edf42ed9003038dd064052065cd5322015b6c4b2
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_cache(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246
247                 if (unlikely(is_zone_device_page(new))) {
248                         if (is_device_private_page(new)) {
249                                 entry = make_device_private_entry(new, pte_write(pte));
250                                 pte = swp_entry_to_pte(entry);
251                         }
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device public or private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406         if (!mapping) {
407                 /* Anonymous page without mapping */
408                 if (page_count(page) != expected_count)
409                         return -EAGAIN;
410
411                 /* No turning back from here */
412                 newpage->index = page->index;
413                 newpage->mapping = page->mapping;
414                 if (PageSwapBacked(page))
415                         __SetPageSwapBacked(newpage);
416
417                 return MIGRATEPAGE_SUCCESS;
418         }
419
420         oldzone = page_zone(page);
421         newzone = page_zone(newpage);
422
423         xas_lock_irq(&xas);
424         if (page_count(page) != expected_count || xas_load(&xas) != page) {
425                 xas_unlock_irq(&xas);
426                 return -EAGAIN;
427         }
428
429         if (!page_ref_freeze(page, expected_count)) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         /*
435          * Now we know that no one else is looking at the page:
436          * no turning back from here.
437          */
438         newpage->index = page->index;
439         newpage->mapping = page->mapping;
440         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441         if (PageSwapBacked(page)) {
442                 __SetPageSwapBacked(newpage);
443                 if (PageSwapCache(page)) {
444                         SetPageSwapCache(newpage);
445                         set_page_private(newpage, page_private(page));
446                 }
447         } else {
448                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449         }
450
451         /* Move dirty while page refs frozen and newpage not yet exposed */
452         dirty = PageDirty(page);
453         if (dirty) {
454                 ClearPageDirty(page);
455                 SetPageDirty(newpage);
456         }
457
458         xas_store(&xas, newpage);
459         if (PageTransHuge(page)) {
460                 int i;
461
462                 for (i = 1; i < HPAGE_PMD_NR; i++) {
463                         xas_next(&xas);
464                         xas_store(&xas, newpage);
465                 }
466         }
467
468         /*
469          * Drop cache reference from old page by unfreezing
470          * to one less reference.
471          * We know this isn't the last reference.
472          */
473         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474
475         xas_unlock(&xas);
476         /* Leave irq disabled to prevent preemption while updating stats */
477
478         /*
479          * If moved to a different zone then also account
480          * the page for that zone. Other VM counters will be
481          * taken care of when we establish references to the
482          * new page and drop references to the old page.
483          *
484          * Note that anonymous pages are accounted for
485          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486          * are mapped to swap space.
487          */
488         if (newzone != oldzone) {
489                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494                 }
495                 if (dirty && mapping_cap_account_dirty(mapping)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500                 }
501         }
502         local_irq_enable();
503
504         return MIGRATEPAGE_SUCCESS;
505 }
506 EXPORT_SYMBOL(migrate_page_move_mapping);
507
508 /*
509  * The expected number of remaining references is the same as that
510  * of migrate_page_move_mapping().
511  */
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513                                    struct page *newpage, struct page *page)
514 {
515         XA_STATE(xas, &mapping->i_pages, page_index(page));
516         int expected_count;
517
518         xas_lock_irq(&xas);
519         expected_count = 2 + page_has_private(page);
520         if (page_count(page) != expected_count || xas_load(&xas) != page) {
521                 xas_unlock_irq(&xas);
522                 return -EAGAIN;
523         }
524
525         if (!page_ref_freeze(page, expected_count)) {
526                 xas_unlock_irq(&xas);
527                 return -EAGAIN;
528         }
529
530         newpage->index = page->index;
531         newpage->mapping = page->mapping;
532
533         get_page(newpage);
534
535         xas_store(&xas, newpage);
536
537         page_ref_unfreeze(page, expected_count - 1);
538
539         xas_unlock_irq(&xas);
540
541         return MIGRATEPAGE_SUCCESS;
542 }
543
544 /*
545  * Gigantic pages are so large that we do not guarantee that page++ pointer
546  * arithmetic will work across the entire page.  We need something more
547  * specialized.
548  */
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550                                 int nr_pages)
551 {
552         int i;
553         struct page *dst_base = dst;
554         struct page *src_base = src;
555
556         for (i = 0; i < nr_pages; ) {
557                 cond_resched();
558                 copy_highpage(dst, src);
559
560                 i++;
561                 dst = mem_map_next(dst, dst_base, i);
562                 src = mem_map_next(src, src_base, i);
563         }
564 }
565
566 static void copy_huge_page(struct page *dst, struct page *src)
567 {
568         int i;
569         int nr_pages;
570
571         if (PageHuge(src)) {
572                 /* hugetlbfs page */
573                 struct hstate *h = page_hstate(src);
574                 nr_pages = pages_per_huge_page(h);
575
576                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577                         __copy_gigantic_page(dst, src, nr_pages);
578                         return;
579                 }
580         } else {
581                 /* thp page */
582                 BUG_ON(!PageTransHuge(src));
583                 nr_pages = hpage_nr_pages(src);
584         }
585
586         for (i = 0; i < nr_pages; i++) {
587                 cond_resched();
588                 copy_highpage(dst + i, src + i);
589         }
590 }
591
592 /*
593  * Copy the page to its new location
594  */
595 void migrate_page_states(struct page *newpage, struct page *page)
596 {
597         int cpupid;
598
599         if (PageError(page))
600                 SetPageError(newpage);
601         if (PageReferenced(page))
602                 SetPageReferenced(newpage);
603         if (PageUptodate(page))
604                 SetPageUptodate(newpage);
605         if (TestClearPageActive(page)) {
606                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607                 SetPageActive(newpage);
608         } else if (TestClearPageUnevictable(page))
609                 SetPageUnevictable(newpage);
610         if (PageWorkingset(page))
611                 SetPageWorkingset(newpage);
612         if (PageChecked(page))
613                 SetPageChecked(newpage);
614         if (PageMappedToDisk(page))
615                 SetPageMappedToDisk(newpage);
616
617         /* Move dirty on pages not done by migrate_page_move_mapping() */
618         if (PageDirty(page))
619                 SetPageDirty(newpage);
620
621         if (page_is_young(page))
622                 set_page_young(newpage);
623         if (page_is_idle(page))
624                 set_page_idle(newpage);
625
626         /*
627          * Copy NUMA information to the new page, to prevent over-eager
628          * future migrations of this same page.
629          */
630         cpupid = page_cpupid_xchg_last(page, -1);
631         page_cpupid_xchg_last(newpage, cpupid);
632
633         ksm_migrate_page(newpage, page);
634         /*
635          * Please do not reorder this without considering how mm/ksm.c's
636          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637          */
638         if (PageSwapCache(page))
639                 ClearPageSwapCache(page);
640         ClearPagePrivate(page);
641         set_page_private(page, 0);
642
643         /*
644          * If any waiters have accumulated on the new page then
645          * wake them up.
646          */
647         if (PageWriteback(newpage))
648                 end_page_writeback(newpage);
649
650         copy_page_owner(page, newpage);
651
652         mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658         if (PageHuge(page) || PageTransHuge(page))
659                 copy_huge_page(newpage, page);
660         else
661                 copy_highpage(newpage, page);
662
663         migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678                 struct page *newpage, struct page *page,
679                 enum migrate_mode mode)
680 {
681         int rc;
682
683         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
684
685         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686
687         if (rc != MIGRATEPAGE_SUCCESS)
688                 return rc;
689
690         if (mode != MIGRATE_SYNC_NO_COPY)
691                 migrate_page_copy(newpage, page);
692         else
693                 migrate_page_states(newpage, page);
694         return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701                                                         enum migrate_mode mode)
702 {
703         struct buffer_head *bh = head;
704
705         /* Simple case, sync compaction */
706         if (mode != MIGRATE_ASYNC) {
707                 do {
708                         lock_buffer(bh);
709                         bh = bh->b_this_page;
710
711                 } while (bh != head);
712
713                 return true;
714         }
715
716         /* async case, we cannot block on lock_buffer so use trylock_buffer */
717         do {
718                 if (!trylock_buffer(bh)) {
719                         /*
720                          * We failed to lock the buffer and cannot stall in
721                          * async migration. Release the taken locks
722                          */
723                         struct buffer_head *failed_bh = bh;
724                         bh = head;
725                         while (bh != failed_bh) {
726                                 unlock_buffer(bh);
727                                 bh = bh->b_this_page;
728                         }
729                         return false;
730                 }
731
732                 bh = bh->b_this_page;
733         } while (bh != head);
734         return true;
735 }
736
737 static int __buffer_migrate_page(struct address_space *mapping,
738                 struct page *newpage, struct page *page, enum migrate_mode mode,
739                 bool check_refs)
740 {
741         struct buffer_head *bh, *head;
742         int rc;
743         int expected_count;
744
745         if (!page_has_buffers(page))
746                 return migrate_page(mapping, newpage, page, mode);
747
748         /* Check whether page does not have extra refs before we do more work */
749         expected_count = expected_page_refs(mapping, page);
750         if (page_count(page) != expected_count)
751                 return -EAGAIN;
752
753         head = page_buffers(page);
754         if (!buffer_migrate_lock_buffers(head, mode))
755                 return -EAGAIN;
756
757         if (check_refs) {
758                 bool busy;
759                 bool invalidated = false;
760
761 recheck_buffers:
762                 busy = false;
763                 spin_lock(&mapping->private_lock);
764                 bh = head;
765                 do {
766                         if (atomic_read(&bh->b_count)) {
767                                 busy = true;
768                                 break;
769                         }
770                         bh = bh->b_this_page;
771                 } while (bh != head);
772                 if (busy) {
773                         if (invalidated) {
774                                 rc = -EAGAIN;
775                                 goto unlock_buffers;
776                         }
777                         spin_unlock(&mapping->private_lock);
778                         invalidate_bh_lrus();
779                         invalidated = true;
780                         goto recheck_buffers;
781                 }
782         }
783
784         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785         if (rc != MIGRATEPAGE_SUCCESS)
786                 goto unlock_buffers;
787
788         ClearPagePrivate(page);
789         set_page_private(newpage, page_private(page));
790         set_page_private(page, 0);
791         put_page(page);
792         get_page(newpage);
793
794         bh = head;
795         do {
796                 set_bh_page(bh, newpage, bh_offset(bh));
797                 bh = bh->b_this_page;
798
799         } while (bh != head);
800
801         SetPagePrivate(newpage);
802
803         if (mode != MIGRATE_SYNC_NO_COPY)
804                 migrate_page_copy(newpage, page);
805         else
806                 migrate_page_states(newpage, page);
807
808         rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810         if (check_refs)
811                 spin_unlock(&mapping->private_lock);
812         bh = head;
813         do {
814                 unlock_buffer(bh);
815                 bh = bh->b_this_page;
816
817         } while (bh != head);
818
819         return rc;
820 }
821
822 /*
823  * Migration function for pages with buffers. This function can only be used
824  * if the underlying filesystem guarantees that no other references to "page"
825  * exist. For example attached buffer heads are accessed only under page lock.
