x86/mm/64: implement arch_sync_kernel_mappings()
[linux-2.6-microblaze.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE               max(HZ/5, 1)
49
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
55
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT    10
62
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 struct wb_domain global_wb_domain;
127
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131         struct wb_domain        *dom;
132         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
133 #endif
134         struct bdi_writeback    *wb;
135         struct fprop_local_percpu *wb_completions;
136
137         unsigned long           avail;          /* dirtyable */
138         unsigned long           dirty;          /* file_dirty + write + nfs */
139         unsigned long           thresh;         /* dirty threshold */
140         unsigned long           bg_thresh;      /* dirty background threshold */
141
142         unsigned long           wb_dirty;       /* per-wb counterparts */
143         unsigned long           wb_thresh;
144         unsigned long           wb_bg_thresh;
145
146         unsigned long           pos_ratio;
147 };
148
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 #ifdef CONFIG_CGROUP_WRITEBACK
157
158 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
159                                 .dom = &global_wb_domain,               \
160                                 .wb_completions = &(__wb)->completions
161
162 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
163
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
165                                 .dom = mem_cgroup_wb_domain(__wb),      \
166                                 .wb_completions = &(__wb)->memcg_completions, \
167                                 .gdtc = __gdtc
168
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171         return dtc->dom;
172 }
173
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176         return dtc->dom;
177 }
178
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181         return mdtc->gdtc;
182 }
183
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186         return &wb->memcg_completions;
187 }
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190                              unsigned long *minp, unsigned long *maxp)
191 {
192         unsigned long this_bw = wb->avg_write_bandwidth;
193         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194         unsigned long long min = wb->bdi->min_ratio;
195         unsigned long long max = wb->bdi->max_ratio;
196
197         /*
198          * @wb may already be clean by the time control reaches here and
199          * the total may not include its bw.
200          */
201         if (this_bw < tot_bw) {
202                 if (min) {
203                         min *= this_bw;
204                         min = div64_ul(min, tot_bw);
205                 }
206                 if (max < 100) {
207                         max *= this_bw;
208                         max = div64_ul(max, tot_bw);
209                 }
210         }
211
212         *minp = min;
213         *maxp = max;
214 }
215
216 #else   /* CONFIG_CGROUP_WRITEBACK */
217
218 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
219                                 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225         return false;
226 }
227
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230         return &global_wb_domain;
231 }
232
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235         return NULL;
236 }
237
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240         return NULL;
241 }
242
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244                              unsigned long *minp, unsigned long *maxp)
245 {
246         *minp = wb->bdi->min_ratio;
247         *maxp = wb->bdi->max_ratio;
248 }
249
250 #endif  /* CONFIG_CGROUP_WRITEBACK */
251
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effictive number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Return: the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279         unsigned long nr_pages = 0;
280         int z;
281
282         for (z = 0; z < MAX_NR_ZONES; z++) {
283                 struct zone *zone = pgdat->node_zones + z;
284
285                 if (!populated_zone(zone))
286                         continue;
287
288                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289         }
290
291         /*
292          * Pages reserved for the kernel should not be considered
293          * dirtyable, to prevent a situation where reclaim has to
294          * clean pages in order to balance the zones.
295          */
296         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301         return nr_pages;
302 }
303
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307         int node;
308         unsigned long x = 0;
309         int i;
310
311         for_each_node_state(node, N_HIGH_MEMORY) {
312                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313                         struct zone *z;
314                         unsigned long nr_pages;
315
316                         if (!is_highmem_idx(i))
317                                 continue;
318
319                         z = &NODE_DATA(node)->node_zones[i];
320                         if (!populated_zone(z))
321                                 continue;
322
323                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
324                         /* watch for underflows */
325                         nr_pages -= min(nr_pages, high_wmark_pages(z));
326                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328                         x += nr_pages;
329                 }
330         }
331
332         /*
333          * Unreclaimable memory (kernel memory or anonymous memory
334          * without swap) can bring down the dirtyable pages below
335          * the zone's dirty balance reserve and the above calculation
336          * will underflow.  However we still want to add in nodes
337          * which are below threshold (negative values) to get a more
338          * accurate calculation but make sure that the total never
339          * underflows.
340          */
341         if ((long)x < 0)
342                 x = 0;
343
344         /*
345          * Make sure that the number of highmem pages is never larger
346          * than the number of the total dirtyable memory. This can only
347          * occur in very strange VM situations but we want to make sure
348          * that this does not occur.
349          */
350         return min(x, total);
351 #else
352         return 0;
353 #endif
354 }
355
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Return: the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364         unsigned long x;
365
366         x = global_zone_page_state(NR_FREE_PAGES);
367         /*
368          * Pages reserved for the kernel should not be considered
369          * dirtyable, to prevent a situation where reclaim has to
370          * clean pages in order to balance the zones.
371          */
372         x -= min(x, totalreserve_pages);
373
374         x += global_node_page_state(NR_INACTIVE_FILE);
375         x += global_node_page_state(NR_ACTIVE_FILE);
376
377         if (!vm_highmem_is_dirtyable)
378                 x -= highmem_dirtyable_memory(x);
379
380         return x + 1;   /* Ensure that we never return 0 */
381 }
382
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for real-time tasks.
391  */
392 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
393 {
394         const unsigned long available_memory = dtc->avail;
395         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
396         unsigned long bytes = vm_dirty_bytes;
397         unsigned long bg_bytes = dirty_background_bytes;
398         /* convert ratios to per-PAGE_SIZE for higher precision */
399         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
400         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401         unsigned long thresh;
402         unsigned long bg_thresh;
403         struct task_struct *tsk;
404
405         /* gdtc is !NULL iff @dtc is for memcg domain */
406         if (gdtc) {
407                 unsigned long global_avail = gdtc->avail;
408
409                 /*
410                  * The byte settings can't be applied directly to memcg
411                  * domains.  Convert them to ratios by scaling against
412                  * globally available memory.  As the ratios are in
413                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
414                  * number of pages.
415                  */
416                 if (bytes)
417                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
418                                     PAGE_SIZE);
419                 if (bg_bytes)
420                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
421                                        PAGE_SIZE);
422                 bytes = bg_bytes = 0;
423         }
424
425         if (bytes)
426                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427         else
428                 thresh = (ratio * available_memory) / PAGE_SIZE;
429
430         if (bg_bytes)
431                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432         else
433                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
434
435         if (bg_thresh >= thresh)
436                 bg_thresh = thresh / 2;
437         tsk = current;
438         if (rt_task(tsk)) {
439                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
440                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
441         }
442         dtc->thresh = thresh;
443         dtc->bg_thresh = bg_thresh;
444
445         /* we should eventually report the domain in the TP */
446         if (!gdtc)
447                 trace_global_dirty_state(bg_thresh, thresh);
448 }
449
450 /**
451  * global_dirty_limits - background-writeback and dirty-throttling thresholds
452  * @pbackground: out parameter for bg_thresh
453  * @pdirty: out parameter for thresh
454  *
455  * Calculate bg_thresh and thresh for global_wb_domain.  See
456  * domain_dirty_limits() for details.
457  */
458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
459 {
460         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
461
462         gdtc.avail = global_dirtyable_memory();
463         domain_dirty_limits(&gdtc);
464
465         *pbackground = gdtc.bg_thresh;
466         *pdirty = gdtc.thresh;
467 }
468
469 /**
470  * node_dirty_limit - maximum number of dirty pages allowed in a node
471  * @pgdat: the node
472  *
473  * Return: the maximum number of dirty pages allowed in a node, based
474  * on the node's dirtyable memory.
475  */
476 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
477 {
478         unsigned long node_memory = node_dirtyable_memory(pgdat);
479         struct task_struct *tsk = current;
480         unsigned long dirty;
481
482         if (vm_dirty_bytes)
483                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484                         node_memory / global_dirtyable_memory();
485         else
486                 dirty = vm_dirty_ratio * node_memory / 100;
487
488         if (rt_task(tsk))
489                 dirty += dirty / 4;
490
491         return dirty;
492 }
493
494 /**
495  * node_dirty_ok - tells whether a node is within its dirty limits
496  * @pgdat: the node to check
497  *
498  * Return: %true when the dirty pages in @pgdat are within the node's
499  * dirty limit, %false if the limit is exceeded.
500  */
501 bool node_dirty_ok(struct pglist_data *pgdat)
502 {
503         unsigned long limit = node_dirty_limit(pgdat);
504         unsigned long nr_pages = 0;
505
506         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
507         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
508
509         return nr_pages <= limit;
510 }
511
512 int dirty_background_ratio_handler(struct ctl_table *table, int write,
513                 void __user *buffer, size_t *lenp,
514                 loff_t *ppos)
515 {
516         int ret;
517
518         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
519         if (ret == 0 && write)
520                 dirty_background_bytes = 0;
521         return ret;
522 }
523
524 int dirty_background_bytes_handler(struct ctl_table *table, int write,
525                 void __user *buffer, size_t *lenp,
526                 loff_t *ppos)
527 {
528         int ret;
529
530         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
531         if (ret == 0 && write)
532                 dirty_background_ratio = 0;
533         return ret;
534 }
535
536 int dirty_ratio_handler(struct ctl_table *table, int write,
537                 void __user *buffer, size_t *lenp,
538                 loff_t *ppos)
539 {
540         int old_ratio = vm_dirty_ratio;
541         int ret;
542
543         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
544         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
545                 writeback_set_ratelimit();
546                 vm_dirty_bytes = 0;
547         }
548         return ret;
549 }
550
551 int dirty_bytes_handler(struct ctl_table *table, int write,
552                 void __user *buffer, size_t *lenp,
553                 loff_t *ppos)
554 {
555         unsigned long old_bytes = vm_dirty_bytes;
556         int ret;
557
558         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
559         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
560                 writeback_set_ratelimit();
561                 vm_dirty_ratio = 0;
562         }
563         return ret;
564 }
565
566 static unsigned long wp_next_time(unsigned long cur_time)
567 {
568         cur_time += VM_COMPLETIONS_PERIOD_LEN;
569         /* 0 has a special meaning... */
570         if (!cur_time)
571                 return 1;
572         return cur_time;
573 }
574
575 static void wb_domain_writeout_inc(struct wb_domain *dom,
576                                    struct fprop_local_percpu *completions,
577                                    unsigned int max_prop_frac)
578 {
579         __fprop_inc_percpu_max(&dom->completions, completions,
580                                max_prop_frac);
581         /* First event after period switching was turned off? */
582         if (unlikely(!dom->period_time)) {
583                 /*
584                  * We can race with other __bdi_writeout_inc calls here but
585                  * it does not cause any harm since the resulting time when
586                  * timer will fire and what is in writeout_period_time will be
587                  * roughly the same.
