Merge tag 'fs.idmapped.mount_setattr.v5.13-rc3' of gitolite.kernel.org:pub/scm/linux...
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62         struct address_space *mapping;
63
64         /*
65          * Avoid burning cycles with pages that are yet under __free_pages(),
66          * or just got freed under us.
67          *
68          * In case we 'win' a race for a movable page being freed under us and
69          * raise its refcount preventing __free_pages() from doing its job
70          * the put_page() at the end of this block will take care of
71          * release this page, thus avoiding a nasty leakage.
72          */
73         if (unlikely(!get_page_unless_zero(page)))
74                 goto out;
75
76         /*
77          * Check PageMovable before holding a PG_lock because page's owner
78          * assumes anybody doesn't touch PG_lock of newly allocated page
79          * so unconditionally grabbing the lock ruins page's owner side.
80          */
81         if (unlikely(!__PageMovable(page)))
82                 goto out_putpage;
83         /*
84          * As movable pages are not isolated from LRU lists, concurrent
85          * compaction threads can race against page migration functions
86          * as well as race against the releasing a page.
87          *
88          * In order to avoid having an already isolated movable page
89          * being (wrongly) re-isolated while it is under migration,
90          * or to avoid attempting to isolate pages being released,
91          * lets be sure we have the page lock
92          * before proceeding with the movable page isolation steps.
93          */
94         if (unlikely(!trylock_page(page)))
95                 goto out_putpage;
96
97         if (!PageMovable(page) || PageIsolated(page))
98                 goto out_no_isolated;
99
100         mapping = page_mapping(page);
101         VM_BUG_ON_PAGE(!mapping, page);
102
103         if (!mapping->a_ops->isolate_page(page, mode))
104                 goto out_no_isolated;
105
106         /* Driver shouldn't use PG_isolated bit of page->flags */
107         WARN_ON_ONCE(PageIsolated(page));
108         __SetPageIsolated(page);
109         unlock_page(page);
110
111         return 0;
112
113 out_no_isolated:
114         unlock_page(page);
115 out_putpage:
116         put_page(page);
117 out:
118         return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123         struct address_space *mapping;
124
125         mapping = page_mapping(page);
126         mapping->a_ops->putback_page(page);
127         __ClearPageIsolated(page);
128 }
129
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140         struct page *page;
141         struct page *page2;
142
143         list_for_each_entry_safe(page, page2, l, lru) {
144                 if (unlikely(PageHuge(page))) {
145                         putback_active_hugepage(page);
146                         continue;
147                 }
148                 list_del(&page->lru);
149                 /*
150                  * We isolated non-lru movable page so here we can use
151                  * __PageMovable because LRU page's mapping cannot have
152                  * PAGE_MAPPING_MOVABLE.
153                  */
154                 if (unlikely(__PageMovable(page))) {
155                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
156                         lock_page(page);
157                         if (PageMovable(page))
158                                 putback_movable_page(page);
159                         else
160                                 __ClearPageIsolated(page);
161                         unlock_page(page);
162                         put_page(page);
163                 } else {
164                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165                                         page_is_file_lru(page), -thp_nr_pages(page));
166                         putback_lru_page(page);
167                 }
168         }
169 }
170
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175                                  unsigned long addr, void *old)
176 {
177         struct page_vma_mapped_walk pvmw = {
178                 .page = old,
179                 .vma = vma,
180                 .address = addr,
181                 .flags = PVMW_SYNC | PVMW_MIGRATION,
182         };
183         struct page *new;
184         pte_t pte;
185         swp_entry_t entry;
186
187         VM_BUG_ON_PAGE(PageTail(page), page);
188         while (page_vma_mapped_walk(&pvmw)) {
189                 if (PageKsm(page))
190                         new = page;
191                 else
192                         new = page - pvmw.page->index +
193                                 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196                 /* PMD-mapped THP migration entry */
197                 if (!pvmw.pte) {
198                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199                         remove_migration_pmd(&pvmw, new);
200                         continue;
201                 }
202 #endif
203
204                 get_page(new);
205                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206                 if (pte_swp_soft_dirty(*pvmw.pte))
207                         pte = pte_mksoft_dirty(pte);
208
209                 /*
210                  * Recheck VMA as permissions can change since migration started
211                  */
212                 entry = pte_to_swp_entry(*pvmw.pte);
213                 if (is_write_migration_entry(entry))
214                         pte = maybe_mkwrite(pte, vma);
215                 else if (pte_swp_uffd_wp(*pvmw.pte))
216                         pte = pte_mkuffd_wp(pte);
217
218                 if (unlikely(is_device_private_page(new))) {
219                         entry = make_device_private_entry(new, pte_write(pte));
220                         pte = swp_entry_to_pte(entry);
221                         if (pte_swp_soft_dirty(*pvmw.pte))
222                                 pte = pte_swp_mksoft_dirty(pte);
223                         if (pte_swp_uffd_wp(*pvmw.pte))
224                                 pte = pte_swp_mkuffd_wp(pte);
225                 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         pte = pte_mkhuge(pte);
230                         pte = arch_make_huge_pte(pte, vma, new, 0);
231                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232                         if (PageAnon(new))
233                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
234                         else
235                                 page_dup_rmap(new, true);
236                 } else
237 #endif
