s390/mm,ptdump: add proper ifdefs
[linux-2.6-microblaze.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154                 unsigned long start, unsigned long end, gfp_t gfp_mask,
155                 pgprot_t prot, unsigned long vm_flags, int node,
156                 const void *caller)
157 {
158         return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162                 int node, const void *caller)
163 {
164         return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169         void *ret;
170
171         ret = __vmalloc(size, flags);
172         if (ret) {
173                 struct vm_area_struct *vma;
174
175                 mmap_write_lock(current->mm);
176                 vma = find_vma(current->mm, (unsigned long)ret);
177                 if (vma)
178                         vma->vm_flags |= VM_USERMAP;
179                 mmap_write_unlock(current->mm);
180         }
181
182         return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193         return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199         return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205         /* Don't allow overflow */
206         if ((unsigned long) buf + count < count)
207                 count = -(unsigned long) buf;
208
209         memcpy(buf, addr, count);
210         return count;
211 }
212
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215         /* Don't allow overflow */
216         if ((unsigned long) addr + count < count)
217                 count = -(unsigned long) addr;
218
219         memcpy(addr, buf, count);
220         return count;
221 }
222
223 /*
224  *      vmalloc  -  allocate virtually contiguous memory
225  *
226  *      @size:          allocation size
227  *
228  *      Allocate enough pages to cover @size from the page level
229  *      allocator and map them into contiguous kernel virtual space.
230  *
231  *      For tight control over page level allocator and protection flags
232  *      use __vmalloc() instead.
233  */
234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241  *      vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *      @size:          allocation size
244  *
245  *      Allocate enough pages to cover @size from the page level
246  *      allocator and map them into contiguous kernel virtual space.
247  *      The memory allocated is set to zero.
248  *
249  *      For tight control over page level allocator and protection flags
250  *      use __vmalloc() instead.
251  */
252 void *vzalloc(unsigned long size)
253 {
254         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:       allocation size
261  * @node:       numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271         return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:       allocation size
278  * @node:       numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289         return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
295  *      @size:          allocation size
296  *
297  *      Allocate enough 32bit PA addressable pages to cover @size from the
298  *      page level allocator and map them into contiguous kernel virtual space.
299  */
300 void *vmalloc_32(unsigned long size)
301 {
302         return __vmalloc(size, GFP_KERNEL);
303 }
304 EXPORT_SYMBOL(vmalloc_32);
305
306 /**
307  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308  *      @size:          allocation size
309  *
310  * The resulting memory area is 32bit addressable and zeroed so it can be
311  * mapped to userspace without leaking data.
312  *
313  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314  * remap_vmalloc_range() are permissible.
315  */
316 void *vmalloc_32_user(unsigned long size)
317 {
318         /*
319          * We'll have to sort out the ZONE_DMA bits for 64-bit,
320          * but for now this can simply use vmalloc_user() directly.
321          */
322         return vmalloc_user(size);
323 }
324 EXPORT_SYMBOL(vmalloc_32_user);
325
326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327 {
328         BUG();
329         return NULL;
330 }
331 EXPORT_SYMBOL(vmap);
332
333 void vunmap(const void *addr)
334 {
335         BUG();
336 }
337 EXPORT_SYMBOL(vunmap);
338
339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
340 {
341         BUG();
342         return NULL;
343 }
344 EXPORT_SYMBOL(vm_map_ram);
345
346 void vm_unmap_ram(const void *mem, unsigned int count)
347 {
348         BUG();
349 }
350 EXPORT_SYMBOL(vm_unmap_ram);
351
352 void vm_unmap_aliases(void)
353 {
354 }
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356
357 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
358 {
359         BUG();
360         return NULL;
361 }
362 EXPORT_SYMBOL_GPL(alloc_vm_area);
363
364 void free_vm_area(struct vm_struct *area)
365 {
366         BUG();
367 }
368 EXPORT_SYMBOL_GPL(free_vm_area);
369
370 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
371                    struct page *page)
372 {
373         return -EINVAL;
374 }
375 EXPORT_SYMBOL(vm_insert_page);
376
377 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
378                         unsigned long num)
379 {
380         return -EINVAL;
381 }
382 EXPORT_SYMBOL(vm_map_pages);
383
384 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
385                                 unsigned long num)
386 {
387         return -EINVAL;
388 }
389 EXPORT_SYMBOL(vm_map_pages_zero);
390
391 /*
392  *  sys_brk() for the most part doesn't need the global kernel
393  *  lock, except when an application is doing something nasty
394  *  like trying to un-brk an area that has already been mapped
395  *  to a regular file.  in this case, the unmapping will need
396  *  to invoke file system routines that need the global lock.
397  */
398 SYSCALL_DEFINE1(brk, unsigned long, brk)
399 {
400         struct mm_struct *mm = current->mm;
401
402         if (brk < mm->start_brk || brk > mm->context.end_brk)
403                 return mm->brk;
404
405         if (mm->brk == brk)
406                 return mm->brk;
407
408         /*
409          * Always allow shrinking brk
410          */
411         if (brk <= mm->brk) {
412                 mm->brk = brk;
413                 return brk;
414         }
415
416         /*
417          * Ok, looks good - let it rip.
