Merge tag 'kvmarm-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmar...
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_writable_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         if (pte_write(pte))
220                                 entry = make_writable_device_private_entry(
221                                                         page_to_pfn(new));
222                         else
223                                 entry = make_readable_device_private_entry(
224                                                         page_to_pfn(new));
225                         pte = swp_entry_to_pte(entry);
226                         if (pte_swp_soft_dirty(*pvmw.pte))
227                                 pte = pte_swp_mksoft_dirty(pte);
228                         if (pte_swp_uffd_wp(*pvmw.pte))
229                                 pte = pte_swp_mkuffd_wp(pte);
230                 }
231
232 #ifdef CONFIG_HUGETLB_PAGE
233                 if (PageHuge(new)) {
234                         unsigned int shift = huge_page_shift(hstate_vma(vma));
235
236                         pte = pte_mkhuge(pte);
237                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239                         if (PageAnon(new))
240                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
241                         else
242                                 page_dup_rmap(new, true);
243                 } else
244 #endif
245                 {
246                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247
248                         if (PageAnon(new))
249                                 page_add_anon_rmap(new, vma, pvmw.address, false);
250                         else
251                                 page_add_file_rmap(new, false);
252                 }
253                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
254                         mlock_vma_page(new);
255
256                 if (PageTransHuge(page) && PageMlocked(page))
257                         clear_page_mlock(page);
258
259                 /* No need to invalidate - it was non-present before */
260                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
261         }
262
263         return true;
264 }
265
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
271 {
272         struct rmap_walk_control rwc = {
273                 .rmap_one = remove_migration_pte,
274                 .arg = old,
275         };
276
277         if (locked)
278                 rmap_walk_locked(new, &rwc);
279         else
280                 rmap_walk(new, &rwc);
281 }
282
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289                                 spinlock_t *ptl)
290 {
291         pte_t pte;
292         swp_entry_t entry;
293         struct page *page;
294
295         spin_lock(ptl);
296         pte = *ptep;
297         if (!is_swap_pte(pte))
298                 goto out;
299
300         entry = pte_to_swp_entry(pte);
301         if (!is_migration_entry(entry))
302                 goto out;
303
304         page = pfn_swap_entry_to_page(entry);
305         page = compound_head(page);
306
307         /*
308          * Once page cache replacement of page migration started, page_count
309          * is zero; but we must not call put_and_wait_on_page_locked() without
310          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
311          */
312         if (!get_page_unless_zero(page))
313                 goto out;
314         pte_unmap_unlock(ptep, ptl);
315         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
316         return;
317 out:
318         pte_unmap_unlock(ptep, ptl);
319 }
320
321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
322                                 unsigned long address)
323 {
324         spinlock_t *ptl = pte_lockptr(mm, pmd);
325         pte_t *ptep = pte_offset_map(pmd, address);
326         __migration_entry_wait(mm, ptep, ptl);
327 }
328
329 void migration_entry_wait_huge(struct vm_area_struct *vma,
330                 struct mm_struct *mm, pte_t *pte)
331 {
332         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
333         __migration_entry_wait(mm, pte, ptl);
334 }
335
336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
338 {
339         spinlock_t *ptl;
340         struct page *page;
341
342         ptl = pmd_lock(mm, pmd);
343         if (!is_pmd_migration_entry(*pmd))
344                 goto unlock;
345         page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
346         if (!get_page_unless_zero(page))
347                 goto unlock;
348         spin_unlock(ptl);
349         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
350         return;
351 unlock:
352         spin_unlock(ptl);
353 }
354 #endif
355
356 static int expected_page_refs(struct address_space *mapping, struct page *page)
357 {
358         int expected_count = 1;
359
360         /*
361          * Device private pages have an extra refcount as they are
362          * ZONE_DEVICE pages.
363          */
364         expected_count += is_device_private_page(page);
365         if (mapping)
366                 expected_count += thp_nr_pages(page) + page_has_private(page);
367
368         return expected_count;
369 }
370
371 /*
372  * Replace the page in the mapping.
373  *
374  * The number of remaining references must be:
375  * 1 for anonymous pages without a mapping
376  * 2 for pages with a mapping
377  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
378  */
379 int migrate_page_move_mapping(struct address_space *mapping,
380                 struct page *newpage, struct page *page, int extra_count)
381 {
382         XA_STATE(xas, &mapping->i_pages, page_index(page));
383         struct zone *oldzone, *newzone;
384         int dirty;
385         int expected_count = expected_page_refs(mapping, page) + extra_count;
386         int nr = thp_nr_pages(page);
387
388         if (!mapping) {
389                 /* Anonymous page without mapping */
390                 if (page_count(page) != expected_count)
391                         return -EAGAIN;
392
393                 /* No turning back from here */
394                 newpage->index = page->index;
395                 newpage->mapping = page->mapping;
396                 if (PageSwapBacked(page))
397                         __SetPageSwapBacked(newpage);
398
399                 return MIGRATEPAGE_SUCCESS;
400         }
401
402         oldzone = page_zone(page);
403         newzone = page_zone(newpage);
404
405         xas_lock_irq(&xas);
406         if (page_count(page) != expected_count || xas_load(&xas) != page) {
407                 xas_unlock_irq(&xas);
408                 return -EAGAIN;
409         }
410
411         if (!page_ref_freeze(page, expected_count)) {
412                 xas_unlock_irq(&xas);
413                 return -EAGAIN;
414         }
415
416         /*
417          * Now we know that no one else is looking at the page:
418          * no turning back from here.
419          */
420         newpage->index = page->index;
421         newpage->mapping = page->mapping;
422         page_ref_add(newpage, nr); /* add cache reference */
423         if (PageSwapBacked(page)) {
424                 __SetPageSwapBacked(newpage);
425                 if (PageSwapCache(page)) {
426                         SetPageSwapCache(newpage);
427                         set_page_private(newpage, page_private(page));
428                 }
429         } else {
430                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
431         }
432
433         /* Move dirty while page refs frozen and newpage not yet exposed */
434         dirty = PageDirty(page);
435         if (dirty) {
436                 ClearPageDirty(page);
437                 SetPageDirty(newpage);
438         }
439
440         xas_store(&xas, newpage);
441         if (PageTransHuge(page)) {
442                 int i;
443
444                 for (i = 1; i < nr; i++) {
445                         xas_next(&xas);
446                         xas_store(&xas, newpage);
447                 }
448         }
449
450         /*
451          * Drop cache reference from old page by unfreezing
452          * to one less reference.
453          * We know this isn't the last reference.
454          */
455         page_ref_unfreeze(page, expected_count - nr);
456
457         xas_unlock(&xas);
458         /* Leave irq disabled to prevent preemption while updating stats */
459
460         /*
461          * If moved to a different zone then also account
462          * the page for that zone. Other VM counters will be
463          * taken care of when we establish references to the
464          * new page and drop references to the old page.
465          *
466          * Note that anonymous pages are accounted for
467          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468          * are mapped to swap space.
469          */
470         if (newzone != oldzone) {
471                 struct lruvec *old_lruvec, *new_lruvec;
472                 struct mem_cgroup *memcg;
473
474                 memcg = page_memcg(page);
475                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
481                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483                 }
484 #ifdef CONFIG_SWAP
485                 if (PageSwapCache(page)) {
486                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488                 }
489 #endif
490                 if (dirty && mapping_can_writeback(mapping)) {
491                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495                 }
496         }
497         local_irq_enable();
498
499         return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(migrate_page_move_mapping);
502
503 /*
504  * The expected number of remaining references is the same as that
505  * of migrate_page_move_mapping().
506  */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508                                    struct page *newpage, struct page *page)
509 {
510         XA_STATE(xas, &mapping->i_pages, page_index(page));
511         int expected_count;
512
513         xas_lock_irq(&xas);
514         expected_count = 2 + page_has_private(page);
515         if (page_count(page) != expected_count || xas_load(&xas) != page) {
516                 xas_unlock_irq(&xas);
517                 return -EAGAIN;
518         }
519
520         if (!page_ref_freeze(page, expected_count)) {
521                 xas_unlock_irq(&xas);
522                 return -EAGAIN;
523         }
524
525         newpage->index = page->index;
526         newpage->mapping = page->mapping;
527
528         get_page(newpage);
529
530         xas_store(&xas, newpage);
531
532         page_ref_unfreeze(page, expected_count - 1);
533
534         xas_unlock_irq(&xas);
535
536         return MIGRATEPAGE_SUCCESS;
537 }
538
539 /*
540  * Copy the page to its new location
541  */
542 void migrate_page_states(struct page *newpage, struct page *page)
543 {
544         int cpupid;
545
546         if (PageError(page))
547                 SetPageError(newpage);
548         if (PageReferenced(page))
549                 SetPageReferenced(newpage);
550         if (PageUptodate(page))
551                 SetPageUptodate(newpage);
552         if (TestClearPageActive(page)) {
553                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
554                 SetPageActive(newpage);
555         } else if (TestClearPageUnevictable(page))
556                 SetPageUnevictable(newpage);
557         if (PageWorkingset(page))
558                 SetPageWorkingset(newpage);
559         if (PageChecked(page))
560                 SetPageChecked(newpage);
561         if (PageMappedToDisk(page))
562                 SetPageMappedToDisk(newpage);
563
564         /* Move dirty on pages not done by migrate_page_move_mapping() */
565         if (PageDirty(page))
566                 SetPageDirty(newpage);
567
568         if (page_is_young(page))
569                 set_page_young(newpage);
570         if (page_is_idle(page))
571                 set_page_idle(newpage);
572
573         /*
574          * Copy NUMA information to the new page, to prevent over-eager
575          * future migrations of this same page.
576          */
577         cpupid = page_cpupid_xchg_last(page, -1);
578         page_cpupid_xchg_last(newpage, cpupid);
579
580         ksm_migrate_page(newpage, page);
581         /*
582          * Please do not reorder this without considering how mm/ksm.c's
583          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
584          */
585         if (PageSwapCache(page))
586                 ClearPageSwapCache(page);
587         ClearPagePrivate(page);
588
589         /* page->private contains hugetlb specific flags */
590         if (!PageHuge(page))
591                 set_page_private(page, 0);
592
593         /*
594          * If any waiters have accumulated on the new page then
595          * wake them up.
596          */
597         if (PageWriteback(newpage))
598                 end_page_writeback(newpage);
599
600         /*
601          * PG_readahead shares the same bit with PG_reclaim.  The above
602          * end_page_writeback() may clear PG_readahead mistakenly, so set the
603          * bit after that.