826  */
827 int buffer_migrate_page(struct address_space *mapping,
828                 struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830         return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833
834 /*
835  * Same as above except that this variant is more careful and checks that there
836  * are also no buffer head references. This function is the right one for
837  * mappings where buffer heads are directly looked up and referenced (such as
838  * block device mappings).
839  */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841                 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843         return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852         struct writeback_control wbc = {
853                 .sync_mode = WB_SYNC_NONE,
854                 .nr_to_write = 1,
855                 .range_start = 0,
856                 .range_end = LLONG_MAX,
857                 .for_reclaim = 1
858         };
859         int rc;
860
861         if (!mapping->a_ops->writepage)
862                 /* No write method for the address space */
863                 return -EINVAL;
864
865         if (!clear_page_dirty_for_io(page))
866                 /* Someone else already triggered a write */
867                 return -EAGAIN;
868
869         /*
870          * A dirty page may imply that the underlying filesystem has
871          * the page on some queue. So the page must be clean for
872          * migration. Writeout may mean we loose the lock and the
873          * page state is no longer what we checked for earlier.
874          * At this point we know that the migration attempt cannot
875          * be successful.
876          */
877         remove_migration_ptes(page, page, false);
878
879         rc = mapping->a_ops->writepage(page, &wbc);
880
881         if (rc != AOP_WRITEPAGE_ACTIVATE)
882                 /* unlocked. Relock */
883                 lock_page(page);
884
885         return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892         struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894         if (PageDirty(page)) {
895                 /* Only writeback pages in full synchronous migration */
896                 switch (mode) {
897                 case MIGRATE_SYNC:
898                 case MIGRATE_SYNC_NO_COPY:
899                         break;
900                 default:
901                         return -EBUSY;
902                 }
903                 return writeout(mapping, page);
904         }
905
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913
914         return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929                                 enum migrate_mode mode)
930 {
931         struct address_space *mapping;
932         int rc = -EAGAIN;
933         bool is_lru = !__PageMovable(page);
934
935         VM_BUG_ON_PAGE(!PageLocked(page), page);
936         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938         mapping = page_mapping(page);
939
940         if (likely(is_lru)) {
941                 if (!mapping)
942                         rc = migrate_page(mapping, newpage, page, mode);
943                 else if (mapping->a_ops->migratepage)
944                         /*
945                          * Most pages have a mapping and most filesystems
946                          * provide a migratepage callback. Anonymous pages
947                          * are part of swap space which also has its own
948                          * migratepage callback. This is the most common path
949                          * for page migration.
950                          */
951                         rc = mapping->a_ops->migratepage(mapping, newpage,
952                                                         page, mode);
953                 else
954                         rc = fallback_migrate_page(mapping, newpage,
955                                                         page, mode);
956         } else {
957                 /*
958                  * In case of non-lru page, it could be released after
959                  * isolation step. In that case, we shouldn't try migration.
960                  */
961                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962                 if (!PageMovable(page)) {
963                         rc = MIGRATEPAGE_SUCCESS;
964                         __ClearPageIsolated(page);
965                         goto out;
966                 }
967
968                 rc = mapping->a_ops->migratepage(mapping, newpage,
969                                                 page, mode);
970                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971                         !PageIsolated(page));
972         }
973
974         /*
975          * When successful, old pagecache page->mapping must be cleared before
976          * page is freed; but stats require that PageAnon be left as PageAnon.
977          */
978         if (rc == MIGRATEPAGE_SUCCESS) {
979                 if (__PageMovable(page)) {
980                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982                         /*
983                          * We clear PG_movable under page_lock so any compactor
984                          * cannot try to migrate this page.
985                          */
986                         __ClearPageIsolated(page);
987                 }
988
989                 /*
990                  * Anonymous and movable page->mapping will be cleared by
991                  * free_pages_prepare so don't reset it here for keeping
992                  * the type to work PageAnon, for example.
993                  */
994                 if (!PageMappingFlags(page))
995                         page->mapping = NULL;
996
997                 if (likely(!is_zone_device_page(newpage)))
998                         flush_dcache_page(newpage);
999
1000         }
1001 out:
1002         return rc;
1003 }
1004
1005 static int __unmap_and_move(struct page *page, struct page *newpage,
1006                                 int force, enum migrate_mode mode)
1007 {
1008         int rc = -EAGAIN;
1009         int page_was_mapped = 0;
1010         struct anon_vma *anon_vma = NULL;
1011         bool is_lru = !__PageMovable(page);
1012
1013         if (!trylock_page(page)) {
1014                 if (!force || mode == MIGRATE_ASYNC)
1015                         goto out;
1016
1017                 /*
1018                  * It's not safe for direct compaction to call lock_page.
1019                  * For example, during page readahead pages are added locked
1020                  * to the LRU. Later, when the IO completes the pages are
1021                  * marked uptodate and unlocked. However, the queueing
1022                  * could be merging multiple pages for one bio (e.g.
1023                  * mpage_readpages). If an allocation happens for the
1024                  * second or third page, the process can end up locking
1025                  * the same page twice and deadlocking. Rather than
1026                  * trying to be clever about what pages can be locked,
1027                  * avoid the use of lock_page for direct compaction
1028                  * altogether.
1029                  */
1030                 if (current->flags & PF_MEMALLOC)
1031                         goto out;
1032
1033                 lock_page(page);
1034         }
1035
1036         if (PageWriteback(page)) {
1037                 /*
1038                  * Only in the case of a full synchronous migration is it
1039                  * necessary to wait for PageWriteback. In the async case,
1040                  * the retry loop is too short and in the sync-light case,
1041                  * the overhead of stalling is too much
1042                  */
1043                 switch (mode) {
1044                 case MIGRATE_SYNC:
1045                 case MIGRATE_SYNC_NO_COPY:
1046                         break;
1047                 default:
1048                         rc = -EBUSY;
1049                         goto out_unlock;
1050                 }
1051                 if (!force)
1052                         goto out_unlock;
1053                 wait_on_page_writeback(page);
1054         }
1055
1056         /*
1057          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058          * we cannot notice that anon_vma is freed while we migrates a page.
1059          * This get_anon_vma() delays freeing anon_vma pointer until the end
1060          * of migration. File cache pages are no problem because of page_lock()
1061          * File Caches may use write_page() or lock_page() in migration, then,
1062          * just care Anon page here.
1063          *
1064          * Only page_get_anon_vma() understands the subtleties of
1065          * getting a hold on an anon_vma from outside one of its mms.
1066          * But if we cannot get anon_vma, then we won't need it anyway,
1067          * because that implies that the anon page is no longer mapped
1068          * (and cannot be remapped so long as we hold the page lock).
1069          */
1070         if (PageAnon(page) && !PageKsm(page))
1071                 anon_vma = page_get_anon_vma(page);
1072
1073         /*
1074          * Block others from accessing the new page when we get around to
1075          * establishing additional references. We are usually the only one
1076          * holding a reference to newpage at this point. We used to have a BUG
1077          * here if trylock_page(newpage) fails, but would like to allow for
1078          * cases where there might be a race with the previous use of newpage.
1079          * This is much like races on refcount of oldpage: just don't BUG().
1080          */
1081         if (unlikely(!trylock_page(newpage)))
1082                 goto out_unlock;
1083
1084         if (unlikely(!is_lru)) {
1085                 rc = move_to_new_page(newpage, page, mode);
1086                 goto out_unlock_both;
1087         }
1088
1089         /*
1090          * Corner case handling:
1091          * 1. When a new swap-cache page is read into, it is added to the LRU
1092          * and treated as swapcache but it has no rmap yet.
1093          * Calling try_to_unmap() against a page->mapping==NULL page will
1094          * trigger a BUG.  So handle it here.
1095          * 2. An orphaned page (see truncate_complete_page) might have
1096          * fs-private metadata. The page can be picked up due to memory
1097          * offlining.  Everywhere else except page reclaim, the page is
1098          * invisible to the vm, so the page can not be migrated.  So try to
1099          * free the metadata, so the page can be freed.
