Merge tag 'acpi-5.14-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *                                                              r: (no) no
100  *                                                              w: (no) no
101  *                                                              x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111         return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121         return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133         unsigned long vm_flags = vma->vm_flags;
134         pgprot_t vm_page_prot;
135
136         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137         if (vma_wants_writenotify(vma, vm_page_prot)) {
138                 vm_flags &= ~VM_SHARED;
139                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140         }
141         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149                 struct file *file, struct address_space *mapping)
150 {
151         if (vma->vm_flags & VM_DENYWRITE)
152                 allow_write_access(file);
153         if (vma->vm_flags & VM_SHARED)
154                 mapping_unmap_writable(mapping);
155
156         flush_dcache_mmap_lock(mapping);
157         vma_interval_tree_remove(vma, &mapping->i_mmap);
158         flush_dcache_mmap_unlock(mapping);
159 }
160
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167         struct file *file = vma->vm_file;
168
169         if (file) {
170                 struct address_space *mapping = file->f_mapping;
171                 i_mmap_lock_write(mapping);
172                 __remove_shared_vm_struct(vma, file, mapping);
173                 i_mmap_unlock_write(mapping);
174         }
175 }
176
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182         struct vm_area_struct *next = vma->vm_next;
183
184         might_sleep();
185         if (vma->vm_ops && vma->vm_ops->close)
186                 vma->vm_ops->close(vma);
187         if (vma->vm_file)
188                 fput(vma->vm_file);
189         mpol_put(vma_policy(vma));
190         vm_area_free(vma);
191         return next;
192 }
193
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195                 struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198         unsigned long newbrk, oldbrk, origbrk;
199         struct mm_struct *mm = current->mm;
200         struct vm_area_struct *next;
201         unsigned long min_brk;
202         bool populate;
203         bool downgraded = false;
204         LIST_HEAD(uf);
205
206         if (mmap_write_lock_killable(mm))
207                 return -EINTR;
208
209         origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212         /*
213          * CONFIG_COMPAT_BRK can still be overridden by setting
214          * randomize_va_space to 2, which will still cause mm->start_brk
215          * to be arbitrarily shifted
216          */
217         if (current->brk_randomized)
218                 min_brk = mm->start_brk;
219         else
220                 min_brk = mm->end_data;
221 #else
222         min_brk = mm->start_brk;
223 #endif
224         if (brk < min_brk)
225                 goto out;
226
227         /*
228          * Check against rlimit here. If this check is done later after the test
229          * of oldbrk with newbrk then it can escape the test and let the data
230          * segment grow beyond its set limit the in case where the limit is
231          * not page aligned -Ram Gupta
232          */
233         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234                               mm->end_data, mm->start_data))
235                 goto out;
236
237         newbrk = PAGE_ALIGN(brk);
238         oldbrk = PAGE_ALIGN(mm->brk);
239         if (oldbrk == newbrk) {
240                 mm->brk = brk;
241                 goto success;
242         }
243
244         /*
245          * Always allow shrinking brk.
246          * __do_munmap() may downgrade mmap_lock to read.
247          */
248         if (brk <= mm->brk) {
249                 int ret;
250
251                 /*
252                  * mm->brk must to be protected by write mmap_lock so update it
253                  * before downgrading mmap_lock. When __do_munmap() fails,
254                  * mm->brk will be restored from origbrk.
255                  */
256                 mm->brk = brk;
257                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258                 if (ret < 0) {
259                         mm->brk = origbrk;
260                         goto out;
261                 } else if (ret == 1) {
262                         downgraded = true;
263                 }
264                 goto success;
265         }
266
267         /* Check against existing mmap mappings. */
268         next = find_vma(mm, oldbrk);
269         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270                 goto out;
271
272         /* Ok, looks good - let it rip. */
273         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274                 goto out;
275         mm->brk = brk;
276
277 success:
278         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279         if (downgraded)
280                 mmap_read_unlock(mm);
281         else
282                 mmap_write_unlock(mm);
283         userfaultfd_unmap_complete(mm, &uf);
284         if (populate)
285                 mm_populate(oldbrk, newbrk - oldbrk);
286         return brk;
287
288 out:
289         mmap_write_unlock(mm);
290         return origbrk;
291 }
292
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295         unsigned long gap, prev_end;
296
297         /*
298          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299          * allow two stack_guard_gaps between them here, and when choosing
300          * an unmapped area; whereas when expanding we only require one.
301          * That's a little inconsistent, but keeps the code here simpler.
302          */
303         gap = vm_start_gap(vma);
304         if (vma->vm_prev) {
305                 prev_end = vm_end_gap(vma->vm_prev);
306                 if (gap > prev_end)
307                         gap -= prev_end;
308                 else
309                         gap = 0;
310         }
311         return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317         unsigned long max = vma_compute_gap(vma), subtree_gap;
318         if (vma->vm_rb.rb_left) {
319                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321                 if (subtree_gap > max)
322                         max = subtree_gap;
323         }
324         if (vma->vm_rb.rb_right) {
325                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327                 if (subtree_gap > max)
328                         max = subtree_gap;
329         }
330         return max;
331 }
332
333 static int browse_rb(struct mm_struct *mm)
334 {
335         struct rb_root *root = &mm->mm_rb;
336         int i = 0, j, bug = 0;
337         struct rb_node *nd, *pn = NULL;
338         unsigned long prev = 0, pend = 0;
339
340         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341                 struct vm_area_struct *vma;
342                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343                 if (vma->vm_start < prev) {
344                         pr_emerg("vm_start %lx < prev %lx\n",
345                                   vma->vm_start, prev);
346                         bug = 1;
347                 }
348                 if (vma->vm_start < pend) {
349                         pr_emerg("vm_start %lx < pend %lx\n",
350                                   vma->vm_start, pend);
351                         bug = 1;
352                 }
353                 if (vma->vm_start > vma->vm_end) {
354                         pr_emerg("vm_start %lx > vm_end %lx\n",
355                                   vma->vm_start, vma->vm_end);
356                         bug = 1;
357                 }
358                 spin_lock(&mm->page_table_lock);
359                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360                         pr_emerg("free gap %lx, correct %lx\n",
361                                vma->rb_subtree_gap,
362                                vma_compute_subtree_gap(vma));
363                         bug = 1;
364                 }
365                 spin_unlock(&mm->page_table_lock);
366                 i++;
367                 pn = nd;
368                 prev = vma->vm_start;
369                 pend = vma->vm_end;
370         }
371         j = 0;
372         for (nd = pn; nd; nd = rb_prev(nd))
373                 j++;
374         if (i != j) {
375                 pr_emerg("backwards %d, forwards %d\n", j, i);
376                 bug = 1;
377         }
378         return bug ? -1 : i;
379 }
380
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383         struct rb_node *nd;
384
385         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386                 struct vm_area_struct *vma;
387                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388                 VM_BUG_ON_VMA(vma != ignore &&
389                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390                         vma);
391         }
392 }
393
394 static void validate_mm(struct mm_struct *mm)
395 {
396         int bug = 0;
397         int i = 0;
398         unsigned long highest_address = 0;
399         struct vm_area_struct *vma = mm->mmap;
400
401         while (vma) {
402                 struct anon_vma *anon_vma = vma->anon_vma;
403                 struct anon_vma_chain *avc;
404
405                 if (anon_vma) {
406                         anon_vma_lock_read(anon_vma);
407                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408                                 anon_vma_interval_tree_verify(avc);
409                         anon_vma_unlock_read(anon_vma);
410                 }
411
412                 highest_address = vm_end_gap(vma);
413                 vma = vma->vm_next;
414                 i++;
415         }
416         if (i != mm->map_count) {
417                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418                 bug = 1;
419         }
420         if (highest_address != mm->highest_vm_end) {
421                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422                           mm->highest_vm_end, highest_address);
423                 bug = 1;
424         }
425         i = browse_rb(mm);
426         if (i != mm->map_count) {
427                 if (i != -1)
428                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429                 bug = 1;
430         }
431         VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439                          struct vm_area_struct, vm_rb,
440                          unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449         /*
450          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451          * a callback function that does exactly what we want.
452          */
453         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457                                  struct rb_root *root)
458 {
459         /* All rb_subtree_gap values must be consistent prior to insertion */
460         validate_mm_rb(root, NULL);
461
462         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467         /*
468          * Note rb_erase_augmented is a fairly large inline function,
469          * so make sure we instantiate it only once with our desired
470          * augmented rbtree callbacks.
471          */
472         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476                                                 struct rb_root *root,
477                                                 struct vm_area_struct *ignore)
478 {
479         /*
480          * All rb_subtree_gap values must be consistent prior to erase,
481          * with the possible exception of
482          *
483          * a. the "next" vma being erased if next->vm_start was reduced in
484          *    __vma_adjust() -> __vma_unlink()
485          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486          *    vma_rb_erase()
487          */
488         validate_mm_rb(root, ignore);
489
490         __vma_rb_erase(vma, root);
491 }
492
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494                                          struct rb_root *root)
495 {
496         vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516         struct anon_vma_chain *avc;
517
518         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525         struct anon_vma_chain *avc;
526
527         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532                 unsigned long end, struct vm_area_struct **pprev,
533                 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537         __rb_link = &mm->mm_rb.rb_node;
538         rb_prev = __rb_parent = NULL;
539
540         while (*__rb_link) {
541                 struct vm_area_struct *vma_tmp;
542
543                 __rb_parent = *__rb_link;
544                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546                 if (vma_tmp->vm_end > addr) {
547                         /* Fail if an existing vma overlaps the area */
548                         if (vma_tmp->vm_start < end)
549                                 return -ENOMEM;
550                         __rb_link = &__rb_parent->rb_left;
551                 } else {
552                         rb_prev = __rb_parent;
553                         __rb_link = &__rb_parent->rb_right;
554                 }
555         }
556
557         *pprev = NULL;
558         if (rb_prev)
559                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560         *rb_link = __rb_link;
561         *rb_parent = __rb_parent;
562         return 0;
563 }
564
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575                                          struct vm_area_struct *vma)
576 {
577         if (!vma)
578                 return mm->mmap;
579
580         return vma->vm_next;
581 }
582
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599                  struct vm_area_struct **pprev, struct rb_node ***link,
600                  struct rb_node **parent, struct list_head *uf)
601 {
602
603         while (find_vma_links(mm, start, start + len, pprev, link, parent))
604                 if (do_munmap(mm, start, len, uf))
605                         return -ENOMEM;
606
607         return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610                 unsigned long addr, unsigned long end)
611 {
612         unsigned long nr_pages = 0;
613         struct vm_area_struct *vma;
614
615         /* Find first overlapping mapping */
616         vma = find_vma_intersection(mm, addr, end);
617         if (!vma)
618                 return 0;
619
620         nr_pages = (min(end, vma->vm_end) -
621                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623         /* Iterate over the rest of the overlaps */
624         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625                 unsigned long overlap_len;
626
627                 if (vma->vm_start > end)
628                         break;
629
630                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631                 nr_pages += overlap_len >> PAGE_SHIFT;
632         }
633
634         return nr_pages;
635 }
636
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638                 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640         /* Update tracking information for the gap following the new vma. */
641         if (vma->vm_next)
642                 vma_gap_update(vma->vm_next);
643         else
644                 mm->highest_vm_end = vm_end_gap(vma);
645
646         /*
647          * vma->vm_prev wasn't known when we followed the rbtree to find the
648          * correct insertion point for that vma. As a result, we could not
649          * update the vma vm_rb parents rb_subtree_gap values on the way down.
650          * So, we first insert the vma with a zero rb_subtree_gap value
651          * (to be consistent with what we did on the way down), and then
652          * immediately update the gap to the correct value. Finally we
653          * rebalance the rbtree after all augmented values have been set.
654          */
655         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656         vma->rb_subtree_gap = 0;
657         vma_gap_update(vma);
658         vma_rb_insert(vma, &mm->mm_rb);
659 }
660
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663         struct file *file;
664
665         file = vma->vm_file;
666         if (file) {
667                 struct address_space *mapping = file->f_mapping;
668
669                 if (vma->vm_flags & VM_DENYWRITE)
670                         put_write_access(file_inode(file));
671                 if (vma->vm_flags & VM_SHARED)
672                         mapping_allow_writable(mapping);
673
674                 flush_dcache_mmap_lock(mapping);
675                 vma_interval_tree_insert(vma, &mapping->i_mmap);
676                 flush_dcache_mmap_unlock(mapping);
677         }
678 }
679
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682         struct vm_area_struct *prev, struct rb_node **rb_link,
683         struct rb_node *rb_parent)
684 {
685         __vma_link_list(mm, vma, prev);
686         __vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690                         struct vm_area_struct *prev, struct rb_node **rb_link,
691                         struct rb_node *rb_parent)
692 {
693         struct address_space *mapping = NULL;
694
695         if (vma->vm_file) {
696                 mapping = vma->vm_file->f_mapping;
697                 i_mmap_lock_write(mapping);
698         }
699
700         __vma_link(mm, vma, prev, rb_link, rb_parent);
701         __vma_link_file(vma);
702
703         if (mapping)
704                 i_mmap_unlock_write(mapping);
705
706         mm->map_count++;
707         validate_mm(mm);
708 }
709
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716         struct vm_area_struct *prev;
717         struct rb_node **rb_link, *rb_parent;
718
719         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720                            &prev, &rb_link, &rb_parent))
721                 BUG();
722         __vma_link(mm, vma, prev, rb_link, rb_parent);
723         mm->map_count++;
724 }
725
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727                                                 struct vm_area_struct *vma,
728                                                 struct vm_area_struct *ignore)
729 {
730         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731         __vma_unlink_list(mm, vma);
732         /* Kill the cache */
733         vmacache_invalidate(mm);
734 }
735
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745         struct vm_area_struct *expand)
746 {
747         struct mm_struct *mm = vma->vm_mm;
748         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749         struct address_space *mapping = NULL;
750         struct rb_root_cached *root = NULL;
751         struct anon_vma *anon_vma = NULL;
752         struct file *file = vma->vm_file;
753         bool start_changed = false, end_changed = false;
754         long adjust_next = 0;
755         int remove_next = 0;
756
757         if (next && !insert) {
758                 struct vm_area_struct *exporter = NULL, *importer = NULL;
759
760                 if (end >= next->vm_end) {
761                         /*
762                          * vma expands, overlapping all the next, and
763                          * perhaps the one after too (mprotect case 6).
