519                 return page;
1520         }
1521
1522         err = -ENOMEM;
1523         shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525         return ERR_PTR(err);
1526 }
1527
1528 /*
1529  * When a page is moved from swapcache to shmem filecache (either by the
1530  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532  * ignorance of the mapping it belongs to.  If that mapping has special
1533  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534  * we may need to copy to a suitable page before moving to filecache.
1535  *
1536  * In a future release, this may well be extended to respect cpuset and
1537  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538  * but for now it is a simple matter of zone.
1539  */
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541 {
1542         return page_zonenum(page) > gfp_zone(gfp);
1543 }
1544
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546                                 struct shmem_inode_info *info, pgoff_t index)
1547 {
1548         struct page *oldpage, *newpage;
1549         struct address_space *swap_mapping;
1550         pgoff_t swap_index;
1551         int error;
1552
1553         oldpage = *pagep;
1554         swap_index = page_private(oldpage);
1555         swap_mapping = page_mapping(oldpage);
1556
1557         /*
1558          * We have arrived here because our zones are constrained, so don't
1559          * limit chance of success by further cpuset and node constraints.
1560          */
1561         gfp &= ~GFP_CONSTRAINT_MASK;
1562         newpage = shmem_alloc_page(gfp, info, index);
1563         if (!newpage)
1564                 return -ENOMEM;
1565
1566         get_page(newpage);
1567         copy_highpage(newpage, oldpage);
1568         flush_dcache_page(newpage);
1569
1570         __SetPageLocked(newpage);
1571         __SetPageSwapBacked(newpage);
1572         SetPageUptodate(newpage);
1573         set_page_private(newpage, swap_index);
1574         SetPageSwapCache(newpage);
1575
1576         /*
1577          * Our caller will very soon move newpage out of swapcache, but it's
1578          * a nice clean interface for us to replace oldpage by newpage there.
1579          */
1580         xa_lock_irq(&swap_mapping->i_pages);
1581         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582                                                                    newpage);
1583         if (!error) {
1584                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1585                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1586         }
1587         xa_unlock_irq(&swap_mapping->i_pages);
1588
1589         if (unlikely(error)) {
1590                 /*
1591                  * Is this possible?  I think not, now that our callers check
1592                  * both PageSwapCache and page_private after getting page lock;
1593                  * but be defensive.  Reverse old to newpage for clear and free.
1594                  */
1595                 oldpage = newpage;
1596         } else {
1597                 mem_cgroup_migrate(oldpage, newpage);
1598                 lru_cache_add_anon(newpage);
1599                 *pagep = newpage;
1600         }
1601
1602         ClearPageSwapCache(oldpage);
1603         set_page_private(oldpage, 0);
1604
1605         unlock_page(oldpage);
1606         put_page(oldpage);
1607         put_page(oldpage);
1608         return error;
1609 }
1610
1611 /*
1612  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613  *
1614  * If we allocate a new one we do not mark it dirty. That's up to the
1615  * vm. If we swap it in we mark it dirty since we also free the swap
1616  * entry since a page cannot live in both the swap and page cache.
1617  *
1618  * fault_mm and fault_type are only supplied by shmem_fault:
1619  * otherwise they are NULL.
1620  */
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623         struct vm_area_struct *vma, struct vm_fault *vmf,
1624                         vm_fault_t *fault_type)
1625 {
1626         struct address_space *mapping = inode->i_mapping;
1627         struct shmem_inode_info *info = SHMEM_I(inode);
1628         struct shmem_sb_info *sbinfo;
1629         struct mm_struct *charge_mm;
1630         struct mem_cgroup *memcg;
1631         struct page *page;
1632         swp_entry_t swap;
1633         enum sgp_type sgp_huge = sgp;
1634         pgoff_t hindex = index;
1635         int error;
1636         int once = 0;
1637         int alloced = 0;
1638
1639         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1640                 return -EFBIG;
1641         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1642                 sgp = SGP_CACHE;
1643 repeat:
1644         swap.val = 0;
1645         page = find_lock_entry(mapping, index);
1646         if (radix_tree_exceptional_entry(page)) {
1647                 swap = radix_to_swp_entry(page);
1648                 page = NULL;
1649         }
1650
1651         if (sgp <= SGP_CACHE &&
1652             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1653                 error = -EINVAL;
1654                 goto unlock;
1655         }
1656
1657         if (page && sgp == SGP_WRITE)
1658                 mark_page_accessed(page);
1659
1660         /* fallocated page? */
1661         if (page && !PageUptodate(page)) {
1662                 if (sgp != SGP_READ)
1663                         goto clear;
1664                 unlock_page(page);
1665                 put_page(page);
1666                 page = NULL;
1667         }
1668         if (page || (sgp == SGP_READ && !swap.val)) {
1669                 *pagep = page;
1670                 return 0;
1671         }
1672
1673         /*
1674          * Fast cache lookup did not find it:
1675          * bring it back from swap or allocate.
1676          */
1677         sbinfo = SHMEM_SB(inode->i_sb);
1678         charge_mm = vma ? vma->vm_mm : current->mm;
1679
1680         if (swap.val) {
1681                 /* Look it up and read it in.. */
1682                 page = lookup_swap_cache(swap, NULL, 0);
1683                 if (!page) {
1684                         /* Or update major stats only when swapin succeeds?? */
1685                         if (fault_type) {
1686                                 *fault_type |= VM_FAULT_MAJOR;
1687                                 count_vm_event(PGMAJFAULT);
1688                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689                         }
1690                         /* Here we actually start the io */
1691                         page = shmem_swapin(swap, gfp, info, index);
1692                         if (!page) {
1693                                 error = -ENOMEM;
1694                                 goto failed;
1695                         }
1696                 }
1697
1698                 /* We have to do this with page locked to prevent races */
1699                 lock_page(page);
1700                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1701                     !shmem_confirm_swap(mapping, index, swap)) {
1702                         error = -EEXIST;        /* try again */
1703                         goto unlock;
1704                 }
1705                 if (!PageUptodate(page)) {
1706                         error = -EIO;
1707                         goto failed;
1708                 }
1709                 wait_on_page_writeback(page);
1710
1711                 if (shmem_should_replace_page(page, gfp)) {
1712                         error = shmem_replace_page(&page, gfp, info, index);
1713                         if (error)
1714                                 goto failed;
1715                 }
1716
1717                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1718                                 false);
1719                 if (!error) {
1720                         error = shmem_add_to_page_cache(page, mapping, index,
1721                                                 swp_to_radix_entry(swap));
1722                         /*
1723                          * We already confirmed swap under page lock, and make
1724                          * no memory allocation here, so usually no possibility
1725                          * of error; but free_swap_and_cache() only trylocks a
1726                          * page, so it is just possible that the entry has been
1727                          * truncated or holepunched since swap was confirmed.
1728                          * shmem_undo_range() will have done some of the
1729                          * unaccounting, now delete_from_swap_cache() will do
1730                          * the rest.
1731                          * Reset swap.val? No, leave it so "failed" goes back to
1732                          * "repeat": reading a hole and writing should succeed.
1733                          */
1734                         if (error) {
1735                                 mem_cgroup_cancel_charge(page, memcg, false);
1736                                 delete_from_swap_cache(page);
1737                         }
1738                 }
1739                 if (error)
1740                         goto failed;
1741
1742                 mem_cgroup_commit_charge(page, memcg, true, false);
1743
1744                 spin_lock_irq(&info->lock);
1745                 info->swapped--;
1746                 shmem_recalc_inode(inode);
1747                 spin_unlock_irq(&info->lock);
1748
1749                 if (sgp == SGP_WRITE)
1750                         mark_page_accessed(page);
1751
1752                 delete_from_swap_cache(page);
1753                 set_page_dirty(page);
1754                 swap_free(swap);
1755
1756         } else {
1757                 if (vma && userfaultfd_missing(vma)) {
1758                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1759                         return 0;
1760                 }
1761
1762                 /* shmem_symlink() */
1763                 if (mapping->a_ops != &shmem_aops)
1764                         goto alloc_nohuge;
1765                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1766                         goto alloc_nohuge;
1767                 if (shmem_huge == SHMEM_HUGE_FORCE)
1768                         goto alloc_huge;
1769                 switch (sbinfo->huge) {
1770                         loff_t i_size;
1771                         pgoff_t off;
1772                 case SHMEM_HUGE_NEVER:
1773                         goto alloc_nohuge;
1774                 case SHMEM_HUGE_WITHIN_SIZE:
1775                         off = round_up(index, HPAGE_PMD_NR);
1776                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1777                         if (i_size >= HPAGE_PMD_SIZE &&
1778                                         i_size >> PAGE_SHIFT >= off)
1779                                 goto alloc_huge;
1780                         /* fallthrough */
1781                 case SHMEM_HUGE_ADVISE:
1782                         if (sgp_huge == SGP_HUGE)
1783                                 goto alloc_huge;
1784                         /* TODO: implement fadvise() hints */
1785                         goto alloc_nohuge;
1786                 }
1787
1788 alloc_huge:
1789                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1790                 if (IS_ERR(page)) {
1791 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1792                                         index, false);
1793                 }
1794                 if (IS_ERR(page)) {
1795                         int retry = 5;
1796                         error = PTR_ERR(page);
1797                         page = NULL;
1798                         if (error != -ENOSPC)
1799                                 goto failed;
1800                         /*
1801                          * Try to reclaim some spece by splitting a huge page
1802                          * beyond i_size on the filesystem.
