Merge tag 'vfs-5.8-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154                 unsigned long start, unsigned long end, gfp_t gfp_mask,
155                 pgprot_t prot, unsigned long vm_flags, int node,
156                 const void *caller)
157 {
158         return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162                 int node, const void *caller)
163 {
164         return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169         void *ret;
170
171         ret = __vmalloc(size, flags);
172         if (ret) {
173                 struct vm_area_struct *vma;
174
175                 down_write(&current->mm->mmap_sem);
176                 vma = find_vma(current->mm, (unsigned long)ret);
177                 if (vma)
178                         vma->vm_flags |= VM_USERMAP;
179                 up_write(&current->mm->mmap_sem);
180         }
181
182         return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193         return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199         return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205         /* Don't allow overflow */
206         if ((unsigned long) buf + count < count)
207                 count = -(unsigned long) buf;
208
209         memcpy(buf, addr, count);
210         return count;
211 }
212
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215         /* Don't allow overflow */
216         if ((unsigned long) addr + count < count)
217                 count = -(unsigned long) addr;
218
219         memcpy(addr, buf, count);
220         return count;
221 }
222
223 /*
224  *      vmalloc  -  allocate virtually contiguous memory
225  *
226  *      @size:          allocation size
227  *
228  *      Allocate enough pages to cover @size from the page level
229  *      allocator and map them into contiguous kernel virtual space.
230  *
231  *      For tight control over page level allocator and protection flags
232  *      use __vmalloc() instead.
233  */
234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241  *      vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *      @size:          allocation size
244  *
245  *      Allocate enough pages to cover @size from the page level
246  *      allocator and map them into contiguous kernel virtual space.
247  *      The memory allocated is set to zero.
248  *
249  *      For tight control over page level allocator and protection flags
250  *      use __vmalloc() instead.
251  */
252 void *vzalloc(unsigned long size)
253 {
254         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:       allocation size
261  * @node:       numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271         return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:       allocation size
278  * @node:       numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289         return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
295  *      @size:          allocation size
296  *
297  *      Kernel-internal function to allocate enough pages to cover @size
298  *      the page level allocator and map them into contiguous and
299  *      executable kernel virtual space.
300  *
301  *      For tight control over page level allocator and protection flags
302  *      use __vmalloc() instead.
303  */
304
305 void *vmalloc_exec(unsigned long size)
306 {
307         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
308 }
309
310 /**
311  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
312  *      @size:          allocation size
313  *
314  *      Allocate enough 32bit PA addressable pages to cover @size from the
315  *      page level allocator and map them into contiguous kernel virtual space.
316  */
317 void *vmalloc_32(unsigned long size)
318 {
319         return __vmalloc(size, GFP_KERNEL);
320 }
321 EXPORT_SYMBOL(vmalloc_32);
322
323 /**
324  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
325  *      @size:          allocation size
326  *
327  * The resulting memory area is 32bit addressable and zeroed so it can be
328  * mapped to userspace without leaking data.
329  *
330  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
331  * remap_vmalloc_range() are permissible.
332  */
333 void *vmalloc_32_user(unsigned long size)
334 {
335         /*
336          * We'll have to sort out the ZONE_DMA bits for 64-bit,
337          * but for now this can simply use vmalloc_user() directly.
338          */
339         return vmalloc_user(size);
340 }
341 EXPORT_SYMBOL(vmalloc_32_user);
342
343 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
344 {
345         BUG();
346         return NULL;
347 }
348 EXPORT_SYMBOL(vmap);
349
350 void vunmap(const void *addr)
351 {
352         BUG();
353 }
354 EXPORT_SYMBOL(vunmap);
355
356 void *vm_map_ram(struct page **pages, unsigned int count, int node)
357 {
358         BUG();
359         return NULL;
360 }
361 EXPORT_SYMBOL(vm_map_ram);
362
363 void vm_unmap_ram(const void *mem, unsigned int count)
364 {
365         BUG();
366 }
367 EXPORT_SYMBOL(vm_unmap_ram);
368
369 void vm_unmap_aliases(void)
370 {
371 }
372 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
373
374 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
375 {
376         BUG();
377         return NULL;
378 }
379 EXPORT_SYMBOL_GPL(alloc_vm_area);
380
381 void free_vm_area(struct vm_struct *area)
382 {
383         BUG();
384 }
385 EXPORT_SYMBOL_GPL(free_vm_area);
386
387 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
388                    struct page *page)
389 {
390         return -EINVAL;
391 }
392 EXPORT_SYMBOL(vm_insert_page);
393
394 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
395                         unsigned long num)
396 {
397         return -EINVAL;
398 }
399 EXPORT_SYMBOL(vm_map_pages);
400
401 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
402                                 unsigned long num)
403 {
404         return -EINVAL;
405 }
406 EXPORT_SYMBOL(vm_map_pages_zero);
407
408 /*
409  *  sys_brk() for the most part doesn't need the global kernel
410  *  lock, except when an application is doing something nasty
411  *  like trying to un-brk an area that has already been mapped
412  *  to a regular file.  in this case, the unmapping will need
413  *  to invoke file system routines that need the global lock.
414  */
415 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 {
417         struct mm_struct *mm = current->mm;
418
419         if (brk < mm->start_brk || brk > mm->context.end_brk)
420                 return mm->brk;
421
422         if (mm->brk == brk)
423                 return mm->brk;
424
425         /*
426          * Always allow shrinking brk
427          */
428         if (brk <= mm->brk) {
429                 mm->brk = brk;
430                 return brk;
431         }
432
433         /*
434          * Ok, looks good - let it rip.
