Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51
52 #include <asm/tlbflush.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56
57 #include "internal.h"
58
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66         /*
67          * Clear the LRU lists so pages can be isolated.
68          * Note that pages may be moved off the LRU after we have
69          * drained them. Those pages will fail to migrate like other
70          * pages that may be busy.
71          */
72         lru_add_drain_all();
73
74         return 0;
75 }
76
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80         lru_add_drain();
81
82         return 0;
83 }
84
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87         struct address_space *mapping;
88
89         /*
90          * Avoid burning cycles with pages that are yet under __free_pages(),
91          * or just got freed under us.
92          *
93          * In case we 'win' a race for a movable page being freed under us and
94          * raise its refcount preventing __free_pages() from doing its job
95          * the put_page() at the end of this block will take care of
96          * release this page, thus avoiding a nasty leakage.
97          */
98         if (unlikely(!get_page_unless_zero(page)))
99                 goto out;
100
101         /*
102          * Check PageMovable before holding a PG_lock because page's owner
103          * assumes anybody doesn't touch PG_lock of newly allocated page
104          * so unconditionally grabbing the lock ruins page's owner side.
105          */
106         if (unlikely(!__PageMovable(page)))
107                 goto out_putpage;
108         /*
109          * As movable pages are not isolated from LRU lists, concurrent
110          * compaction threads can race against page migration functions
111          * as well as race against the releasing a page.
112          *
113          * In order to avoid having an already isolated movable page
114          * being (wrongly) re-isolated while it is under migration,
115          * or to avoid attempting to isolate pages being released,
116          * lets be sure we have the page lock
117          * before proceeding with the movable page isolation steps.
118          */
119         if (unlikely(!trylock_page(page)))
120                 goto out_putpage;
121
122         if (!PageMovable(page) || PageIsolated(page))
123                 goto out_no_isolated;
124
125         mapping = page_mapping(page);
126         VM_BUG_ON_PAGE(!mapping, page);
127
128         if (!mapping->a_ops->isolate_page(page, mode))
129                 goto out_no_isolated;
130
131         /* Driver shouldn't use PG_isolated bit of page->flags */
132         WARN_ON_ONCE(PageIsolated(page));
133         __SetPageIsolated(page);
134         unlock_page(page);
135
136         return 0;
137
138 out_no_isolated:
139         unlock_page(page);
140 out_putpage:
141         put_page(page);
142 out:
143         return -EBUSY;
144 }
145
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149         struct address_space *mapping;
150
151         VM_BUG_ON_PAGE(!PageLocked(page), page);
152         VM_BUG_ON_PAGE(!PageMovable(page), page);
153         VM_BUG_ON_PAGE(!PageIsolated(page), page);
154
155         mapping = page_mapping(page);
156         mapping->a_ops->putback_page(page);
157         __ClearPageIsolated(page);
158 }
159
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170         struct page *page;
171         struct page *page2;
172
173         list_for_each_entry_safe(page, page2, l, lru) {
174                 if (unlikely(PageHuge(page))) {
175                         putback_active_hugepage(page);
176                         continue;
177                 }
178                 list_del(&page->lru);
179                 /*
180                  * We isolated non-lru movable page so here we can use
181                  * __PageMovable because LRU page's mapping cannot have
182                  * PAGE_MAPPING_MOVABLE.
183                  */
184                 if (unlikely(__PageMovable(page))) {
185                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
186                         lock_page(page);
187                         if (PageMovable(page))
188                                 putback_movable_page(page);
189                         else
190                                 __ClearPageIsolated(page);
191                         unlock_page(page);
192                         put_page(page);
193                 } else {
194                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195                                         page_is_file_cache(page), -hpage_nr_pages(page));
196                         putback_lru_page(page);
197                 }
198         }
199 }
200
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205                                  unsigned long addr, void *old)
206 {
207         struct page_vma_mapped_walk pvmw = {
208                 .page = old,
209                 .vma = vma,
210                 .address = addr,
211                 .flags = PVMW_SYNC | PVMW_MIGRATION,
212         };
213         struct page *new;
214         pte_t pte;
215         swp_entry_t entry;
216
217         VM_BUG_ON_PAGE(PageTail(page), page);
218         while (page_vma_mapped_walk(&pvmw)) {
219                 if (PageKsm(page))
220                         new = page;
221                 else
222                         new = page - pvmw.page->index +
223                                 linear_page_index(vma, pvmw.address);
224
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226                 /* PMD-mapped THP migration entry */
227                 if (!pvmw.pte) {
228                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229                         remove_migration_pmd(&pvmw, new);
230                         continue;
231                 }
232 #endif
233
234                 get_page(new);
235                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236                 if (pte_swp_soft_dirty(*pvmw.pte))
237                         pte = pte_mksoft_dirty(pte);
238
239                 /*
240                  * Recheck VMA as permissions can change since migration started
241                  */
242                 entry = pte_to_swp_entry(*pvmw.pte);
243                 if (is_write_migration_entry(entry))
244                         pte = maybe_mkwrite(pte, vma);
245
246                 if (unlikely(is_zone_device_page(new))) {
247                         if (is_device_private_page(new)) {
248                                 entry = make_device_private_entry(new, pte_write(pte));
249                                 pte = swp_entry_to_pte(entry);
250                         }
251                 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254                 if (PageHuge(new)) {
255                         pte = pte_mkhuge(pte);
256                         pte = arch_make_huge_pte(pte, vma, new, 0);
257                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258                         if (PageAnon(new))
259                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
260                         else
261                                 page_dup_rmap(new, true);
262                 } else
263 #endif
264                 {
265                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267                         if (PageAnon(new))
268                                 page_add_anon_rmap(new, vma, pvmw.address, false);
269                         else
270                                 page_add_file_rmap(new, false);
271                 }
272                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273                         mlock_vma_page(new);
274
275                 if (PageTransHuge(page) && PageMlocked(page))
276                         clear_page_mlock(page);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once page cache replacement of page migration started, page_count
327          * is zero; but we must not call put_and_wait_on_page_locked() without
328          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
329          */
330         if (!get_page_unless_zero(page))
331                 goto out;
332         pte_unmap_unlock(ptep, ptl);
333         put_and_wait_on_page_locked(page);
334         return;
335 out:
336         pte_unmap_unlock(ptep, ptl);
337 }
338
339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
340                                 unsigned long address)
341 {
342         spinlock_t *ptl = pte_lockptr(mm, pmd);
343         pte_t *ptep = pte_offset_map(pmd, address);
344         __migration_entry_wait(mm, ptep, ptl);
345 }
346
347 void migration_entry_wait_huge(struct vm_area_struct *vma,
348                 struct mm_struct *mm, pte_t *pte)
349 {
350         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351         __migration_entry_wait(mm, pte, ptl);
352 }
353
354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
356 {
357         spinlock_t *ptl;
358         struct page *page;
359
360         ptl = pmd_lock(mm, pmd);
361         if (!is_pmd_migration_entry(*pmd))
362                 goto unlock;
363         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
364         if (!get_page_unless_zero(page))
365                 goto unlock;
366         spin_unlock(ptl);
367         put_and_wait_on_page_locked(page);
368         return;
369 unlock:
370         spin_unlock(ptl);
371 }
372 #endif
373
374 static int expected_page_refs(struct address_space *mapping, struct page *page)
375 {
376         int expected_count = 1;
377
378         /*
379          * Device public or private pages have an extra refcount as they are
380          * ZONE_DEVICE pages.
381          */
382         expected_count += is_device_private_page(page);
383         if (mapping)
384                 expected_count += hpage_nr_pages(page) + page_has_private(page);
385
386         return expected_count;
387 }
388
389 /*
390  * Replace the page in the mapping.
391  *
392  * The number of remaining references must be:
393  * 1 for anonymous pages without a mapping
394  * 2 for pages with a mapping
395  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396  */
397 int migrate_page_move_mapping(struct address_space *mapping,
398                 struct page *newpage, struct page *page, int extra_count)
399 {
400         XA_STATE(xas, &mapping->i_pages, page_index(page));
401         struct zone *oldzone, *newzone;
402         int dirty;
403         int expected_count = expected_page_refs(mapping, page) + extra_count;
404
405         if (!mapping) {
406                 /* Anonymous page without mapping */
407                 if (page_count(page) != expected_count)
408                         return -EAGAIN;
409
410                 /* No turning back from here */
411                 newpage->index = page->index;
412                 newpage->mapping = page->mapping;
413                 if (PageSwapBacked(page))
414                         __SetPageSwapBacked(newpage);
415
416                 return MIGRATEPAGE_SUCCESS;
417         }
418
419         oldzone = page_zone(page);
420         newzone = page_zone(newpage);
421
422         xas_lock_irq(&xas);
423         if (page_count(page) != expected_count || xas_load(&xas) != page) {
424                 xas_unlock_irq(&xas);
425                 return -EAGAIN;
426         }
427
428         if (!page_ref_freeze(page, expected_count)) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         /*
434          * Now we know that no one else is looking at the page:
435          * no turning back from here.
436          */
437         newpage->index = page->index;
438         newpage->mapping = page->mapping;
439         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440         if (PageSwapBacked(page)) {
441                 __SetPageSwapBacked(newpage);
442                 if (PageSwapCache(page)) {
443                         SetPageSwapCache(newpage);
444                         set_page_private(newpage, page_private(page));
445                 }
446         } else {
447                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
448         }
449
450         /* Move dirty while page refs frozen and newpage not yet exposed */
451         dirty = PageDirty(page);
452         if (dirty) {
453                 ClearPageDirty(page);
454                 SetPageDirty(newpage);
455         }
456
457         xas_store(&xas, newpage);
458         if (PageTransHuge(page)) {
459                 int i;
460
461                 for (i = 1; i < HPAGE_PMD_NR; i++) {
462                         xas_next(&xas);
463                         xas_store(&xas, newpage);
464                 }
465         }
466
467         /*
468          * Drop cache reference from old page by unfreezing
469          * to one less reference.
470          * We know this isn't the last reference.
471          */
472         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473
474         xas_unlock(&xas);
475         /* Leave irq disabled to prevent preemption while updating stats */
476
477         /*
478          * If moved to a different zone then also account
479          * the page for that zone. Other VM counters will be
480          * taken care of when we establish references to the
481          * new page and drop references to the old page.
482          *
483          * Note that anonymous pages are accounted for
484          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485          * are mapped to swap space.
486          */
487         if (newzone != oldzone) {
488                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
491                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493                 }
494                 if (dirty && mapping_cap_account_dirty(mapping)) {
495                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499                 }
500         }
501         local_irq_enable();
502
503         return MIGRATEPAGE_SUCCESS;
504 }
505 EXPORT_SYMBOL(migrate_page_move_mapping);
506
507 /*
508  * The expected number of remaining references is the same as that
509  * of migrate_page_move_mapping().