1803                          */
1804                         while (retry--) {
1805                                 int ret;
1806                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1807                                 if (ret == SHRINK_STOP)
1808                                         break;
1809                                 if (ret)
1810                                         goto alloc_nohuge;
1811                         }
1812                         goto failed;
1813                 }
1814
1815                 if (PageTransHuge(page))
1816                         hindex = round_down(index, HPAGE_PMD_NR);
1817                 else
1818                         hindex = index;
1819
1820                 if (sgp == SGP_WRITE)
1821                         __SetPageReferenced(page);
1822
1823                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1824                                 PageTransHuge(page));
1825                 if (error)
1826                         goto unacct;
1827                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1828                                 compound_order(page));
1829                 if (!error) {
1830                         error = shmem_add_to_page_cache(page, mapping, hindex,
1831                                                         NULL);
1832                         radix_tree_preload_end();
1833                 }
1834                 if (error) {
1835                         mem_cgroup_cancel_charge(page, memcg,
1836                                         PageTransHuge(page));
1837                         goto unacct;
1838                 }
1839                 mem_cgroup_commit_charge(page, memcg, false,
1840                                 PageTransHuge(page));
1841                 lru_cache_add_anon(page);
1842
1843                 spin_lock_irq(&info->lock);
1844                 info->alloced += 1 << compound_order(page);
1845                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1846                 shmem_recalc_inode(inode);
1847                 spin_unlock_irq(&info->lock);
1848                 alloced = true;
1849
1850                 if (PageTransHuge(page) &&
1851                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1852                                 hindex + HPAGE_PMD_NR - 1) {
1853                         /*
1854                          * Part of the huge page is beyond i_size: subject
1855                          * to shrink under memory pressure.
1856                          */
1857                         spin_lock(&sbinfo->shrinklist_lock);
1858                         /*
1859                          * _careful to defend against unlocked access to
1860                          * ->shrink_list in shmem_unused_huge_shrink()
1861                          */
1862                         if (list_empty_careful(&info->shrinklist)) {
1863                                 list_add_tail(&info->shrinklist,
1864                                                 &sbinfo->shrinklist);
1865                                 sbinfo->shrinklist_len++;
1866                         }
1867                         spin_unlock(&sbinfo->shrinklist_lock);
1868                 }
1869
1870                 /*
1871                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872                  */
1873                 if (sgp == SGP_FALLOC)
1874                         sgp = SGP_WRITE;
1875 clear:
1876                 /*
1877                  * Let SGP_WRITE caller clear ends if write does not fill page;
1878                  * but SGP_FALLOC on a page fallocated earlier must initialize
1879                  * it now, lest undo on failure cancel our earlier guarantee.
1880                  */
1881                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1882                         struct page *head = compound_head(page);
1883                         int i;
1884
1885                         for (i = 0; i < (1 << compound_order(head)); i++) {
1886                                 clear_highpage(head + i);
1887                                 flush_dcache_page(head + i);
1888                         }
1889                         SetPageUptodate(head);
1890                 }
1891         }
1892
1893         /* Perhaps the file has been truncated since we checked */
1894         if (sgp <= SGP_CACHE &&
1895             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1896                 if (alloced) {
1897                         ClearPageDirty(page);
1898                         delete_from_page_cache(page);
1899                         spin_lock_irq(&info->lock);
1900                         shmem_recalc_inode(inode);
1901                         spin_unlock_irq(&info->lock);
1902                 }
1903                 error = -EINVAL;
1904                 goto unlock;
1905         }
1906         *pagep = page + index - hindex;
1907         return 0;
1908
1909         /*
1910          * Error recovery.
1911          */
1912 unacct:
1913         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914
1915         if (PageTransHuge(page)) {
1916                 unlock_page(page);
1917                 put_page(page);
1918                 goto alloc_nohuge;
1919         }
1920 failed:
1921         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1922                 error = -EEXIST;
1923 unlock:
1924         if (page) {
1925                 unlock_page(page);
1926                 put_page(page);
1927         }
1928         if (error == -ENOSPC && !once++) {
1929                 spin_lock_irq(&info->lock);
1930                 shmem_recalc_inode(inode);
1931                 spin_unlock_irq(&info->lock);
1932                 goto repeat;
1933         }
1934         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1935                 goto repeat;
1936         return error;
1937 }
1938
1939 /*
1940  * This is like autoremove_wake_function, but it removes the wait queue
1941  * entry unconditionally - even if something else had already woken the
1942  * target.
1943  */
1944 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945 {
1946         int ret = default_wake_function(wait, mode, sync, key);
1947         list_del_init(&wait->entry);
1948         return ret;
1949 }
1950
1951 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952 {
1953         struct vm_area_struct *vma = vmf->vma;
1954         struct inode *inode = file_inode(vma->vm_file);
1955         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1956         enum sgp_type sgp;
1957         int err;
1958         vm_fault_t ret = VM_FAULT_LOCKED;
1959
1960         /*
1961          * Trinity finds that probing a hole which tmpfs is punching can
1962          * prevent the hole-punch from ever completing: which in turn
1963          * locks writers out with its hold on i_mutex.  So refrain from
1964          * faulting pages into the hole while it's being punched.  Although
1965          * shmem_undo_range() does remove the additions, it may be unable to
1966          * keep up, as each new page needs its own unmap_mapping_range() call,
1967          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968          *
1969          * It does not matter if we sometimes reach this check just before the
1970          * hole-punch begins, so that one fault then races with the punch:
1971          * we just need to make racing faults a rare case.
1972          *
1973          * The implementation below would be much simpler if we just used a
1974          * standard mutex or completion: but we cannot take i_mutex in fault,
1975          * and bloating every shmem inode for this unlikely case would be sad.
1976          */
1977         if (unlikely(inode->i_private)) {
1978                 struct shmem_falloc *shmem_falloc;
1979
1980                 spin_lock(&inode->i_lock);
1981                 shmem_falloc = inode->i_private;
1982                 if (shmem_falloc &&
1983                     shmem_falloc->waitq &&
1984                     vmf->pgoff >= shmem_falloc->start &&
1985                     vmf->pgoff < shmem_falloc->next) {
1986                         wait_queue_head_t *shmem_falloc_waitq;
1987                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988
1989                         ret = VM_FAULT_NOPAGE;
1990                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1991                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1992                                 /* It's polite to up mmap_sem if we can */
1993                                 up_read(&vma->vm_mm->mmap_sem);
1994                                 ret = VM_FAULT_RETRY;
1995                         }
1996
1997                         shmem_falloc_waitq = shmem_falloc->waitq;
1998                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1999                                         TASK_UNINTERRUPTIBLE);
2000                         spin_unlock(&inode->i_lock);
2001                         schedule();
2002
2003                         /*
2004                          * shmem_falloc_waitq points into the shmem_fallocate()
2005                          * stack of the hole-punching task: shmem_falloc_waitq
2006                          * is usually invalid by the time we reach here, but
2007                          * finish_wait() does not dereference it in that case;
2008                          * though i_lock needed lest racing with wake_up_all().
2009                          */
2010                         spin_lock(&inode->i_lock);
2011                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2012                         spin_unlock(&inode->i_lock);
2013                         return ret;
2014                 }
2015                 spin_unlock(&inode->i_lock);
2016         }
2017
2018         sgp = SGP_CACHE;
2019
2020         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2021             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2022                 sgp = SGP_NOHUGE;
2023         else if (vma->vm_flags & VM_HUGEPAGE)
2024                 sgp = SGP_HUGE;
2025
2026         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2027                                   gfp, vma, vmf, &ret);
2028         if (err)
2029                 return vmf_error(err);
2030         return ret;
2031 }
2032
2033 unsigned long shmem_get_unmapped_area(struct file *file,
2034                                       unsigned long uaddr, unsigned long len,
2035                                       unsigned long pgoff, unsigned long flags)
2036 {
2037         unsigned long (*get_area)(struct file *,
2038                 unsigned long, unsigned long, unsigned long, unsigned long);
2039         unsigned long addr;
2040         unsigned long offset;
2041         unsigned long inflated_len;
2042         unsigned long inflated_addr;
2043         unsigned long inflated_offset;
2044
2045         if (len > TASK_SIZE)
2046                 return -ENOMEM;
2047
2048         get_area = current->mm->get_unmapped_area;
2049         addr = get_area(file, uaddr, len, pgoff, flags);
2050
2051         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2052                 return addr;
2053         if (IS_ERR_VALUE(addr))
2054                 return addr;
2055         if (addr & ~PAGE_MASK)
2056                 return addr;
2057         if (addr > TASK_SIZE - len)
2058                 return addr;
2059
2060         if (shmem_huge == SHMEM_HUGE_DENY)
2061                 return addr;
2062         if (len < HPAGE_PMD_SIZE)
2063                 return addr;
2064         if (flags & MAP_FIXED)
2065                 return addr;
2066         /*
2067          * Our priority is to support MAP_SHARED mapped hugely;
2068          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069          * But if caller specified an address hint, respect that as before.
2070          */
2071         if (uaddr)
2072                 return addr;
2073
2074         if (shmem_huge != SHMEM_HUGE_FORCE) {
2075                 struct super_block *sb;
2076
2077                 if (file) {
2078                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2079                         sb = file_inode(file)->i_sb;
2080                 } else {
2081                         /*
2082                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2083                          * for "/dev/zero", to create a shared anonymous object.