588                  */
589                 dom->period_time = wp_next_time(jiffies);
590                 mod_timer(&dom->period_timer, dom->period_time);
591         }
592 }
593
594 /*
595  * Increment @wb's writeout completion count and the global writeout
596  * completion count. Called from test_clear_page_writeback().
597  */
598 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
599 {
600         struct wb_domain *cgdom;
601
602         inc_wb_stat(wb, WB_WRITTEN);
603         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
604                                wb->bdi->max_prop_frac);
605
606         cgdom = mem_cgroup_wb_domain(wb);
607         if (cgdom)
608                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
609                                        wb->bdi->max_prop_frac);
610 }
611
612 void wb_writeout_inc(struct bdi_writeback *wb)
613 {
614         unsigned long flags;
615
616         local_irq_save(flags);
617         __wb_writeout_inc(wb);
618         local_irq_restore(flags);
619 }
620 EXPORT_SYMBOL_GPL(wb_writeout_inc);
621
622 /*
623  * On idle system, we can be called long after we scheduled because we use
624  * deferred timers so count with missed periods.
625  */
626 static void writeout_period(struct timer_list *t)
627 {
628         struct wb_domain *dom = from_timer(dom, t, period_timer);
629         int miss_periods = (jiffies - dom->period_time) /
630                                                  VM_COMPLETIONS_PERIOD_LEN;
631
632         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
633                 dom->period_time = wp_next_time(dom->period_time +
634                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
635                 mod_timer(&dom->period_timer, dom->period_time);
636         } else {
637                 /*
638                  * Aging has zeroed all fractions. Stop wasting CPU on period
639                  * updates.
640                  */
641                 dom->period_time = 0;
642         }
643 }
644
645 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
646 {
647         memset(dom, 0, sizeof(*dom));
648
649         spin_lock_init(&dom->lock);
650
651         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
652
653         dom->dirty_limit_tstamp = jiffies;
654
655         return fprop_global_init(&dom->completions, gfp);
656 }
657
658 #ifdef CONFIG_CGROUP_WRITEBACK
659 void wb_domain_exit(struct wb_domain *dom)
660 {
661         del_timer_sync(&dom->period_timer);
662         fprop_global_destroy(&dom->completions);
663 }
664 #endif
665
666 /*
667  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
668  * registered backing devices, which, for obvious reasons, can not
669  * exceed 100%.
670  */
671 static unsigned int bdi_min_ratio;
672
673 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
674 {
675         int ret = 0;
676
677         spin_lock_bh(&bdi_lock);
678         if (min_ratio > bdi->max_ratio) {
679                 ret = -EINVAL;
680         } else {
681                 min_ratio -= bdi->min_ratio;
682                 if (bdi_min_ratio + min_ratio < 100) {
683                         bdi_min_ratio += min_ratio;
684                         bdi->min_ratio += min_ratio;
685                 } else {
686                         ret = -EINVAL;
687                 }
688         }
689         spin_unlock_bh(&bdi_lock);
690
691         return ret;
692 }
693
694 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
695 {
696         int ret = 0;
697
698         if (max_ratio > 100)
699                 return -EINVAL;
700
701         spin_lock_bh(&bdi_lock);
702         if (bdi->min_ratio > max_ratio) {
703                 ret = -EINVAL;
704         } else {
705                 bdi->max_ratio = max_ratio;
706                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
707         }
708         spin_unlock_bh(&bdi_lock);
709
710         return ret;
711 }
712 EXPORT_SYMBOL(bdi_set_max_ratio);
713
714 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
715                                            unsigned long bg_thresh)
716 {
717         return (thresh + bg_thresh) / 2;
718 }
719
720 static unsigned long hard_dirty_limit(struct wb_domain *dom,
721                                       unsigned long thresh)
722 {
723         return max(thresh, dom->dirty_limit);
724 }
725
726 /*
727  * Memory which can be further allocated to a memcg domain is capped by
728  * system-wide clean memory excluding the amount being used in the domain.
729  */
730 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
731                             unsigned long filepages, unsigned long headroom)
732 {
733         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
734         unsigned long clean = filepages - min(filepages, mdtc->dirty);
735         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
736         unsigned long other_clean = global_clean - min(global_clean, clean);
737
738         mdtc->avail = filepages + min(headroom, other_clean);
739 }
740
741 /**
742  * __wb_calc_thresh - @wb's share of dirty throttling threshold
743  * @dtc: dirty_throttle_context of interest
744  *
745  * Note that balance_dirty_pages() will only seriously take it as a hard limit
746  * when sleeping max_pause per page is not enough to keep the dirty pages under
747  * control. For example, when the device is completely stalled due to some error
748  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
749  * In the other normal situations, it acts more gently by throttling the tasks
750  * more (rather than completely block them) when the wb dirty pages go high.
751  *
752  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
753  * - starving fast devices
754  * - piling up dirty pages (that will take long time to sync) on slow devices
755  *
756  * The wb's share of dirty limit will be adapting to its throughput and
757  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
758  *
759  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
760  * dirty balancing includes all PG_dirty and PG_writeback pages.
761  */
762 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
763 {
764         struct wb_domain *dom = dtc_dom(dtc);
765         unsigned long thresh = dtc->thresh;
766         u64 wb_thresh;
767         unsigned long numerator, denominator;
768         unsigned long wb_min_ratio, wb_max_ratio;
769
770         /*
771          * Calculate this BDI's share of the thresh ratio.
772          */
773         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
774                               &numerator, &denominator);
775
776         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
777         wb_thresh *= numerator;
778         wb_thresh = div64_ul(wb_thresh, denominator);
779
780         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
781
782         wb_thresh += (thresh * wb_min_ratio) / 100;
783         if (wb_thresh > (thresh * wb_max_ratio) / 100)
784                 wb_thresh = thresh * wb_max_ratio / 100;
785
786         return wb_thresh;
787 }
788
789 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
790 {
791         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
792                                                .thresh = thresh };
793         return __wb_calc_thresh(&gdtc);
794 }
795
796 /*
797  *                           setpoint - dirty 3
798  *        f(dirty) := 1.0 + (----------------)
799  *                           limit - setpoint
800  *
801  * it's a 3rd order polynomial that subjects to
802  *
803  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
804  * (2) f(setpoint) = 1.0 => the balance point
805  * (3) f(limit)    = 0   => the hard limit
806  * (4) df/dx      <= 0   => negative feedback control
807  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
808  *     => fast response on large errors; small oscillation near setpoint
809  */
810 static long long pos_ratio_polynom(unsigned long setpoint,
811                                           unsigned long dirty,
812                                           unsigned long limit)
813 {
814         long long pos_ratio;
815         long x;
816
817         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
818                       (limit - setpoint) | 1);
819         pos_ratio = x;
820         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
821         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
822         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
823
824         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
825 }
826
827 /*
828  * Dirty position control.
829  *
830  * (o) global/bdi setpoints
831  *
832  * We want the dirty pages be balanced around the global/wb setpoints.
833  * When the number of dirty pages is higher/lower than the setpoint, the
834  * dirty position control ratio (and hence task dirty ratelimit) will be
835  * decreased/increased to bring the dirty pages back to the setpoint.
836  *
837  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
838  *
839  *     if (dirty < setpoint) scale up   pos_ratio
840  *     if (dirty > setpoint) scale down pos_ratio
841  *
842  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
843  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
844  *
845  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
846  *
847  * (o) global control line
848  *
849  *     ^ pos_ratio
850  *     |
851  *     |            |<===== global dirty control scope ======>|
852  * 2.0 .............*
853  *     |            .*
854  *     |            . *
855  *     |            .   *
856  *     |            .     *
857  *     |            .        *
858  *     |            .            *
859  * 1.0 ................................*
860  *     |            .                  .     *
861  *     |            .                  .          *
862  *     |            .                  .              *
863  *     |            .                  .                 *
864  *     |            .                  .                    *
865  *   0 +------------.------------------.----------------------*------------->
866  *           freerun^          setpoint^                 limit^   dirty pages
867  *
868  * (o) wb control line
869  *
870  *     ^ pos_ratio
871  *     |
872  *     |            *
873  *     |              *
874  *     |                *
875  *     |                  *
876  *     |                    * |<=========== span ============>|
877  * 1.0 .......................*
878  *     |                      . *
879  *     |                      .   *
880  *     |                      .     *
881  *     |                      .       *
882  *     |                      .         *
883  *     |                      .           *
884  *     |                      .             *
885  *     |                      .               *
886  *     |                      .                 *
887  *     |                      .                   *
888  *     |                      .                     *
889  * 1/4 ...............................................* * * * * * * * * * * *
890  *     |                      .                         .
891  *     |                      .                           .
892  *     |                      .                             .
893  *   0 +----------------------.-------------------------------.------------->
894  *                wb_setpoint^                    x_intercept^
895  *
896  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
897  * be smoothly throttled down to normal if it starts high in situations like
898  * - start writing to a slow SD card and a fast disk at the same time. The SD
899  *   card's wb_dirty may rush to many times higher than wb_setpoint.
900  * - the wb dirty thresh drops quickly due to change of JBOD workload
901  */
902 static void wb_position_ratio(struct dirty_throttle_control *dtc)
903 {
904         struct bdi_writeback *wb = dtc->wb;
905         unsigned long write_bw = wb->avg_write_bandwidth;
906         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
907         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
908         unsigned long wb_thresh = dtc->wb_thresh;
909         unsigned long x_intercept;
910         unsigned long setpoint;         /* dirty pages' target balance point */
911         unsigned long wb_setpoint;
912         unsigned long span;
913         long long pos_ratio;            /* for scaling up/down the rate limit */
914         long x;
915
916         dtc->pos_ratio = 0;
917
918         if (unlikely(dtc->dirty >= limit))
919                 return;
920
921         /*
922          * global setpoint
923          *
924          * See comment for pos_ratio_polynom().
925          */
926         setpoint = (freerun + limit) / 2;
927         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
928
929         /*
930          * The strictlimit feature is a tool preventing mistrusted filesystems
931          * from growing a large number of dirty pages before throttling. For
932          * such filesystems balance_dirty_pages always checks wb counters
933          * against wb limits. Even if global "nr_dirty" is under "freerun".
934          * This is especially important for fuse which sets bdi->max_ratio to
935          * 1% by default. Without strictlimit feature, fuse writeback may
936          * consume arbitrary amount of RAM because it is accounted in
937          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
938          *
939          * Here, in wb_position_ratio(), we calculate pos_ratio based on
940          * two values: wb_dirty and wb_thresh. Let's consider an example:
941          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
942          * limits are set by default to 10% and 20% (background and throttle).