238                 {
239                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240
241                         if (PageAnon(new))
242                                 page_add_anon_rmap(new, vma, pvmw.address, false);
243                         else
244                                 page_add_file_rmap(new, false);
245                 }
246                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247                         mlock_vma_page(new);
248
249                 if (PageTransHuge(page) && PageMlocked(page))
250                         clear_page_mlock(page);
251
252                 /* No need to invalidate - it was non-present before */
253                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254         }
255
256         return true;
257 }
258
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265         struct rmap_walk_control rwc = {
266                 .rmap_one = remove_migration_pte,
267                 .arg = old,
268         };
269
270         if (locked)
271                 rmap_walk_locked(new, &rwc);
272         else
273                 rmap_walk(new, &rwc);
274 }
275
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282                                 spinlock_t *ptl)
283 {
284         pte_t pte;
285         swp_entry_t entry;
286         struct page *page;
287
288         spin_lock(ptl);
289         pte = *ptep;
290         if (!is_swap_pte(pte))
291                 goto out;
292
293         entry = pte_to_swp_entry(pte);
294         if (!is_migration_entry(entry))
295                 goto out;
296
297         page = migration_entry_to_page(entry);
298
299         /*
300          * Once page cache replacement of page migration started, page_count
301          * is zero; but we must not call put_and_wait_on_page_locked() without
302          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
303          */
304         if (!get_page_unless_zero(page))
305                 goto out;
306         pte_unmap_unlock(ptep, ptl);
307         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
308         return;
309 out:
310         pte_unmap_unlock(ptep, ptl);
311 }
312
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314                                 unsigned long address)
315 {
316         spinlock_t *ptl = pte_lockptr(mm, pmd);
317         pte_t *ptep = pte_offset_map(pmd, address);
318         __migration_entry_wait(mm, ptep, ptl);
319 }
320
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322                 struct mm_struct *mm, pte_t *pte)
323 {
324         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325         __migration_entry_wait(mm, pte, ptl);
326 }
327
328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
330 {
331         spinlock_t *ptl;
332         struct page *page;
333
334         ptl = pmd_lock(mm, pmd);
335         if (!is_pmd_migration_entry(*pmd))
336                 goto unlock;
337         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338         if (!get_page_unless_zero(page))
339                 goto unlock;
340         spin_unlock(ptl);
341         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
342         return;
343 unlock:
344         spin_unlock(ptl);
345 }
346 #endif
347
348 static int expected_page_refs(struct address_space *mapping, struct page *page)
349 {
350         int expected_count = 1;
351
352         /*
353          * Device private pages have an extra refcount as they are
354          * ZONE_DEVICE pages.
355          */
356         expected_count += is_device_private_page(page);
357         if (mapping)
358                 expected_count += thp_nr_pages(page) + page_has_private(page);
359
360         return expected_count;
361 }
362
363 /*
364  * Replace the page in the mapping.
365  *
366  * The number of remaining references must be:
367  * 1 for anonymous pages without a mapping
368  * 2 for pages with a mapping
369  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
370  */
371 int migrate_page_move_mapping(struct address_space *mapping,
372                 struct page *newpage, struct page *page, int extra_count)
373 {
374         XA_STATE(xas, &mapping->i_pages, page_index(page));
375         struct zone *oldzone, *newzone;
376         int dirty;
377         int expected_count = expected_page_refs(mapping, page) + extra_count;
378         int nr = thp_nr_pages(page);
379
380         if (!mapping) {
381                 /* Anonymous page without mapping */
382                 if (page_count(page) != expected_count)
383                         return -EAGAIN;
384
385                 /* No turning back from here */
386                 newpage->index = page->index;
387                 newpage->mapping = page->mapping;
388                 if (PageSwapBacked(page))
389                         __SetPageSwapBacked(newpage);
390
391                 return MIGRATEPAGE_SUCCESS;
392         }
393
394         oldzone = page_zone(page);
395         newzone = page_zone(newpage);
396
397         xas_lock_irq(&xas);
398         if (page_count(page) != expected_count || xas_load(&xas) != page) {
399                 xas_unlock_irq(&xas);
400                 return -EAGAIN;
401         }
402
403         if (!page_ref_freeze(page, expected_count)) {
404                 xas_unlock_irq(&xas);
405                 return -EAGAIN;
406         }
407
408         /*
409          * Now we know that no one else is looking at the page:
410          * no turning back from here.
411          */
412         newpage->index = page->index;
413         newpage->mapping = page->mapping;
414         page_ref_add(newpage, nr); /* add cache reference */
415         if (PageSwapBacked(page)) {
416                 __SetPageSwapBacked(newpage);
417                 if (PageSwapCache(page)) {
418                         SetPageSwapCache(newpage);
419                         set_page_private(newpage, page_private(page));
420                 }
421         } else {
422                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
423         }
424
425         /* Move dirty while page refs frozen and newpage not yet exposed */
426         dirty = PageDirty(page);
427         if (dirty) {
428                 ClearPageDirty(page);
429                 SetPageDirty(newpage);
430         }
431
432         xas_store(&xas, newpage);
433         if (PageTransHuge(page)) {
434                 int i;
435
436                 for (i = 1; i < nr; i++) {
437                         xas_next(&xas);
438                         xas_store(&xas, newpage);
439                 }
440         }
441
442         /*
443          * Drop cache reference from old page by unfreezing
444          * to one less reference.