764                          * The only other cases that gets here are
765                          * case 1, case 7 and case 8.
766                          */
767                         if (next == expand) {
768                                 /*
769                                  * The only case where we don't expand "vma"
770                                  * and we expand "next" instead is case 8.
771                                  */
772                                 VM_WARN_ON(end != next->vm_end);
773                                 /*
774                                  * remove_next == 3 means we're
775                                  * removing "vma" and that to do so we
776                                  * swapped "vma" and "next".
777                                  */
778                                 remove_next = 3;
779                                 VM_WARN_ON(file != next->vm_file);
780                                 swap(vma, next);
781                         } else {
782                                 VM_WARN_ON(expand != vma);
783                                 /*
784                                  * case 1, 6, 7, remove_next == 2 is case 6,
785                                  * remove_next == 1 is case 1 or 7.
786                                  */
787                                 remove_next = 1 + (end > next->vm_end);
788                                 VM_WARN_ON(remove_next == 2 &&
789                                            end != next->vm_next->vm_end);
790                                 /* trim end to next, for case 6 first pass */
791                                 end = next->vm_end;
792                         }
793
794                         exporter = next;
795                         importer = vma;
796
797                         /*
798                          * If next doesn't have anon_vma, import from vma after
799                          * next, if the vma overlaps with it.
800                          */
801                         if (remove_next == 2 && !next->anon_vma)
802                                 exporter = next->vm_next;
803
804                 } else if (end > next->vm_start) {
805                         /*
806                          * vma expands, overlapping part of the next:
807                          * mprotect case 5 shifting the boundary up.
808                          */
809                         adjust_next = (end - next->vm_start);
810                         exporter = next;
811                         importer = vma;
812                         VM_WARN_ON(expand != importer);
813                 } else if (end < vma->vm_end) {
814                         /*
815                          * vma shrinks, and !insert tells it's not
816                          * split_vma inserting another: so it must be
817                          * mprotect case 4 shifting the boundary down.
818                          */
819                         adjust_next = -(vma->vm_end - end);
820                         exporter = vma;
821                         importer = next;
822                         VM_WARN_ON(expand != importer);
823                 }
824
825                 /*
826                  * Easily overlooked: when mprotect shifts the boundary,
827                  * make sure the expanding vma has anon_vma set if the
828                  * shrinking vma had, to cover any anon pages imported.
829                  */
830                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
831                         int error;
832
833                         importer->anon_vma = exporter->anon_vma;
834                         error = anon_vma_clone(importer, exporter);
835                         if (error)
836                                 return error;
837                 }
838         }
839 again:
840         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841
842         if (file) {
843                 mapping = file->f_mapping;
844                 root = &mapping->i_mmap;
845                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846
847                 if (adjust_next)
848                         uprobe_munmap(next, next->vm_start, next->vm_end);
849
850                 i_mmap_lock_write(mapping);
851                 if (insert) {
852                         /*
853                          * Put into interval tree now, so instantiated pages
854                          * are visible to arm/parisc __flush_dcache_page
855                          * throughout; but we cannot insert into address
856                          * space until vma start or end is updated.
857                          */
858                         __vma_link_file(insert);
859                 }
860         }
861
862         anon_vma = vma->anon_vma;
863         if (!anon_vma && adjust_next)
864                 anon_vma = next->anon_vma;
865         if (anon_vma) {
866                 VM_WARN_ON(adjust_next && next->anon_vma &&
867                            anon_vma != next->anon_vma);
868                 anon_vma_lock_write(anon_vma);
869                 anon_vma_interval_tree_pre_update_vma(vma);
870                 if (adjust_next)
871                         anon_vma_interval_tree_pre_update_vma(next);
872         }
873
874         if (file) {
875                 flush_dcache_mmap_lock(mapping);
876                 vma_interval_tree_remove(vma, root);
877                 if (adjust_next)
878                         vma_interval_tree_remove(next, root);
879         }
880
881         if (start != vma->vm_start) {
882                 vma->vm_start = start;
883                 start_changed = true;
884         }
885         if (end != vma->vm_end) {
886                 vma->vm_end = end;
887                 end_changed = true;
888         }
889         vma->vm_pgoff = pgoff;
890         if (adjust_next) {
891                 next->vm_start += adjust_next;
892                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893         }
894
895         if (file) {
896                 if (adjust_next)
897                         vma_interval_tree_insert(next, root);
898                 vma_interval_tree_insert(vma, root);
899                 flush_dcache_mmap_unlock(mapping);
900         }
901
902         if (remove_next) {
903                 /*
904                  * vma_merge has merged next into vma, and needs
905                  * us to remove next before dropping the locks.
906                  */
907                 if (remove_next != 3)
908                         __vma_unlink(mm, next, next);
909                 else
910                         /*
911                          * vma is not before next if they've been
912                          * swapped.
913                          *
914                          * pre-swap() next->vm_start was reduced so
915                          * tell validate_mm_rb to ignore pre-swap()
916                          * "next" (which is stored in post-swap()
917                          * "vma").
918                          */
919                         __vma_unlink(mm, next, vma);
920                 if (file)
921                         __remove_shared_vm_struct(next, file, mapping);
922         } else if (insert) {
923                 /*
924                  * split_vma has split insert from vma, and needs
925                  * us to insert it before dropping the locks
926                  * (it may either follow vma or precede it).
927                  */
928                 __insert_vm_struct(mm, insert);
929         } else {
930                 if (start_changed)
931                         vma_gap_update(vma);
932                 if (end_changed) {
933                         if (!next)
934                                 mm->highest_vm_end = vm_end_gap(vma);
935                         else if (!adjust_next)
936                                 vma_gap_update(next);
937                 }
938         }
939
940         if (anon_vma) {
941                 anon_vma_interval_tree_post_update_vma(vma);
942                 if (adjust_next)
943                         anon_vma_interval_tree_post_update_vma(next);
944                 anon_vma_unlock_write(anon_vma);
945         }
946
947         if (file) {
948                 i_mmap_unlock_write(mapping);
949                 uprobe_mmap(vma);
950
951                 if (adjust_next)
952                         uprobe_mmap(next);
953         }
954
955         if (remove_next) {
956                 if (file) {
957                         uprobe_munmap(next, next->vm_start, next->vm_end);
958                         fput(file);
959                 }
960                 if (next->anon_vma)
961                         anon_vma_merge(vma, next);
962                 mm->map_count--;
963                 mpol_put(vma_policy(next));
964                 vm_area_free(next);
965                 /*
966                  * In mprotect's case 6 (see comments on vma_merge),
967                  * we must remove another next too. It would clutter
968                  * up the code too much to do both in one go.
969                  */
970                 if (remove_next != 3) {
971                         /*
972                          * If "next" was removed and vma->vm_end was
973                          * expanded (up) over it, in turn
974                          * "next->vm_prev->vm_end" changed and the
975                          * "vma->vm_next" gap must be updated.
976                          */
977                         next = vma->vm_next;
978                 } else {
979                         /*
980                          * For the scope of the comment "next" and
981                          * "vma" considered pre-swap(): if "vma" was
982                          * removed, next->vm_start was expanded (down)
983                          * over it and the "next" gap must be updated.
984                          * Because of the swap() the post-swap() "vma"
985                          * actually points to pre-swap() "next"
986                          * (post-swap() "next" as opposed is now a
987                          * dangling pointer).
988                          */
989                         next = vma;
990                 }
991                 if (remove_next == 2) {
992                         remove_next = 1;
993                         end = next->vm_end;
994                         goto again;
995                 }
996                 else if (next)
997                         vma_gap_update(next);
998                 else {
999                         /*
1000                          * If remove_next == 2 we obviously can't
1001                          * reach this path.
1002                          *
1003                          * If remove_next == 3 we can't reach this
1004                          * path because pre-swap() next is always not
1005                          * NULL. pre-swap() "next" is not being
1006                          * removed and its next->vm_end is not altered
1007                          * (and furthermore "end" already matches
1008                          * next->vm_end in remove_next == 3).
1009                          *
1010                          * We reach this only in the remove_next == 1
1011                          * case if the "next" vma that was removed was
1012                          * the highest vma of the mm. However in such
1013                          * case next->vm_end == "end" and the extended
1014                          * "vma" has vma->vm_end == next->vm_end so
1015                          * mm->highest_vm_end doesn't need any update
1016                          * in remove_next == 1 case.
1017                          */
1018                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019                 }
1020         }
1021         if (insert && file)
1022                 uprobe_mmap(insert);
1023
1024         validate_mm(mm);
1025
1026         return 0;
1027 }
1028
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034                                 struct file *file, unsigned long vm_flags,
1035                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037         /*
1038          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039          * match the flags but dirty bit -- the caller should mark
1040          * merged VMA as dirty. If dirty bit won't be excluded from
1041          * comparison, we increase pressure on the memory system forcing
1042          * the kernel to generate new VMAs when old one could be
1043          * extended instead.
1044          */
1045         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046                 return 0;
1047         if (vma->vm_file != file)
1048                 return 0;
1049         if (vma->vm_ops && vma->vm_ops->close)
1050                 return 0;
1051         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052                 return 0;
1053         return 1;
1054 }
1055
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057                                         struct anon_vma *anon_vma2,
1058                                         struct vm_area_struct *vma)
1059 {
1060         /*
1061          * The list_is_singular() test is to avoid merging VMA cloned from
1062          * parents. This can improve scalability caused by anon_vma lock.
1063          */
1064         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065                 list_is_singular(&vma->anon_vma_chain)))
1066                 return 1;
1067         return anon_vma1 == anon_vma2;
1068 }
1069
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * in front of (at a lower virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  *
1077  * We don't check here for the merged mmap wrapping around the end of pagecache
1078  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079  * wrap, nor mmaps which cover the final page at index -1UL.
1080  */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083                      struct anon_vma *anon_vma, struct file *file,
1084                      pgoff_t vm_pgoff,
1085                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089                 if (vma->vm_pgoff == vm_pgoff)
1090                         return 1;
1091         }
1092         return 0;
1093 }
1094
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104                     struct anon_vma *anon_vma, struct file *file,
1105                     pgoff_t vm_pgoff,
1106                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110                 pgoff_t vm_pglen;
1111                 vm_pglen = vma_pages(vma);
1112                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113                         return 1;
1114         }
1115         return 0;
1116 }
1117
1118 /*
1119  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120  * whether that can be merged with its predecessor or its successor.
1121  * Or both (it neatly fills a hole).
1122  *
1123  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124  * certain not to be mapped by the time vma_merge is called; but when
1125  * called for mprotect, it is certain to be already mapped (either at
1126  * an offset within prev, or at the start of next), and the flags of
1127  * this area are about to be changed to vm_flags - and the no-change
1128  * case has already been eliminated.
1129  *
1130  * The following mprotect cases have to be considered, where AAAA is
1131  * the area passed down from mprotect_fixup, never extending beyond one
1132  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133  *
1134  *     AAAA             AAAA                   AAAA
1135  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136  *    cannot merge    might become       might become
1137  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138  *    mmap, brk or    case 4 below       case 5 below
1139  *    mremap move:
1140  *                        AAAA               AAAA
1141  *                    PPPP    NNNN       PPPPNNNNXXXX
1142  *                    might become       might become
1143  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146  *
1147  * It is important for case 8 that the vma NNNN overlapping the
1148  * region AAAA is never going to extended over XXXX. Instead XXXX must
1149  * be extended in region AAAA and NNNN must be removed. This way in
1150  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151  * rmap_locks, the properties of the merged vma will be already
1152  * correct for the whole merged range. Some of those properties like
1153  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154  * be correct for the whole merged range immediately after the
1155  * rmap_locks are released. Otherwise if XXXX would be removed and
1156  * NNNN would be extended over the XXXX range, remove_migration_ptes
1157  * or other rmap walkers (if working on addresses beyond the "end"
1158  * parameter) may establish ptes with the wrong permissions of NNNN
1159  * instead of the right permissions of XXXX.
1160  */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162                         struct vm_area_struct *prev, unsigned long addr,
1163                         unsigned long end, unsigned long vm_flags,
1164                         struct anon_vma *anon_vma, struct file *file,
1165                         pgoff_t pgoff, struct mempolicy *policy,
1166                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169         struct vm_area_struct *area, *next;
1170         int err;
1171
1172         /*
1173          * We later require that vma->vm_flags == vm_flags,
1174          * so this tests vma->vm_flags & VM_SPECIAL, too.
1175          */
1176         if (vm_flags & VM_SPECIAL)
1177                 return NULL;
1178
1179         next = vma_next(mm, prev);
1180         area = next;
1181         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1182                 next = next->vm_next;
1183
1184         /* verify some invariant that must be enforced by the caller */
1185         VM_WARN_ON(prev && addr <= prev->vm_start);
1186         VM_WARN_ON(area && end > area->vm_end);
1187         VM_WARN_ON(addr >= end);
1188
1189         /*
1190          * Can it merge with the predecessor?