943          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
944          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
945          * about ~6K pages (as the average of background and throttle wb
946          * limits). The 3rd order polynomial will provide positive feedback if
947          * wb_dirty is under wb_setpoint and vice versa.
948          *
949          * Note, that we cannot use global counters in these calculations
950          * because we want to throttle process writing to a strictlimit wb
951          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
952          * in the example above).
953          */
954         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
955                 long long wb_pos_ratio;
956
957                 if (dtc->wb_dirty < 8) {
958                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
959                                            2 << RATELIMIT_CALC_SHIFT);
960                         return;
961                 }
962
963                 if (dtc->wb_dirty >= wb_thresh)
964                         return;
965
966                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
967                                                     dtc->wb_bg_thresh);
968
969                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
970                         return;
971
972                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
973                                                  wb_thresh);
974
975                 /*
976                  * Typically, for strictlimit case, wb_setpoint << setpoint
977                  * and pos_ratio >> wb_pos_ratio. In the other words global
978                  * state ("dirty") is not limiting factor and we have to
979                  * make decision based on wb counters. But there is an
980                  * important case when global pos_ratio should get precedence:
981                  * global limits are exceeded (e.g. due to activities on other
982                  * wb's) while given strictlimit wb is below limit.
983                  *
984                  * "pos_ratio * wb_pos_ratio" would work for the case above,
985                  * but it would look too non-natural for the case of all
986                  * activity in the system coming from a single strictlimit wb
987                  * with bdi->max_ratio == 100%.
988                  *
989                  * Note that min() below somewhat changes the dynamics of the
990                  * control system. Normally, pos_ratio value can be well over 3
991                  * (when globally we are at freerun and wb is well below wb
992                  * setpoint). Now the maximum pos_ratio in the same situation
993                  * is 2. We might want to tweak this if we observe the control
994                  * system is too slow to adapt.
995                  */
996                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
997                 return;
998         }
999
1000         /*
1001          * We have computed basic pos_ratio above based on global situation. If
1002          * the wb is over/under its share of dirty pages, we want to scale
1003          * pos_ratio further down/up. That is done by the following mechanism.
1004          */
1005
1006         /*
1007          * wb setpoint
1008          *
1009          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1010          *
1011          *                        x_intercept - wb_dirty
1012          *                     := --------------------------
1013          *                        x_intercept - wb_setpoint
1014          *
1015          * The main wb control line is a linear function that subjects to
1016          *
1017          * (1) f(wb_setpoint) = 1.0
1018          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1019          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1020          *
1021          * For single wb case, the dirty pages are observed to fluctuate
1022          * regularly within range
1023          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1024          * for various filesystems, where (2) can yield in a reasonable 12.5%
1025          * fluctuation range for pos_ratio.
1026          *
1027          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1028          * own size, so move the slope over accordingly and choose a slope that
1029          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1030          */
1031         if (unlikely(wb_thresh > dtc->thresh))
1032                 wb_thresh = dtc->thresh;
1033         /*
1034          * It's very possible that wb_thresh is close to 0 not because the
1035          * device is slow, but that it has remained inactive for long time.
1036          * Honour such devices a reasonable good (hopefully IO efficient)
1037          * threshold, so that the occasional writes won't be blocked and active
1038          * writes can rampup the threshold quickly.
1039          */
1040         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1041         /*
1042          * scale global setpoint to wb's:
1043          *      wb_setpoint = setpoint * wb_thresh / thresh
1044          */
1045         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1046         wb_setpoint = setpoint * (u64)x >> 16;
1047         /*
1048          * Use span=(8*write_bw) in single wb case as indicated by
1049          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1050          *
1051          *        wb_thresh                    thresh - wb_thresh
1052          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1053          *         thresh                           thresh
1054          */
1055         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1056         x_intercept = wb_setpoint + span;
1057
1058         if (dtc->wb_dirty < x_intercept - span / 4) {
1059                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1060                                       (x_intercept - wb_setpoint) | 1);
1061         } else
1062                 pos_ratio /= 4;
1063
1064         /*
1065          * wb reserve area, safeguard against dirty pool underrun and disk idle
1066          * It may push the desired control point of global dirty pages higher
1067          * than setpoint.
1068          */
1069         x_intercept = wb_thresh / 2;
1070         if (dtc->wb_dirty < x_intercept) {
1071                 if (dtc->wb_dirty > x_intercept / 8)
1072                         pos_ratio = div_u64(pos_ratio * x_intercept,
1073                                             dtc->wb_dirty);
1074                 else
1075                         pos_ratio *= 8;
1076         }
1077
1078         dtc->pos_ratio = pos_ratio;
1079 }
1080
1081 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1082                                       unsigned long elapsed,
1083                                       unsigned long written)
1084 {
1085         const unsigned long period = roundup_pow_of_two(3 * HZ);
1086         unsigned long avg = wb->avg_write_bandwidth;
1087         unsigned long old = wb->write_bandwidth;
1088         u64 bw;
1089
1090         /*
1091          * bw = written * HZ / elapsed
1092          *
1093          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1094          * write_bandwidth = ---------------------------------------------------
1095          *                                          period
1096          *
1097          * @written may have decreased due to account_page_redirty().
1098          * Avoid underflowing @bw calculation.
1099          */
1100         bw = written - min(written, wb->written_stamp);
1101         bw *= HZ;
1102         if (unlikely(elapsed > period)) {
1103                 bw = div64_ul(bw, elapsed);
1104                 avg = bw;
1105                 goto out;
1106         }
1107         bw += (u64)wb->write_bandwidth * (period - elapsed);
1108         bw >>= ilog2(period);
1109
1110         /*
1111          * one more level of smoothing, for filtering out sudden spikes
1112          */
1113         if (avg > old && old >= (unsigned long)bw)
1114                 avg -= (avg - old) >> 3;
1115
1116         if (avg < old && old <= (unsigned long)bw)
1117                 avg += (old - avg) >> 3;
1118
1119 out:
1120         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1121         avg = max(avg, 1LU);
1122         if (wb_has_dirty_io(wb)) {
1123                 long delta = avg - wb->avg_write_bandwidth;
1124                 WARN_ON_ONCE(atomic_long_add_return(delta,
1125                                         &wb->bdi->tot_write_bandwidth) <= 0);
1126         }
1127         wb->write_bandwidth = bw;
1128         wb->avg_write_bandwidth = avg;
1129 }
1130
1131 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1132 {
1133         struct wb_domain *dom = dtc_dom(dtc);
1134         unsigned long thresh = dtc->thresh;
1135         unsigned long limit = dom->dirty_limit;
1136
1137         /*
1138          * Follow up in one step.
1139          */
1140         if (limit < thresh) {
1141                 limit = thresh;
1142                 goto update;
1143         }
1144
1145         /*
1146          * Follow down slowly. Use the higher one as the target, because thresh
1147          * may drop below dirty. This is exactly the reason to introduce
1148          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1149          */
1150         thresh = max(thresh, dtc->dirty);
1151         if (limit > thresh) {
1152                 limit -= (limit - thresh) >> 5;
1153                 goto update;
1154         }
1155         return;
1156 update:
1157         dom->dirty_limit = limit;
1158 }
1159
1160 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1161                                     unsigned long now)
1162 {
1163         struct wb_domain *dom = dtc_dom(dtc);
1164
1165         /*
1166          * check locklessly first to optimize away locking for the most time
1167          */
1168         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1169                 return;
1170
1171         spin_lock(&dom->lock);
1172         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1173                 update_dirty_limit(dtc);
1174                 dom->dirty_limit_tstamp = now;
1175         }
1176         spin_unlock(&dom->lock);
1177 }
1178
1179 /*
1180  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1181  *
1182  * Normal wb tasks will be curbed at or below it in long term.
1183  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1184  */
1185 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1186                                       unsigned long dirtied,
1187                                       unsigned long elapsed)
1188 {
1189         struct bdi_writeback *wb = dtc->wb;
1190         unsigned long dirty = dtc->dirty;
1191         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1192         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1193         unsigned long setpoint = (freerun + limit) / 2;
1194         unsigned long write_bw = wb->avg_write_bandwidth;
1195         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1196         unsigned long dirty_rate;
1197         unsigned long task_ratelimit;
1198         unsigned long balanced_dirty_ratelimit;
1199         unsigned long step;
1200         unsigned long x;
1201         unsigned long shift;
1202
1203         /*
1204          * The dirty rate will match the writeout rate in long term, except
1205          * when dirty pages are truncated by userspace or re-dirtied by FS.
1206          */
1207         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1208
1209         /*
1210          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1211          */
1212         task_ratelimit = (u64)dirty_ratelimit *
1213                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1214         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1215
1216         /*
1217          * A linear estimation of the "balanced" throttle rate. The theory is,
1218          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1219          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1220          * formula will yield the balanced rate limit (write_bw / N).
1221          *
1222          * Note that the expanded form is not a pure rate feedback:
1223          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1224          * but also takes pos_ratio into account:
1225          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1226          *
1227          * (1) is not realistic because pos_ratio also takes part in balancing
1228          * the dirty rate.  Consider the state
1229          *      pos_ratio = 0.5                                              (3)
1230          *      rate = 2 * (write_bw / N)                                    (4)
1231          * If (1) is used, it will stuck in that state! Because each dd will
1232          * be throttled at
1233          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1234          * yielding
1235          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1236          * put (6) into (1) we get
1237          *      rate_(i+1) = rate_(i)                                        (7)
1238          *
1239          * So we end up using (2) to always keep
1240          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1241          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1242          * pos_ratio is able to drive itself to 1.0, which is not only where
1243          * the dirty count meet the setpoint, but also where the slope of
1244          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1245          */
1246         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1247                                            dirty_rate | 1);
1248         /*
1249          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1250          */
1251         if (unlikely(balanced_dirty_ratelimit > write_bw))
1252                 balanced_dirty_ratelimit = write_bw;
1253
1254         /*
1255          * We could safely do this and return immediately:
1256          *
1257          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1258          *
1259          * However to get a more stable dirty_ratelimit, the below elaborated
1260          * code makes use of task_ratelimit to filter out singular points and
1261          * limit the step size.
1262          *
1263          * The below code essentially only uses the relative value of
1264          *
1265          *      task_ratelimit - dirty_ratelimit
1266          *      = (pos_ratio - 1) * dirty_ratelimit
1267          *
1268          * which reflects the direction and size of dirty position error.
