rbd: disallow read-write partitions on images mapped read-only
[linux-2.6-microblaze.git] / mm / page_io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, 
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30                                 struct page *page, bio_end_io_t end_io)
31 {
32         struct bio *bio;
33
34         bio = bio_alloc(gfp_flags, 1);
35         if (bio) {
36                 struct block_device *bdev;
37
38                 bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39                 bio_set_dev(bio, bdev);
40                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41                 bio->bi_end_io = end_io;
42
43                 bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
44         }
45         return bio;
46 }
47
48 void end_swap_bio_write(struct bio *bio)
49 {
50         struct page *page = bio_first_page_all(bio);
51
52         if (bio->bi_status) {
53                 SetPageError(page);
54                 /*
55                  * We failed to write the page out to swap-space.
56                  * Re-dirty the page in order to avoid it being reclaimed.
57                  * Also print a dire warning that things will go BAD (tm)
58                  * very quickly.
59                  *
60                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61                  */
62                 set_page_dirty(page);
63                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65                          (unsigned long long)bio->bi_iter.bi_sector);
66                 ClearPageReclaim(page);
67         }
68         end_page_writeback(page);
69         bio_put(bio);
70 }
71
72 static void swap_slot_free_notify(struct page *page)
73 {
74         struct swap_info_struct *sis;
75         struct gendisk *disk;
76         swp_entry_t entry;
77
78         /*
79          * There is no guarantee that the page is in swap cache - the software
80          * suspend code (at least) uses end_swap_bio_read() against a non-
81          * swapcache page.  So we must check PG_swapcache before proceeding with
82          * this optimization.
83          */
84         if (unlikely(!PageSwapCache(page)))
85                 return;
86
87         sis = page_swap_info(page);
88         if (!(sis->flags & SWP_BLKDEV))
89                 return;
90
91         /*
92          * The swap subsystem performs lazy swap slot freeing,
93          * expecting that the page will be swapped out again.
94          * So we can avoid an unnecessary write if the page
95          * isn't redirtied.
96          * This is good for real swap storage because we can
97          * reduce unnecessary I/O and enhance wear-leveling
98          * if an SSD is used as the as swap device.
99          * But if in-memory swap device (eg zram) is used,
100          * this causes a duplicated copy between uncompressed
101          * data in VM-owned memory and compressed data in
102          * zram-owned memory.  So let's free zram-owned memory
103          * and make the VM-owned decompressed page *dirty*,
104          * so the page should be swapped out somewhere again if
105          * we again wish to reclaim it.
106          */
107         disk = sis->bdev->bd_disk;
108         entry.val = page_private(page);
109         if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
110                 unsigned long offset;
111
112                 offset = swp_offset(entry);
113
114                 SetPageDirty(page);
115                 disk->fops->swap_slot_free_notify(sis->bdev,
116                                 offset);
117         }
118 }
119
120 static void end_swap_bio_read(struct bio *bio)
121 {
122         struct page *page = bio_first_page_all(bio);
123         struct task_struct *waiter = bio->bi_private;
124
125         if (bio->bi_status) {
126                 SetPageError(page);
127                 ClearPageUptodate(page);
128                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130                          (unsigned long long)bio->bi_iter.bi_sector);
131                 goto out;
132         }
133
134         SetPageUptodate(page);
135         swap_slot_free_notify(page);
136 out:
137         unlock_page(page);
138         WRITE_ONCE(bio->bi_private, NULL);
139         bio_put(bio);
140         if (waiter) {
141                 blk_wake_io_task(waiter);
142                 put_task_struct(waiter);
143         }
144 }
145
146 int generic_swapfile_activate(struct swap_info_struct *sis,
147                                 struct file *swap_file,
148                                 sector_t *span)
149 {
150         struct address_space *mapping = swap_file->f_mapping;
151         struct inode *inode = mapping->host;
152         unsigned blocks_per_page;
153         unsigned long page_no;
154         unsigned blkbits;
155         sector_t probe_block;
156         sector_t last_block;
157         sector_t lowest_block = -1;
158         sector_t highest_block = 0;
159         int nr_extents = 0;
160         int ret;
161
162         blkbits = inode->i_blkbits;
163         blocks_per_page = PAGE_SIZE >> blkbits;
164
165         /*
166          * Map all the blocks into the extent tree.  This code doesn't try
167          * to be very smart.