418          */
419         flush_icache_user_range(mm->brk, brk);
420         return mm->brk = brk;
421 }
422
423 /*
424  * initialise the percpu counter for VM and region record slabs
425  */
426 void __init mmap_init(void)
427 {
428         int ret;
429
430         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
431         VM_BUG_ON(ret);
432         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
433 }
434
435 /*
436  * validate the region tree
437  * - the caller must hold the region lock
438  */
439 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
440 static noinline void validate_nommu_regions(void)
441 {
442         struct vm_region *region, *last;
443         struct rb_node *p, *lastp;
444
445         lastp = rb_first(&nommu_region_tree);
446         if (!lastp)
447                 return;
448
449         last = rb_entry(lastp, struct vm_region, vm_rb);
450         BUG_ON(last->vm_end <= last->vm_start);
451         BUG_ON(last->vm_top < last->vm_end);
452
453         while ((p = rb_next(lastp))) {
454                 region = rb_entry(p, struct vm_region, vm_rb);
455                 last = rb_entry(lastp, struct vm_region, vm_rb);
456
457                 BUG_ON(region->vm_end <= region->vm_start);
458                 BUG_ON(region->vm_top < region->vm_end);
459                 BUG_ON(region->vm_start < last->vm_top);
460
461                 lastp = p;
462         }
463 }
464 #else
465 static void validate_nommu_regions(void)
466 {
467 }
468 #endif
469
470 /*
471  * add a region into the global tree
472  */
473 static void add_nommu_region(struct vm_region *region)
474 {
475         struct vm_region *pregion;
476         struct rb_node **p, *parent;
477
478         validate_nommu_regions();
479
480         parent = NULL;
481         p = &nommu_region_tree.rb_node;
482         while (*p) {
483                 parent = *p;
484                 pregion = rb_entry(parent, struct vm_region, vm_rb);
485                 if (region->vm_start < pregion->vm_start)
486                         p = &(*p)->rb_left;
487                 else if (region->vm_start > pregion->vm_start)
488                         p = &(*p)->rb_right;
489                 else if (pregion == region)
490                         return;
491                 else
492                         BUG();
493         }
494
495         rb_link_node(&region->vm_rb, parent, p);
496         rb_insert_color(&region->vm_rb, &nommu_region_tree);
497
498         validate_nommu_regions();
499 }
500
501 /*
502  * delete a region from the global tree
503  */
504 static void delete_nommu_region(struct vm_region *region)
505 {
506         BUG_ON(!nommu_region_tree.rb_node);
507
508         validate_nommu_regions();
509         rb_erase(&region->vm_rb, &nommu_region_tree);
510         validate_nommu_regions();
511 }
512
513 /*
514  * free a contiguous series of pages
515  */
516 static void free_page_series(unsigned long from, unsigned long to)
517 {
518         for (; from < to; from += PAGE_SIZE) {
519                 struct page *page = virt_to_page(from);
520
521                 atomic_long_dec(&mmap_pages_allocated);
522                 put_page(page);
523         }
524 }
525
526 /*
527  * release a reference to a region
528  * - the caller must hold the region semaphore for writing, which this releases
529  * - the region may not have been added to the tree yet, in which case vm_top
530  *   will equal vm_start
531  */
532 static void __put_nommu_region(struct vm_region *region)
533         __releases(nommu_region_sem)
534 {
535         BUG_ON(!nommu_region_tree.rb_node);
536
537         if (--region->vm_usage == 0) {
538                 if (region->vm_top > region->vm_start)
539                         delete_nommu_region(region);
540                 up_write(&nommu_region_sem);
541
542                 if (region->vm_file)
543                         fput(region->vm_file);
544
545                 /* IO memory and memory shared directly out of the pagecache
546                  * from ramfs/tmpfs mustn't be released here */
547                 if (region->vm_flags & VM_MAPPED_COPY)
548                         free_page_series(region->vm_start, region->vm_top);
549                 kmem_cache_free(vm_region_jar, region);
550         } else {
551                 up_write(&nommu_region_sem);
552         }
553 }
554
555 /*
556  * release a reference to a region
557  */
558 static void put_nommu_region(struct vm_region *region)
559 {
560         down_write(&nommu_region_sem);
561         __put_nommu_region(region);
562 }
563
564 /*
565  * add a VMA into a process's mm_struct in the appropriate place in the list
566  * and tree and add to the address space's page tree also if not an anonymous
567  * page
568  * - should be called with mm->mmap_lock held writelocked
569  */
570 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
571 {
572         struct vm_area_struct *pvma, *prev;
573         struct address_space *mapping;
574         struct rb_node **p, *parent, *rb_prev;
575
576         BUG_ON(!vma->vm_region);
577
578         mm->map_count++;
579         vma->vm_mm = mm;
580
581         /* add the VMA to the mapping */
582         if (vma->vm_file) {
583                 mapping = vma->vm_file->f_mapping;
584
585                 i_mmap_lock_write(mapping);
586                 flush_dcache_mmap_lock(mapping);
587                 vma_interval_tree_insert(vma, &mapping->i_mmap);
588                 flush_dcache_mmap_unlock(mapping);
589                 i_mmap_unlock_write(mapping);
590         }
591
592         /* add the VMA to the tree */
593         parent = rb_prev = NULL;
594         p = &mm->mm_rb.rb_node;
595         while (*p) {
596                 parent = *p;
597                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
598
599                 /* sort by: start addr, end addr, VMA struct addr in that order
600                  * (the latter is necessary as we may get identical VMAs) */
601                 if (vma->vm_start < pvma->vm_start)
602                         p = &(*p)->rb_left;
603                 else if (vma->vm_start > pvma->vm_start) {
604                         rb_prev = parent;
605                         p = &(*p)->rb_right;
606                 } else if (vma->vm_end < pvma->vm_end)
607                         p = &(*p)->rb_left;
608                 else if (vma->vm_end > pvma->vm_end) {
609                         rb_prev = parent;
610                         p = &(*p)->rb_right;
611                 } else if (vma < pvma)
612                         p = &(*p)->rb_left;
613                 else if (vma > pvma) {
614                         rb_prev = parent;
615                         p = &(*p)->rb_right;
616                 } else
617                         BUG();
618         }
619
620         rb_link_node(&vma->vm_rb, parent, p);
621         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
622
623         /* add VMA to the VMA list also */
624         prev = NULL;
625         if (rb_prev)
626                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
627
628         __vma_link_list(mm, vma, prev);
629 }
630
631 /*
632  * delete a VMA from its owning mm_struct and address space
633  */
634 static void delete_vma_from_mm(struct vm_area_struct *vma)
635 {
636         int i;
637         struct address_space *mapping;
638         struct mm_struct *mm = vma->vm_mm;
639         struct task_struct *curr = current;
640
641         mm->map_count--;
642         for (i = 0; i < VMACACHE_SIZE; i++) {
643                 /* if the vma is cached, invalidate the entire cache */
