selftests/timens: Add a test for futex()
[linux-2.6-microblaze.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  */
97 pgprot_t protection_map[16] __ro_after_init = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105         return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115         return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127         unsigned long vm_flags = vma->vm_flags;
128         pgprot_t vm_page_prot;
129
130         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131         if (vma_wants_writenotify(vma, vm_page_prot)) {
132                 vm_flags &= ~VM_SHARED;
133                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134         }
135         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140  * Requires inode->i_mapping->i_mmap_rwsem
141  */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143                 struct file *file, struct address_space *mapping)
144 {
145         if (vma->vm_flags & VM_DENYWRITE)
146                 allow_write_access(file);
147         if (vma->vm_flags & VM_SHARED)
148                 mapping_unmap_writable(mapping);
149
150         flush_dcache_mmap_lock(mapping);
151         vma_interval_tree_remove(vma, &mapping->i_mmap);
152         flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156  * Unlink a file-based vm structure from its interval tree, to hide
157  * vma from rmap and vmtruncate before freeing its page tables.
158  */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161         struct file *file = vma->vm_file;
162
163         if (file) {
164                 struct address_space *mapping = file->f_mapping;
165                 i_mmap_lock_write(mapping);
166                 __remove_shared_vm_struct(vma, file, mapping);
167                 i_mmap_unlock_write(mapping);
168         }
169 }
170
171 /*
172  * Close a vm structure and free it, returning the next.
173  */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176         struct vm_area_struct *next = vma->vm_next;
177
178         might_sleep();
179         if (vma->vm_ops && vma->vm_ops->close)
180                 vma->vm_ops->close(vma);
181         if (vma->vm_file)
182                 fput(vma->vm_file);
183         mpol_put(vma_policy(vma));
184         vm_area_free(vma);
185         return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189                 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long retval;
193         unsigned long newbrk, oldbrk, origbrk;
194         struct mm_struct *mm = current->mm;
195         struct vm_area_struct *next;
196         unsigned long min_brk;
197         bool populate;
198         bool downgraded = false;
199         LIST_HEAD(uf);
200
201         if (mmap_write_lock_killable(mm))
202                 return -EINTR;
203
204         origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207         /*
208          * CONFIG_COMPAT_BRK can still be overridden by setting
209          * randomize_va_space to 2, which will still cause mm->start_brk
210          * to be arbitrarily shifted
211          */
212         if (current->brk_randomized)
213                 min_brk = mm->start_brk;
214         else
215                 min_brk = mm->end_data;
216 #else
217         min_brk = mm->start_brk;
218 #endif
219         if (brk < min_brk)
220                 goto out;
221
222         /*
223          * Check against rlimit here. If this check is done later after the test
224          * of oldbrk with newbrk then it can escape the test and let the data
225          * segment grow beyond its set limit the in case where the limit is
226          * not page aligned -Ram Gupta
227          */
228         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229                               mm->end_data, mm->start_data))
230                 goto out;
231
232         newbrk = PAGE_ALIGN(brk);
233         oldbrk = PAGE_ALIGN(mm->brk);
234         if (oldbrk == newbrk) {
235                 mm->brk = brk;
236                 goto success;
237         }
238
239         /*
240          * Always allow shrinking brk.
241          * __do_munmap() may downgrade mmap_lock to read.
242          */
243         if (brk <= mm->brk) {
244                 int ret;
245
246                 /*
247                  * mm->brk must to be protected by write mmap_lock so update it
248                  * before downgrading mmap_lock. When __do_munmap() fails,
249                  * mm->brk will be restored from origbrk.
250                  */
251                 mm->brk = brk;
252                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253                 if (ret < 0) {
254                         mm->brk = origbrk;
255                         goto out;
256                 } else if (ret == 1) {
257                         downgraded = true;
258                 }
259                 goto success;
260         }
261
262         /* Check against existing mmap mappings. */
263         next = find_vma(mm, oldbrk);
264         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265                 goto out;
266
267         /* Ok, looks good - let it rip. */
268         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269                 goto out;
270         mm->brk = brk;
271
272 success:
273         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274         if (downgraded)
275                 mmap_read_unlock(mm);
276         else
277                 mmap_write_unlock(mm);
278         userfaultfd_unmap_complete(mm, &uf);
279         if (populate)
280                 mm_populate(oldbrk, newbrk - oldbrk);
281         return brk;
282
283 out:
284         retval = origbrk;
285         mmap_write_unlock(mm);
286         return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291         unsigned long gap, prev_end;
292
293         /*
294          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295          * allow two stack_guard_gaps between them here, and when choosing
296          * an unmapped area; whereas when expanding we only require one.
297          * That's a little inconsistent, but keeps the code here simpler.
298          */
299         gap = vm_start_gap(vma);
300         if (vma->vm_prev) {
301                 prev_end = vm_end_gap(vma->vm_prev);
302                 if (gap > prev_end)
303                         gap -= prev_end;
304                 else
305                         gap = 0;
306         }
307         return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313         unsigned long max = vma_compute_gap(vma), subtree_gap;
314         if (vma->vm_rb.rb_left) {
315                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317                 if (subtree_gap > max)
318                         max = subtree_gap;
319         }
320         if (vma->vm_rb.rb_right) {
321                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323                 if (subtree_gap > max)
324                         max = subtree_gap;
325         }
326         return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331         struct rb_root *root = &mm->mm_rb;
332         int i = 0, j, bug = 0;
333         struct rb_node *nd, *pn = NULL;
334         unsigned long prev = 0, pend = 0;
335
336         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337                 struct vm_area_struct *vma;
338                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339                 if (vma->vm_start < prev) {
340                         pr_emerg("vm_start %lx < prev %lx\n",
341                                   vma->vm_start, prev);
342                         bug = 1;
343                 }
344                 if (vma->vm_start < pend) {
345                         pr_emerg("vm_start %lx < pend %lx\n",
346                                   vma->vm_start, pend);
347                         bug = 1;
348                 }
349                 if (vma->vm_start > vma->vm_end) {
350                         pr_emerg("vm_start %lx > vm_end %lx\n",
351                                   vma->vm_start, vma->vm_end);
352                         bug = 1;
353                 }
354                 spin_lock(&mm->page_table_lock);
355                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356                         pr_emerg("free gap %lx, correct %lx\n",
357                                vma->rb_subtree_gap,
358                                vma_compute_subtree_gap(vma));
359                         bug = 1;
360                 }
361                 spin_unlock(&mm->page_table_lock);
362                 i++;
363                 pn = nd;
364                 prev = vma->vm_start;
365                 pend = vma->vm_end;
366         }
367         j = 0;
368         for (nd = pn; nd; nd = rb_prev(nd))
369                 j++;
370         if (i != j) {
371                 pr_emerg("backwards %d, forwards %d\n", j, i);
372                 bug = 1;
373         }
374         return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379         struct rb_node *nd;
380
381         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382                 struct vm_area_struct *vma;
383                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384                 VM_BUG_ON_VMA(vma != ignore &&
385                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386                         vma);
387         }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392         int bug = 0;
393         int i = 0;
394         unsigned long highest_address = 0;
395         struct vm_area_struct *vma = mm->mmap;
396
397         while (vma) {
398                 struct anon_vma *anon_vma = vma->anon_vma;
399                 struct anon_vma_chain *avc;
400
401                 if (anon_vma) {
402                         anon_vma_lock_read(anon_vma);
403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                                 anon_vma_interval_tree_verify(avc);
405                         anon_vma_unlock_read(anon_vma);
406                 }
407
408                 highest_address = vm_end_gap(vma);
409                 vma = vma->vm_next;
410                 i++;
411         }
412         if (i != mm->map_count) {
413                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414                 bug = 1;
415         }
416         if (highest_address != mm->highest_vm_end) {
417                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418                           mm->highest_vm_end, highest_address);
419                 bug = 1;
420         }
421         i = browse_rb(mm);
422         if (i != mm->map_count) {
423                 if (i != -1)
424                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425                 bug = 1;
426         }
427         VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435                          struct vm_area_struct, vm_rb,
436                          unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440  * vma->vm_prev->vm_end values changed, without modifying the vma's position
441  * in the rbtree.
442  */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445         /*
446          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447          * a callback function that does exactly what we want.
448          */
449         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453                                  struct rb_root *root)
454 {
455         /* All rb_subtree_gap values must be consistent prior to insertion */
456         validate_mm_rb(root, NULL);
457
458         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463         /*
464          * Note rb_erase_augmented is a fairly large inline function,
465          * so make sure we instantiate it only once with our desired
466          * augmented rbtree callbacks.
467          */
468         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472                                                 struct rb_root *root,
473                                                 struct vm_area_struct *ignore)
474 {
475         /*
476          * All rb_subtree_gap values must be consistent prior to erase,
477          * with the possible exception of
478          *
479          * a. the "next" vma being erased if next->vm_start was reduced in
480          *    __vma_adjust() -> __vma_unlink()
481          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482          *    vma_rb_erase()
483          */
484         validate_mm_rb(root, ignore);
485
486         __vma_rb_erase(vma, root);
487 }
488
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490                                          struct rb_root *root)
491 {
492         vma_rb_erase_ignore(vma, root, vma);
493 }
494
495 /*
496  * vma has some anon_vma assigned, and is already inserted on that
497  * anon_vma's interval trees.
498  *
499  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500  * vma must be removed from the anon_vma's interval trees using
501  * anon_vma_interval_tree_pre_update_vma().
502  *
503  * After the update, the vma will be reinserted using
504  * anon_vma_interval_tree_post_update_vma().
505  *
506  * The entire update must be protected by exclusive mmap_lock and by
507  * the root anon_vma's mutex.
508  */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512         struct anon_vma_chain *avc;
513
514         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521         struct anon_vma_chain *avc;
522
523         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528                 unsigned long end, struct vm_area_struct **pprev,
529                 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533         __rb_link = &mm->mm_rb.rb_node;
534         rb_prev = __rb_parent = NULL;
535
536         while (*__rb_link) {
537                 struct vm_area_struct *vma_tmp;
538
539                 __rb_parent = *__rb_link;
540                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542                 if (vma_tmp->vm_end > addr) {
543                         /* Fail if an existing vma overlaps the area */
544                         if (vma_tmp->vm_start < end)
545                                 return -ENOMEM;
546                         __rb_link = &__rb_parent->rb_left;
547                 } else {
548                         rb_prev = __rb_parent;
549                         __rb_link = &__rb_parent->rb_right;
550                 }
551         }
552
553         *pprev = NULL;
554         if (rb_prev)
555                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556         *rb_link = __rb_link;
557         *rb_parent = __rb_parent;
558         return 0;
559 }
560
561 /*
562  * vma_next() - Get the next VMA.
563  * @mm: The mm_struct.
564  * @vma: The current vma.
565  *
566  * If @vma is NULL, return the first vma in the mm.
567  *
568  * Returns: The next VMA after @vma.
569  */
570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571                                          struct vm_area_struct *vma)
572 {
573         if (!vma)
574                 return mm->mmap;
575
576         return vma->vm_next;
577 }
578
579 /*
580  * munmap_vma_range() - munmap VMAs that overlap a range.
581  * @mm: The mm struct
582  * @start: The start of the range.
583  * @len: The length of the range.
584  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585  * @rb_link: the rb_node
586  * @rb_parent: the parent rb_node
587  *
588  * Find all the vm_area_struct that overlap from @start to
589  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
590  *
591  * Returns: -ENOMEM on munmap failure or 0 on success.
592  */
593 static inline int
594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595                  struct vm_area_struct **pprev, struct rb_node ***link,
596                  struct rb_node **parent, struct list_head *uf)
597 {
598
599         while (find_vma_links(mm, start, start + len, pprev, link, parent))
600                 if (do_munmap(mm, start, len, uf))
601                         return -ENOMEM;
602
603         return 0;
604 }
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606                 unsigned long addr, unsigned long end)
607 {
608         unsigned long nr_pages = 0;
609         struct vm_area_struct *vma;
610
611         /* Find first overlaping mapping */
612         vma = find_vma_intersection(mm, addr, end);
613         if (!vma)
614                 return 0;
615
616         nr_pages = (min(end, vma->vm_end) -
617                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
618
619         /* Iterate over the rest of the overlaps */
620         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621                 unsigned long overlap_len;
622
623                 if (vma->vm_start > end)
624                         break;
625
626                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627                 nr_pages += overlap_len >> PAGE_SHIFT;
628         }
629
630         return nr_pages;
631 }
632
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634                 struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636         /* Update tracking information for the gap following the new vma. */
637         if (vma->vm_next)
638                 vma_gap_update(vma->vm_next);
639         else
640                 mm->highest_vm_end = vm_end_gap(vma);
641
642         /*
643          * vma->vm_prev wasn't known when we followed the rbtree to find the
644          * correct insertion point for that vma. As a result, we could not
645          * update the vma vm_rb parents rb_subtree_gap values on the way down.
646          * So, we first insert the vma with a zero rb_subtree_gap value
647          * (to be consistent with what we did on the way down), and then
648          * immediately update the gap to the correct value. Finally we
649          * rebalance the rbtree after all augmented values have been set.
