CodingStyle: Inclusive Terminology
[linux-2.6-microblaze.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30                                 struct page *page, bio_end_io_t end_io)
31 {
32         struct bio *bio;
33
34         bio = bio_alloc(gfp_flags, 1);
35         if (bio) {
36                 struct block_device *bdev;
37
38                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39                 bio_set_dev(bio, bdev);
40                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41                 bio->bi_end_io = end_io;
42
43                 bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
44         }
45         return bio;
46 }
47
48 void end_swap_bio_write(struct bio *bio)
49 {
50         struct page *page = bio_first_page_all(bio);
51
52         if (bio->bi_status) {
53                 SetPageError(page);
54                 /*
55                  * We failed to write the page out to swap-space.
56                  * Re-dirty the page in order to avoid it being reclaimed.
57                  * Also print a dire warning that things will go BAD (tm)
58                  * very quickly.
59                  *
60                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61                  */
62                 set_page_dirty(page);
63                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65                          (unsigned long long)bio->bi_iter.bi_sector);
66                 ClearPageReclaim(page);
67         }
68         end_page_writeback(page);
69         bio_put(bio);
70 }
71
72 static void swap_slot_free_notify(struct page *page)
73 {
74         struct swap_info_struct *sis;
75         struct gendisk *disk;
76         swp_entry_t entry;
77
78         /*
79          * There is no guarantee that the page is in swap cache - the software
80          * suspend code (at least) uses end_swap_bio_read() against a non-
81          * swapcache page.  So we must check PG_swapcache before proceeding with
82          * this optimization.
83          */
84         if (unlikely(!PageSwapCache(page)))
85                 return;
86
87         sis = page_swap_info(page);
88         if (!(sis->flags & SWP_BLKDEV))
89                 return;
90
91         /*
92          * The swap subsystem performs lazy swap slot freeing,
93          * expecting that the page will be swapped out again.
94          * So we can avoid an unnecessary write if the page
95          * isn't redirtied.
96          * This is good for real swap storage because we can
97          * reduce unnecessary I/O and enhance wear-leveling
98          * if an SSD is used as the as swap device.
99          * But if in-memory swap device (eg zram) is used,
100          * this causes a duplicated copy between uncompressed
101          * data in VM-owned memory and compressed data in
102          * zram-owned memory.  So let's free zram-owned memory
103          * and make the VM-owned decompressed page *dirty*,
104          * so the page should be swapped out somewhere again if
105          * we again wish to reclaim it.
106          */
107         disk = sis->bdev->bd_disk;
108         entry.val = page_private(page);
109         if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110                 unsigned long offset;
111
112                 offset = swp_offset(entry);
113
114                 SetPageDirty(page);
115                 disk->fops->swap_slot_free_notify(sis->bdev,
116                                 offset);
117         }
118 }
119
120 static void end_swap_bio_read(struct bio *bio)
121 {
122         struct page *page = bio_first_page_all(bio);
123         struct task_struct *waiter = bio->bi_private;
124
125         if (bio->bi_status) {
126                 SetPageError(page);
127                 ClearPageUptodate(page);
128                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130                          (unsigned long long)bio->bi_iter.bi_sector);
131                 goto out;
132         }
133
134         SetPageUptodate(page);
135         swap_slot_free_notify(page);
136 out:
137         unlock_page(page);
138         WRITE_ONCE(bio->bi_private, NULL);
139         bio_put(bio);
140         if (waiter) {
141                 blk_wake_io_task(waiter);
142                 put_task_struct(waiter);
143         }
144 }
145
146 int generic_swapfile_activate(struct swap_info_struct *sis,
147                                 struct file *swap_file,
148                                 sector_t *span)
149 {
150         struct address_space *mapping = swap_file->f_mapping;
151         struct inode *inode = mapping->host;
152         unsigned blocks_per_page;
153         unsigned long page_no;
154         unsigned blkbits;
155         sector_t probe_block;
156         sector_t last_block;
157         sector_t lowest_block = -1;
158         sector_t highest_block = 0;
159         int nr_extents = 0;
160         int ret;
161
162         blkbits = inode->i_blkbits;
163         blocks_per_page = PAGE_SIZE >> blkbits;
164
165         /*
166          * Map all the blocks into the extent tree.  This code doesn't try
167          * to be very smart.