445          * We know this isn't the last reference.
446          */
447         page_ref_unfreeze(page, expected_count - nr);
448
449         xas_unlock(&xas);
450         /* Leave irq disabled to prevent preemption while updating stats */
451
452         /*
453          * If moved to a different zone then also account
454          * the page for that zone. Other VM counters will be
455          * taken care of when we establish references to the
456          * new page and drop references to the old page.
457          *
458          * Note that anonymous pages are accounted for
459          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
460          * are mapped to swap space.
461          */
462         if (newzone != oldzone) {
463                 struct lruvec *old_lruvec, *new_lruvec;
464                 struct mem_cgroup *memcg;
465
466                 memcg = page_memcg(page);
467                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
469
470                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
472                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
473                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
475                 }
476 #ifdef CONFIG_SWAP
477                 if (PageSwapCache(page)) {
478                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
480                 }
481 #endif
482                 if (dirty && mapping_can_writeback(mapping)) {
483                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
487                 }
488         }
489         local_irq_enable();
490
491         return MIGRATEPAGE_SUCCESS;
492 }
493 EXPORT_SYMBOL(migrate_page_move_mapping);
494
495 /*
496  * The expected number of remaining references is the same as that
497  * of migrate_page_move_mapping().
498  */
499 int migrate_huge_page_move_mapping(struct address_space *mapping,
500                                    struct page *newpage, struct page *page)
501 {
502         XA_STATE(xas, &mapping->i_pages, page_index(page));
503         int expected_count;
504
505         xas_lock_irq(&xas);
506         expected_count = 2 + page_has_private(page);
507         if (page_count(page) != expected_count || xas_load(&xas) != page) {
508                 xas_unlock_irq(&xas);
509                 return -EAGAIN;
510         }
511
512         if (!page_ref_freeze(page, expected_count)) {
513                 xas_unlock_irq(&xas);
514                 return -EAGAIN;
515         }
516
517         newpage->index = page->index;
518         newpage->mapping = page->mapping;
519
520         get_page(newpage);
521
522         xas_store(&xas, newpage);
523
524         page_ref_unfreeze(page, expected_count - 1);
525
526         xas_unlock_irq(&xas);
527
528         return MIGRATEPAGE_SUCCESS;
529 }
530
531 /*
532  * Gigantic pages are so large that we do not guarantee that page++ pointer
533  * arithmetic will work across the entire page.  We need something more
534  * specialized.
535  */
536 static void __copy_gigantic_page(struct page *dst, struct page *src,
537                                 int nr_pages)
538 {
539         int i;
540         struct page *dst_base = dst;
541         struct page *src_base = src;
542
543         for (i = 0; i < nr_pages; ) {
544                 cond_resched();
545                 copy_highpage(dst, src);
546
547                 i++;
548                 dst = mem_map_next(dst, dst_base, i);
549                 src = mem_map_next(src, src_base, i);
550         }
551 }
552
553 static void copy_huge_page(struct page *dst, struct page *src)
554 {
555         int i;
556         int nr_pages;
557
558         if (PageHuge(src)) {
559                 /* hugetlbfs page */
560                 struct hstate *h = page_hstate(src);
561                 nr_pages = pages_per_huge_page(h);
562
563                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564                         __copy_gigantic_page(dst, src, nr_pages);
565                         return;
566                 }
567         } else {
568                 /* thp page */
569                 BUG_ON(!PageTransHuge(src));
570                 nr_pages = thp_nr_pages(src);
571         }
572
573         for (i = 0; i < nr_pages; i++) {
574                 cond_resched();
575                 copy_highpage(dst + i, src + i);
576         }
577 }
578
579 /*
580  * Copy the page to its new location
581  */
582 void migrate_page_states(struct page *newpage, struct page *page)
583 {
584         int cpupid;
585
586         if (PageError(page))
587                 SetPageError(newpage);
588         if (PageReferenced(page))
589                 SetPageReferenced(newpage);
590         if (PageUptodate(page))
591                 SetPageUptodate(newpage);
592         if (TestClearPageActive(page)) {
593                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
594                 SetPageActive(newpage);
595         } else if (TestClearPageUnevictable(page))
596                 SetPageUnevictable(newpage);
597         if (PageWorkingset(page))
598                 SetPageWorkingset(newpage);
599         if (PageChecked(page))
600                 SetPageChecked(newpage);
601         if (PageMappedToDisk(page))
602                 SetPageMappedToDisk(newpage);
603
604         /* Move dirty on pages not done by migrate_page_move_mapping() */
605         if (PageDirty(page))
606                 SetPageDirty(newpage);
607
608         if (page_is_young(page))
609                 set_page_young(newpage);
610         if (page_is_idle(page))
611                 set_page_idle(newpage);
612
613         /*
614          * Copy NUMA information to the new page, to prevent over-eager
615          * future migrations of this same page.