435          */
436         flush_icache_range(mm->brk, brk);
437         return mm->brk = brk;
438 }
439
440 /*
441  * initialise the percpu counter for VM and region record slabs
442  */
443 void __init mmap_init(void)
444 {
445         int ret;
446
447         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
448         VM_BUG_ON(ret);
449         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
450 }
451
452 /*
453  * validate the region tree
454  * - the caller must hold the region lock
455  */
456 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
457 static noinline void validate_nommu_regions(void)
458 {
459         struct vm_region *region, *last;
460         struct rb_node *p, *lastp;
461
462         lastp = rb_first(&nommu_region_tree);
463         if (!lastp)
464                 return;
465
466         last = rb_entry(lastp, struct vm_region, vm_rb);
467         BUG_ON(last->vm_end <= last->vm_start);
468         BUG_ON(last->vm_top < last->vm_end);
469
470         while ((p = rb_next(lastp))) {
471                 region = rb_entry(p, struct vm_region, vm_rb);
472                 last = rb_entry(lastp, struct vm_region, vm_rb);
473
474                 BUG_ON(region->vm_end <= region->vm_start);
475                 BUG_ON(region->vm_top < region->vm_end);
476                 BUG_ON(region->vm_start < last->vm_top);
477
478                 lastp = p;
479         }
480 }
481 #else
482 static void validate_nommu_regions(void)
483 {
484 }
485 #endif
486
487 /*
488  * add a region into the global tree
489  */
490 static void add_nommu_region(struct vm_region *region)
491 {
492         struct vm_region *pregion;
493         struct rb_node **p, *parent;
494
495         validate_nommu_regions();
496
497         parent = NULL;
498         p = &nommu_region_tree.rb_node;
499         while (*p) {
500                 parent = *p;
501                 pregion = rb_entry(parent, struct vm_region, vm_rb);
502                 if (region->vm_start < pregion->vm_start)
503                         p = &(*p)->rb_left;
504                 else if (region->vm_start > pregion->vm_start)
505                         p = &(*p)->rb_right;
506                 else if (pregion == region)
507                         return;
508                 else
509                         BUG();
510         }
511
512         rb_link_node(&region->vm_rb, parent, p);
513         rb_insert_color(&region->vm_rb, &nommu_region_tree);
514
515         validate_nommu_regions();
516 }
517
518 /*
519  * delete a region from the global tree
520  */
521 static void delete_nommu_region(struct vm_region *region)
522 {
523         BUG_ON(!nommu_region_tree.rb_node);
524
525         validate_nommu_regions();
526         rb_erase(&region->vm_rb, &nommu_region_tree);
527         validate_nommu_regions();
528 }
529
530 /*
531  * free a contiguous series of pages
532  */
533 static void free_page_series(unsigned long from, unsigned long to)
534 {
535         for (; from < to; from += PAGE_SIZE) {
536                 struct page *page = virt_to_page(from);
537
538                 atomic_long_dec(&mmap_pages_allocated);
539                 put_page(page);
540         }
541 }
542
543 /*
544  * release a reference to a region
545  * - the caller must hold the region semaphore for writing, which this releases
546  * - the region may not have been added to the tree yet, in which case vm_top
547  *   will equal vm_start
548  */
549 static void __put_nommu_region(struct vm_region *region)
550         __releases(nommu_region_sem)
551 {
552         BUG_ON(!nommu_region_tree.rb_node);
553
554         if (--region->vm_usage == 0) {
555                 if (region->vm_top > region->vm_start)
556                         delete_nommu_region(region);
557                 up_write(&nommu_region_sem);
558
559                 if (region->vm_file)
560                         fput(region->vm_file);
561
562                 /* IO memory and memory shared directly out of the pagecache
563                  * from ramfs/tmpfs mustn't be released here */
564                 if (region->vm_flags & VM_MAPPED_COPY)
565                         free_page_series(region->vm_start, region->vm_top);
566                 kmem_cache_free(vm_region_jar, region);
567         } else {
568                 up_write(&nommu_region_sem);
569         }
570 }
571
572 /*
573  * release a reference to a region
574  */
575 static void put_nommu_region(struct vm_region *region)
576 {
577         down_write(&nommu_region_sem);
578         __put_nommu_region(region);
579 }
580
581 /*
582  * add a VMA into a process's mm_struct in the appropriate place in the list
583  * and tree and add to the address space's page tree also if not an anonymous
584  * page
585  * - should be called with mm->mmap_sem held writelocked
586  */
587 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
588 {
589         struct vm_area_struct *pvma, *prev;
590         struct address_space *mapping;
591         struct rb_node **p, *parent, *rb_prev;
592
593         BUG_ON(!vma->vm_region);
594
595         mm->map_count++;
596         vma->vm_mm = mm;
597
598         /* add the VMA to the mapping */
599         if (vma->vm_file) {
600                 mapping = vma->vm_file->f_mapping;
601
602                 i_mmap_lock_write(mapping);
603                 flush_dcache_mmap_lock(mapping);
604                 vma_interval_tree_insert(vma, &mapping->i_mmap);
605                 flush_dcache_mmap_unlock(mapping);
606                 i_mmap_unlock_write(mapping);
607         }
608
609         /* add the VMA to the tree */
610         parent = rb_prev = NULL;
611         p = &mm->mm_rb.rb_node;
612         while (*p) {
613                 parent = *p;
614                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
615
616                 /* sort by: start addr, end addr, VMA struct addr in that order
617                  * (the latter is necessary as we may get identical VMAs) */
618                 if (vma->vm_start < pvma->vm_start)
619                         p = &(*p)->rb_left;
620                 else if (vma->vm_start > pvma->vm_start) {
621                         rb_prev = parent;
622                         p = &(*p)->rb_right;
623                 } else if (vma->vm_end < pvma->vm_end)
624                         p = &(*p)->rb_left;
625                 else if (vma->vm_end > pvma->vm_end) {
626                         rb_prev = parent;
627                         p = &(*p)->rb_right;
628                 } else if (vma < pvma)
629                         p = &(*p)->rb_left;
630                 else if (vma > pvma) {
631                         rb_prev = parent;
632                         p = &(*p)->rb_right;
633                 } else
634                         BUG();
635         }
636
637         rb_link_node(&vma->vm_rb, parent, p);
638         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
639
640         /* add VMA to the VMA list also */
641         prev = NULL;
642         if (rb_prev)
643                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
644
645         __vma_link_list(mm, vma, prev);
646 }
647
648 /*
649  * delete a VMA from its owning mm_struct and address space
650  */
651 static void delete_vma_from_mm(struct vm_area_struct *vma)
652 {
653         int i;
654         struct address_space *mapping;
655         struct mm_struct *mm = vma->vm_mm;
656         struct task_struct *curr = current;
657
658         mm->map_count--;
659         for (i = 0; i < VMACACHE_SIZE; i++) {
660                 /* if the vma is cached, invalidate the entire cache */
661                 if (curr->vmacache.vmas[i] == vma) {