168          */
169         probe_block = 0;
170         page_no = 0;
171         last_block = i_size_read(inode) >> blkbits;
172         while ((probe_block + blocks_per_page) <= last_block &&
173                         page_no < sis->max) {
174                 unsigned block_in_page;
175                 sector_t first_block;
176
177                 cond_resched();
178
179                 first_block = probe_block;
180                 ret = bmap(inode, &first_block);
181                 if (ret || !first_block)
182                         goto bad_bmap;
183
184                 /*
185                  * It must be PAGE_SIZE aligned on-disk
186                  */
187                 if (first_block & (blocks_per_page - 1)) {
188                         probe_block++;
189                         goto reprobe;
190                 }
191
192                 for (block_in_page = 1; block_in_page < blocks_per_page;
193                                         block_in_page++) {
194                         sector_t block;
195
196                         block = probe_block + block_in_page;
197                         ret = bmap(inode, &block);
198                         if (ret || !block)
199                                 goto bad_bmap;
200
201                         if (block != first_block + block_in_page) {
202                                 /* Discontiguity */
203                                 probe_block++;
204                                 goto reprobe;
205                         }
206                 }
207
208                 first_block >>= (PAGE_SHIFT - blkbits);
209                 if (page_no) {  /* exclude the header page */
210                         if (first_block < lowest_block)
211                                 lowest_block = first_block;
212                         if (first_block > highest_block)
213                                 highest_block = first_block;
214                 }
215
216                 /*
217                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
218                  */
219                 ret = add_swap_extent(sis, page_no, 1, first_block);
220                 if (ret < 0)
221                         goto out;
222                 nr_extents += ret;
223                 page_no++;
224                 probe_block += blocks_per_page;
225 reprobe:
226                 continue;
227         }
228         ret = nr_extents;
229         *span = 1 + highest_block - lowest_block;
230         if (page_no == 0)
231                 page_no = 1;    /* force Empty message */
232         sis->max = page_no;
233         sis->pages = page_no - 1;
234         sis->highest_bit = page_no - 1;
235 out:
236         return ret;
237 bad_bmap:
238         pr_err("swapon: swapfile has holes\n");
239         ret = -EINVAL;
240         goto out;
241 }
242
243 /*
244  * We may have stale swap cache pages in memory: notice
245  * them here and get rid of the unnecessary final write.
246  */
247 int swap_writepage(struct page *page, struct writeback_control *wbc)
248 {
249         int ret = 0;
250
251         if (try_to_free_swap(page)) {
252                 unlock_page(page);
253                 goto out;
254         }
255         if (frontswap_store(page) == 0) {
256                 set_page_writeback(page);
257                 unlock_page(page);
258                 end_page_writeback(page);
259                 goto out;
260         }
261         ret = __swap_writepage(page, wbc, end_swap_bio_write);
262 out:
263         return ret;
264 }
265
266 static sector_t swap_page_sector(struct page *page)
267 {
268         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
269 }
270
271 static inline void count_swpout_vm_event(struct page *page)
272 {
273 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
274         if (unlikely(PageTransHuge(page)))
275                 count_vm_event(THP_SWPOUT);
276 #endif
277         count_vm_events(PSWPOUT, hpage_nr_pages(page));
278 }
279
280 int __swap_writepage(struct page *page, struct writeback_control *wbc,
281                 bio_end_io_t end_write_func)
282 {
283         struct bio *bio;
284         int ret;
285         struct swap_info_struct *sis = page_swap_info(page);
286
287         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
288         if (sis->flags & SWP_FS) {
289                 struct kiocb kiocb;
290                 struct file *swap_file = sis->swap_file;
291                 struct address_space *mapping = swap_file->f_mapping;
292                 struct bio_vec bv = {
293                         .bv_page = page,
294                         .bv_len  = PAGE_SIZE,
295                         .bv_offset = 0
296                 };
297                 struct iov_iter from;
298
299                 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
300                 init_sync_kiocb(&kiocb, swap_file);
301                 kiocb.ki_pos = page_file_offset(page);
302
303                 set_page_writeback(page);
304                 unlock_page(page);
305                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
306                 if (ret == PAGE_SIZE) {
307                         count_vm_event(PSWPOUT);
308                         ret = 0;
309                 } else {
310                         /*
311                          * In the case of swap-over-nfs, this can be a
312                          * temporary failure if the system has limited
313                          * memory for allocating transmit buffers.
