clk: zynqmp: fix memory leak in zynqmp_register_clocks
[linux-2.6-microblaze.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28 #include <asm/pgtable.h>
29
30 static struct bio *get_swap_bio(gfp_t gfp_flags,
31                                 struct page *page, bio_end_io_t end_io)
32 {
33         struct bio *bio;
34
35         bio = bio_alloc(gfp_flags, 1);
36         if (bio) {
37                 struct block_device *bdev;
38
39                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40                 bio_set_dev(bio, bdev);
41                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42                 bio->bi_end_io = end_io;
43
44                 bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
45         }
46         return bio;
47 }
48
49 void end_swap_bio_write(struct bio *bio)
50 {
51         struct page *page = bio_first_page_all(bio);
52
53         if (bio->bi_status) {
54                 SetPageError(page);
55                 /*
56                  * We failed to write the page out to swap-space.
57                  * Re-dirty the page in order to avoid it being reclaimed.
58                  * Also print a dire warning that things will go BAD (tm)
59                  * very quickly.
60                  *
61                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
62                  */
63                 set_page_dirty(page);
64                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
65                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
66                          (unsigned long long)bio->bi_iter.bi_sector);
67                 ClearPageReclaim(page);
68         }
69         end_page_writeback(page);
70         bio_put(bio);
71 }
72
73 static void swap_slot_free_notify(struct page *page)
74 {
75         struct swap_info_struct *sis;
76         struct gendisk *disk;
77         swp_entry_t entry;
78
79         /*
80          * There is no guarantee that the page is in swap cache - the software
81          * suspend code (at least) uses end_swap_bio_read() against a non-
82          * swapcache page.  So we must check PG_swapcache before proceeding with
83          * this optimization.
84          */
85         if (unlikely(!PageSwapCache(page)))
86                 return;
87
88         sis = page_swap_info(page);
89         if (!(sis->flags & SWP_BLKDEV))
90                 return;
91
92         /*
93          * The swap subsystem performs lazy swap slot freeing,
94          * expecting that the page will be swapped out again.
95          * So we can avoid an unnecessary write if the page
96          * isn't redirtied.
97          * This is good for real swap storage because we can
98          * reduce unnecessary I/O and enhance wear-leveling
99          * if an SSD is used as the as swap device.
100          * But if in-memory swap device (eg zram) is used,
101          * this causes a duplicated copy between uncompressed
102          * data in VM-owned memory and compressed data in
103          * zram-owned memory.  So let's free zram-owned memory
104          * and make the VM-owned decompressed page *dirty*,
105          * so the page should be swapped out somewhere again if
106          * we again wish to reclaim it.
107          */
108         disk = sis->bdev->bd_disk;
109         entry.val = page_private(page);
110         if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
111                 unsigned long offset;
112
113                 offset = swp_offset(entry);
114
115                 SetPageDirty(page);
116                 disk->fops->swap_slot_free_notify(sis->bdev,
117                                 offset);
118         }
119 }
120
121 static void end_swap_bio_read(struct bio *bio)
122 {
123         struct page *page = bio_first_page_all(bio);
124         struct task_struct *waiter = bio->bi_private;
125
126         if (bio->bi_status) {
127                 SetPageError(page);
128                 ClearPageUptodate(page);
129                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
130                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
131                          (unsigned long long)bio->bi_iter.bi_sector);
132                 goto out;
133         }
134
135         SetPageUptodate(page);
136         swap_slot_free_notify(page);
137 out:
138         unlock_page(page);
139         WRITE_ONCE(bio->bi_private, NULL);
140         bio_put(bio);
141         if (waiter) {
142                 blk_wake_io_task(waiter);
143                 put_task_struct(waiter);
144         }
145 }
146
147 int generic_swapfile_activate(struct swap_info_struct *sis,
148                                 struct file *swap_file,
149                                 sector_t *span)
150 {
151         struct address_space *mapping = swap_file->f_mapping;
152         struct inode *inode = mapping->host;
153         unsigned blocks_per_page;
154         unsigned long page_no;
155         unsigned blkbits;
156         sector_t probe_block;
157         sector_t last_block;
158         sector_t lowest_block = -1;
159         sector_t highest_block = 0;
160         int nr_extents = 0;
161         int ret;
162
163         blkbits = inode->i_blkbits;
164         blocks_per_page = PAGE_SIZE >> blkbits;
165
166         /*
167          * Map all the blocks into the extent tree.  This code doesn't try
168          * to be very smart.