616          */
617         cpupid = page_cpupid_xchg_last(page, -1);
618         page_cpupid_xchg_last(newpage, cpupid);
619
620         ksm_migrate_page(newpage, page);
621         /*
622          * Please do not reorder this without considering how mm/ksm.c's
623          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
624          */
625         if (PageSwapCache(page))
626                 ClearPageSwapCache(page);
627         ClearPagePrivate(page);
628         set_page_private(page, 0);
629
630         /*
631          * If any waiters have accumulated on the new page then
632          * wake them up.
633          */
634         if (PageWriteback(newpage))
635                 end_page_writeback(newpage);
636
637         /*
638          * PG_readahead shares the same bit with PG_reclaim.  The above
639          * end_page_writeback() may clear PG_readahead mistakenly, so set the
640          * bit after that.
641          */
642         if (PageReadahead(page))
643                 SetPageReadahead(newpage);
644
645         copy_page_owner(page, newpage);
646
647         if (!PageHuge(page))
648                 mem_cgroup_migrate(page, newpage);
649 }
650 EXPORT_SYMBOL(migrate_page_states);
651
652 void migrate_page_copy(struct page *newpage, struct page *page)
653 {
654         if (PageHuge(page) || PageTransHuge(page))
655                 copy_huge_page(newpage, page);
656         else
657                 copy_highpage(newpage, page);
658
659         migrate_page_states(newpage, page);
660 }
661 EXPORT_SYMBOL(migrate_page_copy);
662
663 /************************************************************
664  *                    Migration functions
665  ***********************************************************/
666
667 /*
668  * Common logic to directly migrate a single LRU page suitable for
669  * pages that do not use PagePrivate/PagePrivate2.
670  *
671  * Pages are locked upon entry and exit.
672  */
673 int migrate_page(struct address_space *mapping,
674                 struct page *newpage, struct page *page,
675                 enum migrate_mode mode)
676 {
677         int rc;
678
679         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
680
681         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
682
683         if (rc != MIGRATEPAGE_SUCCESS)
684                 return rc;
685
686         if (mode != MIGRATE_SYNC_NO_COPY)
687                 migrate_page_copy(newpage, page);
688         else
689                 migrate_page_states(newpage, page);
690         return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693
694 #ifdef CONFIG_BLOCK
695 /* Returns true if all buffers are successfully locked */
696 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697                                                         enum migrate_mode mode)
698 {
699         struct buffer_head *bh = head;
700
701         /* Simple case, sync compaction */
702         if (mode != MIGRATE_ASYNC) {
703                 do {
704                         lock_buffer(bh);
705                         bh = bh->b_this_page;
706
707                 } while (bh != head);
708
709                 return true;
710         }
711
712         /* async case, we cannot block on lock_buffer so use trylock_buffer */
713         do {
714                 if (!trylock_buffer(bh)) {
715                         /*
716                          * We failed to lock the buffer and cannot stall in
717                          * async migration. Release the taken locks
718                          */
719                         struct buffer_head *failed_bh = bh;
720                         bh = head;
721                         while (bh != failed_bh) {
722                                 unlock_buffer(bh);
723                                 bh = bh->b_this_page;
724                         }
725                         return false;
726                 }
727
728                 bh = bh->b_this_page;
729         } while (bh != head);
730         return true;
731 }
732
733 static int __buffer_migrate_page(struct address_space *mapping,
734                 struct page *newpage, struct page *page, enum migrate_mode mode,
735                 bool check_refs)
736 {
737         struct buffer_head *bh, *head;
738         int rc;
739         int expected_count;
740
741         if (!page_has_buffers(page))
742                 return migrate_page(mapping, newpage, page, mode);
743
744         /* Check whether page does not have extra refs before we do more work */
745         expected_count = expected_page_refs(mapping, page);
746         if (page_count(page) != expected_count)
747                 return -EAGAIN;
748
749         head = page_buffers(page);
750         if (!buffer_migrate_lock_buffers(head, mode))
751                 return -EAGAIN;
752
753         if (check_refs) {
754                 bool busy;
755                 bool invalidated = false;
756
757 recheck_buffers:
758                 busy = false;
759                 spin_lock(&mapping->private_lock);
760                 bh = head;
761                 do {
762                         if (atomic_read(&bh->b_count)) {
763                                 busy = true;
764                                 break;
765                         }
766                         bh = bh->b_this_page;
767                 } while (bh != head);
768                 if (busy) {
769                         if (invalidated) {
770                                 rc = -EAGAIN;
771                                 goto unlock_buffers;
772                         }
773                         spin_unlock(&mapping->private_lock);
774                         invalidate_bh_lrus();
775                         invalidated = true;
776                         goto recheck_buffers;
777                 }
778         }
779
780         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
781         if (rc != MIGRATEPAGE_SUCCESS)
782                 goto unlock_buffers;
783
784         attach_page_private(newpage, detach_page_private(page));
785
786         bh = head;
787         do {
788                 set_bh_page(bh, newpage, bh_offset(bh));
789                 bh = bh->b_this_page;
790
791         } while (bh != head);
792
793         if (mode != MIGRATE_SYNC_NO_COPY)
794                 migrate_page_copy(newpage, page);
795         else
796                 migrate_page_states(newpage, page);
797
798         rc = MIGRATEPAGE_SUCCESS;
799 unlock_buffers:
800         if (check_refs)
801                 spin_unlock(&mapping->private_lock);
802         bh = head;
803         do {
804                 unlock_buffer(bh);
805                 bh = bh->b_this_page;
806
807         } while (bh != head);
808
809         return rc;
810 }
811
812 /*
813  * Migration function for pages with buffers. This function can only be used
814  * if the underlying filesystem guarantees that no other references to "page"
815  * exist. For example attached buffer heads are accessed only under page lock.