2084                          */
2085                         if (IS_ERR(shm_mnt))
2086                                 return addr;
2087                         sb = shm_mnt->mnt_sb;
2088                 }
2089                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2090                         return addr;
2091         }
2092
2093         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2094         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2095                 return addr;
2096         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2097                 return addr;
2098
2099         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2100         if (inflated_len > TASK_SIZE)
2101                 return addr;
2102         if (inflated_len < len)
2103                 return addr;
2104
2105         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2106         if (IS_ERR_VALUE(inflated_addr))
2107                 return addr;
2108         if (inflated_addr & ~PAGE_MASK)
2109                 return addr;
2110
2111         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2112         inflated_addr += offset - inflated_offset;
2113         if (inflated_offset > offset)
2114                 inflated_addr += HPAGE_PMD_SIZE;
2115
2116         if (inflated_addr > TASK_SIZE - len)
2117                 return addr;
2118         return inflated_addr;
2119 }
2120
2121 #ifdef CONFIG_NUMA
2122 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123 {
2124         struct inode *inode = file_inode(vma->vm_file);
2125         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126 }
2127
2128 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2129                                           unsigned long addr)
2130 {
2131         struct inode *inode = file_inode(vma->vm_file);
2132         pgoff_t index;
2133
2134         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2135         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136 }
2137 #endif
2138
2139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140 {
2141         struct inode *inode = file_inode(file);
2142         struct shmem_inode_info *info = SHMEM_I(inode);
2143         int retval = -ENOMEM;
2144
2145         spin_lock_irq(&info->lock);
2146         if (lock && !(info->flags & VM_LOCKED)) {
2147                 if (!user_shm_lock(inode->i_size, user))
2148                         goto out_nomem;
2149                 info->flags |= VM_LOCKED;
2150                 mapping_set_unevictable(file->f_mapping);
2151         }
2152         if (!lock && (info->flags & VM_LOCKED) && user) {
2153                 user_shm_unlock(inode->i_size, user);
2154                 info->flags &= ~VM_LOCKED;
2155                 mapping_clear_unevictable(file->f_mapping);
2156         }
2157         retval = 0;
2158
2159 out_nomem:
2160         spin_unlock_irq(&info->lock);
2161         return retval;
2162 }
2163
2164 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165 {
2166         file_accessed(file);
2167         vma->vm_ops = &shmem_vm_ops;
2168         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2169                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2170                         (vma->vm_end & HPAGE_PMD_MASK)) {
2171                 khugepaged_enter(vma, vma->vm_flags);
2172         }
2173         return 0;
2174 }
2175
2176 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2177                                      umode_t mode, dev_t dev, unsigned long flags)
2178 {
2179         struct inode *inode;
2180         struct shmem_inode_info *info;
2181         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182
2183         if (shmem_reserve_inode(sb))
2184                 return NULL;
2185
2186         inode = new_inode(sb);
2187         if (inode) {
2188                 inode->i_ino = get_next_ino();
2189                 inode_init_owner(inode, dir, mode);
2190                 inode->i_blocks = 0;
2191                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2192                 inode->i_generation = prandom_u32();
2193                 info = SHMEM_I(inode);
2194                 memset(info, 0, (char *)inode - (char *)info);
2195                 spin_lock_init(&info->lock);
2196                 info->seals = F_SEAL_SEAL;
2197                 info->flags = flags & VM_NORESERVE;
2198                 INIT_LIST_HEAD(&info->shrinklist);
2199                 INIT_LIST_HEAD(&info->swaplist);
2200                 simple_xattrs_init(&info->xattrs);
2201                 cache_no_acl(inode);
2202
2203                 switch (mode & S_IFMT) {
2204                 default:
2205                         inode->i_op = &shmem_special_inode_operations;
2206                         init_special_inode(inode, mode, dev);
2207                         break;
2208                 case S_IFREG:
2209                         inode->i_mapping->a_ops = &shmem_aops;
2210                         inode->i_op = &shmem_inode_operations;
2211                         inode->i_fop = &shmem_file_operations;
2212                         mpol_shared_policy_init(&info->policy,
2213                                                  shmem_get_sbmpol(sbinfo));
2214                         break;
2215                 case S_IFDIR:
2216                         inc_nlink(inode);
2217                         /* Some things misbehave if size == 0 on a directory */
2218                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2219                         inode->i_op = &shmem_dir_inode_operations;
2220                         inode->i_fop = &simple_dir_operations;
2221                         break;
2222                 case S_IFLNK:
2223                         /*
2224                          * Must not load anything in the rbtree,
2225                          * mpol_free_shared_policy will not be called.
2226                          */
2227                         mpol_shared_policy_init(&info->policy, NULL);
2228                         break;
2229                 }
2230         } else
2231                 shmem_free_inode(sb);
2232         return inode;
2233 }
2234
2235 bool shmem_mapping(struct address_space *mapping)
2236 {
2237         return mapping->a_ops == &shmem_aops;
2238 }
2239
2240 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2241                                   pmd_t *dst_pmd,
2242                                   struct vm_area_struct *dst_vma,
2243                                   unsigned long dst_addr,
2244                                   unsigned long src_addr,
2245                                   bool zeropage,
2246                                   struct page **pagep)
2247 {
2248         struct inode *inode = file_inode(dst_vma->vm_file);
2249         struct shmem_inode_info *info = SHMEM_I(inode);
2250         struct address_space *mapping = inode->i_mapping;
2251         gfp_t gfp = mapping_gfp_mask(mapping);
2252         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2253         struct mem_cgroup *memcg;
2254         spinlock_t *ptl;
2255         void *page_kaddr;
2256         struct page *page;
2257         pte_t _dst_pte, *dst_pte;
2258         int ret;
2259
2260         ret = -ENOMEM;
2261         if (!shmem_inode_acct_block(inode, 1))
2262                 goto out;
2263
2264         if (!*pagep) {
2265                 page = shmem_alloc_page(gfp, info, pgoff);
2266                 if (!page)
2267                         goto out_unacct_blocks;
2268
2269                 if (!zeropage) {        /* mcopy_atomic */
2270                         page_kaddr = kmap_atomic(page);
2271                         ret = copy_from_user(page_kaddr,
2272                                              (const void __user *)src_addr,
2273                                              PAGE_SIZE);
2274                         kunmap_atomic(page_kaddr);
2275
2276                         /* fallback to copy_from_user outside mmap_sem */
2277                         if (unlikely(ret)) {
2278                                 *pagep = page;
2279                                 shmem_inode_unacct_blocks(inode, 1);
2280                                 /* don't free the page */
2281                                 return -EFAULT;
2282                         }
2283                 } else {                /* mfill_zeropage_atomic */
2284                         clear_highpage(page);
2285                 }
2286         } else {
2287                 page = *pagep;
2288                 *pagep = NULL;
2289         }
2290
2291         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2292         __SetPageLocked(page);
2293         __SetPageSwapBacked(page);
2294         __SetPageUptodate(page);
2295
2296         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2297         if (ret)
2298                 goto out_release;
2299
2300         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2301         if (!ret) {
2302                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2303                 radix_tree_preload_end();
2304         }
2305         if (ret)
2306                 goto out_release_uncharge;
2307
2308         mem_cgroup_commit_charge(page, memcg, false, false);
2309
2310         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2311         if (dst_vma->vm_flags & VM_WRITE)
2312                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2313
2314         ret = -EEXIST;
2315         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2316         if (!pte_none(*dst_pte))
2317                 goto out_release_uncharge_unlock;
2318
2319         lru_cache_add_anon(page);
2320
2321         spin_lock(&info->lock);
2322         info->alloced++;
2323         inode->i_blocks += BLOCKS_PER_PAGE;
2324         shmem_recalc_inode(inode);
2325         spin_unlock(&info->lock);
2326
2327         inc_mm_counter(dst_mm, mm_counter_file(page));
2328         page_add_file_rmap(page, false);
2329         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2330
2331         /* No need to invalidate - it was non-present before */
2332         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2333         unlock_page(page);
2334         pte_unmap_unlock(dst_pte, ptl);
2335         ret = 0;
2336 out:
2337         return ret;
2338 out_release_uncharge_unlock:
2339         pte_unmap_unlock(dst_pte, ptl);
2340 out_release_uncharge:
2341         mem_cgroup_cancel_charge(page, memcg, false);
2342 out_release:
2343         unlock_page(page);
2344         put_page(page);
2345 out_unacct_blocks:
2346         shmem_inode_unacct_blocks(inode, 1);
2347         goto out;
2348 }
2349
2350 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2351                            pmd_t *dst_pmd,
2352                            struct vm_area_struct *dst_vma,
2353                            unsigned long dst_addr,
2354                            unsigned long src_addr,
2355                            struct page **pagep)
2356 {
2357         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2358                                       dst_addr, src_addr, false, pagep);
2359 }
2360
2361 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2362                              pmd_t *dst_pmd,
2363                              struct vm_area_struct *dst_vma,
2364                              unsigned long dst_addr)
2365 {
2366         struct page *page = NULL;
2367
2368         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2369                                       dst_addr, 0, true, &page);
2370 }
2371
2372 #ifdef CONFIG_TMPFS
2373 static const struct inode_operations shmem_symlink_inode_operations;
2374 static const struct inode_operations shmem_short_symlink_operations;
2375
2376 #ifdef CONFIG_TMPFS_XATTR
2377 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2378 #else
2379 #define shmem_initxattrs NULL
2380 #endif
2381
2382 static int
2383 shmem_write_begin(struct file *file, struct address_space *mapping,
2384                         loff_t pos, unsigned len, unsigned flags,
2385                         struct page **pagep, void **fsdata)
2386 {
2387         struct inode *inode = mapping->host;
2388         struct shmem_inode_info *info = SHMEM_I(inode);
2389         pgoff_t index = pos >> PAGE_SHIFT;
2390
2391         /* i_mutex is held by caller */
2392         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2393                 if (info->seals & F_SEAL_WRITE)
2394                         return -EPERM;
2395                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2396                         return -EPERM;
2397         }
2398
2399         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2400 }
2401
2402 static int
2403 shmem_write_end(struct file *file, struct address_space *mapping,
2404                         loff_t pos, unsigned len, unsigned copied,
2405                         struct page *page, void *fsdata)
2406 {
2407         struct inode *inode = mapping->host;
2408
2409         if (pos + copied > inode->i_size)
2410                 i_size_write(inode, pos + copied);
2411
2412         if (!PageUptodate(page)) {
2413                 struct page *head = compound_head(page);
2414                 if (PageTransCompound(page)) {
2415                         int i;
2416
2417                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2418                                 if (head + i == page)
2419                                         continue;
2420                                 clear_highpage(head + i);
2421                                 flush_dcache_page(head + i);
2422                         }
2423                 }
2424                 if (copied < PAGE_SIZE) {
2425                         unsigned from = pos & (PAGE_SIZE - 1);
2426                         zero_user_segments(page, 0, from,
2427                                         from + copied, PAGE_SIZE);
2428                 }
2429                 SetPageUptodate(head);
2430         }
2431         set_page_dirty(page);
2432         unlock_page(page);
2433         put_page(page);
2434
2435         return copied;
2436 }
2437
2438 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2439 {
2440         struct file *file = iocb->ki_filp;
2441         struct inode *inode = file_inode(file);
2442         struct address_space *mapping = inode->i_mapping;
2443         pgoff_t index;
2444         unsigned long offset;
2445         enum sgp_type sgp = SGP_READ;
2446         int error = 0;
2447         ssize_t retval = 0;
2448         loff_t *ppos = &iocb->ki_pos;
2449
2450         /*
2451          * Might this read be for a stacking filesystem?  Then when reading
2452          * holes of a sparse file, we actually need to allocate those pages,
2453          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2454          */
2455         if (!iter_is_iovec(to))
2456                 sgp = SGP_CACHE;
2457
2458         index = *ppos >> PAGE_SHIFT;
2459         offset = *ppos & ~PAGE_MASK;
2460
2461         for (;;) {
2462                 struct page *page = NULL;
2463                 pgoff_t end_index;
2464                 unsigned long nr, ret;
2465                 loff_t i_size = i_size_read(inode);
2466
2467                 end_index = i_size >> PAGE_SHIFT;
2468                 if (index > end_index)
2469                         break;
2470                 if (index == end_index) {
2471                         nr = i_size & ~PAGE_MASK;
2472                         if (nr <= offset)
2473                                 break;
2474                 }
2475
2476                 error = shmem_getpage(inode, index, &page, sgp);
2477                 if (error) {
2478                         if (error == -EINVAL)
2479                                 error = 0;
2480                         break;
2481                 }
2482                 if (page) {
2483                         if (sgp == SGP_CACHE)
2484                                 set_page_dirty(page);
2485                         unlock_page(page);
2486                 }
2487
2488                 /*
2489                  * We must evaluate after, since reads (unlike writes)
2490                  * are called without i_mutex protection against truncate
2491                  */
2492                 nr = PAGE_SIZE;
2493                 i_size = i_size_read(inode);
2494                 end_index = i_size >> PAGE_SHIFT;
2495                 if (index == end_index) {
2496                         nr = i_size & ~PAGE_MASK;
2497                         if (nr <= offset) {
2498                                 if (page)
2499                                         put_page(page);
2500                                 break;
2501                         }
2502                 }
2503                 nr -= offset;
2504
2505                 if (page) {
2506                         /*
2507                          * If users can be writing to this page using arbitrary
2508                          * virtual addresses, take care about potential aliasing
2509                          * before reading the page on the kernel side.