1191          */
1192         if (prev && prev->vm_end == addr &&
1193                         mpol_equal(vma_policy(prev), policy) &&
1194                         can_vma_merge_after(prev, vm_flags,
1195                                             anon_vma, file, pgoff,
1196                                             vm_userfaultfd_ctx)) {
1197                 /*
1198                  * OK, it can.  Can we now merge in the successor as well?
1199                  */
1200                 if (next && end == next->vm_start &&
1201                                 mpol_equal(policy, vma_policy(next)) &&
1202                                 can_vma_merge_before(next, vm_flags,
1203                                                      anon_vma, file,
1204                                                      pgoff+pglen,
1205                                                      vm_userfaultfd_ctx) &&
1206                                 is_mergeable_anon_vma(prev->anon_vma,
1207                                                       next->anon_vma, NULL)) {
1208                                                         /* cases 1, 6 */
1209                         err = __vma_adjust(prev, prev->vm_start,
1210                                          next->vm_end, prev->vm_pgoff, NULL,
1211                                          prev);
1212                 } else                                  /* cases 2, 5, 7 */
1213                         err = __vma_adjust(prev, prev->vm_start,
1214                                          end, prev->vm_pgoff, NULL, prev);
1215                 if (err)
1216                         return NULL;
1217                 khugepaged_enter_vma_merge(prev, vm_flags);
1218                 return prev;
1219         }
1220
1221         /*
1222          * Can this new request be merged in front of next?
1223          */
1224         if (next && end == next->vm_start &&
1225                         mpol_equal(policy, vma_policy(next)) &&
1226                         can_vma_merge_before(next, vm_flags,
1227                                              anon_vma, file, pgoff+pglen,
1228                                              vm_userfaultfd_ctx)) {
1229                 if (prev && addr < prev->vm_end)        /* case 4 */
1230                         err = __vma_adjust(prev, prev->vm_start,
1231                                          addr, prev->vm_pgoff, NULL, next);
1232                 else {                                  /* cases 3, 8 */
1233                         err = __vma_adjust(area, addr, next->vm_end,
1234                                          next->vm_pgoff - pglen, NULL, next);
1235                         /*
1236                          * In case 3 area is already equal to next and
1237                          * this is a noop, but in case 8 "area" has
1238                          * been removed and next was expanded over it.
1239                          */
1240                         area = next;
1241                 }
1242                 if (err)
1243                         return NULL;
1244                 khugepaged_enter_vma_merge(area, vm_flags);
1245                 return area;
1246         }
1247
1248         return NULL;
1249 }
1250
1251 /*
1252  * Rough compatibility check to quickly see if it's even worth looking
1253  * at sharing an anon_vma.
1254  *
1255  * They need to have the same vm_file, and the flags can only differ
1256  * in things that mprotect may change.
1257  *
1258  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259  * we can merge the two vma's. For example, we refuse to merge a vma if
1260  * there is a vm_ops->close() function, because that indicates that the
1261  * driver is doing some kind of reference counting. But that doesn't
1262  * really matter for the anon_vma sharing case.
1263  */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266         return a->vm_end == b->vm_start &&
1267                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1268                 a->vm_file == b->vm_file &&
1269                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272
1273 /*
1274  * Do some basic sanity checking to see if we can re-use the anon_vma
1275  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276  * the same as 'old', the other will be the new one that is trying
1277  * to share the anon_vma.
1278  *
1279  * NOTE! This runs with mm_sem held for reading, so it is possible that
1280  * the anon_vma of 'old' is concurrently in the process of being set up
1281  * by another page fault trying to merge _that_. But that's ok: if it
1282  * is being set up, that automatically means that it will be a singleton
1283  * acceptable for merging, so we can do all of this optimistically. But
1284  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285  *
1286  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288  * is to return an anon_vma that is "complex" due to having gone through
1289  * a fork).
1290  *
1291  * We also make sure that the two vma's are compatible (adjacent,
1292  * and with the same memory policies). That's all stable, even with just
1293  * a read lock on the mm_sem.
1294  */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297         if (anon_vma_compatible(a, b)) {
1298                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301                         return anon_vma;
1302         }
1303         return NULL;
1304 }
1305
1306 /*
1307  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308  * neighbouring vmas for a suitable anon_vma, before it goes off
1309  * to allocate a new anon_vma.  It checks because a repetitive
1310  * sequence of mprotects and faults may otherwise lead to distinct
1311  * anon_vmas being allocated, preventing vma merge in subsequent
1312  * mprotect.
1313  */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316         struct anon_vma *anon_vma = NULL;
1317
1318         /* Try next first. */
1319         if (vma->vm_next) {
1320                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321                 if (anon_vma)
1322                         return anon_vma;
1323         }
1324
1325         /* Try prev next. */
1326         if (vma->vm_prev)
1327                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
1329         /*
1330          * We might reach here with anon_vma == NULL if we can't find
1331          * any reusable anon_vma.
1332          * There's no absolute need to look only at touching neighbours:
1333          * we could search further afield for "compatible" anon_vmas.
1334          * But it would probably just be a waste of time searching,
1335          * or lead to too many vmas hanging off the same anon_vma.
1336          * We're trying to allow mprotect remerging later on,
1337          * not trying to minimize memory used for anon_vmas.
1338          */
1339         return anon_vma;
1340 }
1341
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348         hint &= PAGE_MASK;
1349         if (((void *)hint != NULL) &&
1350             (hint < mmap_min_addr))
1351                 return PAGE_ALIGN(mmap_min_addr);
1352         return hint;
1353 }
1354
1355 static inline int mlock_future_check(struct mm_struct *mm,
1356                                      unsigned long flags,
1357                                      unsigned long len)
1358 {
1359         unsigned long locked, lock_limit;
1360
1361         /*  mlock MCL_FUTURE? */
1362         if (flags & VM_LOCKED) {
1363                 locked = len >> PAGE_SHIFT;
1364                 locked += mm->locked_vm;
1365                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1366                 lock_limit >>= PAGE_SHIFT;
1367                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368                         return -EAGAIN;
1369         }
1370         return 0;
1371 }
1372
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375         if (S_ISREG(inode->i_mode))
1376                 return MAX_LFS_FILESIZE;
1377
1378         if (S_ISBLK(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISSOCK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         /* Special "we do even unsigned file positions" case */
1385         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386                 return 0;
1387
1388         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389         return ULONG_MAX;
1390 }
1391
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393                                 unsigned long pgoff, unsigned long len)
1394 {
1395         u64 maxsize = file_mmap_size_max(file, inode);
1396
1397         if (maxsize && len > maxsize)
1398                 return false;
1399         maxsize -= len;
1400         if (pgoff > maxsize >> PAGE_SHIFT)
1401                 return false;
1402         return true;
1403 }
1404
1405 /*
1406  * The caller must write-lock current->mm->mmap_lock.
1407  */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409                         unsigned long len, unsigned long prot,
1410                         unsigned long flags, unsigned long pgoff,
1411                         unsigned long *populate, struct list_head *uf)
1412 {
1413         struct mm_struct *mm = current->mm;
1414         vm_flags_t vm_flags;
1415         int pkey = 0;
1416
1417         *populate = 0;
1418
1419         if (!len)
1420                 return -EINVAL;
1421
1422         /*
1423          * Does the application expect PROT_READ to imply PROT_EXEC?
1424          *
1425          * (the exception is when the underlying filesystem is noexec
1426          *  mounted, in which case we dont add PROT_EXEC.)
1427          */
1428         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429                 if (!(file && path_noexec(&file->f_path)))
1430                         prot |= PROT_EXEC;
1431
1432         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433         if (flags & MAP_FIXED_NOREPLACE)
1434                 flags |= MAP_FIXED;
1435
1436         if (!(flags & MAP_FIXED))
1437                 addr = round_hint_to_min(addr);
1438
1439         /* Careful about overflows.. */
1440         len = PAGE_ALIGN(len);
1441         if (!len)
1442                 return -ENOMEM;
1443
1444         /* offset overflow? */
1445         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446                 return -EOVERFLOW;
1447
1448         /* Too many mappings? */
1449         if (mm->map_count > sysctl_max_map_count)
1450                 return -ENOMEM;
1451
1452         /* Obtain the address to map to. we verify (or select) it and ensure
1453          * that it represents a valid section of the address space.
1454          */
1455         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456         if (IS_ERR_VALUE(addr))
1457                 return addr;
1458
1459         if (flags & MAP_FIXED_NOREPLACE) {
1460                 if (find_vma_intersection(mm, addr, addr + len))
1461                         return -EEXIST;
1462         }
1463
1464         if (prot == PROT_EXEC) {
1465                 pkey = execute_only_pkey(mm);
1466                 if (pkey < 0)
1467                         pkey = 0;
1468         }
1469
1470         /* Do simple checking here so the lower-level routines won't have
1471          * to. we assume access permissions have been handled by the open
1472          * of the memory object, so we don't do any here.
1473          */
1474         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1475                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1476
1477         if (flags & MAP_LOCKED)
1478                 if (!can_do_mlock())
1479                         return -EPERM;
1480
1481         if (mlock_future_check(mm, vm_flags, len))
1482                 return -EAGAIN;
1483
1484         if (file) {
1485                 struct inode *inode = file_inode(file);
1486                 unsigned long flags_mask;
1487
1488                 if (!file_mmap_ok(file, inode, pgoff, len))
1489                         return -EOVERFLOW;
1490
1491                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1492
1493                 switch (flags & MAP_TYPE) {
1494                 case MAP_SHARED:
1495                         /*
1496                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1497                          * flags. E.g. MAP_SYNC is dangerous to use with
1498                          * MAP_SHARED as you don't know which consistency model
1499                          * you will get. We silently ignore unsupported flags
1500                          * with MAP_SHARED to preserve backward compatibility.
1501                          */
1502                         flags &= LEGACY_MAP_MASK;
1503                         fallthrough;
1504                 case MAP_SHARED_VALIDATE:
1505                         if (flags & ~flags_mask)
1506                                 return -EOPNOTSUPP;
1507                         if (prot & PROT_WRITE) {
1508                                 if (!(file->f_mode & FMODE_WRITE))
1509                                         return -EACCES;
1510                                 if (IS_SWAPFILE(file->f_mapping->host))
1511                                         return -ETXTBSY;
1512                         }
1513
1514                         /*
1515                          * Make sure we don't allow writing to an append-only
1516                          * file..
1517                          */
1518                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1519                                 return -EACCES;
1520
1521                         /*
1522                          * Make sure there are no mandatory locks on the file.
1523                          */
1524                         if (locks_verify_locked(file))
1525                                 return -EAGAIN;
1526
1527                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1528                         if (!(file->f_mode & FMODE_WRITE))
1529                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1530                         fallthrough;
1531                 case MAP_PRIVATE:
1532                         if (!(file->f_mode & FMODE_READ))
1533                                 return -EACCES;
1534                         if (path_noexec(&file->f_path)) {
1535                                 if (vm_flags & VM_EXEC)
1536                                         return -EPERM;
1537                                 vm_flags &= ~VM_MAYEXEC;
1538                         }
1539
1540                         if (!file->f_op->mmap)
1541                                 return -ENODEV;
1542                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543                                 return -EINVAL;
1544                         break;
1545
1546                 default:
1547                         return -EINVAL;
1548                 }
1549         } else {
1550                 switch (flags & MAP_TYPE) {
1551                 case MAP_SHARED:
1552                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1553                                 return -EINVAL;
1554                         /*
1555                          * Ignore pgoff.
1556                          */
1557                         pgoff = 0;
1558                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1559                         break;
1560                 case MAP_PRIVATE:
1561                         /*
1562                          * Set pgoff according to addr for anon_vma.
1563                          */
1564                         pgoff = addr >> PAGE_SHIFT;
1565                         break;
1566                 default:
1567                         return -EINVAL;
1568                 }
1569         }
1570
1571         /*
1572          * Set 'VM_NORESERVE' if we should not account for the
1573          * memory use of this mapping.
1574          */
1575         if (flags & MAP_NORESERVE) {
1576                 /* We honor MAP_NORESERVE if allowed to overcommit */
1577                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1578                         vm_flags |= VM_NORESERVE;
1579
1580                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1581                 if (file && is_file_hugepages(file))
1582                         vm_flags |= VM_NORESERVE;
1583         }
1584
1585         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1586         if (!IS_ERR_VALUE(addr) &&
1587             ((vm_flags & VM_LOCKED) ||
1588              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1589                 *populate = len;
1590         return addr;
1591 }
1592
1593 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1594                               unsigned long prot, unsigned long flags,
1595                               unsigned long fd, unsigned long pgoff)
1596 {
1597         struct file *file = NULL;
1598         unsigned long retval;
1599
1600         if (!(flags & MAP_ANONYMOUS)) {
1601                 audit_mmap_fd(fd, flags);
1602                 file = fget(fd);
1603                 if (!file)
1604                         return -EBADF;
1605                 if (is_file_hugepages(file)) {
1606                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1607                 } else if (unlikely(flags & MAP_HUGETLB)) {
1608                         retval = -EINVAL;
1609                         goto out_fput;
1610                 }
1611         } else if (flags & MAP_HUGETLB) {
1612                 struct ucounts *ucounts = NULL;
1613                 struct hstate *hs;
1614
1615                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1616                 if (!hs)
1617                         return -EINVAL;
1618
1619                 len = ALIGN(len, huge_page_size(hs));
1620                 /*
1621                  * VM_NORESERVE is used because the reservations will be
1622                  * taken when vm_ops->mmap() is called
1623                  * A dummy user value is used because we are not locking
1624                  * memory so no accounting is necessary
1625                  */
1626                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1627                                 VM_NORESERVE,
1628                                 &ucounts, HUGETLB_ANONHUGE_INODE,
1629                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1630                 if (IS_ERR(file))
1631                         return PTR_ERR(file);
1632         }
1633
1634         flags &= ~MAP_DENYWRITE;
1635
1636         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1637 out_fput:
1638         if (file)
1639                 fput(file);
1640         return retval;
1641 }
1642
1643 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1644                 unsigned long, prot, unsigned long, flags,
1645                 unsigned long, fd, unsigned long, pgoff)
1646 {
1647         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1648 }
1649
1650 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1651 struct mmap_arg_struct {
1652         unsigned long addr;
1653         unsigned long len;
1654         unsigned long prot;
1655         unsigned long flags;
1656         unsigned long fd;
1657         unsigned long offset;
1658 };
1659
1660 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1661 {
1662         struct mmap_arg_struct a;
1663
1664         if (copy_from_user(&a, arg, sizeof(a)))
1665                 return -EFAULT;
1666         if (offset_in_page(a.offset))
1667                 return -EINVAL;
1668
1669         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1670                                a.offset >> PAGE_SHIFT);
1671 }
1672 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1673
1674 /*
1675  * Some shared mappings will want the pages marked read-only
1676  * to track write events. If so, we'll downgrade vm_page_prot
1677  * to the private version (using protection_map[] without the
1678  * VM_SHARED bit).