1269          */
1270
1271         /*
1272          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1273          * task_ratelimit is on the same side of dirty_ratelimit, too.
1274          * For example, when
1275          * - dirty_ratelimit > balanced_dirty_ratelimit
1276          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1277          * lowering dirty_ratelimit will help meet both the position and rate
1278          * control targets. Otherwise, don't update dirty_ratelimit if it will
1279          * only help meet the rate target. After all, what the users ultimately
1280          * feel and care are stable dirty rate and small position error.
1281          *
1282          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1283          * and filter out the singular points of balanced_dirty_ratelimit. Which
1284          * keeps jumping around randomly and can even leap far away at times
1285          * due to the small 200ms estimation period of dirty_rate (we want to
1286          * keep that period small to reduce time lags).
1287          */
1288         step = 0;
1289
1290         /*
1291          * For strictlimit case, calculations above were based on wb counters
1292          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1293          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1294          * Hence, to calculate "step" properly, we have to use wb_dirty as
1295          * "dirty" and wb_setpoint as "setpoint".
1296          *
1297          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1298          * it's possible that wb_thresh is close to zero due to inactivity
1299          * of backing device.
1300          */
1301         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1302                 dirty = dtc->wb_dirty;
1303                 if (dtc->wb_dirty < 8)
1304                         setpoint = dtc->wb_dirty + 1;
1305                 else
1306                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1307         }
1308
1309         if (dirty < setpoint) {
1310                 x = min3(wb->balanced_dirty_ratelimit,
1311                          balanced_dirty_ratelimit, task_ratelimit);
1312                 if (dirty_ratelimit < x)
1313                         step = x - dirty_ratelimit;
1314         } else {
1315                 x = max3(wb->balanced_dirty_ratelimit,
1316                          balanced_dirty_ratelimit, task_ratelimit);
1317                 if (dirty_ratelimit > x)
1318                         step = dirty_ratelimit - x;
1319         }
1320
1321         /*
1322          * Don't pursue 100% rate matching. It's impossible since the balanced
1323          * rate itself is constantly fluctuating. So decrease the track speed
1324          * when it gets close to the target. Helps eliminate pointless tremors.
1325          */
1326         shift = dirty_ratelimit / (2 * step + 1);
1327         if (shift < BITS_PER_LONG)
1328                 step = DIV_ROUND_UP(step >> shift, 8);
1329         else
1330                 step = 0;
1331
1332         if (dirty_ratelimit < balanced_dirty_ratelimit)
1333                 dirty_ratelimit += step;
1334         else
1335                 dirty_ratelimit -= step;
1336
1337         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1338         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1339
1340         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1341 }
1342
1343 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1344                                   struct dirty_throttle_control *mdtc,
1345                                   unsigned long start_time,
1346                                   bool update_ratelimit)
1347 {
1348         struct bdi_writeback *wb = gdtc->wb;
1349         unsigned long now = jiffies;
1350         unsigned long elapsed = now - wb->bw_time_stamp;
1351         unsigned long dirtied;
1352         unsigned long written;
1353
1354         lockdep_assert_held(&wb->list_lock);
1355
1356         /*
1357          * rate-limit, only update once every 200ms.
1358          */
1359         if (elapsed < BANDWIDTH_INTERVAL)
1360                 return;
1361
1362         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1363         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1364
1365         /*
1366          * Skip quiet periods when disk bandwidth is under-utilized.
1367          * (at least 1s idle time between two flusher runs)
1368          */
1369         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1370                 goto snapshot;
1371
1372         if (update_ratelimit) {
1373                 domain_update_bandwidth(gdtc, now);
1374                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1375
1376                 /*
1377                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1378                  * compiler has no way to figure that out.  Help it.
1379                  */
1380                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1381                         domain_update_bandwidth(mdtc, now);
1382                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1383                 }
1384         }
1385         wb_update_write_bandwidth(wb, elapsed, written);
1386
1387 snapshot:
1388         wb->dirtied_stamp = dirtied;
1389         wb->written_stamp = written;
1390         wb->bw_time_stamp = now;
1391 }
1392
1393 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1394 {
1395         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1396
1397         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1398 }
1399
1400 /*
1401  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1402  * will look to see if it needs to start dirty throttling.
1403  *
1404  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1405  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1406  * (the number of pages we may dirty without exceeding the dirty limits).
1407  */
1408 static unsigned long dirty_poll_interval(unsigned long dirty,
1409                                          unsigned long thresh)
1410 {
1411         if (thresh > dirty)
1412                 return 1UL << (ilog2(thresh - dirty) >> 1);
1413
1414         return 1;
1415 }
1416
1417 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1418                                   unsigned long wb_dirty)
1419 {
1420         unsigned long bw = wb->avg_write_bandwidth;
1421         unsigned long t;
1422
1423         /*
1424          * Limit pause time for small memory systems. If sleeping for too long
1425          * time, a small pool of dirty/writeback pages may go empty and disk go
1426          * idle.
1427          *
1428          * 8 serves as the safety ratio.
1429          */
1430         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1431         t++;
1432
1433         return min_t(unsigned long, t, MAX_PAUSE);
1434 }
1435
1436 static long wb_min_pause(struct bdi_writeback *wb,
1437                          long max_pause,
1438                          unsigned long task_ratelimit,
1439                          unsigned long dirty_ratelimit,
1440                          int *nr_dirtied_pause)
1441 {
1442         long hi = ilog2(wb->avg_write_bandwidth);
1443         long lo = ilog2(wb->dirty_ratelimit);
1444         long t;         /* target pause */
1445         long pause;     /* estimated next pause */
1446         int pages;      /* target nr_dirtied_pause */
1447
1448         /* target for 10ms pause on 1-dd case */
1449         t = max(1, HZ / 100);
1450
1451         /*
1452          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1453          * overheads.
1454          *
1455          * (N * 10ms) on 2^N concurrent tasks.
1456          */
1457         if (hi > lo)
1458                 t += (hi - lo) * (10 * HZ) / 1024;
1459
1460         /*
1461          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1462          * on the much more stable dirty_ratelimit. However the next pause time
1463          * will be computed based on task_ratelimit and the two rate limits may
1464          * depart considerably at some time. Especially if task_ratelimit goes
1465          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1466          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1467          * result task_ratelimit won't be executed faithfully, which could
1468          * eventually bring down dirty_ratelimit.
1469          *
1470          * We apply two rules to fix it up:
1471          * 1) try to estimate the next pause time and if necessary, use a lower
1472          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1473          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1474          * 2) limit the target pause time to max_pause/2, so that the normal
1475          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1476          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1477          */
1478         t = min(t, 1 + max_pause / 2);
1479         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1480
1481         /*
1482          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1483          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1484          * When the 16 consecutive reads are often interrupted by some dirty
1485          * throttling pause during the async writes, cfq will go into idles
1486          * (deadline is fine). So push nr_dirtied_pause as high as possible
1487          * until reaches DIRTY_POLL_THRESH=32 pages.
1488          */
1489         if (pages < DIRTY_POLL_THRESH) {
1490                 t = max_pause;
1491                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1492                 if (pages > DIRTY_POLL_THRESH) {
1493                         pages = DIRTY_POLL_THRESH;
1494                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1495                 }
1496         }
1497
1498         pause = HZ * pages / (task_ratelimit + 1);
1499         if (pause > max_pause) {
1500                 t = max_pause;
1501                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1502         }
1503
1504         *nr_dirtied_pause = pages;
1505         /*
1506          * The minimal pause time will normally be half the target pause time.
1507          */
1508         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1509 }
1510
1511 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1512 {
1513         struct bdi_writeback *wb = dtc->wb;
1514         unsigned long wb_reclaimable;
1515
1516         /*
1517          * wb_thresh is not treated as some limiting factor as
1518          * dirty_thresh, due to reasons
1519          * - in JBOD setup, wb_thresh can fluctuate a lot
1520          * - in a system with HDD and USB key, the USB key may somehow
1521          *   go into state (wb_dirty >> wb_thresh) either because
1522          *   wb_dirty starts high, or because wb_thresh drops low.
1523          *   In this case we don't want to hard throttle the USB key
1524          *   dirtiers for 100 seconds until wb_dirty drops under
1525          *   wb_thresh. Instead the auxiliary wb control line in
1526          *   wb_position_ratio() will let the dirtier task progress
1527          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1528          */
1529         dtc->wb_thresh = __wb_calc_thresh(dtc);
1530         dtc->wb_bg_thresh = dtc->thresh ?
1531                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1532
1533         /*
1534          * In order to avoid the stacked BDI deadlock we need
1535          * to ensure we accurately count the 'dirty' pages when
1536          * the threshold is low.
1537          *
1538          * Otherwise it would be possible to get thresh+n pages
1539          * reported dirty, even though there are thresh-m pages
1540          * actually dirty; with m+n sitting in the percpu
1541          * deltas.
1542          */
1543         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1544                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1545                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1546         } else {
1547                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1548                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1549         }
1550 }
1551
1552 /*
1553  * balance_dirty_pages() must be called by processes which are generating dirty
1554  * data.  It looks at the number of dirty pages in the machine and will force
1555  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1556  * If we're over `background_thresh' then the writeback threads are woken to
1557  * perform some writeout.
1558  */
1559 static void balance_dirty_pages(struct bdi_writeback *wb,
1560                                 unsigned long pages_dirtied)
1561 {
1562         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1563         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1564         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1565         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1566                                                      &mdtc_stor : NULL;
1567         struct dirty_throttle_control *sdtc;
1568         unsigned long nr_reclaimable;   /* = file_dirty */
1569         long period;
1570         long pause;
1571         long max_pause;
1572         long min_pause;
1573         int nr_dirtied_pause;
1574         bool dirty_exceeded = false;
1575         unsigned long task_ratelimit;
1576         unsigned long dirty_ratelimit;
1577         struct backing_dev_info *bdi = wb->bdi;
1578         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1579         unsigned long start_time = jiffies;
1580
1581         for (;;) {
1582                 unsigned long now = jiffies;
1583                 unsigned long dirty, thresh, bg_thresh;
1584                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1585                 unsigned long m_thresh = 0;
1586                 unsigned long m_bg_thresh = 0;
1587
1588                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1589                 gdtc->avail = global_dirtyable_memory();
1590                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1591
1592                 domain_dirty_limits(gdtc);
1593
1594                 if (unlikely(strictlimit)) {
1595                         wb_dirty_limits(gdtc);
1596
1597                         dirty = gdtc->wb_dirty;
1598                         thresh = gdtc->wb_thresh;
1599                         bg_thresh = gdtc->wb_bg_thresh;
1600                 } else {
1601                         dirty = gdtc->dirty;
1602                         thresh = gdtc->thresh;
1603                         bg_thresh = gdtc->bg_thresh;
1604                 }
1605
1606                 if (mdtc) {
1607                         unsigned long filepages, headroom, writeback;
1608
1609                         /*
1610                          * If @wb belongs to !root memcg, repeat the same
1611                          * basic calculations for the memcg domain.