650          */
651         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652         vma->rb_subtree_gap = 0;
653         vma_gap_update(vma);
654         vma_rb_insert(vma, &mm->mm_rb);
655 }
656
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659         struct file *file;
660
661         file = vma->vm_file;
662         if (file) {
663                 struct address_space *mapping = file->f_mapping;
664
665                 if (vma->vm_flags & VM_DENYWRITE)
666                         put_write_access(file_inode(file));
667                 if (vma->vm_flags & VM_SHARED)
668                         mapping_allow_writable(mapping);
669
670                 flush_dcache_mmap_lock(mapping);
671                 vma_interval_tree_insert(vma, &mapping->i_mmap);
672                 flush_dcache_mmap_unlock(mapping);
673         }
674 }
675
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678         struct vm_area_struct *prev, struct rb_node **rb_link,
679         struct rb_node *rb_parent)
680 {
681         __vma_link_list(mm, vma, prev);
682         __vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686                         struct vm_area_struct *prev, struct rb_node **rb_link,
687                         struct rb_node *rb_parent)
688 {
689         struct address_space *mapping = NULL;
690
691         if (vma->vm_file) {
692                 mapping = vma->vm_file->f_mapping;
693                 i_mmap_lock_write(mapping);
694         }
695
696         __vma_link(mm, vma, prev, rb_link, rb_parent);
697         __vma_link_file(vma);
698
699         if (mapping)
700                 i_mmap_unlock_write(mapping);
701
702         mm->map_count++;
703         validate_mm(mm);
704 }
705
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712         struct vm_area_struct *prev;
713         struct rb_node **rb_link, *rb_parent;
714
715         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716                            &prev, &rb_link, &rb_parent))
717                 BUG();
718         __vma_link(mm, vma, prev, rb_link, rb_parent);
719         mm->map_count++;
720 }
721
722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723                                                 struct vm_area_struct *vma,
724                                                 struct vm_area_struct *ignore)
725 {
726         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727         __vma_unlink_list(mm, vma);
728         /* Kill the cache */
729         vmacache_invalidate(mm);
730 }
731
732 /*
733  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734  * is already present in an i_mmap tree without adjusting the tree.
735  * The following helper function should be used when such adjustments
736  * are necessary.  The "insert" vma (if any) is to be inserted
737  * before we drop the necessary locks.
738  */
739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741         struct vm_area_struct *expand)
742 {
743         struct mm_struct *mm = vma->vm_mm;
744         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745         struct address_space *mapping = NULL;
746         struct rb_root_cached *root = NULL;
747         struct anon_vma *anon_vma = NULL;
748         struct file *file = vma->vm_file;
749         bool start_changed = false, end_changed = false;
750         long adjust_next = 0;
751         int remove_next = 0;
752
753         if (next && !insert) {
754                 struct vm_area_struct *exporter = NULL, *importer = NULL;
755
756                 if (end >= next->vm_end) {
757                         /*
758                          * vma expands, overlapping all the next, and
759                          * perhaps the one after too (mprotect case 6).
760                          * The only other cases that gets here are
761                          * case 1, case 7 and case 8.
762                          */
763                         if (next == expand) {
764                                 /*
765                                  * The only case where we don't expand "vma"
766                                  * and we expand "next" instead is case 8.
767                                  */
768                                 VM_WARN_ON(end != next->vm_end);
769                                 /*
770                                  * remove_next == 3 means we're
771                                  * removing "vma" and that to do so we
772                                  * swapped "vma" and "next".
773                                  */
774                                 remove_next = 3;
775                                 VM_WARN_ON(file != next->vm_file);
776                                 swap(vma, next);
777                         } else {
778                                 VM_WARN_ON(expand != vma);
779                                 /*
780                                  * case 1, 6, 7, remove_next == 2 is case 6,
781                                  * remove_next == 1 is case 1 or 7.
782                                  */
783                                 remove_next = 1 + (end > next->vm_end);
784                                 VM_WARN_ON(remove_next == 2 &&
785                                            end != next->vm_next->vm_end);
786                                 /* trim end to next, for case 6 first pass */
787                                 end = next->vm_end;
788                         }
789
790                         exporter = next;
791                         importer = vma;
792
793                         /*
794                          * If next doesn't have anon_vma, import from vma after
795                          * next, if the vma overlaps with it.
796                          */
797                         if (remove_next == 2 && !next->anon_vma)
798                                 exporter = next->vm_next;
799
800                 } else if (end > next->vm_start) {
801                         /*
802                          * vma expands, overlapping part of the next:
803                          * mprotect case 5 shifting the boundary up.
804                          */
805                         adjust_next = (end - next->vm_start);
806                         exporter = next;
807                         importer = vma;
808                         VM_WARN_ON(expand != importer);
809                 } else if (end < vma->vm_end) {
810                         /*
811                          * vma shrinks, and !insert tells it's not
812                          * split_vma inserting another: so it must be
813                          * mprotect case 4 shifting the boundary down.
814                          */
815                         adjust_next = -(vma->vm_end - end);
816                         exporter = vma;
817                         importer = next;
818                         VM_WARN_ON(expand != importer);
819                 }
820
821                 /*
822                  * Easily overlooked: when mprotect shifts the boundary,
823                  * make sure the expanding vma has anon_vma set if the
824                  * shrinking vma had, to cover any anon pages imported.
825                  */
826                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
827                         int error;
828
829                         importer->anon_vma = exporter->anon_vma;
830                         error = anon_vma_clone(importer, exporter);
831                         if (error)
832                                 return error;
833                 }
834         }
835 again:
836         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837
838         if (file) {
839                 mapping = file->f_mapping;
840                 root = &mapping->i_mmap;
841                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842
843                 if (adjust_next)
844                         uprobe_munmap(next, next->vm_start, next->vm_end);
845
846                 i_mmap_lock_write(mapping);
847                 if (insert) {
848                         /*
849                          * Put into interval tree now, so instantiated pages
850                          * are visible to arm/parisc __flush_dcache_page
851                          * throughout; but we cannot insert into address
852                          * space until vma start or end is updated.
853                          */
854                         __vma_link_file(insert);
855                 }
856         }
857
858         anon_vma = vma->anon_vma;
859         if (!anon_vma && adjust_next)
860                 anon_vma = next->anon_vma;
861         if (anon_vma) {
862                 VM_WARN_ON(adjust_next && next->anon_vma &&
863                            anon_vma != next->anon_vma);
864                 anon_vma_lock_write(anon_vma);
865                 anon_vma_interval_tree_pre_update_vma(vma);
866                 if (adjust_next)
867                         anon_vma_interval_tree_pre_update_vma(next);
868         }
869
870         if (file) {
871                 flush_dcache_mmap_lock(mapping);
872                 vma_interval_tree_remove(vma, root);
873                 if (adjust_next)
874                         vma_interval_tree_remove(next, root);
875         }
876
877         if (start != vma->vm_start) {
878                 vma->vm_start = start;
879                 start_changed = true;
880         }
881         if (end != vma->vm_end) {
882                 vma->vm_end = end;
883                 end_changed = true;
884         }
885         vma->vm_pgoff = pgoff;
886         if (adjust_next) {
887                 next->vm_start += adjust_next;
888                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889         }
890
891         if (file) {
892                 if (adjust_next)
893                         vma_interval_tree_insert(next, root);
894                 vma_interval_tree_insert(vma, root);
895                 flush_dcache_mmap_unlock(mapping);
896         }
897
898         if (remove_next) {
899                 /*
900                  * vma_merge has merged next into vma, and needs
901                  * us to remove next before dropping the locks.
902                  */
903                 if (remove_next != 3)
904                         __vma_unlink(mm, next, next);
905                 else
906                         /*
907                          * vma is not before next if they've been
908                          * swapped.
909                          *
910                          * pre-swap() next->vm_start was reduced so
911                          * tell validate_mm_rb to ignore pre-swap()
912                          * "next" (which is stored in post-swap()
913                          * "vma").
914                          */
915                         __vma_unlink(mm, next, vma);
916                 if (file)
917                         __remove_shared_vm_struct(next, file, mapping);
918         } else if (insert) {
919                 /*
920                  * split_vma has split insert from vma, and needs
921                  * us to insert it before dropping the locks
922                  * (it may either follow vma or precede it).
923                  */
924                 __insert_vm_struct(mm, insert);
925         } else {
926                 if (start_changed)
927                         vma_gap_update(vma);
928                 if (end_changed) {
929                         if (!next)
930                                 mm->highest_vm_end = vm_end_gap(vma);
931                         else if (!adjust_next)
932                                 vma_gap_update(next);
933                 }
934         }
935
936         if (anon_vma) {
937                 anon_vma_interval_tree_post_update_vma(vma);
938                 if (adjust_next)
939                         anon_vma_interval_tree_post_update_vma(next);
940                 anon_vma_unlock_write(anon_vma);
941         }
942
943         if (file) {
944                 i_mmap_unlock_write(mapping);
945                 uprobe_mmap(vma);
946
947                 if (adjust_next)
948                         uprobe_mmap(next);
949         }
950
951         if (remove_next) {
952                 if (file) {
953                         uprobe_munmap(next, next->vm_start, next->vm_end);
954                         fput(file);
955                 }
956                 if (next->anon_vma)
957                         anon_vma_merge(vma, next);
958                 mm->map_count--;
959                 mpol_put(vma_policy(next));
960                 vm_area_free(next);
961                 /*
962                  * In mprotect's case 6 (see comments on vma_merge),
963                  * we must remove another next too. It would clutter
964                  * up the code too much to do both in one go.
965                  */
966                 if (remove_next != 3) {
967                         /*
968                          * If "next" was removed and vma->vm_end was
969                          * expanded (up) over it, in turn
970                          * "next->vm_prev->vm_end" changed and the
971                          * "vma->vm_next" gap must be updated.
972                          */
973                         next = vma->vm_next;
974                 } else {
975                         /*
976                          * For the scope of the comment "next" and
977                          * "vma" considered pre-swap(): if "vma" was
978                          * removed, next->vm_start was expanded (down)
979                          * over it and the "next" gap must be updated.
980                          * Because of the swap() the post-swap() "vma"
981                          * actually points to pre-swap() "next"
982                          * (post-swap() "next" as opposed is now a
983                          * dangling pointer).
984                          */
985                         next = vma;
986                 }
987                 if (remove_next == 2) {
988                         remove_next = 1;
989                         end = next->vm_end;
990                         goto again;
991                 }
992                 else if (next)
993                         vma_gap_update(next);
994                 else {
995                         /*
996                          * If remove_next == 2 we obviously can't
997                          * reach this path.
998                          *
999                          * If remove_next == 3 we can't reach this
1000                          * path because pre-swap() next is always not
1001                          * NULL. pre-swap() "next" is not being
1002                          * removed and its next->vm_end is not altered
1003                          * (and furthermore "end" already matches
1004                          * next->vm_end in remove_next == 3).
1005                          *
1006                          * We reach this only in the remove_next == 1
1007                          * case if the "next" vma that was removed was
1008                          * the highest vma of the mm. However in such
1009                          * case next->vm_end == "end" and the extended
1010                          * "vma" has vma->vm_end == next->vm_end so
1011                          * mm->highest_vm_end doesn't need any update
1012                          * in remove_next == 1 case.
1013                          */
1014                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015                 }
1016         }
1017         if (insert && file)
1018                 uprobe_mmap(insert);
1019
1020         validate_mm(mm);
1021
1022         return 0;
1023 }
1024
1025 /*
1026  * If the vma has a ->close operation then the driver probably needs to release
1027  * per-vma resources, so we don't attempt to merge those.
1028  */
1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030                                 struct file *file, unsigned long vm_flags,
1031                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 {
1033         /*
1034          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1035          * match the flags but dirty bit -- the caller should mark
1036          * merged VMA as dirty. If dirty bit won't be excluded from
1037          * comparison, we increase pressure on the memory system forcing
1038          * the kernel to generate new VMAs when old one could be
1039          * extended instead.
1040          */
1041         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1042                 return 0;
1043         if (vma->vm_file != file)
1044                 return 0;
1045         if (vma->vm_ops && vma->vm_ops->close)
1046                 return 0;
1047         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1048                 return 0;
1049         return 1;
1050 }
1051
1052 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1053                                         struct anon_vma *anon_vma2,
1054                                         struct vm_area_struct *vma)
1055 {
1056         /*
1057          * The list_is_singular() test is to avoid merging VMA cloned from
1058          * parents. This can improve scalability caused by anon_vma lock.
1059          */
1060         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1061                 list_is_singular(&vma->anon_vma_chain)))
1062                 return 1;
1063         return anon_vma1 == anon_vma2;
1064 }
1065
1066 /*
1067  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1068  * in front of (at a lower virtual address and file offset than) the vma.
1069  *
1070  * We cannot merge two vmas if they have differently assigned (non-NULL)
1071  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1072  *
1073  * We don't check here for the merged mmap wrapping around the end of pagecache
1074  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1075  * wrap, nor mmaps which cover the final page at index -1UL.
1076  */
1077 static int
1078 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1079                      struct anon_vma *anon_vma, struct file *file,
1080                      pgoff_t vm_pgoff,
1081                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085                 if (vma->vm_pgoff == vm_pgoff)
1086                         return 1;
1087         }
1088         return 0;
1089 }
1090
1091 /*
1092  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1093  * beyond (at a higher virtual address and file offset than) the vma.
1094  *
1095  * We cannot merge two vmas if they have differently assigned (non-NULL)
1096  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1097  */
1098 static int
1099 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1100                     struct anon_vma *anon_vma, struct file *file,
1101                     pgoff_t vm_pgoff,
1102                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1103 {
1104         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1105             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1106                 pgoff_t vm_pglen;
1107                 vm_pglen = vma_pages(vma);
1108                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1109                         return 1;
1110         }
1111         return 0;
1112 }
1113
1114 /*
1115  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1116  * whether that can be merged with its predecessor or its successor.
1117  * Or both (it neatly fills a hole).
1118  *
1119  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1120  * certain not to be mapped by the time vma_merge is called; but when
1121  * called for mprotect, it is certain to be already mapped (either at
1122  * an offset within prev, or at the start of next), and the flags of
1123  * this area are about to be changed to vm_flags - and the no-change
1124  * case has already been eliminated.
1125  *
1126  * The following mprotect cases have to be considered, where AAAA is
1127  * the area passed down from mprotect_fixup, never extending beyond one
1128  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1129  *
1130  *     AAAA             AAAA                   AAAA
1131  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1132  *    cannot merge    might become       might become
1133  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1134  *    mmap, brk or    case 4 below       case 5 below
1135  *    mremap move:
1136  *                        AAAA               AAAA
1137  *                    PPPP    NNNN       PPPPNNNNXXXX
1138  *                    might become       might become
1139  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1140  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1141  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1142  *
1143  * It is important for case 8 that the vma NNNN overlapping the
1144  * region AAAA is never going to extended over XXXX. Instead XXXX must
1145  * be extended in region AAAA and NNNN must be removed. This way in
1146  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1147  * rmap_locks, the properties of the merged vma will be already
1148  * correct for the whole merged range. Some of those properties like
1149  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1150  * be correct for the whole merged range immediately after the
1151  * rmap_locks are released. Otherwise if XXXX would be removed and
1152  * NNNN would be extended over the XXXX range, remove_migration_ptes
1153  * or other rmap walkers (if working on addresses beyond the "end"
1154  * parameter) may establish ptes with the wrong permissions of NNNN
1155  * instead of the right permissions of XXXX.