644                 if (curr->vmacache.vmas[i] == vma) {
645                         vmacache_invalidate(mm);
646                         break;
647                 }
648         }
649
650         /* remove the VMA from the mapping */
651         if (vma->vm_file) {
652                 mapping = vma->vm_file->f_mapping;
653
654                 i_mmap_lock_write(mapping);
655                 flush_dcache_mmap_lock(mapping);
656                 vma_interval_tree_remove(vma, &mapping->i_mmap);
657                 flush_dcache_mmap_unlock(mapping);
658                 i_mmap_unlock_write(mapping);
659         }
660
661         /* remove from the MM's tree and list */
662         rb_erase(&vma->vm_rb, &mm->mm_rb);
663
664         __vma_unlink_list(mm, vma);
665 }
666
667 /*
668  * destroy a VMA record
669  */
670 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672         if (vma->vm_ops && vma->vm_ops->close)
673                 vma->vm_ops->close(vma);
674         if (vma->vm_file)
675                 fput(vma->vm_file);
676         put_nommu_region(vma->vm_region);
677         vm_area_free(vma);
678 }
679
680 /*
681  * look up the first VMA in which addr resides, NULL if none
682  * - should be called with mm->mmap_lock at least held readlocked
683  */
684 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
685 {
686         struct vm_area_struct *vma;
687
688         /* check the cache first */
689         vma = vmacache_find(mm, addr);
690         if (likely(vma))
691                 return vma;
692
693         /* trawl the list (there may be multiple mappings in which addr
694          * resides) */
695         for (vma = mm->mmap; vma; vma = vma->vm_next) {
696                 if (vma->vm_start > addr)
697                         return NULL;
698                 if (vma->vm_end > addr) {
699                         vmacache_update(addr, vma);
700                         return vma;
701                 }
702         }
703
704         return NULL;
705 }
706 EXPORT_SYMBOL(find_vma);
707
708 /*
709  * find a VMA
710  * - we don't extend stack VMAs under NOMMU conditions
711  */
712 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
713 {
714         return find_vma(mm, addr);
715 }
716
717 /*
718  * expand a stack to a given address
719  * - not supported under NOMMU conditions
720  */
721 int expand_stack(struct vm_area_struct *vma, unsigned long address)
722 {
723         return -ENOMEM;
724 }
725
726 /*
727  * look up the first VMA exactly that exactly matches addr
728  * - should be called with mm->mmap_lock at least held readlocked
729  */
730 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
731                                              unsigned long addr,
732                                              unsigned long len)
733 {
734         struct vm_area_struct *vma;
735         unsigned long end = addr + len;
736
737         /* check the cache first */
738         vma = vmacache_find_exact(mm, addr, end);
739         if (vma)
740                 return vma;
741
742         /* trawl the list (there may be multiple mappings in which addr
743          * resides) */
744         for (vma = mm->mmap; vma; vma = vma->vm_next) {
745                 if (vma->vm_start < addr)
746                         continue;
747                 if (vma->vm_start > addr)
748                         return NULL;
749                 if (vma->vm_end == end) {
750                         vmacache_update(addr, vma);
751                         return vma;
752                 }
753         }
754
755         return NULL;
756 }
757
758 /*
759  * determine whether a mapping should be permitted and, if so, what sort of
760  * mapping we're capable of supporting
761  */
762 static int validate_mmap_request(struct file *file,
763                                  unsigned long addr,
764                                  unsigned long len,
765                                  unsigned long prot,
766                                  unsigned long flags,
767                                  unsigned long pgoff,
768                                  unsigned long *_capabilities)
769 {
770         unsigned long capabilities, rlen;
771         int ret;
772
773         /* do the simple checks first */
774         if (flags & MAP_FIXED)
775                 return -EINVAL;
776
777         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
778             (flags & MAP_TYPE) != MAP_SHARED)
779                 return -EINVAL;
780
781         if (!len)
782                 return -EINVAL;
783
784         /* Careful about overflows.. */
785         rlen = PAGE_ALIGN(len);
786         if (!rlen || rlen > TASK_SIZE)
787                 return -ENOMEM;
788
789         /* offset overflow? */
790         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
791                 return -EOVERFLOW;
792
793         if (file) {
794                 /* files must support mmap */
795                 if (!file->f_op->mmap)
796                         return -ENODEV;
797
798                 /* work out if what we've got could possibly be shared
799                  * - we support chardevs that provide their own "memory"
800                  * - we support files/blockdevs that are memory backed
801                  */
802                 if (file->f_op->mmap_capabilities) {
803                         capabilities = file->f_op->mmap_capabilities(file);
804                 } else {
805                         /* no explicit capabilities set, so assume some
806                          * defaults */
807                         switch (file_inode(file)->i_mode & S_IFMT) {
808                         case S_IFREG:
809                         case S_IFBLK:
810                                 capabilities = NOMMU_MAP_COPY;
811                                 break;
812
813                         case S_IFCHR:
814                                 capabilities =
815                                         NOMMU_MAP_DIRECT |
816                                         NOMMU_MAP_READ |
817                                         NOMMU_MAP_WRITE;
818                                 break;
819
820                         default:
821                                 return -EINVAL;
822                         }
823                 }
824
825                 /* eliminate any capabilities that we can't support on this
826                  * device */
827                 if (!file->f_op->get_unmapped_area)
828                         capabilities &= ~NOMMU_MAP_DIRECT;
829                 if (!(file->f_mode & FMODE_CAN_READ))
830                         capabilities &= ~NOMMU_MAP_COPY;
831
832                 /* The file shall have been opened with read permission. */
833                 if (!(file->f_mode & FMODE_READ))
834                         return -EACCES;
835
836                 if (flags & MAP_SHARED) {
837                         /* do checks for writing, appending and locking */
838                         if ((prot & PROT_WRITE) &&
839                             !(file->f_mode & FMODE_WRITE))
840                                 return -EACCES;
841
842                         if (IS_APPEND(file_inode(file)) &&
843                             (file->f_mode & FMODE_WRITE))
844                                 return -EACCES;
845
846                         if (locks_verify_locked(file))
847                                 return -EAGAIN;
848
849                         if (!(capabilities & NOMMU_MAP_DIRECT))
850                                 return -ENODEV;
851
852                         /* we mustn't privatise shared mappings */
853                         capabilities &= ~NOMMU_MAP_COPY;