604          */
605         if (PageReadahead(page))
606                 SetPageReadahead(newpage);
607
608         copy_page_owner(page, newpage);
609
610         if (!PageHuge(page))
611                 mem_cgroup_migrate(page, newpage);
612 }
613 EXPORT_SYMBOL(migrate_page_states);
614
615 void migrate_page_copy(struct page *newpage, struct page *page)
616 {
617         if (PageHuge(page) || PageTransHuge(page))
618                 copy_huge_page(newpage, page);
619         else
620                 copy_highpage(newpage, page);
621
622         migrate_page_states(newpage, page);
623 }
624 EXPORT_SYMBOL(migrate_page_copy);
625
626 /************************************************************
627  *                    Migration functions
628  ***********************************************************/
629
630 /*
631  * Common logic to directly migrate a single LRU page suitable for
632  * pages that do not use PagePrivate/PagePrivate2.
633  *
634  * Pages are locked upon entry and exit.
635  */
636 int migrate_page(struct address_space *mapping,
637                 struct page *newpage, struct page *page,
638                 enum migrate_mode mode)
639 {
640         int rc;
641
642         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
643
644         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
645
646         if (rc != MIGRATEPAGE_SUCCESS)
647                 return rc;
648
649         if (mode != MIGRATE_SYNC_NO_COPY)
650                 migrate_page_copy(newpage, page);
651         else
652                 migrate_page_states(newpage, page);
653         return MIGRATEPAGE_SUCCESS;
654 }
655 EXPORT_SYMBOL(migrate_page);
656
657 #ifdef CONFIG_BLOCK
658 /* Returns true if all buffers are successfully locked */
659 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
660                                                         enum migrate_mode mode)
661 {
662         struct buffer_head *bh = head;
663
664         /* Simple case, sync compaction */
665         if (mode != MIGRATE_ASYNC) {
666                 do {
667                         lock_buffer(bh);
668                         bh = bh->b_this_page;
669
670                 } while (bh != head);
671
672                 return true;
673         }
674
675         /* async case, we cannot block on lock_buffer so use trylock_buffer */
676         do {
677                 if (!trylock_buffer(bh)) {
678                         /*
679                          * We failed to lock the buffer and cannot stall in
680                          * async migration. Release the taken locks
681                          */
682                         struct buffer_head *failed_bh = bh;
683                         bh = head;
684                         while (bh != failed_bh) {
685                                 unlock_buffer(bh);
686                                 bh = bh->b_this_page;
687                         }
688                         return false;
689                 }
690
691                 bh = bh->b_this_page;
692         } while (bh != head);
693         return true;
694 }
695
696 static int __buffer_migrate_page(struct address_space *mapping,
697                 struct page *newpage, struct page *page, enum migrate_mode mode,
698                 bool check_refs)
699 {
700         struct buffer_head *bh, *head;
701         int rc;
702         int expected_count;
703
704         if (!page_has_buffers(page))
705                 return migrate_page(mapping, newpage, page, mode);
706
707         /* Check whether page does not have extra refs before we do more work */
708         expected_count = expected_page_refs(mapping, page);
709         if (page_count(page) != expected_count)
710                 return -EAGAIN;
711
712         head = page_buffers(page);
713         if (!buffer_migrate_lock_buffers(head, mode))
714                 return -EAGAIN;
715
716         if (check_refs) {
717                 bool busy;
718                 bool invalidated = false;
719
720 recheck_buffers:
721                 busy = false;
722                 spin_lock(&mapping->private_lock);
723                 bh = head;
724                 do {
725                         if (atomic_read(&bh->b_count)) {
726                                 busy = true;
727                                 break;
728                         }
729                         bh = bh->b_this_page;
730                 } while (bh != head);
731                 if (busy) {
732                         if (invalidated) {
733                                 rc = -EAGAIN;
734                                 goto unlock_buffers;
735                         }
736                         spin_unlock(&mapping->private_lock);
737                         invalidate_bh_lrus();
738                         invalidated = true;
739                         goto recheck_buffers;
740                 }
741         }
742
743         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
744         if (rc != MIGRATEPAGE_SUCCESS)
745                 goto unlock_buffers;
746
747         attach_page_private(newpage, detach_page_private(page));
748
749         bh = head;
750         do {
751                 set_bh_page(bh, newpage, bh_offset(bh));
752                 bh = bh->b_this_page;
753
754         } while (bh != head);
755
756         if (mode != MIGRATE_SYNC_NO_COPY)
757                 migrate_page_copy(newpage, page);
758         else
759                 migrate_page_states(newpage, page);
760
761         rc = MIGRATEPAGE_SUCCESS;
762 unlock_buffers:
763         if (check_refs)
764                 spin_unlock(&mapping->private_lock);
765         bh = head;
766         do {
767                 unlock_buffer(bh);
768                 bh = bh->b_this_page;
769
770         } while (bh != head);
771
772         return rc;
773 }
774
775 /*
776  * Migration function for pages with buffers. This function can only be used
777  * if the underlying filesystem guarantees that no other references to "page"
778  * exist. For example attached buffer heads are accessed only under page lock.
779  */
780 int buffer_migrate_page(struct address_space *mapping,
781                 struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783         return __buffer_migrate_page(mapping, newpage, page, mode, false);
784 }
785 EXPORT_SYMBOL(buffer_migrate_page);
786
787 /*
788  * Same as above except that this variant is more careful and checks that there
789  * are also no buffer head references. This function is the right one for
790  * mappings where buffer heads are directly looked up and referenced (such as
791  * block device mappings).
792  */
793 int buffer_migrate_page_norefs(struct address_space *mapping,
794                 struct page *newpage, struct page *page, enum migrate_mode mode)
795 {
796         return __buffer_migrate_page(mapping, newpage, page, mode, true);
797 }
798 #endif
799
800 /*
801  * Writeback a page to clean the dirty state
802  */
803 static int writeout(struct address_space *mapping, struct page *page)
804 {
805         struct writeback_control wbc = {
806                 .sync_mode = WB_SYNC_NONE,
807                 .nr_to_write = 1,
808                 .range_start = 0,
809                 .range_end = LLONG_MAX,
810                 .for_reclaim = 1
811         };
812         int rc;
813
814         if (!mapping->a_ops->writepage)
815                 /* No write method for the address space */
816                 return -EINVAL;
817
818         if (!clear_page_dirty_for_io(page))
819                 /* Someone else already triggered a write */
820                 return -EAGAIN;
821
822         /*
823          * A dirty page may imply that the underlying filesystem has
824          * the page on some queue. So the page must be clean for
825          * migration. Writeout may mean we loose the lock and the
826          * page state is no longer what we checked for earlier.
827          * At this point we know that the migration attempt cannot
828          * be successful.
829          */
830         remove_migration_ptes(page, page, false);
831
832         rc = mapping->a_ops->writepage(page, &wbc);
833
834         if (rc != AOP_WRITEPAGE_ACTIVATE)
835                 /* unlocked. Relock */
836                 lock_page(page);
837
838         return (rc < 0) ? -EIO : -EAGAIN;
839 }
840
841 /*
842  * Default handling if a filesystem does not provide a migration function.
843  */
844 static int fallback_migrate_page(struct address_space *mapping,
845         struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847         if (PageDirty(page)) {
848                 /* Only writeback pages in full synchronous migration */
849                 switch (mode) {
850                 case MIGRATE_SYNC:
851                 case MIGRATE_SYNC_NO_COPY:
852                         break;
853                 default:
854                         return -EBUSY;
855                 }
856                 return writeout(mapping, page);
857         }
858
859         /*
860          * Buffers may be managed in a filesystem specific way.
861          * We must have no buffers or drop them.
862          */
863         if (page_has_private(page) &&
864             !try_to_release_page(page, GFP_KERNEL))
865                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
866
867         return migrate_page(mapping, newpage, page, mode);
868 }
869
870 /*
871  * Move a page to a newly allocated page
872  * The page is locked and all ptes have been successfully removed.
873  *
874  * The new page will have replaced the old page if this function
875  * is successful.
876  *
877  * Return value:
878  *   < 0 - error code
879  *  MIGRATEPAGE_SUCCESS - success
880  */
881 static int move_to_new_page(struct page *newpage, struct page *page,
882                                 enum migrate_mode mode)
883 {
884         struct address_space *mapping;
885         int rc = -EAGAIN;
886         bool is_lru = !__PageMovable(page);
887
888         VM_BUG_ON_PAGE(!PageLocked(page), page);
889         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
890
891         mapping = page_mapping(page);
892
893         if (likely(is_lru)) {
894                 if (!mapping)
895                         rc = migrate_page(mapping, newpage, page, mode);
896                 else if (mapping->a_ops->migratepage)
897                         /*
898                          * Most pages have a mapping and most filesystems
899                          * provide a migratepage callback. Anonymous pages
900                          * are part of swap space which also has its own
901                          * migratepage callback. This is the most common path
902                          * for page migration.
903                          */
904                         rc = mapping->a_ops->migratepage(mapping, newpage,
905                                                         page, mode);
906                 else
907                         rc = fallback_migrate_page(mapping, newpage,
908                                                         page, mode);
909         } else {
910                 /*
911                  * In case of non-lru page, it could be released after
912                  * isolation step. In that case, we shouldn't try migration.
913                  */
914                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
915                 if (!PageMovable(page)) {
916                         rc = MIGRATEPAGE_SUCCESS;
917                         __ClearPageIsolated(page);
918                         goto out;
919                 }
920
921                 rc = mapping->a_ops->migratepage(mapping, newpage,
922                                                 page, mode);
923                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
924                         !PageIsolated(page));
925         }
926
927         /*
928          * When successful, old pagecache page->mapping must be cleared before
929          * page is freed; but stats require that PageAnon be left as PageAnon.
930          */
931         if (rc == MIGRATEPAGE_SUCCESS) {
932                 if (__PageMovable(page)) {
933                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
934
935                         /*
936                          * We clear PG_movable under page_lock so any compactor
937                          * cannot try to migrate this page.
938                          */
939                         __ClearPageIsolated(page);
940                 }
941
942                 /*
943                  * Anonymous and movable page->mapping will be cleared by
944                  * free_pages_prepare so don't reset it here for keeping
945                  * the type to work PageAnon, for example.
946                  */
947                 if (!PageMappingFlags(page))
948                         page->mapping = NULL;
949
950                 if (likely(!is_zone_device_page(newpage)))
951                         flush_dcache_page(newpage);
952
953         }
954 out:
955         return rc;
956 }
957
958 static int __unmap_and_move(struct page *page, struct page *newpage,
959                                 int force, enum migrate_mode mode)
960 {
961         int rc = -EAGAIN;
962         int page_was_mapped = 0;
963         struct anon_vma *anon_vma = NULL;
964         bool is_lru = !__PageMovable(page);
965
966         if (!trylock_page(page)) {
967                 if (!force || mode == MIGRATE_ASYNC)
968                         goto out;
969
970                 /*
971                  * It's not safe for direct compaction to call lock_page.