1156  */
1157 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1158                         struct vm_area_struct *prev, unsigned long addr,
1159                         unsigned long end, unsigned long vm_flags,
1160                         struct anon_vma *anon_vma, struct file *file,
1161                         pgoff_t pgoff, struct mempolicy *policy,
1162                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1163 {
1164         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1165         struct vm_area_struct *area, *next;
1166         int err;
1167
1168         /*
1169          * We later require that vma->vm_flags == vm_flags,
1170          * so this tests vma->vm_flags & VM_SPECIAL, too.
1171          */
1172         if (vm_flags & VM_SPECIAL)
1173                 return NULL;
1174
1175         next = vma_next(mm, prev);
1176         area = next;
1177         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1178                 next = next->vm_next;
1179
1180         /* verify some invariant that must be enforced by the caller */
1181         VM_WARN_ON(prev && addr <= prev->vm_start);
1182         VM_WARN_ON(area && end > area->vm_end);
1183         VM_WARN_ON(addr >= end);
1184
1185         /*
1186          * Can it merge with the predecessor?
1187          */
1188         if (prev && prev->vm_end == addr &&
1189                         mpol_equal(vma_policy(prev), policy) &&
1190                         can_vma_merge_after(prev, vm_flags,
1191                                             anon_vma, file, pgoff,
1192                                             vm_userfaultfd_ctx)) {
1193                 /*
1194                  * OK, it can.  Can we now merge in the successor as well?
1195                  */
1196                 if (next && end == next->vm_start &&
1197                                 mpol_equal(policy, vma_policy(next)) &&
1198                                 can_vma_merge_before(next, vm_flags,
1199                                                      anon_vma, file,
1200                                                      pgoff+pglen,
1201                                                      vm_userfaultfd_ctx) &&
1202                                 is_mergeable_anon_vma(prev->anon_vma,
1203                                                       next->anon_vma, NULL)) {
1204                                                         /* cases 1, 6 */
1205                         err = __vma_adjust(prev, prev->vm_start,
1206                                          next->vm_end, prev->vm_pgoff, NULL,
1207                                          prev);
1208                 } else                                  /* cases 2, 5, 7 */
1209                         err = __vma_adjust(prev, prev->vm_start,
1210                                          end, prev->vm_pgoff, NULL, prev);
1211                 if (err)
1212                         return NULL;
1213                 khugepaged_enter_vma_merge(prev, vm_flags);
1214                 return prev;
1215         }
1216
1217         /*
1218          * Can this new request be merged in front of next?
1219          */
1220         if (next && end == next->vm_start &&
1221                         mpol_equal(policy, vma_policy(next)) &&
1222                         can_vma_merge_before(next, vm_flags,
1223                                              anon_vma, file, pgoff+pglen,
1224                                              vm_userfaultfd_ctx)) {
1225                 if (prev && addr < prev->vm_end)        /* case 4 */
1226                         err = __vma_adjust(prev, prev->vm_start,
1227                                          addr, prev->vm_pgoff, NULL, next);
1228                 else {                                  /* cases 3, 8 */
1229                         err = __vma_adjust(area, addr, next->vm_end,
1230                                          next->vm_pgoff - pglen, NULL, next);
1231                         /*
1232                          * In case 3 area is already equal to next and
1233                          * this is a noop, but in case 8 "area" has
1234                          * been removed and next was expanded over it.
1235                          */
1236                         area = next;
1237                 }
1238                 if (err)
1239                         return NULL;
1240                 khugepaged_enter_vma_merge(area, vm_flags);
1241                 return area;
1242         }
1243
1244         return NULL;
1245 }
1246
1247 /*
1248  * Rough compatibility check to quickly see if it's even worth looking
1249  * at sharing an anon_vma.
1250  *
1251  * They need to have the same vm_file, and the flags can only differ
1252  * in things that mprotect may change.
1253  *
1254  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1255  * we can merge the two vma's. For example, we refuse to merge a vma if
1256  * there is a vm_ops->close() function, because that indicates that the
1257  * driver is doing some kind of reference counting. But that doesn't
1258  * really matter for the anon_vma sharing case.
1259  */
1260 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1261 {
1262         return a->vm_end == b->vm_start &&
1263                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1264                 a->vm_file == b->vm_file &&
1265                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1266                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1267 }
1268
1269 /*
1270  * Do some basic sanity checking to see if we can re-use the anon_vma
1271  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1272  * the same as 'old', the other will be the new one that is trying
1273  * to share the anon_vma.
1274  *
1275  * NOTE! This runs with mm_sem held for reading, so it is possible that
1276  * the anon_vma of 'old' is concurrently in the process of being set up
1277  * by another page fault trying to merge _that_. But that's ok: if it
1278  * is being set up, that automatically means that it will be a singleton
1279  * acceptable for merging, so we can do all of this optimistically. But
1280  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1281  *
1282  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1283  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1284  * is to return an anon_vma that is "complex" due to having gone through
1285  * a fork).
1286  *
1287  * We also make sure that the two vma's are compatible (adjacent,
1288  * and with the same memory policies). That's all stable, even with just
1289  * a read lock on the mm_sem.
1290  */
1291 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1292 {
1293         if (anon_vma_compatible(a, b)) {
1294                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1295
1296                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1297                         return anon_vma;
1298         }
1299         return NULL;
1300 }
1301
1302 /*
1303  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1304  * neighbouring vmas for a suitable anon_vma, before it goes off
1305  * to allocate a new anon_vma.  It checks because a repetitive
1306  * sequence of mprotects and faults may otherwise lead to distinct
1307  * anon_vmas being allocated, preventing vma merge in subsequent
1308  * mprotect.
1309  */
1310 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1311 {
1312         struct anon_vma *anon_vma = NULL;
1313
1314         /* Try next first. */
1315         if (vma->vm_next) {
1316                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1317                 if (anon_vma)
1318                         return anon_vma;
1319         }
1320
1321         /* Try prev next. */
1322         if (vma->vm_prev)
1323                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1324
1325         /*
1326          * We might reach here with anon_vma == NULL if we can't find
1327          * any reusable anon_vma.
1328          * There's no absolute need to look only at touching neighbours:
1329          * we could search further afield for "compatible" anon_vmas.
1330          * But it would probably just be a waste of time searching,
1331          * or lead to too many vmas hanging off the same anon_vma.
1332          * We're trying to allow mprotect remerging later on,
1333          * not trying to minimize memory used for anon_vmas.
1334          */
1335         return anon_vma;
1336 }
1337
1338 /*
1339  * If a hint addr is less than mmap_min_addr change hint to be as
1340  * low as possible but still greater than mmap_min_addr
1341  */
1342 static inline unsigned long round_hint_to_min(unsigned long hint)
1343 {
1344         hint &= PAGE_MASK;
1345         if (((void *)hint != NULL) &&
1346             (hint < mmap_min_addr))
1347                 return PAGE_ALIGN(mmap_min_addr);
1348         return hint;
1349 }
1350
1351 static inline int mlock_future_check(struct mm_struct *mm,
1352                                      unsigned long flags,
1353                                      unsigned long len)
1354 {
1355         unsigned long locked, lock_limit;
1356
1357         /*  mlock MCL_FUTURE? */
1358         if (flags & VM_LOCKED) {
1359                 locked = len >> PAGE_SHIFT;
1360                 locked += mm->locked_vm;
1361                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1362                 lock_limit >>= PAGE_SHIFT;
1363                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364                         return -EAGAIN;
1365         }
1366         return 0;
1367 }
1368
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371         if (S_ISREG(inode->i_mode))
1372                 return MAX_LFS_FILESIZE;
1373
1374         if (S_ISBLK(inode->i_mode))
1375                 return MAX_LFS_FILESIZE;
1376
1377         if (S_ISSOCK(inode->i_mode))
1378                 return MAX_LFS_FILESIZE;
1379
1380         /* Special "we do even unsigned file positions" case */
1381         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382                 return 0;
1383
1384         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385         return ULONG_MAX;
1386 }
1387
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389                                 unsigned long pgoff, unsigned long len)
1390 {
1391         u64 maxsize = file_mmap_size_max(file, inode);
1392
1393         if (maxsize && len > maxsize)
1394                 return false;
1395         maxsize -= len;
1396         if (pgoff > maxsize >> PAGE_SHIFT)
1397                 return false;
1398         return true;
1399 }
1400
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405                         unsigned long len, unsigned long prot,
1406                         unsigned long flags, unsigned long pgoff,
1407                         unsigned long *populate, struct list_head *uf)
1408 {
1409         struct mm_struct *mm = current->mm;
1410         vm_flags_t vm_flags;
1411         int pkey = 0;
1412
1413         *populate = 0;
1414
1415         if (!len)
1416                 return -EINVAL;
1417
1418         /*
1419          * Does the application expect PROT_READ to imply PROT_EXEC?
1420          *
1421          * (the exception is when the underlying filesystem is noexec
1422          *  mounted, in which case we dont add PROT_EXEC.)
1423          */
1424         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425                 if (!(file && path_noexec(&file->f_path)))
1426                         prot |= PROT_EXEC;
1427
1428         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1429         if (flags & MAP_FIXED_NOREPLACE)
1430                 flags |= MAP_FIXED;
1431
1432         if (!(flags & MAP_FIXED))
1433                 addr = round_hint_to_min(addr);
1434
1435         /* Careful about overflows.. */
1436         len = PAGE_ALIGN(len);
1437         if (!len)
1438                 return -ENOMEM;
1439
1440         /* offset overflow? */
1441         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442                 return -EOVERFLOW;
1443
1444         /* Too many mappings? */
1445         if (mm->map_count > sysctl_max_map_count)
1446                 return -ENOMEM;
1447
1448         /* Obtain the address to map to. we verify (or select) it and ensure
1449          * that it represents a valid section of the address space.
1450          */
1451         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452         if (IS_ERR_VALUE(addr))
1453                 return addr;
1454
1455         if (flags & MAP_FIXED_NOREPLACE) {
1456                 struct vm_area_struct *vma = find_vma(mm, addr);
1457
1458                 if (vma && vma->vm_start < addr + len)
1459                         return -EEXIST;
1460         }
1461
1462         if (prot == PROT_EXEC) {
1463                 pkey = execute_only_pkey(mm);
1464                 if (pkey < 0)
1465                         pkey = 0;
1466         }
1467
1468         /* Do simple checking here so the lower-level routines won't have
1469          * to. we assume access permissions have been handled by the open
1470          * of the memory object, so we don't do any here.
1471          */
1472         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1473                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1474
1475         if (flags & MAP_LOCKED)
1476                 if (!can_do_mlock())
1477                         return -EPERM;
1478
1479         if (mlock_future_check(mm, vm_flags, len))
1480                 return -EAGAIN;
1481
1482         if (file) {
1483                 struct inode *inode = file_inode(file);
1484                 unsigned long flags_mask;
1485
1486                 if (!file_mmap_ok(file, inode, pgoff, len))
1487                         return -EOVERFLOW;
1488
1489                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1490
1491                 switch (flags & MAP_TYPE) {
1492                 case MAP_SHARED:
1493                         /*
1494                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1495                          * flags. E.g. MAP_SYNC is dangerous to use with
1496                          * MAP_SHARED as you don't know which consistency model
1497                          * you will get. We silently ignore unsupported flags
1498                          * with MAP_SHARED to preserve backward compatibility.
1499                          */
1500                         flags &= LEGACY_MAP_MASK;
1501                         fallthrough;
1502                 case MAP_SHARED_VALIDATE:
1503                         if (flags & ~flags_mask)
1504                                 return -EOPNOTSUPP;
1505                         if (prot & PROT_WRITE) {
1506                                 if (!(file->f_mode & FMODE_WRITE))
1507                                         return -EACCES;
1508                                 if (IS_SWAPFILE(file->f_mapping->host))
1509                                         return -ETXTBSY;
1510                         }
1511
1512                         /*
1513                          * Make sure we don't allow writing to an append-only
1514                          * file..
1515                          */
1516                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1517                                 return -EACCES;
1518
1519                         /*
1520                          * Make sure there are no mandatory locks on the file.
1521                          */
1522                         if (locks_verify_locked(file))
1523                                 return -EAGAIN;
1524
1525                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1526                         if (!(file->f_mode & FMODE_WRITE))
1527                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1528                         fallthrough;
1529                 case MAP_PRIVATE:
1530                         if (!(file->f_mode & FMODE_READ))
1531                                 return -EACCES;
1532                         if (path_noexec(&file->f_path)) {
1533                                 if (vm_flags & VM_EXEC)
1534                                         return -EPERM;
1535                                 vm_flags &= ~VM_MAYEXEC;
1536                         }
1537
1538                         if (!file->f_op->mmap)
1539                                 return -ENODEV;
1540                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1541                                 return -EINVAL;
1542                         break;
1543
1544                 default:
1545                         return -EINVAL;
1546                 }
1547         } else {
1548                 switch (flags & MAP_TYPE) {
1549                 case MAP_SHARED:
1550                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551                                 return -EINVAL;
1552                         /*
1553                          * Ignore pgoff.
1554                          */
1555                         pgoff = 0;
1556                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1557                         break;
1558                 case MAP_PRIVATE:
1559                         /*
1560                          * Set pgoff according to addr for anon_vma.
1561                          */
1562                         pgoff = addr >> PAGE_SHIFT;
1563                         break;
1564                 default:
1565                         return -EINVAL;
1566                 }
1567         }
1568
1569         /*
1570          * Set 'VM_NORESERVE' if we should not account for the
1571          * memory use of this mapping.