1679  */
1680 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1681 {
1682         vm_flags_t vm_flags = vma->vm_flags;
1683         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1684
1685         /* If it was private or non-writable, the write bit is already clear */
1686         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1687                 return 0;
1688
1689         /* The backer wishes to know when pages are first written to? */
1690         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1691                 return 1;
1692
1693         /* The open routine did something to the protections that pgprot_modify
1694          * won't preserve? */
1695         if (pgprot_val(vm_page_prot) !=
1696             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1697                 return 0;
1698
1699         /* Do we need to track softdirty? */
1700         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1701                 return 1;
1702
1703         /* Specialty mapping? */
1704         if (vm_flags & VM_PFNMAP)
1705                 return 0;
1706
1707         /* Can the mapping track the dirty pages? */
1708         return vma->vm_file && vma->vm_file->f_mapping &&
1709                 mapping_can_writeback(vma->vm_file->f_mapping);
1710 }
1711
1712 /*
1713  * We account for memory if it's a private writeable mapping,
1714  * not hugepages and VM_NORESERVE wasn't set.
1715  */
1716 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1717 {
1718         /*
1719          * hugetlb has its own accounting separate from the core VM
1720          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1721          */
1722         if (file && is_file_hugepages(file))
1723                 return 0;
1724
1725         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1726 }
1727
1728 unsigned long mmap_region(struct file *file, unsigned long addr,
1729                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1730                 struct list_head *uf)
1731 {
1732         struct mm_struct *mm = current->mm;
1733         struct vm_area_struct *vma, *prev, *merge;
1734         int error;
1735         struct rb_node **rb_link, *rb_parent;
1736         unsigned long charged = 0;
1737
1738         /* Check against address space limit. */
1739         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1740                 unsigned long nr_pages;
1741
1742                 /*
1743                  * MAP_FIXED may remove pages of mappings that intersects with
1744                  * requested mapping. Account for the pages it would unmap.
1745                  */
1746                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1747
1748                 if (!may_expand_vm(mm, vm_flags,
1749                                         (len >> PAGE_SHIFT) - nr_pages))
1750                         return -ENOMEM;
1751         }
1752
1753         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1754         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1755                 return -ENOMEM;
1756         /*
1757          * Private writable mapping: check memory availability
1758          */
1759         if (accountable_mapping(file, vm_flags)) {
1760                 charged = len >> PAGE_SHIFT;
1761                 if (security_vm_enough_memory_mm(mm, charged))
1762                         return -ENOMEM;
1763                 vm_flags |= VM_ACCOUNT;
1764         }
1765
1766         /*
1767          * Can we just expand an old mapping?
1768          */
1769         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1770                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1771         if (vma)
1772                 goto out;
1773
1774         /*
1775          * Determine the object being mapped and call the appropriate
1776          * specific mapper. the address has already been validated, but
1777          * not unmapped, but the maps are removed from the list.
1778          */
1779         vma = vm_area_alloc(mm);
1780         if (!vma) {
1781                 error = -ENOMEM;
1782                 goto unacct_error;
1783         }
1784
1785         vma->vm_start = addr;
1786         vma->vm_end = addr + len;
1787         vma->vm_flags = vm_flags;
1788         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1789         vma->vm_pgoff = pgoff;
1790
1791         if (file) {
1792                 if (vm_flags & VM_DENYWRITE) {
1793                         error = deny_write_access(file);
1794                         if (error)
1795                                 goto free_vma;
1796                 }
1797                 if (vm_flags & VM_SHARED) {
1798                         error = mapping_map_writable(file->f_mapping);
1799                         if (error)
1800                                 goto allow_write_and_free_vma;
1801                 }
1802
1803                 /* ->mmap() can change vma->vm_file, but must guarantee that
1804                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1805                  * and map writably if VM_SHARED is set. This usually means the
1806                  * new file must not have been exposed to user-space, yet.
1807                  */
1808                 vma->vm_file = get_file(file);
1809                 error = call_mmap(file, vma);
1810                 if (error)
1811                         goto unmap_and_free_vma;
1812
1813                 /* Can addr have changed??
1814                  *
1815                  * Answer: Yes, several device drivers can do it in their
1816                  *         f_op->mmap method. -DaveM
1817                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1818                  *      be updated for vma_link()
1819                  */
1820                 WARN_ON_ONCE(addr != vma->vm_start);
1821
1822                 addr = vma->vm_start;
1823
1824                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1825                  * as we may succeed this time.
1826                  */
1827                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1828                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1829                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1830                         if (merge) {
1831                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1832                                  * fput the vma->vm_file here or we would add an extra fput for file
1833                                  * and cause general protection fault ultimately.
1834                                  */
1835                                 fput(vma->vm_file);
1836                                 vm_area_free(vma);
1837                                 vma = merge;
1838                                 /* Update vm_flags to pick up the change. */
1839                                 vm_flags = vma->vm_flags;
1840                                 goto unmap_writable;
1841                         }
1842                 }
1843
1844                 vm_flags = vma->vm_flags;
1845         } else if (vm_flags & VM_SHARED) {
1846                 error = shmem_zero_setup(vma);
1847                 if (error)
1848                         goto free_vma;
1849         } else {
1850                 vma_set_anonymous(vma);
1851         }
1852
1853         /* Allow architectures to sanity-check the vm_flags */
1854         if (!arch_validate_flags(vma->vm_flags)) {
1855                 error = -EINVAL;
1856                 if (file)
1857                         goto unmap_and_free_vma;
1858                 else
1859                         goto free_vma;
1860         }
1861
1862         vma_link(mm, vma, prev, rb_link, rb_parent);
1863         /* Once vma denies write, undo our temporary denial count */
1864         if (file) {
1865 unmap_writable:
1866                 if (vm_flags & VM_SHARED)
1867                         mapping_unmap_writable(file->f_mapping);
1868                 if (vm_flags & VM_DENYWRITE)
1869                         allow_write_access(file);
1870         }
1871         file = vma->vm_file;
1872 out:
1873         perf_event_mmap(vma);
1874
1875         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1876         if (vm_flags & VM_LOCKED) {
1877                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1878                                         is_vm_hugetlb_page(vma) ||
1879                                         vma == get_gate_vma(current->mm))
1880                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1881                 else
1882                         mm->locked_vm += (len >> PAGE_SHIFT);
1883         }
1884
1885         if (file)
1886                 uprobe_mmap(vma);
1887
1888         /*
1889          * New (or expanded) vma always get soft dirty status.
1890          * Otherwise user-space soft-dirty page tracker won't
1891          * be able to distinguish situation when vma area unmapped,
1892          * then new mapped in-place (which must be aimed as
1893          * a completely new data area).
1894          */
1895         vma->vm_flags |= VM_SOFTDIRTY;
1896
1897         vma_set_page_prot(vma);
1898
1899         return addr;
1900
1901 unmap_and_free_vma:
1902         fput(vma->vm_file);
1903         vma->vm_file = NULL;
1904
1905         /* Undo any partial mapping done by a device driver. */
1906         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1907         charged = 0;
1908         if (vm_flags & VM_SHARED)
1909                 mapping_unmap_writable(file->f_mapping);
1910 allow_write_and_free_vma:
1911         if (vm_flags & VM_DENYWRITE)
1912                 allow_write_access(file);
1913 free_vma:
1914         vm_area_free(vma);
1915 unacct_error:
1916         if (charged)
1917                 vm_unacct_memory(charged);
1918         return error;
1919 }
1920
1921 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1922 {
1923         /*
1924          * We implement the search by looking for an rbtree node that
1925          * immediately follows a suitable gap. That is,
1926          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1927          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1928          * - gap_end - gap_start >= length
1929          */
1930
1931         struct mm_struct *mm = current->mm;
1932         struct vm_area_struct *vma;
1933         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1934
1935         /* Adjust search length to account for worst case alignment overhead */
1936         length = info->length + info->align_mask;
1937         if (length < info->length)
1938                 return -ENOMEM;
1939
1940         /* Adjust search limits by the desired length */
1941         if (info->high_limit < length)
1942                 return -ENOMEM;
1943         high_limit = info->high_limit - length;
1944
1945         if (info->low_limit > high_limit)
1946                 return -ENOMEM;
1947         low_limit = info->low_limit + length;
1948
1949         /* Check if rbtree root looks promising */
1950         if (RB_EMPTY_ROOT(&mm->mm_rb))
1951                 goto check_highest;
1952         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953         if (vma->rb_subtree_gap < length)
1954                 goto check_highest;
1955
1956         while (true) {
1957                 /* Visit left subtree if it looks promising */
1958                 gap_end = vm_start_gap(vma);
1959                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1960                         struct vm_area_struct *left =
1961                                 rb_entry(vma->vm_rb.rb_left,
1962                                          struct vm_area_struct, vm_rb);
1963                         if (left->rb_subtree_gap >= length) {
1964                                 vma = left;
1965                                 continue;
1966                         }
1967                 }
1968
1969                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1970 check_current:
1971                 /* Check if current node has a suitable gap */
1972                 if (gap_start > high_limit)
1973                         return -ENOMEM;
1974                 if (gap_end >= low_limit &&
1975                     gap_end > gap_start && gap_end - gap_start >= length)
1976                         goto found;
1977
1978                 /* Visit right subtree if it looks promising */
1979                 if (vma->vm_rb.rb_right) {
1980                         struct vm_area_struct *right =
1981                                 rb_entry(vma->vm_rb.rb_right,
1982                                          struct vm_area_struct, vm_rb);
1983                         if (right->rb_subtree_gap >= length) {
1984                                 vma = right;
1985                                 continue;
1986                         }
1987                 }
1988
1989                 /* Go back up the rbtree to find next candidate node */
1990                 while (true) {
1991                         struct rb_node *prev = &vma->vm_rb;
1992                         if (!rb_parent(prev))
1993                                 goto check_highest;
1994                         vma = rb_entry(rb_parent(prev),
1995                                        struct vm_area_struct, vm_rb);
1996                         if (prev == vma->vm_rb.rb_left) {
1997                                 gap_start = vm_end_gap(vma->vm_prev);
1998                                 gap_end = vm_start_gap(vma);
1999                                 goto check_current;
2000                         }
2001                 }
2002         }
2003
2004 check_highest:
2005         /* Check highest gap, which does not precede any rbtree node */
2006         gap_start = mm->highest_vm_end;
2007         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2008         if (gap_start > high_limit)
2009                 return -ENOMEM;
2010
2011 found:
2012         /* We found a suitable gap. Clip it with the original low_limit. */
2013         if (gap_start < info->low_limit)
2014                 gap_start = info->low_limit;
2015
2016         /* Adjust gap address to the desired alignment */
2017         gap_start += (info->align_offset - gap_start) & info->align_mask;
2018
2019         VM_BUG_ON(gap_start + info->length > info->high_limit);
2020         VM_BUG_ON(gap_start + info->length > gap_end);
2021         return gap_start;
2022 }
2023
2024 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2025 {
2026         struct mm_struct *mm = current->mm;
2027         struct vm_area_struct *vma;
2028         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2029
2030         /* Adjust search length to account for worst case alignment overhead */
2031         length = info->length + info->align_mask;
2032         if (length < info->length)
2033                 return -ENOMEM;
2034
2035         /*
2036          * Adjust search limits by the desired length.
2037          * See implementation comment at top of unmapped_area().