1100          */
1101         if (!page->mapping) {
1102                 VM_BUG_ON_PAGE(PageAnon(page), page);
1103                 if (page_has_private(page)) {
1104                         try_to_free_buffers(page);
1105                         goto out_unlock_both;
1106                 }
1107         } else if (page_mapped(page)) {
1108                 /* Establish migration ptes */
1109                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110                                 page);
1111                 try_to_unmap(page,
1112                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113                 page_was_mapped = 1;
1114         }
1115
1116         if (!page_mapped(page))
1117                 rc = move_to_new_page(newpage, page, mode);
1118
1119         if (page_was_mapped)
1120                 remove_migration_ptes(page,
1121                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123 out_unlock_both:
1124         unlock_page(newpage);
1125 out_unlock:
1126         /* Drop an anon_vma reference if we took one */
1127         if (anon_vma)
1128                 put_anon_vma(anon_vma);
1129         unlock_page(page);
1130 out:
1131         /*
1132          * If migration is successful, decrease refcount of the newpage
1133          * which will not free the page because new page owner increased
1134          * refcounter. As well, if it is LRU page, add the page to LRU
1135          * list in here. Use the old state of the isolated source page to
1136          * determine if we migrated a LRU page. newpage was already unlocked
1137          * and possibly modified by its owner - don't rely on the page
1138          * state.
1139          */
1140         if (rc == MIGRATEPAGE_SUCCESS) {
1141                 if (unlikely(!is_lru))
1142                         put_page(newpage);
1143                 else
1144                         putback_lru_page(newpage);
1145         }
1146
1147         return rc;
1148 }
1149
1150 /*
1151  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152  * around it.
1153  */
1154 #if defined(CONFIG_ARM) && \
1155         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166                                    free_page_t put_new_page,
1167                                    unsigned long private, struct page *page,
1168                                    int force, enum migrate_mode mode,
1169                                    enum migrate_reason reason)
1170 {
1171         int rc = MIGRATEPAGE_SUCCESS;
1172         struct page *newpage = NULL;
1173
1174         if (!thp_migration_supported() && PageTransHuge(page))
1175                 return -ENOMEM;
1176
1177         if (page_count(page) == 1) {
1178                 /* page was freed from under us. So we are done. */
1179                 ClearPageActive(page);
1180                 ClearPageUnevictable(page);
1181                 if (unlikely(__PageMovable(page))) {
1182                         lock_page(page);
1183                         if (!PageMovable(page))
1184                                 __ClearPageIsolated(page);
1185                         unlock_page(page);
1186                 }
1187                 goto out;
1188         }
1189
1190         newpage = get_new_page(page, private);
1191         if (!newpage)
1192                 return -ENOMEM;
1193
1194         rc = __unmap_and_move(page, newpage, force, mode);
1195         if (rc == MIGRATEPAGE_SUCCESS)
1196                 set_page_owner_migrate_reason(newpage, reason);
1197
1198 out:
1199         if (rc != -EAGAIN) {
1200                 /*
1201                  * A page that has been migrated has all references
1202                  * removed and will be freed. A page that has not been
1203                  * migrated will have kept its references and be restored.
1204                  */
1205                 list_del(&page->lru);
1206
1207                 /*
1208                  * Compaction can migrate also non-LRU pages which are
1209                  * not accounted to NR_ISOLATED_*. They can be recognized
1210                  * as __PageMovable
1211                  */
1212                 if (likely(!__PageMovable(page)))
1213                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214                                         page_is_file_cache(page), -hpage_nr_pages(page));
1215         }
1216
1217         /*
1218          * If migration is successful, releases reference grabbed during
1219          * isolation. Otherwise, restore the page to right list unless
1220          * we want to retry.
1221          */
1222         if (rc == MIGRATEPAGE_SUCCESS) {
1223                 put_page(page);
1224                 if (reason == MR_MEMORY_FAILURE) {
1225                         /*
1226                          * Set PG_HWPoison on just freed page
1227                          * intentionally. Although it's rather weird,
1228                          * it's how HWPoison flag works at the moment.
1229                          */
1230                         if (set_hwpoison_free_buddy_page(page))
1231                                 num_poisoned_pages_inc();
1232                 }
1233         } else {
1234                 if (rc != -EAGAIN) {
1235                         if (likely(!__PageMovable(page))) {
1236                                 putback_lru_page(page);
1237                                 goto put_new;
1238                         }
1239
1240                         lock_page(page);
1241                         if (PageMovable(page))
1242                                 putback_movable_page(page);
1243                         else
1244                                 __ClearPageIsolated(page);
1245                         unlock_page(page);
1246                         put_page(page);
1247                 }
1248 put_new:
1249                 if (put_new_page)
1250                         put_new_page(newpage, private);
1251                 else
1252                         put_page(newpage);
1253         }
1254
1255         return rc;
1256 }
1257
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                 free_page_t put_new_page, unsigned long private,
1278                                 struct page *hpage, int force,
1279                                 enum migrate_mode mode, int reason)
1280 {
1281         int rc = -EAGAIN;
1282         int page_was_mapped = 0;
1283         struct page *new_hpage;
1284         struct anon_vma *anon_vma = NULL;
1285
1286         /*
1287          * Migratability of hugepages depends on architectures and their size.
1288          * This check is necessary because some callers of hugepage migration
1289          * like soft offline and memory hotremove don't walk through page
1290          * tables or check whether the hugepage is pmd-based or not before
1291          * kicking migration.
1292          */
1293         if (!hugepage_migration_supported(page_hstate(hpage))) {
1294                 putback_active_hugepage(hpage);
1295                 return -ENOSYS;
1296         }
1297
1298         new_hpage = get_new_page(hpage, private);
1299         if (!new_hpage)
1300                 return -ENOMEM;
1301
1302         if (!trylock_page(hpage)) {
1303                 if (!force)
1304                         goto out;
1305                 switch (mode) {
1306                 case MIGRATE_SYNC:
1307                 case MIGRATE_SYNC_NO_COPY:
1308                         break;
1309                 default:
1310                         goto out;
1311                 }
1312                 lock_page(hpage);
1313         }
1314
1315         /*
1316          * Check for pages which are in the process of being freed.  Without
1317          * page_mapping() set, hugetlbfs specific move page routine will not
1318          * be called and we could leak usage counts for subpools.
1319          */
1320         if (page_private(hpage) && !page_mapping(hpage)) {
1321                 rc = -EBUSY;
1322                 goto out_unlock;
1323         }
1324
1325         if (PageAnon(hpage))
1326                 anon_vma = page_get_anon_vma(hpage);
1327
1328         if (unlikely(!trylock_page(new_hpage)))
1329                 goto put_anon;
1330
1331         if (page_mapped(hpage)) {
1332                 try_to_unmap(hpage,
1333                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1334                 page_was_mapped = 1;
1335         }
1336
1337         if (!page_mapped(hpage))
1338                 rc = move_to_new_page(new_hpage, hpage, mode);
1339
1340         if (page_was_mapped)
1341                 remove_migration_ptes(hpage,
1342                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1343
1344         unlock_page(new_hpage);
1345
1346 put_anon:
1347         if (anon_vma)
1348                 put_anon_vma(anon_vma);
1349
1350         if (rc == MIGRATEPAGE_SUCCESS) {
1351                 move_hugetlb_state(hpage, new_hpage, reason);
1352                 put_new_page = NULL;
1353         }
1354
1355 out_unlock:
1356         unlock_page(hpage);
1357 out:
1358         if (rc != -EAGAIN)
1359                 putback_active_hugepage(hpage);
1360
1361         /*
1362          * If migration was not successful and there's a freeing callback, use
1363          * it.  Otherwise, put_page() will drop the reference grabbed during
1364          * isolation.
1365          */
1366         if (put_new_page)
1367                 put_new_page(new_hpage, private);
1368         else
1369                 putback_active_hugepage(new_hpage);
1370
1371         return rc;
1372 }
1373
1374 /*
1375  * migrate_pages - migrate the pages specified in a list, to the free pages
1376  *                 supplied as the target for the page migration
1377  *
1378  * @from:               The list of pages to be migrated.
1379  * @get_new_page:       The function used to allocate free pages to be used
1380  *                      as the target of the page migration.
1381  * @put_new_page:       The function used to free target pages if migration
1382  *                      fails, or NULL if no special handling is necessary.
1383  * @private:            Private data to be passed on to get_new_page()
1384  * @mode:               The migration mode that specifies the constraints for
1385  *                      page migration, if any.
1386  * @reason:             The reason for page migration.
1387  *
1388  * The function returns after 10 attempts or if no pages are movable any more
1389  * because the list has become empty or no retryable pages exist any more.
1390  * The caller should call putback_movable_pages() to return pages to the LRU
1391  * or free list only if ret != 0.
1392  *
1393  * Returns the number of pages that were not migrated, or an error code.
1394  */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396                 free_page_t put_new_page, unsigned long private,
1397                 enum migrate_mode mode, int reason)
1398 {
1399         int retry = 1;
1400         int nr_failed = 0;
1401         int nr_succeeded = 0;
1402         int pass = 0;
1403         struct page *page;
1404         struct page *page2;
1405         int swapwrite = current->flags & PF_SWAPWRITE;
1406         int rc;
1407
1408         if (!swapwrite)
1409                 current->flags |= PF_SWAPWRITE;
1410
1411         for(pass = 0; pass < 10 && retry; pass++) {
1412                 retry = 0;
1413
1414                 list_for_each_entry_safe(page, page2, from, lru) {
1415 retry:
1416                         cond_resched();
1417
1418                         if (PageHuge(page))
1419                                 rc = unmap_and_move_huge_page(get_new_page,
1420                                                 put_new_page, private, page,
1421                                                 pass > 2, mode, reason);
1422                         else
1423                                 rc = unmap_and_move(get_new_page, put_new_page,
1424                                                 private, page, pass > 2, mode,
1425                                                 reason);
1426
1427                         switch(rc) {
1428                         case -ENOMEM:
1429                                 /*
1430                                  * THP migration might be unsupported or the
1431                                  * allocation could've failed so we should
1432                                  * retry on the same page with the THP split
1433                                  * to base pages.