816  */
817 int buffer_migrate_page(struct address_space *mapping,
818                 struct page *newpage, struct page *page, enum migrate_mode mode)
819 {
820         return __buffer_migrate_page(mapping, newpage, page, mode, false);
821 }
822 EXPORT_SYMBOL(buffer_migrate_page);
823
824 /*
825  * Same as above except that this variant is more careful and checks that there
826  * are also no buffer head references. This function is the right one for
827  * mappings where buffer heads are directly looked up and referenced (such as
828  * block device mappings).
829  */
830 int buffer_migrate_page_norefs(struct address_space *mapping,
831                 struct page *newpage, struct page *page, enum migrate_mode mode)
832 {
833         return __buffer_migrate_page(mapping, newpage, page, mode, true);
834 }
835 #endif
836
837 /*
838  * Writeback a page to clean the dirty state
839  */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842         struct writeback_control wbc = {
843                 .sync_mode = WB_SYNC_NONE,
844                 .nr_to_write = 1,
845                 .range_start = 0,
846                 .range_end = LLONG_MAX,
847                 .for_reclaim = 1
848         };
849         int rc;
850
851         if (!mapping->a_ops->writepage)
852                 /* No write method for the address space */
853                 return -EINVAL;
854
855         if (!clear_page_dirty_for_io(page))
856                 /* Someone else already triggered a write */
857                 return -EAGAIN;
858
859         /*
860          * A dirty page may imply that the underlying filesystem has
861          * the page on some queue. So the page must be clean for
862          * migration. Writeout may mean we loose the lock and the
863          * page state is no longer what we checked for earlier.
864          * At this point we know that the migration attempt cannot
865          * be successful.
866          */
867         remove_migration_ptes(page, page, false);
868
869         rc = mapping->a_ops->writepage(page, &wbc);
870
871         if (rc != AOP_WRITEPAGE_ACTIVATE)
872                 /* unlocked. Relock */
873                 lock_page(page);
874
875         return (rc < 0) ? -EIO : -EAGAIN;
876 }
877
878 /*
879  * Default handling if a filesystem does not provide a migration function.
880  */
881 static int fallback_migrate_page(struct address_space *mapping,
882         struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884         if (PageDirty(page)) {
885                 /* Only writeback pages in full synchronous migration */
886                 switch (mode) {
887                 case MIGRATE_SYNC:
888                 case MIGRATE_SYNC_NO_COPY:
889                         break;
890                 default:
891                         return -EBUSY;
892                 }
893                 return writeout(mapping, page);
894         }
895
896         /*
897          * Buffers may be managed in a filesystem specific way.
898          * We must have no buffers or drop them.
899          */
900         if (page_has_private(page) &&
901             !try_to_release_page(page, GFP_KERNEL))
902                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
903
904         return migrate_page(mapping, newpage, page, mode);
905 }
906
907 /*
908  * Move a page to a newly allocated page
909  * The page is locked and all ptes have been successfully removed.
910  *
911  * The new page will have replaced the old page if this function
912  * is successful.
913  *
914  * Return value:
915  *   < 0 - error code
916  *  MIGRATEPAGE_SUCCESS - success
917  */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919                                 enum migrate_mode mode)
920 {
921         struct address_space *mapping;
922         int rc = -EAGAIN;
923         bool is_lru = !__PageMovable(page);
924
925         VM_BUG_ON_PAGE(!PageLocked(page), page);
926         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927
928         mapping = page_mapping(page);
929
930         if (likely(is_lru)) {
931                 if (!mapping)
932                         rc = migrate_page(mapping, newpage, page, mode);
933                 else if (mapping->a_ops->migratepage)
934                         /*
935                          * Most pages have a mapping and most filesystems
936                          * provide a migratepage callback. Anonymous pages
937                          * are part of swap space which also has its own
938                          * migratepage callback. This is the most common path
939                          * for page migration.
940                          */
941                         rc = mapping->a_ops->migratepage(mapping, newpage,
942                                                         page, mode);
943                 else
944                         rc = fallback_migrate_page(mapping, newpage,
945                                                         page, mode);
946         } else {
947                 /*
948                  * In case of non-lru page, it could be released after
949                  * isolation step. In that case, we shouldn't try migration.
950                  */
951                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952                 if (!PageMovable(page)) {
953                         rc = MIGRATEPAGE_SUCCESS;
954                         __ClearPageIsolated(page);
955                         goto out;
956                 }
957
958                 rc = mapping->a_ops->migratepage(mapping, newpage,
959                                                 page, mode);
960                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961                         !PageIsolated(page));
962         }
963
964         /*
965          * When successful, old pagecache page->mapping must be cleared before
966          * page is freed; but stats require that PageAnon be left as PageAnon.
967          */
968         if (rc == MIGRATEPAGE_SUCCESS) {
969                 if (__PageMovable(page)) {
970                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972                         /*
973                          * We clear PG_movable under page_lock so any compactor
974                          * cannot try to migrate this page.