2038          */
2039         gap_end = info->high_limit;
2040         if (gap_end < length)
2041                 return -ENOMEM;
2042         high_limit = gap_end - length;
2043
2044         if (info->low_limit > high_limit)
2045                 return -ENOMEM;
2046         low_limit = info->low_limit + length;
2047
2048         /* Check highest gap, which does not precede any rbtree node */
2049         gap_start = mm->highest_vm_end;
2050         if (gap_start <= high_limit)
2051                 goto found_highest;
2052
2053         /* Check if rbtree root looks promising */
2054         if (RB_EMPTY_ROOT(&mm->mm_rb))
2055                 return -ENOMEM;
2056         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2057         if (vma->rb_subtree_gap < length)
2058                 return -ENOMEM;
2059
2060         while (true) {
2061                 /* Visit right subtree if it looks promising */
2062                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2063                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2064                         struct vm_area_struct *right =
2065                                 rb_entry(vma->vm_rb.rb_right,
2066                                          struct vm_area_struct, vm_rb);
2067                         if (right->rb_subtree_gap >= length) {
2068                                 vma = right;
2069                                 continue;
2070                         }
2071                 }
2072
2073 check_current:
2074                 /* Check if current node has a suitable gap */
2075                 gap_end = vm_start_gap(vma);
2076                 if (gap_end < low_limit)
2077                         return -ENOMEM;
2078                 if (gap_start <= high_limit &&
2079                     gap_end > gap_start && gap_end - gap_start >= length)
2080                         goto found;
2081
2082                 /* Visit left subtree if it looks promising */
2083                 if (vma->vm_rb.rb_left) {
2084                         struct vm_area_struct *left =
2085                                 rb_entry(vma->vm_rb.rb_left,
2086                                          struct vm_area_struct, vm_rb);
2087                         if (left->rb_subtree_gap >= length) {
2088                                 vma = left;
2089                                 continue;
2090                         }
2091                 }
2092
2093                 /* Go back up the rbtree to find next candidate node */
2094                 while (true) {
2095                         struct rb_node *prev = &vma->vm_rb;
2096                         if (!rb_parent(prev))
2097                                 return -ENOMEM;
2098                         vma = rb_entry(rb_parent(prev),
2099                                        struct vm_area_struct, vm_rb);
2100                         if (prev == vma->vm_rb.rb_right) {
2101                                 gap_start = vma->vm_prev ?
2102                                         vm_end_gap(vma->vm_prev) : 0;
2103                                 goto check_current;
2104                         }
2105                 }
2106         }
2107
2108 found:
2109         /* We found a suitable gap. Clip it with the original high_limit. */
2110         if (gap_end > info->high_limit)
2111                 gap_end = info->high_limit;
2112
2113 found_highest:
2114         /* Compute highest gap address at the desired alignment */
2115         gap_end -= info->length;
2116         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2117
2118         VM_BUG_ON(gap_end < info->low_limit);
2119         VM_BUG_ON(gap_end < gap_start);
2120         return gap_end;
2121 }
2122
2123 /*
2124  * Search for an unmapped address range.
2125  *
2126  * We are looking for a range that:
2127  * - does not intersect with any VMA;
2128  * - is contained within the [low_limit, high_limit) interval;
2129  * - is at least the desired size.
2130  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2131  */
2132 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2133 {
2134         unsigned long addr;
2135
2136         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2137                 addr = unmapped_area_topdown(info);
2138         else
2139                 addr = unmapped_area(info);
2140
2141         trace_vm_unmapped_area(addr, info);
2142         return addr;
2143 }
2144
2145 #ifndef arch_get_mmap_end
2146 #define arch_get_mmap_end(addr) (TASK_SIZE)
2147 #endif
2148
2149 #ifndef arch_get_mmap_base
2150 #define arch_get_mmap_base(addr, base) (base)
2151 #endif
2152
2153 /* Get an address range which is currently unmapped.
2154  * For shmat() with addr=0.
2155  *
2156  * Ugly calling convention alert:
2157  * Return value with the low bits set means error value,
2158  * ie
2159  *      if (ret & ~PAGE_MASK)
2160  *              error = ret;
2161  *
2162  * This function "knows" that -ENOMEM has the bits set.
2163  */
2164 #ifndef HAVE_ARCH_UNMAPPED_AREA
2165 unsigned long
2166 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2167                 unsigned long len, unsigned long pgoff, unsigned long flags)
2168 {
2169         struct mm_struct *mm = current->mm;
2170         struct vm_area_struct *vma, *prev;
2171         struct vm_unmapped_area_info info;
2172         const unsigned long mmap_end = arch_get_mmap_end(addr);
2173
2174         if (len > mmap_end - mmap_min_addr)
2175                 return -ENOMEM;
2176
2177         if (flags & MAP_FIXED)
2178                 return addr;
2179
2180         if (addr) {
2181                 addr = PAGE_ALIGN(addr);
2182                 vma = find_vma_prev(mm, addr, &prev);
2183                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2184                     (!vma || addr + len <= vm_start_gap(vma)) &&
2185                     (!prev || addr >= vm_end_gap(prev)))
2186                         return addr;
2187         }
2188
2189         info.flags = 0;
2190         info.length = len;
2191         info.low_limit = mm->mmap_base;
2192         info.high_limit = mmap_end;
2193         info.align_mask = 0;
2194         info.align_offset = 0;
2195         return vm_unmapped_area(&info);
2196 }
2197 #endif
2198
2199 /*
2200  * This mmap-allocator allocates new areas top-down from below the
2201  * stack's low limit (the base):
2202  */
2203 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2204 unsigned long
2205 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2206                           unsigned long len, unsigned long pgoff,
2207                           unsigned long flags)
2208 {
2209         struct vm_area_struct *vma, *prev;
2210         struct mm_struct *mm = current->mm;
2211         struct vm_unmapped_area_info info;
2212         const unsigned long mmap_end = arch_get_mmap_end(addr);
2213
2214         /* requested length too big for entire address space */
2215         if (len > mmap_end - mmap_min_addr)
2216                 return -ENOMEM;
2217
2218         if (flags & MAP_FIXED)
2219                 return addr;
2220
2221         /* requesting a specific address */
2222         if (addr) {
2223                 addr = PAGE_ALIGN(addr);
2224                 vma = find_vma_prev(mm, addr, &prev);
2225                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2226                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2227                                 (!prev || addr >= vm_end_gap(prev)))
2228                         return addr;
2229         }
2230
2231         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2232         info.length = len;
2233         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2234         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2235         info.align_mask = 0;
2236         info.align_offset = 0;
2237         addr = vm_unmapped_area(&info);
2238
2239         /*
2240          * A failed mmap() very likely causes application failure,
2241          * so fall back to the bottom-up function here. This scenario
2242          * can happen with large stack limits and large mmap()
2243          * allocations.
2244          */
2245         if (offset_in_page(addr)) {
2246                 VM_BUG_ON(addr != -ENOMEM);
2247                 info.flags = 0;
2248                 info.low_limit = TASK_UNMAPPED_BASE;
2249                 info.high_limit = mmap_end;
2250                 addr = vm_unmapped_area(&info);
2251         }
2252
2253         return addr;
2254 }
2255 #endif
2256
2257 unsigned long
2258 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2259                 unsigned long pgoff, unsigned long flags)
2260 {
2261         unsigned long (*get_area)(struct file *, unsigned long,
2262                                   unsigned long, unsigned long, unsigned long);
2263
2264         unsigned long error = arch_mmap_check(addr, len, flags);
2265         if (error)
2266                 return error;
2267
2268         /* Careful about overflows.. */
2269         if (len > TASK_SIZE)
2270                 return -ENOMEM;
2271
2272         get_area = current->mm->get_unmapped_area;
2273         if (file) {
2274                 if (file->f_op->get_unmapped_area)
2275                         get_area = file->f_op->get_unmapped_area;
2276         } else if (flags & MAP_SHARED) {
2277                 /*
2278                  * mmap_region() will call shmem_zero_setup() to create a file,
2279                  * so use shmem's get_unmapped_area in case it can be huge.
2280                  * do_mmap() will clear pgoff, so match alignment.
2281                  */
2282                 pgoff = 0;
2283                 get_area = shmem_get_unmapped_area;
2284         }
2285
2286         addr = get_area(file, addr, len, pgoff, flags);
2287         if (IS_ERR_VALUE(addr))
2288                 return addr;
2289
2290         if (addr > TASK_SIZE - len)
2291                 return -ENOMEM;
2292         if (offset_in_page(addr))
2293                 return -EINVAL;
2294
2295         error = security_mmap_addr(addr);
2296         return error ? error : addr;
2297 }
2298
2299 EXPORT_SYMBOL(get_unmapped_area);
2300
2301 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2302 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2303 {
2304         struct rb_node *rb_node;
2305         struct vm_area_struct *vma;
2306
2307         /* Check the cache first. */
2308         vma = vmacache_find(mm, addr);
2309         if (likely(vma))
2310                 return vma;
2311
2312         rb_node = mm->mm_rb.rb_node;
2313
2314         while (rb_node) {
2315                 struct vm_area_struct *tmp;
2316
2317                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318
2319                 if (tmp->vm_end > addr) {
2320                         vma = tmp;
2321                         if (tmp->vm_start <= addr)
2322                                 break;
2323                         rb_node = rb_node->rb_left;
2324                 } else
2325                         rb_node = rb_node->rb_right;
2326         }
2327
2328         if (vma)
2329                 vmacache_update(addr, vma);
2330         return vma;
2331 }
2332
2333 EXPORT_SYMBOL(find_vma);
2334
2335 /*
2336  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337  */
2338 struct vm_area_struct *
2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340                         struct vm_area_struct **pprev)
2341 {
2342         struct vm_area_struct *vma;
2343
2344         vma = find_vma(mm, addr);
2345         if (vma) {
2346                 *pprev = vma->vm_prev;
2347         } else {
2348                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349
2350                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351         }
2352         return vma;
2353 }
2354
2355 /*
2356  * Verify that the stack growth is acceptable and
2357  * update accounting. This is shared with both the
2358  * grow-up and grow-down cases.
2359  */
2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361                              unsigned long size, unsigned long grow)
2362 {
2363         struct mm_struct *mm = vma->vm_mm;
2364         unsigned long new_start;
2365
2366         /* address space limit tests */
2367         if (!may_expand_vm(mm, vma->vm_flags, grow))
2368                 return -ENOMEM;
2369
2370         /* Stack limit test */
2371         if (size > rlimit(RLIMIT_STACK))
2372                 return -ENOMEM;
2373
2374         /* mlock limit tests */
2375         if (vma->vm_flags & VM_LOCKED) {
2376                 unsigned long locked;
2377                 unsigned long limit;
2378                 locked = mm->locked_vm + grow;
2379                 limit = rlimit(RLIMIT_MEMLOCK);
2380                 limit >>= PAGE_SHIFT;
2381                 if (locked > limit && !capable(CAP_IPC_LOCK))
2382                         return -ENOMEM;
2383         }
2384
2385         /* Check to ensure the stack will not grow into a hugetlb-only region */
2386         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2387                         vma->vm_end - size;
2388         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2389                 return -EFAULT;
2390
2391         /*
2392          * Overcommit..  This must be the final test, as it will
2393          * update security statistics.
2394          */
2395         if (security_vm_enough_memory_mm(mm, grow))
2396                 return -ENOMEM;
2397
2398         return 0;
2399 }
2400
2401 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2402 /*
2403  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2404  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2405  */
2406 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2407 {
2408         struct mm_struct *mm = vma->vm_mm;
2409         struct vm_area_struct *next;
2410         unsigned long gap_addr;
2411         int error = 0;
2412
2413         if (!(vma->vm_flags & VM_GROWSUP))
2414                 return -EFAULT;
2415
2416         /* Guard against exceeding limits of the address space. */
2417         address &= PAGE_MASK;
2418         if (address >= (TASK_SIZE & PAGE_MASK))
2419                 return -ENOMEM;
2420         address += PAGE_SIZE;
2421
2422         /* Enforce stack_guard_gap */
2423         gap_addr = address + stack_guard_gap;
2424
2425         /* Guard against overflow */
2426         if (gap_addr < address || gap_addr > TASK_SIZE)
2427                 gap_addr = TASK_SIZE;
2428
2429         next = vma->vm_next;
2430         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2431                 if (!(next->vm_flags & VM_GROWSUP))
2432                         return -ENOMEM;
2433                 /* Check that both stack segments have the same anon_vma? */
2434         }
2435
2436         /* We must make sure the anon_vma is allocated. */
2437         if (unlikely(anon_vma_prepare(vma)))
2438                 return -ENOMEM;
2439
2440         /*
2441          * vma->vm_start/vm_end cannot change under us because the caller
2442          * is required to hold the mmap_lock in read mode.  We need the
2443          * anon_vma lock to serialize against concurrent expand_stacks.
2444          */
2445         anon_vma_lock_write(vma->anon_vma);
2446
2447         /* Somebody else might have raced and expanded it already */
2448         if (address > vma->vm_end) {
2449                 unsigned long size, grow;
2450
2451                 size = address - vma->vm_start;
2452                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2453
2454                 error = -ENOMEM;
2455                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2456                         error = acct_stack_growth(vma, size, grow);
2457                         if (!error) {
2458                                 /*
2459                                  * vma_gap_update() doesn't support concurrent
2460                                  * updates, but we only hold a shared mmap_lock
2461                                  * lock here, so we need to protect against
2462                                  * concurrent vma expansions.
2463                                  * anon_vma_lock_write() doesn't help here, as
2464                                  * we don't guarantee that all growable vmas
2465                                  * in a mm share the same root anon vma.
2466                                  * So, we reuse mm->page_table_lock to guard
2467                                  * against concurrent vma expansions.