510  */
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512                                    struct page *newpage, struct page *page)
513 {
514         XA_STATE(xas, &mapping->i_pages, page_index(page));
515         int expected_count;
516
517         xas_lock_irq(&xas);
518         expected_count = 2 + page_has_private(page);
519         if (page_count(page) != expected_count || xas_load(&xas) != page) {
520                 xas_unlock_irq(&xas);
521                 return -EAGAIN;
522         }
523
524         if (!page_ref_freeze(page, expected_count)) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         newpage->index = page->index;
530         newpage->mapping = page->mapping;
531
532         get_page(newpage);
533
534         xas_store(&xas, newpage);
535
536         page_ref_unfreeze(page, expected_count - 1);
537
538         xas_unlock_irq(&xas);
539
540         return MIGRATEPAGE_SUCCESS;
541 }
542
543 /*
544  * Gigantic pages are so large that we do not guarantee that page++ pointer
545  * arithmetic will work across the entire page.  We need something more
546  * specialized.
547  */
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
549                                 int nr_pages)
550 {
551         int i;
552         struct page *dst_base = dst;
553         struct page *src_base = src;
554
555         for (i = 0; i < nr_pages; ) {
556                 cond_resched();
557                 copy_highpage(dst, src);
558
559                 i++;
560                 dst = mem_map_next(dst, dst_base, i);
561                 src = mem_map_next(src, src_base, i);
562         }
563 }
564
565 static void copy_huge_page(struct page *dst, struct page *src)
566 {
567         int i;
568         int nr_pages;
569
570         if (PageHuge(src)) {
571                 /* hugetlbfs page */
572                 struct hstate *h = page_hstate(src);
573                 nr_pages = pages_per_huge_page(h);
574
575                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576                         __copy_gigantic_page(dst, src, nr_pages);
577                         return;
578                 }
579         } else {
580                 /* thp page */
581                 BUG_ON(!PageTransHuge(src));
582                 nr_pages = hpage_nr_pages(src);
583         }
584
585         for (i = 0; i < nr_pages; i++) {
586                 cond_resched();
587                 copy_highpage(dst + i, src + i);
588         }
589 }
590
591 /*
592  * Copy the page to its new location
593  */
594 void migrate_page_states(struct page *newpage, struct page *page)
595 {
596         int cpupid;
597
598         if (PageError(page))
599                 SetPageError(newpage);
600         if (PageReferenced(page))
601                 SetPageReferenced(newpage);
602         if (PageUptodate(page))
603                 SetPageUptodate(newpage);
604         if (TestClearPageActive(page)) {
605                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
606                 SetPageActive(newpage);
607         } else if (TestClearPageUnevictable(page))
608                 SetPageUnevictable(newpage);
609         if (PageWorkingset(page))
610                 SetPageWorkingset(newpage);
611         if (PageChecked(page))
612                 SetPageChecked(newpage);
613         if (PageMappedToDisk(page))
614                 SetPageMappedToDisk(newpage);
615
616         /* Move dirty on pages not done by migrate_page_move_mapping() */
617         if (PageDirty(page))
618                 SetPageDirty(newpage);
619
620         if (page_is_young(page))
621                 set_page_young(newpage);
622         if (page_is_idle(page))
623                 set_page_idle(newpage);
624
625         /*
626          * Copy NUMA information to the new page, to prevent over-eager
627          * future migrations of this same page.
628          */
629         cpupid = page_cpupid_xchg_last(page, -1);
630         page_cpupid_xchg_last(newpage, cpupid);
631
632         ksm_migrate_page(newpage, page);
633         /*
634          * Please do not reorder this without considering how mm/ksm.c's
635          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636          */
637         if (PageSwapCache(page))
638                 ClearPageSwapCache(page);
639         ClearPagePrivate(page);
640         set_page_private(page, 0);
641
642         /*
643          * If any waiters have accumulated on the new page then
644          * wake them up.
645          */
646         if (PageWriteback(newpage))
647                 end_page_writeback(newpage);
648
649         copy_page_owner(page, newpage);
650
651         mem_cgroup_migrate(page, newpage);
652 }
653 EXPORT_SYMBOL(migrate_page_states);
654
655 void migrate_page_copy(struct page *newpage, struct page *page)
656 {
657         if (PageHuge(page) || PageTransHuge(page))
658                 copy_huge_page(newpage, page);
659         else
660                 copy_highpage(newpage, page);
661
662         migrate_page_states(newpage, page);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677                 struct page *newpage, struct page *page,
678                 enum migrate_mode mode)
679 {
680         int rc;
681
682         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
683
684         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
685
686         if (rc != MIGRATEPAGE_SUCCESS)
687                 return rc;
688
689         if (mode != MIGRATE_SYNC_NO_COPY)
690                 migrate_page_copy(newpage, page);
691         else
692                 migrate_page_states(newpage, page);
693         return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696
697 #ifdef CONFIG_BLOCK
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700                                                         enum migrate_mode mode)
701 {
702         struct buffer_head *bh = head;
703
704         /* Simple case, sync compaction */
705         if (mode != MIGRATE_ASYNC) {
706                 do {
707                         lock_buffer(bh);
708                         bh = bh->b_this_page;
709
710                 } while (bh != head);
711
712                 return true;
713         }
714
715         /* async case, we cannot block on lock_buffer so use trylock_buffer */
716         do {
717                 if (!trylock_buffer(bh)) {
718                         /*
719                          * We failed to lock the buffer and cannot stall in
720                          * async migration. Release the taken locks
721                          */
722                         struct buffer_head *failed_bh = bh;
723                         bh = head;
724                         while (bh != failed_bh) {
725                                 unlock_buffer(bh);
726                                 bh = bh->b_this_page;
727                         }
728                         return false;
729                 }
730
731                 bh = bh->b_this_page;
732         } while (bh != head);
733         return true;
734 }
735
736 static int __buffer_migrate_page(struct address_space *mapping,
737                 struct page *newpage, struct page *page, enum migrate_mode mode,
738                 bool check_refs)
739 {
740         struct buffer_head *bh, *head;
741         int rc;
742         int expected_count;
743
744         if (!page_has_buffers(page))
745                 return migrate_page(mapping, newpage, page, mode);
746
747         /* Check whether page does not have extra refs before we do more work */
748         expected_count = expected_page_refs(mapping, page);
749         if (page_count(page) != expected_count)
750                 return -EAGAIN;
751
752         head = page_buffers(page);
753         if (!buffer_migrate_lock_buffers(head, mode))
754                 return -EAGAIN;
755
756         if (check_refs) {
757                 bool busy;
758                 bool invalidated = false;
759
760 recheck_buffers:
761                 busy = false;
762                 spin_lock(&mapping->private_lock);
763                 bh = head;
764                 do {
765                         if (atomic_read(&bh->b_count)) {
766                                 busy = true;
767                                 break;
768                         }
769                         bh = bh->b_this_page;
770                 } while (bh != head);
771                 if (busy) {
772                         if (invalidated) {
773                                 rc = -EAGAIN;
774                                 goto unlock_buffers;
775                         }
776                         spin_unlock(&mapping->private_lock);
777                         invalidate_bh_lrus();
778                         invalidated = true;
779                         goto recheck_buffers;
780                 }
781         }
782
783         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784         if (rc != MIGRATEPAGE_SUCCESS)
785                 goto unlock_buffers;
786
787         ClearPagePrivate(page);
788         set_page_private(newpage, page_private(page));
789         set_page_private(page, 0);
790         put_page(page);
791         get_page(newpage);
792
793         bh = head;
794         do {
795                 set_bh_page(bh, newpage, bh_offset(bh));
796                 bh = bh->b_this_page;
797
798         } while (bh != head);
799
800         SetPagePrivate(newpage);
801
802         if (mode != MIGRATE_SYNC_NO_COPY)
803                 migrate_page_copy(newpage, page);
804         else
805                 migrate_page_states(newpage, page);
806
807         rc = MIGRATEPAGE_SUCCESS;
808 unlock_buffers:
809         if (check_refs)
810                 spin_unlock(&mapping->private_lock);
811         bh = head;
812         do {
813                 unlock_buffer(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return rc;
819 }
820
821 /*
822  * Migration function for pages with buffers. This function can only be used
823  * if the underlying filesystem guarantees that no other references to "page"
824  * exist. For example attached buffer heads are accessed only under page lock.
825  */
826 int buffer_migrate_page(struct address_space *mapping,
827                 struct page *newpage, struct page *page, enum migrate_mode mode)
828 {
829         return __buffer_migrate_page(mapping, newpage, page, mode, false);
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832
833 /*
834  * Same as above except that this variant is more careful and checks that there
835  * are also no buffer head references. This function is the right one for
836  * mappings where buffer heads are directly looked up and referenced (such as
837  * block device mappings).
838  */
839 int buffer_migrate_page_norefs(struct address_space *mapping,
840                 struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842         return __buffer_migrate_page(mapping, newpage, page, mode, true);
843 }
844 #endif
845
846 /*
847  * Writeback a page to clean the dirty state
848  */
849 static int writeout(struct address_space *mapping, struct page *page)
850 {
851         struct writeback_control wbc = {
852                 .sync_mode = WB_SYNC_NONE,
853                 .nr_to_write = 1,
854                 .range_start = 0,
855                 .range_end = LLONG_MAX,
856                 .for_reclaim = 1
857         };
858         int rc;
859
860         if (!mapping->a_ops->writepage)
861                 /* No write method for the address space */
862                 return -EINVAL;
863
864         if (!clear_page_dirty_for_io(page))
865                 /* Someone else already triggered a write */
866                 return -EAGAIN;
867
868         /*
869          * A dirty page may imply that the underlying filesystem has
870          * the page on some queue. So the page must be clean for
871          * migration. Writeout may mean we loose the lock and the
872          * page state is no longer what we checked for earlier.
873          * At this point we know that the migration attempt cannot
874          * be successful.
875          */
876         remove_migration_ptes(page, page, false);
877
878         rc = mapping->a_ops->writepage(page, &wbc);
879
880         if (rc != AOP_WRITEPAGE_ACTIVATE)
881                 /* unlocked. Relock */
882                 lock_page(page);
883
884         return (rc < 0) ? -EIO : -EAGAIN;
885 }
886
887 /*
888  * Default handling if a filesystem does not provide a migration function.