1434                                  *
1435                                  * Head page is retried immediately and tail
1436                                  * pages are added to the tail of the list so
1437                                  * we encounter them after the rest of the list
1438                                  * is processed.
1439                                  */
1440                                 if (PageTransHuge(page) && !PageHuge(page)) {
1441                                         lock_page(page);
1442                                         rc = split_huge_page_to_list(page, from);
1443                                         unlock_page(page);
1444                                         if (!rc) {
1445                                                 list_safe_reset_next(page, page2, lru);
1446                                                 goto retry;
1447                                         }
1448                                 }
1449                                 nr_failed++;
1450                                 goto out;
1451                         case -EAGAIN:
1452                                 retry++;
1453                                 break;
1454                         case MIGRATEPAGE_SUCCESS:
1455                                 nr_succeeded++;
1456                                 break;
1457                         default:
1458                                 /*
1459                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460                                  * unlike -EAGAIN case, the failed page is
1461                                  * removed from migration page list and not
1462                                  * retried in the next outer loop.
1463                                  */
1464                                 nr_failed++;
1465                                 break;
1466                         }
1467                 }
1468         }
1469         nr_failed += retry;
1470         rc = nr_failed;
1471 out:
1472         if (nr_succeeded)
1473                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474         if (nr_failed)
1475                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1476         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477
1478         if (!swapwrite)
1479                 current->flags &= ~PF_SWAPWRITE;
1480
1481         return rc;
1482 }
1483
1484 #ifdef CONFIG_NUMA
1485
1486 static int store_status(int __user *status, int start, int value, int nr)
1487 {
1488         while (nr-- > 0) {
1489                 if (put_user(value, status + start))
1490                         return -EFAULT;
1491                 start++;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static int do_move_pages_to_node(struct mm_struct *mm,
1498                 struct list_head *pagelist, int node)
1499 {
1500         int err;
1501
1502         if (list_empty(pagelist))
1503                 return 0;
1504
1505         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506                         MIGRATE_SYNC, MR_SYSCALL);
1507         if (err)
1508                 putback_movable_pages(pagelist);
1509         return err;
1510 }
1511
1512 /*
1513  * Resolves the given address to a struct page, isolates it from the LRU and
1514  * puts it to the given pagelist.
1515  * Returns:
1516  *     errno - if the page cannot be found/isolated
1517  *     0 - when it doesn't have to be migrated because it is already on the
1518  *         target node
1519  *     1 - when it has been queued
1520  */
1521 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522                 int node, struct list_head *pagelist, bool migrate_all)
1523 {
1524         struct vm_area_struct *vma;
1525         struct page *page;
1526         unsigned int follflags;
1527         int err;
1528
1529         down_read(&mm->mmap_sem);
1530         err = -EFAULT;
1531         vma = find_vma(mm, addr);
1532         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533                 goto out;
1534
1535         /* FOLL_DUMP to ignore special (like zero) pages */
1536         follflags = FOLL_GET | FOLL_DUMP;
1537         page = follow_page(vma, addr, follflags);
1538
1539         err = PTR_ERR(page);
1540         if (IS_ERR(page))
1541                 goto out;
1542
1543         err = -ENOENT;
1544         if (!page)
1545                 goto out;
1546
1547         err = 0;
1548         if (page_to_nid(page) == node)
1549                 goto out_putpage;
1550
1551         err = -EACCES;
1552         if (page_mapcount(page) > 1 && !migrate_all)
1553                 goto out_putpage;
1554
1555         if (PageHuge(page)) {
1556                 if (PageHead(page)) {
1557                         isolate_huge_page(page, pagelist);
1558                         err = 1;
1559                 }
1560         } else {
1561                 struct page *head;
1562
1563                 head = compound_head(page);
1564                 err = isolate_lru_page(head);
1565                 if (err)
1566                         goto out_putpage;
1567
1568                 err = 1;
1569                 list_add_tail(&head->lru, pagelist);
1570                 mod_node_page_state(page_pgdat(head),
1571                         NR_ISOLATED_ANON + page_is_file_cache(head),
1572                         hpage_nr_pages(head));
1573         }
1574 out_putpage:
1575         /*
1576          * Either remove the duplicate refcount from
1577          * isolate_lru_page() or drop the page ref if it was
1578          * not isolated.
1579          */
1580         put_page(page);
1581 out:
1582         up_read(&mm->mmap_sem);
1583         return err;
1584 }
1585
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591                          unsigned long nr_pages,
1592                          const void __user * __user *pages,
1593                          const int __user *nodes,
1594                          int __user *status, int flags)
1595 {
1596         int current_node = NUMA_NO_NODE;
1597         LIST_HEAD(pagelist);
1598         int start, i;
1599         int err = 0, err1;
1600
1601         migrate_prep();
1602
1603         for (i = start = 0; i < nr_pages; i++) {
1604                 const void __user *p;
1605                 unsigned long addr;
1606                 int node;
1607
1608                 err = -EFAULT;
1609                 if (get_user(p, pages + i))
1610                         goto out_flush;
1611                 if (get_user(node, nodes + i))
1612                         goto out_flush;
1613                 addr = (unsigned long)untagged_addr(p);
1614
1615                 err = -ENODEV;
1616                 if (node < 0 || node >= MAX_NUMNODES)
1617                         goto out_flush;
1618                 if (!node_state(node, N_MEMORY))
1619                         goto out_flush;
1620
1621                 err = -EACCES;
1622                 if (!node_isset(node, task_nodes))
1623                         goto out_flush;
1624
1625                 if (current_node == NUMA_NO_NODE) {
1626                         current_node = node;
1627                         start = i;
1628                 } else if (node != current_node) {
1629                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1630                         if (err) {
1631                                 /*
1632                                  * Positive err means the number of failed
1633                                  * pages to migrate.  Since we are going to
1634                                  * abort and return the number of non-migrated
1635                                  * pages, so need to incude the rest of the
1636                                  * nr_pages that have not been attempted as
1637                                  * well.
1638                                  */
1639                                 if (err > 0)
1640                                         err += nr_pages - i - 1;
1641                                 goto out;
1642                         }
1643                         err = store_status(status, start, current_node, i - start);
1644                         if (err)
1645                                 goto out;
1646                         start = i;
1647                         current_node = node;
1648                 }
1649
1650                 /*
1651                  * Errors in the page lookup or isolation are not fatal and we simply
1652                  * report them via status
1653                  */
1654                 err = add_page_for_migration(mm, addr, current_node,
1655                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1656
1657                 if (!err) {
1658                         /* The page is already on the target node */
1659                         err = store_status(status, i, current_node, 1);
1660                         if (err)
1661                                 goto out_flush;
1662                         continue;
1663                 } else if (err > 0) {
1664                         /* The page is successfully queued for migration */
1665                         continue;
1666                 }
1667
1668                 err = store_status(status, i, err, 1);
1669                 if (err)
1670                         goto out_flush;
1671
1672                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1673                 if (err) {
1674                         if (err > 0)
1675                                 err += nr_pages - i - 1;
1676                         goto out;
1677                 }
1678                 if (i > start) {
1679                         err = store_status(status, start, current_node, i - start);
1680                         if (err)
1681                                 goto out;
1682                 }
1683                 current_node = NUMA_NO_NODE;
1684         }
1685 out_flush:
1686         if (list_empty(&pagelist))
1687                 return err;
1688
1689         /* Make sure we do not overwrite the existing error */
1690         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1691         /*
1692          * Don't have to report non-attempted pages here since:
1693          *     - If the above loop is done gracefully all pages have been
1694          *       attempted.
1695          *     - If the above loop is aborted it means a fatal error
1696          *       happened, should return ret.
1697          */
1698         if (!err1)
1699                 err1 = store_status(status, start, current_node, i - start);
1700         if (err >= 0)
1701                 err = err1;
1702 out:
1703         return err;
1704 }
1705
1706 /*
1707  * Determine the nodes of an array of pages and store it in an array of status.
1708  */
1709 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1710                                 const void __user **pages, int *status)
1711 {
1712         unsigned long i;
1713
1714         down_read(&mm->mmap_sem);
1715
1716         for (i = 0; i < nr_pages; i++) {
1717                 unsigned long addr = (unsigned long)(*pages);
1718                 struct vm_area_struct *vma;
1719                 struct page *page;
1720                 int err = -EFAULT;
1721
1722                 vma = find_vma(mm, addr);
1723                 if (!vma || addr < vma->vm_start)
1724                         goto set_status;
1725
1726                 /* FOLL_DUMP to ignore special (like zero) pages */
1727                 page = follow_page(vma, addr, FOLL_DUMP);
1728
1729                 err = PTR_ERR(page);
1730                 if (IS_ERR(page))
1731                         goto set_status;
1732
1733                 err = page ? page_to_nid(page) : -ENOENT;
1734 set_status:
1735                 *status = err;
1736
1737                 pages++;
1738                 status++;
1739         }
1740
1741         up_read(&mm->mmap_sem);
1742 }
1743
1744 /*
1745  * Determine the nodes of a user array of pages and store it in
1746  * a user array of status.
