kfence: test: fail fast if disabled at boot
[linux-2.6-microblaze.git] / mm / pagewalk.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14         if (depth == 3 && PTRS_PER_PMD == 1)
15                 depth = 2;
16         if (depth == 2 && PTRS_PER_PUD == 1)
17                 depth = 1;
18         if (depth == 1 && PTRS_PER_P4D == 1)
19                 depth = 0;
20         return depth;
21 }
22
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24                                 unsigned long end, struct mm_walk *walk)
25 {
26         const struct mm_walk_ops *ops = walk->ops;
27         int err = 0;
28
29         for (;;) {
30                 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31                 if (err)
32                        break;
33                 if (addr >= end - PAGE_SIZE)
34                         break;
35                 addr += PAGE_SIZE;
36                 pte++;
37         }
38         return err;
39 }
40
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42                           struct mm_walk *walk)
43 {
44         pte_t *pte;
45         int err = 0;
46         spinlock_t *ptl;
47
48         if (walk->no_vma) {
49                 pte = pte_offset_map(pmd, addr);
50                 err = walk_pte_range_inner(pte, addr, end, walk);
51                 pte_unmap(pte);
52         } else {
53                 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
54                 err = walk_pte_range_inner(pte, addr, end, walk);
55                 pte_unmap_unlock(pte, ptl);
56         }
57
58         return err;
59 }
60
61 #ifdef CONFIG_ARCH_HAS_HUGEPD
62 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
63                              unsigned long end, struct mm_walk *walk, int pdshift)
64 {
65         int err = 0;
66         const struct mm_walk_ops *ops = walk->ops;
67         int shift = hugepd_shift(*phpd);
68         int page_size = 1 << shift;
69
70         if (!ops->pte_entry)
71                 return 0;
72
73         if (addr & (page_size - 1))
74                 return 0;
75
76         for (;;) {
77                 pte_t *pte;
78
79                 spin_lock(&walk->mm->page_table_lock);
80                 pte = hugepte_offset(*phpd, addr, pdshift);
81                 err = ops->pte_entry(pte, addr, addr + page_size, walk);
82                 spin_unlock(&walk->mm->page_table_lock);
83
84                 if (err)
85                         break;
86                 if (addr >= end - page_size)
87                         break;
88                 addr += page_size;
89         }
90         return err;
91 }
92 #else
93 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
94                              unsigned long end, struct mm_walk *walk, int pdshift)
95 {
96         return 0;
97 }
98 #endif
99
100 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
101                           struct mm_walk *walk)
102 {
103         pmd_t *pmd;
104         unsigned long next;
105         const struct mm_walk_ops *ops = walk->ops;
106         int err = 0;
107         int depth = real_depth(3);
108
109         pmd = pmd_offset(pud, addr);
110         do {
111 again:
112                 next = pmd_addr_end(addr, end);
113                 if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
114                         if (ops->pte_hole)
115                                 err = ops->pte_hole(addr, next, depth, walk);
116                         if (err)
117                                 break;
118                         continue;
119                 }
120
121                 walk->action = ACTION_SUBTREE;
122
123                 /*
124                  * This implies that each ->pmd_entry() handler
125                  * needs to know about pmd_trans_huge() pmds
126                  */
127                 if (ops->pmd_entry)
128                         err = ops->pmd_entry(pmd, addr, next, walk);
129                 if (err)
130                         break;
131
132                 if (walk->action == ACTION_AGAIN)
133                         goto again;
134
135                 /*
136                  * Check this here so we only break down trans_huge
137                  * pages when we _need_ to
138                  */
139                 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
140                     walk->action == ACTION_CONTINUE ||
141                     !(ops->pte_entry))
142                         continue;
143
144                 if (walk->vma) {
145                         split_huge_pmd(walk->vma, pmd, addr);
146                         if (pmd_trans_unstable(pmd))
147                                 goto again;
148                 }
149
150                 if (is_hugepd(__hugepd(pmd_val(*pmd))))
151                         err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
152                 else
153                         err = walk_pte_range(pmd, addr, next, walk);
154                 if (err)
155                         break;
156         } while (pmd++, addr = next, addr != end);
157
158         return err;
159 }
160
161 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
162                           struct mm_walk *walk)
163 {
164         pud_t *pud;
165         unsigned long next;
166         const struct mm_walk_ops *ops = walk->ops;
167         int err = 0;
168         int depth = real_depth(2);
169
170         pud = pud_offset(p4d, addr);
171         do {
172  again:
173                 next = pud_addr_end(addr, end);
174                 if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
175                         if (ops->pte_hole)
176                                 err = ops->pte_hole(addr, next, depth, walk);
177                         if (err)
178                                 break;
179                         continue;