2510                          */
2511                         if (mapping_writably_mapped(mapping))
2512                                 flush_dcache_page(page);
2513                         /*
2514                          * Mark the page accessed if we read the beginning.
2515                          */
2516                         if (!offset)
2517                                 mark_page_accessed(page);
2518                 } else {
2519                         page = ZERO_PAGE(0);
2520                         get_page(page);
2521                 }
2522
2523                 /*
2524                  * Ok, we have the page, and it's up-to-date, so
2525                  * now we can copy it to user space...
2526                  */
2527                 ret = copy_page_to_iter(page, offset, nr, to);
2528                 retval += ret;
2529                 offset += ret;
2530                 index += offset >> PAGE_SHIFT;
2531                 offset &= ~PAGE_MASK;
2532
2533                 put_page(page);
2534                 if (!iov_iter_count(to))
2535                         break;
2536                 if (ret < nr) {
2537                         error = -EFAULT;
2538                         break;
2539                 }
2540                 cond_resched();
2541         }
2542
2543         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2544         file_accessed(file);
2545         return retval ? retval : error;
2546 }
2547
2548 /*
2549  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2550  */
2551 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2552                                     pgoff_t index, pgoff_t end, int whence)
2553 {
2554         struct page *page;
2555         struct pagevec pvec;
2556         pgoff_t indices[PAGEVEC_SIZE];
2557         bool done = false;
2558         int i;
2559
2560         pagevec_init(&pvec);
2561         pvec.nr = 1;            /* start small: we may be there already */
2562         while (!done) {
2563                 pvec.nr = find_get_entries(mapping, index,
2564                                         pvec.nr, pvec.pages, indices);
2565                 if (!pvec.nr) {
2566                         if (whence == SEEK_DATA)
2567                                 index = end;
2568                         break;
2569                 }
2570                 for (i = 0; i < pvec.nr; i++, index++) {
2571                         if (index < indices[i]) {
2572                                 if (whence == SEEK_HOLE) {
2573                                         done = true;
2574                                         break;
2575                                 }
2576                                 index = indices[i];
2577                         }
2578                         page = pvec.pages[i];
2579                         if (page && !radix_tree_exceptional_entry(page)) {
2580                                 if (!PageUptodate(page))
2581                                         page = NULL;
2582                         }
2583                         if (index >= end ||
2584                             (page && whence == SEEK_DATA) ||
2585                             (!page && whence == SEEK_HOLE)) {
2586                                 done = true;
2587                                 break;
2588                         }
2589                 }
2590                 pagevec_remove_exceptionals(&pvec);
2591                 pagevec_release(&pvec);
2592                 pvec.nr = PAGEVEC_SIZE;
2593                 cond_resched();
2594         }
2595         return index;
2596 }
2597
2598 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2599 {
2600         struct address_space *mapping = file->f_mapping;
2601         struct inode *inode = mapping->host;
2602         pgoff_t start, end;
2603         loff_t new_offset;
2604
2605         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2606                 return generic_file_llseek_size(file, offset, whence,
2607                                         MAX_LFS_FILESIZE, i_size_read(inode));
2608         inode_lock(inode);
2609         /* We're holding i_mutex so we can access i_size directly */
2610
2611         if (offset < 0)
2612                 offset = -EINVAL;
2613         else if (offset >= inode->i_size)
2614                 offset = -ENXIO;
2615         else {
2616                 start = offset >> PAGE_SHIFT;
2617                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2618                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2619                 new_offset <<= PAGE_SHIFT;
2620                 if (new_offset > offset) {
2621                         if (new_offset < inode->i_size)
2622                                 offset = new_offset;
2623                         else if (whence == SEEK_DATA)
2624                                 offset = -ENXIO;
2625                         else
2626                                 offset = inode->i_size;
2627                 }
2628         }
2629
2630         if (offset >= 0)
2631                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2632         inode_unlock(inode);
2633         return offset;
2634 }
2635
2636 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2637                                                          loff_t len)
2638 {
2639         struct inode *inode = file_inode(file);
2640         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2641         struct shmem_inode_info *info = SHMEM_I(inode);
2642         struct shmem_falloc shmem_falloc;
2643         pgoff_t start, index, end;
2644         int error;
2645
2646         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2647                 return -EOPNOTSUPP;
2648
2649         inode_lock(inode);
2650
2651         if (mode & FALLOC_FL_PUNCH_HOLE) {
2652                 struct address_space *mapping = file->f_mapping;
2653                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2654                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2655                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2656
2657                 /* protected by i_mutex */
2658                 if (info->seals & F_SEAL_WRITE) {
2659                         error = -EPERM;
2660                         goto out;
2661                 }
2662
2663                 shmem_falloc.waitq = &shmem_falloc_waitq;
2664                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2665                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2666                 spin_lock(&inode->i_lock);
2667                 inode->i_private = &shmem_falloc;
2668                 spin_unlock(&inode->i_lock);
2669
2670                 if ((u64)unmap_end > (u64)unmap_start)
2671                         unmap_mapping_range(mapping, unmap_start,
2672                                             1 + unmap_end - unmap_start, 0);
2673                 shmem_truncate_range(inode, offset, offset + len - 1);
2674                 /* No need to unmap again: hole-punching leaves COWed pages */
2675
2676                 spin_lock(&inode->i_lock);
2677                 inode->i_private = NULL;
2678                 wake_up_all(&shmem_falloc_waitq);
2679                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2680                 spin_unlock(&inode->i_lock);
2681                 error = 0;
2682                 goto out;
2683         }
2684
2685         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2686         error = inode_newsize_ok(inode, offset + len);
2687         if (error)
2688                 goto out;
2689
2690         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2691                 error = -EPERM;
2692                 goto out;
2693         }
2694
2695         start = offset >> PAGE_SHIFT;
2696         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2697         /* Try to avoid a swapstorm if len is impossible to satisfy */
2698         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2699                 error = -ENOSPC;
2700                 goto out;
2701         }
2702
2703         shmem_falloc.waitq = NULL;
2704         shmem_falloc.start = start;
2705         shmem_falloc.next  = start;
2706         shmem_falloc.nr_falloced = 0;
2707         shmem_falloc.nr_unswapped = 0;
2708         spin_lock(&inode->i_lock);
2709         inode->i_private = &shmem_falloc;
2710         spin_unlock(&inode->i_lock);
2711
2712         for (index = start; index < end; index++) {
2713                 struct page *page;
2714
2715                 /*
2716                  * Good, the fallocate(2) manpage permits EINTR: we may have
2717                  * been interrupted because we are using up too much memory.
2718                  */
2719                 if (signal_pending(current))
2720                         error = -EINTR;
2721                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2722                         error = -ENOMEM;
2723                 else
2724                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2725                 if (error) {
2726                         /* Remove the !PageUptodate pages we added */
2727                         if (index > start) {
2728                                 shmem_undo_range(inode,
2729                                     (loff_t)start << PAGE_SHIFT,
2730                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2731                         }
2732                         goto undone;
2733                 }
2734
2735                 /*
2736                  * Inform shmem_writepage() how far we have reached.
2737                  * No need for lock or barrier: we have the page lock.
2738                  */
2739                 shmem_falloc.next++;
2740                 if (!PageUptodate(page))
2741                         shmem_falloc.nr_falloced++;
2742
2743                 /*
2744                  * If !PageUptodate, leave it that way so that freeable pages
2745                  * can be recognized if we need to rollback on error later.
2746                  * But set_page_dirty so that memory pressure will swap rather
2747                  * than free the pages we are allocating (and SGP_CACHE pages
2748                  * might still be clean: we now need to mark those dirty too).