2468                                  */
2469                                 spin_lock(&mm->page_table_lock);
2470                                 if (vma->vm_flags & VM_LOCKED)
2471                                         mm->locked_vm += grow;
2472                                 vm_stat_account(mm, vma->vm_flags, grow);
2473                                 anon_vma_interval_tree_pre_update_vma(vma);
2474                                 vma->vm_end = address;
2475                                 anon_vma_interval_tree_post_update_vma(vma);
2476                                 if (vma->vm_next)
2477                                         vma_gap_update(vma->vm_next);
2478                                 else
2479                                         mm->highest_vm_end = vm_end_gap(vma);
2480                                 spin_unlock(&mm->page_table_lock);
2481
2482                                 perf_event_mmap(vma);
2483                         }
2484                 }
2485         }
2486         anon_vma_unlock_write(vma->anon_vma);
2487         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488         validate_mm(mm);
2489         return error;
2490 }
2491 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2492
2493 /*
2494  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2495  */
2496 int expand_downwards(struct vm_area_struct *vma,
2497                                    unsigned long address)
2498 {
2499         struct mm_struct *mm = vma->vm_mm;
2500         struct vm_area_struct *prev;
2501         int error = 0;
2502
2503         address &= PAGE_MASK;
2504         if (address < mmap_min_addr)
2505                 return -EPERM;
2506
2507         /* Enforce stack_guard_gap */
2508         prev = vma->vm_prev;
2509         /* Check that both stack segments have the same anon_vma? */
2510         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2511                         vma_is_accessible(prev)) {
2512                 if (address - prev->vm_end < stack_guard_gap)
2513                         return -ENOMEM;
2514         }
2515
2516         /* We must make sure the anon_vma is allocated. */
2517         if (unlikely(anon_vma_prepare(vma)))
2518                 return -ENOMEM;
2519
2520         /*
2521          * vma->vm_start/vm_end cannot change under us because the caller
2522          * is required to hold the mmap_lock in read mode.  We need the
2523          * anon_vma lock to serialize against concurrent expand_stacks.
2524          */
2525         anon_vma_lock_write(vma->anon_vma);
2526
2527         /* Somebody else might have raced and expanded it already */
2528         if (address < vma->vm_start) {
2529                 unsigned long size, grow;
2530
2531                 size = vma->vm_end - address;
2532                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2533
2534                 error = -ENOMEM;
2535                 if (grow <= vma->vm_pgoff) {
2536                         error = acct_stack_growth(vma, size, grow);
2537                         if (!error) {
2538                                 /*
2539                                  * vma_gap_update() doesn't support concurrent
2540                                  * updates, but we only hold a shared mmap_lock
2541                                  * lock here, so we need to protect against
2542                                  * concurrent vma expansions.
2543                                  * anon_vma_lock_write() doesn't help here, as
2544                                  * we don't guarantee that all growable vmas
2545                                  * in a mm share the same root anon vma.
2546                                  * So, we reuse mm->page_table_lock to guard
2547                                  * against concurrent vma expansions.
2548                                  */
2549                                 spin_lock(&mm->page_table_lock);
2550                                 if (vma->vm_flags & VM_LOCKED)
2551                                         mm->locked_vm += grow;
2552                                 vm_stat_account(mm, vma->vm_flags, grow);
2553                                 anon_vma_interval_tree_pre_update_vma(vma);
2554                                 vma->vm_start = address;
2555                                 vma->vm_pgoff -= grow;
2556                                 anon_vma_interval_tree_post_update_vma(vma);
2557                                 vma_gap_update(vma);
2558                                 spin_unlock(&mm->page_table_lock);
2559
2560                                 perf_event_mmap(vma);
2561                         }
2562                 }
2563         }
2564         anon_vma_unlock_write(vma->anon_vma);
2565         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2566         validate_mm(mm);
2567         return error;
2568 }
2569
2570 /* enforced gap between the expanding stack and other mappings. */
2571 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2572
2573 static int __init cmdline_parse_stack_guard_gap(char *p)
2574 {
2575         unsigned long val;
2576         char *endptr;
2577
2578         val = simple_strtoul(p, &endptr, 10);
2579         if (!*endptr)
2580                 stack_guard_gap = val << PAGE_SHIFT;
2581
2582         return 0;
2583 }
2584 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2585
2586 #ifdef CONFIG_STACK_GROWSUP
2587 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2588 {
2589         return expand_upwards(vma, address);
2590 }
2591
2592 struct vm_area_struct *
2593 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2594 {
2595         struct vm_area_struct *vma, *prev;
2596
2597         addr &= PAGE_MASK;
2598         vma = find_vma_prev(mm, addr, &prev);
2599         if (vma && (vma->vm_start <= addr))
2600                 return vma;
2601         /* don't alter vm_end if the coredump is running */
2602         if (!prev || expand_stack(prev, addr))
2603                 return NULL;
2604         if (prev->vm_flags & VM_LOCKED)
2605                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2606         return prev;
2607 }
2608 #else
2609 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2610 {
2611         return expand_downwards(vma, address);
2612 }
2613
2614 struct vm_area_struct *
2615 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2616 {
2617         struct vm_area_struct *vma;
2618         unsigned long start;
2619
2620         addr &= PAGE_MASK;
2621         vma = find_vma(mm, addr);
2622         if (!vma)
2623                 return NULL;
2624         if (vma->vm_start <= addr)
2625                 return vma;
2626         if (!(vma->vm_flags & VM_GROWSDOWN))
2627                 return NULL;
2628         start = vma->vm_start;
2629         if (expand_stack(vma, addr))
2630                 return NULL;
2631         if (vma->vm_flags & VM_LOCKED)
2632                 populate_vma_page_range(vma, addr, start, NULL);
2633         return vma;
2634 }
2635 #endif
2636
2637 EXPORT_SYMBOL_GPL(find_extend_vma);
2638
2639 /*
2640  * Ok - we have the memory areas we should free on the vma list,
2641  * so release them, and do the vma updates.
2642  *
2643  * Called with the mm semaphore held.
2644  */
2645 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2646 {
2647         unsigned long nr_accounted = 0;
2648
2649         /* Update high watermark before we lower total_vm */
2650         update_hiwater_vm(mm);
2651         do {
2652                 long nrpages = vma_pages(vma);
2653
2654                 if (vma->vm_flags & VM_ACCOUNT)
2655                         nr_accounted += nrpages;
2656                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2657                 vma = remove_vma(vma);
2658         } while (vma);
2659         vm_unacct_memory(nr_accounted);
2660         validate_mm(mm);
2661 }
2662
2663 /*
2664  * Get rid of page table information in the indicated region.
2665  *
2666  * Called with the mm semaphore held.
2667  */
2668 static void unmap_region(struct mm_struct *mm,
2669                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2670                 unsigned long start, unsigned long end)
2671 {
2672         struct vm_area_struct *next = vma_next(mm, prev);
2673         struct mmu_gather tlb;
2674
2675         lru_add_drain();
2676         tlb_gather_mmu(&tlb, mm);
2677         update_hiwater_rss(mm);
2678         unmap_vmas(&tlb, vma, start, end);
2679         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2680                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2681         tlb_finish_mmu(&tlb);
2682 }
2683
2684 /*
2685  * Create a list of vma's touched by the unmap, removing them from the mm's
2686  * vma list as we go..
2687  */
2688 static bool
2689 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2690         struct vm_area_struct *prev, unsigned long end)
2691 {
2692         struct vm_area_struct **insertion_point;
2693         struct vm_area_struct *tail_vma = NULL;
2694
2695         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2696         vma->vm_prev = NULL;
2697         do {
2698                 vma_rb_erase(vma, &mm->mm_rb);
2699                 mm->map_count--;
2700                 tail_vma = vma;
2701                 vma = vma->vm_next;
2702         } while (vma && vma->vm_start < end);
2703         *insertion_point = vma;
2704         if (vma) {
2705                 vma->vm_prev = prev;
2706                 vma_gap_update(vma);
2707         } else
2708                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2709         tail_vma->vm_next = NULL;
2710
2711         /* Kill the cache */
2712         vmacache_invalidate(mm);
2713
2714         /*
2715          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2716          * VM_GROWSUP VMA. Such VMAs can change their size under
2717          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2718          */
2719         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2720                 return false;
2721         if (prev && (prev->vm_flags & VM_GROWSUP))
2722                 return false;
2723         return true;
2724 }
2725
2726 /*
2727  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2728  * has already been checked or doesn't make sense to fail.
2729  */
2730 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731                 unsigned long addr, int new_below)
2732 {
2733         struct vm_area_struct *new;
2734         int err;
2735
2736         if (vma->vm_ops && vma->vm_ops->may_split) {
2737                 err = vma->vm_ops->may_split(vma, addr);
2738                 if (err)
2739                         return err;
2740         }
2741
2742         new = vm_area_dup(vma);
2743         if (!new)
2744                 return -ENOMEM;
2745
2746         if (new_below)
2747                 new->vm_end = addr;
2748         else {
2749                 new->vm_start = addr;
2750                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2751         }
2752
2753         err = vma_dup_policy(vma, new);
2754         if (err)
2755                 goto out_free_vma;
2756
2757         err = anon_vma_clone(new, vma);
2758         if (err)
2759                 goto out_free_mpol;
2760
2761         if (new->vm_file)
2762                 get_file(new->vm_file);
2763
2764         if (new->vm_ops && new->vm_ops->open)
2765                 new->vm_ops->open(new);
2766
2767         if (new_below)
2768                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2769                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2770         else
2771                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772
2773         /* Success. */
2774         if (!err)
2775                 return 0;
2776
2777         /* Clean everything up if vma_adjust failed. */
2778         if (new->vm_ops && new->vm_ops->close)
2779                 new->vm_ops->close(new);
2780         if (new->vm_file)
2781                 fput(new->vm_file);
2782         unlink_anon_vmas(new);
2783  out_free_mpol:
2784         mpol_put(vma_policy(new));
2785  out_free_vma:
2786         vm_area_free(new);
2787         return err;
2788 }
2789
2790 /*
2791  * Split a vma into two pieces at address 'addr', a new vma is allocated
2792  * either for the first part or the tail.
2793  */
2794 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2795               unsigned long addr, int new_below)
2796 {
2797         if (mm->map_count >= sysctl_max_map_count)
2798                 return -ENOMEM;
2799
2800         return __split_vma(mm, vma, addr, new_below);
2801 }
2802
2803 static inline void
2804 unlock_range(struct vm_area_struct *start, unsigned long limit)
2805 {
2806         struct mm_struct *mm = start->vm_mm;
2807         struct vm_area_struct *tmp = start;
2808
2809         while (tmp && tmp->vm_start < limit) {
2810                 if (tmp->vm_flags & VM_LOCKED) {
2811                         mm->locked_vm -= vma_pages(tmp);
2812                         munlock_vma_pages_all(tmp);
2813                 }
2814
2815                 tmp = tmp->vm_next;
2816         }
2817 }
2818
2819 /* Munmap is split into 2 main parts -- this part which finds
2820  * what needs doing, and the areas themselves, which do the
2821  * work.  This now handles partial unmappings.
2822  * Jeremy Fitzhardinge <jeremy@goop.org>
2823  */
2824 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2825                 struct list_head *uf, bool downgrade)
2826 {
2827         unsigned long end;
2828         struct vm_area_struct *vma, *prev, *last;
2829
2830         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2831                 return -EINVAL;
2832
2833         len = PAGE_ALIGN(len);
2834         end = start + len;
2835         if (len == 0)
2836                 return -EINVAL;
2837
2838         /*
2839          * arch_unmap() might do unmaps itself.  It must be called
2840          * and finish any rbtree manipulation before this code
2841          * runs and also starts to manipulate the rbtree.
2842          */
2843         arch_unmap(mm, start, end);
2844
2845         /* Find the first overlapping VMA where start < vma->vm_end */
2846         vma = find_vma_intersection(mm, start, end);
2847         if (!vma)
2848                 return 0;
2849         prev = vma->vm_prev;
2850
2851         /*
2852          * If we need to split any vma, do it now to save pain later.
2853          *
2854          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2855          * unmapped vm_area_struct will remain in use: so lower split_vma
2856          * places tmp vma above, and higher split_vma places tmp vma below.
2857          */
2858         if (start > vma->vm_start) {
2859                 int error;
2860
2861                 /*
2862                  * Make sure that map_count on return from munmap() will
2863                  * not exceed its limit; but let map_count go just above
2864                  * its limit temporarily, to help free resources as expected.
2865                  */
2866                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2867                         return -ENOMEM;
2868
2869                 error = __split_vma(mm, vma, start, 0);
2870                 if (error)
2871                         return error;
2872                 prev = vma;
2873         }
2874
2875         /* Does it split the last one? */
2876         last = find_vma(mm, end);
2877         if (last && end > last->vm_start) {
2878                 int error = __split_vma(mm, last, end, 1);
2879                 if (error)
2880                         return error;
2881         }
2882         vma = vma_next(mm, prev);
2883
2884         if (unlikely(uf)) {
2885                 /*
2886                  * If userfaultfd_unmap_prep returns an error the vmas
2887                  * will remain split, but userland will get a
2888                  * highly unexpected error anyway. This is no
2889                  * different than the case where the first of the two
2890                  * __split_vma fails, but we don't undo the first
2891                  * split, despite we could. This is unlikely enough
2892                  * failure that it's not worth optimizing it for.
2893                  */
2894                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2895                 if (error)
2896                         return error;
2897         }
2898
2899         /*
2900          * unlock any mlock()ed ranges before detaching vmas
2901          */
2902         if (mm->locked_vm)
2903                 unlock_range(vma, end);
2904
2905         /* Detach vmas from rbtree */
2906         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2907                 downgrade = false;
2908
2909         if (downgrade)
2910                 mmap_write_downgrade(mm);
2911
2912         unmap_region(mm, vma, prev, start, end);
2913
2914         /* Fix up all other VM information */
2915         remove_vma_list(mm, vma);
2916
2917         return downgrade ? 1 : 0;
2918 }
2919
2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2921               struct list_head *uf)
2922 {
2923         return __do_munmap(mm, start, len, uf, false);
2924 }
2925
2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2927 {
2928         int ret;
2929         struct mm_struct *mm = current->mm;
2930         LIST_HEAD(uf);
2931
2932         if (mmap_write_lock_killable(mm))
2933                 return -EINTR;
2934
2935         ret = __do_munmap(mm, start, len, &uf, downgrade);
2936         /*
2937          * Returning 1 indicates mmap_lock is downgraded.
2938          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2939          * it to 0 before return.