972                  * For example, during page readahead pages are added locked
973                  * to the LRU. Later, when the IO completes the pages are
974                  * marked uptodate and unlocked. However, the queueing
975                  * could be merging multiple pages for one bio (e.g.
976                  * mpage_readahead). If an allocation happens for the
977                  * second or third page, the process can end up locking
978                  * the same page twice and deadlocking. Rather than
979                  * trying to be clever about what pages can be locked,
980                  * avoid the use of lock_page for direct compaction
981                  * altogether.
982                  */
983                 if (current->flags & PF_MEMALLOC)
984                         goto out;
985
986                 lock_page(page);
987         }
988
989         if (PageWriteback(page)) {
990                 /*
991                  * Only in the case of a full synchronous migration is it
992                  * necessary to wait for PageWriteback. In the async case,
993                  * the retry loop is too short and in the sync-light case,
994                  * the overhead of stalling is too much
995                  */
996                 switch (mode) {
997                 case MIGRATE_SYNC:
998                 case MIGRATE_SYNC_NO_COPY:
999                         break;
1000                 default:
1001                         rc = -EBUSY;
1002                         goto out_unlock;
1003                 }
1004                 if (!force)
1005                         goto out_unlock;
1006                 wait_on_page_writeback(page);
1007         }
1008
1009         /*
1010          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1011          * we cannot notice that anon_vma is freed while we migrates a page.
1012          * This get_anon_vma() delays freeing anon_vma pointer until the end
1013          * of migration. File cache pages are no problem because of page_lock()
1014          * File Caches may use write_page() or lock_page() in migration, then,
1015          * just care Anon page here.
1016          *
1017          * Only page_get_anon_vma() understands the subtleties of
1018          * getting a hold on an anon_vma from outside one of its mms.
1019          * But if we cannot get anon_vma, then we won't need it anyway,
1020          * because that implies that the anon page is no longer mapped
1021          * (and cannot be remapped so long as we hold the page lock).
1022          */
1023         if (PageAnon(page) && !PageKsm(page))
1024                 anon_vma = page_get_anon_vma(page);
1025
1026         /*
1027          * Block others from accessing the new page when we get around to
1028          * establishing additional references. We are usually the only one
1029          * holding a reference to newpage at this point. We used to have a BUG
1030          * here if trylock_page(newpage) fails, but would like to allow for
1031          * cases where there might be a race with the previous use of newpage.
1032          * This is much like races on refcount of oldpage: just don't BUG().
1033          */
1034         if (unlikely(!trylock_page(newpage)))
1035                 goto out_unlock;
1036
1037         if (unlikely(!is_lru)) {
1038                 rc = move_to_new_page(newpage, page, mode);
1039                 goto out_unlock_both;
1040         }
1041
1042         /*
1043          * Corner case handling:
1044          * 1. When a new swap-cache page is read into, it is added to the LRU
1045          * and treated as swapcache but it has no rmap yet.
1046          * Calling try_to_unmap() against a page->mapping==NULL page will
1047          * trigger a BUG.  So handle it here.
1048          * 2. An orphaned page (see truncate_cleanup_page) might have
1049          * fs-private metadata. The page can be picked up due to memory
1050          * offlining.  Everywhere else except page reclaim, the page is
1051          * invisible to the vm, so the page can not be migrated.  So try to
1052          * free the metadata, so the page can be freed.
1053          */
1054         if (!page->mapping) {
1055                 VM_BUG_ON_PAGE(PageAnon(page), page);
1056                 if (page_has_private(page)) {
1057                         try_to_free_buffers(page);
1058                         goto out_unlock_both;
1059                 }
1060         } else if (page_mapped(page)) {
1061                 /* Establish migration ptes */
1062                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063                                 page);
1064                 try_to_migrate(page, 0);
1065                 page_was_mapped = 1;
1066         }
1067
1068         if (!page_mapped(page))
1069                 rc = move_to_new_page(newpage, page, mode);
1070
1071         if (page_was_mapped)
1072                 remove_migration_ptes(page,
1073                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074
1075 out_unlock_both:
1076         unlock_page(newpage);
1077 out_unlock:
1078         /* Drop an anon_vma reference if we took one */
1079         if (anon_vma)
1080                 put_anon_vma(anon_vma);
1081         unlock_page(page);
1082 out:
1083         /*
1084          * If migration is successful, decrease refcount of the newpage
1085          * which will not free the page because new page owner increased
1086          * refcounter. As well, if it is LRU page, add the page to LRU
1087          * list in here. Use the old state of the isolated source page to
1088          * determine if we migrated a LRU page. newpage was already unlocked
1089          * and possibly modified by its owner - don't rely on the page
1090          * state.
1091          */
1092         if (rc == MIGRATEPAGE_SUCCESS) {
1093                 if (unlikely(!is_lru))
1094                         put_page(newpage);
1095                 else
1096                         putback_lru_page(newpage);
1097         }
1098
1099         return rc;
1100 }
1101
1102 /*
1103  * Obtain the lock on page, remove all ptes and migrate the page
1104  * to the newly allocated page in newpage.
1105  */
1106 static int unmap_and_move(new_page_t get_new_page,
1107                                    free_page_t put_new_page,
1108                                    unsigned long private, struct page *page,
1109                                    int force, enum migrate_mode mode,
1110                                    enum migrate_reason reason,
1111                                    struct list_head *ret)
1112 {
1113         int rc = MIGRATEPAGE_SUCCESS;
1114         struct page *newpage = NULL;
1115
1116         if (!thp_migration_supported() && PageTransHuge(page))
1117                 return -ENOSYS;
1118
1119         if (page_count(page) == 1) {
1120                 /* page was freed from under us. So we are done. */
1121                 ClearPageActive(page);
1122                 ClearPageUnevictable(page);
1123                 if (unlikely(__PageMovable(page))) {
1124                         lock_page(page);
1125                         if (!PageMovable(page))
1126                                 __ClearPageIsolated(page);
1127                         unlock_page(page);
1128                 }
1129                 goto out;
1130         }
1131
1132         newpage = get_new_page(page, private);
1133         if (!newpage)
1134                 return -ENOMEM;
1135
1136         rc = __unmap_and_move(page, newpage, force, mode);
1137         if (rc == MIGRATEPAGE_SUCCESS)
1138                 set_page_owner_migrate_reason(newpage, reason);
1139
1140 out:
1141         if (rc != -EAGAIN) {
1142                 /*
1143                  * A page that has been migrated has all references
1144                  * removed and will be freed. A page that has not been
1145                  * migrated will have kept its references and be restored.
1146                  */
1147                 list_del(&page->lru);
1148         }
1149
1150         /*
1151          * If migration is successful, releases reference grabbed during
1152          * isolation. Otherwise, restore the page to right list unless
1153          * we want to retry.
1154          */
1155         if (rc == MIGRATEPAGE_SUCCESS) {
1156                 /*
1157                  * Compaction can migrate also non-LRU pages which are
1158                  * not accounted to NR_ISOLATED_*. They can be recognized
1159                  * as __PageMovable
1160                  */
1161                 if (likely(!__PageMovable(page)))
1162                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1163                                         page_is_file_lru(page), -thp_nr_pages(page));
1164
1165                 if (reason != MR_MEMORY_FAILURE)
1166                         /*
1167                          * We release the page in page_handle_poison.
1168                          */
1169                         put_page(page);
1170         } else {
1171                 if (rc != -EAGAIN)
1172                         list_add_tail(&page->lru, ret);
1173
1174                 if (put_new_page)
1175                         put_new_page(newpage, private);
1176                 else
1177                         put_page(newpage);
1178         }
1179
1180         return rc;
1181 }
1182
1183 /*
1184  * Counterpart of unmap_and_move_page() for hugepage migration.
1185  *
1186  * This function doesn't wait the completion of hugepage I/O
1187  * because there is no race between I/O and migration for hugepage.
1188  * Note that currently hugepage I/O occurs only in direct I/O
1189  * where no lock is held and PG_writeback is irrelevant,
1190  * and writeback status of all subpages are counted in the reference
1191  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192  * under direct I/O, the reference of the head page is 512 and a bit more.)
1193  * This means that when we try to migrate hugepage whose subpages are
1194  * doing direct I/O, some references remain after try_to_unmap() and
1195  * hugepage migration fails without data corruption.
1196  *
1197  * There is also no race when direct I/O is issued on the page under migration,
1198  * because then pte is replaced with migration swap entry and direct I/O code
1199  * will wait in the page fault for migration to complete.
1200  */
1201 static int unmap_and_move_huge_page(new_page_t get_new_page,
1202                                 free_page_t put_new_page, unsigned long private,
1203                                 struct page *hpage, int force,
1204                                 enum migrate_mode mode, int reason,
1205                                 struct list_head *ret)
1206 {
1207         int rc = -EAGAIN;
1208         int page_was_mapped = 0;
1209         struct page *new_hpage;
1210         struct anon_vma *anon_vma = NULL;
1211         struct address_space *mapping = NULL;
1212
1213         /*
1214          * Migratability of hugepages depends on architectures and their size.
1215          * This check is necessary because some callers of hugepage migration
1216          * like soft offline and memory hotremove don't walk through page
1217          * tables or check whether the hugepage is pmd-based or not before
1218          * kicking migration.
1219          */
1220         if (!hugepage_migration_supported(page_hstate(hpage))) {
1221                 list_move_tail(&hpage->lru, ret);
1222                 return -ENOSYS;
1223         }
1224
1225         if (page_count(hpage) == 1) {
1226                 /* page was freed from under us. So we are done. */
1227                 putback_active_hugepage(hpage);
1228                 return MIGRATEPAGE_SUCCESS;
1229         }
1230
1231         new_hpage = get_new_page(hpage, private);
1232         if (!new_hpage)
1233                 return -ENOMEM;
1234
1235         if (!trylock_page(hpage)) {
1236                 if (!force)
1237                         goto out;
1238                 switch (mode) {
1239                 case MIGRATE_SYNC:
1240                 case MIGRATE_SYNC_NO_COPY:
1241                         break;
1242                 default:
1243                         goto out;
1244                 }
1245                 lock_page(hpage);
1246         }
1247
1248         /*
1249          * Check for pages which are in the process of being freed.  Without
1250          * page_mapping() set, hugetlbfs specific move page routine will not
1251          * be called and we could leak usage counts for subpools.