662                         vmacache_invalidate(mm);
663                         break;
664                 }
665         }
666
667         /* remove the VMA from the mapping */
668         if (vma->vm_file) {
669                 mapping = vma->vm_file->f_mapping;
670
671                 i_mmap_lock_write(mapping);
672                 flush_dcache_mmap_lock(mapping);
673                 vma_interval_tree_remove(vma, &mapping->i_mmap);
674                 flush_dcache_mmap_unlock(mapping);
675                 i_mmap_unlock_write(mapping);
676         }
677
678         /* remove from the MM's tree and list */
679         rb_erase(&vma->vm_rb, &mm->mm_rb);
680
681         __vma_unlink_list(mm, vma);
682 }
683
684 /*
685  * destroy a VMA record
686  */
687 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
688 {
689         if (vma->vm_ops && vma->vm_ops->close)
690                 vma->vm_ops->close(vma);
691         if (vma->vm_file)
692                 fput(vma->vm_file);
693         put_nommu_region(vma->vm_region);
694         vm_area_free(vma);
695 }
696
697 /*
698  * look up the first VMA in which addr resides, NULL if none
699  * - should be called with mm->mmap_sem at least held readlocked
700  */
701 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
702 {
703         struct vm_area_struct *vma;
704
705         /* check the cache first */
706         vma = vmacache_find(mm, addr);
707         if (likely(vma))
708                 return vma;
709
710         /* trawl the list (there may be multiple mappings in which addr
711          * resides) */
712         for (vma = mm->mmap; vma; vma = vma->vm_next) {
713                 if (vma->vm_start > addr)
714                         return NULL;
715                 if (vma->vm_end > addr) {
716                         vmacache_update(addr, vma);
717                         return vma;
718                 }
719         }
720
721         return NULL;
722 }
723 EXPORT_SYMBOL(find_vma);
724
725 /*
726  * find a VMA
727  * - we don't extend stack VMAs under NOMMU conditions
728  */
729 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
730 {
731         return find_vma(mm, addr);
732 }
733
734 /*
735  * expand a stack to a given address
736  * - not supported under NOMMU conditions
737  */
738 int expand_stack(struct vm_area_struct *vma, unsigned long address)
739 {
740         return -ENOMEM;
741 }
742
743 /*
744  * look up the first VMA exactly that exactly matches addr
745  * - should be called with mm->mmap_sem at least held readlocked
746  */
747 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
748                                              unsigned long addr,
749                                              unsigned long len)
750 {
751         struct vm_area_struct *vma;
752         unsigned long end = addr + len;
753
754         /* check the cache first */
755         vma = vmacache_find_exact(mm, addr, end);
756         if (vma)
757                 return vma;
758
759         /* trawl the list (there may be multiple mappings in which addr
760          * resides) */
761         for (vma = mm->mmap; vma; vma = vma->vm_next) {
762                 if (vma->vm_start < addr)
763                         continue;
764                 if (vma->vm_start > addr)
765                         return NULL;
766                 if (vma->vm_end == end) {
767                         vmacache_update(addr, vma);
768                         return vma;
769                 }
770         }
771
772         return NULL;
773 }
774
775 /*
776  * determine whether a mapping should be permitted and, if so, what sort of
777  * mapping we're capable of supporting
778  */
779 static int validate_mmap_request(struct file *file,
780                                  unsigned long addr,
781                                  unsigned long len,
782                                  unsigned long prot,
783                                  unsigned long flags,
784                                  unsigned long pgoff,
785                                  unsigned long *_capabilities)
786 {
787         unsigned long capabilities, rlen;
788         int ret;
789
790         /* do the simple checks first */
791         if (flags & MAP_FIXED)
792                 return -EINVAL;
793
794         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
795             (flags & MAP_TYPE) != MAP_SHARED)
796                 return -EINVAL;
797
798         if (!len)
799                 return -EINVAL;
800
801         /* Careful about overflows.. */
802         rlen = PAGE_ALIGN(len);
803         if (!rlen || rlen > TASK_SIZE)
804                 return -ENOMEM;
805
806         /* offset overflow? */
807         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
808                 return -EOVERFLOW;
809
810         if (file) {
811                 /* files must support mmap */
812                 if (!file->f_op->mmap)
813                         return -ENODEV;
814
815                 /* work out if what we've got could possibly be shared
816                  * - we support chardevs that provide their own "memory"
817                  * - we support files/blockdevs that are memory backed
818                  */
819                 if (file->f_op->mmap_capabilities) {
820                         capabilities = file->f_op->mmap_capabilities(file);
821                 } else {
822                         /* no explicit capabilities set, so assume some
823                          * defaults */
824                         switch (file_inode(file)->i_mode & S_IFMT) {
825                         case S_IFREG:
826                         case S_IFBLK:
827                                 capabilities = NOMMU_MAP_COPY;
828                                 break;
829
830                         case S_IFCHR:
831                                 capabilities =
832                                         NOMMU_MAP_DIRECT |
833                                         NOMMU_MAP_READ |
834                                         NOMMU_MAP_WRITE;
835                                 break;
836
837                         default:
838                                 return -EINVAL;
839                         }
840                 }
841
842                 /* eliminate any capabilities that we can't support on this
843                  * device */
844                 if (!file->f_op->get_unmapped_area)
845                         capabilities &= ~NOMMU_MAP_DIRECT;
846                 if (!(file->f_mode & FMODE_CAN_READ))
847                         capabilities &= ~NOMMU_MAP_COPY;
848
849                 /* The file shall have been opened with read permission. */
850                 if (!(file->f_mode & FMODE_READ))
851                         return -EACCES;
852
853                 if (flags & MAP_SHARED) {
854                         /* do checks for writing, appending and locking */
855                         if ((prot & PROT_WRITE) &&
856                             !(file->f_mode & FMODE_WRITE))
857                                 return -EACCES;
858
859                         if (IS_APPEND(file_inode(file)) &&
860                             (file->f_mode & FMODE_WRITE))
861                                 return -EACCES;
862
863                         if (locks_verify_locked(file))
864                                 return -EAGAIN;
865
866                         if (!(capabilities & NOMMU_MAP_DIRECT))
867                                 return -ENODEV;
868
869                         /* we mustn't privatise shared mappings */
870                         capabilities &= ~NOMMU_MAP_COPY;