1612                          */
1613                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1614                                             &mdtc->dirty, &writeback);
1615                         mdtc->dirty += writeback;
1616                         mdtc_calc_avail(mdtc, filepages, headroom);
1617
1618                         domain_dirty_limits(mdtc);
1619
1620                         if (unlikely(strictlimit)) {
1621                                 wb_dirty_limits(mdtc);
1622                                 m_dirty = mdtc->wb_dirty;
1623                                 m_thresh = mdtc->wb_thresh;
1624                                 m_bg_thresh = mdtc->wb_bg_thresh;
1625                         } else {
1626                                 m_dirty = mdtc->dirty;
1627                                 m_thresh = mdtc->thresh;
1628                                 m_bg_thresh = mdtc->bg_thresh;
1629                         }
1630                 }
1631
1632                 /*
1633                  * Throttle it only when the background writeback cannot
1634                  * catch-up. This avoids (excessively) small writeouts
1635                  * when the wb limits are ramping up in case of !strictlimit.
1636                  *
1637                  * In strictlimit case make decision based on the wb counters
1638                  * and limits. Small writeouts when the wb limits are ramping
1639                  * up are the price we consciously pay for strictlimit-ing.
1640                  *
1641                  * If memcg domain is in effect, @dirty should be under
1642                  * both global and memcg freerun ceilings.
1643                  */
1644                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1645                     (!mdtc ||
1646                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1647                         unsigned long intv;
1648                         unsigned long m_intv;
1649
1650 free_running:
1651                         intv = dirty_poll_interval(dirty, thresh);
1652                         m_intv = ULONG_MAX;
1653
1654                         current->dirty_paused_when = now;
1655                         current->nr_dirtied = 0;
1656                         if (mdtc)
1657                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1658                         current->nr_dirtied_pause = min(intv, m_intv);
1659                         break;
1660                 }
1661
1662                 if (unlikely(!writeback_in_progress(wb)))
1663                         wb_start_background_writeback(wb);
1664
1665                 mem_cgroup_flush_foreign(wb);
1666
1667                 /*
1668                  * Calculate global domain's pos_ratio and select the
1669                  * global dtc by default.
1670                  */
1671                 if (!strictlimit) {
1672                         wb_dirty_limits(gdtc);
1673
1674                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1675                             gdtc->wb_dirty <
1676                             dirty_freerun_ceiling(gdtc->wb_thresh,
1677                                                   gdtc->wb_bg_thresh))
1678                                 /*
1679                                  * LOCAL_THROTTLE tasks must not be throttled
1680                                  * when below the per-wb freerun ceiling.
1681                                  */
1682                                 goto free_running;
1683                 }
1684
1685                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1686                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1687
1688                 wb_position_ratio(gdtc);
1689                 sdtc = gdtc;
1690
1691                 if (mdtc) {
1692                         /*
1693                          * If memcg domain is in effect, calculate its
1694                          * pos_ratio.  @wb should satisfy constraints from
1695                          * both global and memcg domains.  Choose the one
1696                          * w/ lower pos_ratio.
1697                          */
1698                         if (!strictlimit) {
1699                                 wb_dirty_limits(mdtc);
1700
1701                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1702                                     mdtc->wb_dirty <
1703                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1704                                                           mdtc->wb_bg_thresh))
1705                                         /*
1706                                          * LOCAL_THROTTLE tasks must not be
1707                                          * throttled when below the per-wb
1708                                          * freerun ceiling.
1709                                          */
1710                                         goto free_running;
1711                         }
1712                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1713                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1714
1715                         wb_position_ratio(mdtc);
1716                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1717                                 sdtc = mdtc;
1718                 }
1719
1720                 if (dirty_exceeded && !wb->dirty_exceeded)
1721                         wb->dirty_exceeded = 1;
1722
1723                 if (time_is_before_jiffies(wb->bw_time_stamp +
1724                                            BANDWIDTH_INTERVAL)) {
1725                         spin_lock(&wb->list_lock);
1726                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1727                         spin_unlock(&wb->list_lock);
1728                 }
1729
1730                 /* throttle according to the chosen dtc */
1731                 dirty_ratelimit = wb->dirty_ratelimit;
1732                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1733                                                         RATELIMIT_CALC_SHIFT;
1734                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1735                 min_pause = wb_min_pause(wb, max_pause,
1736                                          task_ratelimit, dirty_ratelimit,
1737                                          &nr_dirtied_pause);
1738
1739                 if (unlikely(task_ratelimit == 0)) {
1740                         period = max_pause;
1741                         pause = max_pause;
1742                         goto pause;
1743                 }
1744                 period = HZ * pages_dirtied / task_ratelimit;
1745                 pause = period;
1746                 if (current->dirty_paused_when)
1747                         pause -= now - current->dirty_paused_when;
1748                 /*
1749                  * For less than 1s think time (ext3/4 may block the dirtier
1750                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1751                  * however at much less frequency), try to compensate it in
1752                  * future periods by updating the virtual time; otherwise just
1753                  * do a reset, as it may be a light dirtier.
1754                  */
1755                 if (pause < min_pause) {
1756                         trace_balance_dirty_pages(wb,
1757                                                   sdtc->thresh,
1758                                                   sdtc->bg_thresh,
1759                                                   sdtc->dirty,
1760                                                   sdtc->wb_thresh,
1761                                                   sdtc->wb_dirty,
1762                                                   dirty_ratelimit,
1763                                                   task_ratelimit,
1764                                                   pages_dirtied,
1765                                                   period,
1766                                                   min(pause, 0L),
1767                                                   start_time);
1768                         if (pause < -HZ) {
1769                                 current->dirty_paused_when = now;
1770                                 current->nr_dirtied = 0;
1771                         } else if (period) {
1772                                 current->dirty_paused_when += period;
1773                                 current->nr_dirtied = 0;
1774                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1775                                 current->nr_dirtied_pause += pages_dirtied;
1776                         break;
1777                 }
1778                 if (unlikely(pause > max_pause)) {
1779                         /* for occasional dropped task_ratelimit */
1780                         now += min(pause - max_pause, max_pause);
1781                         pause = max_pause;
1782                 }
1783
1784 pause:
1785                 trace_balance_dirty_pages(wb,
1786                                           sdtc->thresh,
1787                                           sdtc->bg_thresh,
1788                                           sdtc->dirty,
1789                                           sdtc->wb_thresh,
1790                                           sdtc->wb_dirty,
1791                                           dirty_ratelimit,
1792                                           task_ratelimit,
1793                                           pages_dirtied,
1794                                           period,
1795                                           pause,
1796                                           start_time);
1797                 __set_current_state(TASK_KILLABLE);
1798                 wb->dirty_sleep = now;
1799                 io_schedule_timeout(pause);
1800
1801                 current->dirty_paused_when = now + pause;
1802                 current->nr_dirtied = 0;
1803                 current->nr_dirtied_pause = nr_dirtied_pause;
1804
1805                 /*
1806                  * This is typically equal to (dirty < thresh) and can also
1807                  * keep "1000+ dd on a slow USB stick" under control.
1808                  */
1809                 if (task_ratelimit)
1810                         break;
1811
1812                 /*
1813                  * In the case of an unresponding NFS server and the NFS dirty
1814                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1815                  * to go through, so that tasks on them still remain responsive.
1816                  *
1817                  * In theory 1 page is enough to keep the consumer-producer
1818                  * pipe going: the flusher cleans 1 page => the task dirties 1
1819                  * more page. However wb_dirty has accounting errors.  So use
1820                  * the larger and more IO friendly wb_stat_error.
1821                  */
1822                 if (sdtc->wb_dirty <= wb_stat_error())
1823                         break;
1824
1825                 if (fatal_signal_pending(current))
1826                         break;
1827         }
1828
1829         if (!dirty_exceeded && wb->dirty_exceeded)
1830                 wb->dirty_exceeded = 0;
1831
1832         if (writeback_in_progress(wb))
1833                 return;
1834
1835         /*
1836          * In laptop mode, we wait until hitting the higher threshold before
1837          * starting background writeout, and then write out all the way down
1838          * to the lower threshold.  So slow writers cause minimal disk activity.
1839          *
1840          * In normal mode, we start background writeout at the lower
1841          * background_thresh, to keep the amount of dirty memory low.
1842          */
1843         if (laptop_mode)
1844                 return;
1845
1846         if (nr_reclaimable > gdtc->bg_thresh)
1847                 wb_start_background_writeback(wb);
1848 }
1849
1850 static DEFINE_PER_CPU(int, bdp_ratelimits);
1851
1852 /*
1853  * Normal tasks are throttled by
1854  *      loop {
1855  *              dirty tsk->nr_dirtied_pause pages;
1856  *              take a snap in balance_dirty_pages();
1857  *      }
1858  * However there is a worst case. If every task exit immediately when dirtied
1859  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1860  * called to throttle the page dirties. The solution is to save the not yet
1861  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1862  * randomly into the running tasks. This works well for the above worst case,
1863  * as the new task will pick up and accumulate the old task's leaked dirty
1864  * count and eventually get throttled.
1865  */
1866 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1867
1868 /**
1869  * balance_dirty_pages_ratelimited - balance dirty memory state
1870  * @mapping: address_space which was dirtied
1871  *
1872  * Processes which are dirtying memory should call in here once for each page
1873  * which was newly dirtied.  The function will periodically check the system's
1874  * dirty state and will initiate writeback if needed.
1875  *
1876  * On really big machines, get_writeback_state is expensive, so try to avoid
1877  * calling it too often (ratelimiting).  But once we're over the dirty memory
1878  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1879  * from overshooting the limit by (ratelimit_pages) each.
1880  */
1881 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1882 {
1883         struct inode *inode = mapping->host;
1884         struct backing_dev_info *bdi = inode_to_bdi(inode);
1885         struct bdi_writeback *wb = NULL;
1886         int ratelimit;
1887         int *p;
1888
1889         if (!bdi_cap_account_dirty(bdi))
1890                 return;
1891
1892         if (inode_cgwb_enabled(inode))
1893                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1894         if (!wb)
1895                 wb = &bdi->wb;
1896
1897         ratelimit = current->nr_dirtied_pause;
1898         if (wb->dirty_exceeded)
1899                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1900
1901         preempt_disable();
1902         /*
1903          * This prevents one CPU to accumulate too many dirtied pages without
1904          * calling into balance_dirty_pages(), which can happen when there are
1905          * 1000+ tasks, all of them start dirtying pages at exactly the same
1906          * time, hence all honoured too large initial task->nr_dirtied_pause.