1252          */
1253         if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1254                 rc = -EBUSY;
1255                 goto out_unlock;
1256         }
1257
1258         if (PageAnon(hpage))
1259                 anon_vma = page_get_anon_vma(hpage);
1260
1261         if (unlikely(!trylock_page(new_hpage)))
1262                 goto put_anon;
1263
1264         if (page_mapped(hpage)) {
1265                 bool mapping_locked = false;
1266                 enum ttu_flags ttu = 0;
1267
1268                 if (!PageAnon(hpage)) {
1269                         /*
1270                          * In shared mappings, try_to_unmap could potentially
1271                          * call huge_pmd_unshare.  Because of this, take
1272                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1273                          * to let lower levels know we have taken the lock.
1274                          */
1275                         mapping = hugetlb_page_mapping_lock_write(hpage);
1276                         if (unlikely(!mapping))
1277                                 goto unlock_put_anon;
1278
1279                         mapping_locked = true;
1280                         ttu |= TTU_RMAP_LOCKED;
1281                 }
1282
1283                 try_to_migrate(hpage, ttu);
1284                 page_was_mapped = 1;
1285
1286                 if (mapping_locked)
1287                         i_mmap_unlock_write(mapping);
1288         }
1289
1290         if (!page_mapped(hpage))
1291                 rc = move_to_new_page(new_hpage, hpage, mode);
1292
1293         if (page_was_mapped)
1294                 remove_migration_ptes(hpage,
1295                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1296
1297 unlock_put_anon:
1298         unlock_page(new_hpage);
1299
1300 put_anon:
1301         if (anon_vma)
1302                 put_anon_vma(anon_vma);
1303
1304         if (rc == MIGRATEPAGE_SUCCESS) {
1305                 move_hugetlb_state(hpage, new_hpage, reason);
1306                 put_new_page = NULL;
1307         }
1308
1309 out_unlock:
1310         unlock_page(hpage);
1311 out:
1312         if (rc == MIGRATEPAGE_SUCCESS)
1313                 putback_active_hugepage(hpage);
1314         else if (rc != -EAGAIN)
1315                 list_move_tail(&hpage->lru, ret);
1316
1317         /*
1318          * If migration was not successful and there's a freeing callback, use
1319          * it.  Otherwise, put_page() will drop the reference grabbed during
1320          * isolation.
1321          */
1322         if (put_new_page)
1323                 put_new_page(new_hpage, private);
1324         else
1325                 putback_active_hugepage(new_hpage);
1326
1327         return rc;
1328 }
1329
1330 static inline int try_split_thp(struct page *page, struct page **page2,
1331                                 struct list_head *from)
1332 {
1333         int rc = 0;
1334
1335         lock_page(page);
1336         rc = split_huge_page_to_list(page, from);
1337         unlock_page(page);
1338         if (!rc)
1339                 list_safe_reset_next(page, *page2, lru);
1340
1341         return rc;
1342 }
1343
1344 /*
1345  * migrate_pages - migrate the pages specified in a list, to the free pages
1346  *                 supplied as the target for the page migration
1347  *
1348  * @from:               The list of pages to be migrated.
1349  * @get_new_page:       The function used to allocate free pages to be used
1350  *                      as the target of the page migration.
1351  * @put_new_page:       The function used to free target pages if migration
1352  *                      fails, or NULL if no special handling is necessary.
1353  * @private:            Private data to be passed on to get_new_page()
1354  * @mode:               The migration mode that specifies the constraints for
1355  *                      page migration, if any.
1356  * @reason:             The reason for page migration.
1357  *
1358  * The function returns after 10 attempts or if no pages are movable any more
1359  * because the list has become empty or no retryable pages exist any more.
1360  * It is caller's responsibility to call putback_movable_pages() to return pages
1361  * to the LRU or free list only if ret != 0.
1362  *
1363  * Returns the number of pages that were not migrated, or an error code.
1364  */
1365 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366                 free_page_t put_new_page, unsigned long private,
1367                 enum migrate_mode mode, int reason)
1368 {
1369         int retry = 1;
1370         int thp_retry = 1;
1371         int nr_failed = 0;
1372         int nr_succeeded = 0;
1373         int nr_thp_succeeded = 0;
1374         int nr_thp_failed = 0;
1375         int nr_thp_split = 0;
1376         int pass = 0;
1377         bool is_thp = false;
1378         struct page *page;
1379         struct page *page2;
1380         int swapwrite = current->flags & PF_SWAPWRITE;
1381         int rc, nr_subpages;
1382         LIST_HEAD(ret_pages);
1383         bool nosplit = (reason == MR_NUMA_MISPLACED);
1384
1385         trace_mm_migrate_pages_start(mode, reason);
1386
1387         if (!swapwrite)
1388                 current->flags |= PF_SWAPWRITE;
1389
1390         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1391                 retry = 0;
1392                 thp_retry = 0;
1393
1394                 list_for_each_entry_safe(page, page2, from, lru) {
1395 retry:
1396                         /*
1397                          * THP statistics is based on the source huge page.
1398                          * Capture required information that might get lost
1399                          * during migration.
1400                          */
1401                         is_thp = PageTransHuge(page) && !PageHuge(page);
1402                         nr_subpages = thp_nr_pages(page);
1403                         cond_resched();
1404
1405                         if (PageHuge(page))
1406                                 rc = unmap_and_move_huge_page(get_new_page,
1407                                                 put_new_page, private, page,
1408                                                 pass > 2, mode, reason,
1409                                                 &ret_pages);
1410                         else
1411                                 rc = unmap_and_move(get_new_page, put_new_page,
1412                                                 private, page, pass > 2, mode,
1413                                                 reason, &ret_pages);
1414                         /*
1415                          * The rules are:
1416                          *      Success: non hugetlb page will be freed, hugetlb
1417                          *               page will be put back
1418                          *      -EAGAIN: stay on the from list
1419                          *      -ENOMEM: stay on the from list
1420                          *      Other errno: put on ret_pages list then splice to
1421                          *                   from list
1422                          */
1423                         switch(rc) {
1424                         /*
1425                          * THP migration might be unsupported or the
1426                          * allocation could've failed so we should
1427                          * retry on the same page with the THP split
1428                          * to base pages.
1429                          *
1430                          * Head page is retried immediately and tail
1431                          * pages are added to the tail of the list so
1432                          * we encounter them after the rest of the list
1433                          * is processed.
1434                          */
1435                         case -ENOSYS:
1436                                 /* THP migration is unsupported */
1437                                 if (is_thp) {
1438                                         if (!try_split_thp(page, &page2, from)) {
1439                                                 nr_thp_split++;
1440                                                 goto retry;
1441                                         }
1442
1443                                         nr_thp_failed++;
1444                                         nr_failed += nr_subpages;
1445                                         break;
1446                                 }
1447
1448                                 /* Hugetlb migration is unsupported */
1449                                 nr_failed++;
1450                                 break;
1451                         case -ENOMEM:
1452                                 /*
1453                                  * When memory is low, don't bother to try to migrate
1454                                  * other pages, just exit.
1455                                  * THP NUMA faulting doesn't split THP to retry.
1456                                  */
1457                                 if (is_thp && !nosplit) {
1458                                         if (!try_split_thp(page, &page2, from)) {
1459                                                 nr_thp_split++;
1460                                                 goto retry;
1461                                         }
1462
1463                                         nr_thp_failed++;
1464                                         nr_failed += nr_subpages;
1465                                         goto out;
1466                                 }
1467                                 nr_failed++;
1468                                 goto out;
1469                         case -EAGAIN:
1470                                 if (is_thp) {
1471                                         thp_retry++;
1472                                         break;
1473                                 }
1474                                 retry++;
1475                                 break;
1476                         case MIGRATEPAGE_SUCCESS:
1477                                 if (is_thp) {
1478                                         nr_thp_succeeded++;
1479                                         nr_succeeded += nr_subpages;
1480                                         break;
1481                                 }
1482                                 nr_succeeded++;
1483                                 break;
1484                         default:
1485                                 /*
1486                                  * Permanent failure (-EBUSY, etc.):
1487                                  * unlike -EAGAIN case, the failed page is
1488                                  * removed from migration page list and not
1489                                  * retried in the next outer loop.
1490                                  */
1491                                 if (is_thp) {
1492                                         nr_thp_failed++;
1493                                         nr_failed += nr_subpages;
1494                                         break;
1495                                 }
1496                                 nr_failed++;
1497                                 break;
1498                         }
1499                 }
1500         }
1501         nr_failed += retry + thp_retry;
1502         nr_thp_failed += thp_retry;
1503         rc = nr_failed;
1504 out:
1505         /*
1506          * Put the permanent failure page back to migration list, they
1507          * will be put back to the right list by the caller.
1508          */
1509         list_splice(&ret_pages, from);
1510
1511         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1512         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1513         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1514         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1515         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1516         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1517                                nr_thp_failed, nr_thp_split, mode, reason);
1518
1519         if (!swapwrite)
1520                 current->flags &= ~PF_SWAPWRITE;
1521
1522         return rc;
1523 }
1524
1525 struct page *alloc_migration_target(struct page *page, unsigned long private)
1526 {
1527         struct migration_target_control *mtc;
1528         gfp_t gfp_mask;
1529         unsigned int order = 0;
1530         struct page *new_page = NULL;
1531         int nid;
1532         int zidx;
1533
1534         mtc = (struct migration_target_control *)private;
1535         gfp_mask = mtc->gfp_mask;
1536         nid = mtc->nid;
1537         if (nid == NUMA_NO_NODE)
1538                 nid = page_to_nid(page);
1539
1540         if (PageHuge(page)) {
1541                 struct hstate *h = page_hstate(compound_head(page));
1542
1543                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1544                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1545         }
1546
1547         if (PageTransHuge(page)) {
1548                 /*
1549                  * clear __GFP_RECLAIM to make the migration callback
1550                  * consistent with regular THP allocations.
1551                  */
1552                 gfp_mask &= ~__GFP_RECLAIM;
1553                 gfp_mask |= GFP_TRANSHUGE;
1554                 order = HPAGE_PMD_ORDER;
1555         }
1556         zidx = zone_idx(page_zone(page));
1557         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1558                 gfp_mask |= __GFP_HIGHMEM;
1559
1560         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1561
1562         if (new_page && PageTransHuge(new_page))
1563                 prep_transhuge_page(new_page);
1564
1565         return new_page;
1566 }
1567
1568 #ifdef CONFIG_NUMA
1569
1570 static int store_status(int __user *status, int start, int value, int nr)
1571 {
1572         while (nr-- > 0) {
1573                 if (put_user(value, status + start))
1574                         return -EFAULT;
1575                 start++;
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int do_move_pages_to_node(struct mm_struct *mm,
1582                 struct list_head *pagelist, int node)
1583 {
1584         int err;
1585         struct migration_target_control mtc = {
1586                 .nid = node,
1587                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1588         };
1589
1590         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1591                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1592         if (err)
1593                 putback_movable_pages(pagelist);
1594         return err;
1595 }
1596
1597 /*
1598  * Resolves the given address to a struct page, isolates it from the LRU and
1599  * puts it to the given pagelist.