854                 } else {
855                         /* we're going to read the file into private memory we
856                          * allocate */
857                         if (!(capabilities & NOMMU_MAP_COPY))
858                                 return -ENODEV;
859
860                         /* we don't permit a private writable mapping to be
861                          * shared with the backing device */
862                         if (prot & PROT_WRITE)
863                                 capabilities &= ~NOMMU_MAP_DIRECT;
864                 }
865
866                 if (capabilities & NOMMU_MAP_DIRECT) {
867                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
868                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
869                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
870                             ) {
871                                 capabilities &= ~NOMMU_MAP_DIRECT;
872                                 if (flags & MAP_SHARED) {
873                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
874                                         return -EINVAL;
875                                 }
876                         }
877                 }
878
879                 /* handle executable mappings and implied executable
880                  * mappings */
881                 if (path_noexec(&file->f_path)) {
882                         if (prot & PROT_EXEC)
883                                 return -EPERM;
884                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
885                         /* handle implication of PROT_EXEC by PROT_READ */
886                         if (current->personality & READ_IMPLIES_EXEC) {
887                                 if (capabilities & NOMMU_MAP_EXEC)
888                                         prot |= PROT_EXEC;
889                         }
890                 } else if ((prot & PROT_READ) &&
891                          (prot & PROT_EXEC) &&
892                          !(capabilities & NOMMU_MAP_EXEC)
893                          ) {
894                         /* backing file is not executable, try to copy */
895                         capabilities &= ~NOMMU_MAP_DIRECT;
896                 }
897         } else {
898                 /* anonymous mappings are always memory backed and can be
899                  * privately mapped
900                  */
901                 capabilities = NOMMU_MAP_COPY;
902
903                 /* handle PROT_EXEC implication by PROT_READ */
904                 if ((prot & PROT_READ) &&
905                     (current->personality & READ_IMPLIES_EXEC))
906                         prot |= PROT_EXEC;
907         }
908
909         /* allow the security API to have its say */
910         ret = security_mmap_addr(addr);
911         if (ret < 0)
912                 return ret;
913
914         /* looks okay */
915         *_capabilities = capabilities;
916         return 0;
917 }
918
919 /*
920  * we've determined that we can make the mapping, now translate what we
921  * now know into VMA flags
922  */
923 static unsigned long determine_vm_flags(struct file *file,
924                                         unsigned long prot,
925                                         unsigned long flags,
926                                         unsigned long capabilities)
927 {
928         unsigned long vm_flags;
929
930         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
931         /* vm_flags |= mm->def_flags; */
932
933         if (!(capabilities & NOMMU_MAP_DIRECT)) {
934                 /* attempt to share read-only copies of mapped file chunks */
935                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
936                 if (file && !(prot & PROT_WRITE))
937                         vm_flags |= VM_MAYSHARE;
938         } else {
939                 /* overlay a shareable mapping on the backing device or inode
940                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
941                  * romfs/cramfs */
942                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
943                 if (flags & MAP_SHARED)
944                         vm_flags |= VM_SHARED;
945         }
946
947         /* refuse to let anyone share private mappings with this process if
948          * it's being traced - otherwise breakpoints set in it may interfere
949          * with another untraced process
950          */
951         if ((flags & MAP_PRIVATE) && current->ptrace)
952                 vm_flags &= ~VM_MAYSHARE;
953
954         return vm_flags;
955 }
956
957 /*
958  * set up a shared mapping on a file (the driver or filesystem provides and
959  * pins the storage)
960  */
961 static int do_mmap_shared_file(struct vm_area_struct *vma)
962 {
963         int ret;
964
965         ret = call_mmap(vma->vm_file, vma);
966         if (ret == 0) {
967                 vma->vm_region->vm_top = vma->vm_region->vm_end;
968                 return 0;
969         }
970         if (ret != -ENOSYS)
971                 return ret;
972
973         /* getting -ENOSYS indicates that direct mmap isn't possible (as
974          * opposed to tried but failed) so we can only give a suitable error as
975          * it's not possible to make a private copy if MAP_SHARED was given */
976         return -ENODEV;
977 }
978
979 /*
980  * set up a private mapping or an anonymous shared mapping
981  */
982 static int do_mmap_private(struct vm_area_struct *vma,
983                            struct vm_region *region,
984                            unsigned long len,
985                            unsigned long capabilities)
986 {
987         unsigned long total, point;
988         void *base;
989         int ret, order;
990
991         /* invoke the file's mapping function so that it can keep track of
992          * shared mappings on devices or memory
993          * - VM_MAYSHARE will be set if it may attempt to share
994          */
995         if (capabilities & NOMMU_MAP_DIRECT) {
996                 ret = call_mmap(vma->vm_file, vma);
997                 if (ret == 0) {
998                         /* shouldn't return success if we're not sharing */
999                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1000                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1001                         return 0;
1002                 }
1003                 if (ret != -ENOSYS)
1004                         return ret;
1005
1006                 /* getting an ENOSYS error indicates that direct mmap isn't
1007                  * possible (as opposed to tried but failed) so we'll try to
1008                  * make a private copy of the data and map that instead */
1009         }
1010
1011
1012         /* allocate some memory to hold the mapping
1013          * - note that this may not return a page-aligned address if the object
1014          *   we're allocating is smaller than a page
1015          */
1016         order = get_order(len);
1017         total = 1 << order;
1018         point = len >> PAGE_SHIFT;
1019
1020         /* we don't want to allocate a power-of-2 sized page set */
1021         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1022                 total = point;
1023
1024         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1025         if (!base)
1026                 goto enomem;
1027
1028         atomic_long_add(total, &mmap_pages_allocated);
1029
1030         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1031         region->vm_start = (unsigned long) base;
1032         region->vm_end   = region->vm_start + len;