1907          */
1908         p =  this_cpu_ptr(&bdp_ratelimits);
1909         if (unlikely(current->nr_dirtied >= ratelimit))
1910                 *p = 0;
1911         else if (unlikely(*p >= ratelimit_pages)) {
1912                 *p = 0;
1913                 ratelimit = 0;
1914         }
1915         /*
1916          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1917          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1918          * the dirty throttling and livelock other long-run dirtiers.
1919          */
1920         p = this_cpu_ptr(&dirty_throttle_leaks);
1921         if (*p > 0 && current->nr_dirtied < ratelimit) {
1922                 unsigned long nr_pages_dirtied;
1923                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1924                 *p -= nr_pages_dirtied;
1925                 current->nr_dirtied += nr_pages_dirtied;
1926         }
1927         preempt_enable();
1928
1929         if (unlikely(current->nr_dirtied >= ratelimit))
1930                 balance_dirty_pages(wb, current->nr_dirtied);
1931
1932         wb_put(wb);
1933 }
1934 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1935
1936 /**
1937  * wb_over_bg_thresh - does @wb need to be written back?
1938  * @wb: bdi_writeback of interest
1939  *
1940  * Determines whether background writeback should keep writing @wb or it's
1941  * clean enough.
1942  *
1943  * Return: %true if writeback should continue.
1944  */
1945 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1946 {
1947         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1948         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1949         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1950         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1951                                                      &mdtc_stor : NULL;
1952
1953         /*
1954          * Similar to balance_dirty_pages() but ignores pages being written
1955          * as we're trying to decide whether to put more under writeback.
1956          */
1957         gdtc->avail = global_dirtyable_memory();
1958         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1959         domain_dirty_limits(gdtc);
1960
1961         if (gdtc->dirty > gdtc->bg_thresh)
1962                 return true;
1963
1964         if (wb_stat(wb, WB_RECLAIMABLE) >
1965             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1966                 return true;
1967
1968         if (mdtc) {
1969                 unsigned long filepages, headroom, writeback;
1970
1971                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1972                                     &writeback);
1973                 mdtc_calc_avail(mdtc, filepages, headroom);
1974                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1975
1976                 if (mdtc->dirty > mdtc->bg_thresh)
1977                         return true;
1978
1979                 if (wb_stat(wb, WB_RECLAIMABLE) >
1980                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1981                         return true;
1982         }
1983
1984         return false;
1985 }
1986
1987 /*
1988  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1989  */
1990 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1991         void __user *buffer, size_t *length, loff_t *ppos)
1992 {
1993         unsigned int old_interval = dirty_writeback_interval;
1994         int ret;
1995
1996         ret = proc_dointvec(table, write, buffer, length, ppos);
1997
1998         /*
1999          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2000          * and a different non-zero value will wakeup the writeback threads.
2001          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2002          * iterate over all bdis and wbs.
2003          * The reason we do this is to make the change take effect immediately.
2004          */
2005         if (!ret && write && dirty_writeback_interval &&
2006                 dirty_writeback_interval != old_interval)
2007                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2008
2009         return ret;
2010 }
2011
2012 #ifdef CONFIG_BLOCK
2013 void laptop_mode_timer_fn(struct timer_list *t)
2014 {
2015         struct backing_dev_info *backing_dev_info =
2016                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2017
2018         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2019 }
2020
2021 /*
2022  * We've spun up the disk and we're in laptop mode: schedule writeback
2023  * of all dirty data a few seconds from now.  If the flush is already scheduled
2024  * then push it back - the user is still using the disk.
2025  */
2026 void laptop_io_completion(struct backing_dev_info *info)
2027 {
2028         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2029 }
2030
2031 /*
2032  * We're in laptop mode and we've just synced. The sync's writes will have
2033  * caused another writeback to be scheduled by laptop_io_completion.
2034  * Nothing needs to be written back anymore, so we unschedule the writeback.
2035  */
2036 void laptop_sync_completion(void)
2037 {
2038         struct backing_dev_info *bdi;
2039
2040         rcu_read_lock();
2041
2042         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2043                 del_timer(&bdi->laptop_mode_wb_timer);
2044
2045         rcu_read_unlock();
2046 }
2047 #endif
2048
2049 /*
2050  * If ratelimit_pages is too high then we can get into dirty-data overload
2051  * if a large number of processes all perform writes at the same time.
2052  * If it is too low then SMP machines will call the (expensive)
2053  * get_writeback_state too often.
2054  *
2055  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2056  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2057  * thresholds.
2058  */
2059
2060 void writeback_set_ratelimit(void)
2061 {
2062         struct wb_domain *dom = &global_wb_domain;
2063         unsigned long background_thresh;
2064         unsigned long dirty_thresh;
2065
2066         global_dirty_limits(&background_thresh, &dirty_thresh);
2067         dom->dirty_limit = dirty_thresh;
2068         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2069         if (ratelimit_pages < 16)
2070                 ratelimit_pages = 16;
2071 }
2072
2073 static int page_writeback_cpu_online(unsigned int cpu)
2074 {
2075         writeback_set_ratelimit();
2076         return 0;
2077 }
2078
2079 /*
2080  * Called early on to tune the page writeback dirty limits.
2081  *
2082  * We used to scale dirty pages according to how total memory
2083  * related to pages that could be allocated for buffers (by
2084  * comparing nr_free_buffer_pages() to vm_total_pages.
2085  *
2086  * However, that was when we used "dirty_ratio" to scale with
2087  * all memory, and we don't do that any more. "dirty_ratio"
2088  * is now applied to total non-HIGHPAGE memory (by subtracting
2089  * totalhigh_pages from vm_total_pages), and as such we can't
2090  * get into the old insane situation any more where we had
2091  * large amounts of dirty pages compared to a small amount of
2092  * non-HIGHMEM memory.
2093  *
2094  * But we might still want to scale the dirty_ratio by how
2095  * much memory the box has..
2096  */
2097 void __init page_writeback_init(void)
2098 {
2099         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2100
2101         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2102                           page_writeback_cpu_online, NULL);
2103         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2104                           page_writeback_cpu_online);
2105 }
2106
2107 /**
2108  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2109  * @mapping: address space structure to write
2110  * @start: starting page index
2111  * @end: ending page index (inclusive)
2112  *
2113  * This function scans the page range from @start to @end (inclusive) and tags
2114  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2115  * that write_cache_pages (or whoever calls this function) will then use
2116  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2117  * used to avoid livelocking of writeback by a process steadily creating new
2118  * dirty pages in the file (thus it is important for this function to be quick
2119  * so that it can tag pages faster than a dirtying process can create them).
2120  */
2121 void tag_pages_for_writeback(struct address_space *mapping,
2122                              pgoff_t start, pgoff_t end)
2123 {
2124         XA_STATE(xas, &mapping->i_pages, start);
2125         unsigned int tagged = 0;
2126         void *page;
2127
2128         xas_lock_irq(&xas);
2129         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2130                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2131                 if (++tagged % XA_CHECK_SCHED)
2132                         continue;
2133
2134                 xas_pause(&xas);
2135                 xas_unlock_irq(&xas);
2136                 cond_resched();
2137                 xas_lock_irq(&xas);
2138         }
2139         xas_unlock_irq(&xas);
2140 }
2141 EXPORT_SYMBOL(tag_pages_for_writeback);
2142
2143 /**
2144  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2145  * @mapping: address space structure to write
2146  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2147  * @writepage: function called for each page
2148  * @data: data passed to writepage function
2149  *
2150  * If a page is already under I/O, write_cache_pages() skips it, even
2151  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2152  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2153  * and msync() need to guarantee that all the data which was dirty at the time
2154  * the call was made get new I/O started against them.  If wbc->sync_mode is
2155  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2156  * existing IO to complete.
2157  *
2158  * To avoid livelocks (when other process dirties new pages), we first tag
2159  * pages which should be written back with TOWRITE tag and only then start
2160  * writing them. For data-integrity sync we have to be careful so that we do
2161  * not miss some pages (e.g., because some other process has cleared TOWRITE
2162  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2163  * by the process clearing the DIRTY tag (and submitting the page for IO).
2164  *
2165  * To avoid deadlocks between range_cyclic writeback and callers that hold
2166  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2167  * we do not loop back to the start of the file. Doing so causes a page
2168  * lock/page writeback access order inversion - we should only ever lock
2169  * multiple pages in ascending page->index order, and looping back to the start
2170  * of the file violates that rule and causes deadlocks.
2171  *
2172  * Return: %0 on success, negative error code otherwise
2173  */
2174 int write_cache_pages(struct address_space *mapping,
2175                       struct writeback_control *wbc, writepage_t writepage,
2176                       void *data)
2177 {
2178         int ret = 0;
2179         int done = 0;
2180         int error;
2181         struct pagevec pvec;
2182         int nr_pages;
2183         pgoff_t index;
2184         pgoff_t end;            /* Inclusive */
2185         pgoff_t done_index;
2186         int range_whole = 0;
2187         xa_mark_t tag;
2188
2189         pagevec_init(&pvec);
2190         if (wbc->range_cyclic) {
2191                 index = mapping->writeback_index; /* prev offset */
2192                 end = -1;
2193         } else {
2194                 index = wbc->range_start >> PAGE_SHIFT;
2195                 end = wbc->range_end >> PAGE_SHIFT;
2196                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197                         range_whole = 1;
2198         }
2199         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2200                 tag_pages_for_writeback(mapping, index, end);
2201                 tag = PAGECACHE_TAG_TOWRITE;
2202         } else {
2203                 tag = PAGECACHE_TAG_DIRTY;
2204         }
2205         done_index = index;
2206         while (!done && (index <= end)) {
2207                 int i;
2208
2209                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2210                                 tag);
2211                 if (nr_pages == 0)
2212                         break;
2213
2214                 for (i = 0; i < nr_pages; i++) {
2215                         struct page *page = pvec.pages[i];
2216
2217                         done_index = page->index;
2218
2219                         lock_page(page);
2220
2221                         /*
2222                          * Page truncated or invalidated. We can freely skip it
2223                          * then, even for data integrity operations: the page
2224                          * has disappeared concurrently, so there could be no
2225                          * real expectation of this data interity operation
2226                          * even if there is now a new, dirty page at the same
2227                          * pagecache address.