889  */
890 static int fallback_migrate_page(struct address_space *mapping,
891         struct page *newpage, struct page *page, enum migrate_mode mode)
892 {
893         if (PageDirty(page)) {
894                 /* Only writeback pages in full synchronous migration */
895                 switch (mode) {
896                 case MIGRATE_SYNC:
897                 case MIGRATE_SYNC_NO_COPY:
898                         break;
899                 default:
900                         return -EBUSY;
901                 }
902                 return writeout(mapping, page);
903         }
904
905         /*
906          * Buffers may be managed in a filesystem specific way.
907          * We must have no buffers or drop them.
908          */
909         if (page_has_private(page) &&
910             !try_to_release_page(page, GFP_KERNEL))
911                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
912
913         return migrate_page(mapping, newpage, page, mode);
914 }
915
916 /*
917  * Move a page to a newly allocated page
918  * The page is locked and all ptes have been successfully removed.
919  *
920  * The new page will have replaced the old page if this function
921  * is successful.
922  *
923  * Return value:
924  *   < 0 - error code
925  *  MIGRATEPAGE_SUCCESS - success
926  */
927 static int move_to_new_page(struct page *newpage, struct page *page,
928                                 enum migrate_mode mode)
929 {
930         struct address_space *mapping;
931         int rc = -EAGAIN;
932         bool is_lru = !__PageMovable(page);
933
934         VM_BUG_ON_PAGE(!PageLocked(page), page);
935         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
936
937         mapping = page_mapping(page);
938
939         if (likely(is_lru)) {
940                 if (!mapping)
941                         rc = migrate_page(mapping, newpage, page, mode);
942                 else if (mapping->a_ops->migratepage)
943                         /*
944                          * Most pages have a mapping and most filesystems
945                          * provide a migratepage callback. Anonymous pages
946                          * are part of swap space which also has its own
947                          * migratepage callback. This is the most common path
948                          * for page migration.
949                          */
950                         rc = mapping->a_ops->migratepage(mapping, newpage,
951                                                         page, mode);
952                 else
953                         rc = fallback_migrate_page(mapping, newpage,
954                                                         page, mode);
955         } else {
956                 /*
957                  * In case of non-lru page, it could be released after
958                  * isolation step. In that case, we shouldn't try migration.
959                  */
960                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
961                 if (!PageMovable(page)) {
962                         rc = MIGRATEPAGE_SUCCESS;
963                         __ClearPageIsolated(page);
964                         goto out;
965                 }
966
967                 rc = mapping->a_ops->migratepage(mapping, newpage,
968                                                 page, mode);
969                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
970                         !PageIsolated(page));
971         }
972
973         /*
974          * When successful, old pagecache page->mapping must be cleared before
975          * page is freed; but stats require that PageAnon be left as PageAnon.
976          */
977         if (rc == MIGRATEPAGE_SUCCESS) {
978                 if (__PageMovable(page)) {
979                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
980
981                         /*
982                          * We clear PG_movable under page_lock so any compactor
983                          * cannot try to migrate this page.
984                          */
985                         __ClearPageIsolated(page);
986                 }
987
988                 /*
989                  * Anonymous and movable page->mapping will be cleard by
990                  * free_pages_prepare so don't reset it here for keeping
991                  * the type to work PageAnon, for example.
992                  */
993                 if (!PageMappingFlags(page))
994                         page->mapping = NULL;
995
996                 if (likely(!is_zone_device_page(newpage)))
997                         flush_dcache_page(newpage);
998
999         }
1000 out:
1001         return rc;
1002 }
1003
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005                                 int force, enum migrate_mode mode)
1006 {
1007         int rc = -EAGAIN;
1008         int page_was_mapped = 0;
1009         struct anon_vma *anon_vma = NULL;
1010         bool is_lru = !__PageMovable(page);
1011
1012         if (!trylock_page(page)) {
1013                 if (!force || mode == MIGRATE_ASYNC)
1014                         goto out;
1015
1016                 /*
1017                  * It's not safe for direct compaction to call lock_page.
1018                  * For example, during page readahead pages are added locked
1019                  * to the LRU. Later, when the IO completes the pages are
1020                  * marked uptodate and unlocked. However, the queueing
1021                  * could be merging multiple pages for one bio (e.g.
1022                  * mpage_readpages). If an allocation happens for the
1023                  * second or third page, the process can end up locking
1024                  * the same page twice and deadlocking. Rather than
1025                  * trying to be clever about what pages can be locked,
1026                  * avoid the use of lock_page for direct compaction
1027                  * altogether.
1028                  */
1029                 if (current->flags & PF_MEMALLOC)
1030                         goto out;
1031
1032                 lock_page(page);
1033         }
1034
1035         if (PageWriteback(page)) {
1036                 /*
1037                  * Only in the case of a full synchronous migration is it
1038                  * necessary to wait for PageWriteback. In the async case,
1039                  * the retry loop is too short and in the sync-light case,
1040                  * the overhead of stalling is too much
1041                  */
1042                 switch (mode) {
1043                 case MIGRATE_SYNC:
1044                 case MIGRATE_SYNC_NO_COPY:
1045                         break;
1046                 default:
1047                         rc = -EBUSY;
1048                         goto out_unlock;
1049                 }
1050                 if (!force)
1051                         goto out_unlock;
1052                 wait_on_page_writeback(page);
1053         }
1054
1055         /*
1056          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057          * we cannot notice that anon_vma is freed while we migrates a page.
1058          * This get_anon_vma() delays freeing anon_vma pointer until the end
1059          * of migration. File cache pages are no problem because of page_lock()
1060          * File Caches may use write_page() or lock_page() in migration, then,
1061          * just care Anon page here.
1062          *
1063          * Only page_get_anon_vma() understands the subtleties of
1064          * getting a hold on an anon_vma from outside one of its mms.
1065          * But if we cannot get anon_vma, then we won't need it anyway,
1066          * because that implies that the anon page is no longer mapped
1067          * (and cannot be remapped so long as we hold the page lock).
1068          */
1069         if (PageAnon(page) && !PageKsm(page))
1070                 anon_vma = page_get_anon_vma(page);
1071
1072         /*
1073          * Block others from accessing the new page when we get around to
1074          * establishing additional references. We are usually the only one
1075          * holding a reference to newpage at this point. We used to have a BUG
1076          * here if trylock_page(newpage) fails, but would like to allow for
1077          * cases where there might be a race with the previous use of newpage.
1078          * This is much like races on refcount of oldpage: just don't BUG().
1079          */
1080         if (unlikely(!trylock_page(newpage)))
1081                 goto out_unlock;
1082
1083         if (unlikely(!is_lru)) {
1084                 rc = move_to_new_page(newpage, page, mode);
1085                 goto out_unlock_both;
1086         }
1087
1088         /*
1089          * Corner case handling:
1090          * 1. When a new swap-cache page is read into, it is added to the LRU
1091          * and treated as swapcache but it has no rmap yet.
1092          * Calling try_to_unmap() against a page->mapping==NULL page will
1093          * trigger a BUG.  So handle it here.
1094          * 2. An orphaned page (see truncate_complete_page) might have
1095          * fs-private metadata. The page can be picked up due to memory
1096          * offlining.  Everywhere else except page reclaim, the page is
1097          * invisible to the vm, so the page can not be migrated.  So try to
1098          * free the metadata, so the page can be freed.
1099          */
1100         if (!page->mapping) {
1101                 VM_BUG_ON_PAGE(PageAnon(page), page);
1102                 if (page_has_private(page)) {
1103                         try_to_free_buffers(page);
1104                         goto out_unlock_both;
1105                 }
1106         } else if (page_mapped(page)) {
1107                 /* Establish migration ptes */
1108                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109                                 page);
1110                 try_to_unmap(page,
1111                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112                 page_was_mapped = 1;
1113         }
1114
1115         if (!page_mapped(page))
1116                 rc = move_to_new_page(newpage, page, mode);
1117
1118         if (page_was_mapped)
1119                 remove_migration_ptes(page,
1120                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121
1122 out_unlock_both:
1123         unlock_page(newpage);
1124 out_unlock:
1125         /* Drop an anon_vma reference if we took one */
1126         if (anon_vma)
1127                 put_anon_vma(anon_vma);
1128         unlock_page(page);
1129 out:
1130         /*
1131          * If migration is successful, decrease refcount of the newpage
1132          * which will not free the page because new page owner increased
1133          * refcounter. As well, if it is LRU page, add the page to LRU
1134          * list in here. Use the old state of the isolated source page to
1135          * determine if we migrated a LRU page. newpage was already unlocked
1136          * and possibly modified by its owner - don't rely on the page
1137          * state.
1138          */
1139         if (rc == MIGRATEPAGE_SUCCESS) {
1140                 if (unlikely(!is_lru))
1141                         put_page(newpage);
1142                 else
1143                         putback_lru_page(newpage);
1144         }
1145
1146         return rc;
1147 }
1148
1149 /*
1150  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151  * around it.
1152  */
1153 #if defined(CONFIG_ARM) && \
1154         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1156 #else
1157 #define ICE_noinline
1158 #endif
1159
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165                                    free_page_t put_new_page,
1166                                    unsigned long private, struct page *page,
1167                                    int force, enum migrate_mode mode,
1168                                    enum migrate_reason reason)
1169 {
1170         int rc = MIGRATEPAGE_SUCCESS;
1171         struct page *newpage = NULL;
1172
1173         if (!thp_migration_supported() && PageTransHuge(page))
1174                 return -ENOMEM;
1175
1176         if (page_count(page) == 1) {
1177                 /* page was freed from under us. So we are done. */
1178                 ClearPageActive(page);
1179                 ClearPageUnevictable(page);
1180                 if (unlikely(__PageMovable(page))) {
1181                         lock_page(page);
1182                         if (!PageMovable(page))
1183                                 __ClearPageIsolated(page);
1184                         unlock_page(page);
1185                 }
1186                 goto out;
1187         }
1188
1189         newpage = get_new_page(page, private);
1190         if (!newpage)
1191                 return -ENOMEM;
1192
1193         rc = __unmap_and_move(page, newpage, force, mode);
1194         if (rc == MIGRATEPAGE_SUCCESS)
1195                 set_page_owner_migrate_reason(newpage, reason);
1196
1197 out:
1198         if (rc != -EAGAIN) {
1199                 /*
1200                  * A page that has been migrated has all references
1201                  * removed and will be freed. A page that has not been
1202                  * migrated will have kepts its references and be
1203                  * restored.
1204                  */
1205                 list_del(&page->lru);
1206
1207                 /*
1208                  * Compaction can migrate also non-LRU pages which are
1209                  * not accounted to NR_ISOLATED_*. They can be recognized
1210                  * as __PageMovable
1211                  */
1212                 if (likely(!__PageMovable(page)))
1213                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214                                         page_is_file_cache(page), -hpage_nr_pages(page));
1215         }
1216
1217         /*
1218          * If migration is successful, releases reference grabbed during
1219          * isolation. Otherwise, restore the page to right list unless
1220          * we want to retry.