1747  */
1748 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1749                          const void __user * __user *pages,
1750                          int __user *status)
1751 {
1752 #define DO_PAGES_STAT_CHUNK_NR 16
1753         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1754         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1755
1756         while (nr_pages) {
1757                 unsigned long chunk_nr;
1758
1759                 chunk_nr = nr_pages;
1760                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1761                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1762
1763                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1764                         break;
1765
1766                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1767
1768                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1769                         break;
1770
1771                 pages += chunk_nr;
1772                 status += chunk_nr;
1773                 nr_pages -= chunk_nr;
1774         }
1775         return nr_pages ? -EFAULT : 0;
1776 }
1777
1778 /*
1779  * Move a list of pages in the address space of the currently executing
1780  * process.
1781  */
1782 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1783                              const void __user * __user *pages,
1784                              const int __user *nodes,
1785                              int __user *status, int flags)
1786 {
1787         struct task_struct *task;
1788         struct mm_struct *mm;
1789         int err;
1790         nodemask_t task_nodes;
1791
1792         /* Check flags */
1793         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1794                 return -EINVAL;
1795
1796         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1797                 return -EPERM;
1798
1799         /* Find the mm_struct */
1800         rcu_read_lock();
1801         task = pid ? find_task_by_vpid(pid) : current;
1802         if (!task) {
1803                 rcu_read_unlock();
1804                 return -ESRCH;
1805         }
1806         get_task_struct(task);
1807
1808         /*
1809          * Check if this process has the right to modify the specified
1810          * process. Use the regular "ptrace_may_access()" checks.
1811          */
1812         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1813                 rcu_read_unlock();
1814                 err = -EPERM;
1815                 goto out;
1816         }
1817         rcu_read_unlock();
1818
1819         err = security_task_movememory(task);
1820         if (err)
1821                 goto out;
1822
1823         task_nodes = cpuset_mems_allowed(task);
1824         mm = get_task_mm(task);
1825         put_task_struct(task);
1826
1827         if (!mm)
1828                 return -EINVAL;
1829
1830         if (nodes)
1831                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1832                                     nodes, status, flags);
1833         else
1834                 err = do_pages_stat(mm, nr_pages, pages, status);
1835
1836         mmput(mm);
1837         return err;
1838
1839 out:
1840         put_task_struct(task);
1841         return err;
1842 }
1843
1844 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1845                 const void __user * __user *, pages,
1846                 const int __user *, nodes,
1847                 int __user *, status, int, flags)
1848 {
1849         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1850 }
1851
1852 #ifdef CONFIG_COMPAT
1853 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1854                        compat_uptr_t __user *, pages32,
1855                        const int __user *, nodes,
1856                        int __user *, status,
1857                        int, flags)
1858 {
1859         const void __user * __user *pages;
1860         int i;
1861
1862         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1863         for (i = 0; i < nr_pages; i++) {
1864                 compat_uptr_t p;
1865
1866                 if (get_user(p, pages32 + i) ||
1867                         put_user(compat_ptr(p), pages + i))
1868                         return -EFAULT;
1869         }
1870         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871 }
1872 #endif /* CONFIG_COMPAT */
1873
1874 #ifdef CONFIG_NUMA_BALANCING
1875 /*
1876  * Returns true if this is a safe migration target node for misplaced NUMA
1877  * pages. Currently it only checks the watermarks which crude
1878  */
1879 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1880                                    unsigned long nr_migrate_pages)
1881 {
1882         int z;
1883
1884         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1885                 struct zone *zone = pgdat->node_zones + z;
1886
1887                 if (!populated_zone(zone))
1888                         continue;
1889
1890                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1891                 if (!zone_watermark_ok(zone, 0,
1892                                        high_wmark_pages(zone) +
1893                                        nr_migrate_pages,
1894                                        ZONE_MOVABLE, 0))
1895                         continue;
1896                 return true;
1897         }
1898         return false;
1899 }
1900
1901 static struct page *alloc_misplaced_dst_page(struct page *page,
1902                                            unsigned long data)
1903 {
1904         int nid = (int) data;
1905         struct page *newpage;
1906
1907         newpage = __alloc_pages_node(nid,
1908                                          (GFP_HIGHUSER_MOVABLE |
1909                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1910                                           __GFP_NORETRY | __GFP_NOWARN) &
1911                                          ~__GFP_RECLAIM, 0);
1912
1913         return newpage;
1914 }
1915
1916 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1917 {
1918         int page_lru;
1919
1920         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1921
1922         /* Avoid migrating to a node that is nearly full */
1923         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1924                 return 0;
1925
1926         if (isolate_lru_page(page))
1927                 return 0;
1928
1929         /*
1930          * migrate_misplaced_transhuge_page() skips page migration's usual
1931          * check on page_count(), so we must do it here, now that the page
1932          * has been isolated: a GUP pin, or any other pin, prevents migration.
1933          * The expected page count is 3: 1 for page's mapcount and 1 for the
1934          * caller's pin and 1 for the reference taken by isolate_lru_page().
1935          */
1936         if (PageTransHuge(page) && page_count(page) != 3) {
1937                 putback_lru_page(page);
1938                 return 0;
1939         }
1940
1941         page_lru = page_is_file_cache(page);
1942         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943                                 hpage_nr_pages(page));
1944
1945         /*
1946          * Isolating the page has taken another reference, so the
1947          * caller's reference can be safely dropped without the page
1948          * disappearing underneath us during migration.
1949          */
1950         put_page(page);
1951         return 1;
1952 }
1953
1954 bool pmd_trans_migrating(pmd_t pmd)
1955 {
1956         struct page *page = pmd_page(pmd);
1957         return PageLocked(page);
1958 }
1959
1960 /*
1961  * Attempt to migrate a misplaced page to the specified destination
1962  * node. Caller is expected to have an elevated reference count on
1963  * the page that will be dropped by this function before returning.
1964  */
1965 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966                            int node)
1967 {
1968         pg_data_t *pgdat = NODE_DATA(node);
1969         int isolated;
1970         int nr_remaining;
1971         LIST_HEAD(migratepages);
1972
1973         /*
1974          * Don't migrate file pages that are mapped in multiple processes
1975          * with execute permissions as they are probably shared libraries.
1976          */
1977         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978             (vma->vm_flags & VM_EXEC))
1979                 goto out;
1980
1981         /*
1982          * Also do not migrate dirty pages as not all filesystems can move
1983          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1984          */
1985         if (page_is_file_cache(page) && PageDirty(page))
1986                 goto out;
1987
1988         isolated = numamigrate_isolate_page(pgdat, page);
1989         if (!isolated)
1990                 goto out;
1991
1992         list_add(&page->lru, &migratepages);
1993         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1994                                      NULL, node, MIGRATE_ASYNC,
1995                                      MR_NUMA_MISPLACED);
1996         if (nr_remaining) {
1997                 if (!list_empty(&migratepages)) {
1998                         list_del(&page->lru);
1999                         dec_node_page_state(page, NR_ISOLATED_ANON +
2000                                         page_is_file_cache(page));
2001                         putback_lru_page(page);
2002                 }
2003                 isolated = 0;
2004         } else
2005                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2006         BUG_ON(!list_empty(&migratepages));
2007         return isolated;
2008
2009 out:
2010         put_page(page);
2011         return 0;
2012 }
2013 #endif /* CONFIG_NUMA_BALANCING */
2014
2015 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2016 /*
2017  * Migrates a THP to a given target node. page must be locked and is unlocked
2018  * before returning.
2019  */
2020 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2021                                 struct vm_area_struct *vma,
2022                                 pmd_t *pmd, pmd_t entry,
2023                                 unsigned long address,
2024                                 struct page *page, int node)
2025 {
2026         spinlock_t *ptl;
2027         pg_data_t *pgdat = NODE_DATA(node);
2028         int isolated = 0;
2029         struct page *new_page = NULL;
2030         int page_lru = page_is_file_cache(page);
2031         unsigned long start = address & HPAGE_PMD_MASK;
2032
2033         new_page = alloc_pages_node(node,
2034                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035                 HPAGE_PMD_ORDER);
2036         if (!new_page)
2037                 goto out_fail;
2038         prep_transhuge_page(new_page);
2039
2040         isolated = numamigrate_isolate_page(pgdat, page);
2041         if (!isolated) {
2042                 put_page(new_page);
2043                 goto out_fail;
2044         }
2045
2046         /* Prepare a page as a migration target */
2047         __SetPageLocked(new_page);
2048         if (PageSwapBacked(page))
2049                 __SetPageSwapBacked(new_page);
2050
2051         /* anon mapping, we can simply copy page->mapping to the new page: */
2052         new_page->mapping = page->mapping;
2053         new_page->index = page->index;
2054         /* flush the cache before copying using the kernel virtual address */
2055         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2056         migrate_page_copy(new_page, page);
2057         WARN_ON(PageLRU(new_page));
2058
2059         /* Recheck the target PMD */
2060         ptl = pmd_lock(mm, pmd);
2061         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062                 spin_unlock(ptl);
2063
2064                 /* Reverse changes made by migrate_page_copy() */
2065                 if (TestClearPageActive(new_page))
2066                         SetPageActive(page);
2067                 if (TestClearPageUnevictable(new_page))
2068                         SetPageUnevictable(page);
2069
2070                 unlock_page(new_page);
2071                 put_page(new_page);             /* Free it */
2072
2073                 /* Retake the callers reference and putback on LRU */
2074                 get_page(page);
2075                 putback_lru_page(page);
2076                 mod_node_page_state(page_pgdat(page),
2077                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078
2079                 goto out_unlock;
2080         }
2081
2082         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084
2085         /*
2086          * Overwrite the old entry under pagetable lock and establish
2087          * the new PTE. Any parallel GUP will either observe the old
2088          * page blocking on the page lock, block on the page table
2089          * lock or observe the new page. The SetPageUptodate on the
2090          * new page and page_add_new_anon_rmap guarantee the copy is
2091          * visible before the pagetable update.