871                 } else {
872                         /* we're going to read the file into private memory we
873                          * allocate */
874                         if (!(capabilities & NOMMU_MAP_COPY))
875                                 return -ENODEV;
876
877                         /* we don't permit a private writable mapping to be
878                          * shared with the backing device */
879                         if (prot & PROT_WRITE)
880                                 capabilities &= ~NOMMU_MAP_DIRECT;
881                 }
882
883                 if (capabilities & NOMMU_MAP_DIRECT) {
884                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
885                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
886                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
887                             ) {
888                                 capabilities &= ~NOMMU_MAP_DIRECT;
889                                 if (flags & MAP_SHARED) {
890                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
891                                         return -EINVAL;
892                                 }
893                         }
894                 }
895
896                 /* handle executable mappings and implied executable
897                  * mappings */
898                 if (path_noexec(&file->f_path)) {
899                         if (prot & PROT_EXEC)
900                                 return -EPERM;
901                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
902                         /* handle implication of PROT_EXEC by PROT_READ */
903                         if (current->personality & READ_IMPLIES_EXEC) {
904                                 if (capabilities & NOMMU_MAP_EXEC)
905                                         prot |= PROT_EXEC;
906                         }
907                 } else if ((prot & PROT_READ) &&
908                          (prot & PROT_EXEC) &&
909                          !(capabilities & NOMMU_MAP_EXEC)
910                          ) {
911                         /* backing file is not executable, try to copy */
912                         capabilities &= ~NOMMU_MAP_DIRECT;
913                 }
914         } else {
915                 /* anonymous mappings are always memory backed and can be
916                  * privately mapped
917                  */
918                 capabilities = NOMMU_MAP_COPY;
919
920                 /* handle PROT_EXEC implication by PROT_READ */
921                 if ((prot & PROT_READ) &&
922                     (current->personality & READ_IMPLIES_EXEC))
923                         prot |= PROT_EXEC;
924         }
925
926         /* allow the security API to have its say */
927         ret = security_mmap_addr(addr);
928         if (ret < 0)
929                 return ret;
930
931         /* looks okay */
932         *_capabilities = capabilities;
933         return 0;
934 }
935
936 /*
937  * we've determined that we can make the mapping, now translate what we
938  * now know into VMA flags
939  */
940 static unsigned long determine_vm_flags(struct file *file,
941                                         unsigned long prot,
942                                         unsigned long flags,
943                                         unsigned long capabilities)
944 {
945         unsigned long vm_flags;
946
947         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
948         /* vm_flags |= mm->def_flags; */
949
950         if (!(capabilities & NOMMU_MAP_DIRECT)) {
951                 /* attempt to share read-only copies of mapped file chunks */
952                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
953                 if (file && !(prot & PROT_WRITE))
954                         vm_flags |= VM_MAYSHARE;
955         } else {
956                 /* overlay a shareable mapping on the backing device or inode
957                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
958                  * romfs/cramfs */
959                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
960                 if (flags & MAP_SHARED)
961                         vm_flags |= VM_SHARED;
962         }
963
964         /* refuse to let anyone share private mappings with this process if
965          * it's being traced - otherwise breakpoints set in it may interfere
966          * with another untraced process
967          */
968         if ((flags & MAP_PRIVATE) && current->ptrace)
969                 vm_flags &= ~VM_MAYSHARE;
970
971         return vm_flags;
972 }
973
974 /*
975  * set up a shared mapping on a file (the driver or filesystem provides and
976  * pins the storage)
977  */
978 static int do_mmap_shared_file(struct vm_area_struct *vma)
979 {
980         int ret;
981
982         ret = call_mmap(vma->vm_file, vma);
983         if (ret == 0) {
984                 vma->vm_region->vm_top = vma->vm_region->vm_end;
985                 return 0;
986         }
987         if (ret != -ENOSYS)
988                 return ret;
989
990         /* getting -ENOSYS indicates that direct mmap isn't possible (as
991          * opposed to tried but failed) so we can only give a suitable error as
992          * it's not possible to make a private copy if MAP_SHARED was given */
993         return -ENODEV;
994 }
995
996 /*
997  * set up a private mapping or an anonymous shared mapping
998  */
999 static int do_mmap_private(struct vm_area_struct *vma,
1000                            struct vm_region *region,
1001                            unsigned long len,
1002                            unsigned long capabilities)
1003 {
1004         unsigned long total, point;
1005         void *base;
1006         int ret, order;
1007
1008         /* invoke the file's mapping function so that it can keep track of
1009          * shared mappings on devices or memory
1010          * - VM_MAYSHARE will be set if it may attempt to share
1011          */
1012         if (capabilities & NOMMU_MAP_DIRECT) {
1013                 ret = call_mmap(vma->vm_file, vma);
1014                 if (ret == 0) {
1015                         /* shouldn't return success if we're not sharing */
1016                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1017                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1018                         return 0;
1019                 }
1020                 if (ret != -ENOSYS)
1021                         return ret;
1022
1023                 /* getting an ENOSYS error indicates that direct mmap isn't
1024                  * possible (as opposed to tried but failed) so we'll try to
1025                  * make a private copy of the data and map that instead */
1026         }
1027
1028
1029         /* allocate some memory to hold the mapping
1030          * - note that this may not return a page-aligned address if the object
1031          *   we're allocating is smaller than a page
1032          */
1033         order = get_order(len);
1034         total = 1 << order;
1035         point = len >> PAGE_SHIFT;
1036
1037         /* we don't want to allocate a power-of-2 sized page set */
1038         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1039                 total = point;
1040
1041         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1042         if (!base)
1043                 goto enomem;
1044
1045         atomic_long_add(total, &mmap_pages_allocated);
1046
1047         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1048         region->vm_start = (unsigned long) base;
1049         region->vm_end   = region->vm_start + len;