1600  * Returns:
1601  *     errno - if the page cannot be found/isolated
1602  *     0 - when it doesn't have to be migrated because it is already on the
1603  *         target node
1604  *     1 - when it has been queued
1605  */
1606 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1607                 int node, struct list_head *pagelist, bool migrate_all)
1608 {
1609         struct vm_area_struct *vma;
1610         struct page *page;
1611         unsigned int follflags;
1612         int err;
1613
1614         mmap_read_lock(mm);
1615         err = -EFAULT;
1616         vma = find_vma(mm, addr);
1617         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1618                 goto out;
1619
1620         /* FOLL_DUMP to ignore special (like zero) pages */
1621         follflags = FOLL_GET | FOLL_DUMP;
1622         page = follow_page(vma, addr, follflags);
1623
1624         err = PTR_ERR(page);
1625         if (IS_ERR(page))
1626                 goto out;
1627
1628         err = -ENOENT;
1629         if (!page)
1630                 goto out;
1631
1632         err = 0;
1633         if (page_to_nid(page) == node)
1634                 goto out_putpage;
1635
1636         err = -EACCES;
1637         if (page_mapcount(page) > 1 && !migrate_all)
1638                 goto out_putpage;
1639
1640         if (PageHuge(page)) {
1641                 if (PageHead(page)) {
1642                         isolate_huge_page(page, pagelist);
1643                         err = 1;
1644                 }
1645         } else {
1646                 struct page *head;
1647
1648                 head = compound_head(page);
1649                 err = isolate_lru_page(head);
1650                 if (err)
1651                         goto out_putpage;
1652
1653                 err = 1;
1654                 list_add_tail(&head->lru, pagelist);
1655                 mod_node_page_state(page_pgdat(head),
1656                         NR_ISOLATED_ANON + page_is_file_lru(head),
1657                         thp_nr_pages(head));
1658         }
1659 out_putpage:
1660         /*
1661          * Either remove the duplicate refcount from
1662          * isolate_lru_page() or drop the page ref if it was
1663          * not isolated.
1664          */
1665         put_page(page);
1666 out:
1667         mmap_read_unlock(mm);
1668         return err;
1669 }
1670
1671 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1672                 struct list_head *pagelist, int __user *status,
1673                 int start, int i, unsigned long nr_pages)
1674 {
1675         int err;
1676
1677         if (list_empty(pagelist))
1678                 return 0;
1679
1680         err = do_move_pages_to_node(mm, pagelist, node);
1681         if (err) {
1682                 /*
1683                  * Positive err means the number of failed
1684                  * pages to migrate.  Since we are going to
1685                  * abort and return the number of non-migrated
1686                  * pages, so need to include the rest of the
1687                  * nr_pages that have not been attempted as
1688                  * well.
1689                  */
1690                 if (err > 0)
1691                         err += nr_pages - i - 1;
1692                 return err;
1693         }
1694         return store_status(status, start, node, i - start);
1695 }
1696
1697 /*
1698  * Migrate an array of page address onto an array of nodes and fill
1699  * the corresponding array of status.
1700  */
1701 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1702                          unsigned long nr_pages,
1703                          const void __user * __user *pages,
1704                          const int __user *nodes,
1705                          int __user *status, int flags)
1706 {
1707         int current_node = NUMA_NO_NODE;
1708         LIST_HEAD(pagelist);
1709         int start, i;
1710         int err = 0, err1;
1711
1712         lru_cache_disable();
1713
1714         for (i = start = 0; i < nr_pages; i++) {
1715                 const void __user *p;
1716                 unsigned long addr;
1717                 int node;
1718
1719                 err = -EFAULT;
1720                 if (get_user(p, pages + i))
1721                         goto out_flush;
1722                 if (get_user(node, nodes + i))
1723                         goto out_flush;
1724                 addr = (unsigned long)untagged_addr(p);
1725
1726                 err = -ENODEV;
1727                 if (node < 0 || node >= MAX_NUMNODES)
1728                         goto out_flush;
1729                 if (!node_state(node, N_MEMORY))
1730                         goto out_flush;
1731
1732                 err = -EACCES;
1733                 if (!node_isset(node, task_nodes))
1734                         goto out_flush;
1735
1736                 if (current_node == NUMA_NO_NODE) {
1737                         current_node = node;
1738                         start = i;
1739                 } else if (node != current_node) {
1740                         err = move_pages_and_store_status(mm, current_node,
1741                                         &pagelist, status, start, i, nr_pages);
1742                         if (err)
1743                                 goto out;
1744                         start = i;
1745                         current_node = node;
1746                 }
1747
1748                 /*
1749                  * Errors in the page lookup or isolation are not fatal and we simply
1750                  * report them via status
1751                  */
1752                 err = add_page_for_migration(mm, addr, current_node,
1753                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1754
1755                 if (err > 0) {
1756                         /* The page is successfully queued for migration */
1757                         continue;
1758                 }
1759
1760                 /*
1761                  * If the page is already on the target node (!err), store the
1762                  * node, otherwise, store the err.
1763                  */
1764                 err = store_status(status, i, err ? : current_node, 1);
1765                 if (err)
1766                         goto out_flush;
1767
1768                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1769                                 status, start, i, nr_pages);
1770                 if (err)
1771                         goto out;
1772                 current_node = NUMA_NO_NODE;
1773         }
1774 out_flush:
1775         /* Make sure we do not overwrite the existing error */
1776         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777                                 status, start, i, nr_pages);
1778         if (err >= 0)
1779                 err = err1;
1780 out:
1781         lru_cache_enable();
1782         return err;
1783 }
1784
1785 /*
1786  * Determine the nodes of an array of pages and store it in an array of status.
1787  */
1788 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789                                 const void __user **pages, int *status)
1790 {
1791         unsigned long i;
1792
1793         mmap_read_lock(mm);
1794
1795         for (i = 0; i < nr_pages; i++) {
1796                 unsigned long addr = (unsigned long)(*pages);
1797                 struct vm_area_struct *vma;
1798                 struct page *page;
1799                 int err = -EFAULT;
1800
1801                 vma = vma_lookup(mm, addr);
1802                 if (!vma)
1803                         goto set_status;
1804
1805                 /* FOLL_DUMP to ignore special (like zero) pages */
1806                 page = follow_page(vma, addr, FOLL_DUMP);
1807
1808                 err = PTR_ERR(page);
1809                 if (IS_ERR(page))
1810                         goto set_status;
1811
1812                 err = page ? page_to_nid(page) : -ENOENT;
1813 set_status:
1814                 *status = err;
1815
1816                 pages++;
1817                 status++;
1818         }
1819
1820         mmap_read_unlock(mm);
1821 }
1822
1823 /*
1824  * Determine the nodes of a user array of pages and store it in
1825  * a user array of status.
1826  */
1827 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1828                          const void __user * __user *pages,
1829                          int __user *status)
1830 {
1831 #define DO_PAGES_STAT_CHUNK_NR 16
1832         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1833         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1834
1835         while (nr_pages) {
1836                 unsigned long chunk_nr;
1837
1838                 chunk_nr = nr_pages;
1839                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1840                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1841
1842                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1843                         break;
1844
1845                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1846
1847                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1848                         break;
1849
1850                 pages += chunk_nr;
1851                 status += chunk_nr;
1852                 nr_pages -= chunk_nr;
1853         }
1854         return nr_pages ? -EFAULT : 0;
1855 }
1856
1857 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1858 {
1859         struct task_struct *task;
1860         struct mm_struct *mm;
1861
1862         /*
1863          * There is no need to check if current process has the right to modify
1864          * the specified process when they are same.
1865          */
1866         if (!pid) {
1867                 mmget(current->mm);
1868                 *mem_nodes = cpuset_mems_allowed(current);
1869                 return current->mm;
1870         }
1871
1872         /* Find the mm_struct */
1873         rcu_read_lock();
1874         task = find_task_by_vpid(pid);
1875         if (!task) {
1876                 rcu_read_unlock();
1877                 return ERR_PTR(-ESRCH);
1878         }
1879         get_task_struct(task);
1880
1881         /*
1882          * Check if this process has the right to modify the specified
1883          * process. Use the regular "ptrace_may_access()" checks.
1884          */
1885         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1886                 rcu_read_unlock();
1887                 mm = ERR_PTR(-EPERM);
1888                 goto out;
1889         }
1890         rcu_read_unlock();
1891
1892         mm = ERR_PTR(security_task_movememory(task));
1893         if (IS_ERR(mm))
1894                 goto out;
1895         *mem_nodes = cpuset_mems_allowed(task);
1896         mm = get_task_mm(task);
1897 out:
1898         put_task_struct(task);
1899         if (!mm)
1900                 mm = ERR_PTR(-EINVAL);
1901         return mm;
1902 }
1903
1904 /*
1905  * Move a list of pages in the address space of the currently executing
1906  * process.