168          */
169         probe_block = 0;
170         page_no = 0;
171         last_block = i_size_read(inode) >> blkbits;
172         while ((probe_block + blocks_per_page) <= last_block &&
173                         page_no < sis->max) {
174                 unsigned block_in_page;
175                 sector_t first_block;
176
177                 cond_resched();
178
179                 first_block = bmap(inode, probe_block);
180                 if (first_block == 0)
181                         goto bad_bmap;
182
183                 /*
184                  * It must be PAGE_SIZE aligned on-disk
185                  */
186                 if (first_block & (blocks_per_page - 1)) {
187                         probe_block++;
188                         goto reprobe;
189                 }
190
191                 for (block_in_page = 1; block_in_page < blocks_per_page;
192                                         block_in_page++) {
193                         sector_t block;
194
195                         block = bmap(inode, probe_block + block_in_page);
196                         if (block == 0)
197                                 goto bad_bmap;
198                         if (block != first_block + block_in_page) {
199                                 /* Discontiguity */
200                                 probe_block++;
201                                 goto reprobe;
202                         }
203                 }
204
205                 first_block >>= (PAGE_SHIFT - blkbits);
206                 if (page_no) {  /* exclude the header page */
207                         if (first_block < lowest_block)
208                                 lowest_block = first_block;
209                         if (first_block > highest_block)
210                                 highest_block = first_block;
211                 }
212
213                 /*
214                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215                  */
216                 ret = add_swap_extent(sis, page_no, 1, first_block);
217                 if (ret < 0)
218                         goto out;
219                 nr_extents += ret;
220                 page_no++;
221                 probe_block += blocks_per_page;
222 reprobe:
223                 continue;
224         }
225         ret = nr_extents;
226         *span = 1 + highest_block - lowest_block;
227         if (page_no == 0)
228                 page_no = 1;    /* force Empty message */
229         sis->max = page_no;
230         sis->pages = page_no - 1;
231         sis->highest_bit = page_no - 1;
232 out:
233         return ret;
234 bad_bmap:
235         pr_err("swapon: swapfile has holes\n");
236         ret = -EINVAL;
237         goto out;
238 }
239
240 /*
241  * We may have stale swap cache pages in memory: notice
242  * them here and get rid of the unnecessary final write.
243  */
244 int swap_writepage(struct page *page, struct writeback_control *wbc)
245 {
246         int ret = 0;
247
248         if (try_to_free_swap(page)) {
249                 unlock_page(page);
250                 goto out;
251         }
252         if (frontswap_store(page) == 0) {
253                 set_page_writeback(page);
254                 unlock_page(page);
255                 end_page_writeback(page);
256                 goto out;
257         }
258         ret = __swap_writepage(page, wbc, end_swap_bio_write);
259 out:
260         return ret;
261 }
262
263 static sector_t swap_page_sector(struct page *page)
264 {
265         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
266 }
267
268 static inline void count_swpout_vm_event(struct page *page)
269 {
270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
271         if (unlikely(PageTransHuge(page)))
272                 count_vm_event(THP_SWPOUT);
273 #endif
274         count_vm_events(PSWPOUT, hpage_nr_pages(page));
275 }
276
277 int __swap_writepage(struct page *page, struct writeback_control *wbc,
278                 bio_end_io_t end_write_func)
279 {
280         struct bio *bio;
281         int ret;
282         struct swap_info_struct *sis = page_swap_info(page);
283
284         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285         if (sis->flags & SWP_FS) {
286                 struct kiocb kiocb;
287                 struct file *swap_file = sis->swap_file;
288                 struct address_space *mapping = swap_file->f_mapping;
289                 struct bio_vec bv = {
290                         .bv_page = page,
291                         .bv_len  = PAGE_SIZE,
292                         .bv_offset = 0
293                 };
294                 struct iov_iter from;
295
296                 iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297                 init_sync_kiocb(&kiocb, swap_file);
298                 kiocb.ki_pos = page_file_offset(page);
299
300                 set_page_writeback(page);
301                 unlock_page(page);
302                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
303                 if (ret == PAGE_SIZE) {
304                         count_vm_event(PSWPOUT);
305                         ret = 0;
306                 } else {
307                         /*
308                          * In the case of swap-over-nfs, this can be a
309                          * temporary failure if the system has limited
310                          * memory for allocating transmit buffers.