1033         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1034
1035         vma->vm_start = region->vm_start;
1036         vma->vm_end   = region->vm_start + len;
1037
1038         if (vma->vm_file) {
1039                 /* read the contents of a file into the copy */
1040                 loff_t fpos;
1041
1042                 fpos = vma->vm_pgoff;
1043                 fpos <<= PAGE_SHIFT;
1044
1045                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1046                 if (ret < 0)
1047                         goto error_free;
1048
1049                 /* clear the last little bit */
1050                 if (ret < len)
1051                         memset(base + ret, 0, len - ret);
1052
1053         } else {
1054                 vma_set_anonymous(vma);
1055         }
1056
1057         return 0;
1058
1059 error_free:
1060         free_page_series(region->vm_start, region->vm_top);
1061         region->vm_start = vma->vm_start = 0;
1062         region->vm_end   = vma->vm_end = 0;
1063         region->vm_top   = 0;
1064         return ret;
1065
1066 enomem:
1067         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1068                len, current->pid, current->comm);
1069         show_free_areas(0, NULL);
1070         return -ENOMEM;
1071 }
1072
1073 /*
1074  * handle mapping creation for uClinux
1075  */
1076 unsigned long do_mmap(struct file *file,
1077                         unsigned long addr,
1078                         unsigned long len,
1079                         unsigned long prot,
1080                         unsigned long flags,
1081                         unsigned long pgoff,
1082                         unsigned long *populate,
1083                         struct list_head *uf)
1084 {
1085         struct vm_area_struct *vma;
1086         struct vm_region *region;
1087         struct rb_node *rb;
1088         vm_flags_t vm_flags;
1089         unsigned long capabilities, result;
1090         int ret;
1091
1092         *populate = 0;
1093
1094         /* decide whether we should attempt the mapping, and if so what sort of
1095          * mapping */
1096         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1097                                     &capabilities);
1098         if (ret < 0)
1099                 return ret;
1100
1101         /* we ignore the address hint */
1102         addr = 0;
1103         len = PAGE_ALIGN(len);
1104
1105         /* we've determined that we can make the mapping, now translate what we
1106          * now know into VMA flags */
1107         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1108
1109         /* we're going to need to record the mapping */
1110         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1111         if (!region)
1112                 goto error_getting_region;
1113
1114         vma = vm_area_alloc(current->mm);
1115         if (!vma)
1116                 goto error_getting_vma;
1117
1118         region->vm_usage = 1;
1119         region->vm_flags = vm_flags;
1120         region->vm_pgoff = pgoff;
1121
1122         vma->vm_flags = vm_flags;
1123         vma->vm_pgoff = pgoff;
1124
1125         if (file) {
1126                 region->vm_file = get_file(file);
1127                 vma->vm_file = get_file(file);
1128         }
1129
1130         down_write(&nommu_region_sem);
1131
1132         /* if we want to share, we need to check for regions created by other
1133          * mmap() calls that overlap with our proposed mapping
1134          * - we can only share with a superset match on most regular files
1135          * - shared mappings on character devices and memory backed files are
1136          *   permitted to overlap inexactly as far as we are concerned for in
1137          *   these cases, sharing is handled in the driver or filesystem rather
1138          *   than here
1139          */
1140         if (vm_flags & VM_MAYSHARE) {
1141                 struct vm_region *pregion;
1142                 unsigned long pglen, rpglen, pgend, rpgend, start;
1143
1144                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145                 pgend = pgoff + pglen;
1146
1147                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1148                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1149
1150                         if (!(pregion->vm_flags & VM_MAYSHARE))
1151                                 continue;
1152
1153                         /* search for overlapping mappings on the same file */
1154                         if (file_inode(pregion->vm_file) !=
1155                             file_inode(file))
1156                                 continue;
1157
1158                         if (pregion->vm_pgoff >= pgend)
1159                                 continue;
1160
1161                         rpglen = pregion->vm_end - pregion->vm_start;
1162                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163                         rpgend = pregion->vm_pgoff + rpglen;
1164                         if (pgoff >= rpgend)
1165                                 continue;
1166
1167                         /* handle inexactly overlapping matches between
1168                          * mappings */
1169                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1170                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1171                                 /* new mapping is not a subset of the region */
1172                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1173                                         goto sharing_violation;
1174                                 continue;
1175                         }
1176
1177                         /* we've found a region we can share */
1178                         pregion->vm_usage++;
1179                         vma->vm_region = pregion;
1180                         start = pregion->vm_start;
1181                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1182                         vma->vm_start = start;
1183                         vma->vm_end = start + len;
1184
1185                         if (pregion->vm_flags & VM_MAPPED_COPY)
1186                                 vma->vm_flags |= VM_MAPPED_COPY;
1187                         else {
1188                                 ret = do_mmap_shared_file(vma);
1189                                 if (ret < 0) {
1190                                         vma->vm_region = NULL;
1191                                         vma->vm_start = 0;
1192                                         vma->vm_end = 0;
1193                                         pregion->vm_usage--;
1194                                         pregion = NULL;
1195                                         goto error_just_free;
1196                                 }
1197                         }
1198                         fput(region->vm_file);
1199                         kmem_cache_free(vm_region_jar, region);
1200                         region = pregion;
1201                         result = start;
1202                         goto share;
1203                 }
1204
1205                 /* obtain the address at which to make a shared mapping
1206                  * - this is the hook for quasi-memory character devices to
1207                  *   tell us the location of a shared mapping
1208                  */
1209                 if (capabilities & NOMMU_MAP_DIRECT) {
1210                         addr = file->f_op->get_unmapped_area(file, addr, len,
1211                                                              pgoff, flags);