1221          */
1222         if (rc == MIGRATEPAGE_SUCCESS) {
1223                 put_page(page);
1224                 if (reason == MR_MEMORY_FAILURE) {
1225                         /*
1226                          * Set PG_HWPoison on just freed page
1227                          * intentionally. Although it's rather weird,
1228                          * it's how HWPoison flag works at the moment.
1229                          */
1230                         if (set_hwpoison_free_buddy_page(page))
1231                                 num_poisoned_pages_inc();
1232                 }
1233         } else {
1234                 if (rc != -EAGAIN) {
1235                         if (likely(!__PageMovable(page))) {
1236                                 putback_lru_page(page);
1237                                 goto put_new;
1238                         }
1239
1240                         lock_page(page);
1241                         if (PageMovable(page))
1242                                 putback_movable_page(page);
1243                         else
1244                                 __ClearPageIsolated(page);
1245                         unlock_page(page);
1246                         put_page(page);
1247                 }
1248 put_new:
1249                 if (put_new_page)
1250                         put_new_page(newpage, private);
1251                 else
1252                         put_page(newpage);
1253         }
1254
1255         return rc;
1256 }
1257
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                 free_page_t put_new_page, unsigned long private,
1278                                 struct page *hpage, int force,
1279                                 enum migrate_mode mode, int reason)
1280 {
1281         int rc = -EAGAIN;
1282         int page_was_mapped = 0;
1283         struct page *new_hpage;
1284         struct anon_vma *anon_vma = NULL;
1285
1286         /*
1287          * Migratability of hugepages depends on architectures and their size.
1288          * This check is necessary because some callers of hugepage migration
1289          * like soft offline and memory hotremove don't walk through page
1290          * tables or check whether the hugepage is pmd-based or not before
1291          * kicking migration.
1292          */
1293         if (!hugepage_migration_supported(page_hstate(hpage))) {
1294                 putback_active_hugepage(hpage);
1295                 return -ENOSYS;
1296         }
1297
1298         new_hpage = get_new_page(hpage, private);
1299         if (!new_hpage)
1300                 return -ENOMEM;
1301
1302         if (!trylock_page(hpage)) {
1303                 if (!force)
1304                         goto out;
1305                 switch (mode) {
1306                 case MIGRATE_SYNC:
1307                 case MIGRATE_SYNC_NO_COPY:
1308                         break;
1309                 default:
1310                         goto out;
1311                 }
1312                 lock_page(hpage);
1313         }
1314
1315         /*
1316          * Check for pages which are in the process of being freed.  Without
1317          * page_mapping() set, hugetlbfs specific move page routine will not
1318          * be called and we could leak usage counts for subpools.
1319          */
1320         if (page_private(hpage) && !page_mapping(hpage)) {
1321                 rc = -EBUSY;
1322                 goto out_unlock;
1323         }
1324
1325         if (PageAnon(hpage))
1326                 anon_vma = page_get_anon_vma(hpage);
1327
1328         if (unlikely(!trylock_page(new_hpage)))
1329                 goto put_anon;
1330
1331         if (page_mapped(hpage)) {
1332                 try_to_unmap(hpage,
1333                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334                 page_was_mapped = 1;
1335         }
1336
1337         if (!page_mapped(hpage))
1338                 rc = move_to_new_page(new_hpage, hpage, mode);
1339
1340         if (page_was_mapped)
1341                 remove_migration_ptes(hpage,
1342                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1343
1344         unlock_page(new_hpage);
1345
1346 put_anon:
1347         if (anon_vma)
1348                 put_anon_vma(anon_vma);
1349
1350         if (rc == MIGRATEPAGE_SUCCESS) {
1351                 move_hugetlb_state(hpage, new_hpage, reason);
1352                 put_new_page = NULL;
1353         }
1354
1355 out_unlock:
1356         unlock_page(hpage);
1357 out:
1358         if (rc != -EAGAIN)
1359                 putback_active_hugepage(hpage);
1360
1361         /*
1362          * If migration was not successful and there's a freeing callback, use
1363          * it.  Otherwise, put_page() will drop the reference grabbed during
1364          * isolation.
1365          */
1366         if (put_new_page)
1367                 put_new_page(new_hpage, private);
1368         else
1369                 putback_active_hugepage(new_hpage);
1370
1371         return rc;
1372 }
1373
1374 /*
1375  * migrate_pages - migrate the pages specified in a list, to the free pages
1376  *                 supplied as the target for the page migration
1377  *
1378  * @from:               The list of pages to be migrated.
1379  * @get_new_page:       The function used to allocate free pages to be used
1380  *                      as the target of the page migration.
1381  * @put_new_page:       The function used to free target pages if migration
1382  *                      fails, or NULL if no special handling is necessary.
1383  * @private:            Private data to be passed on to get_new_page()
1384  * @mode:               The migration mode that specifies the constraints for
1385  *                      page migration, if any.
1386  * @reason:             The reason for page migration.
1387  *
1388  * The function returns after 10 attempts or if no pages are movable any more
1389  * because the list has become empty or no retryable pages exist any more.
1390  * The caller should call putback_movable_pages() to return pages to the LRU
1391  * or free list only if ret != 0.
1392  *
1393  * Returns the number of pages that were not migrated, or an error code.
1394  */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396                 free_page_t put_new_page, unsigned long private,
1397                 enum migrate_mode mode, int reason)
1398 {
1399         int retry = 1;
1400         int nr_failed = 0;
1401         int nr_succeeded = 0;
1402         int pass = 0;
1403         struct page *page;
1404         struct page *page2;
1405         int swapwrite = current->flags & PF_SWAPWRITE;
1406         int rc;
1407
1408         if (!swapwrite)
1409                 current->flags |= PF_SWAPWRITE;
1410
1411         for(pass = 0; pass < 10 && retry; pass++) {
1412                 retry = 0;
1413
1414                 list_for_each_entry_safe(page, page2, from, lru) {
1415 retry:
1416                         cond_resched();
1417
1418                         if (PageHuge(page))
1419                                 rc = unmap_and_move_huge_page(get_new_page,
1420                                                 put_new_page, private, page,
1421                                                 pass > 2, mode, reason);
1422                         else
1423                                 rc = unmap_and_move(get_new_page, put_new_page,
1424                                                 private, page, pass > 2, mode,
1425                                                 reason);
1426
1427                         switch(rc) {
1428                         case -ENOMEM:
1429                                 /*
1430                                  * THP migration might be unsupported or the
1431                                  * allocation could've failed so we should
1432                                  * retry on the same page with the THP split
1433                                  * to base pages.
1434                                  *
1435                                  * Head page is retried immediately and tail
1436                                  * pages are added to the tail of the list so
1437                                  * we encounter them after the rest of the list
1438                                  * is processed.
1439                                  */
1440                                 if (PageTransHuge(page) && !PageHuge(page)) {
1441                                         lock_page(page);
1442                                         rc = split_huge_page_to_list(page, from);
1443                                         unlock_page(page);
1444                                         if (!rc) {
1445                                                 list_safe_reset_next(page, page2, lru);
1446                                                 goto retry;
1447                                         }
1448                                 }
1449                                 nr_failed++;
1450                                 goto out;
1451                         case -EAGAIN:
1452                                 retry++;
1453                                 break;
1454                         case MIGRATEPAGE_SUCCESS:
1455                                 nr_succeeded++;
1456                                 break;
1457                         default:
1458                                 /*
1459                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460                                  * unlike -EAGAIN case, the failed page is
1461                                  * removed from migration page list and not
1462                                  * retried in the next outer loop.
1463                                  */
1464                                 nr_failed++;
1465                                 break;
1466                         }
1467                 }
1468         }
1469         nr_failed += retry;
1470         rc = nr_failed;
1471 out:
1472         if (nr_succeeded)
1473                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474         if (nr_failed)
1475                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477
1478         if (!swapwrite)
1479                 current->flags &= ~PF_SWAPWRITE;
1480
1481         return rc;
1482 }
1483
1484 #ifdef CONFIG_NUMA
1485
1486 static int store_status(int __user *status, int start, int value, int nr)
1487 {
1488         while (nr-- > 0) {
1489                 if (put_user(value, status + start))
1490                         return -EFAULT;
1491                 start++;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static int do_move_pages_to_node(struct mm_struct *mm,
1498                 struct list_head *pagelist, int node)
1499 {
1500         int err;
1501
1502         if (list_empty(pagelist))
1503                 return 0;
1504
1505         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506                         MIGRATE_SYNC, MR_SYSCALL);
1507         if (err)
1508                 putback_movable_pages(pagelist);
1509         return err;
1510 }
1511
1512 /*
1513  * Resolves the given address to a struct page, isolates it from the LRU and
1514  * puts it to the given pagelist.
1515  * Returns:
1516  *     errno - if the page cannot be found/isolated
1517  *     0 - when it doesn't have to be migrated because it is already on the
1518  *         target node
1519  *     1 - when it has been queued
1520  */
1521 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522                 int node, struct list_head *pagelist, bool migrate_all)
1523 {
1524         struct vm_area_struct *vma;
1525         struct page *page;
1526         unsigned int follflags;
1527         int err;
1528
1529         down_read(&mm->mmap_sem);
1530         err = -EFAULT;
1531         vma = find_vma(mm, addr);
1532         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533                 goto out;
1534
1535         /* FOLL_DUMP to ignore special (like zero) pages */
1536         follflags = FOLL_GET | FOLL_DUMP;
1537         page = follow_page(vma, addr, follflags);
1538
1539         err = PTR_ERR(page);
1540         if (IS_ERR(page))
1541                 goto out;
1542
1543         err = -ENOENT;
1544         if (!page)
1545                 goto out;
1546
1547         err = 0;
1548         if (page_to_nid(page) == node)
1549                 goto out_putpage;
1550
1551         err = -EACCES;
1552         if (page_mapcount(page) > 1 && !migrate_all)
1553                 goto out_putpage;
1554
1555         if (PageHuge(page)) {
1556                 if (PageHead(page)) {
1557                         isolate_huge_page(page, pagelist);
1558                         err = 1;
1559                 }
1560         } else {
1561                 struct page *head;
1562
1563                 head = compound_head(page);
1564                 err = isolate_lru_page(head);
1565                 if (err)
1566                         goto out_putpage;
1567
1568                 err = 1;
1569                 list_add_tail(&head->lru, pagelist);
1570                 mod_node_page_state(page_pgdat(head),
1571                         NR_ISOLATED_ANON + page_is_file_cache(head),
1572                         hpage_nr_pages(head));
1573         }
1574 out_putpage:
1575         /*
1576          * Either remove the duplicate refcount from
1577          * isolate_lru_page() or drop the page ref if it was
1578          * not isolated.