1572          */
1573         if (flags & MAP_NORESERVE) {
1574                 /* We honor MAP_NORESERVE if allowed to overcommit */
1575                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1576                         vm_flags |= VM_NORESERVE;
1577
1578                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1579                 if (file && is_file_hugepages(file))
1580                         vm_flags |= VM_NORESERVE;
1581         }
1582
1583         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1584         if (!IS_ERR_VALUE(addr) &&
1585             ((vm_flags & VM_LOCKED) ||
1586              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587                 *populate = len;
1588         return addr;
1589 }
1590
1591 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1592                               unsigned long prot, unsigned long flags,
1593                               unsigned long fd, unsigned long pgoff)
1594 {
1595         struct file *file = NULL;
1596         unsigned long retval;
1597
1598         if (!(flags & MAP_ANONYMOUS)) {
1599                 audit_mmap_fd(fd, flags);
1600                 file = fget(fd);
1601                 if (!file)
1602                         return -EBADF;
1603                 if (is_file_hugepages(file)) {
1604                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1605                 } else if (unlikely(flags & MAP_HUGETLB)) {
1606                         retval = -EINVAL;
1607                         goto out_fput;
1608                 }
1609         } else if (flags & MAP_HUGETLB) {
1610                 struct user_struct *user = NULL;
1611                 struct hstate *hs;
1612
1613                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1614                 if (!hs)
1615                         return -EINVAL;
1616
1617                 len = ALIGN(len, huge_page_size(hs));
1618                 /*
1619                  * VM_NORESERVE is used because the reservations will be
1620                  * taken when vm_ops->mmap() is called
1621                  * A dummy user value is used because we are not locking
1622                  * memory so no accounting is necessary
1623                  */
1624                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1625                                 VM_NORESERVE,
1626                                 &user, HUGETLB_ANONHUGE_INODE,
1627                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1628                 if (IS_ERR(file))
1629                         return PTR_ERR(file);
1630         }
1631
1632         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1633
1634         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1635 out_fput:
1636         if (file)
1637                 fput(file);
1638         return retval;
1639 }
1640
1641 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1642                 unsigned long, prot, unsigned long, flags,
1643                 unsigned long, fd, unsigned long, pgoff)
1644 {
1645         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1646 }
1647
1648 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1649 struct mmap_arg_struct {
1650         unsigned long addr;
1651         unsigned long len;
1652         unsigned long prot;
1653         unsigned long flags;
1654         unsigned long fd;
1655         unsigned long offset;
1656 };
1657
1658 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 {
1660         struct mmap_arg_struct a;
1661
1662         if (copy_from_user(&a, arg, sizeof(a)))
1663                 return -EFAULT;
1664         if (offset_in_page(a.offset))
1665                 return -EINVAL;
1666
1667         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1668                                a.offset >> PAGE_SHIFT);
1669 }
1670 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1671
1672 /*
1673  * Some shared mappings will want the pages marked read-only
1674  * to track write events. If so, we'll downgrade vm_page_prot
1675  * to the private version (using protection_map[] without the
1676  * VM_SHARED bit).
1677  */
1678 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 {
1680         vm_flags_t vm_flags = vma->vm_flags;
1681         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682
1683         /* If it was private or non-writable, the write bit is already clear */
1684         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1685                 return 0;
1686
1687         /* The backer wishes to know when pages are first written to? */
1688         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1689                 return 1;
1690
1691         /* The open routine did something to the protections that pgprot_modify
1692          * won't preserve? */
1693         if (pgprot_val(vm_page_prot) !=
1694             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1695                 return 0;
1696
1697         /* Do we need to track softdirty? */
1698         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1699                 return 1;
1700
1701         /* Specialty mapping? */
1702         if (vm_flags & VM_PFNMAP)
1703                 return 0;
1704
1705         /* Can the mapping track the dirty pages? */
1706         return vma->vm_file && vma->vm_file->f_mapping &&
1707                 mapping_can_writeback(vma->vm_file->f_mapping);
1708 }
1709
1710 /*
1711  * We account for memory if it's a private writeable mapping,
1712  * not hugepages and VM_NORESERVE wasn't set.
1713  */
1714 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1715 {
1716         /*
1717          * hugetlb has its own accounting separate from the core VM
1718          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1719          */
1720         if (file && is_file_hugepages(file))
1721                 return 0;
1722
1723         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1724 }
1725
1726 unsigned long mmap_region(struct file *file, unsigned long addr,
1727                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1728                 struct list_head *uf)
1729 {
1730         struct mm_struct *mm = current->mm;
1731         struct vm_area_struct *vma, *prev, *merge;
1732         int error;
1733         struct rb_node **rb_link, *rb_parent;
1734         unsigned long charged = 0;
1735
1736         /* Check against address space limit. */
1737         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1738                 unsigned long nr_pages;
1739
1740                 /*
1741                  * MAP_FIXED may remove pages of mappings that intersects with
1742                  * requested mapping. Account for the pages it would unmap.
1743                  */
1744                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1745
1746                 if (!may_expand_vm(mm, vm_flags,
1747                                         (len >> PAGE_SHIFT) - nr_pages))
1748                         return -ENOMEM;
1749         }
1750
1751         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1752         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1753                 return -ENOMEM;
1754         /*
1755          * Private writable mapping: check memory availability
1756          */
1757         if (accountable_mapping(file, vm_flags)) {
1758                 charged = len >> PAGE_SHIFT;
1759                 if (security_vm_enough_memory_mm(mm, charged))
1760                         return -ENOMEM;
1761                 vm_flags |= VM_ACCOUNT;
1762         }
1763
1764         /*
1765          * Can we just expand an old mapping?
1766          */
1767         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1768                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1769         if (vma)
1770                 goto out;
1771
1772         /*
1773          * Determine the object being mapped and call the appropriate
1774          * specific mapper. the address has already been validated, but
1775          * not unmapped, but the maps are removed from the list.
1776          */
1777         vma = vm_area_alloc(mm);
1778         if (!vma) {
1779                 error = -ENOMEM;
1780                 goto unacct_error;
1781         }
1782
1783         vma->vm_start = addr;
1784         vma->vm_end = addr + len;
1785         vma->vm_flags = vm_flags;
1786         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1787         vma->vm_pgoff = pgoff;
1788
1789         if (file) {
1790                 if (vm_flags & VM_DENYWRITE) {
1791                         error = deny_write_access(file);
1792                         if (error)
1793                                 goto free_vma;
1794                 }
1795                 if (vm_flags & VM_SHARED) {
1796                         error = mapping_map_writable(file->f_mapping);
1797                         if (error)
1798                                 goto allow_write_and_free_vma;
1799                 }
1800
1801                 /* ->mmap() can change vma->vm_file, but must guarantee that
1802                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1803                  * and map writably if VM_SHARED is set. This usually means the
1804                  * new file must not have been exposed to user-space, yet.
1805                  */
1806                 vma->vm_file = get_file(file);
1807                 error = call_mmap(file, vma);
1808                 if (error)
1809                         goto unmap_and_free_vma;
1810
1811                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1812                  * as we may succeed this time.
1813                  */
1814                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1817                         if (merge) {
1818                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1819                                  * fput the vma->vm_file here or we would add an extra fput for file
1820                                  * and cause general protection fault ultimately.
1821                                  */
1822                                 fput(vma->vm_file);
1823                                 vm_area_free(vma);
1824                                 vma = merge;
1825                                 /* Update vm_flags and possible addr to pick up the change. We don't
1826                                  * warn here if addr changed as the vma is not linked by vma_link().
1827                                  */
1828                                 addr = vma->vm_start;
1829                                 vm_flags = vma->vm_flags;
1830                                 goto unmap_writable;
1831                         }
1832                 }
1833
1834                 /* Can addr have changed??
1835                  *
1836                  * Answer: Yes, several device drivers can do it in their
1837                  *         f_op->mmap method. -DaveM
1838                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1839                  *      be updated for vma_link()
1840                  */
1841                 WARN_ON_ONCE(addr != vma->vm_start);
1842
1843                 addr = vma->vm_start;
1844                 vm_flags = vma->vm_flags;
1845         } else if (vm_flags & VM_SHARED) {
1846                 error = shmem_zero_setup(vma);
1847                 if (error)
1848                         goto free_vma;
1849         } else {
1850                 vma_set_anonymous(vma);
1851         }
1852
1853         /* Allow architectures to sanity-check the vm_flags */
1854         if (!arch_validate_flags(vma->vm_flags)) {
1855                 error = -EINVAL;
1856                 if (file)
1857                         goto unmap_and_free_vma;
1858                 else
1859                         goto free_vma;
1860         }
1861
1862         vma_link(mm, vma, prev, rb_link, rb_parent);
1863         /* Once vma denies write, undo our temporary denial count */
1864         if (file) {
1865 unmap_writable:
1866                 if (vm_flags & VM_SHARED)
1867                         mapping_unmap_writable(file->f_mapping);
1868                 if (vm_flags & VM_DENYWRITE)
1869                         allow_write_access(file);
1870         }
1871         file = vma->vm_file;
1872 out:
1873         perf_event_mmap(vma);
1874
1875         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1876         if (vm_flags & VM_LOCKED) {
1877                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1878                                         is_vm_hugetlb_page(vma) ||
1879                                         vma == get_gate_vma(current->mm))
1880                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1881                 else
1882                         mm->locked_vm += (len >> PAGE_SHIFT);
1883         }
1884
1885         if (file)
1886                 uprobe_mmap(vma);
1887
1888         /*
1889          * New (or expanded) vma always get soft dirty status.
1890          * Otherwise user-space soft-dirty page tracker won't
1891          * be able to distinguish situation when vma area unmapped,
1892          * then new mapped in-place (which must be aimed as
1893          * a completely new data area).
1894          */
1895         vma->vm_flags |= VM_SOFTDIRTY;
1896
1897         vma_set_page_prot(vma);
1898
1899         return addr;
1900
1901 unmap_and_free_vma:
1902         vma->vm_file = NULL;
1903         fput(file);
1904
1905         /* Undo any partial mapping done by a device driver. */
1906         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1907         charged = 0;
1908         if (vm_flags & VM_SHARED)
1909                 mapping_unmap_writable(file->f_mapping);
1910 allow_write_and_free_vma:
1911         if (vm_flags & VM_DENYWRITE)
1912                 allow_write_access(file);
1913 free_vma:
1914         vm_area_free(vma);
1915 unacct_error:
1916         if (charged)
1917                 vm_unacct_memory(charged);
1918         return error;
1919 }
1920
1921 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1922 {
1923         /*
1924          * We implement the search by looking for an rbtree node that
1925          * immediately follows a suitable gap. That is,
1926          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1927          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1928          * - gap_end - gap_start >= length
1929          */
1930
1931         struct mm_struct *mm = current->mm;
1932         struct vm_area_struct *vma;
1933         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1934
1935         /* Adjust search length to account for worst case alignment overhead */
1936         length = info->length + info->align_mask;
1937         if (length < info->length)
1938                 return -ENOMEM;
1939
1940         /* Adjust search limits by the desired length */
1941         if (info->high_limit < length)
1942                 return -ENOMEM;
1943         high_limit = info->high_limit - length;
1944
1945         if (info->low_limit > high_limit)
1946                 return -ENOMEM;
1947         low_limit = info->low_limit + length;
1948
1949         /* Check if rbtree root looks promising */
1950         if (RB_EMPTY_ROOT(&mm->mm_rb))
1951                 goto check_highest;
1952         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953         if (vma->rb_subtree_gap < length)
1954                 goto check_highest;
1955
1956         while (true) {
1957                 /* Visit left subtree if it looks promising */
1958                 gap_end = vm_start_gap(vma);
1959                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1960                         struct vm_area_struct *left =
1961                                 rb_entry(vma->vm_rb.rb_left,
1962                                          struct vm_area_struct, vm_rb);
1963                         if (left->rb_subtree_gap >= length) {
1964                                 vma = left;
1965                                 continue;
1966                         }
1967                 }
1968
1969                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1970 check_current:
1971                 /* Check if current node has a suitable gap */
1972                 if (gap_start > high_limit)
1973                         return -ENOMEM;
1974                 if (gap_end >= low_limit &&
1975                     gap_end > gap_start && gap_end - gap_start >= length)
1976                         goto found;
1977
1978                 /* Visit right subtree if it looks promising */
1979                 if (vma->vm_rb.rb_right) {
1980                         struct vm_area_struct *right =
1981                                 rb_entry(vma->vm_rb.rb_right,
1982                                          struct vm_area_struct, vm_rb);
1983                         if (right->rb_subtree_gap >= length) {
1984                                 vma = right;
1985                                 continue;
1986                         }
1987                 }
1988
1989                 /* Go back up the rbtree to find next candidate node */
1990                 while (true) {
1991                         struct rb_node *prev = &vma->vm_rb;
1992                         if (!rb_parent(prev))
1993                                 goto check_highest;
1994                         vma = rb_entry(rb_parent(prev),
1995                                        struct vm_area_struct, vm_rb);
1996                         if (prev == vma->vm_rb.rb_left) {
1997                                 gap_start = vm_end_gap(vma->vm_prev);
1998                                 gap_end = vm_start_gap(vma);
1999                                 goto check_current;
2000                         }
2001                 }
2002         }
2003
2004 check_highest:
2005         /* Check highest gap, which does not precede any rbtree node */
2006         gap_start = mm->highest_vm_end;
2007         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2008         if (gap_start > high_limit)
2009                 return -ENOMEM;
2010
2011 found:
2012         /* We found a suitable gap. Clip it with the original low_limit. */
2013         if (gap_start < info->low_limit)
2014                 gap_start = info->low_limit;
2015
2016         /* Adjust gap address to the desired alignment */
2017         gap_start += (info->align_offset - gap_start) & info->align_mask;
2018
2019         VM_BUG_ON(gap_start + info->length > info->high_limit);
2020         VM_BUG_ON(gap_start + info->length > gap_end);
2021         return gap_start;
2022 }
2023
2024 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2025 {
2026         struct mm_struct *mm = current->mm;
2027         struct vm_area_struct *vma;
2028         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2029
2030         /* Adjust search length to account for worst case alignment overhead */
2031         length = info->length + info->align_mask;
2032         if (length < info->length)
2033                 return -ENOMEM;
2034
2035         /*
2036          * Adjust search limits by the desired length.