180                 }
181
182                 walk->action = ACTION_SUBTREE;
183
184                 if (ops->pud_entry)
185                         err = ops->pud_entry(pud, addr, next, walk);
186                 if (err)
187                         break;
188
189                 if (walk->action == ACTION_AGAIN)
190                         goto again;
191
192                 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
193                     walk->action == ACTION_CONTINUE ||
194                     !(ops->pmd_entry || ops->pte_entry))
195                         continue;
196
197                 if (walk->vma)
198                         split_huge_pud(walk->vma, pud, addr);
199                 if (pud_none(*pud))
200                         goto again;
201
202                 if (is_hugepd(__hugepd(pud_val(*pud))))
203                         err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
204                 else
205                         err = walk_pmd_range(pud, addr, next, walk);
206                 if (err)
207                         break;
208         } while (pud++, addr = next, addr != end);
209
210         return err;
211 }
212
213 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
214                           struct mm_walk *walk)
215 {
216         p4d_t *p4d;
217         unsigned long next;
218         const struct mm_walk_ops *ops = walk->ops;
219         int err = 0;
220         int depth = real_depth(1);
221
222         p4d = p4d_offset(pgd, addr);
223         do {
224                 next = p4d_addr_end(addr, end);
225                 if (p4d_none_or_clear_bad(p4d)) {
226                         if (ops->pte_hole)
227                                 err = ops->pte_hole(addr, next, depth, walk);
228                         if (err)
229                                 break;
230                         continue;
231                 }
232                 if (ops->p4d_entry) {
233                         err = ops->p4d_entry(p4d, addr, next, walk);
234                         if (err)
235                                 break;
236                 }
237                 if (is_hugepd(__hugepd(p4d_val(*p4d))))
238                         err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
239                 else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
240                         err = walk_pud_range(p4d, addr, next, walk);
241                 if (err)
242                         break;
243         } while (p4d++, addr = next, addr != end);
244
245         return err;
246 }
247
248 static int walk_pgd_range(unsigned long addr, unsigned long end,
249                           struct mm_walk *walk)
250 {
251         pgd_t *pgd;
252         unsigned long next;
253         const struct mm_walk_ops *ops = walk->ops;
254         int err = 0;
255
256         if (walk->pgd)
257                 pgd = walk->pgd + pgd_index(addr);
258         else
259                 pgd = pgd_offset(walk->mm, addr);
260         do {
261                 next = pgd_addr_end(addr, end);
262                 if (pgd_none_or_clear_bad(pgd)) {
263                         if (ops->pte_hole)
264                                 err = ops->pte_hole(addr, next, 0, walk);
265                         if (err)
266                                 break;
267                         continue;
268                 }
269                 if (ops->pgd_entry) {
270                         err = ops->pgd_entry(pgd, addr, next, walk);
271                         if (err)
272                                 break;
273                 }
274                 if (is_hugepd(__hugepd(pgd_val(*pgd))))
275                         err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
276                 else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
277                         err = walk_p4d_range(pgd, addr, next, walk);
278                 if (err)
279                         break;
280         } while (pgd++, addr = next, addr != end);
281
282         return err;
283 }
284
285 #ifdef CONFIG_HUGETLB_PAGE
286 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
287                                        unsigned long end)
288 {
289         unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
290         return boundary < end ? boundary : end;
291 }
292
293 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
294                               struct mm_walk *walk)
295 {
296         struct vm_area_struct *vma = walk->vma;
297         struct hstate *h = hstate_vma(vma);
298         unsigned long next;
299         unsigned long hmask = huge_page_mask(h);
300         unsigned long sz = huge_page_size(h);
301         pte_t *pte;
302         const struct mm_walk_ops *ops = walk->ops;
303         int err = 0;
304
305         do {
306                 next = hugetlb_entry_end(h, addr, end);
307                 pte = huge_pte_offset(walk->mm, addr & hmask, sz);
308
309                 if (pte)
310                         err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
311                 else if (ops->pte_hole)
312                         err = ops->pte_hole(addr, next, -1, walk);
313
314                 if (err)
315                         break;
316         } while (addr = next, addr != end);
317
318         return err;
319 }
320
321 #else /* CONFIG_HUGETLB_PAGE */
322 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
323                               struct mm_walk *walk)
324 {
325         return 0;
326 }
327
328 #endif /* CONFIG_HUGETLB_PAGE */
329
330 /*
331  * Decide whether we really walk over the current vma on [@start, @end)
332  * or skip it via the returned value. Return 0 if we do walk over the
333  * current vma, and return 1 if we skip the vma. Negative values means
334  * error, where we abort the current walk.