1907  */
1908 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1909                              const void __user * __user *pages,
1910                              const int __user *nodes,
1911                              int __user *status, int flags)
1912 {
1913         struct mm_struct *mm;
1914         int err;
1915         nodemask_t task_nodes;
1916
1917         /* Check flags */
1918         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1919                 return -EINVAL;
1920
1921         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1922                 return -EPERM;
1923
1924         mm = find_mm_struct(pid, &task_nodes);
1925         if (IS_ERR(mm))
1926                 return PTR_ERR(mm);
1927
1928         if (nodes)
1929                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1930                                     nodes, status, flags);
1931         else
1932                 err = do_pages_stat(mm, nr_pages, pages, status);
1933
1934         mmput(mm);
1935         return err;
1936 }
1937
1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939                 const void __user * __user *, pages,
1940                 const int __user *, nodes,
1941                 int __user *, status, int, flags)
1942 {
1943         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944 }
1945
1946 #ifdef CONFIG_COMPAT
1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948                        compat_uptr_t __user *, pages32,
1949                        const int __user *, nodes,
1950                        int __user *, status,
1951                        int, flags)
1952 {
1953         const void __user * __user *pages;
1954         int i;
1955
1956         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957         for (i = 0; i < nr_pages; i++) {
1958                 compat_uptr_t p;
1959
1960                 if (get_user(p, pages32 + i) ||
1961                         put_user(compat_ptr(p), pages + i))
1962                         return -EFAULT;
1963         }
1964         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966 #endif /* CONFIG_COMPAT */
1967
1968 #ifdef CONFIG_NUMA_BALANCING
1969 /*
1970  * Returns true if this is a safe migration target node for misplaced NUMA
1971  * pages. Currently it only checks the watermarks which crude
1972  */
1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974                                    unsigned long nr_migrate_pages)
1975 {
1976         int z;
1977
1978         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979                 struct zone *zone = pgdat->node_zones + z;
1980
1981                 if (!populated_zone(zone))
1982                         continue;
1983
1984                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985                 if (!zone_watermark_ok(zone, 0,
1986                                        high_wmark_pages(zone) +
1987                                        nr_migrate_pages,
1988                                        ZONE_MOVABLE, 0))
1989                         continue;
1990                 return true;
1991         }
1992         return false;
1993 }
1994
1995 static struct page *alloc_misplaced_dst_page(struct page *page,
1996                                            unsigned long data)
1997 {
1998         int nid = (int) data;
1999         struct page *newpage;
2000
2001         newpage = __alloc_pages_node(nid,
2002                                          (GFP_HIGHUSER_MOVABLE |
2003                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2004                                           __GFP_NORETRY | __GFP_NOWARN) &
2005                                          ~__GFP_RECLAIM, 0);
2006
2007         return newpage;
2008 }
2009
2010 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2011                                                  unsigned long data)
2012 {
2013         int nid = (int) data;
2014         struct page *newpage;
2015
2016         newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017                                    HPAGE_PMD_ORDER);
2018         if (!newpage)
2019                 goto out;
2020
2021         prep_transhuge_page(newpage);
2022
2023 out:
2024         return newpage;
2025 }
2026
2027 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028 {
2029         int page_lru;
2030
2031         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032
2033         /* Do not migrate THP mapped by multiple processes */
2034         if (PageTransHuge(page) && total_mapcount(page) > 1)
2035                 return 0;
2036
2037         /* Avoid migrating to a node that is nearly full */
2038         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039                 return 0;
2040
2041         if (isolate_lru_page(page))
2042                 return 0;
2043
2044         page_lru = page_is_file_lru(page);
2045         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2046                                 thp_nr_pages(page));
2047
2048         /*
2049          * Isolating the page has taken another reference, so the
2050          * caller's reference can be safely dropped without the page
2051          * disappearing underneath us during migration.
2052          */
2053         put_page(page);
2054         return 1;
2055 }
2056
2057 /*
2058  * Attempt to migrate a misplaced page to the specified destination
2059  * node. Caller is expected to have an elevated reference count on
2060  * the page that will be dropped by this function before returning.
2061  */
2062 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2063                            int node)
2064 {
2065         pg_data_t *pgdat = NODE_DATA(node);
2066         int isolated;
2067         int nr_remaining;
2068         LIST_HEAD(migratepages);
2069         new_page_t *new;
2070         bool compound;
2071         int nr_pages = thp_nr_pages(page);
2072
2073         /*
2074          * PTE mapped THP or HugeTLB page can't reach here so the page could
2075          * be either base page or THP.  And it must be head page if it is
2076          * THP.
2077          */
2078         compound = PageTransHuge(page);
2079
2080         if (compound)
2081                 new = alloc_misplaced_dst_page_thp;
2082         else
2083                 new = alloc_misplaced_dst_page;
2084
2085         /*
2086          * Don't migrate file pages that are mapped in multiple processes
2087          * with execute permissions as they are probably shared libraries.
2088          */
2089         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2090             (vma->vm_flags & VM_EXEC))
2091                 goto out;
2092
2093         /*
2094          * Also do not migrate dirty pages as not all filesystems can move
2095          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2096          */
2097         if (page_is_file_lru(page) && PageDirty(page))
2098                 goto out;
2099
2100         isolated = numamigrate_isolate_page(pgdat, page);
2101         if (!isolated)
2102                 goto out;
2103
2104         list_add(&page->lru, &migratepages);
2105         nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2106                                      MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2107         if (nr_remaining) {
2108                 if (!list_empty(&migratepages)) {
2109                         list_del(&page->lru);
2110                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2111                                         page_is_file_lru(page), -nr_pages);
2112                         putback_lru_page(page);
2113                 }
2114                 isolated = 0;
2115         } else
2116                 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2117         BUG_ON(!list_empty(&migratepages));
2118         return isolated;
2119
2120 out:
2121         put_page(page);
2122         return 0;
2123 }
2124 #endif /* CONFIG_NUMA_BALANCING */
2125 #endif /* CONFIG_NUMA */
2126
2127 #ifdef CONFIG_DEVICE_PRIVATE
2128 static int migrate_vma_collect_skip(unsigned long start,
2129                                     unsigned long end,
2130                                     struct mm_walk *walk)
2131 {
2132         struct migrate_vma *migrate = walk->private;
2133         unsigned long addr;
2134
2135         for (addr = start; addr < end; addr += PAGE_SIZE) {
2136                 migrate->dst[migrate->npages] = 0;
2137                 migrate->src[migrate->npages++] = 0;
2138         }
2139
2140         return 0;
2141 }
2142
2143 static int migrate_vma_collect_hole(unsigned long start,
2144                                     unsigned long end,
2145                                     __always_unused int depth,
2146                                     struct mm_walk *walk)
2147 {
2148         struct migrate_vma *migrate = walk->private;
2149         unsigned long addr;
2150
2151         /* Only allow populating anonymous memory. */
2152         if (!vma_is_anonymous(walk->vma))
2153                 return migrate_vma_collect_skip(start, end, walk);
2154
2155         for (addr = start; addr < end; addr += PAGE_SIZE) {
2156                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2157                 migrate->dst[migrate->npages] = 0;
2158                 migrate->npages++;
2159                 migrate->cpages++;
2160         }
2161
2162         return 0;
2163 }
2164
2165 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166                                    unsigned long start,
2167                                    unsigned long end,
2168                                    struct mm_walk *walk)
2169 {
2170         struct migrate_vma *migrate = walk->private;
2171         struct vm_area_struct *vma = walk->vma;
2172         struct mm_struct *mm = vma->vm_mm;
2173         unsigned long addr = start, unmapped = 0;
2174         spinlock_t *ptl;
2175         pte_t *ptep;
2176
2177 again:
2178         if (pmd_none(*pmdp))
2179                 return migrate_vma_collect_hole(start, end, -1, walk);
2180
2181         if (pmd_trans_huge(*pmdp)) {
2182                 struct page *page;
2183
2184                 ptl = pmd_lock(mm, pmdp);
2185                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2186                         spin_unlock(ptl);
2187                         goto again;
2188                 }
2189
2190                 page = pmd_page(*pmdp);
2191                 if (is_huge_zero_page(page)) {
2192                         spin_unlock(ptl);
2193                         split_huge_pmd(vma, pmdp, addr);
2194                         if (pmd_trans_unstable(pmdp))
2195                                 return migrate_vma_collect_skip(start, end,
2196                                                                 walk);
2197                 } else {
2198                         int ret;
2199
2200                         get_page(page);
2201                         spin_unlock(ptl);
2202                         if (unlikely(!trylock_page(page)))
2203                                 return migrate_vma_collect_skip(start, end,
2204                                                                 walk);
2205                         ret = split_huge_page(page);
2206                         unlock_page(page);
2207                         put_page(page);
2208                         if (ret)
2209                                 return migrate_vma_collect_skip(start, end,
2210                                                                 walk);
2211                         if (pmd_none(*pmdp))
2212                                 return migrate_vma_collect_hole(start, end, -1,
2213                                                                 walk);
2214                 }
2215         }
2216
2217         if (unlikely(pmd_bad(*pmdp)))
2218                 return migrate_vma_collect_skip(start, end, walk);
2219
2220         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221         arch_enter_lazy_mmu_mode();
2222
2223         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224                 unsigned long mpfn = 0, pfn;
2225                 struct page *page;
2226                 swp_entry_t entry;
2227                 pte_t pte;
2228
2229                 pte = *ptep;
2230
2231                 if (pte_none(pte)) {
2232                         if (vma_is_anonymous(vma)) {
2233                                 mpfn = MIGRATE_PFN_MIGRATE;
2234                                 migrate->cpages++;
2235                         }
2236                         goto next;
2237                 }
2238
2239                 if (!pte_present(pte)) {
2240                         /*
2241                          * Only care about unaddressable device page special
2242                          * page table entry. Other special swap entries are not
2243                          * migratable, and we ignore regular swapped page.
2244                          */
2245                         entry = pte_to_swp_entry(pte);
2246                         if (!is_device_private_entry(entry))
2247                                 goto next;
2248
2249                         page = pfn_swap_entry_to_page(entry);
2250                         if (!(migrate->flags &
2251                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2252                             page->pgmap->owner != migrate->pgmap_owner)
2253                                 goto next;
2254
2255                         mpfn = migrate_pfn(page_to_pfn(page)) |
2256                                         MIGRATE_PFN_MIGRATE;
2257                         if (is_writable_device_private_entry(entry))
2258                                 mpfn |= MIGRATE_PFN_WRITE;
2259                 } else {
2260                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2261                                 goto next;
2262                         pfn = pte_pfn(pte);
2263                         if (is_zero_pfn(pfn)) {
2264                                 mpfn = MIGRATE_PFN_MIGRATE;
2265                                 migrate->cpages++;
2266                                 goto next;
2267                         }
2268                         page = vm_normal_page(migrate->vma, addr, pte);
2269                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271                 }
2272
2273                 /* FIXME support THP */
2274                 if (!page || !page->mapping || PageTransCompound(page)) {
2275                         mpfn = 0;
2276                         goto next;
2277                 }
2278
2279                 /*
2280                  * By getting a reference on the page we pin it and that blocks
2281                  * any kind of migration. Side effect is that it "freezes" the
2282                  * pte.
2283                  *
2284                  * We drop this reference after isolating the page from the lru
2285                  * for non device page (device page are not on the lru and thus
2286                  * can't be dropped from it).
2287                  */
2288                 get_page(page);
2289                 migrate->cpages++;
2290
2291                 /*
2292                  * Optimize for the common case where page is only mapped once
2293                  * in one process. If we can lock the page, then we can safely
2294                  * set up a special migration page table entry now.