1050         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1051
1052         vma->vm_start = region->vm_start;
1053         vma->vm_end   = region->vm_start + len;
1054
1055         if (vma->vm_file) {
1056                 /* read the contents of a file into the copy */
1057                 loff_t fpos;
1058
1059                 fpos = vma->vm_pgoff;
1060                 fpos <<= PAGE_SHIFT;
1061
1062                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1063                 if (ret < 0)
1064                         goto error_free;
1065
1066                 /* clear the last little bit */
1067                 if (ret < len)
1068                         memset(base + ret, 0, len - ret);
1069
1070         } else {
1071                 vma_set_anonymous(vma);
1072         }
1073
1074         return 0;
1075
1076 error_free:
1077         free_page_series(region->vm_start, region->vm_top);
1078         region->vm_start = vma->vm_start = 0;
1079         region->vm_end   = vma->vm_end = 0;
1080         region->vm_top   = 0;
1081         return ret;
1082
1083 enomem:
1084         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1085                len, current->pid, current->comm);
1086         show_free_areas(0, NULL);
1087         return -ENOMEM;
1088 }
1089
1090 /*
1091  * handle mapping creation for uClinux
1092  */
1093 unsigned long do_mmap(struct file *file,
1094                         unsigned long addr,
1095                         unsigned long len,
1096                         unsigned long prot,
1097                         unsigned long flags,
1098                         vm_flags_t vm_flags,
1099                         unsigned long pgoff,
1100                         unsigned long *populate,
1101                         struct list_head *uf)
1102 {
1103         struct vm_area_struct *vma;
1104         struct vm_region *region;
1105         struct rb_node *rb;
1106         unsigned long capabilities, result;
1107         int ret;
1108
1109         *populate = 0;
1110
1111         /* decide whether we should attempt the mapping, and if so what sort of
1112          * mapping */
1113         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1114                                     &capabilities);
1115         if (ret < 0)
1116                 return ret;
1117
1118         /* we ignore the address hint */
1119         addr = 0;
1120         len = PAGE_ALIGN(len);
1121
1122         /* we've determined that we can make the mapping, now translate what we
1123          * now know into VMA flags */
1124         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1125
1126         /* we're going to need to record the mapping */
1127         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1128         if (!region)
1129                 goto error_getting_region;
1130
1131         vma = vm_area_alloc(current->mm);
1132         if (!vma)
1133                 goto error_getting_vma;
1134
1135         region->vm_usage = 1;
1136         region->vm_flags = vm_flags;
1137         region->vm_pgoff = pgoff;
1138
1139         vma->vm_flags = vm_flags;
1140         vma->vm_pgoff = pgoff;
1141
1142         if (file) {
1143                 region->vm_file = get_file(file);
1144                 vma->vm_file = get_file(file);
1145         }
1146
1147         down_write(&nommu_region_sem);
1148
1149         /* if we want to share, we need to check for regions created by other
1150          * mmap() calls that overlap with our proposed mapping
1151          * - we can only share with a superset match on most regular files
1152          * - shared mappings on character devices and memory backed files are
1153          *   permitted to overlap inexactly as far as we are concerned for in
1154          *   these cases, sharing is handled in the driver or filesystem rather
1155          *   than here
1156          */
1157         if (vm_flags & VM_MAYSHARE) {
1158                 struct vm_region *pregion;
1159                 unsigned long pglen, rpglen, pgend, rpgend, start;
1160
1161                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1162                 pgend = pgoff + pglen;
1163
1164                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1165                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1166
1167                         if (!(pregion->vm_flags & VM_MAYSHARE))
1168                                 continue;
1169
1170                         /* search for overlapping mappings on the same file */
1171                         if (file_inode(pregion->vm_file) !=
1172                             file_inode(file))
1173                                 continue;
1174
1175                         if (pregion->vm_pgoff >= pgend)
1176                                 continue;
1177
1178                         rpglen = pregion->vm_end - pregion->vm_start;
1179                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180                         rpgend = pregion->vm_pgoff + rpglen;
1181                         if (pgoff >= rpgend)
1182                                 continue;
1183
1184                         /* handle inexactly overlapping matches between
1185                          * mappings */
1186                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1187                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1188                                 /* new mapping is not a subset of the region */
1189                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1190                                         goto sharing_violation;
1191                                 continue;
1192                         }
1193
1194                         /* we've found a region we can share */
1195                         pregion->vm_usage++;
1196                         vma->vm_region = pregion;
1197                         start = pregion->vm_start;
1198                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1199                         vma->vm_start = start;
1200                         vma->vm_end = start + len;
1201
1202                         if (pregion->vm_flags & VM_MAPPED_COPY)
1203                                 vma->vm_flags |= VM_MAPPED_COPY;
1204                         else {
1205                                 ret = do_mmap_shared_file(vma);
1206                                 if (ret < 0) {
1207                                         vma->vm_region = NULL;
1208                                         vma->vm_start = 0;
1209                                         vma->vm_end = 0;
1210                                         pregion->vm_usage--;
1211                                         pregion = NULL;
1212                                         goto error_just_free;
1213                                 }
1214                         }
1215                         fput(region->vm_file);
1216                         kmem_cache_free(vm_region_jar, region);
1217                         region = pregion;
1218                         result = start;
1219                         goto share;
1220                 }
1221
1222                 /* obtain the address at which to make a shared mapping
1223                  * - this is the hook for quasi-memory character devices to
1224                  *   tell us the location of a shared mapping
1225                  */
1226                 if (capabilities & NOMMU_MAP_DIRECT) {
1227                         addr = file->f_op->get_unmapped_area(file, addr, len,
1228                                                              pgoff, flags);