1579          */
1580         put_page(page);
1581 out:
1582         up_read(&mm->mmap_sem);
1583         return err;
1584 }
1585
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591                          unsigned long nr_pages,
1592                          const void __user * __user *pages,
1593                          const int __user *nodes,
1594                          int __user *status, int flags)
1595 {
1596         int current_node = NUMA_NO_NODE;
1597         LIST_HEAD(pagelist);
1598         int start, i;
1599         int err = 0, err1;
1600
1601         migrate_prep();
1602
1603         for (i = start = 0; i < nr_pages; i++) {
1604                 const void __user *p;
1605                 unsigned long addr;
1606                 int node;
1607
1608                 err = -EFAULT;
1609                 if (get_user(p, pages + i))
1610                         goto out_flush;
1611                 if (get_user(node, nodes + i))
1612                         goto out_flush;
1613                 addr = (unsigned long)untagged_addr(p);
1614
1615                 err = -ENODEV;
1616                 if (node < 0 || node >= MAX_NUMNODES)
1617                         goto out_flush;
1618                 if (!node_state(node, N_MEMORY))
1619                         goto out_flush;
1620
1621                 err = -EACCES;
1622                 if (!node_isset(node, task_nodes))
1623                         goto out_flush;
1624
1625                 if (current_node == NUMA_NO_NODE) {
1626                         current_node = node;
1627                         start = i;
1628                 } else if (node != current_node) {
1629                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1630                         if (err)
1631                                 goto out;
1632                         err = store_status(status, start, current_node, i - start);
1633                         if (err)
1634                                 goto out;
1635                         start = i;
1636                         current_node = node;
1637                 }
1638
1639                 /*
1640                  * Errors in the page lookup or isolation are not fatal and we simply
1641                  * report them via status
1642                  */
1643                 err = add_page_for_migration(mm, addr, current_node,
1644                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1645
1646                 if (!err) {
1647                         /* The page is already on the target node */
1648                         err = store_status(status, i, current_node, 1);
1649                         if (err)
1650                                 goto out_flush;
1651                         continue;
1652                 } else if (err > 0) {
1653                         /* The page is successfully queued for migration */
1654                         continue;
1655                 }
1656
1657                 err = store_status(status, i, err, 1);
1658                 if (err)
1659                         goto out_flush;
1660
1661                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1662                 if (err)
1663                         goto out;
1664                 if (i > start) {
1665                         err = store_status(status, start, current_node, i - start);
1666                         if (err)
1667                                 goto out;
1668                 }
1669                 current_node = NUMA_NO_NODE;
1670         }
1671 out_flush:
1672         if (list_empty(&pagelist))
1673                 return err;
1674
1675         /* Make sure we do not overwrite the existing error */
1676         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1677         if (!err1)
1678                 err1 = store_status(status, start, current_node, i - start);
1679         if (!err)
1680                 err = err1;
1681 out:
1682         return err;
1683 }
1684
1685 /*
1686  * Determine the nodes of an array of pages and store it in an array of status.
1687  */
1688 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1689                                 const void __user **pages, int *status)
1690 {
1691         unsigned long i;
1692
1693         down_read(&mm->mmap_sem);
1694
1695         for (i = 0; i < nr_pages; i++) {
1696                 unsigned long addr = (unsigned long)(*pages);
1697                 struct vm_area_struct *vma;
1698                 struct page *page;
1699                 int err = -EFAULT;
1700
1701                 vma = find_vma(mm, addr);
1702                 if (!vma || addr < vma->vm_start)
1703                         goto set_status;
1704
1705                 /* FOLL_DUMP to ignore special (like zero) pages */
1706                 page = follow_page(vma, addr, FOLL_DUMP);
1707
1708                 err = PTR_ERR(page);
1709                 if (IS_ERR(page))
1710                         goto set_status;
1711
1712                 err = page ? page_to_nid(page) : -ENOENT;
1713 set_status:
1714                 *status = err;
1715
1716                 pages++;
1717                 status++;
1718         }
1719
1720         up_read(&mm->mmap_sem);
1721 }
1722
1723 /*
1724  * Determine the nodes of a user array of pages and store it in
1725  * a user array of status.
1726  */
1727 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1728                          const void __user * __user *pages,
1729                          int __user *status)
1730 {
1731 #define DO_PAGES_STAT_CHUNK_NR 16
1732         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1733         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1734
1735         while (nr_pages) {
1736                 unsigned long chunk_nr;
1737
1738                 chunk_nr = nr_pages;
1739                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1740                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1741
1742                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1743                         break;
1744
1745                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1746
1747                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1748                         break;
1749
1750                 pages += chunk_nr;
1751                 status += chunk_nr;
1752                 nr_pages -= chunk_nr;
1753         }
1754         return nr_pages ? -EFAULT : 0;
1755 }
1756
1757 /*
1758  * Move a list of pages in the address space of the currently executing
1759  * process.
1760  */
1761 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1762                              const void __user * __user *pages,
1763                              const int __user *nodes,
1764                              int __user *status, int flags)
1765 {
1766         struct task_struct *task;
1767         struct mm_struct *mm;
1768         int err;
1769         nodemask_t task_nodes;
1770
1771         /* Check flags */
1772         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1773                 return -EINVAL;
1774
1775         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1776                 return -EPERM;
1777
1778         /* Find the mm_struct */
1779         rcu_read_lock();
1780         task = pid ? find_task_by_vpid(pid) : current;
1781         if (!task) {
1782                 rcu_read_unlock();
1783                 return -ESRCH;
1784         }
1785         get_task_struct(task);
1786
1787         /*
1788          * Check if this process has the right to modify the specified
1789          * process. Use the regular "ptrace_may_access()" checks.
1790          */
1791         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1792                 rcu_read_unlock();
1793                 err = -EPERM;
1794                 goto out;
1795         }
1796         rcu_read_unlock();
1797
1798         err = security_task_movememory(task);
1799         if (err)
1800                 goto out;
1801
1802         task_nodes = cpuset_mems_allowed(task);
1803         mm = get_task_mm(task);
1804         put_task_struct(task);
1805
1806         if (!mm)
1807                 return -EINVAL;
1808
1809         if (nodes)
1810                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1811                                     nodes, status, flags);
1812         else
1813                 err = do_pages_stat(mm, nr_pages, pages, status);
1814
1815         mmput(mm);
1816         return err;
1817
1818 out:
1819         put_task_struct(task);
1820         return err;
1821 }
1822
1823 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1824                 const void __user * __user *, pages,
1825                 const int __user *, nodes,
1826                 int __user *, status, int, flags)
1827 {
1828         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1829 }
1830
1831 #ifdef CONFIG_COMPAT
1832 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1833                        compat_uptr_t __user *, pages32,
1834                        const int __user *, nodes,
1835                        int __user *, status,
1836                        int, flags)
1837 {
1838         const void __user * __user *pages;
1839         int i;
1840
1841         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1842         for (i = 0; i < nr_pages; i++) {
1843                 compat_uptr_t p;
1844
1845                 if (get_user(p, pages32 + i) ||
1846                         put_user(compat_ptr(p), pages + i))
1847                         return -EFAULT;
1848         }
1849         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1850 }
1851 #endif /* CONFIG_COMPAT */
1852
1853 #ifdef CONFIG_NUMA_BALANCING
1854 /*
1855  * Returns true if this is a safe migration target node for misplaced NUMA
1856  * pages. Currently it only checks the watermarks which crude
1857  */
1858 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1859                                    unsigned long nr_migrate_pages)
1860 {
1861         int z;
1862
1863         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1864                 struct zone *zone = pgdat->node_zones + z;
1865
1866                 if (!populated_zone(zone))
1867                         continue;
1868
1869                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1870                 if (!zone_watermark_ok(zone, 0,
1871                                        high_wmark_pages(zone) +
1872                                        nr_migrate_pages,
1873                                        ZONE_MOVABLE, 0))
1874                         continue;
1875                 return true;
1876         }
1877         return false;
1878 }
1879
1880 static struct page *alloc_misplaced_dst_page(struct page *page,
1881                                            unsigned long data)
1882 {
1883         int nid = (int) data;
1884         struct page *newpage;
1885
1886         newpage = __alloc_pages_node(nid,
1887                                          (GFP_HIGHUSER_MOVABLE |
1888                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1889                                           __GFP_NORETRY | __GFP_NOWARN) &
1890                                          ~__GFP_RECLAIM, 0);
1891
1892         return newpage;
1893 }
1894
1895 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1896 {
1897         int page_lru;
1898
1899         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1900
1901         /* Avoid migrating to a node that is nearly full */
1902         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1903                 return 0;
1904
1905         if (isolate_lru_page(page))
1906                 return 0;
1907
1908         /*
1909          * migrate_misplaced_transhuge_page() skips page migration's usual
1910          * check on page_count(), so we must do it here, now that the page
1911          * has been isolated: a GUP pin, or any other pin, prevents migration.
1912          * The expected page count is 3: 1 for page's mapcount and 1 for the
1913          * caller's pin and 1 for the reference taken by isolate_lru_page().
1914          */
1915         if (PageTransHuge(page) && page_count(page) != 3) {
1916                 putback_lru_page(page);
1917                 return 0;
1918         }
1919
1920         page_lru = page_is_file_cache(page);
1921         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1922                                 hpage_nr_pages(page));
1923
1924         /*
1925          * Isolating the page has taken another reference, so the
1926          * caller's reference can be safely dropped without the page
1927          * disappearing underneath us during migration.
1928          */
1929         put_page(page);
1930         return 1;
1931 }
1932
1933 bool pmd_trans_migrating(pmd_t pmd)
1934 {
1935         struct page *page = pmd_page(pmd);
1936         return PageLocked(page);
1937 }
1938
1939 /*
1940  * Attempt to migrate a misplaced page to the specified destination
1941  * node. Caller is expected to have an elevated reference count on
1942  * the page that will be dropped by this function before returning.
1943  */
1944 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1945                            int node)
1946 {
1947         pg_data_t *pgdat = NODE_DATA(node);
1948         int isolated;
1949         int nr_remaining;
1950         LIST_HEAD(migratepages);
1951
1952         /*
1953          * Don't migrate file pages that are mapped in multiple processes
1954          * with execute permissions as they are probably shared libraries.