2749                  */
2750                 set_page_dirty(page);
2751                 unlock_page(page);
2752                 put_page(page);
2753                 cond_resched();
2754         }
2755
2756         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2757                 i_size_write(inode, offset + len);
2758         inode->i_ctime = current_time(inode);
2759 undone:
2760         spin_lock(&inode->i_lock);
2761         inode->i_private = NULL;
2762         spin_unlock(&inode->i_lock);
2763 out:
2764         inode_unlock(inode);
2765         return error;
2766 }
2767
2768 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2769 {
2770         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2771
2772         buf->f_type = TMPFS_MAGIC;
2773         buf->f_bsize = PAGE_SIZE;
2774         buf->f_namelen = NAME_MAX;
2775         if (sbinfo->max_blocks) {
2776                 buf->f_blocks = sbinfo->max_blocks;
2777                 buf->f_bavail =
2778                 buf->f_bfree  = sbinfo->max_blocks -
2779                                 percpu_counter_sum(&sbinfo->used_blocks);
2780         }
2781         if (sbinfo->max_inodes) {
2782                 buf->f_files = sbinfo->max_inodes;
2783                 buf->f_ffree = sbinfo->free_inodes;
2784         }
2785         /* else leave those fields 0 like simple_statfs */
2786         return 0;
2787 }
2788
2789 /*
2790  * File creation. Allocate an inode, and we're done..
2791  */
2792 static int
2793 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2794 {
2795         struct inode *inode;
2796         int error = -ENOSPC;
2797
2798         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2799         if (inode) {
2800                 error = simple_acl_create(dir, inode);
2801                 if (error)
2802                         goto out_iput;
2803                 error = security_inode_init_security(inode, dir,
2804                                                      &dentry->d_name,
2805                                                      shmem_initxattrs, NULL);
2806                 if (error && error != -EOPNOTSUPP)
2807                         goto out_iput;
2808
2809                 error = 0;
2810                 dir->i_size += BOGO_DIRENT_SIZE;
2811                 dir->i_ctime = dir->i_mtime = current_time(dir);
2812                 d_instantiate(dentry, inode);
2813                 dget(dentry); /* Extra count - pin the dentry in core */
2814         }
2815         return error;
2816 out_iput:
2817         iput(inode);
2818         return error;
2819 }
2820
2821 static int
2822 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2823 {
2824         struct inode *inode;
2825         int error = -ENOSPC;
2826
2827         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2828         if (inode) {
2829                 error = security_inode_init_security(inode, dir,
2830                                                      NULL,
2831                                                      shmem_initxattrs, NULL);
2832                 if (error && error != -EOPNOTSUPP)
2833                         goto out_iput;
2834                 error = simple_acl_create(dir, inode);
2835                 if (error)
2836                         goto out_iput;
2837                 d_tmpfile(dentry, inode);
2838         }
2839         return error;
2840 out_iput:
2841         iput(inode);
2842         return error;
2843 }
2844
2845 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2846 {
2847         int error;
2848
2849         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2850                 return error;
2851         inc_nlink(dir);
2852         return 0;
2853 }
2854
2855 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2856                 bool excl)
2857 {
2858         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2859 }
2860
2861 /*
2862  * Link a file..
2863  */
2864 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2865 {
2866         struct inode *inode = d_inode(old_dentry);
2867         int ret;
2868
2869         /*
2870          * No ordinary (disk based) filesystem counts links as inodes;
2871          * but each new link needs a new dentry, pinning lowmem, and
2872          * tmpfs dentries cannot be pruned until they are unlinked.
2873          */
2874         ret = shmem_reserve_inode(inode->i_sb);
2875         if (ret)
2876                 goto out;
2877
2878         dir->i_size += BOGO_DIRENT_SIZE;
2879         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2880         inc_nlink(inode);
2881         ihold(inode);   /* New dentry reference */
2882         dget(dentry);           /* Extra pinning count for the created dentry */
2883         d_instantiate(dentry, inode);
2884 out:
2885         return ret;
2886 }
2887
2888 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2889 {
2890         struct inode *inode = d_inode(dentry);
2891
2892         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2893                 shmem_free_inode(inode->i_sb);
2894
2895         dir->i_size -= BOGO_DIRENT_SIZE;
2896         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2897         drop_nlink(inode);
2898         dput(dentry);   /* Undo the count from "create" - this does all the work */
2899         return 0;
2900 }
2901
2902 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2903 {
2904         if (!simple_empty(dentry))
2905                 return -ENOTEMPTY;
2906
2907         drop_nlink(d_inode(dentry));
2908         drop_nlink(dir);
2909         return shmem_unlink(dir, dentry);
2910 }
2911
2912 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2913 {
2914         bool old_is_dir = d_is_dir(old_dentry);
2915         bool new_is_dir = d_is_dir(new_dentry);
2916
2917         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2918                 if (old_is_dir) {
2919                         drop_nlink(old_dir);
2920                         inc_nlink(new_dir);
2921                 } else {
2922                         drop_nlink(new_dir);
2923                         inc_nlink(old_dir);
2924                 }
2925         }
2926         old_dir->i_ctime = old_dir->i_mtime =
2927         new_dir->i_ctime = new_dir->i_mtime =
2928         d_inode(old_dentry)->i_ctime =
2929         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2930
2931         return 0;
2932 }
2933
2934 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2935 {
2936         struct dentry *whiteout;
2937         int error;
2938
2939         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2940         if (!whiteout)
2941                 return -ENOMEM;
2942
2943         error = shmem_mknod(old_dir, whiteout,
2944                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2945         dput(whiteout);
2946         if (error)
2947                 return error;
2948
2949         /*
2950          * Cheat and hash the whiteout while the old dentry is still in
2951          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2952          *
2953          * d_lookup() will consistently find one of them at this point,
2954          * not sure which one, but that isn't even important.
2955          */
2956         d_rehash(whiteout);
2957         return 0;
2958 }
2959
2960 /*
2961  * The VFS layer already does all the dentry stuff for rename,
2962  * we just have to decrement the usage count for the target if
2963  * it exists so that the VFS layer correctly free's it when it
2964  * gets overwritten.
2965  */
2966 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2967 {
2968         struct inode *inode = d_inode(old_dentry);
2969         int they_are_dirs = S_ISDIR(inode->i_mode);
2970
2971         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2972                 return -EINVAL;
2973
2974         if (flags & RENAME_EXCHANGE)
2975                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2976
2977         if (!simple_empty(new_dentry))
2978                 return -ENOTEMPTY;
2979
2980         if (flags & RENAME_WHITEOUT) {
2981                 int error;
2982
2983                 error = shmem_whiteout(old_dir, old_dentry);
2984                 if (error)
2985                         return error;
2986         }
2987
2988         if (d_really_is_positive(new_dentry)) {
2989                 (void) shmem_unlink(new_dir, new_dentry);
2990                 if (they_are_dirs) {
2991                         drop_nlink(d_inode(new_dentry));
2992                         drop_nlink(old_dir);
2993                 }
2994         } else if (they_are_dirs) {
2995                 drop_nlink(old_dir);
2996                 inc_nlink(new_dir);
2997         }
2998
2999         old_dir->i_size -= BOGO_DIRENT_SIZE;
3000         new_dir->i_size += BOGO_DIRENT_SIZE;
3001         old_dir->i_ctime = old_dir->i_mtime =
3002         new_dir->i_ctime = new_dir->i_mtime =
3003         inode->i_ctime = current_time(old_dir);
3004         return 0;
3005 }
3006
3007 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3008 {
3009         int error;
3010         int len;
3011         struct inode *inode;
3012         struct page *page;
3013
3014         len = strlen(symname) + 1;
3015         if (len > PAGE_SIZE)
3016                 return -ENAMETOOLONG;
3017
3018         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3019                                 VM_NORESERVE);
3020         if (!inode)
3021                 return -ENOSPC;
3022
3023         error = security_inode_init_security(inode, dir, &dentry->d_name,
3024                                              shmem_initxattrs, NULL);
3025         if (error) {
3026                 if (error != -EOPNOTSUPP) {
3027                         iput(inode);
3028                         return error;
3029                 }
3030                 error = 0;
3031         }
3032
3033         inode->i_size = len-1;
3034         if (len <= SHORT_SYMLINK_LEN) {
3035                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3036                 if (!inode->i_link) {
3037                         iput(inode);
3038                         return -ENOMEM;
3039                 }
3040                 inode->i_op = &shmem_short_symlink_operations;
3041         } else {
3042                 inode_nohighmem(inode);
3043                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3044                 if (error) {
3045                         iput(inode);
3046                         return error;
3047                 }
3048                 inode->i_mapping->a_ops = &shmem_aops;
3049                 inode->i_op = &shmem_symlink_inode_operations;
3050                 memcpy(page_address(page), symname, len);
3051                 SetPageUptodate(page);
3052                 set_page_dirty(page);
3053                 unlock_page(page);
3054                 put_page(page);
3055         }
3056         dir->i_size += BOGO_DIRENT_SIZE;
3057         dir->i_ctime = dir->i_mtime = current_time(dir);
3058         d_instantiate(dentry, inode);
3059         dget(dentry);
3060         return 0;
3061 }
3062
3063 static void shmem_put_link(void *arg)
3064 {
3065         mark_page_accessed(arg);
3066         put_page(arg);
3067 }
3068
3069 static const char *shmem_get_link(struct dentry *dentry,
3070                                   struct inode *inode,
3071                                   struct delayed_call *done)
3072 {
3073         struct page *page = NULL;
3074         int error;
3075         if (!dentry) {
3076                 page = find_get_page(inode->i_mapping, 0);
3077                 if (!page)
3078                         return ERR_PTR(-ECHILD);
3079                 if (!PageUptodate(page)) {
3080                         put_page(page);
3081                         return ERR_PTR(-ECHILD);
3082                 }
3083         } else {
3084                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3085                 if (error)
3086                         return ERR_PTR(error);
3087                 unlock_page(page);
3088         }
3089         set_delayed_call(done, shmem_put_link, page);
3090         return page_address(page);
3091 }
3092
3093 #ifdef CONFIG_TMPFS_XATTR
3094 /*
3095  * Superblocks without xattr inode operations may get some security.* xattr
3096  * support from the LSM "for free". As soon as we have any other xattrs
3097  * like ACLs, we also need to implement the security.* handlers at
3098  * filesystem level, though.