169          */
170         probe_block = 0;
171         page_no = 0;
172         last_block = i_size_read(inode) >> blkbits;
173         while ((probe_block + blocks_per_page) <= last_block &&
174                         page_no < sis->max) {
175                 unsigned block_in_page;
176                 sector_t first_block;
177
178                 cond_resched();
179
180                 first_block = probe_block;
181                 ret = bmap(inode, &first_block);
182                 if (ret || !first_block)
183                         goto bad_bmap;
184
185                 /*
186                  * It must be PAGE_SIZE aligned on-disk
187                  */
188                 if (first_block & (blocks_per_page - 1)) {
189                         probe_block++;
190                         goto reprobe;
191                 }
192
193                 for (block_in_page = 1; block_in_page < blocks_per_page;
194                                         block_in_page++) {
195                         sector_t block;
196
197                         block = probe_block + block_in_page;
198                         ret = bmap(inode, &block);
199                         if (ret || !block)
200                                 goto bad_bmap;
201
202                         if (block != first_block + block_in_page) {
203                                 /* Discontiguity */
204                                 probe_block++;
205                                 goto reprobe;
206                         }
207                 }
208
209                 first_block >>= (PAGE_SHIFT - blkbits);
210                 if (page_no) {  /* exclude the header page */
211                         if (first_block < lowest_block)
212                                 lowest_block = first_block;
213                         if (first_block > highest_block)
214                                 highest_block = first_block;
215                 }
216
217                 /*
218                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
219                  */
220                 ret = add_swap_extent(sis, page_no, 1, first_block);
221                 if (ret < 0)
222                         goto out;
223                 nr_extents += ret;
224                 page_no++;
225                 probe_block += blocks_per_page;
226 reprobe:
227                 continue;
228         }
229         ret = nr_extents;
230         *span = 1 + highest_block - lowest_block;
231         if (page_no == 0)
232                 page_no = 1;    /* force Empty message */
233         sis->max = page_no;
234         sis->pages = page_no - 1;
235         sis->highest_bit = page_no - 1;
236 out:
237         return ret;
238 bad_bmap:
239         pr_err("swapon: swapfile has holes\n");
240         ret = -EINVAL;
241         goto out;
242 }
243
244 /*
245  * We may have stale swap cache pages in memory: notice
246  * them here and get rid of the unnecessary final write.
247  */
248 int swap_writepage(struct page *page, struct writeback_control *wbc)
249 {
250         int ret = 0;
251
252         if (try_to_free_swap(page)) {
253                 unlock_page(page);
254                 goto out;
255         }
256         if (frontswap_store(page) == 0) {
257                 set_page_writeback(page);
258                 unlock_page(page);
259                 end_page_writeback(page);
260                 goto out;
261         }
262         ret = __swap_writepage(page, wbc, end_swap_bio_write);
263 out:
264         return ret;
265 }
266
267 static sector_t swap_page_sector(struct page *page)
268 {
269         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
270 }
271
272 static inline void count_swpout_vm_event(struct page *page)
273 {
274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
275         if (unlikely(PageTransHuge(page)))
276                 count_vm_event(THP_SWPOUT);
277 #endif
278         count_vm_events(PSWPOUT, hpage_nr_pages(page));
279 }
280
281 int __swap_writepage(struct page *page, struct writeback_control *wbc,
282                 bio_end_io_t end_write_func)
283 {
284         struct bio *bio;
285         int ret;
286         struct swap_info_struct *sis = page_swap_info(page);
287
288         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
289         if (sis->flags & SWP_FS) {
290                 struct kiocb kiocb;
291                 struct file *swap_file = sis->swap_file;
292                 struct address_space *mapping = swap_file->f_mapping;
293                 struct bio_vec bv = {
294                         .bv_page = page,
295                         .bv_len  = PAGE_SIZE,
296                         .bv_offset = 0
297                 };
298                 struct iov_iter from;
299
300                 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
301                 init_sync_kiocb(&kiocb, swap_file);
302                 kiocb.ki_pos = page_file_offset(page);
303
304                 set_page_writeback(page);
305                 unlock_page(page);
306                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
307                 if (ret == PAGE_SIZE) {
308                         count_vm_event(PSWPOUT);
309                         ret = 0;
310                 } else {
311                         /*
312                          * In the case of swap-over-nfs, this can be a
313                          * temporary failure if the system has limited
314                          * memory for allocating transmit buffers.