2228                          */
2229                         if (unlikely(page->mapping != mapping)) {
2230 continue_unlock:
2231                                 unlock_page(page);
2232                                 continue;
2233                         }
2234
2235                         if (!PageDirty(page)) {
2236                                 /* someone wrote it for us */
2237                                 goto continue_unlock;
2238                         }
2239
2240                         if (PageWriteback(page)) {
2241                                 if (wbc->sync_mode != WB_SYNC_NONE)
2242                                         wait_on_page_writeback(page);
2243                                 else
2244                                         goto continue_unlock;
2245                         }
2246
2247                         BUG_ON(PageWriteback(page));
2248                         if (!clear_page_dirty_for_io(page))
2249                                 goto continue_unlock;
2250
2251                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2252                         error = (*writepage)(page, wbc, data);
2253                         if (unlikely(error)) {
2254                                 /*
2255                                  * Handle errors according to the type of
2256                                  * writeback. There's no need to continue for
2257                                  * background writeback. Just push done_index
2258                                  * past this page so media errors won't choke
2259                                  * writeout for the entire file. For integrity
2260                                  * writeback, we must process the entire dirty
2261                                  * set regardless of errors because the fs may
2262                                  * still have state to clear for each page. In
2263                                  * that case we continue processing and return
2264                                  * the first error.
2265                                  */
2266                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2267                                         unlock_page(page);
2268                                         error = 0;
2269                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2270                                         ret = error;
2271                                         done_index = page->index + 1;
2272                                         done = 1;
2273                                         break;
2274                                 }
2275                                 if (!ret)
2276                                         ret = error;
2277                         }
2278
2279                         /*
2280                          * We stop writing back only if we are not doing
2281                          * integrity sync. In case of integrity sync we have to
2282                          * keep going until we have written all the pages
2283                          * we tagged for writeback prior to entering this loop.
2284                          */
2285                         if (--wbc->nr_to_write <= 0 &&
2286                             wbc->sync_mode == WB_SYNC_NONE) {
2287                                 done = 1;
2288                                 break;
2289                         }
2290                 }
2291                 pagevec_release(&pvec);
2292                 cond_resched();
2293         }
2294
2295         /*
2296          * If we hit the last page and there is more work to be done: wrap
2297          * back the index back to the start of the file for the next
2298          * time we are called.
2299          */
2300         if (wbc->range_cyclic && !done)
2301                 done_index = 0;
2302         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2303                 mapping->writeback_index = done_index;
2304
2305         return ret;
2306 }
2307 EXPORT_SYMBOL(write_cache_pages);
2308
2309 /*
2310  * Function used by generic_writepages to call the real writepage
2311  * function and set the mapping flags on error
2312  */
2313 static int __writepage(struct page *page, struct writeback_control *wbc,
2314                        void *data)
2315 {
2316         struct address_space *mapping = data;
2317         int ret = mapping->a_ops->writepage(page, wbc);
2318         mapping_set_error(mapping, ret);
2319         return ret;
2320 }
2321
2322 /**
2323  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2324  * @mapping: address space structure to write
2325  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326  *
2327  * This is a library function, which implements the writepages()
2328  * address_space_operation.
2329  *
2330  * Return: %0 on success, negative error code otherwise
2331  */
2332 int generic_writepages(struct address_space *mapping,
2333                        struct writeback_control *wbc)
2334 {
2335         struct blk_plug plug;
2336         int ret;
2337
2338         /* deal with chardevs and other special file */
2339         if (!mapping->a_ops->writepage)
2340                 return 0;
2341
2342         blk_start_plug(&plug);
2343         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344         blk_finish_plug(&plug);
2345         return ret;
2346 }
2347
2348 EXPORT_SYMBOL(generic_writepages);
2349
2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351 {
2352         int ret;
2353
2354         if (wbc->nr_to_write <= 0)
2355                 return 0;
2356         while (1) {
2357                 if (mapping->a_ops->writepages)
2358                         ret = mapping->a_ops->writepages(mapping, wbc);
2359                 else
2360                         ret = generic_writepages(mapping, wbc);
2361                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2362                         break;
2363                 cond_resched();
2364                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2365         }
2366         return ret;
2367 }
2368
2369 /**
2370  * write_one_page - write out a single page and wait on I/O
2371  * @page: the page to write
2372  *
2373  * The page must be locked by the caller and will be unlocked upon return.
2374  *
2375  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2376  * function returns.
2377  *
2378  * Return: %0 on success, negative error code otherwise
2379  */
2380 int write_one_page(struct page *page)
2381 {
2382         struct address_space *mapping = page->mapping;
2383         int ret = 0;
2384         struct writeback_control wbc = {
2385                 .sync_mode = WB_SYNC_ALL,
2386                 .nr_to_write = 1,
2387         };
2388
2389         BUG_ON(!PageLocked(page));
2390
2391         wait_on_page_writeback(page);
2392
2393         if (clear_page_dirty_for_io(page)) {
2394                 get_page(page);
2395                 ret = mapping->a_ops->writepage(page, &wbc);
2396                 if (ret == 0)
2397                         wait_on_page_writeback(page);
2398                 put_page(page);
2399         } else {
2400                 unlock_page(page);
2401         }
2402
2403         if (!ret)
2404                 ret = filemap_check_errors(mapping);
2405         return ret;
2406 }
2407 EXPORT_SYMBOL(write_one_page);
2408
2409 /*
2410  * For address_spaces which do not use buffers nor write back.
2411  */
2412 int __set_page_dirty_no_writeback(struct page *page)
2413 {
2414         if (!PageDirty(page))
2415                 return !TestSetPageDirty(page);
2416         return 0;
2417 }
2418
2419 /*
2420  * Helper function for set_page_dirty family.
2421  *
2422  * Caller must hold lock_page_memcg().
2423  *
2424  * NOTE: This relies on being atomic wrt interrupts.
2425  */
2426 void account_page_dirtied(struct page *page, struct address_space *mapping)
2427 {
2428         struct inode *inode = mapping->host;
2429
2430         trace_writeback_dirty_page(page, mapping);
2431
2432         if (mapping_cap_account_dirty(mapping)) {
2433                 struct bdi_writeback *wb;
2434
2435                 inode_attach_wb(inode, page);
2436                 wb = inode_to_wb(inode);
2437
2438                 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2439                 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2440                 __inc_node_page_state(page, NR_DIRTIED);
2441                 inc_wb_stat(wb, WB_RECLAIMABLE);
2442                 inc_wb_stat(wb, WB_DIRTIED);
2443                 task_io_account_write(PAGE_SIZE);
2444                 current->nr_dirtied++;
2445                 this_cpu_inc(bdp_ratelimits);
2446
2447                 mem_cgroup_track_foreign_dirty(page, wb);
2448         }
2449 }
2450
2451 /*
2452  * Helper function for deaccounting dirty page without writeback.
2453  *
2454  * Caller must hold lock_page_memcg().
2455  */
2456 void account_page_cleaned(struct page *page, struct address_space *mapping,
2457                           struct bdi_writeback *wb)
2458 {
2459         if (mapping_cap_account_dirty(mapping)) {
2460                 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2461                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2462                 dec_wb_stat(wb, WB_RECLAIMABLE);
2463                 task_io_account_cancelled_write(PAGE_SIZE);
2464         }
2465 }
2466
2467 /*
2468  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2469  * the xarray.
2470  *
2471  * This is also used when a single buffer is being dirtied: we want to set the
2472  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2473  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2474  *
2475  * The caller must ensure this doesn't race with truncation.  Most will simply
2476  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2477  * the pte lock held, which also locks out truncation.
2478  */
2479 int __set_page_dirty_nobuffers(struct page *page)
2480 {
2481         lock_page_memcg(page);
2482         if (!TestSetPageDirty(page)) {
2483                 struct address_space *mapping = page_mapping(page);
2484                 unsigned long flags;
2485
2486                 if (!mapping) {
2487                         unlock_page_memcg(page);
2488                         return 1;
2489                 }
2490
2491                 xa_lock_irqsave(&mapping->i_pages, flags);
2492                 BUG_ON(page_mapping(page) != mapping);
2493                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2494                 account_page_dirtied(page, mapping);
2495                 __xa_set_mark(&mapping->i_pages, page_index(page),
2496                                    PAGECACHE_TAG_DIRTY);
2497                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2498                 unlock_page_memcg(page);
2499
2500                 if (mapping->host) {
2501                         /* !PageAnon && !swapper_space */
2502                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2503                 }
2504                 return 1;
2505         }
2506         unlock_page_memcg(page);
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2510
2511 /*
2512  * Call this whenever redirtying a page, to de-account the dirty counters
2513  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2514  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2515  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2516  * control.
2517  */
2518 void account_page_redirty(struct page *page)
2519 {
2520         struct address_space *mapping = page->mapping;
2521
2522         if (mapping && mapping_cap_account_dirty(mapping)) {
2523                 struct inode *inode = mapping->host;
2524                 struct bdi_writeback *wb;
2525                 struct wb_lock_cookie cookie = {};
2526
2527                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2528                 current->nr_dirtied--;
2529                 dec_node_page_state(page, NR_DIRTIED);
2530                 dec_wb_stat(wb, WB_DIRTIED);
2531                 unlocked_inode_to_wb_end(inode, &cookie);
2532         }
2533 }
2534 EXPORT_SYMBOL(account_page_redirty);
2535
2536 /*
2537  * When a writepage implementation decides that it doesn't want to write this
2538  * page for some reason, it should redirty the locked page via
2539  * redirty_page_for_writepage() and it should then unlock the page and return 0
2540  */
2541 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2542 {
2543         int ret;
2544
2545         wbc->pages_skipped++;
2546         ret = __set_page_dirty_nobuffers(page);
2547         account_page_redirty(page);
2548         return ret;
2549 }
2550 EXPORT_SYMBOL(redirty_page_for_writepage);
2551
2552 /*
2553  * Dirty a page.
2554  *
2555  * For pages with a mapping this should be done under the page lock
2556  * for the benefit of asynchronous memory errors who prefer a consistent
2557  * dirty state. This rule can be broken in some special cases,
2558  * but should be better not to.
2559  *
2560  * If the mapping doesn't provide a set_page_dirty a_op, then
2561  * just fall through and assume that it wants buffer_heads.
2562  */
2563 int set_page_dirty(struct page *page)
2564 {
2565         struct address_space *mapping = page_mapping(page);
2566
2567         page = compound_head(page);
2568         if (likely(mapping)) {
2569                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2570                 /*
2571                  * readahead/lru_deactivate_page could remain
2572                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2573                  * About readahead, if the page is written, the flags would be
2574                  * reset. So no problem.