3099  */
3100
3101 /*
3102  * Callback for security_inode_init_security() for acquiring xattrs.
3103  */
3104 static int shmem_initxattrs(struct inode *inode,
3105                             const struct xattr *xattr_array,
3106                             void *fs_info)
3107 {
3108         struct shmem_inode_info *info = SHMEM_I(inode);
3109         const struct xattr *xattr;
3110         struct simple_xattr *new_xattr;
3111         size_t len;
3112
3113         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3114                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3115                 if (!new_xattr)
3116                         return -ENOMEM;
3117
3118                 len = strlen(xattr->name) + 1;
3119                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3120                                           GFP_KERNEL);
3121                 if (!new_xattr->name) {
3122                         kfree(new_xattr);
3123                         return -ENOMEM;
3124                 }
3125
3126                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3127                        XATTR_SECURITY_PREFIX_LEN);
3128                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3129                        xattr->name, len);
3130
3131                 simple_xattr_list_add(&info->xattrs, new_xattr);
3132         }
3133
3134         return 0;
3135 }
3136
3137 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3138                                    struct dentry *unused, struct inode *inode,
3139                                    const char *name, void *buffer, size_t size)
3140 {
3141         struct shmem_inode_info *info = SHMEM_I(inode);
3142
3143         name = xattr_full_name(handler, name);
3144         return simple_xattr_get(&info->xattrs, name, buffer, size);
3145 }
3146
3147 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3148                                    struct dentry *unused, struct inode *inode,
3149                                    const char *name, const void *value,
3150                                    size_t size, int flags)
3151 {
3152         struct shmem_inode_info *info = SHMEM_I(inode);
3153
3154         name = xattr_full_name(handler, name);
3155         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3156 }
3157
3158 static const struct xattr_handler shmem_security_xattr_handler = {
3159         .prefix = XATTR_SECURITY_PREFIX,
3160         .get = shmem_xattr_handler_get,
3161         .set = shmem_xattr_handler_set,
3162 };
3163
3164 static const struct xattr_handler shmem_trusted_xattr_handler = {
3165         .prefix = XATTR_TRUSTED_PREFIX,
3166         .get = shmem_xattr_handler_get,
3167         .set = shmem_xattr_handler_set,
3168 };
3169
3170 static const struct xattr_handler *shmem_xattr_handlers[] = {
3171 #ifdef CONFIG_TMPFS_POSIX_ACL
3172         &posix_acl_access_xattr_handler,
3173         &posix_acl_default_xattr_handler,
3174 #endif
3175         &shmem_security_xattr_handler,
3176         &shmem_trusted_xattr_handler,
3177         NULL
3178 };
3179
3180 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3181 {
3182         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3183         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3184 }
3185 #endif /* CONFIG_TMPFS_XATTR */
3186
3187 static const struct inode_operations shmem_short_symlink_operations = {
3188         .get_link       = simple_get_link,
3189 #ifdef CONFIG_TMPFS_XATTR
3190         .listxattr      = shmem_listxattr,
3191 #endif
3192 };
3193
3194 static const struct inode_operations shmem_symlink_inode_operations = {
3195         .get_link       = shmem_get_link,
3196 #ifdef CONFIG_TMPFS_XATTR
3197         .listxattr      = shmem_listxattr,
3198 #endif
3199 };
3200
3201 static struct dentry *shmem_get_parent(struct dentry *child)
3202 {
3203         return ERR_PTR(-ESTALE);
3204 }
3205
3206 static int shmem_match(struct inode *ino, void *vfh)
3207 {
3208         __u32 *fh = vfh;
3209         __u64 inum = fh[2];
3210         inum = (inum << 32) | fh[1];
3211         return ino->i_ino == inum && fh[0] == ino->i_generation;
3212 }
3213
3214 /* Find any alias of inode, but prefer a hashed alias */
3215 static struct dentry *shmem_find_alias(struct inode *inode)
3216 {
3217         struct dentry *alias = d_find_alias(inode);
3218
3219         return alias ?: d_find_any_alias(inode);
3220 }
3221
3222
3223 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3224                 struct fid *fid, int fh_len, int fh_type)
3225 {
3226         struct inode *inode;
3227         struct dentry *dentry = NULL;
3228         u64 inum;
3229
3230         if (fh_len < 3)
3231                 return NULL;
3232
3233         inum = fid->raw[2];
3234         inum = (inum << 32) | fid->raw[1];
3235
3236         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3237                         shmem_match, fid->raw);
3238         if (inode) {
3239                 dentry = shmem_find_alias(inode);
3240                 iput(inode);
3241         }
3242
3243         return dentry;
3244 }
3245
3246 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3247                                 struct inode *parent)
3248 {
3249         if (*len < 3) {
3250                 *len = 3;
3251                 return FILEID_INVALID;
3252         }
3253
3254         if (inode_unhashed(inode)) {
3255                 /* Unfortunately insert_inode_hash is not idempotent,
3256                  * so as we hash inodes here rather than at creation
3257                  * time, we need a lock to ensure we only try
3258                  * to do it once
3259                  */
3260                 static DEFINE_SPINLOCK(lock);
3261                 spin_lock(&lock);
3262                 if (inode_unhashed(inode))
3263                         __insert_inode_hash(inode,
3264                                             inode->i_ino + inode->i_generation);
3265                 spin_unlock(&lock);
3266         }
3267
3268         fh[0] = inode->i_generation;
3269         fh[1] = inode->i_ino;
3270         fh[2] = ((__u64)inode->i_ino) >> 32;
3271
3272         *len = 3;
3273         return 1;
3274 }
3275
3276 static const struct export_operations shmem_export_ops = {
3277         .get_parent     = shmem_get_parent,
3278         .encode_fh      = shmem_encode_fh,
3279         .fh_to_dentry   = shmem_fh_to_dentry,
3280 };
3281
3282 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3283                                bool remount)
3284 {
3285         char *this_char, *value, *rest;
3286         struct mempolicy *mpol = NULL;
3287         uid_t uid;
3288         gid_t gid;
3289
3290         while (options != NULL) {
3291                 this_char = options;
3292                 for (;;) {
3293                         /*
3294                          * NUL-terminate this option: unfortunately,
3295                          * mount options form a comma-separated list,
3296                          * but mpol's nodelist may also contain commas.
3297                          */
3298                         options = strchr(options, ',');
3299                         if (options == NULL)
3300                                 break;
3301                         options++;
3302                         if (!isdigit(*options)) {
3303                                 options[-1] = '\0';
3304                                 break;
3305                         }
3306                 }
3307                 if (!*this_char)
3308                         continue;
3309                 if ((value = strchr(this_char,'=')) != NULL) {
3310                         *value++ = 0;
3311                 } else {
3312                         pr_err("tmpfs: No value for mount option '%s'\n",
3313                                this_char);
3314                         goto error;
3315                 }
3316
3317                 if (!strcmp(this_char,"size")) {
3318                         unsigned long long size;
3319                         size = memparse(value,&rest);
3320                         if (*rest == '%') {
3321                                 size <<= PAGE_SHIFT;
3322                                 size *= totalram_pages;
3323                                 do_div(size, 100);
3324                                 rest++;
3325                         }
3326                         if (*rest)
3327                                 goto bad_val;
3328                         sbinfo->max_blocks =
3329                                 DIV_ROUND_UP(size, PAGE_SIZE);
3330                 } else if (!strcmp(this_char,"nr_blocks")) {
3331                         sbinfo->max_blocks = memparse(value, &rest);
3332                         if (*rest)
3333                                 goto bad_val;
3334                 } else if (!strcmp(this_char,"nr_inodes")) {
3335                         sbinfo->max_inodes = memparse(value, &rest);
3336                         if (*rest)
3337                                 goto bad_val;
3338                 } else if (!strcmp(this_char,"mode")) {
3339                         if (remount)
3340                                 continue;
3341                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3342                         if (*rest)
3343                                 goto bad_val;
3344                 } else if (!strcmp(this_char,"uid")) {
3345                         if (remount)
3346                                 continue;
3347                         uid = simple_strtoul(value, &rest, 0);
3348                         if (*rest)
3349                                 goto bad_val;
3350                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3351                         if (!uid_valid(sbinfo->uid))
3352                                 goto bad_val;
3353                 } else if (!strcmp(this_char,"gid")) {
3354                         if (remount)
3355                                 continue;
3356                         gid = simple_strtoul(value, &rest, 0);
3357                         if (*rest)
3358                                 goto bad_val;
3359                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3360                         if (!gid_valid(sbinfo->gid))
3361                                 goto bad_val;
3362 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3363                 } else if (!strcmp(this_char, "huge")) {
3364                         int huge;
3365                         huge = shmem_parse_huge(value);
3366                         if (huge < 0)
3367                                 goto bad_val;
3368                         if (!has_transparent_hugepage() &&
3369                                         huge != SHMEM_HUGE_NEVER)
3370                                 goto bad_val;
3371                         sbinfo->huge = huge;
3372 #endif
3373 #ifdef CONFIG_NUMA
3374                 } else if (!strcmp(this_char,"mpol")) {
3375                         mpol_put(mpol);
3376                         mpol = NULL;
3377                         if (mpol_parse_str(value, &mpol))
3378                                 goto bad_val;
3379 #endif
3380                 } else {
3381                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3382                         goto error;
3383                 }
3384         }
3385         sbinfo->mpol = mpol;
3386         return 0;
3387
3388 bad_val:
3389         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3390                value, this_char);
3391 error:
3392         mpol_put(mpol);
3393         return 1;
3394
3395 }
3396
3397 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3398 {
3399         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3400         struct shmem_sb_info config = *sbinfo;
3401         unsigned long inodes;
3402         int error = -EINVAL;
3403
3404         config.mpol = NULL;
3405         if (shmem_parse_options(data, &config, true))
3406                 return error;
3407
3408         spin_lock(&sbinfo->stat_lock);
3409         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3410         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3411                 goto out;
3412         if (config.max_inodes < inodes)
3413                 goto out;
3414         /*
3415          * Those tests disallow limited->unlimited while any are in use;
3416          * but we must separately disallow unlimited->limited, because
3417          * in that case we have no record of how much is already in use.