2037          * See implementation comment at top of unmapped_area().
2038          */
2039         gap_end = info->high_limit;
2040         if (gap_end < length)
2041                 return -ENOMEM;
2042         high_limit = gap_end - length;
2043
2044         if (info->low_limit > high_limit)
2045                 return -ENOMEM;
2046         low_limit = info->low_limit + length;
2047
2048         /* Check highest gap, which does not precede any rbtree node */
2049         gap_start = mm->highest_vm_end;
2050         if (gap_start <= high_limit)
2051                 goto found_highest;
2052
2053         /* Check if rbtree root looks promising */
2054         if (RB_EMPTY_ROOT(&mm->mm_rb))
2055                 return -ENOMEM;
2056         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2057         if (vma->rb_subtree_gap < length)
2058                 return -ENOMEM;
2059
2060         while (true) {
2061                 /* Visit right subtree if it looks promising */
2062                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2063                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2064                         struct vm_area_struct *right =
2065                                 rb_entry(vma->vm_rb.rb_right,
2066                                          struct vm_area_struct, vm_rb);
2067                         if (right->rb_subtree_gap >= length) {
2068                                 vma = right;
2069                                 continue;
2070                         }
2071                 }
2072
2073 check_current:
2074                 /* Check if current node has a suitable gap */
2075                 gap_end = vm_start_gap(vma);
2076                 if (gap_end < low_limit)
2077                         return -ENOMEM;
2078                 if (gap_start <= high_limit &&
2079                     gap_end > gap_start && gap_end - gap_start >= length)
2080                         goto found;
2081
2082                 /* Visit left subtree if it looks promising */
2083                 if (vma->vm_rb.rb_left) {
2084                         struct vm_area_struct *left =
2085                                 rb_entry(vma->vm_rb.rb_left,
2086                                          struct vm_area_struct, vm_rb);
2087                         if (left->rb_subtree_gap >= length) {
2088                                 vma = left;
2089                                 continue;
2090                         }
2091                 }
2092
2093                 /* Go back up the rbtree to find next candidate node */
2094                 while (true) {
2095                         struct rb_node *prev = &vma->vm_rb;
2096                         if (!rb_parent(prev))
2097                                 return -ENOMEM;
2098                         vma = rb_entry(rb_parent(prev),
2099                                        struct vm_area_struct, vm_rb);
2100                         if (prev == vma->vm_rb.rb_right) {
2101                                 gap_start = vma->vm_prev ?
2102                                         vm_end_gap(vma->vm_prev) : 0;
2103                                 goto check_current;
2104                         }
2105                 }
2106         }
2107
2108 found:
2109         /* We found a suitable gap. Clip it with the original high_limit. */
2110         if (gap_end > info->high_limit)
2111                 gap_end = info->high_limit;
2112
2113 found_highest:
2114         /* Compute highest gap address at the desired alignment */
2115         gap_end -= info->length;
2116         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2117
2118         VM_BUG_ON(gap_end < info->low_limit);
2119         VM_BUG_ON(gap_end < gap_start);
2120         return gap_end;
2121 }
2122
2123 /*
2124  * Search for an unmapped address range.
2125  *
2126  * We are looking for a range that:
2127  * - does not intersect with any VMA;
2128  * - is contained within the [low_limit, high_limit) interval;
2129  * - is at least the desired size.
2130  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2131  */
2132 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2133 {
2134         unsigned long addr;
2135
2136         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2137                 addr = unmapped_area_topdown(info);
2138         else
2139                 addr = unmapped_area(info);
2140
2141         trace_vm_unmapped_area(addr, info);
2142         return addr;
2143 }
2144
2145 #ifndef arch_get_mmap_end
2146 #define arch_get_mmap_end(addr) (TASK_SIZE)
2147 #endif
2148
2149 #ifndef arch_get_mmap_base
2150 #define arch_get_mmap_base(addr, base) (base)
2151 #endif
2152
2153 /* Get an address range which is currently unmapped.
2154  * For shmat() with addr=0.
2155  *
2156  * Ugly calling convention alert:
2157  * Return value with the low bits set means error value,
2158  * ie
2159  *      if (ret & ~PAGE_MASK)
2160  *              error = ret;
2161  *
2162  * This function "knows" that -ENOMEM has the bits set.
2163  */
2164 #ifndef HAVE_ARCH_UNMAPPED_AREA
2165 unsigned long
2166 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2167                 unsigned long len, unsigned long pgoff, unsigned long flags)
2168 {
2169         struct mm_struct *mm = current->mm;
2170         struct vm_area_struct *vma, *prev;
2171         struct vm_unmapped_area_info info;
2172         const unsigned long mmap_end = arch_get_mmap_end(addr);
2173
2174         if (len > mmap_end - mmap_min_addr)
2175                 return -ENOMEM;
2176
2177         if (flags & MAP_FIXED)
2178                 return addr;
2179
2180         if (addr) {
2181                 addr = PAGE_ALIGN(addr);
2182                 vma = find_vma_prev(mm, addr, &prev);
2183                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2184                     (!vma || addr + len <= vm_start_gap(vma)) &&
2185                     (!prev || addr >= vm_end_gap(prev)))
2186                         return addr;
2187         }
2188
2189         info.flags = 0;
2190         info.length = len;
2191         info.low_limit = mm->mmap_base;
2192         info.high_limit = mmap_end;
2193         info.align_mask = 0;
2194         info.align_offset = 0;
2195         return vm_unmapped_area(&info);
2196 }
2197 #endif
2198
2199 /*
2200  * This mmap-allocator allocates new areas top-down from below the
2201  * stack's low limit (the base):
2202  */
2203 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2204 unsigned long
2205 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2206                           unsigned long len, unsigned long pgoff,
2207                           unsigned long flags)
2208 {
2209         struct vm_area_struct *vma, *prev;
2210         struct mm_struct *mm = current->mm;
2211         struct vm_unmapped_area_info info;
2212         const unsigned long mmap_end = arch_get_mmap_end(addr);
2213
2214         /* requested length too big for entire address space */
2215         if (len > mmap_end - mmap_min_addr)
2216                 return -ENOMEM;
2217
2218         if (flags & MAP_FIXED)
2219                 return addr;
2220
2221         /* requesting a specific address */
2222         if (addr) {
2223                 addr = PAGE_ALIGN(addr);
2224                 vma = find_vma_prev(mm, addr, &prev);
2225                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2226                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2227                                 (!prev || addr >= vm_end_gap(prev)))
2228                         return addr;
2229         }
2230
2231         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2232         info.length = len;
2233         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2234         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2235         info.align_mask = 0;
2236         info.align_offset = 0;
2237         addr = vm_unmapped_area(&info);
2238
2239         /*
2240          * A failed mmap() very likely causes application failure,
2241          * so fall back to the bottom-up function here. This scenario
2242          * can happen with large stack limits and large mmap()
2243          * allocations.
2244          */
2245         if (offset_in_page(addr)) {
2246                 VM_BUG_ON(addr != -ENOMEM);
2247                 info.flags = 0;
2248                 info.low_limit = TASK_UNMAPPED_BASE;
2249                 info.high_limit = mmap_end;
2250                 addr = vm_unmapped_area(&info);
2251         }
2252
2253         return addr;
2254 }
2255 #endif
2256
2257 unsigned long
2258 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2259                 unsigned long pgoff, unsigned long flags)
2260 {
2261         unsigned long (*get_area)(struct file *, unsigned long,
2262                                   unsigned long, unsigned long, unsigned long);
2263
2264         unsigned long error = arch_mmap_check(addr, len, flags);
2265         if (error)
2266                 return error;
2267
2268         /* Careful about overflows.. */
2269         if (len > TASK_SIZE)
2270                 return -ENOMEM;
2271
2272         get_area = current->mm->get_unmapped_area;
2273         if (file) {
2274                 if (file->f_op->get_unmapped_area)
2275                         get_area = file->f_op->get_unmapped_area;
2276         } else if (flags & MAP_SHARED) {
2277                 /*
2278                  * mmap_region() will call shmem_zero_setup() to create a file,
2279                  * so use shmem's get_unmapped_area in case it can be huge.
2280                  * do_mmap() will clear pgoff, so match alignment.
2281                  */
2282                 pgoff = 0;
2283                 get_area = shmem_get_unmapped_area;
2284         }
2285
2286         addr = get_area(file, addr, len, pgoff, flags);
2287         if (IS_ERR_VALUE(addr))
2288                 return addr;
2289
2290         if (addr > TASK_SIZE - len)
2291                 return -ENOMEM;
2292         if (offset_in_page(addr))
2293                 return -EINVAL;
2294
2295         error = security_mmap_addr(addr);
2296         return error ? error : addr;
2297 }
2298
2299 EXPORT_SYMBOL(get_unmapped_area);
2300
2301 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2302 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2303 {
2304         struct rb_node *rb_node;
2305         struct vm_area_struct *vma;
2306
2307         /* Check the cache first. */
2308         vma = vmacache_find(mm, addr);
2309         if (likely(vma))
2310                 return vma;
2311
2312         rb_node = mm->mm_rb.rb_node;
2313
2314         while (rb_node) {
2315                 struct vm_area_struct *tmp;
2316
2317                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318
2319                 if (tmp->vm_end > addr) {
2320                         vma = tmp;
2321                         if (tmp->vm_start <= addr)
2322                                 break;
2323                         rb_node = rb_node->rb_left;
2324                 } else
2325                         rb_node = rb_node->rb_right;
2326         }
2327
2328         if (vma)
2329                 vmacache_update(addr, vma);
2330         return vma;
2331 }
2332
2333 EXPORT_SYMBOL(find_vma);
2334
2335 /*
2336  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337  */
2338 struct vm_area_struct *
2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340                         struct vm_area_struct **pprev)
2341 {
2342         struct vm_area_struct *vma;
2343
2344         vma = find_vma(mm, addr);
2345         if (vma) {
2346                 *pprev = vma->vm_prev;
2347         } else {
2348                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349
2350                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351         }
2352         return vma;
2353 }
2354
2355 /*
2356  * Verify that the stack growth is acceptable and
2357  * update accounting. This is shared with both the
2358  * grow-up and grow-down cases.
2359  */
2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361                              unsigned long size, unsigned long grow)
2362 {
2363         struct mm_struct *mm = vma->vm_mm;
2364         unsigned long new_start;
2365
2366         /* address space limit tests */
2367         if (!may_expand_vm(mm, vma->vm_flags, grow))
2368                 return -ENOMEM;
2369
2370         /* Stack limit test */
2371         if (size > rlimit(RLIMIT_STACK))
2372                 return -ENOMEM;
2373
2374         /* mlock limit tests */
2375         if (vma->vm_flags & VM_LOCKED) {
2376                 unsigned long locked;
2377                 unsigned long limit;
2378                 locked = mm->locked_vm + grow;
2379                 limit = rlimit(RLIMIT_MEMLOCK);
2380                 limit >>= PAGE_SHIFT;
2381                 if (locked > limit && !capable(CAP_IPC_LOCK))
2382                         return -ENOMEM;
2383         }
2384
2385         /* Check to ensure the stack will not grow into a hugetlb-only region */
2386         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2387                         vma->vm_end - size;
2388         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2389                 return -EFAULT;
2390
2391         /*
2392          * Overcommit..  This must be the final test, as it will
2393          * update security statistics.
2394          */
2395         if (security_vm_enough_memory_mm(mm, grow))
2396                 return -ENOMEM;
2397
2398         return 0;
2399 }
2400
2401 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2402 /*
2403  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2404  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2405  */
2406 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2407 {
2408         struct mm_struct *mm = vma->vm_mm;
2409         struct vm_area_struct *next;
2410         unsigned long gap_addr;
2411         int error = 0;
2412
2413         if (!(vma->vm_flags & VM_GROWSUP))
2414                 return -EFAULT;
2415
2416         /* Guard against exceeding limits of the address space. */
2417         address &= PAGE_MASK;
2418         if (address >= (TASK_SIZE & PAGE_MASK))
2419                 return -ENOMEM;
2420         address += PAGE_SIZE;
2421
2422         /* Enforce stack_guard_gap */
2423         gap_addr = address + stack_guard_gap;
2424
2425         /* Guard against overflow */
2426         if (gap_addr < address || gap_addr > TASK_SIZE)
2427                 gap_addr = TASK_SIZE;
2428
2429         next = vma->vm_next;
2430         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2431                 if (!(next->vm_flags & VM_GROWSUP))
2432                         return -ENOMEM;
2433                 /* Check that both stack segments have the same anon_vma? */
2434         }
2435
2436         /* We must make sure the anon_vma is allocated. */
2437         if (unlikely(anon_vma_prepare(vma)))
2438                 return -ENOMEM;
2439
2440         /*
2441          * vma->vm_start/vm_end cannot change under us because the caller
2442          * is required to hold the mmap_lock in read mode.  We need the
2443          * anon_vma lock to serialize against concurrent expand_stacks.
2444          */
2445         anon_vma_lock_write(vma->anon_vma);
2446
2447         /* Somebody else might have raced and expanded it already */
2448         if (address > vma->vm_end) {
2449                 unsigned long size, grow;
2450
2451                 size = address - vma->vm_start;
2452                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2453
2454                 error = -ENOMEM;
2455                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2456                         error = acct_stack_growth(vma, size, grow);
2457                         if (!error) {
2458                                 /*
2459                                  * vma_gap_update() doesn't support concurrent
2460                                  * updates, but we only hold a shared mmap_lock
2461                                  * lock here, so we need to protect against
2462                                  * concurrent vma expansions.
2463                                  * anon_vma_lock_write() doesn't help here, as
2464                                  * we don't guarantee that all growable vmas
2465                                  * in a mm share the same root anon vma.
2466                                  * So, we reuse mm->page_table_lock to guard
2467                                  * against concurrent vma expansions.