1955          */
1956         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1957             (vma->vm_flags & VM_EXEC))
1958                 goto out;
1959
1960         /*
1961          * Also do not migrate dirty pages as not all filesystems can move
1962          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1963          */
1964         if (page_is_file_cache(page) && PageDirty(page))
1965                 goto out;
1966
1967         isolated = numamigrate_isolate_page(pgdat, page);
1968         if (!isolated)
1969                 goto out;
1970
1971         list_add(&page->lru, &migratepages);
1972         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1973                                      NULL, node, MIGRATE_ASYNC,
1974                                      MR_NUMA_MISPLACED);
1975         if (nr_remaining) {
1976                 if (!list_empty(&migratepages)) {
1977                         list_del(&page->lru);
1978                         dec_node_page_state(page, NR_ISOLATED_ANON +
1979                                         page_is_file_cache(page));
1980                         putback_lru_page(page);
1981                 }
1982                 isolated = 0;
1983         } else
1984                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1985         BUG_ON(!list_empty(&migratepages));
1986         return isolated;
1987
1988 out:
1989         put_page(page);
1990         return 0;
1991 }
1992 #endif /* CONFIG_NUMA_BALANCING */
1993
1994 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1995 /*
1996  * Migrates a THP to a given target node. page must be locked and is unlocked
1997  * before returning.
1998  */
1999 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2000                                 struct vm_area_struct *vma,
2001                                 pmd_t *pmd, pmd_t entry,
2002                                 unsigned long address,
2003                                 struct page *page, int node)
2004 {
2005         spinlock_t *ptl;
2006         pg_data_t *pgdat = NODE_DATA(node);
2007         int isolated = 0;
2008         struct page *new_page = NULL;
2009         int page_lru = page_is_file_cache(page);
2010         unsigned long start = address & HPAGE_PMD_MASK;
2011
2012         new_page = alloc_pages_node(node,
2013                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2014                 HPAGE_PMD_ORDER);
2015         if (!new_page)
2016                 goto out_fail;
2017         prep_transhuge_page(new_page);
2018
2019         isolated = numamigrate_isolate_page(pgdat, page);
2020         if (!isolated) {
2021                 put_page(new_page);
2022                 goto out_fail;
2023         }
2024
2025         /* Prepare a page as a migration target */
2026         __SetPageLocked(new_page);
2027         if (PageSwapBacked(page))
2028                 __SetPageSwapBacked(new_page);
2029
2030         /* anon mapping, we can simply copy page->mapping to the new page: */
2031         new_page->mapping = page->mapping;
2032         new_page->index = page->index;
2033         /* flush the cache before copying using the kernel virtual address */
2034         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2035         migrate_page_copy(new_page, page);
2036         WARN_ON(PageLRU(new_page));
2037
2038         /* Recheck the target PMD */
2039         ptl = pmd_lock(mm, pmd);
2040         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2041                 spin_unlock(ptl);
2042
2043                 /* Reverse changes made by migrate_page_copy() */
2044                 if (TestClearPageActive(new_page))
2045                         SetPageActive(page);
2046                 if (TestClearPageUnevictable(new_page))
2047                         SetPageUnevictable(page);
2048
2049                 unlock_page(new_page);
2050                 put_page(new_page);             /* Free it */
2051
2052                 /* Retake the callers reference and putback on LRU */
2053                 get_page(page);
2054                 putback_lru_page(page);
2055                 mod_node_page_state(page_pgdat(page),
2056                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2057
2058                 goto out_unlock;
2059         }
2060
2061         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2062         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2063
2064         /*
2065          * Overwrite the old entry under pagetable lock and establish
2066          * the new PTE. Any parallel GUP will either observe the old
2067          * page blocking on the page lock, block on the page table
2068          * lock or observe the new page. The SetPageUptodate on the
2069          * new page and page_add_new_anon_rmap guarantee the copy is
2070          * visible before the pagetable update.
2071          */
2072         page_add_anon_rmap(new_page, vma, start, true);
2073         /*
2074          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2075          * has already been flushed globally.  So no TLB can be currently
2076          * caching this non present pmd mapping.  There's no need to clear the
2077          * pmd before doing set_pmd_at(), nor to flush the TLB after
2078          * set_pmd_at().  Clearing the pmd here would introduce a race
2079          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2080          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2081          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2082          * pmd.
2083          */
2084         set_pmd_at(mm, start, pmd, entry);
2085         update_mmu_cache_pmd(vma, address, &entry);
2086
2087         page_ref_unfreeze(page, 2);
2088         mlock_migrate_page(new_page, page);
2089         page_remove_rmap(page, true);
2090         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2091
2092         spin_unlock(ptl);
2093
2094         /* Take an "isolate" reference and put new page on the LRU. */
2095         get_page(new_page);
2096         putback_lru_page(new_page);
2097
2098         unlock_page(new_page);
2099         unlock_page(page);
2100         put_page(page);                 /* Drop the rmap reference */
2101         put_page(page);                 /* Drop the LRU isolation reference */
2102
2103         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2104         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2105
2106         mod_node_page_state(page_pgdat(page),
2107                         NR_ISOLATED_ANON + page_lru,
2108                         -HPAGE_PMD_NR);
2109         return isolated;
2110
2111 out_fail:
2112         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2113         ptl = pmd_lock(mm, pmd);
2114         if (pmd_same(*pmd, entry)) {
2115                 entry = pmd_modify(entry, vma->vm_page_prot);
2116                 set_pmd_at(mm, start, pmd, entry);
2117                 update_mmu_cache_pmd(vma, address, &entry);
2118         }
2119         spin_unlock(ptl);
2120
2121 out_unlock:
2122         unlock_page(page);
2123         put_page(page);
2124         return 0;
2125 }
2126 #endif /* CONFIG_NUMA_BALANCING */
2127
2128 #endif /* CONFIG_NUMA */
2129
2130 #ifdef CONFIG_DEVICE_PRIVATE
2131 static int migrate_vma_collect_hole(unsigned long start,
2132                                     unsigned long end,
2133                                     struct mm_walk *walk)
2134 {
2135         struct migrate_vma *migrate = walk->private;
2136         unsigned long addr;
2137
2138         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2139                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2140                 migrate->dst[migrate->npages] = 0;
2141                 migrate->npages++;
2142                 migrate->cpages++;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static int migrate_vma_collect_skip(unsigned long start,
2149                                     unsigned long end,
2150                                     struct mm_walk *walk)
2151 {
2152         struct migrate_vma *migrate = walk->private;
2153         unsigned long addr;
2154
2155         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2156                 migrate->dst[migrate->npages] = 0;
2157                 migrate->src[migrate->npages++] = 0;
2158         }
2159
2160         return 0;
2161 }
2162
2163 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2164                                    unsigned long start,
2165                                    unsigned long end,
2166                                    struct mm_walk *walk)
2167 {
2168         struct migrate_vma *migrate = walk->private;
2169         struct vm_area_struct *vma = walk->vma;
2170         struct mm_struct *mm = vma->vm_mm;
2171         unsigned long addr = start, unmapped = 0;
2172         spinlock_t *ptl;
2173         pte_t *ptep;
2174
2175 again:
2176         if (pmd_none(*pmdp))
2177                 return migrate_vma_collect_hole(start, end, walk);
2178
2179         if (pmd_trans_huge(*pmdp)) {
2180                 struct page *page;
2181
2182                 ptl = pmd_lock(mm, pmdp);
2183                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2184                         spin_unlock(ptl);
2185                         goto again;
2186                 }
2187
2188                 page = pmd_page(*pmdp);
2189                 if (is_huge_zero_page(page)) {
2190                         spin_unlock(ptl);
2191                         split_huge_pmd(vma, pmdp, addr);
2192                         if (pmd_trans_unstable(pmdp))
2193                                 return migrate_vma_collect_skip(start, end,
2194                                                                 walk);
2195                 } else {
2196                         int ret;
2197
2198                         get_page(page);
2199                         spin_unlock(ptl);
2200                         if (unlikely(!trylock_page(page)))
2201                                 return migrate_vma_collect_skip(start, end,
2202                                                                 walk);
2203                         ret = split_huge_page(page);
2204                         unlock_page(page);
2205                         put_page(page);
2206                         if (ret)
2207                                 return migrate_vma_collect_skip(start, end,
2208                                                                 walk);
2209                         if (pmd_none(*pmdp))
2210                                 return migrate_vma_collect_hole(start, end,
2211                                                                 walk);
2212                 }
2213         }
2214
2215         if (unlikely(pmd_bad(*pmdp)))
2216                 return migrate_vma_collect_skip(start, end, walk);
2217
2218         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2219         arch_enter_lazy_mmu_mode();
2220
2221         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2222                 unsigned long mpfn, pfn;
2223                 struct page *page;
2224                 swp_entry_t entry;
2225                 pte_t pte;
2226
2227                 pte = *ptep;
2228
2229                 if (pte_none(pte)) {
2230                         mpfn = MIGRATE_PFN_MIGRATE;
2231                         migrate->cpages++;
2232                         goto next;
2233                 }
2234
2235                 if (!pte_present(pte)) {
2236                         mpfn = 0;
2237
2238                         /*
2239                          * Only care about unaddressable device page special
2240                          * page table entry. Other special swap entries are not
2241                          * migratable, and we ignore regular swapped page.
2242                          */
2243                         entry = pte_to_swp_entry(pte);
2244                         if (!is_device_private_entry(entry))
2245                                 goto next;
2246
2247                         page = device_private_entry_to_page(entry);
2248                         mpfn = migrate_pfn(page_to_pfn(page)) |
2249                                         MIGRATE_PFN_MIGRATE;
2250                         if (is_write_device_private_entry(entry))
2251                                 mpfn |= MIGRATE_PFN_WRITE;
2252                 } else {
2253                         pfn = pte_pfn(pte);
2254                         if (is_zero_pfn(pfn)) {
2255                                 mpfn = MIGRATE_PFN_MIGRATE;
2256                                 migrate->cpages++;
2257                                 goto next;
2258                         }
2259                         page = vm_normal_page(migrate->vma, addr, pte);
2260                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2261                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2262                 }
2263
2264                 /* FIXME support THP */
2265                 if (!page || !page->mapping || PageTransCompound(page)) {
2266                         mpfn = 0;
2267                         goto next;
2268                 }
2269
2270                 /*
2271                  * By getting a reference on the page we pin it and that blocks
2272                  * any kind of migration. Side effect is that it "freezes" the
2273                  * pte.
2274                  *
2275                  * We drop this reference after isolating the page from the lru
2276                  * for non device page (device page are not on the lru and thus
2277                  * can't be dropped from it).