975                          */
976                         __ClearPageIsolated(page);
977                 }
978
979                 /*
980                  * Anonymous and movable page->mapping will be cleared by
981                  * free_pages_prepare so don't reset it here for keeping
982                  * the type to work PageAnon, for example.
983                  */
984                 if (!PageMappingFlags(page))
985                         page->mapping = NULL;
986
987                 if (likely(!is_zone_device_page(newpage)))
988                         flush_dcache_page(newpage);
989
990         }
991 out:
992         return rc;
993 }
994
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996                                 int force, enum migrate_mode mode)
997 {
998         int rc = -EAGAIN;
999         int page_was_mapped = 0;
1000         struct anon_vma *anon_vma = NULL;
1001         bool is_lru = !__PageMovable(page);
1002
1003         if (!trylock_page(page)) {
1004                 if (!force || mode == MIGRATE_ASYNC)
1005                         goto out;
1006
1007                 /*
1008                  * It's not safe for direct compaction to call lock_page.
1009                  * For example, during page readahead pages are added locked
1010                  * to the LRU. Later, when the IO completes the pages are
1011                  * marked uptodate and unlocked. However, the queueing
1012                  * could be merging multiple pages for one bio (e.g.
1013                  * mpage_readahead). If an allocation happens for the
1014                  * second or third page, the process can end up locking
1015                  * the same page twice and deadlocking. Rather than
1016                  * trying to be clever about what pages can be locked,
1017                  * avoid the use of lock_page for direct compaction
1018                  * altogether.
1019                  */
1020                 if (current->flags & PF_MEMALLOC)
1021                         goto out;
1022
1023                 lock_page(page);
1024         }
1025
1026         if (PageWriteback(page)) {
1027                 /*
1028                  * Only in the case of a full synchronous migration is it
1029                  * necessary to wait for PageWriteback. In the async case,
1030                  * the retry loop is too short and in the sync-light case,
1031                  * the overhead of stalling is too much
1032                  */
1033                 switch (mode) {
1034                 case MIGRATE_SYNC:
1035                 case MIGRATE_SYNC_NO_COPY:
1036                         break;
1037                 default:
1038                         rc = -EBUSY;
1039                         goto out_unlock;
1040                 }
1041                 if (!force)
1042                         goto out_unlock;
1043                 wait_on_page_writeback(page);
1044         }
1045
1046         /*
1047          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048          * we cannot notice that anon_vma is freed while we migrates a page.
1049          * This get_anon_vma() delays freeing anon_vma pointer until the end
1050          * of migration. File cache pages are no problem because of page_lock()
1051          * File Caches may use write_page() or lock_page() in migration, then,
1052          * just care Anon page here.
1053          *
1054          * Only page_get_anon_vma() understands the subtleties of
1055          * getting a hold on an anon_vma from outside one of its mms.
1056          * But if we cannot get anon_vma, then we won't need it anyway,
1057          * because that implies that the anon page is no longer mapped
1058          * (and cannot be remapped so long as we hold the page lock).
1059          */
1060         if (PageAnon(page) && !PageKsm(page))
1061                 anon_vma = page_get_anon_vma(page);
1062
1063         /*
1064          * Block others from accessing the new page when we get around to
1065          * establishing additional references. We are usually the only one
1066          * holding a reference to newpage at this point. We used to have a BUG
1067          * here if trylock_page(newpage) fails, but would like to allow for
1068          * cases where there might be a race with the previous use of newpage.
1069          * This is much like races on refcount of oldpage: just don't BUG().
1070          */
1071         if (unlikely(!trylock_page(newpage)))
1072                 goto out_unlock;
1073
1074         if (unlikely(!is_lru)) {
1075                 rc = move_to_new_page(newpage, page, mode);
1076                 goto out_unlock_both;
1077         }
1078
1079         /*
1080          * Corner case handling:
1081          * 1. When a new swap-cache page is read into, it is added to the LRU
1082          * and treated as swapcache but it has no rmap yet.
1083          * Calling try_to_unmap() against a page->mapping==NULL page will
1084          * trigger a BUG.  So handle it here.
1085          * 2. An orphaned page (see truncate_cleanup_page) might have
1086          * fs-private metadata. The page can be picked up due to memory
1087          * offlining.  Everywhere else except page reclaim, the page is
1088          * invisible to the vm, so the page can not be migrated.  So try to
1089          * free the metadata, so the page can be freed.
1090          */
1091         if (!page->mapping) {
1092                 VM_BUG_ON_PAGE(PageAnon(page), page);
1093                 if (page_has_private(page)) {
1094                         try_to_free_buffers(page);
1095                         goto out_unlock_both;
1096                 }
1097         } else if (page_mapped(page)) {
1098                 /* Establish migration ptes */
1099                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1100                                 page);
1101                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1102                 page_was_mapped = 1;
1103         }
1104
1105         if (!page_mapped(page))
1106                 rc = move_to_new_page(newpage, page, mode);
1107
1108         if (page_was_mapped)
1109                 remove_migration_ptes(page,
1110                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1111
1112 out_unlock_both:
1113         unlock_page(newpage);
1114 out_unlock:
1115         /* Drop an anon_vma reference if we took one */
1116         if (anon_vma)
1117                 put_anon_vma(anon_vma);
1118         unlock_page(page);
1119 out:
1120         /*
1121          * If migration is successful, decrease refcount of the newpage
1122          * which will not free the page because new page owner increased
1123          * refcounter. As well, if it is LRU page, add the page to LRU
1124          * list in here. Use the old state of the isolated source page to
1125          * determine if we migrated a LRU page. newpage was already unlocked
1126          * and possibly modified by its owner - don't rely on the page
1127          * state.