1229                         if (IS_ERR_VALUE(addr)) {
1230                                 ret = addr;
1231                                 if (ret != -ENOSYS)
1232                                         goto error_just_free;
1233
1234                                 /* the driver refused to tell us where to site
1235                                  * the mapping so we'll have to attempt to copy
1236                                  * it */
1237                                 ret = -ENODEV;
1238                                 if (!(capabilities & NOMMU_MAP_COPY))
1239                                         goto error_just_free;
1240
1241                                 capabilities &= ~NOMMU_MAP_DIRECT;
1242                         } else {
1243                                 vma->vm_start = region->vm_start = addr;
1244                                 vma->vm_end = region->vm_end = addr + len;
1245                         }
1246                 }
1247         }
1248
1249         vma->vm_region = region;
1250
1251         /* set up the mapping
1252          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1253          */
1254         if (file && vma->vm_flags & VM_SHARED)
1255                 ret = do_mmap_shared_file(vma);
1256         else
1257                 ret = do_mmap_private(vma, region, len, capabilities);
1258         if (ret < 0)
1259                 goto error_just_free;
1260         add_nommu_region(region);
1261
1262         /* clear anonymous mappings that don't ask for uninitialized data */
1263         if (!vma->vm_file &&
1264             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1265              !(flags & MAP_UNINITIALIZED)))
1266                 memset((void *)region->vm_start, 0,
1267                        region->vm_end - region->vm_start);
1268
1269         /* okay... we have a mapping; now we have to register it */
1270         result = vma->vm_start;
1271
1272         current->mm->total_vm += len >> PAGE_SHIFT;
1273
1274 share:
1275         add_vma_to_mm(current->mm, vma);
1276
1277         /* we flush the region from the icache only when the first executable
1278          * mapping of it is made  */
1279         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1280                 flush_icache_range(region->vm_start, region->vm_end);
1281                 region->vm_icache_flushed = true;
1282         }
1283
1284         up_write(&nommu_region_sem);
1285
1286         return result;
1287
1288 error_just_free:
1289         up_write(&nommu_region_sem);
1290 error:
1291         if (region->vm_file)
1292                 fput(region->vm_file);
1293         kmem_cache_free(vm_region_jar, region);
1294         if (vma->vm_file)
1295                 fput(vma->vm_file);
1296         vm_area_free(vma);
1297         return ret;
1298
1299 sharing_violation:
1300         up_write(&nommu_region_sem);
1301         pr_warn("Attempt to share mismatched mappings\n");
1302         ret = -EINVAL;
1303         goto error;
1304
1305 error_getting_vma:
1306         kmem_cache_free(vm_region_jar, region);
1307         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1308                         len, current->pid);
1309         show_free_areas(0, NULL);
1310         return -ENOMEM;
1311
1312 error_getting_region:
1313         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1314                         len, current->pid);
1315         show_free_areas(0, NULL);
1316         return -ENOMEM;
1317 }
1318
1319 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1320                               unsigned long prot, unsigned long flags,
1321                               unsigned long fd, unsigned long pgoff)
1322 {
1323         struct file *file = NULL;
1324         unsigned long retval = -EBADF;
1325
1326         audit_mmap_fd(fd, flags);
1327         if (!(flags & MAP_ANONYMOUS)) {
1328                 file = fget(fd);
1329                 if (!file)
1330                         goto out;
1331         }
1332
1333         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1334
1335         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1336
1337         if (file)
1338                 fput(file);
1339 out:
1340         return retval;
1341 }
1342
1343 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1344                 unsigned long, prot, unsigned long, flags,
1345                 unsigned long, fd, unsigned long, pgoff)
1346 {
1347         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1348 }
1349
1350 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1351 struct mmap_arg_struct {
1352         unsigned long addr;
1353         unsigned long len;
1354         unsigned long prot;
1355         unsigned long flags;
1356         unsigned long fd;
1357         unsigned long offset;
1358 };
1359
1360 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1361 {
1362         struct mmap_arg_struct a;
1363
1364         if (copy_from_user(&a, arg, sizeof(a)))
1365                 return -EFAULT;
1366         if (offset_in_page(a.offset))
1367                 return -EINVAL;
1368
1369         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1370                                a.offset >> PAGE_SHIFT);
1371 }
1372 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1373
1374 /*
1375  * split a vma into two pieces at address 'addr', a new vma is allocated either
1376  * for the first part or the tail.
1377  */
1378 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1379               unsigned long addr, int new_below)
1380 {
1381         struct vm_area_struct *new;
1382         struct vm_region *region;
1383         unsigned long npages;
1384
1385         /* we're only permitted to split anonymous regions (these should have
1386          * only a single usage on the region) */
1387         if (vma->vm_file)
1388                 return -ENOMEM;
1389
1390         if (mm->map_count >= sysctl_max_map_count)
1391                 return -ENOMEM;
1392
1393         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1394         if (!region)
1395                 return -ENOMEM;
1396
1397         new = vm_area_dup(vma);
1398         if (!new) {
1399                 kmem_cache_free(vm_region_jar, region);
1400                 return -ENOMEM;
1401         }
1402
1403         /* most fields are the same, copy all, and then fixup */
1404         *region = *vma->vm_region;
1405         new->vm_region = region;
1406
1407         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1408
1409         if (new_below) {
1410                 region->vm_top = region->vm_end = new->vm_end = addr;
1411         } else {
1412                 region->vm_start = new->vm_start = addr;
1413                 region->vm_pgoff = new->vm_pgoff += npages;
1414         }
1415
1416         if (new->vm_ops && new->vm_ops->open)
1417                 new->vm_ops->open(new);
1418
1419         delete_vma_from_mm(vma);
1420         down_write(&nommu_region_sem);
1421         delete_nommu_region(vma->vm_region);
1422         if (new_below) {
1423                 vma->vm_region->vm_start = vma->vm_start = addr;
1424                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1425         } else {
1426                 vma->vm_region->vm_end = vma->vm_end = addr;
1427                 vma->vm_region->vm_top = addr;
1428         }
1429         add_nommu_region(vma->vm_region);
1430         add_nommu_region(new->vm_region);
1431         up_write(&nommu_region_sem);
1432         add_vma_to_mm(mm, vma);
1433         add_vma_to_mm(mm, new);
1434         return 0;
1435 }
1436
1437 /*