2575                  * About lru_deactivate_page, if the page is redirty, the flag
2576                  * will be reset. So no problem. but if the page is used by readahead
2577                  * it will confuse readahead and make it restart the size rampup
2578                  * process. But it's a trivial problem.
2579                  */
2580                 if (PageReclaim(page))
2581                         ClearPageReclaim(page);
2582 #ifdef CONFIG_BLOCK
2583                 if (!spd)
2584                         spd = __set_page_dirty_buffers;
2585 #endif
2586                 return (*spd)(page);
2587         }
2588         if (!PageDirty(page)) {
2589                 if (!TestSetPageDirty(page))
2590                         return 1;
2591         }
2592         return 0;
2593 }
2594 EXPORT_SYMBOL(set_page_dirty);
2595
2596 /*
2597  * set_page_dirty() is racy if the caller has no reference against
2598  * page->mapping->host, and if the page is unlocked.  This is because another
2599  * CPU could truncate the page off the mapping and then free the mapping.
2600  *
2601  * Usually, the page _is_ locked, or the caller is a user-space process which
2602  * holds a reference on the inode by having an open file.
2603  *
2604  * In other cases, the page should be locked before running set_page_dirty().
2605  */
2606 int set_page_dirty_lock(struct page *page)
2607 {
2608         int ret;
2609
2610         lock_page(page);
2611         ret = set_page_dirty(page);
2612         unlock_page(page);
2613         return ret;
2614 }
2615 EXPORT_SYMBOL(set_page_dirty_lock);
2616
2617 /*
2618  * This cancels just the dirty bit on the kernel page itself, it does NOT
2619  * actually remove dirty bits on any mmap's that may be around. It also
2620  * leaves the page tagged dirty, so any sync activity will still find it on
2621  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2622  * look at the dirty bits in the VM.
2623  *
2624  * Doing this should *normally* only ever be done when a page is truncated,
2625  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2626  * this when it notices that somebody has cleaned out all the buffers on a
2627  * page without actually doing it through the VM. Can you say "ext3 is
2628  * horribly ugly"? Thought you could.
2629  */
2630 void __cancel_dirty_page(struct page *page)
2631 {
2632         struct address_space *mapping = page_mapping(page);
2633
2634         if (mapping_cap_account_dirty(mapping)) {
2635                 struct inode *inode = mapping->host;
2636                 struct bdi_writeback *wb;
2637                 struct wb_lock_cookie cookie = {};
2638
2639                 lock_page_memcg(page);
2640                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2641
2642                 if (TestClearPageDirty(page))
2643                         account_page_cleaned(page, mapping, wb);
2644
2645                 unlocked_inode_to_wb_end(inode, &cookie);
2646                 unlock_page_memcg(page);
2647         } else {
2648                 ClearPageDirty(page);
2649         }
2650 }
2651 EXPORT_SYMBOL(__cancel_dirty_page);
2652
2653 /*
2654  * Clear a page's dirty flag, while caring for dirty memory accounting.
2655  * Returns true if the page was previously dirty.
2656  *
2657  * This is for preparing to put the page under writeout.  We leave the page
2658  * tagged as dirty in the xarray so that a concurrent write-for-sync
2659  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2660  * implementation will run either set_page_writeback() or set_page_dirty(),
2661  * at which stage we bring the page's dirty flag and xarray dirty tag
2662  * back into sync.
2663  *
2664  * This incoherency between the page's dirty flag and xarray tag is
2665  * unfortunate, but it only exists while the page is locked.
2666  */
2667 int clear_page_dirty_for_io(struct page *page)
2668 {
2669         struct address_space *mapping = page_mapping(page);
2670         int ret = 0;
2671
2672         VM_BUG_ON_PAGE(!PageLocked(page), page);
2673
2674         if (mapping && mapping_cap_account_dirty(mapping)) {
2675                 struct inode *inode = mapping->host;
2676                 struct bdi_writeback *wb;
2677                 struct wb_lock_cookie cookie = {};
2678
2679                 /*
2680                  * Yes, Virginia, this is indeed insane.
2681                  *
2682                  * We use this sequence to make sure that
2683                  *  (a) we account for dirty stats properly
2684                  *  (b) we tell the low-level filesystem to
2685                  *      mark the whole page dirty if it was
2686                  *      dirty in a pagetable. Only to then
2687                  *  (c) clean the page again and return 1 to
2688                  *      cause the writeback.
2689                  *
2690                  * This way we avoid all nasty races with the
2691                  * dirty bit in multiple places and clearing
2692                  * them concurrently from different threads.
2693                  *
2694                  * Note! Normally the "set_page_dirty(page)"
2695                  * has no effect on the actual dirty bit - since
2696                  * that will already usually be set. But we
2697                  * need the side effects, and it can help us
2698                  * avoid races.
2699                  *
2700                  * We basically use the page "master dirty bit"
2701                  * as a serialization point for all the different
2702                  * threads doing their things.
2703                  */
2704                 if (page_mkclean(page))
2705                         set_page_dirty(page);
2706                 /*
2707                  * We carefully synchronise fault handlers against
2708                  * installing a dirty pte and marking the page dirty
2709                  * at this point.  We do this by having them hold the
2710                  * page lock while dirtying the page, and pages are
2711                  * always locked coming in here, so we get the desired
2712                  * exclusion.
2713                  */
2714                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2715                 if (TestClearPageDirty(page)) {
2716                         dec_lruvec_page_state(page, NR_FILE_DIRTY);
2717                         dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2718                         dec_wb_stat(wb, WB_RECLAIMABLE);
2719                         ret = 1;
2720                 }
2721                 unlocked_inode_to_wb_end(inode, &cookie);
2722                 return ret;
2723         }
2724         return TestClearPageDirty(page);
2725 }
2726 EXPORT_SYMBOL(clear_page_dirty_for_io);
2727
2728 int test_clear_page_writeback(struct page *page)
2729 {
2730         struct address_space *mapping = page_mapping(page);
2731         struct mem_cgroup *memcg;
2732         struct lruvec *lruvec;
2733         int ret;
2734
2735         memcg = lock_page_memcg(page);
2736         lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2737         if (mapping && mapping_use_writeback_tags(mapping)) {
2738                 struct inode *inode = mapping->host;
2739                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2740                 unsigned long flags;
2741
2742                 xa_lock_irqsave(&mapping->i_pages, flags);
2743                 ret = TestClearPageWriteback(page);
2744                 if (ret) {
2745                         __xa_clear_mark(&mapping->i_pages, page_index(page),
2746                                                 PAGECACHE_TAG_WRITEBACK);
2747                         if (bdi_cap_account_writeback(bdi)) {
2748                                 struct bdi_writeback *wb = inode_to_wb(inode);
2749
2750                                 dec_wb_stat(wb, WB_WRITEBACK);
2751                                 __wb_writeout_inc(wb);
2752                         }
2753                 }
2754
2755                 if (mapping->host && !mapping_tagged(mapping,
2756                                                      PAGECACHE_TAG_WRITEBACK))
2757                         sb_clear_inode_writeback(mapping->host);
2758
2759                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2760         } else {
2761                 ret = TestClearPageWriteback(page);
2762         }
2763         /*
2764          * NOTE: Page might be free now! Writeback doesn't hold a page
2765          * reference on its own, it relies on truncation to wait for
2766          * the clearing of PG_writeback. The below can only access
2767          * page state that is static across allocation cycles.
2768          */
2769         if (ret) {
2770                 dec_lruvec_state(lruvec, NR_WRITEBACK);
2771                 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2772                 inc_node_page_state(page, NR_WRITTEN);
2773         }
2774         __unlock_page_memcg(memcg);
2775         return ret;
2776 }
2777
2778 int __test_set_page_writeback(struct page *page, bool keep_write)
2779 {
2780         struct address_space *mapping = page_mapping(page);
2781         int ret, access_ret;
2782
2783         lock_page_memcg(page);
2784         if (mapping && mapping_use_writeback_tags(mapping)) {
2785                 XA_STATE(xas, &mapping->i_pages, page_index(page));
2786                 struct inode *inode = mapping->host;
2787                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2788                 unsigned long flags;
2789
2790                 xas_lock_irqsave(&xas, flags);
2791                 xas_load(&xas);
2792                 ret = TestSetPageWriteback(page);
2793                 if (!ret) {
2794                         bool on_wblist;
2795
2796                         on_wblist = mapping_tagged(mapping,
2797                                                    PAGECACHE_TAG_WRITEBACK);
2798
2799                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2800                         if (bdi_cap_account_writeback(bdi))
2801                                 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2802
2803                         /*
2804                          * We can come through here when swapping anonymous
2805                          * pages, so we don't necessarily have an inode to track
2806                          * for sync.
2807                          */
2808                         if (mapping->host && !on_wblist)
2809                                 sb_mark_inode_writeback(mapping->host);
2810                 }
2811                 if (!PageDirty(page))
2812                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2813                 if (!keep_write)
2814                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2815                 xas_unlock_irqrestore(&xas, flags);
2816         } else {
2817                 ret = TestSetPageWriteback(page);
2818         }
2819         if (!ret) {
2820                 inc_lruvec_page_state(page, NR_WRITEBACK);
2821                 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2822         }
2823         unlock_page_memcg(page);
2824         access_ret = arch_make_page_accessible(page);
2825         /*
2826          * If writeback has been triggered on a page that cannot be made
2827          * accessible, it is too late to recover here.
2828          */
2829         VM_BUG_ON_PAGE(access_ret != 0, page);
2830
2831         return ret;
2832
2833 }
2834 EXPORT_SYMBOL(__test_set_page_writeback);
2835
2836 /*
2837  * Wait for a page to complete writeback
2838  */
2839 void wait_on_page_writeback(struct page *page)
2840 {
2841         if (PageWriteback(page)) {
2842                 trace_wait_on_page_writeback(page, page_mapping(page));
2843                 wait_on_page_bit(page, PG_writeback);
2844         }
2845 }
2846 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2847
2848 /**
2849  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2850  * @page:       The page to wait on.
2851  *
2852  * This function determines if the given page is related to a backing device
2853  * that requires page contents to be held stable during writeback.  If so, then
2854  * it will wait for any pending writeback to complete.
2855  */
2856 void wait_for_stable_page(struct page *page)
2857 {
2858         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2859                 wait_on_page_writeback(page);
2860 }
2861 EXPORT_SYMBOL_GPL(wait_for_stable_page);