1212                         if (IS_ERR_VALUE(addr)) {
1213                                 ret = addr;
1214                                 if (ret != -ENOSYS)
1215                                         goto error_just_free;
1216
1217                                 /* the driver refused to tell us where to site
1218                                  * the mapping so we'll have to attempt to copy
1219                                  * it */
1220                                 ret = -ENODEV;
1221                                 if (!(capabilities & NOMMU_MAP_COPY))
1222                                         goto error_just_free;
1223
1224                                 capabilities &= ~NOMMU_MAP_DIRECT;
1225                         } else {
1226                                 vma->vm_start = region->vm_start = addr;
1227                                 vma->vm_end = region->vm_end = addr + len;
1228                         }
1229                 }
1230         }
1231
1232         vma->vm_region = region;
1233
1234         /* set up the mapping
1235          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1236          */
1237         if (file && vma->vm_flags & VM_SHARED)
1238                 ret = do_mmap_shared_file(vma);
1239         else
1240                 ret = do_mmap_private(vma, region, len, capabilities);
1241         if (ret < 0)
1242                 goto error_just_free;
1243         add_nommu_region(region);
1244
1245         /* clear anonymous mappings that don't ask for uninitialized data */
1246         if (!vma->vm_file &&
1247             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1248              !(flags & MAP_UNINITIALIZED)))
1249                 memset((void *)region->vm_start, 0,
1250                        region->vm_end - region->vm_start);
1251
1252         /* okay... we have a mapping; now we have to register it */
1253         result = vma->vm_start;
1254
1255         current->mm->total_vm += len >> PAGE_SHIFT;
1256
1257 share:
1258         add_vma_to_mm(current->mm, vma);
1259
1260         /* we flush the region from the icache only when the first executable
1261          * mapping of it is made  */
1262         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1263                 flush_icache_user_range(region->vm_start, region->vm_end);
1264                 region->vm_icache_flushed = true;
1265         }
1266
1267         up_write(&nommu_region_sem);
1268
1269         return result;
1270
1271 error_just_free:
1272         up_write(&nommu_region_sem);
1273 error:
1274         if (region->vm_file)
1275                 fput(region->vm_file);
1276         kmem_cache_free(vm_region_jar, region);
1277         if (vma->vm_file)
1278                 fput(vma->vm_file);
1279         vm_area_free(vma);
1280         return ret;
1281
1282 sharing_violation:
1283         up_write(&nommu_region_sem);
1284         pr_warn("Attempt to share mismatched mappings\n");
1285         ret = -EINVAL;
1286         goto error;
1287
1288 error_getting_vma:
1289         kmem_cache_free(vm_region_jar, region);
1290         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1291                         len, current->pid);
1292         show_free_areas(0, NULL);
1293         return -ENOMEM;
1294
1295 error_getting_region:
1296         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1297                         len, current->pid);
1298         show_free_areas(0, NULL);
1299         return -ENOMEM;
1300 }
1301
1302 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1303                               unsigned long prot, unsigned long flags,
1304                               unsigned long fd, unsigned long pgoff)
1305 {
1306         struct file *file = NULL;
1307         unsigned long retval = -EBADF;
1308
1309         audit_mmap_fd(fd, flags);
1310         if (!(flags & MAP_ANONYMOUS)) {
1311                 file = fget(fd);
1312                 if (!file)
1313                         goto out;
1314         }
1315
1316         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1317
1318         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1319
1320         if (file)
1321                 fput(file);
1322 out:
1323         return retval;
1324 }
1325
1326 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1327                 unsigned long, prot, unsigned long, flags,
1328                 unsigned long, fd, unsigned long, pgoff)
1329 {
1330         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1331 }
1332
1333 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1334 struct mmap_arg_struct {
1335         unsigned long addr;
1336         unsigned long len;
1337         unsigned long prot;
1338         unsigned long flags;
1339         unsigned long fd;
1340         unsigned long offset;
1341 };
1342
1343 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1344 {
1345         struct mmap_arg_struct a;
1346
1347         if (copy_from_user(&a, arg, sizeof(a)))
1348                 return -EFAULT;
1349         if (offset_in_page(a.offset))
1350                 return -EINVAL;
1351
1352         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1353                                a.offset >> PAGE_SHIFT);
1354 }
1355 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1356
1357 /*
1358  * split a vma into two pieces at address 'addr', a new vma is allocated either
1359  * for the first part or the tail.
1360  */
1361 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1362               unsigned long addr, int new_below)
1363 {
1364         struct vm_area_struct *new;
1365         struct vm_region *region;
1366         unsigned long npages;
1367
1368         /* we're only permitted to split anonymous regions (these should have
1369          * only a single usage on the region) */
1370         if (vma->vm_file)
1371                 return -ENOMEM;
1372
1373         if (mm->map_count >= sysctl_max_map_count)
1374                 return -ENOMEM;
1375
1376         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1377         if (!region)
1378                 return -ENOMEM;
1379
1380         new = vm_area_dup(vma);
1381         if (!new) {
1382                 kmem_cache_free(vm_region_jar, region);
1383                 return -ENOMEM;
1384         }
1385
1386         /* most fields are the same, copy all, and then fixup */
1387         *region = *vma->vm_region;
1388         new->vm_region = region;
1389
1390         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1391
1392         if (new_below) {
1393                 region->vm_top = region->vm_end = new->vm_end = addr;
1394         } else {
1395                 region->vm_start = new->vm_start = addr;
1396                 region->vm_pgoff = new->vm_pgoff += npages;
1397         }
1398
1399         if (new->vm_ops && new->vm_ops->open)
1400                 new->vm_ops->open(new);
1401
1402         delete_vma_from_mm(vma);
1403         down_write(&nommu_region_sem);
1404         delete_nommu_region(vma->vm_region);
1405         if (new_below) {
1406                 vma->vm_region->vm_start = vma->vm_start = addr;
1407                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1408         } else {
1409                 vma->vm_region->vm_end = vma->vm_end = addr;
1410                 vma->vm_region->vm_top = addr;
1411         }
1412         add_nommu_region(vma->vm_region);
1413         add_nommu_region(new->vm_region);
1414         up_write(&nommu_region_sem);
1415         add_vma_to_mm(mm, vma);
1416         add_vma_to_mm(mm, new);
1417         return 0;
1418 }
1419
1420 /*