2092          */
2093         page_add_anon_rmap(new_page, vma, start, true);
2094         /*
2095          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2096          * has already been flushed globally.  So no TLB can be currently
2097          * caching this non present pmd mapping.  There's no need to clear the
2098          * pmd before doing set_pmd_at(), nor to flush the TLB after
2099          * set_pmd_at().  Clearing the pmd here would introduce a race
2100          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2101          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2102          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2103          * pmd.
2104          */
2105         set_pmd_at(mm, start, pmd, entry);
2106         update_mmu_cache_pmd(vma, address, &entry);
2107
2108         page_ref_unfreeze(page, 2);
2109         mlock_migrate_page(new_page, page);
2110         page_remove_rmap(page, true);
2111         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2112
2113         spin_unlock(ptl);
2114
2115         /* Take an "isolate" reference and put new page on the LRU. */
2116         get_page(new_page);
2117         putback_lru_page(new_page);
2118
2119         unlock_page(new_page);
2120         unlock_page(page);
2121         put_page(page);                 /* Drop the rmap reference */
2122         put_page(page);                 /* Drop the LRU isolation reference */
2123
2124         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2125         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2126
2127         mod_node_page_state(page_pgdat(page),
2128                         NR_ISOLATED_ANON + page_lru,
2129                         -HPAGE_PMD_NR);
2130         return isolated;
2131
2132 out_fail:
2133         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2134         ptl = pmd_lock(mm, pmd);
2135         if (pmd_same(*pmd, entry)) {
2136                 entry = pmd_modify(entry, vma->vm_page_prot);
2137                 set_pmd_at(mm, start, pmd, entry);
2138                 update_mmu_cache_pmd(vma, address, &entry);
2139         }
2140         spin_unlock(ptl);
2141
2142 out_unlock:
2143         unlock_page(page);
2144         put_page(page);
2145         return 0;
2146 }
2147 #endif /* CONFIG_NUMA_BALANCING */
2148
2149 #endif /* CONFIG_NUMA */
2150
2151 #ifdef CONFIG_DEVICE_PRIVATE
2152 static int migrate_vma_collect_hole(unsigned long start,
2153                                     unsigned long end,
2154                                     struct mm_walk *walk)
2155 {
2156         struct migrate_vma *migrate = walk->private;
2157         unsigned long addr;
2158
2159         for (addr = start; addr < end; addr += PAGE_SIZE) {
2160                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2161                 migrate->dst[migrate->npages] = 0;
2162                 migrate->npages++;
2163                 migrate->cpages++;
2164         }
2165
2166         return 0;
2167 }
2168
2169 static int migrate_vma_collect_skip(unsigned long start,
2170                                     unsigned long end,
2171                                     struct mm_walk *walk)
2172 {
2173         struct migrate_vma *migrate = walk->private;
2174         unsigned long addr;
2175
2176         for (addr = start; addr < end; addr += PAGE_SIZE) {
2177                 migrate->dst[migrate->npages] = 0;
2178                 migrate->src[migrate->npages++] = 0;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2185                                    unsigned long start,
2186                                    unsigned long end,
2187                                    struct mm_walk *walk)
2188 {
2189         struct migrate_vma *migrate = walk->private;
2190         struct vm_area_struct *vma = walk->vma;
2191         struct mm_struct *mm = vma->vm_mm;
2192         unsigned long addr = start, unmapped = 0;
2193         spinlock_t *ptl;
2194         pte_t *ptep;
2195
2196 again:
2197         if (pmd_none(*pmdp))
2198                 return migrate_vma_collect_hole(start, end, walk);
2199
2200         if (pmd_trans_huge(*pmdp)) {
2201                 struct page *page;
2202
2203                 ptl = pmd_lock(mm, pmdp);
2204                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2205                         spin_unlock(ptl);
2206                         goto again;
2207                 }
2208
2209                 page = pmd_page(*pmdp);
2210                 if (is_huge_zero_page(page)) {
2211                         spin_unlock(ptl);
2212                         split_huge_pmd(vma, pmdp, addr);
2213                         if (pmd_trans_unstable(pmdp))
2214                                 return migrate_vma_collect_skip(start, end,
2215                                                                 walk);
2216                 } else {
2217                         int ret;
2218
2219                         get_page(page);
2220                         spin_unlock(ptl);
2221                         if (unlikely(!trylock_page(page)))
2222                                 return migrate_vma_collect_skip(start, end,
2223                                                                 walk);
2224                         ret = split_huge_page(page);
2225                         unlock_page(page);
2226                         put_page(page);
2227                         if (ret)
2228                                 return migrate_vma_collect_skip(start, end,
2229                                                                 walk);
2230                         if (pmd_none(*pmdp))
2231                                 return migrate_vma_collect_hole(start, end,
2232                                                                 walk);
2233                 }
2234         }
2235
2236         if (unlikely(pmd_bad(*pmdp)))
2237                 return migrate_vma_collect_skip(start, end, walk);
2238
2239         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2240         arch_enter_lazy_mmu_mode();
2241
2242         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2243                 unsigned long mpfn, pfn;
2244                 struct page *page;
2245                 swp_entry_t entry;
2246                 pte_t pte;
2247
2248                 pte = *ptep;
2249
2250                 if (pte_none(pte)) {
2251                         mpfn = MIGRATE_PFN_MIGRATE;
2252                         migrate->cpages++;
2253                         goto next;
2254                 }
2255
2256                 if (!pte_present(pte)) {
2257                         mpfn = 0;
2258
2259                         /*
2260                          * Only care about unaddressable device page special
2261                          * page table entry. Other special swap entries are not
2262                          * migratable, and we ignore regular swapped page.
2263                          */
2264                         entry = pte_to_swp_entry(pte);
2265                         if (!is_device_private_entry(entry))
2266                                 goto next;
2267
2268                         page = device_private_entry_to_page(entry);
2269                         mpfn = migrate_pfn(page_to_pfn(page)) |
2270                                         MIGRATE_PFN_MIGRATE;
2271                         if (is_write_device_private_entry(entry))
2272                                 mpfn |= MIGRATE_PFN_WRITE;
2273                 } else {
2274                         pfn = pte_pfn(pte);
2275                         if (is_zero_pfn(pfn)) {
2276                                 mpfn = MIGRATE_PFN_MIGRATE;
2277                                 migrate->cpages++;
2278                                 goto next;
2279                         }
2280                         page = vm_normal_page(migrate->vma, addr, pte);
2281                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2282                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2283                 }
2284
2285                 /* FIXME support THP */
2286                 if (!page || !page->mapping || PageTransCompound(page)) {
2287                         mpfn = 0;
2288                         goto next;
2289                 }
2290
2291                 /*
2292                  * By getting a reference on the page we pin it and that blocks
2293                  * any kind of migration. Side effect is that it "freezes" the
2294                  * pte.
2295                  *
2296                  * We drop this reference after isolating the page from the lru
2297                  * for non device page (device page are not on the lru and thus
2298                  * can't be dropped from it).
2299                  */
2300                 get_page(page);
2301                 migrate->cpages++;
2302
2303                 /*
2304                  * Optimize for the common case where page is only mapped once
2305                  * in one process. If we can lock the page, then we can safely
2306                  * set up a special migration page table entry now.
2307                  */
2308                 if (trylock_page(page)) {
2309                         pte_t swp_pte;
2310
2311                         mpfn |= MIGRATE_PFN_LOCKED;
2312                         ptep_get_and_clear(mm, addr, ptep);
2313
2314                         /* Setup special migration page table entry */
2315                         entry = make_migration_entry(page, mpfn &
2316                                                      MIGRATE_PFN_WRITE);
2317                         swp_pte = swp_entry_to_pte(entry);
2318                         if (pte_soft_dirty(pte))
2319                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2320                         set_pte_at(mm, addr, ptep, swp_pte);
2321
2322                         /*
2323                          * This is like regular unmap: we remove the rmap and
2324                          * drop page refcount. Page won't be freed, as we took
2325                          * a reference just above.
2326                          */
2327                         page_remove_rmap(page, false);
2328                         put_page(page);
2329
2330                         if (pte_present(pte))
2331                                 unmapped++;
2332                 }
2333
2334 next:
2335                 migrate->dst[migrate->npages] = 0;
2336                 migrate->src[migrate->npages++] = mpfn;
2337         }
2338         arch_leave_lazy_mmu_mode();
2339         pte_unmap_unlock(ptep - 1, ptl);
2340
2341         /* Only flush the TLB if we actually modified any entries */
2342         if (unmapped)
2343                 flush_tlb_range(walk->vma, start, end);
2344
2345         return 0;
2346 }
2347
2348 static const struct mm_walk_ops migrate_vma_walk_ops = {
2349         .pmd_entry              = migrate_vma_collect_pmd,
2350         .pte_hole               = migrate_vma_collect_hole,
2351 };
2352
2353 /*
2354  * migrate_vma_collect() - collect pages over a range of virtual addresses
2355  * @migrate: migrate struct containing all migration information
2356  *
2357  * This will walk the CPU page table. For each virtual address backed by a
2358  * valid page, it updates the src array and takes a reference on the page, in
2359  * order to pin the page until we lock it and unmap it.