1128          */
1129         if (rc == MIGRATEPAGE_SUCCESS) {
1130                 if (unlikely(!is_lru))
1131                         put_page(newpage);
1132                 else
1133                         putback_lru_page(newpage);
1134         }
1135
1136         return rc;
1137 }
1138
1139 /*
1140  * Obtain the lock on page, remove all ptes and migrate the page
1141  * to the newly allocated page in newpage.
1142  */
1143 static int unmap_and_move(new_page_t get_new_page,
1144                                    free_page_t put_new_page,
1145                                    unsigned long private, struct page *page,
1146                                    int force, enum migrate_mode mode,
1147                                    enum migrate_reason reason,
1148                                    struct list_head *ret)
1149 {
1150         int rc = MIGRATEPAGE_SUCCESS;
1151         struct page *newpage = NULL;
1152
1153         if (!thp_migration_supported() && PageTransHuge(page))
1154                 return -ENOSYS;
1155
1156         if (page_count(page) == 1) {
1157                 /* page was freed from under us. So we are done. */
1158                 ClearPageActive(page);
1159                 ClearPageUnevictable(page);
1160                 if (unlikely(__PageMovable(page))) {
1161                         lock_page(page);
1162                         if (!PageMovable(page))
1163                                 __ClearPageIsolated(page);
1164                         unlock_page(page);
1165                 }
1166                 goto out;
1167         }
1168
1169         newpage = get_new_page(page, private);
1170         if (!newpage)
1171                 return -ENOMEM;
1172
1173         rc = __unmap_and_move(page, newpage, force, mode);
1174         if (rc == MIGRATEPAGE_SUCCESS)
1175                 set_page_owner_migrate_reason(newpage, reason);
1176
1177 out:
1178         if (rc != -EAGAIN) {
1179                 /*
1180                  * A page that has been migrated has all references
1181                  * removed and will be freed. A page that has not been
1182                  * migrated will have kept its references and be restored.
1183                  */
1184                 list_del(&page->lru);
1185         }
1186
1187         /*
1188          * If migration is successful, releases reference grabbed during
1189          * isolation. Otherwise, restore the page to right list unless
1190          * we want to retry.
1191          */
1192         if (rc == MIGRATEPAGE_SUCCESS) {
1193                 /*
1194                  * Compaction can migrate also non-LRU pages which are
1195                  * not accounted to NR_ISOLATED_*. They can be recognized
1196                  * as __PageMovable
1197                  */
1198                 if (likely(!__PageMovable(page)))
1199                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200                                         page_is_file_lru(page), -thp_nr_pages(page));
1201
1202                 if (reason != MR_MEMORY_FAILURE)
1203                         /*
1204                          * We release the page in page_handle_poison.
1205                          */
1206                         put_page(page);
1207         } else {
1208                 if (rc != -EAGAIN)
1209                         list_add_tail(&page->lru, ret);
1210
1211                 if (put_new_page)
1212                         put_new_page(newpage, private);
1213                 else
1214                         put_page(newpage);
1215         }
1216
1217         return rc;
1218 }
1219
1220 /*
1221  * Counterpart of unmap_and_move_page() for hugepage migration.
1222  *
1223  * This function doesn't wait the completion of hugepage I/O
1224  * because there is no race between I/O and migration for hugepage.
1225  * Note that currently hugepage I/O occurs only in direct I/O
1226  * where no lock is held and PG_writeback is irrelevant,
1227  * and writeback status of all subpages are counted in the reference
1228  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229  * under direct I/O, the reference of the head page is 512 and a bit more.)
1230  * This means that when we try to migrate hugepage whose subpages are
1231  * doing direct I/O, some references remain after try_to_unmap() and
1232  * hugepage migration fails without data corruption.
1233  *
1234  * There is also no race when direct I/O is issued on the page under migration,
1235  * because then pte is replaced with migration swap entry and direct I/O code
1236  * will wait in the page fault for migration to complete.
1237  */
1238 static int unmap_and_move_huge_page(new_page_t get_new_page,
1239                                 free_page_t put_new_page, unsigned long private,
1240                                 struct page *hpage, int force,
1241                                 enum migrate_mode mode, int reason,
1242                                 struct list_head *ret)
1243 {
1244         int rc = -EAGAIN;
1245         int page_was_mapped = 0;
1246         struct page *new_hpage;
1247         struct anon_vma *anon_vma = NULL;
1248         struct address_space *mapping = NULL;
1249
1250         /*
1251          * Migratability of hugepages depends on architectures and their size.
1252          * This check is necessary because some callers of hugepage migration
1253          * like soft offline and memory hotremove don't walk through page
1254          * tables or check whether the hugepage is pmd-based or not before
1255          * kicking migration.