2278                  */
2279                 get_page(page);
2280                 migrate->cpages++;
2281
2282                 /*
2283                  * Optimize for the common case where page is only mapped once
2284                  * in one process. If we can lock the page, then we can safely
2285                  * set up a special migration page table entry now.
2286                  */
2287                 if (trylock_page(page)) {
2288                         pte_t swp_pte;
2289
2290                         mpfn |= MIGRATE_PFN_LOCKED;
2291                         ptep_get_and_clear(mm, addr, ptep);
2292
2293                         /* Setup special migration page table entry */
2294                         entry = make_migration_entry(page, mpfn &
2295                                                      MIGRATE_PFN_WRITE);
2296                         swp_pte = swp_entry_to_pte(entry);
2297                         if (pte_soft_dirty(pte))
2298                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2299                         set_pte_at(mm, addr, ptep, swp_pte);
2300
2301                         /*
2302                          * This is like regular unmap: we remove the rmap and
2303                          * drop page refcount. Page won't be freed, as we took
2304                          * a reference just above.
2305                          */
2306                         page_remove_rmap(page, false);
2307                         put_page(page);
2308
2309                         if (pte_present(pte))
2310                                 unmapped++;
2311                 }
2312
2313 next:
2314                 migrate->dst[migrate->npages] = 0;
2315                 migrate->src[migrate->npages++] = mpfn;
2316         }
2317         arch_leave_lazy_mmu_mode();
2318         pte_unmap_unlock(ptep - 1, ptl);
2319
2320         /* Only flush the TLB if we actually modified any entries */
2321         if (unmapped)
2322                 flush_tlb_range(walk->vma, start, end);
2323
2324         return 0;
2325 }
2326
2327 static const struct mm_walk_ops migrate_vma_walk_ops = {
2328         .pmd_entry              = migrate_vma_collect_pmd,
2329         .pte_hole               = migrate_vma_collect_hole,
2330 };
2331
2332 /*
2333  * migrate_vma_collect() - collect pages over a range of virtual addresses
2334  * @migrate: migrate struct containing all migration information
2335  *
2336  * This will walk the CPU page table. For each virtual address backed by a
2337  * valid page, it updates the src array and takes a reference on the page, in
2338  * order to pin the page until we lock it and unmap it.
2339  */
2340 static void migrate_vma_collect(struct migrate_vma *migrate)
2341 {
2342         struct mmu_notifier_range range;
2343
2344         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2345                         migrate->vma->vm_mm, migrate->start, migrate->end);
2346         mmu_notifier_invalidate_range_start(&range);
2347
2348         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2349                         &migrate_vma_walk_ops, migrate);
2350
2351         mmu_notifier_invalidate_range_end(&range);
2352         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2353 }
2354
2355 /*
2356  * migrate_vma_check_page() - check if page is pinned or not
2357  * @page: struct page to check
2358  *
2359  * Pinned pages cannot be migrated. This is the same test as in
2360  * migrate_page_move_mapping(), except that here we allow migration of a
2361  * ZONE_DEVICE page.
2362  */
2363 static bool migrate_vma_check_page(struct page *page)
2364 {
2365         /*
2366          * One extra ref because caller holds an extra reference, either from
2367          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2368          * a device page.
2369          */
2370         int extra = 1;
2371
2372         /*
2373          * FIXME support THP (transparent huge page), it is bit more complex to
2374          * check them than regular pages, because they can be mapped with a pmd
2375          * or with a pte (split pte mapping).
2376          */
2377         if (PageCompound(page))
2378                 return false;
2379
2380         /* Page from ZONE_DEVICE have one extra reference */
2381         if (is_zone_device_page(page)) {
2382                 /*
2383                  * Private page can never be pin as they have no valid pte and
2384                  * GUP will fail for those. Yet if there is a pending migration
2385                  * a thread might try to wait on the pte migration entry and
2386                  * will bump the page reference count. Sadly there is no way to
2387                  * differentiate a regular pin from migration wait. Hence to
2388                  * avoid 2 racing thread trying to migrate back to CPU to enter
2389                  * infinite loop (one stoping migration because the other is
2390                  * waiting on pte migration entry). We always return true here.
2391                  *
2392                  * FIXME proper solution is to rework migration_entry_wait() so
2393                  * it does not need to take a reference on page.
2394                  */
2395                 return is_device_private_page(page);
2396         }
2397
2398         /* For file back page */
2399         if (page_mapping(page))
2400                 extra += 1 + page_has_private(page);
2401
2402         if ((page_count(page) - extra) > page_mapcount(page))
2403                 return false;
2404
2405         return true;
2406 }
2407
2408 /*
2409  * migrate_vma_prepare() - lock pages and isolate them from the lru
2410  * @migrate: migrate struct containing all migration information
2411  *
2412  * This locks pages that have been collected by migrate_vma_collect(). Once each
2413  * page is locked it is isolated from the lru (for non-device pages). Finally,
2414  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2415  * migrated by concurrent kernel threads.
2416  */
2417 static void migrate_vma_prepare(struct migrate_vma *migrate)
2418 {
2419         const unsigned long npages = migrate->npages;
2420         const unsigned long start = migrate->start;
2421         unsigned long addr, i, restore = 0;
2422         bool allow_drain = true;
2423
2424         lru_add_drain();
2425
2426         for (i = 0; (i < npages) && migrate->cpages; i++) {
2427                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2428                 bool remap = true;
2429
2430                 if (!page)
2431                         continue;
2432
2433                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2434                         /*
2435                          * Because we are migrating several pages there can be
2436                          * a deadlock between 2 concurrent migration where each
2437                          * are waiting on each other page lock.
2438                          *
2439                          * Make migrate_vma() a best effort thing and backoff
2440                          * for any page we can not lock right away.
2441                          */
2442                         if (!trylock_page(page)) {
2443                                 migrate->src[i] = 0;
2444                                 migrate->cpages--;
2445                                 put_page(page);
2446                                 continue;
2447                         }
2448                         remap = false;
2449                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2450                 }
2451
2452                 /* ZONE_DEVICE pages are not on LRU */
2453                 if (!is_zone_device_page(page)) {
2454                         if (!PageLRU(page) && allow_drain) {
2455                                 /* Drain CPU's pagevec */
2456                                 lru_add_drain_all();
2457                                 allow_drain = false;
2458                         }
2459
2460                         if (isolate_lru_page(page)) {
2461                                 if (remap) {
2462                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2463                                         migrate->cpages--;
2464                                         restore++;
2465                                 } else {
2466                                         migrate->src[i] = 0;
2467                                         unlock_page(page);
2468                                         migrate->cpages--;
2469                                         put_page(page);
2470                                 }
2471                                 continue;
2472                         }
2473
2474                         /* Drop the reference we took in collect */
2475                         put_page(page);
2476                 }
2477
2478                 if (!migrate_vma_check_page(page)) {
2479                         if (remap) {
2480                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2481                                 migrate->cpages--;
2482                                 restore++;
2483
2484                                 if (!is_zone_device_page(page)) {
2485                                         get_page(page);
2486                                         putback_lru_page(page);
2487                                 }
2488                         } else {
2489                                 migrate->src[i] = 0;
2490                                 unlock_page(page);
2491                                 migrate->cpages--;
2492
2493                                 if (!is_zone_device_page(page))
2494                                         putback_lru_page(page);
2495                                 else
2496                                         put_page(page);
2497                         }
2498                 }
2499         }
2500
2501         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2502                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2503
2504                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2505                         continue;
2506
2507                 remove_migration_pte(page, migrate->vma, addr, page);
2508
2509                 migrate->src[i] = 0;
2510                 unlock_page(page);
2511                 put_page(page);
2512                 restore--;
2513         }
2514 }
2515
2516 /*
2517  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2518  * @migrate: migrate struct containing all migration information
2519  *
2520  * Replace page mapping (CPU page table pte) with a special migration pte entry
2521  * and check again if it has been pinned. Pinned pages are restored because we
2522  * cannot migrate them.
2523  *
2524  * This is the last step before we call the device driver callback to allocate
2525  * destination memory and copy contents of original page over to new page.
2526  */
2527 static void migrate_vma_unmap(struct migrate_vma *migrate)
2528 {
2529         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2530         const unsigned long npages = migrate->npages;
2531         const unsigned long start = migrate->start;
2532         unsigned long addr, i, restore = 0;
2533
2534         for (i = 0; i < npages; i++) {
2535                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2536
2537                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2538                         continue;
2539
2540                 if (page_mapped(page)) {
2541                         try_to_unmap(page, flags);
2542                         if (page_mapped(page))
2543                                 goto restore;
2544                 }
2545
2546                 if (migrate_vma_check_page(page))
2547                         continue;
2548
2549 restore:
2550                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2551                 migrate->cpages--;
2552                 restore++;
2553         }
2554
2555         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2556                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2557
2558                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2559                         continue;
2560
2561                 remove_migration_ptes(page, page, false);
2562
2563                 migrate->src[i] = 0;
2564                 unlock_page(page);
2565                 restore--;
2566
2567                 if (is_zone_device_page(page))
2568                         put_page(page);
2569                 else
2570                         putback_lru_page(page);
2571         }
2572 }
2573
2574 /**
2575  * migrate_vma_setup() - prepare to migrate a range of memory
2576  * @args: contains the vma, start, and and pfns arrays for the migration
2577  *
2578  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2579  * without an error.
2580  *
2581  * Prepare to migrate a range of memory virtual address range by collecting all
2582  * the pages backing each virtual address in the range, saving them inside the
2583  * src array.  Then lock those pages and unmap them. Once the pages are locked
2584  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2585  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2586  * corresponding src array entry.  Then restores any pages that are pinned, by
2587  * remapping and unlocking those pages.
2588  *
2589  * The caller should then allocate destination memory and copy source memory to
2590  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2591  * flag set).  Once these are allocated and copied, the caller must update each
2592  * corresponding entry in the dst array with the pfn value of the destination
2593  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2594  * (destination pages must have their struct pages locked, via lock_page()).
2595  *
2596  * Note that the caller does not have to migrate all the pages that are marked
2597  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2598  * device memory to system memory.  If the caller cannot migrate a device page
2599  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2600  * consequences for the userspace process, so it must be avoided if at all
2601  * possible.
2602  *
2603  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2604  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2605  * allowing the caller to allocate device memory for those unback virtual
2606  * address.  For this the caller simply has to allocate device memory and
2607  * properly set the destination entry like for regular migration.  Note that
2608  * this can still fails and thus inside the device driver must check if the
2609  * migration was successful for those entries after calling migrate_vma_pages()
2610  * just like for regular migration.
2611  *
2612  * After that, the callers must call migrate_vma_pages() to go over each entry
2613  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2614  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2615  * then migrate_vma_pages() to migrate struct page information from the source
2616  * struct page to the destination struct page.  If it fails to migrate the
2617  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2618  * src array.