2468                                  */
2469                                 spin_lock(&mm->page_table_lock);
2470                                 if (vma->vm_flags & VM_LOCKED)
2471                                         mm->locked_vm += grow;
2472                                 vm_stat_account(mm, vma->vm_flags, grow);
2473                                 anon_vma_interval_tree_pre_update_vma(vma);
2474                                 vma->vm_end = address;
2475                                 anon_vma_interval_tree_post_update_vma(vma);
2476                                 if (vma->vm_next)
2477                                         vma_gap_update(vma->vm_next);
2478                                 else
2479                                         mm->highest_vm_end = vm_end_gap(vma);
2480                                 spin_unlock(&mm->page_table_lock);
2481
2482                                 perf_event_mmap(vma);
2483                         }
2484                 }
2485         }
2486         anon_vma_unlock_write(vma->anon_vma);
2487         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488         validate_mm(mm);
2489         return error;
2490 }
2491 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2492
2493 /*
2494  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2495  */
2496 int expand_downwards(struct vm_area_struct *vma,
2497                                    unsigned long address)
2498 {
2499         struct mm_struct *mm = vma->vm_mm;
2500         struct vm_area_struct *prev;
2501         int error = 0;
2502
2503         address &= PAGE_MASK;
2504         if (address < mmap_min_addr)
2505                 return -EPERM;
2506
2507         /* Enforce stack_guard_gap */
2508         prev = vma->vm_prev;
2509         /* Check that both stack segments have the same anon_vma? */
2510         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2511                         vma_is_accessible(prev)) {
2512                 if (address - prev->vm_end < stack_guard_gap)
2513                         return -ENOMEM;
2514         }
2515
2516         /* We must make sure the anon_vma is allocated. */
2517         if (unlikely(anon_vma_prepare(vma)))
2518                 return -ENOMEM;
2519
2520         /*
2521          * vma->vm_start/vm_end cannot change under us because the caller
2522          * is required to hold the mmap_lock in read mode.  We need the
2523          * anon_vma lock to serialize against concurrent expand_stacks.
2524          */
2525         anon_vma_lock_write(vma->anon_vma);
2526
2527         /* Somebody else might have raced and expanded it already */
2528         if (address < vma->vm_start) {
2529                 unsigned long size, grow;
2530
2531                 size = vma->vm_end - address;
2532                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2533
2534                 error = -ENOMEM;
2535                 if (grow <= vma->vm_pgoff) {
2536                         error = acct_stack_growth(vma, size, grow);
2537                         if (!error) {
2538                                 /*
2539                                  * vma_gap_update() doesn't support concurrent
2540                                  * updates, but we only hold a shared mmap_lock
2541                                  * lock here, so we need to protect against
2542                                  * concurrent vma expansions.
2543                                  * anon_vma_lock_write() doesn't help here, as
2544                                  * we don't guarantee that all growable vmas
2545                                  * in a mm share the same root anon vma.
2546                                  * So, we reuse mm->page_table_lock to guard
2547                                  * against concurrent vma expansions.
2548                                  */
2549                                 spin_lock(&mm->page_table_lock);
2550                                 if (vma->vm_flags & VM_LOCKED)
2551                                         mm->locked_vm += grow;
2552                                 vm_stat_account(mm, vma->vm_flags, grow);
2553                                 anon_vma_interval_tree_pre_update_vma(vma);
2554                                 vma->vm_start = address;
2555                                 vma->vm_pgoff -= grow;
2556                                 anon_vma_interval_tree_post_update_vma(vma);
2557                                 vma_gap_update(vma);
2558                                 spin_unlock(&mm->page_table_lock);
2559
2560                                 perf_event_mmap(vma);
2561                         }
2562                 }
2563         }
2564         anon_vma_unlock_write(vma->anon_vma);
2565         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2566         validate_mm(mm);
2567         return error;
2568 }
2569
2570 /* enforced gap between the expanding stack and other mappings. */
2571 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2572
2573 static int __init cmdline_parse_stack_guard_gap(char *p)
2574 {
2575         unsigned long val;
2576         char *endptr;
2577
2578         val = simple_strtoul(p, &endptr, 10);
2579         if (!*endptr)
2580                 stack_guard_gap = val << PAGE_SHIFT;
2581
2582         return 0;
2583 }
2584 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2585
2586 #ifdef CONFIG_STACK_GROWSUP
2587 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2588 {
2589         return expand_upwards(vma, address);
2590 }
2591
2592 struct vm_area_struct *
2593 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2594 {
2595         struct vm_area_struct *vma, *prev;
2596
2597         addr &= PAGE_MASK;
2598         vma = find_vma_prev(mm, addr, &prev);
2599         if (vma && (vma->vm_start <= addr))
2600                 return vma;
2601         /* don't alter vm_end if the coredump is running */
2602         if (!prev || expand_stack(prev, addr))
2603                 return NULL;
2604         if (prev->vm_flags & VM_LOCKED)
2605                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2606         return prev;
2607 }
2608 #else
2609 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2610 {
2611         return expand_downwards(vma, address);
2612 }
2613
2614 struct vm_area_struct *
2615 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2616 {
2617         struct vm_area_struct *vma;
2618         unsigned long start;
2619
2620         addr &= PAGE_MASK;
2621         vma = find_vma(mm, addr);
2622         if (!vma)
2623                 return NULL;
2624         if (vma->vm_start <= addr)
2625                 return vma;
2626         if (!(vma->vm_flags & VM_GROWSDOWN))
2627                 return NULL;
2628         start = vma->vm_start;
2629         if (expand_stack(vma, addr))
2630                 return NULL;
2631         if (vma->vm_flags & VM_LOCKED)
2632                 populate_vma_page_range(vma, addr, start, NULL);
2633         return vma;
2634 }
2635 #endif
2636
2637 EXPORT_SYMBOL_GPL(find_extend_vma);
2638
2639 /*
2640  * Ok - we have the memory areas we should free on the vma list,
2641  * so release them, and do the vma updates.
2642  *
2643  * Called with the mm semaphore held.
2644  */
2645 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2646 {
2647         unsigned long nr_accounted = 0;
2648
2649         /* Update high watermark before we lower total_vm */
2650         update_hiwater_vm(mm);
2651         do {
2652                 long nrpages = vma_pages(vma);
2653
2654                 if (vma->vm_flags & VM_ACCOUNT)
2655                         nr_accounted += nrpages;
2656                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2657                 vma = remove_vma(vma);
2658         } while (vma);
2659         vm_unacct_memory(nr_accounted);
2660         validate_mm(mm);
2661 }
2662
2663 /*
2664  * Get rid of page table information in the indicated region.
2665  *
2666  * Called with the mm semaphore held.
2667  */
2668 static void unmap_region(struct mm_struct *mm,
2669                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2670                 unsigned long start, unsigned long end)
2671 {
2672         struct vm_area_struct *next = vma_next(mm, prev);
2673         struct mmu_gather tlb;
2674
2675         lru_add_drain();
2676         tlb_gather_mmu(&tlb, mm, start, end);
2677         update_hiwater_rss(mm);
2678         unmap_vmas(&tlb, vma, start, end);
2679         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2680                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2681         tlb_finish_mmu(&tlb, start, end);
2682 }
2683
2684 /*
2685  * Create a list of vma's touched by the unmap, removing them from the mm's
2686  * vma list as we go..
2687  */
2688 static bool
2689 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2690         struct vm_area_struct *prev, unsigned long end)
2691 {
2692         struct vm_area_struct **insertion_point;
2693         struct vm_area_struct *tail_vma = NULL;
2694
2695         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2696         vma->vm_prev = NULL;
2697         do {
2698                 vma_rb_erase(vma, &mm->mm_rb);
2699                 mm->map_count--;
2700                 tail_vma = vma;
2701                 vma = vma->vm_next;
2702         } while (vma && vma->vm_start < end);
2703         *insertion_point = vma;
2704         if (vma) {
2705                 vma->vm_prev = prev;
2706                 vma_gap_update(vma);
2707         } else
2708                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2709         tail_vma->vm_next = NULL;
2710
2711         /* Kill the cache */
2712         vmacache_invalidate(mm);
2713
2714         /*
2715          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2716          * VM_GROWSUP VMA. Such VMAs can change their size under
2717          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2718          */
2719         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2720                 return false;
2721         if (prev && (prev->vm_flags & VM_GROWSUP))
2722                 return false;
2723         return true;
2724 }
2725
2726 /*
2727  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2728  * has already been checked or doesn't make sense to fail.
2729  */
2730 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731                 unsigned long addr, int new_below)
2732 {
2733         struct vm_area_struct *new;
2734         int err;
2735
2736         if (vma->vm_ops && vma->vm_ops->split) {
2737                 err = vma->vm_ops->split(vma, addr);
2738                 if (err)
2739                         return err;
2740         }
2741
2742         new = vm_area_dup(vma);
2743         if (!new)
2744                 return -ENOMEM;
2745
2746         if (new_below)
2747                 new->vm_end = addr;
2748         else {
2749                 new->vm_start = addr;
2750                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2751         }
2752
2753         err = vma_dup_policy(vma, new);
2754         if (err)
2755                 goto out_free_vma;
2756
2757         err = anon_vma_clone(new, vma);
2758         if (err)
2759                 goto out_free_mpol;
2760
2761         if (new->vm_file)
2762                 get_file(new->vm_file);
2763
2764         if (new->vm_ops && new->vm_ops->open)
2765                 new->vm_ops->open(new);
2766
2767         if (new_below)
2768                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2769                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2770         else
2771                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772
2773         /* Success. */
2774         if (!err)
2775                 return 0;
2776
2777         /* Clean everything up if vma_adjust failed. */
2778         if (new->vm_ops && new->vm_ops->close)
2779                 new->vm_ops->close(new);
2780         if (new->vm_file)
2781                 fput(new->vm_file);
2782         unlink_anon_vmas(new);
2783  out_free_mpol:
2784         mpol_put(vma_policy(new));
2785  out_free_vma:
2786         vm_area_free(new);
2787         return err;
2788 }
2789
2790 /*
2791  * Split a vma into two pieces at address 'addr', a new vma is allocated
2792  * either for the first part or the tail.
2793  */
2794 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2795               unsigned long addr, int new_below)
2796 {
2797         if (mm->map_count >= sysctl_max_map_count)
2798                 return -ENOMEM;
2799
2800         return __split_vma(mm, vma, addr, new_below);
2801 }
2802
2803 /* Munmap is split into 2 main parts -- this part which finds
2804  * what needs doing, and the areas themselves, which do the
2805  * work.  This now handles partial unmappings.
2806  * Jeremy Fitzhardinge <jeremy@goop.org>
2807  */
2808 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2809                 struct list_head *uf, bool downgrade)
2810 {
2811         unsigned long end;
2812         struct vm_area_struct *vma, *prev, *last;
2813
2814         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2815                 return -EINVAL;
2816
2817         len = PAGE_ALIGN(len);
2818         end = start + len;
2819         if (len == 0)
2820                 return -EINVAL;
2821
2822         /*
2823          * arch_unmap() might do unmaps itself.  It must be called
2824          * and finish any rbtree manipulation before this code
2825          * runs and also starts to manipulate the rbtree.
2826          */
2827         arch_unmap(mm, start, end);
2828
2829         /* Find the first overlapping VMA */
2830         vma = find_vma(mm, start);
2831         if (!vma)
2832                 return 0;
2833         prev = vma->vm_prev;
2834         /* we have  start < vma->vm_end  */
2835
2836         /* if it doesn't overlap, we have nothing.. */
2837         if (vma->vm_start >= end)
2838                 return 0;
2839
2840         /*
2841          * If we need to split any vma, do it now to save pain later.
2842          *
2843          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2844          * unmapped vm_area_struct will remain in use: so lower split_vma
2845          * places tmp vma above, and higher split_vma places tmp vma below.
2846          */
2847         if (start > vma->vm_start) {
2848                 int error;
2849
2850                 /*
2851                  * Make sure that map_count on return from munmap() will
2852                  * not exceed its limit; but let map_count go just above
2853                  * its limit temporarily, to help free resources as expected.
2854                  */
2855                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2856                         return -ENOMEM;
2857
2858                 error = __split_vma(mm, vma, start, 0);
2859                 if (error)
2860                         return error;
2861                 prev = vma;
2862         }
2863
2864         /* Does it split the last one? */
2865         last = find_vma(mm, end);
2866         if (last && end > last->vm_start) {
2867                 int error = __split_vma(mm, last, end, 1);
2868                 if (error)
2869                         return error;
2870         }
2871         vma = vma_next(mm, prev);
2872
2873         if (unlikely(uf)) {
2874                 /*
2875                  * If userfaultfd_unmap_prep returns an error the vmas
2876                  * will remain splitted, but userland will get a
2877                  * highly unexpected error anyway. This is no
2878                  * different than the case where the first of the two
2879                  * __split_vma fails, but we don't undo the first
2880                  * split, despite we could. This is unlikely enough
2881                  * failure that it's not worth optimizing it for.
2882                  */
2883                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2884                 if (error)
2885                         return error;
2886         }
2887
2888         /*
2889          * unlock any mlock()ed ranges before detaching vmas
2890          */
2891         if (mm->locked_vm) {
2892                 struct vm_area_struct *tmp = vma;
2893                 while (tmp && tmp->vm_start < end) {
2894                         if (tmp->vm_flags & VM_LOCKED) {
2895                                 mm->locked_vm -= vma_pages(tmp);
2896                                 munlock_vma_pages_all(tmp);
2897                         }
2898
2899                         tmp = tmp->vm_next;
2900                 }
2901         }
2902
2903         /* Detach vmas from rbtree */
2904         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2905                 downgrade = false;
2906
2907         if (downgrade)
2908                 mmap_write_downgrade(mm);
2909
2910         unmap_region(mm, vma, prev, start, end);
2911
2912         /* Fix up all other VM information */
2913         remove_vma_list(mm, vma);
2914
2915         return downgrade ? 1 : 0;
2916 }
2917
2918 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2919               struct list_head *uf)
2920 {
2921         return __do_munmap(mm, start, len, uf, false);
2922 }
2923
2924 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2925 {
2926         int ret;
2927         struct mm_struct *mm = current->mm;
2928         LIST_HEAD(uf);
2929
2930         if (mmap_write_lock_killable(mm))
2931                 return -EINTR;
2932
2933         ret = __do_munmap(mm, start, len, &uf, downgrade);
2934         /*
2935          * Returning 1 indicates mmap_lock is downgraded.