2940          */
2941         if (ret == 1) {
2942                 mmap_read_unlock(mm);
2943                 ret = 0;
2944         } else
2945                 mmap_write_unlock(mm);
2946
2947         userfaultfd_unmap_complete(mm, &uf);
2948         return ret;
2949 }
2950
2951 int vm_munmap(unsigned long start, size_t len)
2952 {
2953         return __vm_munmap(start, len, false);
2954 }
2955 EXPORT_SYMBOL(vm_munmap);
2956
2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2958 {
2959         addr = untagged_addr(addr);
2960         profile_munmap(addr);
2961         return __vm_munmap(addr, len, true);
2962 }
2963
2964
2965 /*
2966  * Emulation of deprecated remap_file_pages() syscall.
2967  */
2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2969                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2970 {
2971
2972         struct mm_struct *mm = current->mm;
2973         struct vm_area_struct *vma;
2974         unsigned long populate = 0;
2975         unsigned long ret = -EINVAL;
2976         struct file *file;
2977
2978         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2979                      current->comm, current->pid);
2980
2981         if (prot)
2982                 return ret;
2983         start = start & PAGE_MASK;
2984         size = size & PAGE_MASK;
2985
2986         if (start + size <= start)
2987                 return ret;
2988
2989         /* Does pgoff wrap? */
2990         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2991                 return ret;
2992
2993         if (mmap_write_lock_killable(mm))
2994                 return -EINTR;
2995
2996         vma = find_vma(mm, start);
2997
2998         if (!vma || !(vma->vm_flags & VM_SHARED))
2999                 goto out;
3000
3001         if (start < vma->vm_start)
3002                 goto out;
3003
3004         if (start + size > vma->vm_end) {
3005                 struct vm_area_struct *next;
3006
3007                 for (next = vma->vm_next; next; next = next->vm_next) {
3008                         /* hole between vmas ? */
3009                         if (next->vm_start != next->vm_prev->vm_end)
3010                                 goto out;
3011
3012                         if (next->vm_file != vma->vm_file)
3013                                 goto out;
3014
3015                         if (next->vm_flags != vma->vm_flags)
3016                                 goto out;
3017
3018                         if (start + size <= next->vm_end)
3019                                 break;
3020                 }
3021
3022                 if (!next)
3023                         goto out;
3024         }
3025
3026         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3027         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3028         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3029
3030         flags &= MAP_NONBLOCK;
3031         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3032         if (vma->vm_flags & VM_LOCKED)
3033                 flags |= MAP_LOCKED;
3034
3035         file = get_file(vma->vm_file);
3036         ret = do_mmap(vma->vm_file, start, size,
3037                         prot, flags, pgoff, &populate, NULL);
3038         fput(file);
3039 out:
3040         mmap_write_unlock(mm);
3041         if (populate)
3042                 mm_populate(ret, populate);
3043         if (!IS_ERR_VALUE(ret))
3044                 ret = 0;
3045         return ret;
3046 }
3047
3048 /*
3049  *  this is really a simplified "do_mmap".  it only handles
3050  *  anonymous maps.  eventually we may be able to do some
3051  *  brk-specific accounting here.
3052  */
3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3054 {
3055         struct mm_struct *mm = current->mm;
3056         struct vm_area_struct *vma, *prev;
3057         struct rb_node **rb_link, *rb_parent;
3058         pgoff_t pgoff = addr >> PAGE_SHIFT;
3059         int error;
3060         unsigned long mapped_addr;
3061
3062         /* Until we need other flags, refuse anything except VM_EXEC. */
3063         if ((flags & (~VM_EXEC)) != 0)
3064                 return -EINVAL;
3065         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066
3067         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3068         if (IS_ERR_VALUE(mapped_addr))
3069                 return mapped_addr;
3070
3071         error = mlock_future_check(mm, mm->def_flags, len);
3072         if (error)
3073                 return error;
3074
3075         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3076         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3077                 return -ENOMEM;
3078
3079         /* Check against address space limits *after* clearing old maps... */
3080         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081                 return -ENOMEM;
3082
3083         if (mm->map_count > sysctl_max_map_count)
3084                 return -ENOMEM;
3085
3086         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087                 return -ENOMEM;
3088
3089         /* Can we just expand an old private anonymous mapping? */
3090         vma = vma_merge(mm, prev, addr, addr + len, flags,
3091                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3092         if (vma)
3093                 goto out;
3094
3095         /*
3096          * create a vma struct for an anonymous mapping
3097          */
3098         vma = vm_area_alloc(mm);
3099         if (!vma) {
3100                 vm_unacct_memory(len >> PAGE_SHIFT);
3101                 return -ENOMEM;
3102         }
3103
3104         vma_set_anonymous(vma);
3105         vma->vm_start = addr;
3106         vma->vm_end = addr + len;
3107         vma->vm_pgoff = pgoff;
3108         vma->vm_flags = flags;
3109         vma->vm_page_prot = vm_get_page_prot(flags);
3110         vma_link(mm, vma, prev, rb_link, rb_parent);
3111 out:
3112         perf_event_mmap(vma);
3113         mm->total_vm += len >> PAGE_SHIFT;
3114         mm->data_vm += len >> PAGE_SHIFT;
3115         if (flags & VM_LOCKED)
3116                 mm->locked_vm += (len >> PAGE_SHIFT);
3117         vma->vm_flags |= VM_SOFTDIRTY;
3118         return 0;
3119 }
3120
3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3122 {
3123         struct mm_struct *mm = current->mm;
3124         unsigned long len;
3125         int ret;
3126         bool populate;
3127         LIST_HEAD(uf);
3128
3129         len = PAGE_ALIGN(request);
3130         if (len < request)
3131                 return -ENOMEM;
3132         if (!len)
3133                 return 0;
3134
3135         if (mmap_write_lock_killable(mm))
3136                 return -EINTR;
3137
3138         ret = do_brk_flags(addr, len, flags, &uf);
3139         populate = ((mm->def_flags & VM_LOCKED) != 0);
3140         mmap_write_unlock(mm);
3141         userfaultfd_unmap_complete(mm, &uf);
3142         if (populate && !ret)
3143                 mm_populate(addr, len);
3144         return ret;
3145 }
3146 EXPORT_SYMBOL(vm_brk_flags);
3147
3148 int vm_brk(unsigned long addr, unsigned long len)
3149 {
3150         return vm_brk_flags(addr, len, 0);
3151 }
3152 EXPORT_SYMBOL(vm_brk);
3153
3154 /* Release all mmaps. */
3155 void exit_mmap(struct mm_struct *mm)
3156 {
3157         struct mmu_gather tlb;
3158         struct vm_area_struct *vma;
3159         unsigned long nr_accounted = 0;
3160
3161         /* mm's last user has gone, and its about to be pulled down */
3162         mmu_notifier_release(mm);
3163
3164         if (unlikely(mm_is_oom_victim(mm))) {
3165                 /*
3166                  * Manually reap the mm to free as much memory as possible.
3167                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3168                  * this mm from further consideration.  Taking mm->mmap_lock for
3169                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3170                  * reaper will not run on this mm again after mmap_lock is
3171                  * dropped.
3172                  *
3173                  * Nothing can be holding mm->mmap_lock here and the above call
3174                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3175                  * __oom_reap_task_mm() will not block.
3176                  *
3177                  * This needs to be done before calling munlock_vma_pages_all(),
3178                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3179                  * reliably test it.
3180                  */
3181                 (void)__oom_reap_task_mm(mm);
3182
3183                 set_bit(MMF_OOM_SKIP, &mm->flags);
3184                 mmap_write_lock(mm);
3185                 mmap_write_unlock(mm);
3186         }
3187
3188         if (mm->locked_vm)
3189                 unlock_range(mm->mmap, ULONG_MAX);
3190
3191         arch_exit_mmap(mm);
3192
3193         vma = mm->mmap;
3194         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3195                 return;
3196
3197         lru_add_drain();
3198         flush_cache_mm(mm);
3199         tlb_gather_mmu_fullmm(&tlb, mm);
3200         /* update_hiwater_rss(mm) here? but nobody should be looking */
3201         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3202         unmap_vmas(&tlb, vma, 0, -1);
3203         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3204         tlb_finish_mmu(&tlb);
3205
3206         /*
3207          * Walk the list again, actually closing and freeing it,
3208          * with preemption enabled, without holding any MM locks.
3209          */
3210         while (vma) {
3211                 if (vma->vm_flags & VM_ACCOUNT)
3212                         nr_accounted += vma_pages(vma);
3213                 vma = remove_vma(vma);
3214                 cond_resched();
3215         }
3216         vm_unacct_memory(nr_accounted);
3217 }
3218
3219 /* Insert vm structure into process list sorted by address
3220  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3221  * then i_mmap_rwsem is taken here.
3222  */
3223 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3224 {
3225         struct vm_area_struct *prev;
3226         struct rb_node **rb_link, *rb_parent;
3227
3228         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3229                            &prev, &rb_link, &rb_parent))
3230                 return -ENOMEM;
3231         if ((vma->vm_flags & VM_ACCOUNT) &&
3232              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3233                 return -ENOMEM;
3234
3235         /*
3236          * The vm_pgoff of a purely anonymous vma should be irrelevant
3237          * until its first write fault, when page's anon_vma and index
3238          * are set.  But now set the vm_pgoff it will almost certainly
3239          * end up with (unless mremap moves it elsewhere before that
3240          * first wfault), so /proc/pid/maps tells a consistent story.
3241          *
3242          * By setting it to reflect the virtual start address of the
3243          * vma, merges and splits can happen in a seamless way, just
3244          * using the existing file pgoff checks and manipulations.
3245          * Similarly in do_mmap and in do_brk_flags.
3246          */
3247         if (vma_is_anonymous(vma)) {
3248                 BUG_ON(vma->anon_vma);
3249                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3250         }
3251
3252         vma_link(mm, vma, prev, rb_link, rb_parent);
3253         return 0;
3254 }
3255
3256 /*
3257  * Copy the vma structure to a new location in the same mm,
3258  * prior to moving page table entries, to effect an mremap move.
3259  */
3260 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3261         unsigned long addr, unsigned long len, pgoff_t pgoff,
3262         bool *need_rmap_locks)
3263 {
3264         struct vm_area_struct *vma = *vmap;
3265         unsigned long vma_start = vma->vm_start;
3266         struct mm_struct *mm = vma->vm_mm;
3267         struct vm_area_struct *new_vma, *prev;
3268         struct rb_node **rb_link, *rb_parent;
3269         bool faulted_in_anon_vma = true;
3270
3271         /*
3272          * If anonymous vma has not yet been faulted, update new pgoff
3273          * to match new location, to increase its chance of merging.
3274          */
3275         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3276                 pgoff = addr >> PAGE_SHIFT;
3277                 faulted_in_anon_vma = false;
3278         }
3279
3280         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3281                 return NULL;    /* should never get here */
3282         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3283                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3284                             vma->vm_userfaultfd_ctx);
3285         if (new_vma) {
3286                 /*
3287                  * Source vma may have been merged into new_vma
3288                  */
3289                 if (unlikely(vma_start >= new_vma->vm_start &&
3290                              vma_start < new_vma->vm_end)) {
3291                         /*
3292                          * The only way we can get a vma_merge with
3293                          * self during an mremap is if the vma hasn't
3294                          * been faulted in yet and we were allowed to
3295                          * reset the dst vma->vm_pgoff to the
3296                          * destination address of the mremap to allow
3297                          * the merge to happen. mremap must change the
3298                          * vm_pgoff linearity between src and dst vmas
3299                          * (in turn preventing a vma_merge) to be
3300                          * safe. It is only safe to keep the vm_pgoff
3301                          * linear if there are no pages mapped yet.
3302                          */
3303                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3304                         *vmap = vma = new_vma;
3305                 }
3306                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3307         } else {
3308                 new_vma = vm_area_dup(vma);
3309                 if (!new_vma)
3310                         goto out;
3311                 new_vma->vm_start = addr;
3312                 new_vma->vm_end = addr + len;
3313                 new_vma->vm_pgoff = pgoff;
3314                 if (vma_dup_policy(vma, new_vma))
3315                         goto out_free_vma;
3316                 if (anon_vma_clone(new_vma, vma))
3317                         goto out_free_mempol;
3318                 if (new_vma->vm_file)
3319                         get_file(new_vma->vm_file);
3320                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3321                         new_vma->vm_ops->open(new_vma);
3322                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3323                 *need_rmap_locks = false;
3324         }
3325         return new_vma;
3326
3327 out_free_mempol:
3328         mpol_put(vma_policy(new_vma));
3329 out_free_vma:
3330         vm_area_free(new_vma);
3331 out:
3332         return NULL;
3333 }
3334
3335 /*
3336  * Return true if the calling process may expand its vm space by the passed
3337  * number of pages
3338  */
3339 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3340 {
3341         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3342                 return false;
3343
3344         if (is_data_mapping(flags) &&
3345             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3346                 /* Workaround for Valgrind */
3347                 if (rlimit(RLIMIT_DATA) == 0 &&
3348                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3349                         return true;
3350
3351                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3352                              current->comm, current->pid,
3353                              (mm->data_vm + npages) << PAGE_SHIFT,
3354                              rlimit(RLIMIT_DATA),
3355                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3356
3357                 if (!ignore_rlimit_data)
3358                         return false;
3359         }
3360
3361         return true;
3362 }
3363
3364 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3365 {
3366         mm->total_vm += npages;
3367
3368         if (is_exec_mapping(flags))
3369                 mm->exec_vm += npages;
3370         else if (is_stack_mapping(flags))
3371                 mm->stack_vm += npages;
3372         else if (is_data_mapping(flags))
3373                 mm->data_vm += npages;
3374 }
3375
3376 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3377
3378 /*
3379  * Having a close hook prevents vma merging regardless of flags.