2295                  */
2296                 if (trylock_page(page)) {
2297                         pte_t swp_pte;
2298
2299                         mpfn |= MIGRATE_PFN_LOCKED;
2300                         ptep_get_and_clear(mm, addr, ptep);
2301
2302                         /* Setup special migration page table entry */
2303                         if (mpfn & MIGRATE_PFN_WRITE)
2304                                 entry = make_writable_migration_entry(
2305                                                         page_to_pfn(page));
2306                         else
2307                                 entry = make_readable_migration_entry(
2308                                                         page_to_pfn(page));
2309                         swp_pte = swp_entry_to_pte(entry);
2310                         if (pte_present(pte)) {
2311                                 if (pte_soft_dirty(pte))
2312                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313                                 if (pte_uffd_wp(pte))
2314                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315                         } else {
2316                                 if (pte_swp_soft_dirty(pte))
2317                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2318                                 if (pte_swp_uffd_wp(pte))
2319                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2320                         }
2321                         set_pte_at(mm, addr, ptep, swp_pte);
2322
2323                         /*
2324                          * This is like regular unmap: we remove the rmap and
2325                          * drop page refcount. Page won't be freed, as we took
2326                          * a reference just above.
2327                          */
2328                         page_remove_rmap(page, false);
2329                         put_page(page);
2330
2331                         if (pte_present(pte))
2332                                 unmapped++;
2333                 }
2334
2335 next:
2336                 migrate->dst[migrate->npages] = 0;
2337                 migrate->src[migrate->npages++] = mpfn;
2338         }
2339         arch_leave_lazy_mmu_mode();
2340         pte_unmap_unlock(ptep - 1, ptl);
2341
2342         /* Only flush the TLB if we actually modified any entries */
2343         if (unmapped)
2344                 flush_tlb_range(walk->vma, start, end);
2345
2346         return 0;
2347 }
2348
2349 static const struct mm_walk_ops migrate_vma_walk_ops = {
2350         .pmd_entry              = migrate_vma_collect_pmd,
2351         .pte_hole               = migrate_vma_collect_hole,
2352 };
2353
2354 /*
2355  * migrate_vma_collect() - collect pages over a range of virtual addresses
2356  * @migrate: migrate struct containing all migration information
2357  *
2358  * This will walk the CPU page table. For each virtual address backed by a
2359  * valid page, it updates the src array and takes a reference on the page, in
2360  * order to pin the page until we lock it and unmap it.
2361  */
2362 static void migrate_vma_collect(struct migrate_vma *migrate)
2363 {
2364         struct mmu_notifier_range range;
2365
2366         /*
2367          * Note that the pgmap_owner is passed to the mmu notifier callback so
2368          * that the registered device driver can skip invalidating device
2369          * private page mappings that won't be migrated.
2370          */
2371         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2372                 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2373                 migrate->pgmap_owner);
2374         mmu_notifier_invalidate_range_start(&range);
2375
2376         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2377                         &migrate_vma_walk_ops, migrate);
2378
2379         mmu_notifier_invalidate_range_end(&range);
2380         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2381 }
2382
2383 /*
2384  * migrate_vma_check_page() - check if page is pinned or not
2385  * @page: struct page to check
2386  *
2387  * Pinned pages cannot be migrated. This is the same test as in
2388  * migrate_page_move_mapping(), except that here we allow migration of a
2389  * ZONE_DEVICE page.
2390  */
2391 static bool migrate_vma_check_page(struct page *page)
2392 {
2393         /*
2394          * One extra ref because caller holds an extra reference, either from
2395          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2396          * a device page.
2397          */
2398         int extra = 1;
2399
2400         /*
2401          * FIXME support THP (transparent huge page), it is bit more complex to
2402          * check them than regular pages, because they can be mapped with a pmd
2403          * or with a pte (split pte mapping).
2404          */
2405         if (PageCompound(page))
2406                 return false;
2407
2408         /* Page from ZONE_DEVICE have one extra reference */
2409         if (is_zone_device_page(page)) {
2410                 /*
2411                  * Private page can never be pin as they have no valid pte and
2412                  * GUP will fail for those. Yet if there is a pending migration
2413                  * a thread might try to wait on the pte migration entry and
2414                  * will bump the page reference count. Sadly there is no way to
2415                  * differentiate a regular pin from migration wait. Hence to
2416                  * avoid 2 racing thread trying to migrate back to CPU to enter
2417                  * infinite loop (one stopping migration because the other is
2418                  * waiting on pte migration entry). We always return true here.
2419                  *
2420                  * FIXME proper solution is to rework migration_entry_wait() so
2421                  * it does not need to take a reference on page.
2422                  */
2423                 return is_device_private_page(page);
2424         }
2425
2426         /* For file back page */
2427         if (page_mapping(page))
2428                 extra += 1 + page_has_private(page);
2429
2430         if ((page_count(page) - extra) > page_mapcount(page))
2431                 return false;
2432
2433         return true;
2434 }
2435
2436 /*
2437  * migrate_vma_prepare() - lock pages and isolate them from the lru
2438  * @migrate: migrate struct containing all migration information
2439  *
2440  * This locks pages that have been collected by migrate_vma_collect(). Once each
2441  * page is locked it is isolated from the lru (for non-device pages). Finally,
2442  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2443  * migrated by concurrent kernel threads.
2444  */
2445 static void migrate_vma_prepare(struct migrate_vma *migrate)
2446 {
2447         const unsigned long npages = migrate->npages;
2448         const unsigned long start = migrate->start;
2449         unsigned long addr, i, restore = 0;
2450         bool allow_drain = true;
2451
2452         lru_add_drain();
2453
2454         for (i = 0; (i < npages) && migrate->cpages; i++) {
2455                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2456                 bool remap = true;
2457
2458                 if (!page)
2459                         continue;
2460
2461                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2462                         /*
2463                          * Because we are migrating several pages there can be
2464                          * a deadlock between 2 concurrent migration where each
2465                          * are waiting on each other page lock.
2466                          *
2467                          * Make migrate_vma() a best effort thing and backoff
2468                          * for any page we can not lock right away.
2469                          */
2470                         if (!trylock_page(page)) {
2471                                 migrate->src[i] = 0;
2472                                 migrate->cpages--;
2473                                 put_page(page);
2474                                 continue;
2475                         }
2476                         remap = false;
2477                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2478                 }
2479
2480                 /* ZONE_DEVICE pages are not on LRU */
2481                 if (!is_zone_device_page(page)) {
2482                         if (!PageLRU(page) && allow_drain) {
2483                                 /* Drain CPU's pagevec */
2484                                 lru_add_drain_all();
2485                                 allow_drain = false;
2486                         }
2487
2488                         if (isolate_lru_page(page)) {
2489                                 if (remap) {
2490                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491                                         migrate->cpages--;
2492                                         restore++;
2493                                 } else {
2494                                         migrate->src[i] = 0;
2495                                         unlock_page(page);
2496                                         migrate->cpages--;
2497                                         put_page(page);
2498                                 }
2499                                 continue;
2500                         }
2501
2502                         /* Drop the reference we took in collect */
2503                         put_page(page);
2504                 }
2505
2506                 if (!migrate_vma_check_page(page)) {
2507                         if (remap) {
2508                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2509                                 migrate->cpages--;
2510                                 restore++;
2511
2512                                 if (!is_zone_device_page(page)) {
2513                                         get_page(page);
2514                                         putback_lru_page(page);
2515                                 }
2516                         } else {
2517                                 migrate->src[i] = 0;
2518                                 unlock_page(page);
2519                                 migrate->cpages--;
2520
2521                                 if (!is_zone_device_page(page))
2522                                         putback_lru_page(page);
2523                                 else
2524                                         put_page(page);
2525                         }
2526                 }
2527         }
2528
2529         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2530                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2531
2532                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533                         continue;
2534
2535                 remove_migration_pte(page, migrate->vma, addr, page);
2536
2537                 migrate->src[i] = 0;
2538                 unlock_page(page);
2539                 put_page(page);
2540                 restore--;
2541         }
2542 }
2543
2544 /*
2545  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2546  * @migrate: migrate struct containing all migration information
2547  *
2548  * Replace page mapping (CPU page table pte) with a special migration pte entry
2549  * and check again if it has been pinned. Pinned pages are restored because we
2550  * cannot migrate them.
2551  *
2552  * This is the last step before we call the device driver callback to allocate
2553  * destination memory and copy contents of original page over to new page.
2554  */
2555 static void migrate_vma_unmap(struct migrate_vma *migrate)
2556 {
2557         const unsigned long npages = migrate->npages;
2558         const unsigned long start = migrate->start;
2559         unsigned long addr, i, restore = 0;
2560
2561         for (i = 0; i < npages; i++) {
2562                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                         continue;
2566
2567                 if (page_mapped(page)) {
2568                         try_to_migrate(page, 0);
2569                         if (page_mapped(page))
2570                                 goto restore;
2571                 }
2572
2573                 if (migrate_vma_check_page(page))
2574                         continue;
2575
2576 restore:
2577                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2578                 migrate->cpages--;
2579                 restore++;
2580         }
2581
2582         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2583                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586                         continue;
2587
2588                 remove_migration_ptes(page, page, false);
2589
2590                 migrate->src[i] = 0;
2591                 unlock_page(page);
2592                 restore--;
2593
2594                 if (is_zone_device_page(page))
2595                         put_page(page);
2596                 else
2597                         putback_lru_page(page);
2598         }
2599 }
2600
2601 /**
2602  * migrate_vma_setup() - prepare to migrate a range of memory
2603  * @args: contains the vma, start, and pfns arrays for the migration
2604  *
2605  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2606  * without an error.
2607  *
2608  * Prepare to migrate a range of memory virtual address range by collecting all
2609  * the pages backing each virtual address in the range, saving them inside the
2610  * src array.  Then lock those pages and unmap them. Once the pages are locked
2611  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2612  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2613  * corresponding src array entry.  Then restores any pages that are pinned, by
2614  * remapping and unlocking those pages.
2615  *
2616  * The caller should then allocate destination memory and copy source memory to
2617  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2618  * flag set).  Once these are allocated and copied, the caller must update each
2619  * corresponding entry in the dst array with the pfn value of the destination
2620  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2621  * (destination pages must have their struct pages locked, via lock_page()).
2622  *
2623  * Note that the caller does not have to migrate all the pages that are marked
2624  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2625  * device memory to system memory.  If the caller cannot migrate a device page
2626  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2627  * consequences for the userspace process, so it must be avoided if at all
2628  * possible.
2629  *
2630  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2631  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2632  * allowing the caller to allocate device memory for those unbacked virtual
2633  * addresses.  For this the caller simply has to allocate device memory and
2634  * properly set the destination entry like for regular migration.  Note that
2635  * this can still fail, and thus inside the device driver you must check if the
2636  * migration was successful for those entries after calling migrate_vma_pages(),
2637  * just like for regular migration.
2638  *
2639  * After that, the callers must call migrate_vma_pages() to go over each entry
2640  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2641  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2642  * then migrate_vma_pages() to migrate struct page information from the source
2643  * struct page to the destination struct page.  If it fails to migrate the
2644  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2645  * src array.