2360  */
2361 static void migrate_vma_collect(struct migrate_vma *migrate)
2362 {
2363         struct mmu_notifier_range range;
2364
2365         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2366                         migrate->vma->vm_mm, migrate->start, migrate->end);
2367         mmu_notifier_invalidate_range_start(&range);
2368
2369         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2370                         &migrate_vma_walk_ops, migrate);
2371
2372         mmu_notifier_invalidate_range_end(&range);
2373         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2374 }
2375
2376 /*
2377  * migrate_vma_check_page() - check if page is pinned or not
2378  * @page: struct page to check
2379  *
2380  * Pinned pages cannot be migrated. This is the same test as in
2381  * migrate_page_move_mapping(), except that here we allow migration of a
2382  * ZONE_DEVICE page.
2383  */
2384 static bool migrate_vma_check_page(struct page *page)
2385 {
2386         /*
2387          * One extra ref because caller holds an extra reference, either from
2388          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2389          * a device page.
2390          */
2391         int extra = 1;
2392
2393         /*
2394          * FIXME support THP (transparent huge page), it is bit more complex to
2395          * check them than regular pages, because they can be mapped with a pmd
2396          * or with a pte (split pte mapping).
2397          */
2398         if (PageCompound(page))
2399                 return false;
2400
2401         /* Page from ZONE_DEVICE have one extra reference */
2402         if (is_zone_device_page(page)) {
2403                 /*
2404                  * Private page can never be pin as they have no valid pte and
2405                  * GUP will fail for those. Yet if there is a pending migration
2406                  * a thread might try to wait on the pte migration entry and
2407                  * will bump the page reference count. Sadly there is no way to
2408                  * differentiate a regular pin from migration wait. Hence to
2409                  * avoid 2 racing thread trying to migrate back to CPU to enter
2410                  * infinite loop (one stoping migration because the other is
2411                  * waiting on pte migration entry). We always return true here.
2412                  *
2413                  * FIXME proper solution is to rework migration_entry_wait() so
2414                  * it does not need to take a reference on page.
2415                  */
2416                 return is_device_private_page(page);
2417         }
2418
2419         /* For file back page */
2420         if (page_mapping(page))
2421                 extra += 1 + page_has_private(page);
2422
2423         if ((page_count(page) - extra) > page_mapcount(page))
2424                 return false;
2425
2426         return true;
2427 }
2428
2429 /*
2430  * migrate_vma_prepare() - lock pages and isolate them from the lru
2431  * @migrate: migrate struct containing all migration information
2432  *
2433  * This locks pages that have been collected by migrate_vma_collect(). Once each
2434  * page is locked it is isolated from the lru (for non-device pages). Finally,
2435  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2436  * migrated by concurrent kernel threads.
2437  */
2438 static void migrate_vma_prepare(struct migrate_vma *migrate)
2439 {
2440         const unsigned long npages = migrate->npages;
2441         const unsigned long start = migrate->start;
2442         unsigned long addr, i, restore = 0;
2443         bool allow_drain = true;
2444
2445         lru_add_drain();
2446
2447         for (i = 0; (i < npages) && migrate->cpages; i++) {
2448                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2449                 bool remap = true;
2450
2451                 if (!page)
2452                         continue;
2453
2454                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2455                         /*
2456                          * Because we are migrating several pages there can be
2457                          * a deadlock between 2 concurrent migration where each
2458                          * are waiting on each other page lock.
2459                          *
2460                          * Make migrate_vma() a best effort thing and backoff
2461                          * for any page we can not lock right away.
2462                          */
2463                         if (!trylock_page(page)) {
2464                                 migrate->src[i] = 0;
2465                                 migrate->cpages--;
2466                                 put_page(page);
2467                                 continue;
2468                         }
2469                         remap = false;
2470                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2471                 }
2472
2473                 /* ZONE_DEVICE pages are not on LRU */
2474                 if (!is_zone_device_page(page)) {
2475                         if (!PageLRU(page) && allow_drain) {
2476                                 /* Drain CPU's pagevec */
2477                                 lru_add_drain_all();
2478                                 allow_drain = false;
2479                         }
2480
2481                         if (isolate_lru_page(page)) {
2482                                 if (remap) {
2483                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2484                                         migrate->cpages--;
2485                                         restore++;
2486                                 } else {
2487                                         migrate->src[i] = 0;
2488                                         unlock_page(page);
2489                                         migrate->cpages--;
2490                                         put_page(page);
2491                                 }
2492                                 continue;
2493                         }
2494
2495                         /* Drop the reference we took in collect */
2496                         put_page(page);
2497                 }
2498
2499                 if (!migrate_vma_check_page(page)) {
2500                         if (remap) {
2501                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2502                                 migrate->cpages--;
2503                                 restore++;
2504
2505                                 if (!is_zone_device_page(page)) {
2506                                         get_page(page);
2507                                         putback_lru_page(page);
2508                                 }
2509                         } else {
2510                                 migrate->src[i] = 0;
2511                                 unlock_page(page);
2512                                 migrate->cpages--;
2513
2514                                 if (!is_zone_device_page(page))
2515                                         putback_lru_page(page);
2516                                 else
2517                                         put_page(page);
2518                         }
2519                 }
2520         }
2521
2522         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2523                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2524
2525                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526                         continue;
2527
2528                 remove_migration_pte(page, migrate->vma, addr, page);
2529
2530                 migrate->src[i] = 0;
2531                 unlock_page(page);
2532                 put_page(page);
2533                 restore--;
2534         }
2535 }
2536
2537 /*
2538  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2539  * @migrate: migrate struct containing all migration information
2540  *
2541  * Replace page mapping (CPU page table pte) with a special migration pte entry
2542  * and check again if it has been pinned. Pinned pages are restored because we
2543  * cannot migrate them.
2544  *
2545  * This is the last step before we call the device driver callback to allocate
2546  * destination memory and copy contents of original page over to new page.
2547  */
2548 static void migrate_vma_unmap(struct migrate_vma *migrate)
2549 {
2550         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2551         const unsigned long npages = migrate->npages;
2552         const unsigned long start = migrate->start;
2553         unsigned long addr, i, restore = 0;
2554
2555         for (i = 0; i < npages; i++) {
2556                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2557
2558                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2559                         continue;
2560
2561                 if (page_mapped(page)) {
2562                         try_to_unmap(page, flags);
2563                         if (page_mapped(page))
2564                                 goto restore;
2565                 }
2566
2567                 if (migrate_vma_check_page(page))
2568                         continue;
2569
2570 restore:
2571                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2572                 migrate->cpages--;
2573                 restore++;
2574         }
2575
2576         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2577                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578
2579                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580                         continue;
2581
2582                 remove_migration_ptes(page, page, false);
2583
2584                 migrate->src[i] = 0;
2585                 unlock_page(page);
2586                 restore--;
2587
2588                 if (is_zone_device_page(page))
2589                         put_page(page);
2590                 else
2591                         putback_lru_page(page);
2592         }
2593 }
2594
2595 /**
2596  * migrate_vma_setup() - prepare to migrate a range of memory
2597  * @args: contains the vma, start, and and pfns arrays for the migration
2598  *
2599  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2600  * without an error.
2601  *
2602  * Prepare to migrate a range of memory virtual address range by collecting all
2603  * the pages backing each virtual address in the range, saving them inside the
2604  * src array.  Then lock those pages and unmap them. Once the pages are locked
2605  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2606  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2607  * corresponding src array entry.  Then restores any pages that are pinned, by
2608  * remapping and unlocking those pages.
2609  *
2610  * The caller should then allocate destination memory and copy source memory to
2611  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2612  * flag set).  Once these are allocated and copied, the caller must update each
2613  * corresponding entry in the dst array with the pfn value of the destination
2614  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2615  * (destination pages must have their struct pages locked, via lock_page()).
2616  *
2617  * Note that the caller does not have to migrate all the pages that are marked
2618  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2619  * device memory to system memory.  If the caller cannot migrate a device page
2620  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2621  * consequences for the userspace process, so it must be avoided if at all
2622  * possible.
2623  *
2624  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2625  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2626  * allowing the caller to allocate device memory for those unback virtual
2627  * address.  For this the caller simply has to allocate device memory and
2628  * properly set the destination entry like for regular migration.  Note that
2629  * this can still fails and thus inside the device driver must check if the
2630  * migration was successful for those entries after calling migrate_vma_pages()
2631  * just like for regular migration.
2632  *
2633  * After that, the callers must call migrate_vma_pages() to go over each entry
2634  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2635  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2636  * then migrate_vma_pages() to migrate struct page information from the source
2637  * struct page to the destination struct page.  If it fails to migrate the
2638  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2639  * src array.
2640  *
2641  * At this point all successfully migrated pages have an entry in the src
2642  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2643  * array entry with MIGRATE_PFN_VALID flag set.
2644  *
2645  * Once migrate_vma_pages() returns the caller may inspect which pages were
2646  * successfully migrated, and which were not.  Successfully migrated pages will
2647  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2648  *
2649  * It is safe to update device page table after migrate_vma_pages() because
2650  * both destination and source page are still locked, and the mmap_sem is held
2651  * in read mode (hence no one can unmap the range being migrated).
2652  *
2653  * Once the caller is done cleaning up things and updating its page table (if it
2654  * chose to do so, this is not an obligation) it finally calls
2655  * migrate_vma_finalize() to update the CPU page table to point to new pages
2656  * for successfully migrated pages or otherwise restore the CPU page table to
2657  * point to the original source pages.