2936          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2937          * it to 0 before return.
2938          */
2939         if (ret == 1) {
2940                 mmap_read_unlock(mm);
2941                 ret = 0;
2942         } else
2943                 mmap_write_unlock(mm);
2944
2945         userfaultfd_unmap_complete(mm, &uf);
2946         return ret;
2947 }
2948
2949 int vm_munmap(unsigned long start, size_t len)
2950 {
2951         return __vm_munmap(start, len, false);
2952 }
2953 EXPORT_SYMBOL(vm_munmap);
2954
2955 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2956 {
2957         addr = untagged_addr(addr);
2958         profile_munmap(addr);
2959         return __vm_munmap(addr, len, true);
2960 }
2961
2962
2963 /*
2964  * Emulation of deprecated remap_file_pages() syscall.
2965  */
2966 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2967                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2968 {
2969
2970         struct mm_struct *mm = current->mm;
2971         struct vm_area_struct *vma;
2972         unsigned long populate = 0;
2973         unsigned long ret = -EINVAL;
2974         struct file *file;
2975
2976         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2977                      current->comm, current->pid);
2978
2979         if (prot)
2980                 return ret;
2981         start = start & PAGE_MASK;
2982         size = size & PAGE_MASK;
2983
2984         if (start + size <= start)
2985                 return ret;
2986
2987         /* Does pgoff wrap? */
2988         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2989                 return ret;
2990
2991         if (mmap_write_lock_killable(mm))
2992                 return -EINTR;
2993
2994         vma = find_vma(mm, start);
2995
2996         if (!vma || !(vma->vm_flags & VM_SHARED))
2997                 goto out;
2998
2999         if (start < vma->vm_start)
3000                 goto out;
3001
3002         if (start + size > vma->vm_end) {
3003                 struct vm_area_struct *next;
3004
3005                 for (next = vma->vm_next; next; next = next->vm_next) {
3006                         /* hole between vmas ? */
3007                         if (next->vm_start != next->vm_prev->vm_end)
3008                                 goto out;
3009
3010                         if (next->vm_file != vma->vm_file)
3011                                 goto out;
3012
3013                         if (next->vm_flags != vma->vm_flags)
3014                                 goto out;
3015
3016                         if (start + size <= next->vm_end)
3017                                 break;
3018                 }
3019
3020                 if (!next)
3021                         goto out;
3022         }
3023
3024         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3025         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3026         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3027
3028         flags &= MAP_NONBLOCK;
3029         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3030         if (vma->vm_flags & VM_LOCKED) {
3031                 struct vm_area_struct *tmp;
3032                 flags |= MAP_LOCKED;
3033
3034                 /* drop PG_Mlocked flag for over-mapped range */
3035                 for (tmp = vma; tmp->vm_start >= start + size;
3036                                 tmp = tmp->vm_next) {
3037                         /*
3038                          * Split pmd and munlock page on the border
3039                          * of the range.
3040                          */
3041                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3042
3043                         munlock_vma_pages_range(tmp,
3044                                         max(tmp->vm_start, start),
3045                                         min(tmp->vm_end, start + size));
3046                 }
3047         }
3048
3049         file = get_file(vma->vm_file);
3050         ret = do_mmap(vma->vm_file, start, size,
3051                         prot, flags, pgoff, &populate, NULL);
3052         fput(file);
3053 out:
3054         mmap_write_unlock(mm);
3055         if (populate)
3056                 mm_populate(ret, populate);
3057         if (!IS_ERR_VALUE(ret))
3058                 ret = 0;
3059         return ret;
3060 }
3061
3062 /*
3063  *  this is really a simplified "do_mmap".  it only handles
3064  *  anonymous maps.  eventually we may be able to do some
3065  *  brk-specific accounting here.
3066  */
3067 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3068 {
3069         struct mm_struct *mm = current->mm;
3070         struct vm_area_struct *vma, *prev;
3071         struct rb_node **rb_link, *rb_parent;
3072         pgoff_t pgoff = addr >> PAGE_SHIFT;
3073         int error;
3074         unsigned long mapped_addr;
3075
3076         /* Until we need other flags, refuse anything except VM_EXEC. */
3077         if ((flags & (~VM_EXEC)) != 0)
3078                 return -EINVAL;
3079         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3080
3081         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3082         if (IS_ERR_VALUE(mapped_addr))
3083                 return mapped_addr;
3084
3085         error = mlock_future_check(mm, mm->def_flags, len);
3086         if (error)
3087                 return error;
3088
3089         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3090         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3091                 return -ENOMEM;
3092
3093         /* Check against address space limits *after* clearing old maps... */
3094         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3095                 return -ENOMEM;
3096
3097         if (mm->map_count > sysctl_max_map_count)
3098                 return -ENOMEM;
3099
3100         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3101                 return -ENOMEM;
3102
3103         /* Can we just expand an old private anonymous mapping? */
3104         vma = vma_merge(mm, prev, addr, addr + len, flags,
3105                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3106         if (vma)
3107                 goto out;
3108
3109         /*
3110          * create a vma struct for an anonymous mapping
3111          */
3112         vma = vm_area_alloc(mm);
3113         if (!vma) {
3114                 vm_unacct_memory(len >> PAGE_SHIFT);
3115                 return -ENOMEM;
3116         }
3117
3118         vma_set_anonymous(vma);
3119         vma->vm_start = addr;
3120         vma->vm_end = addr + len;
3121         vma->vm_pgoff = pgoff;
3122         vma->vm_flags = flags;
3123         vma->vm_page_prot = vm_get_page_prot(flags);
3124         vma_link(mm, vma, prev, rb_link, rb_parent);
3125 out:
3126         perf_event_mmap(vma);
3127         mm->total_vm += len >> PAGE_SHIFT;
3128         mm->data_vm += len >> PAGE_SHIFT;
3129         if (flags & VM_LOCKED)
3130                 mm->locked_vm += (len >> PAGE_SHIFT);
3131         vma->vm_flags |= VM_SOFTDIRTY;
3132         return 0;
3133 }
3134
3135 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3136 {
3137         struct mm_struct *mm = current->mm;
3138         unsigned long len;
3139         int ret;
3140         bool populate;
3141         LIST_HEAD(uf);
3142
3143         len = PAGE_ALIGN(request);
3144         if (len < request)
3145                 return -ENOMEM;
3146         if (!len)
3147                 return 0;
3148
3149         if (mmap_write_lock_killable(mm))
3150                 return -EINTR;
3151
3152         ret = do_brk_flags(addr, len, flags, &uf);
3153         populate = ((mm->def_flags & VM_LOCKED) != 0);
3154         mmap_write_unlock(mm);
3155         userfaultfd_unmap_complete(mm, &uf);
3156         if (populate && !ret)
3157                 mm_populate(addr, len);
3158         return ret;
3159 }
3160 EXPORT_SYMBOL(vm_brk_flags);
3161
3162 int vm_brk(unsigned long addr, unsigned long len)
3163 {
3164         return vm_brk_flags(addr, len, 0);
3165 }
3166 EXPORT_SYMBOL(vm_brk);
3167
3168 /* Release all mmaps. */
3169 void exit_mmap(struct mm_struct *mm)
3170 {
3171         struct mmu_gather tlb;
3172         struct vm_area_struct *vma;
3173         unsigned long nr_accounted = 0;
3174
3175         /* mm's last user has gone, and its about to be pulled down */
3176         mmu_notifier_release(mm);
3177
3178         if (unlikely(mm_is_oom_victim(mm))) {
3179                 /*
3180                  * Manually reap the mm to free as much memory as possible.
3181                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3182                  * this mm from further consideration.  Taking mm->mmap_lock for
3183                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3184                  * reaper will not run on this mm again after mmap_lock is
3185                  * dropped.
3186                  *
3187                  * Nothing can be holding mm->mmap_lock here and the above call
3188                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3189                  * __oom_reap_task_mm() will not block.
3190                  *
3191                  * This needs to be done before calling munlock_vma_pages_all(),
3192                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3193                  * reliably test it.
3194                  */
3195                 (void)__oom_reap_task_mm(mm);
3196
3197                 set_bit(MMF_OOM_SKIP, &mm->flags);
3198                 mmap_write_lock(mm);
3199                 mmap_write_unlock(mm);
3200         }
3201
3202         if (mm->locked_vm) {
3203                 vma = mm->mmap;
3204                 while (vma) {
3205                         if (vma->vm_flags & VM_LOCKED)
3206                                 munlock_vma_pages_all(vma);
3207                         vma = vma->vm_next;
3208                 }
3209         }
3210
3211         arch_exit_mmap(mm);
3212
3213         vma = mm->mmap;
3214         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3215                 return;
3216
3217         lru_add_drain();
3218         flush_cache_mm(mm);
3219         tlb_gather_mmu(&tlb, mm, 0, -1);
3220         /* update_hiwater_rss(mm) here? but nobody should be looking */
3221         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3222         unmap_vmas(&tlb, vma, 0, -1);
3223         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3224         tlb_finish_mmu(&tlb, 0, -1);
3225
3226         /*
3227          * Walk the list again, actually closing and freeing it,
3228          * with preemption enabled, without holding any MM locks.
3229          */
3230         while (vma) {
3231                 if (vma->vm_flags & VM_ACCOUNT)
3232                         nr_accounted += vma_pages(vma);
3233                 vma = remove_vma(vma);
3234                 cond_resched();
3235         }
3236         vm_unacct_memory(nr_accounted);
3237 }
3238
3239 /* Insert vm structure into process list sorted by address
3240  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3241  * then i_mmap_rwsem is taken here.
3242  */
3243 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3244 {
3245         struct vm_area_struct *prev;
3246         struct rb_node **rb_link, *rb_parent;
3247
3248         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3249                            &prev, &rb_link, &rb_parent))
3250                 return -ENOMEM;
3251         if ((vma->vm_flags & VM_ACCOUNT) &&
3252              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3253                 return -ENOMEM;
3254
3255         /*
3256          * The vm_pgoff of a purely anonymous vma should be irrelevant
3257          * until its first write fault, when page's anon_vma and index
3258          * are set.  But now set the vm_pgoff it will almost certainly
3259          * end up with (unless mremap moves it elsewhere before that
3260          * first wfault), so /proc/pid/maps tells a consistent story.
3261          *
3262          * By setting it to reflect the virtual start address of the
3263          * vma, merges and splits can happen in a seamless way, just
3264          * using the existing file pgoff checks and manipulations.
3265          * Similarly in do_mmap and in do_brk_flags.
3266          */
3267         if (vma_is_anonymous(vma)) {
3268                 BUG_ON(vma->anon_vma);
3269                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3270         }
3271
3272         vma_link(mm, vma, prev, rb_link, rb_parent);
3273         return 0;
3274 }
3275
3276 /*
3277  * Copy the vma structure to a new location in the same mm,
3278  * prior to moving page table entries, to effect an mremap move.
3279  */
3280 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3281         unsigned long addr, unsigned long len, pgoff_t pgoff,
3282         bool *need_rmap_locks)
3283 {
3284         struct vm_area_struct *vma = *vmap;
3285         unsigned long vma_start = vma->vm_start;
3286         struct mm_struct *mm = vma->vm_mm;
3287         struct vm_area_struct *new_vma, *prev;
3288         struct rb_node **rb_link, *rb_parent;
3289         bool faulted_in_anon_vma = true;
3290
3291         /*
3292          * If anonymous vma has not yet been faulted, update new pgoff
3293          * to match new location, to increase its chance of merging.
3294          */
3295         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3296                 pgoff = addr >> PAGE_SHIFT;
3297                 faulted_in_anon_vma = false;
3298         }
3299
3300         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3301                 return NULL;    /* should never get here */
3302         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3303                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3304                             vma->vm_userfaultfd_ctx);
3305         if (new_vma) {
3306                 /*
3307                  * Source vma may have been merged into new_vma
3308                  */
3309                 if (unlikely(vma_start >= new_vma->vm_start &&
3310                              vma_start < new_vma->vm_end)) {
3311                         /*
3312                          * The only way we can get a vma_merge with
3313                          * self during an mremap is if the vma hasn't
3314                          * been faulted in yet and we were allowed to
3315                          * reset the dst vma->vm_pgoff to the
3316                          * destination address of the mremap to allow
3317                          * the merge to happen. mremap must change the
3318                          * vm_pgoff linearity between src and dst vmas
3319                          * (in turn preventing a vma_merge) to be
3320                          * safe. It is only safe to keep the vm_pgoff
3321                          * linear if there are no pages mapped yet.
3322                          */
3323                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3324                         *vmap = vma = new_vma;
3325                 }
3326                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3327         } else {
3328                 new_vma = vm_area_dup(vma);
3329                 if (!new_vma)
3330                         goto out;
3331                 new_vma->vm_start = addr;
3332                 new_vma->vm_end = addr + len;
3333                 new_vma->vm_pgoff = pgoff;
3334                 if (vma_dup_policy(vma, new_vma))
3335                         goto out_free_vma;
3336                 if (anon_vma_clone(new_vma, vma))
3337                         goto out_free_mempol;
3338                 if (new_vma->vm_file)
3339                         get_file(new_vma->vm_file);
3340                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3341                         new_vma->vm_ops->open(new_vma);
3342                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3343                 *need_rmap_locks = false;
3344         }
3345         return new_vma;
3346
3347 out_free_mempol:
3348         mpol_put(vma_policy(new_vma));
3349 out_free_vma:
3350         vm_area_free(new_vma);
3351 out:
3352         return NULL;
3353 }
3354
3355 /*
3356  * Return true if the calling process may expand its vm space by the passed
3357  * number of pages
3358  */
3359 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3360 {
3361         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3362                 return false;
3363
3364         if (is_data_mapping(flags) &&
3365             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3366                 /* Workaround for Valgrind */
3367                 if (rlimit(RLIMIT_DATA) == 0 &&
3368                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3369                         return true;
3370
3371                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3372                              current->comm, current->pid,
3373                              (mm->data_vm + npages) << PAGE_SHIFT,
3374                              rlimit(RLIMIT_DATA),
3375                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3376
3377                 if (!ignore_rlimit_data)
3378                         return false;
3379         }
3380
3381         return true;
3382 }
3383
3384 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3385 {
3386         mm->total_vm += npages;
3387
3388         if (is_exec_mapping(flags))
3389                 mm->exec_vm += npages;
3390         else if (is_stack_mapping(flags))
3391                 mm->stack_vm += npages;
3392         else if (is_data_mapping(flags))
3393                 mm->data_vm += npages;
3394 }
3395
3396 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3397
3398 /*
3399  * Having a close hook prevents vma merging regardless of flags.