1421  * shrink a VMA by removing the specified chunk from either the beginning or
1422  * the end
1423  */
1424 static int shrink_vma(struct mm_struct *mm,
1425                       struct vm_area_struct *vma,
1426                       unsigned long from, unsigned long to)
1427 {
1428         struct vm_region *region;
1429
1430         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1431          * and list */
1432         delete_vma_from_mm(vma);
1433         if (from > vma->vm_start)
1434                 vma->vm_end = from;
1435         else
1436                 vma->vm_start = to;
1437         add_vma_to_mm(mm, vma);
1438
1439         /* cut the backing region down to size */
1440         region = vma->vm_region;
1441         BUG_ON(region->vm_usage != 1);
1442
1443         down_write(&nommu_region_sem);
1444         delete_nommu_region(region);
1445         if (from > region->vm_start) {
1446                 to = region->vm_top;
1447                 region->vm_top = region->vm_end = from;
1448         } else {
1449                 region->vm_start = to;
1450         }
1451         add_nommu_region(region);
1452         up_write(&nommu_region_sem);
1453
1454         free_page_series(from, to);
1455         return 0;
1456 }
1457
1458 /*
1459  * release a mapping
1460  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1461  *   VMA, though it need not cover the whole VMA
1462  */
1463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1464 {
1465         struct vm_area_struct *vma;
1466         unsigned long end;
1467         int ret;
1468
1469         len = PAGE_ALIGN(len);
1470         if (len == 0)
1471                 return -EINVAL;
1472
1473         end = start + len;
1474
1475         /* find the first potentially overlapping VMA */
1476         vma = find_vma(mm, start);
1477         if (!vma) {
1478                 static int limit;
1479                 if (limit < 5) {
1480                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1481                                         current->pid, current->comm,
1482                                         start, start + len - 1);
1483                         limit++;
1484                 }
1485                 return -EINVAL;
1486         }
1487
1488         /* we're allowed to split an anonymous VMA but not a file-backed one */
1489         if (vma->vm_file) {
1490                 do {
1491                         if (start > vma->vm_start)
1492                                 return -EINVAL;
1493                         if (end == vma->vm_end)
1494                                 goto erase_whole_vma;
1495                         vma = vma->vm_next;
1496                 } while (vma);
1497                 return -EINVAL;
1498         } else {
1499                 /* the chunk must be a subset of the VMA found */
1500                 if (start == vma->vm_start && end == vma->vm_end)
1501                         goto erase_whole_vma;
1502                 if (start < vma->vm_start || end > vma->vm_end)
1503                         return -EINVAL;
1504                 if (offset_in_page(start))
1505                         return -EINVAL;
1506                 if (end != vma->vm_end && offset_in_page(end))
1507                         return -EINVAL;
1508                 if (start != vma->vm_start && end != vma->vm_end) {
1509                         ret = split_vma(mm, vma, start, 1);
1510                         if (ret < 0)
1511                                 return ret;
1512                 }
1513                 return shrink_vma(mm, vma, start, end);
1514         }
1515
1516 erase_whole_vma:
1517         delete_vma_from_mm(vma);
1518         delete_vma(mm, vma);
1519         return 0;
1520 }
1521 EXPORT_SYMBOL(do_munmap);
1522
1523 int vm_munmap(unsigned long addr, size_t len)
1524 {
1525         struct mm_struct *mm = current->mm;
1526         int ret;
1527
1528         mmap_write_lock(mm);
1529         ret = do_munmap(mm, addr, len, NULL);
1530         mmap_write_unlock(mm);
1531         return ret;
1532 }
1533 EXPORT_SYMBOL(vm_munmap);
1534
1535 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1536 {
1537         return vm_munmap(addr, len);
1538 }
1539
1540 /*
1541  * release all the mappings made in a process's VM space
1542  */
1543 void exit_mmap(struct mm_struct *mm)
1544 {
1545         struct vm_area_struct *vma;
1546
1547         if (!mm)
1548                 return;
1549
1550         mm->total_vm = 0;
1551
1552         while ((vma = mm->mmap)) {
1553                 mm->mmap = vma->vm_next;
1554                 delete_vma_from_mm(vma);
1555                 delete_vma(mm, vma);
1556                 cond_resched();
1557         }
1558 }
1559
1560 int vm_brk(unsigned long addr, unsigned long len)
1561 {
1562         return -ENOMEM;
1563 }
1564
1565 /*
1566  * expand (or shrink) an existing mapping, potentially moving it at the same
1567  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1568  *
1569  * under NOMMU conditions, we only permit changing a mapping's size, and only
1570  * as long as it stays within the region allocated by do_mmap_private() and the
1571  * block is not shareable
1572  *
1573  * MREMAP_FIXED is not supported under NOMMU conditions
1574  */
1575 static unsigned long do_mremap(unsigned long addr,
1576                         unsigned long old_len, unsigned long new_len,
1577                         unsigned long flags, unsigned long new_addr)
1578 {
1579         struct vm_area_struct *vma;
1580
1581         /* insanity checks first */
1582         old_len = PAGE_ALIGN(old_len);
1583         new_len = PAGE_ALIGN(new_len);
1584         if (old_len == 0 || new_len == 0)
1585                 return (unsigned long) -EINVAL;
1586
1587         if (offset_in_page(addr))
1588                 return -EINVAL;
1589
1590         if (flags & MREMAP_FIXED && new_addr != addr)
1591                 return (unsigned long) -EINVAL;
1592
1593         vma = find_vma_exact(current->mm, addr, old_len);
1594         if (!vma)
1595                 return (unsigned long) -EINVAL;
1596
1597         if (vma->vm_end != vma->vm_start + old_len)
1598                 return (unsigned long) -EFAULT;
1599
1600         if (vma->vm_flags & VM_MAYSHARE)
1601                 return (unsigned long) -EPERM;
1602
1603         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1604                 return (unsigned long) -ENOMEM;
1605
1606         /* all checks complete - do it */
1607         vma->vm_end = vma->vm_start + new_len;
1608         return vma->vm_start;
1609 }
1610
1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1612                 unsigned long, new_len, unsigned long, flags,
1613                 unsigned long, new_addr)
1614 {
1615         unsigned long ret;
1616
1617         mmap_write_lock(current->mm);
1618         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1619         mmap_write_unlock(current->mm);
1620         return ret;
1621 }
1622
1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1624                          unsigned int foll_flags)
1625 {
1626         return NULL;
1627 }
1628
1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1630                 unsigned long pfn, unsigned long size, pgprot_t prot)
1631 {
1632         if (addr != (pfn << PAGE_SHIFT))
1633                 return -EINVAL;
1634
1635         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1636         return 0;
1637 }
1638 EXPORT_SYMBOL(remap_pfn_range);
1639
1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1641 {
1642         unsigned long pfn = start >> PAGE_SHIFT;
1643         unsigned long vm_len = vma->vm_end - vma->vm_start;