315                          * Mark the page dirty and avoid
316                          * rotate_reclaimable_page but rate-limit the
317                          * messages but do not flag PageError like
318                          * the normal direct-to-bio case as it could
319                          * be temporary.
320                          */
321                         set_page_dirty(page);
322                         ClearPageReclaim(page);
323                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
324                                            page_file_offset(page));
325                 }
326                 end_page_writeback(page);
327                 return ret;
328         }
329
330         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
331         if (!ret) {
332                 count_swpout_vm_event(page);
333                 return 0;
334         }
335
336         ret = 0;
337         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
338         if (bio == NULL) {
339                 set_page_dirty(page);
340                 unlock_page(page);
341                 ret = -ENOMEM;
342                 goto out;
343         }
344         bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
345         bio_associate_blkg_from_page(bio, page);
346         count_swpout_vm_event(page);
347         set_page_writeback(page);
348         unlock_page(page);
349         submit_bio(bio);
350 out:
351         return ret;
352 }
353
354 int swap_readpage(struct page *page, bool synchronous)
355 {
356         struct bio *bio;
357         int ret = 0;
358         struct swap_info_struct *sis = page_swap_info(page);
359         blk_qc_t qc;
360         struct gendisk *disk;
361         unsigned long pflags;
362
363         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
364         VM_BUG_ON_PAGE(!PageLocked(page), page);
365         VM_BUG_ON_PAGE(PageUptodate(page), page);
366
367         /*
368          * Count submission time as memory stall. When the device is congested,
369          * or the submitting cgroup IO-throttled, submission can be a
370          * significant part of overall IO time.
371          */
372         psi_memstall_enter(&pflags);
373
374         if (frontswap_load(page) == 0) {
375                 SetPageUptodate(page);
376                 unlock_page(page);
377                 goto out;
378         }
379
380         if (sis->flags & SWP_FS) {
381                 struct file *swap_file = sis->swap_file;
382                 struct address_space *mapping = swap_file->f_mapping;
383
384                 ret = mapping->a_ops->readpage(swap_file, page);
385                 if (!ret)
386                         count_vm_event(PSWPIN);
387                 goto out;
388         }
389
390         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
391         if (!ret) {
392                 if (trylock_page(page)) {
393                         swap_slot_free_notify(page);
394                         unlock_page(page);
395                 }
396
397                 count_vm_event(PSWPIN);
398                 goto out;
399         }
400
401         ret = 0;
402         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
403         if (bio == NULL) {
404                 unlock_page(page);
405                 ret = -ENOMEM;
406                 goto out;
407         }
408         disk = bio->bi_disk;
409         /*
410          * Keep this task valid during swap readpage because the oom killer may
411          * attempt to access it in the page fault retry time check.
412          */
413         bio_set_op_attrs(bio, REQ_OP_READ, 0);
414         if (synchronous) {
415                 bio->bi_opf |= REQ_HIPRI;
416                 get_task_struct(current);
417                 bio->bi_private = current;
418         }
419         count_vm_event(PSWPIN);
420         bio_get(bio);
421         qc = submit_bio(bio);
422         while (synchronous) {
423                 set_current_state(TASK_UNINTERRUPTIBLE);
424                 if (!READ_ONCE(bio->bi_private))
425                         break;
426
427                 if (!blk_poll(disk->queue, qc, true))
428                         io_schedule();
429         }
430         __set_current_state(TASK_RUNNING);
431         bio_put(bio);
432
433 out:
434         psi_memstall_leave(&pflags);
435         return ret;
436 }
437
438 int swap_set_page_dirty(struct page *page)
439 {
440         struct swap_info_struct *sis = page_swap_info(page);
441
442         if (sis->flags & SWP_FS) {
443                 struct address_space *mapping = sis->swap_file->f_mapping;
444
445                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
446                 return mapping->a_ops->set_page_dirty(page);
447         } else {
448                 return __set_page_dirty_no_writeback(page);
449         }
450 }