335  */
336 static int walk_page_test(unsigned long start, unsigned long end,
337                         struct mm_walk *walk)
338 {
339         struct vm_area_struct *vma = walk->vma;
340         const struct mm_walk_ops *ops = walk->ops;
341
342         if (ops->test_walk)
343                 return ops->test_walk(start, end, walk);
344
345         /*
346          * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
347          * range, so we don't walk over it as we do for normal vmas. However,
348          * Some callers are interested in handling hole range and they don't
349          * want to just ignore any single address range. Such users certainly
350          * define their ->pte_hole() callbacks, so let's delegate them to handle
351          * vma(VM_PFNMAP).
352          */
353         if (vma->vm_flags & VM_PFNMAP) {
354                 int err = 1;
355                 if (ops->pte_hole)
356                         err = ops->pte_hole(start, end, -1, walk);
357                 return err ? err : 1;
358         }
359         return 0;
360 }
361
362 static int __walk_page_range(unsigned long start, unsigned long end,
363                         struct mm_walk *walk)
364 {
365         int err = 0;
366         struct vm_area_struct *vma = walk->vma;
367         const struct mm_walk_ops *ops = walk->ops;
368
369         if (vma && ops->pre_vma) {
370                 err = ops->pre_vma(start, end, walk);
371                 if (err)
372                         return err;
373         }
374
375         if (vma && is_vm_hugetlb_page(vma)) {
376                 if (ops->hugetlb_entry)
377                         err = walk_hugetlb_range(start, end, walk);
378         } else
379                 err = walk_pgd_range(start, end, walk);
380
381         if (vma && ops->post_vma)
382                 ops->post_vma(walk);
383
384         return err;
385 }
386
387 /**
388  * walk_page_range - walk page table with caller specific callbacks
389  * @mm:         mm_struct representing the target process of page table walk
390  * @start:      start address of the virtual address range
391  * @end:        end address of the virtual address range
392  * @ops:        operation to call during the walk
393  * @private:    private data for callbacks' usage
394  *
395  * Recursively walk the page table tree of the process represented by @mm
396  * within the virtual address range [@start, @end). During walking, we can do
397  * some caller-specific works for each entry, by setting up pmd_entry(),
398  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
399  * callbacks, the associated entries/pages are just ignored.
400  * The return values of these callbacks are commonly defined like below:
401  *
402  *  - 0  : succeeded to handle the current entry, and if you don't reach the
403  *         end address yet, continue to walk.
404  *  - >0 : succeeded to handle the current entry, and return to the caller
405  *         with caller specific value.
406  *  - <0 : failed to handle the current entry, and return to the caller
407  *         with error code.
408  *
409  * Before starting to walk page table, some callers want to check whether
410  * they really want to walk over the current vma, typically by checking
411  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
412  * purpose.
413  *
414  * If operations need to be staged before and committed after a vma is walked,
415  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
416  * since it is intended to handle commit-type operations, can't return any
417  * errors.
418  *
419  * struct mm_walk keeps current values of some common data like vma and pmd,
420  * which are useful for the access from callbacks. If you want to pass some
421  * caller-specific data to callbacks, @private should be helpful.
422  *
423  * Locking:
424  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
425  *   because these function traverse vma list and/or access to vma's data.
426  */
427 int walk_page_range(struct mm_struct *mm, unsigned long start,
428                 unsigned long end, const struct mm_walk_ops *ops,
429                 void *private)
430 {
431         int err = 0;
432         unsigned long next;
433         struct vm_area_struct *vma;
434         struct mm_walk walk = {
435                 .ops            = ops,
436                 .mm             = mm,
437                 .private        = private,
438         };
439
440         if (start >= end)
441                 return -EINVAL;
442
443         if (!walk.mm)
444                 return -EINVAL;
445
446         mmap_assert_locked(walk.mm);
447
448         vma = find_vma(walk.mm, start);
449         do {
450                 if (!vma) { /* after the last vma */
451                         walk.vma = NULL;
452                         next = end;
453                 } else if (start < vma->vm_start) { /* outside vma */
454                         walk.vma = NULL;
455                         next = min(end, vma->vm_start);
456                 } else { /* inside vma */
457                         walk.vma = vma;
458                         next = min(end, vma->vm_end);
459                         vma = vma->vm_next;
460
461                         err = walk_page_test(start, next, &walk);
462                         if (err > 0) {
463                                 /*
464                                  * positive return values are purely for
465                                  * controlling the pagewalk, so should never
466                                  * be passed to the callers.