2658  */
2659 int migrate_vma_setup(struct migrate_vma *args)
2660 {
2661         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2662
2663         args->start &= PAGE_MASK;
2664         args->end &= PAGE_MASK;
2665         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2666             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2667                 return -EINVAL;
2668         if (nr_pages <= 0)
2669                 return -EINVAL;
2670         if (args->start < args->vma->vm_start ||
2671             args->start >= args->vma->vm_end)
2672                 return -EINVAL;
2673         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2674                 return -EINVAL;
2675         if (!args->src || !args->dst)
2676                 return -EINVAL;
2677
2678         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2679         args->cpages = 0;
2680         args->npages = 0;
2681
2682         migrate_vma_collect(args);
2683
2684         if (args->cpages)
2685                 migrate_vma_prepare(args);
2686         if (args->cpages)
2687                 migrate_vma_unmap(args);
2688
2689         /*
2690          * At this point pages are locked and unmapped, and thus they have
2691          * stable content and can safely be copied to destination memory that
2692          * is allocated by the drivers.
2693          */
2694         return 0;
2695
2696 }
2697 EXPORT_SYMBOL(migrate_vma_setup);
2698
2699 /*
2700  * This code closely matches the code in:
2701  *   __handle_mm_fault()
2702  *     handle_pte_fault()
2703  *       do_anonymous_page()
2704  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2705  * private page.
2706  */
2707 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2708                                     unsigned long addr,
2709                                     struct page *page,
2710                                     unsigned long *src,
2711                                     unsigned long *dst)
2712 {
2713         struct vm_area_struct *vma = migrate->vma;
2714         struct mm_struct *mm = vma->vm_mm;
2715         struct mem_cgroup *memcg;
2716         bool flush = false;
2717         spinlock_t *ptl;
2718         pte_t entry;
2719         pgd_t *pgdp;
2720         p4d_t *p4dp;
2721         pud_t *pudp;
2722         pmd_t *pmdp;
2723         pte_t *ptep;
2724
2725         /* Only allow populating anonymous memory */
2726         if (!vma_is_anonymous(vma))
2727                 goto abort;
2728
2729         pgdp = pgd_offset(mm, addr);
2730         p4dp = p4d_alloc(mm, pgdp, addr);
2731         if (!p4dp)
2732                 goto abort;
2733         pudp = pud_alloc(mm, p4dp, addr);
2734         if (!pudp)
2735                 goto abort;
2736         pmdp = pmd_alloc(mm, pudp, addr);
2737         if (!pmdp)
2738                 goto abort;
2739
2740         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2741                 goto abort;
2742
2743         /*
2744          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2745          * pte_offset_map() on pmds where a huge pmd might be created
2746          * from a different thread.
2747          *
2748          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2749          * parallel threads are excluded by other means.
2750          *
2751          * Here we only have down_read(mmap_sem).
2752          */
2753         if (pte_alloc(mm, pmdp))
2754                 goto abort;
2755
2756         /* See the comment in pte_alloc_one_map() */
2757         if (unlikely(pmd_trans_unstable(pmdp)))
2758                 goto abort;
2759
2760         if (unlikely(anon_vma_prepare(vma)))
2761                 goto abort;
2762         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2763                 goto abort;
2764
2765         /*
2766          * The memory barrier inside __SetPageUptodate makes sure that
2767          * preceding stores to the page contents become visible before
2768          * the set_pte_at() write.
2769          */
2770         __SetPageUptodate(page);
2771
2772         if (is_zone_device_page(page)) {
2773                 if (is_device_private_page(page)) {
2774                         swp_entry_t swp_entry;
2775
2776                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2777                         entry = swp_entry_to_pte(swp_entry);
2778                 }
2779         } else {
2780                 entry = mk_pte(page, vma->vm_page_prot);
2781                 if (vma->vm_flags & VM_WRITE)
2782                         entry = pte_mkwrite(pte_mkdirty(entry));
2783         }
2784
2785         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2786
2787         if (check_stable_address_space(mm))
2788                 goto unlock_abort;
2789
2790         if (pte_present(*ptep)) {
2791                 unsigned long pfn = pte_pfn(*ptep);
2792
2793                 if (!is_zero_pfn(pfn))
2794                         goto unlock_abort;
2795                 flush = true;
2796         } else if (!pte_none(*ptep))
2797                 goto unlock_abort;
2798
2799         /*
2800          * Check for userfaultfd but do not deliver the fault. Instead,
2801          * just back off.
2802          */
2803         if (userfaultfd_missing(vma))
2804                 goto unlock_abort;
2805
2806         inc_mm_counter(mm, MM_ANONPAGES);
2807         page_add_new_anon_rmap(page, vma, addr, false);
2808         mem_cgroup_commit_charge(page, memcg, false, false);
2809         if (!is_zone_device_page(page))
2810                 lru_cache_add_active_or_unevictable(page, vma);
2811         get_page(page);
2812
2813         if (flush) {
2814                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2815                 ptep_clear_flush_notify(vma, addr, ptep);
2816                 set_pte_at_notify(mm, addr, ptep, entry);
2817                 update_mmu_cache(vma, addr, ptep);
2818         } else {
2819                 /* No need to invalidate - it was non-present before */
2820                 set_pte_at(mm, addr, ptep, entry);
2821                 update_mmu_cache(vma, addr, ptep);
2822         }
2823
2824         pte_unmap_unlock(ptep, ptl);
2825         *src = MIGRATE_PFN_MIGRATE;
2826         return;
2827
2828 unlock_abort:
2829         pte_unmap_unlock(ptep, ptl);
2830         mem_cgroup_cancel_charge(page, memcg, false);
2831 abort:
2832         *src &= ~MIGRATE_PFN_MIGRATE;
2833 }
2834
2835 /**
2836  * migrate_vma_pages() - migrate meta-data from src page to dst page
2837  * @migrate: migrate struct containing all migration information
2838  *
2839  * This migrates struct page meta-data from source struct page to destination
2840  * struct page. This effectively finishes the migration from source page to the
2841  * destination page.
2842  */
2843 void migrate_vma_pages(struct migrate_vma *migrate)
2844 {
2845         const unsigned long npages = migrate->npages;
2846         const unsigned long start = migrate->start;
2847         struct mmu_notifier_range range;
2848         unsigned long addr, i;
2849         bool notified = false;
2850
2851         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2852                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854                 struct address_space *mapping;
2855                 int r;
2856
2857                 if (!newpage) {
2858                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2859                         continue;
2860                 }
2861
2862                 if (!page) {
2863                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2864                                 continue;
2865                         if (!notified) {
2866                                 notified = true;
2867
2868                                 mmu_notifier_range_init(&range,
2869                                                         MMU_NOTIFY_CLEAR, 0,
2870                                                         NULL,
2871                                                         migrate->vma->vm_mm,
2872                                                         addr, migrate->end);
2873                                 mmu_notifier_invalidate_range_start(&range);
2874                         }
2875                         migrate_vma_insert_page(migrate, addr, newpage,
2876                                                 &migrate->src[i],
2877                                                 &migrate->dst[i]);
2878                         continue;
2879                 }
2880
2881                 mapping = page_mapping(page);
2882
2883                 if (is_zone_device_page(newpage)) {
2884                         if (is_device_private_page(newpage)) {
2885                                 /*
2886                                  * For now only support private anonymous when
2887                                  * migrating to un-addressable device memory.
2888                                  */
2889                                 if (mapping) {
2890                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2891                                         continue;
2892                                 }
2893                         } else {
2894                                 /*
2895                                  * Other types of ZONE_DEVICE page are not
2896                                  * supported.
2897                                  */
2898                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2899                                 continue;
2900                         }
2901                 }
2902
2903                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2904                 if (r != MIGRATEPAGE_SUCCESS)
2905                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2906         }
2907
2908         /*
2909          * No need to double call mmu_notifier->invalidate_range() callback as
2910          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2911          * did already call it.
2912          */
2913         if (notified)
2914                 mmu_notifier_invalidate_range_only_end(&range);
2915 }
2916 EXPORT_SYMBOL(migrate_vma_pages);
2917
2918 /**
2919  * migrate_vma_finalize() - restore CPU page table entry
2920  * @migrate: migrate struct containing all migration information
2921  *
2922  * This replaces the special migration pte entry with either a mapping to the
2923  * new page if migration was successful for that page, or to the original page
2924  * otherwise.
2925  *
2926  * This also unlocks the pages and puts them back on the lru, or drops the extra
2927  * refcount, for device pages.
2928  */
2929 void migrate_vma_finalize(struct migrate_vma *migrate)
2930 {
2931         const unsigned long npages = migrate->npages;
2932         unsigned long i;
2933
2934         for (i = 0; i < npages; i++) {
2935                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2936                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2937
2938                 if (!page) {
2939                         if (newpage) {
2940                                 unlock_page(newpage);
2941                                 put_page(newpage);
2942                         }
2943                         continue;
2944                 }
2945
2946                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2947                         if (newpage) {
2948                                 unlock_page(newpage);
2949                                 put_page(newpage);
2950                         }
2951                         newpage = page;
2952                 }
2953
2954                 remove_migration_ptes(page, newpage, false);
2955                 unlock_page(page);
2956                 migrate->cpages--;
2957
2958                 if (is_zone_device_page(page))
2959                         put_page(page);
2960                 else
2961                         putback_lru_page(page);
2962
2963                 if (newpage != page) {
2964                         unlock_page(newpage);
2965                         if (is_zone_device_page(newpage))
2966                                 put_page(newpage);
2967                         else
2968                                 putback_lru_page(newpage);
2969                 }
2970         }
2971 }
2972 EXPORT_SYMBOL(migrate_vma_finalize);
2973 #endif /* CONFIG_DEVICE_PRIVATE */