1644
1645         pfn += vma->vm_pgoff;
1646         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1647 }
1648 EXPORT_SYMBOL(vm_iomap_memory);
1649
1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1651                         unsigned long pgoff)
1652 {
1653         unsigned int size = vma->vm_end - vma->vm_start;
1654
1655         if (!(vma->vm_flags & VM_USERMAP))
1656                 return -EINVAL;
1657
1658         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1659         vma->vm_end = vma->vm_start + size;
1660
1661         return 0;
1662 }
1663 EXPORT_SYMBOL(remap_vmalloc_range);
1664
1665 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1666         unsigned long len, unsigned long pgoff, unsigned long flags)
1667 {
1668         return -ENOMEM;
1669 }
1670
1671 vm_fault_t filemap_fault(struct vm_fault *vmf)
1672 {
1673         BUG();
1674         return 0;
1675 }
1676 EXPORT_SYMBOL(filemap_fault);
1677
1678 void filemap_map_pages(struct vm_fault *vmf,
1679                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1680 {
1681         BUG();
1682 }
1683 EXPORT_SYMBOL(filemap_map_pages);
1684
1685 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1686                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1687 {
1688         struct vm_area_struct *vma;
1689         int write = gup_flags & FOLL_WRITE;
1690
1691         if (mmap_read_lock_killable(mm))
1692                 return 0;
1693
1694         /* the access must start within one of the target process's mappings */
1695         vma = find_vma(mm, addr);
1696         if (vma) {
1697                 /* don't overrun this mapping */
1698                 if (addr + len >= vma->vm_end)
1699                         len = vma->vm_end - addr;
1700
1701                 /* only read or write mappings where it is permitted */
1702                 if (write && vma->vm_flags & VM_MAYWRITE)
1703                         copy_to_user_page(vma, NULL, addr,
1704                                          (void *) addr, buf, len);
1705                 else if (!write && vma->vm_flags & VM_MAYREAD)
1706                         copy_from_user_page(vma, NULL, addr,
1707                                             buf, (void *) addr, len);
1708                 else
1709                         len = 0;
1710         } else {
1711                 len = 0;
1712         }
1713
1714         mmap_read_unlock(mm);
1715
1716         return len;
1717 }
1718
1719 /**
1720  * access_remote_vm - access another process' address space
1721  * @mm:         the mm_struct of the target address space
1722  * @addr:       start address to access
1723  * @buf:        source or destination buffer
1724  * @len:        number of bytes to transfer
1725  * @gup_flags:  flags modifying lookup behaviour
1726  *
1727  * The caller must hold a reference on @mm.
1728  */
1729 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1730                 void *buf, int len, unsigned int gup_flags)
1731 {
1732         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1733 }
1734
1735 /*
1736  * Access another process' address space.
1737  * - source/target buffer must be kernel space
1738  */
1739 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1740                 unsigned int gup_flags)
1741 {
1742         struct mm_struct *mm;
1743
1744         if (addr + len < addr)
1745                 return 0;
1746
1747         mm = get_task_mm(tsk);
1748         if (!mm)
1749                 return 0;
1750
1751         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1752
1753         mmput(mm);
1754         return len;
1755 }
1756 EXPORT_SYMBOL_GPL(access_process_vm);
1757
1758 /**
1759  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1760  * @inode: The inode to check
1761  * @size: The current filesize of the inode
1762  * @newsize: The proposed filesize of the inode
1763  *
1764  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1765  * make sure that any outstanding VMAs aren't broken and then shrink the
1766  * vm_regions that extend beyond so that do_mmap() doesn't
1767  * automatically grant mappings that are too large.
1768  */
1769 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1770                                 size_t newsize)
1771 {
1772         struct vm_area_struct *vma;
1773         struct vm_region *region;
1774         pgoff_t low, high;
1775         size_t r_size, r_top;
1776
1777         low = newsize >> PAGE_SHIFT;
1778         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1779
1780         down_write(&nommu_region_sem);
1781         i_mmap_lock_read(inode->i_mapping);
1782
1783         /* search for VMAs that fall within the dead zone */
1784         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1785                 /* found one - only interested if it's shared out of the page
1786                  * cache */
1787                 if (vma->vm_flags & VM_SHARED) {
1788                         i_mmap_unlock_read(inode->i_mapping);
1789                         up_write(&nommu_region_sem);
1790                         return -ETXTBSY; /* not quite true, but near enough */
1791                 }
1792         }
1793
1794         /* reduce any regions that overlap the dead zone - if in existence,
1795          * these will be pointed to by VMAs that don't overlap the dead zone
1796          *
1797          * we don't check for any regions that start beyond the EOF as there
1798          * shouldn't be any
1799          */
1800         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1801                 if (!(vma->vm_flags & VM_SHARED))
1802                         continue;
1803
1804                 region = vma->vm_region;
1805                 r_size = region->vm_top - region->vm_start;
1806                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1807
1808                 if (r_top > newsize) {
1809                         region->vm_top -= r_top - newsize;
1810                         if (region->vm_end > region->vm_top)
1811                                 region->vm_end = region->vm_top;
1812                 }
1813         }
1814
1815         i_mmap_unlock_read(inode->i_mapping);
1816         up_write(&nommu_region_sem);
1817         return 0;
1818 }
1819
1820 /*
1821  * Initialise sysctl_user_reserve_kbytes.
1822  *
1823  * This is intended to prevent a user from starting a single memory hogging
1824  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1825  * mode.
1826  *
1827  * The default value is min(3% of free memory, 128MB)
1828  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1829  */
1830 static int __meminit init_user_reserve(void)
1831 {
1832         unsigned long free_kbytes;
1833
1834         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1835
1836         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1837         return 0;
1838 }
1839 subsys_initcall(init_user_reserve);
1840
1841 /*
1842  * Initialise sysctl_admin_reserve_kbytes.
1843  *
1844  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1845  * to log in and kill a memory hogging process.
1846  *
1847  * Systems with more than 256MB will reserve 8MB, enough to recover
1848  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1849  * only reserve 3% of free pages by default.
1850  */
1851 static int __meminit init_admin_reserve(void)
1852 {
1853         unsigned long free_kbytes;
1854
1855         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1856
1857         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1858         return 0;
1859 }
1860 subsys_initcall(init_admin_reserve);