3380  */
3381 static void special_mapping_close(struct vm_area_struct *vma)
3382 {
3383 }
3384
3385 static const char *special_mapping_name(struct vm_area_struct *vma)
3386 {
3387         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3388 }
3389
3390 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3391 {
3392         struct vm_special_mapping *sm = new_vma->vm_private_data;
3393
3394         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3395                 return -EFAULT;
3396
3397         if (sm->mremap)
3398                 return sm->mremap(sm, new_vma);
3399
3400         return 0;
3401 }
3402
3403 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3404 {
3405         /*
3406          * Forbid splitting special mappings - kernel has expectations over
3407          * the number of pages in mapping. Together with VM_DONTEXPAND
3408          * the size of vma should stay the same over the special mapping's
3409          * lifetime.
3410          */
3411         return -EINVAL;
3412 }
3413
3414 static const struct vm_operations_struct special_mapping_vmops = {
3415         .close = special_mapping_close,
3416         .fault = special_mapping_fault,
3417         .mremap = special_mapping_mremap,
3418         .name = special_mapping_name,
3419         /* vDSO code relies that VVAR can't be accessed remotely */
3420         .access = NULL,
3421         .may_split = special_mapping_split,
3422 };
3423
3424 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3425         .close = special_mapping_close,
3426         .fault = special_mapping_fault,
3427 };
3428
3429 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3430 {
3431         struct vm_area_struct *vma = vmf->vma;
3432         pgoff_t pgoff;
3433         struct page **pages;
3434
3435         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3436                 pages = vma->vm_private_data;
3437         } else {
3438                 struct vm_special_mapping *sm = vma->vm_private_data;
3439
3440                 if (sm->fault)
3441                         return sm->fault(sm, vmf->vma, vmf);
3442
3443                 pages = sm->pages;
3444         }
3445
3446         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3447                 pgoff--;
3448
3449         if (*pages) {
3450                 struct page *page = *pages;
3451                 get_page(page);
3452                 vmf->page = page;
3453                 return 0;
3454         }
3455
3456         return VM_FAULT_SIGBUS;
3457 }
3458
3459 static struct vm_area_struct *__install_special_mapping(
3460         struct mm_struct *mm,
3461         unsigned long addr, unsigned long len,
3462         unsigned long vm_flags, void *priv,
3463         const struct vm_operations_struct *ops)
3464 {
3465         int ret;
3466         struct vm_area_struct *vma;
3467
3468         vma = vm_area_alloc(mm);
3469         if (unlikely(vma == NULL))
3470                 return ERR_PTR(-ENOMEM);
3471
3472         vma->vm_start = addr;
3473         vma->vm_end = addr + len;
3474
3475         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3476         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3477
3478         vma->vm_ops = ops;
3479         vma->vm_private_data = priv;
3480
3481         ret = insert_vm_struct(mm, vma);
3482         if (ret)
3483                 goto out;
3484
3485         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3486
3487         perf_event_mmap(vma);
3488
3489         return vma;
3490
3491 out:
3492         vm_area_free(vma);
3493         return ERR_PTR(ret);
3494 }
3495
3496 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3497         const struct vm_special_mapping *sm)
3498 {
3499         return vma->vm_private_data == sm &&
3500                 (vma->vm_ops == &special_mapping_vmops ||
3501                  vma->vm_ops == &legacy_special_mapping_vmops);
3502 }
3503
3504 /*
3505  * Called with mm->mmap_lock held for writing.
3506  * Insert a new vma covering the given region, with the given flags.
3507  * Its pages are supplied by the given array of struct page *.
3508  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3509  * The region past the last page supplied will always produce SIGBUS.
3510  * The array pointer and the pages it points to are assumed to stay alive
3511  * for as long as this mapping might exist.
3512  */
3513 struct vm_area_struct *_install_special_mapping(
3514         struct mm_struct *mm,
3515         unsigned long addr, unsigned long len,
3516         unsigned long vm_flags, const struct vm_special_mapping *spec)
3517 {
3518         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3519                                         &special_mapping_vmops);
3520 }
3521
3522 int install_special_mapping(struct mm_struct *mm,
3523                             unsigned long addr, unsigned long len,
3524                             unsigned long vm_flags, struct page **pages)
3525 {
3526         struct vm_area_struct *vma = __install_special_mapping(
3527                 mm, addr, len, vm_flags, (void *)pages,
3528                 &legacy_special_mapping_vmops);
3529
3530         return PTR_ERR_OR_ZERO(vma);
3531 }
3532
3533 static DEFINE_MUTEX(mm_all_locks_mutex);
3534
3535 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3536 {
3537         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3538                 /*
3539                  * The LSB of head.next can't change from under us
3540                  * because we hold the mm_all_locks_mutex.
3541                  */
3542                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3543                 /*
3544                  * We can safely modify head.next after taking the
3545                  * anon_vma->root->rwsem. If some other vma in this mm shares
3546                  * the same anon_vma we won't take it again.
3547                  *
3548                  * No need of atomic instructions here, head.next
3549                  * can't change from under us thanks to the
3550                  * anon_vma->root->rwsem.
3551                  */
3552                 if (__test_and_set_bit(0, (unsigned long *)
3553                                        &anon_vma->root->rb_root.rb_root.rb_node))
3554                         BUG();
3555         }
3556 }
3557
3558 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3559 {
3560         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3561                 /*
3562                  * AS_MM_ALL_LOCKS can't change from under us because
3563                  * we hold the mm_all_locks_mutex.
3564                  *
3565                  * Operations on ->flags have to be atomic because
3566                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3567                  * mm_all_locks_mutex, there may be other cpus
3568                  * changing other bitflags in parallel to us.
3569                  */
3570                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3571                         BUG();
3572                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3573         }
3574 }
3575
3576 /*
3577  * This operation locks against the VM for all pte/vma/mm related
3578  * operations that could ever happen on a certain mm. This includes
3579  * vmtruncate, try_to_unmap, and all page faults.
3580  *
3581  * The caller must take the mmap_lock in write mode before calling
3582  * mm_take_all_locks(). The caller isn't allowed to release the
3583  * mmap_lock until mm_drop_all_locks() returns.
3584  *
3585  * mmap_lock in write mode is required in order to block all operations
3586  * that could modify pagetables and free pages without need of
3587  * altering the vma layout. It's also needed in write mode to avoid new
3588  * anon_vmas to be associated with existing vmas.
3589  *
3590  * A single task can't take more than one mm_take_all_locks() in a row
3591  * or it would deadlock.
3592  *
3593  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3594  * mapping->flags avoid to take the same lock twice, if more than one
3595  * vma in this mm is backed by the same anon_vma or address_space.
3596  *
3597  * We take locks in following order, accordingly to comment at beginning
3598  * of mm/rmap.c:
3599  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3600  *     hugetlb mapping);
3601  *   - all i_mmap_rwsem locks;
3602  *   - all anon_vma->rwseml
3603  *
3604  * We can take all locks within these types randomly because the VM code
3605  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3606  * mm_all_locks_mutex.
3607  *
3608  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3609  * that may have to take thousand of locks.
3610  *
3611  * mm_take_all_locks() can fail if it's interrupted by signals.
3612  */
3613 int mm_take_all_locks(struct mm_struct *mm)
3614 {
3615         struct vm_area_struct *vma;
3616         struct anon_vma_chain *avc;
3617
3618         BUG_ON(mmap_read_trylock(mm));
3619
3620         mutex_lock(&mm_all_locks_mutex);
3621
3622         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623                 if (signal_pending(current))
3624                         goto out_unlock;
3625                 if (vma->vm_file && vma->vm_file->f_mapping &&
3626                                 is_vm_hugetlb_page(vma))
3627                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3628         }
3629
3630         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631                 if (signal_pending(current))
3632                         goto out_unlock;
3633                 if (vma->vm_file && vma->vm_file->f_mapping &&
3634                                 !is_vm_hugetlb_page(vma))
3635                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3636         }
3637
3638         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639                 if (signal_pending(current))
3640                         goto out_unlock;
3641                 if (vma->anon_vma)
3642                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3643                                 vm_lock_anon_vma(mm, avc->anon_vma);
3644         }
3645
3646         return 0;
3647
3648 out_unlock:
3649         mm_drop_all_locks(mm);
3650         return -EINTR;
3651 }
3652
3653 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3654 {
3655         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3656                 /*
3657                  * The LSB of head.next can't change to 0 from under
3658                  * us because we hold the mm_all_locks_mutex.
3659                  *
3660                  * We must however clear the bitflag before unlocking
3661                  * the vma so the users using the anon_vma->rb_root will
3662                  * never see our bitflag.
3663                  *
3664                  * No need of atomic instructions here, head.next
3665                  * can't change from under us until we release the
3666                  * anon_vma->root->rwsem.
3667                  */
3668                 if (!__test_and_clear_bit(0, (unsigned long *)
3669                                           &anon_vma->root->rb_root.rb_root.rb_node))
3670                         BUG();
3671                 anon_vma_unlock_write(anon_vma);
3672         }
3673 }
3674
3675 static void vm_unlock_mapping(struct address_space *mapping)
3676 {
3677         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3678                 /*
3679                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3680                  * because we hold the mm_all_locks_mutex.
3681                  */
3682                 i_mmap_unlock_write(mapping);
3683                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3684                                         &mapping->flags))
3685                         BUG();
3686         }
3687 }
3688
3689 /*
3690  * The mmap_lock cannot be released by the caller until
3691  * mm_drop_all_locks() returns.
3692  */
3693 void mm_drop_all_locks(struct mm_struct *mm)
3694 {
3695         struct vm_area_struct *vma;
3696         struct anon_vma_chain *avc;
3697
3698         BUG_ON(mmap_read_trylock(mm));
3699         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3700
3701         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3702                 if (vma->anon_vma)
3703                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3704                                 vm_unlock_anon_vma(avc->anon_vma);
3705                 if (vma->vm_file && vma->vm_file->f_mapping)
3706                         vm_unlock_mapping(vma->vm_file->f_mapping);
3707         }
3708
3709         mutex_unlock(&mm_all_locks_mutex);
3710 }
3711
3712 /*
3713  * initialise the percpu counter for VM
3714  */
3715 void __init mmap_init(void)
3716 {
3717         int ret;
3718
3719         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3720         VM_BUG_ON(ret);
3721 }
3722
3723 /*
3724  * Initialise sysctl_user_reserve_kbytes.
3725  *
3726  * This is intended to prevent a user from starting a single memory hogging
3727  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3728  * mode.
3729  *
3730  * The default value is min(3% of free memory, 128MB)
3731  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3732  */
3733 static int init_user_reserve(void)
3734 {
3735         unsigned long free_kbytes;
3736
3737         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3738
3739         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3740         return 0;
3741 }
3742 subsys_initcall(init_user_reserve);
3743
3744 /*
3745  * Initialise sysctl_admin_reserve_kbytes.
3746  *
3747  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3748  * to log in and kill a memory hogging process.
3749  *
3750  * Systems with more than 256MB will reserve 8MB, enough to recover
3751  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3752  * only reserve 3% of free pages by default.
3753  */
3754 static int init_admin_reserve(void)
3755 {
3756         unsigned long free_kbytes;
3757
3758         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3759
3760         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3761         return 0;
3762 }
3763 subsys_initcall(init_admin_reserve);
3764
3765 /*
3766  * Reinititalise user and admin reserves if memory is added or removed.
3767  *
3768  * The default user reserve max is 128MB, and the default max for the
3769  * admin reserve is 8MB. These are usually, but not always, enough to
3770  * enable recovery from a memory hogging process using login/sshd, a shell,
3771  * and tools like top. It may make sense to increase or even disable the
3772  * reserve depending on the existence of swap or variations in the recovery
3773  * tools. So, the admin may have changed them.
3774  *
3775  * If memory is added and the reserves have been eliminated or increased above
3776  * the default max, then we'll trust the admin.
3777  *
3778  * If memory is removed and there isn't enough free memory, then we
3779  * need to reset the reserves.
3780  *
3781  * Otherwise keep the reserve set by the admin.
3782  */
3783 static int reserve_mem_notifier(struct notifier_block *nb,
3784                              unsigned long action, void *data)
3785 {
3786         unsigned long tmp, free_kbytes;
3787
3788         switch (action) {
3789         case MEM_ONLINE:
3790                 /* Default max is 128MB. Leave alone if modified by operator. */
3791                 tmp = sysctl_user_reserve_kbytes;
3792                 if (0 < tmp && tmp < (1UL << 17))
3793                         init_user_reserve();
3794
3795                 /* Default max is 8MB.  Leave alone if modified by operator. */
3796                 tmp = sysctl_admin_reserve_kbytes;
3797                 if (0 < tmp && tmp < (1UL << 13))
3798                         init_admin_reserve();
3799
3800                 break;
3801         case MEM_OFFLINE:
3802                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3803
3804                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3805                         init_user_reserve();
3806                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3807                                 sysctl_user_reserve_kbytes);
3808                 }
3809
3810                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3811                         init_admin_reserve();
3812                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3813                                 sysctl_admin_reserve_kbytes);
3814                 }
3815                 break;
3816         default:
3817                 break;
3818         }
3819         return NOTIFY_OK;
3820 }
3821
3822 static struct notifier_block reserve_mem_nb = {
3823         .notifier_call = reserve_mem_notifier,
3824 };
3825
3826 static int __meminit init_reserve_notifier(void)
3827 {
3828         if (register_hotmemory_notifier(&reserve_mem_nb))
3829                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3830
3831         return 0;
3832 }
3833 subsys_initcall(init_reserve_notifier);