1438  * shrink a VMA by removing the specified chunk from either the beginning or
1439  * the end
1440  */
1441 static int shrink_vma(struct mm_struct *mm,
1442                       struct vm_area_struct *vma,
1443                       unsigned long from, unsigned long to)
1444 {
1445         struct vm_region *region;
1446
1447         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1448          * and list */
1449         delete_vma_from_mm(vma);
1450         if (from > vma->vm_start)
1451                 vma->vm_end = from;
1452         else
1453                 vma->vm_start = to;
1454         add_vma_to_mm(mm, vma);
1455
1456         /* cut the backing region down to size */
1457         region = vma->vm_region;
1458         BUG_ON(region->vm_usage != 1);
1459
1460         down_write(&nommu_region_sem);
1461         delete_nommu_region(region);
1462         if (from > region->vm_start) {
1463                 to = region->vm_top;
1464                 region->vm_top = region->vm_end = from;
1465         } else {
1466                 region->vm_start = to;
1467         }
1468         add_nommu_region(region);
1469         up_write(&nommu_region_sem);
1470
1471         free_page_series(from, to);
1472         return 0;
1473 }
1474
1475 /*
1476  * release a mapping
1477  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1478  *   VMA, though it need not cover the whole VMA
1479  */
1480 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1481 {
1482         struct vm_area_struct *vma;
1483         unsigned long end;
1484         int ret;
1485
1486         len = PAGE_ALIGN(len);
1487         if (len == 0)
1488                 return -EINVAL;
1489
1490         end = start + len;
1491
1492         /* find the first potentially overlapping VMA */
1493         vma = find_vma(mm, start);
1494         if (!vma) {
1495                 static int limit;
1496                 if (limit < 5) {
1497                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1498                                         current->pid, current->comm,
1499                                         start, start + len - 1);
1500                         limit++;
1501                 }
1502                 return -EINVAL;
1503         }
1504
1505         /* we're allowed to split an anonymous VMA but not a file-backed one */
1506         if (vma->vm_file) {
1507                 do {
1508                         if (start > vma->vm_start)
1509                                 return -EINVAL;
1510                         if (end == vma->vm_end)
1511                                 goto erase_whole_vma;
1512                         vma = vma->vm_next;
1513                 } while (vma);
1514                 return -EINVAL;
1515         } else {
1516                 /* the chunk must be a subset of the VMA found */
1517                 if (start == vma->vm_start && end == vma->vm_end)
1518                         goto erase_whole_vma;
1519                 if (start < vma->vm_start || end > vma->vm_end)
1520                         return -EINVAL;
1521                 if (offset_in_page(start))
1522                         return -EINVAL;
1523                 if (end != vma->vm_end && offset_in_page(end))
1524                         return -EINVAL;
1525                 if (start != vma->vm_start && end != vma->vm_end) {
1526                         ret = split_vma(mm, vma, start, 1);
1527                         if (ret < 0)
1528                                 return ret;
1529                 }
1530                 return shrink_vma(mm, vma, start, end);
1531         }
1532
1533 erase_whole_vma:
1534         delete_vma_from_mm(vma);
1535         delete_vma(mm, vma);
1536         return 0;
1537 }
1538 EXPORT_SYMBOL(do_munmap);
1539
1540 int vm_munmap(unsigned long addr, size_t len)
1541 {
1542         struct mm_struct *mm = current->mm;
1543         int ret;
1544
1545         down_write(&mm->mmap_sem);
1546         ret = do_munmap(mm, addr, len, NULL);
1547         up_write(&mm->mmap_sem);
1548         return ret;
1549 }
1550 EXPORT_SYMBOL(vm_munmap);
1551
1552 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1553 {
1554         return vm_munmap(addr, len);
1555 }
1556
1557 /*
1558  * release all the mappings made in a process's VM space
1559  */
1560 void exit_mmap(struct mm_struct *mm)
1561 {
1562         struct vm_area_struct *vma;
1563
1564         if (!mm)
1565                 return;
1566
1567         mm->total_vm = 0;
1568
1569         while ((vma = mm->mmap)) {
1570                 mm->mmap = vma->vm_next;
1571                 delete_vma_from_mm(vma);
1572                 delete_vma(mm, vma);
1573                 cond_resched();
1574         }
1575 }
1576
1577 int vm_brk(unsigned long addr, unsigned long len)
1578 {
1579         return -ENOMEM;
1580 }
1581
1582 /*
1583  * expand (or shrink) an existing mapping, potentially moving it at the same
1584  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1585  *
1586  * under NOMMU conditions, we only permit changing a mapping's size, and only
1587  * as long as it stays within the region allocated by do_mmap_private() and the
1588  * block is not shareable
1589  *
1590  * MREMAP_FIXED is not supported under NOMMU conditions
1591  */
1592 static unsigned long do_mremap(unsigned long addr,
1593                         unsigned long old_len, unsigned long new_len,
1594                         unsigned long flags, unsigned long new_addr)
1595 {
1596         struct vm_area_struct *vma;
1597
1598         /* insanity checks first */
1599         old_len = PAGE_ALIGN(old_len);
1600         new_len = PAGE_ALIGN(new_len);
1601         if (old_len == 0 || new_len == 0)
1602                 return (unsigned long) -EINVAL;
1603
1604         if (offset_in_page(addr))
1605                 return -EINVAL;
1606
1607         if (flags & MREMAP_FIXED && new_addr != addr)
1608                 return (unsigned long) -EINVAL;
1609
1610         vma = find_vma_exact(current->mm, addr, old_len);
1611         if (!vma)
1612                 return (unsigned long) -EINVAL;
1613
1614         if (vma->vm_end != vma->vm_start + old_len)
1615                 return (unsigned long) -EFAULT;
1616
1617         if (vma->vm_flags & VM_MAYSHARE)
1618                 return (unsigned long) -EPERM;
1619
1620         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1621                 return (unsigned long) -ENOMEM;
1622
1623         /* all checks complete - do it */
1624         vma->vm_end = vma->vm_start + new_len;
1625         return vma->vm_start;
1626 }
1627
1628 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1629                 unsigned long, new_len, unsigned long, flags,
1630                 unsigned long, new_addr)
1631 {
1632         unsigned long ret;
1633
1634         down_write(&current->mm->mmap_sem);
1635         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1636         up_write(&current->mm->mmap_sem);
1637         return ret;
1638 }
1639
1640 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1641                          unsigned int foll_flags)
1642 {
1643         return NULL;
1644 }
1645
1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1647                 unsigned long pfn, unsigned long size, pgprot_t prot)
1648 {
1649         if (addr != (pfn << PAGE_SHIFT))
1650                 return -EINVAL;
1651
1652         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1653         return 0;
1654 }
1655 EXPORT_SYMBOL(remap_pfn_range);
1656
1657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1658 {
1659         unsigned long pfn = start >> PAGE_SHIFT;
1660         unsigned long vm_len = vma->vm_end - vma->vm_start;