3418          */
3419         if (config.max_blocks && !sbinfo->max_blocks)
3420                 goto out;
3421         if (config.max_inodes && !sbinfo->max_inodes)
3422                 goto out;
3423
3424         error = 0;
3425         sbinfo->huge = config.huge;
3426         sbinfo->max_blocks  = config.max_blocks;
3427         sbinfo->max_inodes  = config.max_inodes;
3428         sbinfo->free_inodes = config.max_inodes - inodes;
3429
3430         /*
3431          * Preserve previous mempolicy unless mpol remount option was specified.
3432          */
3433         if (config.mpol) {
3434                 mpol_put(sbinfo->mpol);
3435                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3436         }
3437 out:
3438         spin_unlock(&sbinfo->stat_lock);
3439         return error;
3440 }
3441
3442 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3443 {
3444         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3445
3446         if (sbinfo->max_blocks != shmem_default_max_blocks())
3447                 seq_printf(seq, ",size=%luk",
3448                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3449         if (sbinfo->max_inodes != shmem_default_max_inodes())
3450                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3451         if (sbinfo->mode != (0777 | S_ISVTX))
3452                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3453         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3454                 seq_printf(seq, ",uid=%u",
3455                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3456         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3457                 seq_printf(seq, ",gid=%u",
3458                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3459 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3460         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3461         if (sbinfo->huge)
3462                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3463 #endif
3464         shmem_show_mpol(seq, sbinfo->mpol);
3465         return 0;
3466 }
3467
3468 #endif /* CONFIG_TMPFS */
3469
3470 static void shmem_put_super(struct super_block *sb)
3471 {
3472         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3473
3474         percpu_counter_destroy(&sbinfo->used_blocks);
3475         mpol_put(sbinfo->mpol);
3476         kfree(sbinfo);
3477         sb->s_fs_info = NULL;
3478 }
3479
3480 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3481 {
3482         struct inode *inode;
3483         struct shmem_sb_info *sbinfo;
3484         int err = -ENOMEM;
3485
3486         /* Round up to L1_CACHE_BYTES to resist false sharing */
3487         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3488                                 L1_CACHE_BYTES), GFP_KERNEL);
3489         if (!sbinfo)
3490                 return -ENOMEM;
3491
3492         sbinfo->mode = 0777 | S_ISVTX;
3493         sbinfo->uid = current_fsuid();
3494         sbinfo->gid = current_fsgid();
3495         sb->s_fs_info = sbinfo;
3496
3497 #ifdef CONFIG_TMPFS
3498         /*
3499          * Per default we only allow half of the physical ram per
3500          * tmpfs instance, limiting inodes to one per page of lowmem;
3501          * but the internal instance is left unlimited.
3502          */
3503         if (!(sb->s_flags & SB_KERNMOUNT)) {
3504                 sbinfo->max_blocks = shmem_default_max_blocks();
3505                 sbinfo->max_inodes = shmem_default_max_inodes();
3506                 if (shmem_parse_options(data, sbinfo, false)) {
3507                         err = -EINVAL;
3508                         goto failed;
3509                 }
3510         } else {
3511                 sb->s_flags |= SB_NOUSER;
3512         }
3513         sb->s_export_op = &shmem_export_ops;
3514         sb->s_flags |= SB_NOSEC;
3515 #else
3516         sb->s_flags |= SB_NOUSER;
3517 #endif
3518
3519         spin_lock_init(&sbinfo->stat_lock);
3520         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3521                 goto failed;
3522         sbinfo->free_inodes = sbinfo->max_inodes;
3523         spin_lock_init(&sbinfo->shrinklist_lock);
3524         INIT_LIST_HEAD(&sbinfo->shrinklist);
3525
3526         sb->s_maxbytes = MAX_LFS_FILESIZE;
3527         sb->s_blocksize = PAGE_SIZE;
3528         sb->s_blocksize_bits = PAGE_SHIFT;
3529         sb->s_magic = TMPFS_MAGIC;
3530         sb->s_op = &shmem_ops;
3531         sb->s_time_gran = 1;
3532 #ifdef CONFIG_TMPFS_XATTR
3533         sb->s_xattr = shmem_xattr_handlers;
3534 #endif
3535 #ifdef CONFIG_TMPFS_POSIX_ACL
3536         sb->s_flags |= SB_POSIXACL;
3537 #endif
3538         uuid_gen(&sb->s_uuid);
3539
3540         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3541         if (!inode)
3542                 goto failed;
3543         inode->i_uid = sbinfo->uid;
3544         inode->i_gid = sbinfo->gid;
3545         sb->s_root = d_make_root(inode);
3546         if (!sb->s_root)
3547                 goto failed;
3548         return 0;
3549
3550 failed:
3551         shmem_put_super(sb);
3552         return err;
3553 }
3554
3555 static struct kmem_cache *shmem_inode_cachep;
3556
3557 static struct inode *shmem_alloc_inode(struct super_block *sb)
3558 {
3559         struct shmem_inode_info *info;
3560         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3561         if (!info)
3562                 return NULL;
3563         return &info->vfs_inode;
3564 }
3565
3566 static void shmem_destroy_callback(struct rcu_head *head)
3567 {
3568         struct inode *inode = container_of(head, struct inode, i_rcu);
3569         if (S_ISLNK(inode->i_mode))
3570                 kfree(inode->i_link);
3571         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3572 }
3573
3574 static void shmem_destroy_inode(struct inode *inode)
3575 {
3576         if (S_ISREG(inode->i_mode))
3577                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3578         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3579 }
3580
3581 static void shmem_init_inode(void *foo)
3582 {
3583         struct shmem_inode_info *info = foo;
3584         inode_init_once(&info->vfs_inode);
3585 }
3586
3587 static void shmem_init_inodecache(void)
3588 {
3589         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3590                                 sizeof(struct shmem_inode_info),
3591                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3592 }
3593
3594 static void shmem_destroy_inodecache(void)
3595 {
3596         kmem_cache_destroy(shmem_inode_cachep);
3597 }
3598
3599 static const struct address_space_operations shmem_aops = {
3600         .writepage      = shmem_writepage,
3601         .set_page_dirty = __set_page_dirty_no_writeback,
3602 #ifdef CONFIG_TMPFS
3603         .write_begin    = shmem_write_begin,
3604         .write_end      = shmem_write_end,
3605 #endif
3606 #ifdef CONFIG_MIGRATION
3607         .migratepage    = migrate_page,
3608 #endif
3609         .error_remove_page = generic_error_remove_page,
3610 };
3611
3612 static const struct file_operations shmem_file_operations = {
3613         .mmap           = shmem_mmap,
3614         .get_unmapped_area = shmem_get_unmapped_area,
3615 #ifdef CONFIG_TMPFS
3616         .llseek         = shmem_file_llseek,
3617         .read_iter      = shmem_file_read_iter,
3618         .write_iter     = generic_file_write_iter,
3619         .fsync          = noop_fsync,
3620         .splice_read    = generic_file_splice_read,
3621         .splice_write   = iter_file_splice_write,
3622         .fallocate      = shmem_fallocate,
3623 #endif
3624 };
3625
3626 static const struct inode_operations shmem_inode_operations = {
3627         .getattr        = shmem_getattr,
3628         .setattr        = shmem_setattr,
3629 #ifdef CONFIG_TMPFS_XATTR
3630         .listxattr      = shmem_listxattr,
3631         .set_acl        = simple_set_acl,
3632 #endif
3633 };
3634
3635 static const struct inode_operations shmem_dir_inode_operations = {
3636 #ifdef CONFIG_TMPFS
3637         .create         = shmem_create,
3638         .lookup         = simple_lookup,
3639         .link           = shmem_link,
3640         .unlink         = shmem_unlink,
3641         .symlink        = shmem_symlink,
3642         .mkdir          = shmem_mkdir,
3643         .rmdir          = shmem_rmdir,
3644         .mknod          = shmem_mknod,
3645         .rename         = shmem_rename2,
3646         .tmpfile        = shmem_tmpfile,
3647 #endif
3648 #ifdef CONFIG_TMPFS_XATTR
3649         .listxattr      = shmem_listxattr,
3650 #endif
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652         .setattr        = shmem_setattr,
3653         .set_acl        = simple_set_acl,
3654 #endif
3655 };
3656
3657 static const struct inode_operations shmem_special_inode_operations = {
3658 #ifdef CONFIG_TMPFS_XATTR
3659         .listxattr      = shmem_listxattr,
3660 #endif
3661 #ifdef CONFIG_TMPFS_POSIX_ACL
3662         .setattr        = shmem_setattr,
3663         .set_acl        = simple_set_acl,
3664 #endif
3665 };
3666
3667 static const struct super_operations shmem_ops = {
3668         .alloc_inode    = shmem_alloc_inode,
3669         .destroy_inode  = shmem_destroy_inode,
3670 #ifdef CONFIG_TMPFS
3671         .statfs         = shmem_statfs,
3672         .remount_fs     = shmem_remount_fs,
3673         .show_options   = shmem_show_options,
3674 #endif
3675         .evict_inode    = shmem_evict_inode,
3676         .drop_inode     = generic_delete_inode,
3677         .put_super      = shmem_put_super,
3678 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3679         .nr_cached_objects      = shmem_unused_huge_count,
3680         .free_cached_objects    = shmem_unused_huge_scan,
3681 #endif
3682 };
3683
3684 static const struct vm_operations_struct shmem_vm_ops = {
3685         .fault          = shmem_fault,
3686         .map_pages      = filemap_map_pages,
3687 #ifdef CONFIG_NUMA
3688         .set_policy     = shmem_set_policy,
3689         .get_policy     = shmem_get_policy,
3690 #endif
3691 };
3692
3693 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3694         int flags, const char *dev_name, void *data)
3695 {
3696         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3697 }
3698
3699 static struct file_system_type shmem_fs_type = {
3700         .owner          = THIS_MODULE,
3701         .name           = "tmpfs",
3702         .mount          = shmem_mount,
3703         .kill_sb        = kill_litter_super,
3704         .fs_flags       = FS_USERNS_MOUNT,
3705 };
3706
3707 int __init shmem_init(void)
3708 {
3709         int error;
3710
3711         /* If rootfs called this, don't re-init */
3712         if (shmem_inode_cachep)
3713                 return 0;
3714
3715         shmem_init_inodecache();
3716
3717         error = register_filesystem(&shmem_fs_type);
3718         if (error) {
3719                 pr_err("Could not register tmpfs\n");
3720                 goto out2;
3721         }
3722
3723         shm_mnt = kern_mount(&shmem_fs_type);
3724         if (IS_ERR(shm_mnt)) {
3725                 error = PTR_ERR(shm_mnt);
3726                 pr_err("Could not kern_mount tmpfs\n");
3727                 goto out1;
3728         }
3729
3730 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3731         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3732                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3733         else
3734                 shmem_huge = 0; /* just in case it was patched */