3400  */
3401 static void special_mapping_close(struct vm_area_struct *vma)
3402 {
3403 }
3404
3405 static const char *special_mapping_name(struct vm_area_struct *vma)
3406 {
3407         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3408 }
3409
3410 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3411 {
3412         struct vm_special_mapping *sm = new_vma->vm_private_data;
3413
3414         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3415                 return -EFAULT;
3416
3417         if (sm->mremap)
3418                 return sm->mremap(sm, new_vma);
3419
3420         return 0;
3421 }
3422
3423 static const struct vm_operations_struct special_mapping_vmops = {
3424         .close = special_mapping_close,
3425         .fault = special_mapping_fault,
3426         .mremap = special_mapping_mremap,
3427         .name = special_mapping_name,
3428         /* vDSO code relies that VVAR can't be accessed remotely */
3429         .access = NULL,
3430 };
3431
3432 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3433         .close = special_mapping_close,
3434         .fault = special_mapping_fault,
3435 };
3436
3437 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3438 {
3439         struct vm_area_struct *vma = vmf->vma;
3440         pgoff_t pgoff;
3441         struct page **pages;
3442
3443         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3444                 pages = vma->vm_private_data;
3445         } else {
3446                 struct vm_special_mapping *sm = vma->vm_private_data;
3447
3448                 if (sm->fault)
3449                         return sm->fault(sm, vmf->vma, vmf);
3450
3451                 pages = sm->pages;
3452         }
3453
3454         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3455                 pgoff--;
3456
3457         if (*pages) {
3458                 struct page *page = *pages;
3459                 get_page(page);
3460                 vmf->page = page;
3461                 return 0;
3462         }
3463
3464         return VM_FAULT_SIGBUS;
3465 }
3466
3467 static struct vm_area_struct *__install_special_mapping(
3468         struct mm_struct *mm,
3469         unsigned long addr, unsigned long len,
3470         unsigned long vm_flags, void *priv,
3471         const struct vm_operations_struct *ops)
3472 {
3473         int ret;
3474         struct vm_area_struct *vma;
3475
3476         vma = vm_area_alloc(mm);
3477         if (unlikely(vma == NULL))
3478                 return ERR_PTR(-ENOMEM);
3479
3480         vma->vm_start = addr;
3481         vma->vm_end = addr + len;
3482
3483         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3484         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3485
3486         vma->vm_ops = ops;
3487         vma->vm_private_data = priv;
3488
3489         ret = insert_vm_struct(mm, vma);
3490         if (ret)
3491                 goto out;
3492
3493         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3494
3495         perf_event_mmap(vma);
3496
3497         return vma;
3498
3499 out:
3500         vm_area_free(vma);
3501         return ERR_PTR(ret);
3502 }
3503
3504 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3505         const struct vm_special_mapping *sm)
3506 {
3507         return vma->vm_private_data == sm &&
3508                 (vma->vm_ops == &special_mapping_vmops ||
3509                  vma->vm_ops == &legacy_special_mapping_vmops);
3510 }
3511
3512 /*
3513  * Called with mm->mmap_lock held for writing.
3514  * Insert a new vma covering the given region, with the given flags.
3515  * Its pages are supplied by the given array of struct page *.
3516  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3517  * The region past the last page supplied will always produce SIGBUS.
3518  * The array pointer and the pages it points to are assumed to stay alive
3519  * for as long as this mapping might exist.
3520  */
3521 struct vm_area_struct *_install_special_mapping(
3522         struct mm_struct *mm,
3523         unsigned long addr, unsigned long len,
3524         unsigned long vm_flags, const struct vm_special_mapping *spec)
3525 {
3526         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3527                                         &special_mapping_vmops);
3528 }
3529
3530 int install_special_mapping(struct mm_struct *mm,
3531                             unsigned long addr, unsigned long len,
3532                             unsigned long vm_flags, struct page **pages)
3533 {
3534         struct vm_area_struct *vma = __install_special_mapping(
3535                 mm, addr, len, vm_flags, (void *)pages,
3536                 &legacy_special_mapping_vmops);
3537
3538         return PTR_ERR_OR_ZERO(vma);
3539 }
3540
3541 static DEFINE_MUTEX(mm_all_locks_mutex);
3542
3543 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3544 {
3545         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3546                 /*
3547                  * The LSB of head.next can't change from under us
3548                  * because we hold the mm_all_locks_mutex.
3549                  */
3550                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3551                 /*
3552                  * We can safely modify head.next after taking the
3553                  * anon_vma->root->rwsem. If some other vma in this mm shares
3554                  * the same anon_vma we won't take it again.
3555                  *
3556                  * No need of atomic instructions here, head.next
3557                  * can't change from under us thanks to the
3558                  * anon_vma->root->rwsem.
3559                  */
3560                 if (__test_and_set_bit(0, (unsigned long *)
3561                                        &anon_vma->root->rb_root.rb_root.rb_node))
3562                         BUG();
3563         }
3564 }
3565
3566 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3567 {
3568         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3569                 /*
3570                  * AS_MM_ALL_LOCKS can't change from under us because
3571                  * we hold the mm_all_locks_mutex.
3572                  *
3573                  * Operations on ->flags have to be atomic because
3574                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3575                  * mm_all_locks_mutex, there may be other cpus
3576                  * changing other bitflags in parallel to us.
3577                  */
3578                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3579                         BUG();
3580                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3581         }
3582 }
3583
3584 /*
3585  * This operation locks against the VM for all pte/vma/mm related
3586  * operations that could ever happen on a certain mm. This includes
3587  * vmtruncate, try_to_unmap, and all page faults.
3588  *
3589  * The caller must take the mmap_lock in write mode before calling
3590  * mm_take_all_locks(). The caller isn't allowed to release the
3591  * mmap_lock until mm_drop_all_locks() returns.
3592  *
3593  * mmap_lock in write mode is required in order to block all operations
3594  * that could modify pagetables and free pages without need of
3595  * altering the vma layout. It's also needed in write mode to avoid new
3596  * anon_vmas to be associated with existing vmas.
3597  *
3598  * A single task can't take more than one mm_take_all_locks() in a row
3599  * or it would deadlock.
3600  *
3601  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3602  * mapping->flags avoid to take the same lock twice, if more than one
3603  * vma in this mm is backed by the same anon_vma or address_space.
3604  *
3605  * We take locks in following order, accordingly to comment at beginning
3606  * of mm/rmap.c:
3607  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3608  *     hugetlb mapping);
3609  *   - all i_mmap_rwsem locks;
3610  *   - all anon_vma->rwseml
3611  *
3612  * We can take all locks within these types randomly because the VM code
3613  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3614  * mm_all_locks_mutex.
3615  *
3616  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3617  * that may have to take thousand of locks.
3618  *
3619  * mm_take_all_locks() can fail if it's interrupted by signals.
3620  */
3621 int mm_take_all_locks(struct mm_struct *mm)
3622 {
3623         struct vm_area_struct *vma;
3624         struct anon_vma_chain *avc;
3625
3626         BUG_ON(mmap_read_trylock(mm));
3627
3628         mutex_lock(&mm_all_locks_mutex);
3629
3630         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631                 if (signal_pending(current))
3632                         goto out_unlock;
3633                 if (vma->vm_file && vma->vm_file->f_mapping &&
3634                                 is_vm_hugetlb_page(vma))
3635                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3636         }
3637
3638         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639                 if (signal_pending(current))
3640                         goto out_unlock;
3641                 if (vma->vm_file && vma->vm_file->f_mapping &&
3642                                 !is_vm_hugetlb_page(vma))
3643                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3644         }
3645
3646         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647                 if (signal_pending(current))
3648                         goto out_unlock;
3649                 if (vma->anon_vma)
3650                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3651                                 vm_lock_anon_vma(mm, avc->anon_vma);
3652         }
3653
3654         return 0;
3655
3656 out_unlock:
3657         mm_drop_all_locks(mm);
3658         return -EINTR;
3659 }
3660
3661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3662 {
3663         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3664                 /*
3665                  * The LSB of head.next can't change to 0 from under
3666                  * us because we hold the mm_all_locks_mutex.
3667                  *
3668                  * We must however clear the bitflag before unlocking
3669                  * the vma so the users using the anon_vma->rb_root will
3670                  * never see our bitflag.
3671                  *
3672                  * No need of atomic instructions here, head.next
3673                  * can't change from under us until we release the
3674                  * anon_vma->root->rwsem.
3675                  */
3676                 if (!__test_and_clear_bit(0, (unsigned long *)
3677                                           &anon_vma->root->rb_root.rb_root.rb_node))
3678                         BUG();
3679                 anon_vma_unlock_write(anon_vma);
3680         }
3681 }
3682
3683 static void vm_unlock_mapping(struct address_space *mapping)
3684 {
3685         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3686                 /*
3687                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3688                  * because we hold the mm_all_locks_mutex.
3689                  */
3690                 i_mmap_unlock_write(mapping);
3691                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3692                                         &mapping->flags))
3693                         BUG();
3694         }
3695 }
3696
3697 /*
3698  * The mmap_lock cannot be released by the caller until
3699  * mm_drop_all_locks() returns.
3700  */
3701 void mm_drop_all_locks(struct mm_struct *mm)
3702 {
3703         struct vm_area_struct *vma;
3704         struct anon_vma_chain *avc;
3705
3706         BUG_ON(mmap_read_trylock(mm));
3707         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3708
3709         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3710                 if (vma->anon_vma)
3711                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3712                                 vm_unlock_anon_vma(avc->anon_vma);
3713                 if (vma->vm_file && vma->vm_file->f_mapping)
3714                         vm_unlock_mapping(vma->vm_file->f_mapping);
3715         }
3716
3717         mutex_unlock(&mm_all_locks_mutex);
3718 }
3719
3720 /*
3721  * initialise the percpu counter for VM
3722  */
3723 void __init mmap_init(void)
3724 {
3725         int ret;
3726
3727         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3728         VM_BUG_ON(ret);
3729 }
3730
3731 /*
3732  * Initialise sysctl_user_reserve_kbytes.
3733  *
3734  * This is intended to prevent a user from starting a single memory hogging
3735  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3736  * mode.
3737  *
3738  * The default value is min(3% of free memory, 128MB)
3739  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3740  */
3741 static int init_user_reserve(void)
3742 {
3743         unsigned long free_kbytes;
3744
3745         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3746
3747         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3748         return 0;
3749 }
3750 subsys_initcall(init_user_reserve);
3751
3752 /*
3753  * Initialise sysctl_admin_reserve_kbytes.
3754  *
3755  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3756  * to log in and kill a memory hogging process.
3757  *
3758  * Systems with more than 256MB will reserve 8MB, enough to recover
3759  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3760  * only reserve 3% of free pages by default.
3761  */
3762 static int init_admin_reserve(void)
3763 {
3764         unsigned long free_kbytes;
3765
3766         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3767
3768         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3769         return 0;
3770 }
3771 subsys_initcall(init_admin_reserve);
3772
3773 /*
3774  * Reinititalise user and admin reserves if memory is added or removed.
3775  *
3776  * The default user reserve max is 128MB, and the default max for the
3777  * admin reserve is 8MB. These are usually, but not always, enough to
3778  * enable recovery from a memory hogging process using login/sshd, a shell,
3779  * and tools like top. It may make sense to increase or even disable the
3780  * reserve depending on the existence of swap or variations in the recovery
3781  * tools. So, the admin may have changed them.
3782  *
3783  * If memory is added and the reserves have been eliminated or increased above
3784  * the default max, then we'll trust the admin.
3785  *
3786  * If memory is removed and there isn't enough free memory, then we
3787  * need to reset the reserves.
3788  *
3789  * Otherwise keep the reserve set by the admin.
3790  */
3791 static int reserve_mem_notifier(struct notifier_block *nb,
3792                              unsigned long action, void *data)
3793 {
3794         unsigned long tmp, free_kbytes;
3795
3796         switch (action) {
3797         case MEM_ONLINE:
3798                 /* Default max is 128MB. Leave alone if modified by operator. */
3799                 tmp = sysctl_user_reserve_kbytes;
3800                 if (0 < tmp && tmp < (1UL << 17))
3801                         init_user_reserve();
3802
3803                 /* Default max is 8MB.  Leave alone if modified by operator. */
3804                 tmp = sysctl_admin_reserve_kbytes;
3805                 if (0 < tmp && tmp < (1UL << 13))
3806                         init_admin_reserve();
3807
3808                 break;
3809         case MEM_OFFLINE:
3810                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3811
3812                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3813                         init_user_reserve();
3814                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3815                                 sysctl_user_reserve_kbytes);
3816                 }
3817
3818                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3819                         init_admin_reserve();
3820                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3821                                 sysctl_admin_reserve_kbytes);
3822                 }
3823                 break;
3824         default:
3825                 break;
3826         }
3827         return NOTIFY_OK;
3828 }
3829
3830 static struct notifier_block reserve_mem_nb = {
3831         .notifier_call = reserve_mem_notifier,
3832 };
3833
3834 static int __meminit init_reserve_notifier(void)
3835 {
3836         if (register_hotmemory_notifier(&reserve_mem_nb))
3837                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3838
3839         return 0;
3840 }
3841 subsys_initcall(init_reserve_notifier);