2619  *
2620  * At this point all successfully migrated pages have an entry in the src
2621  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2622  * array entry with MIGRATE_PFN_VALID flag set.
2623  *
2624  * Once migrate_vma_pages() returns the caller may inspect which pages were
2625  * successfully migrated, and which were not.  Successfully migrated pages will
2626  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2627  *
2628  * It is safe to update device page table after migrate_vma_pages() because
2629  * both destination and source page are still locked, and the mmap_sem is held
2630  * in read mode (hence no one can unmap the range being migrated).
2631  *
2632  * Once the caller is done cleaning up things and updating its page table (if it
2633  * chose to do so, this is not an obligation) it finally calls
2634  * migrate_vma_finalize() to update the CPU page table to point to new pages
2635  * for successfully migrated pages or otherwise restore the CPU page table to
2636  * point to the original source pages.
2637  */
2638 int migrate_vma_setup(struct migrate_vma *args)
2639 {
2640         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2641
2642         args->start &= PAGE_MASK;
2643         args->end &= PAGE_MASK;
2644         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2645             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2646                 return -EINVAL;
2647         if (nr_pages <= 0)
2648                 return -EINVAL;
2649         if (args->start < args->vma->vm_start ||
2650             args->start >= args->vma->vm_end)
2651                 return -EINVAL;
2652         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2653                 return -EINVAL;
2654         if (!args->src || !args->dst)
2655                 return -EINVAL;
2656
2657         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2658         args->cpages = 0;
2659         args->npages = 0;
2660
2661         migrate_vma_collect(args);
2662
2663         if (args->cpages)
2664                 migrate_vma_prepare(args);
2665         if (args->cpages)
2666                 migrate_vma_unmap(args);
2667
2668         /*
2669          * At this point pages are locked and unmapped, and thus they have
2670          * stable content and can safely be copied to destination memory that
2671          * is allocated by the drivers.
2672          */
2673         return 0;
2674
2675 }
2676 EXPORT_SYMBOL(migrate_vma_setup);
2677
2678 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2679                                     unsigned long addr,
2680                                     struct page *page,
2681                                     unsigned long *src,
2682                                     unsigned long *dst)
2683 {
2684         struct vm_area_struct *vma = migrate->vma;
2685         struct mm_struct *mm = vma->vm_mm;
2686         struct mem_cgroup *memcg;
2687         bool flush = false;
2688         spinlock_t *ptl;
2689         pte_t entry;
2690         pgd_t *pgdp;
2691         p4d_t *p4dp;
2692         pud_t *pudp;
2693         pmd_t *pmdp;
2694         pte_t *ptep;
2695
2696         /* Only allow populating anonymous memory */
2697         if (!vma_is_anonymous(vma))
2698                 goto abort;
2699
2700         pgdp = pgd_offset(mm, addr);
2701         p4dp = p4d_alloc(mm, pgdp, addr);
2702         if (!p4dp)
2703                 goto abort;
2704         pudp = pud_alloc(mm, p4dp, addr);
2705         if (!pudp)
2706                 goto abort;
2707         pmdp = pmd_alloc(mm, pudp, addr);
2708         if (!pmdp)
2709                 goto abort;
2710
2711         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2712                 goto abort;
2713
2714         /*
2715          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2716          * pte_offset_map() on pmds where a huge pmd might be created
2717          * from a different thread.
2718          *
2719          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2720          * parallel threads are excluded by other means.
2721          *
2722          * Here we only have down_read(mmap_sem).
2723          */
2724         if (pte_alloc(mm, pmdp))
2725                 goto abort;
2726
2727         /* See the comment in pte_alloc_one_map() */
2728         if (unlikely(pmd_trans_unstable(pmdp)))
2729                 goto abort;
2730
2731         if (unlikely(anon_vma_prepare(vma)))
2732                 goto abort;
2733         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2734                 goto abort;
2735
2736         /*
2737          * The memory barrier inside __SetPageUptodate makes sure that
2738          * preceding stores to the page contents become visible before
2739          * the set_pte_at() write.
2740          */
2741         __SetPageUptodate(page);
2742
2743         if (is_zone_device_page(page)) {
2744                 if (is_device_private_page(page)) {
2745                         swp_entry_t swp_entry;
2746
2747                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2748                         entry = swp_entry_to_pte(swp_entry);
2749                 }
2750         } else {
2751                 entry = mk_pte(page, vma->vm_page_prot);
2752                 if (vma->vm_flags & VM_WRITE)
2753                         entry = pte_mkwrite(pte_mkdirty(entry));
2754         }
2755
2756         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2757
2758         if (pte_present(*ptep)) {
2759                 unsigned long pfn = pte_pfn(*ptep);
2760
2761                 if (!is_zero_pfn(pfn)) {
2762                         pte_unmap_unlock(ptep, ptl);
2763                         mem_cgroup_cancel_charge(page, memcg, false);
2764                         goto abort;
2765                 }
2766                 flush = true;
2767         } else if (!pte_none(*ptep)) {
2768                 pte_unmap_unlock(ptep, ptl);
2769                 mem_cgroup_cancel_charge(page, memcg, false);
2770                 goto abort;
2771         }
2772
2773         /*
2774          * Check for usefaultfd but do not deliver the fault. Instead,
2775          * just back off.
2776          */
2777         if (userfaultfd_missing(vma)) {
2778                 pte_unmap_unlock(ptep, ptl);
2779                 mem_cgroup_cancel_charge(page, memcg, false);
2780                 goto abort;
2781         }
2782
2783         inc_mm_counter(mm, MM_ANONPAGES);
2784         page_add_new_anon_rmap(page, vma, addr, false);
2785         mem_cgroup_commit_charge(page, memcg, false, false);
2786         if (!is_zone_device_page(page))
2787                 lru_cache_add_active_or_unevictable(page, vma);
2788         get_page(page);
2789
2790         if (flush) {
2791                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2792                 ptep_clear_flush_notify(vma, addr, ptep);
2793                 set_pte_at_notify(mm, addr, ptep, entry);
2794                 update_mmu_cache(vma, addr, ptep);
2795         } else {
2796                 /* No need to invalidate - it was non-present before */
2797                 set_pte_at(mm, addr, ptep, entry);
2798                 update_mmu_cache(vma, addr, ptep);
2799         }
2800
2801         pte_unmap_unlock(ptep, ptl);
2802         *src = MIGRATE_PFN_MIGRATE;
2803         return;
2804
2805 abort:
2806         *src &= ~MIGRATE_PFN_MIGRATE;
2807 }
2808
2809 /**
2810  * migrate_vma_pages() - migrate meta-data from src page to dst page
2811  * @migrate: migrate struct containing all migration information
2812  *
2813  * This migrates struct page meta-data from source struct page to destination
2814  * struct page. This effectively finishes the migration from source page to the
2815  * destination page.
2816  */
2817 void migrate_vma_pages(struct migrate_vma *migrate)
2818 {
2819         const unsigned long npages = migrate->npages;
2820         const unsigned long start = migrate->start;
2821         struct mmu_notifier_range range;
2822         unsigned long addr, i;
2823         bool notified = false;
2824
2825         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2826                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2827                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2828                 struct address_space *mapping;
2829                 int r;
2830
2831                 if (!newpage) {
2832                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833                         continue;
2834                 }
2835
2836                 if (!page) {
2837                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2838                                 continue;
2839                         }
2840                         if (!notified) {
2841                                 notified = true;
2842
2843                                 mmu_notifier_range_init(&range,
2844                                                         MMU_NOTIFY_CLEAR, 0,
2845                                                         NULL,
2846                                                         migrate->vma->vm_mm,
2847                                                         addr, migrate->end);
2848                                 mmu_notifier_invalidate_range_start(&range);
2849                         }
2850                         migrate_vma_insert_page(migrate, addr, newpage,
2851                                                 &migrate->src[i],
2852                                                 &migrate->dst[i]);
2853                         continue;
2854                 }
2855
2856                 mapping = page_mapping(page);
2857
2858                 if (is_zone_device_page(newpage)) {
2859                         if (is_device_private_page(newpage)) {
2860                                 /*
2861                                  * For now only support private anonymous when
2862                                  * migrating to un-addressable device memory.
2863                                  */
2864                                 if (mapping) {
2865                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2866                                         continue;
2867                                 }
2868                         } else {
2869                                 /*
2870                                  * Other types of ZONE_DEVICE page are not
2871                                  * supported.
2872                                  */
2873                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874                                 continue;
2875                         }
2876                 }
2877
2878                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2879                 if (r != MIGRATEPAGE_SUCCESS)
2880                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2881         }
2882
2883         /*
2884          * No need to double call mmu_notifier->invalidate_range() callback as
2885          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2886          * did already call it.
2887          */
2888         if (notified)
2889                 mmu_notifier_invalidate_range_only_end(&range);
2890 }
2891 EXPORT_SYMBOL(migrate_vma_pages);
2892
2893 /**
2894  * migrate_vma_finalize() - restore CPU page table entry
2895  * @migrate: migrate struct containing all migration information
2896  *
2897  * This replaces the special migration pte entry with either a mapping to the
2898  * new page if migration was successful for that page, or to the original page
2899  * otherwise.
2900  *
2901  * This also unlocks the pages and puts them back on the lru, or drops the extra
2902  * refcount, for device pages.
2903  */
2904 void migrate_vma_finalize(struct migrate_vma *migrate)
2905 {
2906         const unsigned long npages = migrate->npages;
2907         unsigned long i;
2908
2909         for (i = 0; i < npages; i++) {
2910                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2911                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2912
2913                 if (!page) {
2914                         if (newpage) {
2915                                 unlock_page(newpage);
2916                                 put_page(newpage);
2917                         }
2918                         continue;
2919                 }
2920
2921                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2922                         if (newpage) {
2923                                 unlock_page(newpage);
2924                                 put_page(newpage);
2925                         }
2926                         newpage = page;
2927                 }
2928
2929                 remove_migration_ptes(page, newpage, false);
2930                 unlock_page(page);
2931                 migrate->cpages--;
2932
2933                 if (is_zone_device_page(page))
2934                         put_page(page);
2935                 else
2936                         putback_lru_page(page);
2937
2938                 if (newpage != page) {
2939                         unlock_page(newpage);
2940                         if (is_zone_device_page(newpage))
2941                                 put_page(newpage);
2942                         else
2943                                 putback_lru_page(newpage);
2944                 }
2945         }
2946 }
2947 EXPORT_SYMBOL(migrate_vma_finalize);
2948 #endif /* CONFIG_DEVICE_PRIVATE */