311                          * Mark the page dirty and avoid
312                          * rotate_reclaimable_page but rate-limit the
313                          * messages but do not flag PageError like
314                          * the normal direct-to-bio case as it could
315                          * be temporary.
316                          */
317                         set_page_dirty(page);
318                         ClearPageReclaim(page);
319                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320                                            page_file_offset(page));
321                 }
322                 end_page_writeback(page);
323                 return ret;
324         }
325
326         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327         if (!ret) {
328                 count_swpout_vm_event(page);
329                 return 0;
330         }
331
332         ret = 0;
333         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334         if (bio == NULL) {
335                 set_page_dirty(page);
336                 unlock_page(page);
337                 ret = -ENOMEM;
338                 goto out;
339         }
340         bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341         bio_associate_blkg_from_page(bio, page);
342         count_swpout_vm_event(page);
343         set_page_writeback(page);
344         unlock_page(page);
345         submit_bio(bio);
346 out:
347         return ret;
348 }
349
350 int swap_readpage(struct page *page, bool synchronous)
351 {
352         struct bio *bio;
353         int ret = 0;
354         struct swap_info_struct *sis = page_swap_info(page);
355         blk_qc_t qc;
356         struct gendisk *disk;
357
358         VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359         VM_BUG_ON_PAGE(!PageLocked(page), page);
360         VM_BUG_ON_PAGE(PageUptodate(page), page);
361         if (frontswap_load(page) == 0) {
362                 SetPageUptodate(page);
363                 unlock_page(page);
364                 goto out;
365         }
366
367         if (sis->flags & SWP_FS) {
368                 struct file *swap_file = sis->swap_file;
369                 struct address_space *mapping = swap_file->f_mapping;
370
371                 ret = mapping->a_ops->readpage(swap_file, page);
372                 if (!ret)
373                         count_vm_event(PSWPIN);
374                 return ret;
375         }
376
377         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378         if (!ret) {
379                 if (trylock_page(page)) {
380                         swap_slot_free_notify(page);
381                         unlock_page(page);
382                 }
383
384                 count_vm_event(PSWPIN);
385                 return 0;
386         }
387
388         ret = 0;
389         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390         if (bio == NULL) {
391                 unlock_page(page);
392                 ret = -ENOMEM;
393                 goto out;
394         }
395         disk = bio->bi_disk;
396         /*
397          * Keep this task valid during swap readpage because the oom killer may
398          * attempt to access it in the page fault retry time check.
399          */
400         bio_set_op_attrs(bio, REQ_OP_READ, 0);
401         if (synchronous) {
402                 bio->bi_opf |= REQ_HIPRI;
403                 get_task_struct(current);
404                 bio->bi_private = current;
405         }
406         count_vm_event(PSWPIN);
407         bio_get(bio);
408         qc = submit_bio(bio);
409         while (synchronous) {
410                 set_current_state(TASK_UNINTERRUPTIBLE);
411                 if (!READ_ONCE(bio->bi_private))
412                         break;
413
414                 if (!blk_poll(disk->queue, qc, true))
415                         io_schedule();
416         }
417         __set_current_state(TASK_RUNNING);
418         bio_put(bio);
419
420 out:
421         return ret;
422 }
423
424 int swap_set_page_dirty(struct page *page)
425 {
426         struct swap_info_struct *sis = page_swap_info(page);
427
428         if (sis->flags & SWP_FS) {
429                 struct address_space *mapping = sis->swap_file->f_mapping;
430
431                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432                 return mapping->a_ops->set_page_dirty(page);
433         } else {
434                 return __set_page_dirty_no_writeback(page);
435         }
436 }