467                                  */
468                                 err = 0;
469                                 continue;
470                         }
471                         if (err < 0)
472                                 break;
473                 }
474                 if (walk.vma || walk.ops->pte_hole)
475                         err = __walk_page_range(start, next, &walk);
476                 if (err)
477                         break;
478         } while (start = next, start < end);
479         return err;
480 }
481
482 /*
483  * Similar to walk_page_range() but can walk any page tables even if they are
484  * not backed by VMAs. Because 'unusual' entries may be walked this function
485  * will also not lock the PTEs for the pte_entry() callback. This is useful for
486  * walking the kernel pages tables or page tables for firmware.
487  */
488 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
489                           unsigned long end, const struct mm_walk_ops *ops,
490                           pgd_t *pgd,
491                           void *private)
492 {
493         struct mm_walk walk = {
494                 .ops            = ops,
495                 .mm             = mm,
496                 .pgd            = pgd,
497                 .private        = private,
498                 .no_vma         = true
499         };
500
501         if (start >= end || !walk.mm)
502                 return -EINVAL;
503
504         mmap_assert_locked(walk.mm);
505
506         return __walk_page_range(start, end, &walk);
507 }
508
509 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
510                 void *private)
511 {
512         struct mm_walk walk = {
513                 .ops            = ops,
514                 .mm             = vma->vm_mm,
515                 .vma            = vma,
516                 .private        = private,
517         };
518         int err;
519
520         if (!walk.mm)
521                 return -EINVAL;
522
523         mmap_assert_locked(walk.mm);
524
525         err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
526         if (err > 0)
527                 return 0;
528         if (err < 0)
529                 return err;
530         return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
531 }
532
533 /**
534  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
535  * @mapping: Pointer to the struct address_space
536  * @first_index: First page offset in the address_space
537  * @nr: Number of incremental page offsets to cover
538  * @ops:        operation to call during the walk
539  * @private:    private data for callbacks' usage
540  *
541  * This function walks all memory areas mapped into a struct address_space.
542  * The walk is limited to only the given page-size index range, but if
543  * the index boundaries cross a huge page-table entry, that entry will be
544  * included.
545  *
546  * Also see walk_page_range() for additional information.
547  *
548  * Locking:
549  *   This function can't require that the struct mm_struct::mmap_lock is held,
550  *   since @mapping may be mapped by multiple processes. Instead
551  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
552  *   callbacks, and it's up tho the caller to ensure that the
553  *   struct mm_struct::mmap_lock is not needed.
554  *
555  *   Also this means that a caller can't rely on the struct
556  *   vm_area_struct::vm_flags to be constant across a call,
557  *   except for immutable flags. Callers requiring this shouldn't use
558  *   this function.
559  *
560  * Return: 0 on success, negative error code on failure, positive number on
561  * caller defined premature termination.
562  */
563 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
564                       pgoff_t nr, const struct mm_walk_ops *ops,
565                       void *private)
566 {
567         struct mm_walk walk = {
568                 .ops            = ops,
569                 .private        = private,
570         };
571         struct vm_area_struct *vma;
572         pgoff_t vba, vea, cba, cea;
573         unsigned long start_addr, end_addr;
574         int err = 0;
575
576         lockdep_assert_held(&mapping->i_mmap_rwsem);
577         vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
578                                   first_index + nr - 1) {
579                 /* Clip to the vma */
580                 vba = vma->vm_pgoff;
581                 vea = vba + vma_pages(vma);
582                 cba = first_index;
583                 cba = max(cba, vba);
584                 cea = first_index + nr;
585                 cea = min(cea, vea);
586
587                 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
588                 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
589                 if (start_addr >= end_addr)
590                         continue;
591
592                 walk.vma = vma;
593                 walk.mm = vma->vm_mm;
594
595                 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
596                 if (err > 0) {
597                         err = 0;
598                         break;
599                 } else if (err < 0)
600                         break;
601
602                 err = __walk_page_range(start_addr, end_addr, &walk);
603                 if (err)
604                         break;
605         }
606
607         return err;
608 }