3735 #endif
3736         return 0;
3737
3738 out1:
3739         unregister_filesystem(&shmem_fs_type);
3740 out2:
3741         shmem_destroy_inodecache();
3742         shm_mnt = ERR_PTR(error);
3743         return error;
3744 }
3745
3746 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3747 static ssize_t shmem_enabled_show(struct kobject *kobj,
3748                 struct kobj_attribute *attr, char *buf)
3749 {
3750         int values[] = {
3751                 SHMEM_HUGE_ALWAYS,
3752                 SHMEM_HUGE_WITHIN_SIZE,
3753                 SHMEM_HUGE_ADVISE,
3754                 SHMEM_HUGE_NEVER,
3755                 SHMEM_HUGE_DENY,
3756                 SHMEM_HUGE_FORCE,
3757         };
3758         int i, count;
3759
3760         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3761                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3762
3763                 count += sprintf(buf + count, fmt,
3764                                 shmem_format_huge(values[i]));
3765         }
3766         buf[count - 1] = '\n';
3767         return count;
3768 }
3769
3770 static ssize_t shmem_enabled_store(struct kobject *kobj,
3771                 struct kobj_attribute *attr, const char *buf, size_t count)
3772 {
3773         char tmp[16];
3774         int huge;
3775
3776         if (count + 1 > sizeof(tmp))
3777                 return -EINVAL;
3778         memcpy(tmp, buf, count);
3779         tmp[count] = '\0';
3780         if (count && tmp[count - 1] == '\n')
3781                 tmp[count - 1] = '\0';
3782
3783         huge = shmem_parse_huge(tmp);
3784         if (huge == -EINVAL)
3785                 return -EINVAL;
3786         if (!has_transparent_hugepage() &&
3787                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3788                 return -EINVAL;
3789
3790         shmem_huge = huge;
3791         if (shmem_huge > SHMEM_HUGE_DENY)
3792                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3793         return count;
3794 }
3795
3796 struct kobj_attribute shmem_enabled_attr =
3797         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3798 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3799
3800 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3801 bool shmem_huge_enabled(struct vm_area_struct *vma)
3802 {
3803         struct inode *inode = file_inode(vma->vm_file);
3804         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3805         loff_t i_size;
3806         pgoff_t off;
3807
3808         if (shmem_huge == SHMEM_HUGE_FORCE)
3809                 return true;
3810         if (shmem_huge == SHMEM_HUGE_DENY)
3811                 return false;
3812         switch (sbinfo->huge) {
3813                 case SHMEM_HUGE_NEVER:
3814                         return false;
3815                 case SHMEM_HUGE_ALWAYS:
3816                         return true;
3817                 case SHMEM_HUGE_WITHIN_SIZE:
3818                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3819                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3820                         if (i_size >= HPAGE_PMD_SIZE &&
3821                                         i_size >> PAGE_SHIFT >= off)
3822                                 return true;
3823                         /* fall through */
3824                 case SHMEM_HUGE_ADVISE:
3825                         /* TODO: implement fadvise() hints */
3826                         return (vma->vm_flags & VM_HUGEPAGE);
3827                 default:
3828                         VM_BUG_ON(1);
3829                         return false;
3830         }
3831 }
3832 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3833
3834 #else /* !CONFIG_SHMEM */
3835
3836 /*
3837  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3838  *
3839  * This is intended for small system where the benefits of the full
3840  * shmem code (swap-backed and resource-limited) are outweighed by
3841  * their complexity. On systems without swap this code should be
3842  * effectively equivalent, but much lighter weight.
3843  */
3844
3845 static struct file_system_type shmem_fs_type = {
3846         .name           = "tmpfs",
3847         .mount          = ramfs_mount,
3848         .kill_sb        = kill_litter_super,
3849         .fs_flags       = FS_USERNS_MOUNT,
3850 };
3851
3852 int __init shmem_init(void)
3853 {
3854         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3855
3856         shm_mnt = kern_mount(&shmem_fs_type);
3857         BUG_ON(IS_ERR(shm_mnt));
3858
3859         return 0;
3860 }
3861
3862 int shmem_unuse(swp_entry_t swap, struct page *page)
3863 {
3864         return 0;
3865 }
3866
3867 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3868 {
3869         return 0;
3870 }
3871
3872 void shmem_unlock_mapping(struct address_space *mapping)
3873 {
3874 }
3875
3876 #ifdef CONFIG_MMU
3877 unsigned long shmem_get_unmapped_area(struct file *file,
3878                                       unsigned long addr, unsigned long len,
3879                                       unsigned long pgoff, unsigned long flags)
3880 {
3881         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3882 }
3883 #endif
3884
3885 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3886 {
3887         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3888 }
3889 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3890
3891 #define shmem_vm_ops                            generic_file_vm_ops
3892 #define shmem_file_operations                   ramfs_file_operations
3893 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3894 #define shmem_acct_size(flags, size)            0
3895 #define shmem_unacct_size(flags, size)          do {} while (0)
3896
3897 #endif /* CONFIG_SHMEM */
3898
3899 /* common code */
3900
3901 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3902                                        unsigned long flags, unsigned int i_flags)
3903 {
3904         struct inode *inode;
3905         struct file *res;
3906
3907         if (IS_ERR(mnt))
3908                 return ERR_CAST(mnt);
3909
3910         if (size < 0 || size > MAX_LFS_FILESIZE)
3911                 return ERR_PTR(-EINVAL);
3912
3913         if (shmem_acct_size(flags, size))
3914                 return ERR_PTR(-ENOMEM);
3915
3916         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3917                                 flags);
3918         if (unlikely(!inode)) {
3919                 shmem_unacct_size(flags, size);
3920                 return ERR_PTR(-ENOSPC);
3921         }
3922         inode->i_flags |= i_flags;
3923         inode->i_size = size;
3924         clear_nlink(inode);     /* It is unlinked */
3925         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3926         if (!IS_ERR(res))
3927                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3928                                 &shmem_file_operations);
3929         if (IS_ERR(res))
3930                 iput(inode);
3931         return res;
3932 }
3933
3934 /**
3935  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3936  *      kernel internal.  There will be NO LSM permission checks against the
3937  *      underlying inode.  So users of this interface must do LSM checks at a
3938  *      higher layer.  The users are the big_key and shm implementations.  LSM
3939  *      checks are provided at the key or shm level rather than the inode.
3940  * @name: name for dentry (to be seen in /proc/<pid>/maps
3941  * @size: size to be set for the file
3942  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3943  */
3944 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3945 {
3946         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3947 }
3948
3949 /**
3950  * shmem_file_setup - get an unlinked file living in tmpfs
3951  * @name: name for dentry (to be seen in /proc/<pid>/maps
3952  * @size: size to be set for the file
3953  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3954  */
3955 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3956 {
3957         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3958 }
3959 EXPORT_SYMBOL_GPL(shmem_file_setup);
3960
3961 /**
3962  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3963  * @mnt: the tmpfs mount where the file will be created
3964  * @name: name for dentry (to be seen in /proc/<pid>/maps
3965  * @size: size to be set for the file
3966  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3967  */
3968 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3969                                        loff_t size, unsigned long flags)
3970 {
3971         return __shmem_file_setup(mnt, name, size, flags, 0);
3972 }
3973 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3974
3975 /**
3976  * shmem_zero_setup - setup a shared anonymous mapping
3977  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3978  */
3979 int shmem_zero_setup(struct vm_area_struct *vma)
3980 {
3981         struct file *file;
3982         loff_t size = vma->vm_end - vma->vm_start;
3983
3984         /*
3985          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3986          * between XFS directory reading and selinux: since this file is only
3987          * accessible to the user through its mapping, use S_PRIVATE flag to
3988          * bypass file security, in the same way as shmem_kernel_file_setup().
3989          */
3990         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3991         if (IS_ERR(file))
3992                 return PTR_ERR(file);
3993
3994         if (vma->vm_file)
3995                 fput(vma->vm_file);
3996         vma->vm_file = file;
3997         vma->vm_ops = &shmem_vm_ops;
3998
3999         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4000                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4001                         (vma->vm_end & HPAGE_PMD_MASK)) {
4002                 khugepaged_enter(vma, vma->vm_flags);
4003         }
4004
4005         return 0;
4006 }
4007
4008 /**
4009  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4010  * @mapping:    the page's address_space
4011  * @index:      the page index
4012  * @gfp:        the page allocator flags to use if allocating
4013  *
4014  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4015  * with any new page allocations done using the specified allocation flags.
4016  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4017  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4018  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4019  *
4020  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4021  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4022  */
4023 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4024                                          pgoff_t index, gfp_t gfp)
4025 {
4026 #ifdef CONFIG_SHMEM
4027         struct inode *inode = mapping->host;
4028         struct page *page;
4029         int error;
4030
4031         BUG_ON(mapping->a_ops != &shmem_aops);
4032         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4033                                   gfp, NULL, NULL, NULL);
4034         if (error)
4035                 page = ERR_PTR(error);
4036         else
4037                 unlock_page(page);
4038         return page;
4039 #else
4040         /*
4041          * The tiny !SHMEM case uses ramfs without swap
4042          */
4043         return read_cache_page_gfp(mapping, index, gfp);
4044 #endif
4045 }
4046 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);