1661
1662         pfn += vma->vm_pgoff;
1663         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1664 }
1665 EXPORT_SYMBOL(vm_iomap_memory);
1666
1667 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1668                         unsigned long pgoff)
1669 {
1670         unsigned int size = vma->vm_end - vma->vm_start;
1671
1672         if (!(vma->vm_flags & VM_USERMAP))
1673                 return -EINVAL;
1674
1675         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1676         vma->vm_end = vma->vm_start + size;
1677
1678         return 0;
1679 }
1680 EXPORT_SYMBOL(remap_vmalloc_range);
1681
1682 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1683         unsigned long len, unsigned long pgoff, unsigned long flags)
1684 {
1685         return -ENOMEM;
1686 }
1687
1688 vm_fault_t filemap_fault(struct vm_fault *vmf)
1689 {
1690         BUG();
1691         return 0;
1692 }
1693 EXPORT_SYMBOL(filemap_fault);
1694
1695 void filemap_map_pages(struct vm_fault *vmf,
1696                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1697 {
1698         BUG();
1699 }
1700 EXPORT_SYMBOL(filemap_map_pages);
1701
1702 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1703                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1704 {
1705         struct vm_area_struct *vma;
1706         int write = gup_flags & FOLL_WRITE;
1707
1708         if (down_read_killable(&mm->mmap_sem))
1709                 return 0;
1710
1711         /* the access must start within one of the target process's mappings */
1712         vma = find_vma(mm, addr);
1713         if (vma) {
1714                 /* don't overrun this mapping */
1715                 if (addr + len >= vma->vm_end)
1716                         len = vma->vm_end - addr;
1717
1718                 /* only read or write mappings where it is permitted */
1719                 if (write && vma->vm_flags & VM_MAYWRITE)
1720                         copy_to_user_page(vma, NULL, addr,
1721                                          (void *) addr, buf, len);
1722                 else if (!write && vma->vm_flags & VM_MAYREAD)
1723                         copy_from_user_page(vma, NULL, addr,
1724                                             buf, (void *) addr, len);
1725                 else
1726                         len = 0;
1727         } else {
1728                 len = 0;
1729         }
1730
1731         up_read(&mm->mmap_sem);
1732
1733         return len;
1734 }
1735
1736 /**
1737  * access_remote_vm - access another process' address space
1738  * @mm:         the mm_struct of the target address space
1739  * @addr:       start address to access
1740  * @buf:        source or destination buffer
1741  * @len:        number of bytes to transfer
1742  * @gup_flags:  flags modifying lookup behaviour
1743  *
1744  * The caller must hold a reference on @mm.
1745  */
1746 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1747                 void *buf, int len, unsigned int gup_flags)
1748 {
1749         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1750 }
1751
1752 /*
1753  * Access another process' address space.
1754  * - source/target buffer must be kernel space
1755  */
1756 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1757                 unsigned int gup_flags)
1758 {
1759         struct mm_struct *mm;
1760
1761         if (addr + len < addr)
1762                 return 0;
1763
1764         mm = get_task_mm(tsk);
1765         if (!mm)
1766                 return 0;
1767
1768         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1769
1770         mmput(mm);
1771         return len;
1772 }
1773 EXPORT_SYMBOL_GPL(access_process_vm);
1774
1775 /**
1776  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1777  * @inode: The inode to check
1778  * @size: The current filesize of the inode
1779  * @newsize: The proposed filesize of the inode
1780  *
1781  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1782  * make sure that that any outstanding VMAs aren't broken and then shrink the
1783  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1784  * automatically grant mappings that are too large.
1785  */
1786 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1787                                 size_t newsize)
1788 {
1789         struct vm_area_struct *vma;
1790         struct vm_region *region;
1791         pgoff_t low, high;
1792         size_t r_size, r_top;
1793
1794         low = newsize >> PAGE_SHIFT;
1795         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1796
1797         down_write(&nommu_region_sem);
1798         i_mmap_lock_read(inode->i_mapping);
1799
1800         /* search for VMAs that fall within the dead zone */
1801         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1802                 /* found one - only interested if it's shared out of the page
1803                  * cache */
1804                 if (vma->vm_flags & VM_SHARED) {
1805                         i_mmap_unlock_read(inode->i_mapping);
1806                         up_write(&nommu_region_sem);
1807                         return -ETXTBSY; /* not quite true, but near enough */
1808                 }
1809         }
1810
1811         /* reduce any regions that overlap the dead zone - if in existence,
1812          * these will be pointed to by VMAs that don't overlap the dead zone
1813          *
1814          * we don't check for any regions that start beyond the EOF as there
1815          * shouldn't be any
1816          */
1817         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1818                 if (!(vma->vm_flags & VM_SHARED))
1819                         continue;
1820
1821                 region = vma->vm_region;
1822                 r_size = region->vm_top - region->vm_start;
1823                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1824
1825                 if (r_top > newsize) {
1826                         region->vm_top -= r_top - newsize;
1827                         if (region->vm_end > region->vm_top)
1828                                 region->vm_end = region->vm_top;
1829                 }
1830         }
1831
1832         i_mmap_unlock_read(inode->i_mapping);
1833         up_write(&nommu_region_sem);
1834         return 0;
1835 }
1836
1837 /*
1838  * Initialise sysctl_user_reserve_kbytes.
1839  *
1840  * This is intended to prevent a user from starting a single memory hogging
1841  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1842  * mode.
1843  *
1844  * The default value is min(3% of free memory, 128MB)
1845  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1846  */
1847 static int __meminit init_user_reserve(void)
1848 {
1849         unsigned long free_kbytes;
1850
1851         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1852
1853         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1854         return 0;
1855 }
1856 subsys_initcall(init_user_reserve);
1857
1858 /*
1859  * Initialise sysctl_admin_reserve_kbytes.
1860  *
1861  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1862  * to log in and kill a memory hogging process.
1863  *
1864  * Systems with more than 256MB will reserve 8MB, enough to recover
1865  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1866  * only reserve 3% of free pages by default.
1867  */
1868 static int __meminit init_admin_reserve(void)
1869 {
1870         unsigned long free_kbytes;
1871
1872         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1873
1874         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1875         return 0;
1876 }
1877 subsys_initcall(init_admin_reserve);