314                          * Mark the page dirty and avoid
315                          * rotate_reclaimable_page but rate-limit the
316                          * messages but do not flag PageError like
317                          * the normal direct-to-bio case as it could
318                          * be temporary.
319                          */
320                         set_page_dirty(page);
321                         ClearPageReclaim(page);
322                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
323                                            page_file_offset(page));
324                 }
325                 end_page_writeback(page);
326                 return ret;
327         }
328
329         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
330         if (!ret) {
331                 count_swpout_vm_event(page);
332                 return 0;
333         }
334
335         ret = 0;
336         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
337         if (bio == NULL) {
338                 set_page_dirty(page);
339                 unlock_page(page);
340                 ret = -ENOMEM;
341                 goto out;
342         }
343         bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
344         bio_associate_blkg_from_page(bio, page);
345         count_swpout_vm_event(page);
346         set_page_writeback(page);
347         unlock_page(page);
348         submit_bio(bio);
349 out:
350         return ret;
351 }
352
353 int swap_readpage(struct page *page, bool synchronous)
354 {
355         struct bio *bio;
356         int ret = 0;
357         struct swap_info_struct *sis = page_swap_info(page);
358         blk_qc_t qc;
359         struct gendisk *disk;
360         unsigned long pflags;
361
362         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
363         VM_BUG_ON_PAGE(!PageLocked(page), page);
364         VM_BUG_ON_PAGE(PageUptodate(page), page);
365
366         /*
367          * Count submission time as memory stall. When the device is congested,
368          * or the submitting cgroup IO-throttled, submission can be a
369          * significant part of overall IO time.
370          */
371         psi_memstall_enter(&pflags);
372
373         if (frontswap_load(page) == 0) {
374                 SetPageUptodate(page);
375                 unlock_page(page);
376                 goto out;
377         }
378
379         if (sis->flags & SWP_FS) {
380                 struct file *swap_file = sis->swap_file;
381                 struct address_space *mapping = swap_file->f_mapping;
382
383                 ret = mapping->a_ops->readpage(swap_file, page);
384                 if (!ret)
385                         count_vm_event(PSWPIN);
386                 goto out;
387         }
388
389         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
390         if (!ret) {
391                 if (trylock_page(page)) {
392                         swap_slot_free_notify(page);
393                         unlock_page(page);
394                 }
395
396                 count_vm_event(PSWPIN);
397                 goto out;
398         }
399
400         ret = 0;
401         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
402         if (bio == NULL) {
403                 unlock_page(page);
404                 ret = -ENOMEM;
405                 goto out;
406         }
407         disk = bio->bi_disk;
408         /*
409          * Keep this task valid during swap readpage because the oom killer may
410          * attempt to access it in the page fault retry time check.
411          */
412         bio_set_op_attrs(bio, REQ_OP_READ, 0);
413         if (synchronous) {
414                 bio->bi_opf |= REQ_HIPRI;
415                 get_task_struct(current);
416                 bio->bi_private = current;
417         }
418         count_vm_event(PSWPIN);
419         bio_get(bio);
420         qc = submit_bio(bio);
421         while (synchronous) {
422                 set_current_state(TASK_UNINTERRUPTIBLE);
423                 if (!READ_ONCE(bio->bi_private))
424                         break;
425
426                 if (!blk_poll(disk->queue, qc, true))
427                         io_schedule();
428         }
429         __set_current_state(TASK_RUNNING);
430         bio_put(bio);
431
432 out:
433         psi_memstall_leave(&pflags);
434         return ret;
435 }
436
437 int swap_set_page_dirty(struct page *page)
438 {
439         struct swap_info_struct *sis = page_swap_info(page);
440
441         if (sis->flags & SWP_FS) {
442                 struct address_space *mapping = sis->swap_file->f_mapping;
443
444                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
445                 return mapping->a_ops->set_page_dirty(page);
446         } else {
447                 return __set_page_dirty_no_writeback(page);
448         }
449 }