2646  *
2647  * At this point all successfully migrated pages have an entry in the src
2648  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2649  * array entry with MIGRATE_PFN_VALID flag set.
2650  *
2651  * Once migrate_vma_pages() returns the caller may inspect which pages were
2652  * successfully migrated, and which were not.  Successfully migrated pages will
2653  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2654  *
2655  * It is safe to update device page table after migrate_vma_pages() because
2656  * both destination and source page are still locked, and the mmap_lock is held
2657  * in read mode (hence no one can unmap the range being migrated).
2658  *
2659  * Once the caller is done cleaning up things and updating its page table (if it
2660  * chose to do so, this is not an obligation) it finally calls
2661  * migrate_vma_finalize() to update the CPU page table to point to new pages
2662  * for successfully migrated pages or otherwise restore the CPU page table to
2663  * point to the original source pages.
2664  */
2665 int migrate_vma_setup(struct migrate_vma *args)
2666 {
2667         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2668
2669         args->start &= PAGE_MASK;
2670         args->end &= PAGE_MASK;
2671         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2672             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2673                 return -EINVAL;
2674         if (nr_pages <= 0)
2675                 return -EINVAL;
2676         if (args->start < args->vma->vm_start ||
2677             args->start >= args->vma->vm_end)
2678                 return -EINVAL;
2679         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2680                 return -EINVAL;
2681         if (!args->src || !args->dst)
2682                 return -EINVAL;
2683
2684         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2685         args->cpages = 0;
2686         args->npages = 0;
2687
2688         migrate_vma_collect(args);
2689
2690         if (args->cpages)
2691                 migrate_vma_prepare(args);
2692         if (args->cpages)
2693                 migrate_vma_unmap(args);
2694
2695         /*
2696          * At this point pages are locked and unmapped, and thus they have
2697          * stable content and can safely be copied to destination memory that
2698          * is allocated by the drivers.
2699          */
2700         return 0;
2701
2702 }
2703 EXPORT_SYMBOL(migrate_vma_setup);
2704
2705 /*
2706  * This code closely matches the code in:
2707  *   __handle_mm_fault()
2708  *     handle_pte_fault()
2709  *       do_anonymous_page()
2710  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2711  * private page.
2712  */
2713 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2714                                     unsigned long addr,
2715                                     struct page *page,
2716                                     unsigned long *src)
2717 {
2718         struct vm_area_struct *vma = migrate->vma;
2719         struct mm_struct *mm = vma->vm_mm;
2720         bool flush = false;
2721         spinlock_t *ptl;
2722         pte_t entry;
2723         pgd_t *pgdp;
2724         p4d_t *p4dp;
2725         pud_t *pudp;
2726         pmd_t *pmdp;
2727         pte_t *ptep;
2728
2729         /* Only allow populating anonymous memory */
2730         if (!vma_is_anonymous(vma))
2731                 goto abort;
2732
2733         pgdp = pgd_offset(mm, addr);
2734         p4dp = p4d_alloc(mm, pgdp, addr);
2735         if (!p4dp)
2736                 goto abort;
2737         pudp = pud_alloc(mm, p4dp, addr);
2738         if (!pudp)
2739                 goto abort;
2740         pmdp = pmd_alloc(mm, pudp, addr);
2741         if (!pmdp)
2742                 goto abort;
2743
2744         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2745                 goto abort;
2746
2747         /*
2748          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2749          * pte_offset_map() on pmds where a huge pmd might be created
2750          * from a different thread.
2751          *
2752          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2753          * parallel threads are excluded by other means.
2754          *
2755          * Here we only have mmap_read_lock(mm).
2756          */
2757         if (pte_alloc(mm, pmdp))
2758                 goto abort;
2759
2760         /* See the comment in pte_alloc_one_map() */
2761         if (unlikely(pmd_trans_unstable(pmdp)))
2762                 goto abort;
2763
2764         if (unlikely(anon_vma_prepare(vma)))
2765                 goto abort;
2766         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2767                 goto abort;
2768
2769         /*
2770          * The memory barrier inside __SetPageUptodate makes sure that
2771          * preceding stores to the page contents become visible before
2772          * the set_pte_at() write.
2773          */
2774         __SetPageUptodate(page);
2775
2776         if (is_zone_device_page(page)) {
2777                 if (is_device_private_page(page)) {
2778                         swp_entry_t swp_entry;
2779
2780                         if (vma->vm_flags & VM_WRITE)
2781                                 swp_entry = make_writable_device_private_entry(
2782                                                         page_to_pfn(page));
2783                         else
2784                                 swp_entry = make_readable_device_private_entry(
2785                                                         page_to_pfn(page));
2786                         entry = swp_entry_to_pte(swp_entry);
2787                 } else {
2788                         /*
2789                          * For now we only support migrating to un-addressable
2790                          * device memory.
2791                          */
2792                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2793                         goto abort;
2794                 }
2795         } else {
2796                 entry = mk_pte(page, vma->vm_page_prot);
2797                 if (vma->vm_flags & VM_WRITE)
2798                         entry = pte_mkwrite(pte_mkdirty(entry));
2799         }
2800
2801         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803         if (check_stable_address_space(mm))
2804                 goto unlock_abort;
2805
2806         if (pte_present(*ptep)) {
2807                 unsigned long pfn = pte_pfn(*ptep);
2808
2809                 if (!is_zero_pfn(pfn))
2810                         goto unlock_abort;
2811                 flush = true;
2812         } else if (!pte_none(*ptep))
2813                 goto unlock_abort;
2814
2815         /*
2816          * Check for userfaultfd but do not deliver the fault. Instead,
2817          * just back off.
2818          */
2819         if (userfaultfd_missing(vma))
2820                 goto unlock_abort;
2821
2822         inc_mm_counter(mm, MM_ANONPAGES);
2823         page_add_new_anon_rmap(page, vma, addr, false);
2824         if (!is_zone_device_page(page))
2825                 lru_cache_add_inactive_or_unevictable(page, vma);
2826         get_page(page);
2827
2828         if (flush) {
2829                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2830                 ptep_clear_flush_notify(vma, addr, ptep);
2831                 set_pte_at_notify(mm, addr, ptep, entry);
2832                 update_mmu_cache(vma, addr, ptep);
2833         } else {
2834                 /* No need to invalidate - it was non-present before */
2835                 set_pte_at(mm, addr, ptep, entry);
2836                 update_mmu_cache(vma, addr, ptep);
2837         }
2838
2839         pte_unmap_unlock(ptep, ptl);
2840         *src = MIGRATE_PFN_MIGRATE;
2841         return;
2842
2843 unlock_abort:
2844         pte_unmap_unlock(ptep, ptl);
2845 abort:
2846         *src &= ~MIGRATE_PFN_MIGRATE;
2847 }
2848
2849 /**
2850  * migrate_vma_pages() - migrate meta-data from src page to dst page
2851  * @migrate: migrate struct containing all migration information
2852  *
2853  * This migrates struct page meta-data from source struct page to destination
2854  * struct page. This effectively finishes the migration from source page to the
2855  * destination page.
2856  */
2857 void migrate_vma_pages(struct migrate_vma *migrate)
2858 {
2859         const unsigned long npages = migrate->npages;
2860         const unsigned long start = migrate->start;
2861         struct mmu_notifier_range range;
2862         unsigned long addr, i;
2863         bool notified = false;
2864
2865         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868                 struct address_space *mapping;
2869                 int r;
2870
2871                 if (!newpage) {
2872                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873                         continue;
2874                 }
2875
2876                 if (!page) {
2877                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878                                 continue;
2879                         if (!notified) {
2880                                 notified = true;
2881
2882                                 mmu_notifier_range_init_owner(&range,
2883                                         MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2884                                         migrate->vma->vm_mm, addr, migrate->end,
2885                                         migrate->pgmap_owner);
2886                                 mmu_notifier_invalidate_range_start(&range);
2887                         }
2888                         migrate_vma_insert_page(migrate, addr, newpage,
2889                                                 &migrate->src[i]);
2890                         continue;
2891                 }
2892
2893                 mapping = page_mapping(page);
2894
2895                 if (is_zone_device_page(newpage)) {
2896                         if (is_device_private_page(newpage)) {
2897                                 /*
2898                                  * For now only support private anonymous when
2899                                  * migrating to un-addressable device memory.
2900                                  */
2901                                 if (mapping) {
2902                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2903                                         continue;
2904                                 }
2905                         } else {
2906                                 /*
2907                                  * Other types of ZONE_DEVICE page are not
2908                                  * supported.
2909                                  */
2910                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911                                 continue;
2912                         }
2913                 }
2914
2915                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2916                 if (r != MIGRATEPAGE_SUCCESS)
2917                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918         }
2919
2920         /*
2921          * No need to double call mmu_notifier->invalidate_range() callback as
2922          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2923          * did already call it.
2924          */
2925         if (notified)
2926                 mmu_notifier_invalidate_range_only_end(&range);
2927 }
2928 EXPORT_SYMBOL(migrate_vma_pages);
2929
2930 /**
2931  * migrate_vma_finalize() - restore CPU page table entry
2932  * @migrate: migrate struct containing all migration information
2933  *
2934  * This replaces the special migration pte entry with either a mapping to the
2935  * new page if migration was successful for that page, or to the original page
2936  * otherwise.
2937  *
2938  * This also unlocks the pages and puts them back on the lru, or drops the extra
2939  * refcount, for device pages.
2940  */
2941 void migrate_vma_finalize(struct migrate_vma *migrate)
2942 {
2943         const unsigned long npages = migrate->npages;
2944         unsigned long i;
2945
2946         for (i = 0; i < npages; i++) {
2947                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2948                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2949
2950                 if (!page) {
2951                         if (newpage) {
2952                                 unlock_page(newpage);
2953                                 put_page(newpage);
2954                         }
2955                         continue;
2956                 }
2957
2958                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2959                         if (newpage) {
2960                                 unlock_page(newpage);
2961                                 put_page(newpage);
2962                         }
2963                         newpage = page;
2964                 }
2965
2966                 remove_migration_ptes(page, newpage, false);
2967                 unlock_page(page);
2968
2969                 if (is_zone_device_page(page))
2970                         put_page(page);
2971                 else
2972                         putback_lru_page(page);
2973
2974                 if (newpage != page) {
2975                         unlock_page(newpage);
2976                         if (is_zone_device_page(newpage))
2977                                 put_page(newpage);
2978                         else
2979                                 putback_lru_page(newpage);
2980                 }
2981         }
2982 }
2983 EXPORT_SYMBOL(migrate_vma_finalize);
2984 #endif /* CONFIG_DEVICE_PRIVATE */