1256          */
1257         if (!hugepage_migration_supported(page_hstate(hpage))) {
1258                 list_move_tail(&hpage->lru, ret);
1259                 return -ENOSYS;
1260         }
1261
1262         if (page_count(hpage) == 1) {
1263                 /* page was freed from under us. So we are done. */
1264                 putback_active_hugepage(hpage);
1265                 return MIGRATEPAGE_SUCCESS;
1266         }
1267
1268         new_hpage = get_new_page(hpage, private);
1269         if (!new_hpage)
1270                 return -ENOMEM;
1271
1272         if (!trylock_page(hpage)) {
1273                 if (!force)
1274                         goto out;
1275                 switch (mode) {
1276                 case MIGRATE_SYNC:
1277                 case MIGRATE_SYNC_NO_COPY:
1278                         break;
1279                 default:
1280                         goto out;
1281                 }
1282                 lock_page(hpage);
1283         }
1284
1285         /*
1286          * Check for pages which are in the process of being freed.  Without
1287          * page_mapping() set, hugetlbfs specific move page routine will not
1288          * be called and we could leak usage counts for subpools.
1289          */
1290         if (page_private(hpage) && !page_mapping(hpage)) {
1291                 rc = -EBUSY;
1292                 goto out_unlock;
1293         }
1294
1295         if (PageAnon(hpage))
1296                 anon_vma = page_get_anon_vma(hpage);
1297
1298         if (unlikely(!trylock_page(new_hpage)))
1299                 goto put_anon;
1300
1301         if (page_mapped(hpage)) {
1302                 bool mapping_locked = false;
1303                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1304
1305                 if (!PageAnon(hpage)) {
1306                         /*
1307                          * In shared mappings, try_to_unmap could potentially
1308                          * call huge_pmd_unshare.  Because of this, take
1309                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1310                          * to let lower levels know we have taken the lock.
1311                          */
1312                         mapping = hugetlb_page_mapping_lock_write(hpage);
1313                         if (unlikely(!mapping))
1314                                 goto unlock_put_anon;
1315
1316                         mapping_locked = true;
1317                         ttu |= TTU_RMAP_LOCKED;
1318                 }
1319
1320                 try_to_unmap(hpage, ttu);
1321                 page_was_mapped = 1;
1322
1323                 if (mapping_locked)
1324                         i_mmap_unlock_write(mapping);
1325         }
1326
1327         if (!page_mapped(hpage))
1328                 rc = move_to_new_page(new_hpage, hpage, mode);
1329
1330         if (page_was_mapped)
1331                 remove_migration_ptes(hpage,
1332                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1333
1334 unlock_put_anon:
1335         unlock_page(new_hpage);
1336
1337 put_anon:
1338         if (anon_vma)
1339                 put_anon_vma(anon_vma);
1340
1341         if (rc == MIGRATEPAGE_SUCCESS) {
1342                 move_hugetlb_state(hpage, new_hpage, reason);
1343                 put_new_page = NULL;
1344         }
1345
1346 out_unlock:
1347         unlock_page(hpage);
1348 out:
1349         if (rc == MIGRATEPAGE_SUCCESS)
1350                 putback_active_hugepage(hpage);
1351         else if (rc != -EAGAIN)
1352                 list_move_tail(&hpage->lru, ret);
1353
1354         /*
1355          * If migration was not successful and there's a freeing callback, use
1356          * it.  Otherwise, put_page() will drop the reference grabbed during
1357          * isolation.
1358          */
1359         if (put_new_page)
1360                 put_new_page(new_hpage, private);
1361         else
1362                 putback_active_hugepage(new_hpage);
1363
1364         return rc;
1365 }
1366
1367 static inline int try_split_thp(struct page *page, struct page **page2,
1368                                 struct list_head *from)
1369 {
1370         int rc = 0;
1371
1372         lock_page(page);
1373         rc = split_huge_page_to_list(page, from);
1374         unlock_page(page);
1375         if (!rc)
1376                 list_safe_reset_next(page, *page2, lru);
1377
1378         return rc;
1379 }
1380
1381 /*
1382  * migrate_pages - migrate the pages specified in a list, to the free pages
1383  *                 supplied as the target for the page migration
1384  *
1385  * @from:               The list of pages to be migrated.
1386  * @get_new_page:       The function used to allocate free pages to be used
1387  *                      as the target of the page migration.
1388  * @put_new_page:       The function used to free target pages if migration
1389  *                      fails, or NULL if no special handling is necessary.
1390  * @private:            Private data to be passed on to get_new_page()
1391  * @mode:               The migration mode that specifies the constraints for
1392  *                      page migration, if any.
1393  * @reason:             The reason for page migration.
1394  *
1395  * The function returns after 10 attempts or if no pages are movable any more
1396  * because the list has become empty or no retryable pages exist any more.
1397  * It is caller's responsibility to call putback_movable_pages() to return pages
1398  * to the LRU or free list only if ret != 0.
1399  *
1400  * Returns the number of pages that were not migrated, or an error code.
1401  */
1402 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1403                 free_page_t put_new_page, unsigned long private,
1404                 enum migrate_mode mode, int reason)
1405 {
1406         int retry = 1;
1407         int thp_retry = 1;
1408         int nr_failed = 0;
1409         int nr_succeeded = 0;
1410         int nr_thp_succeeded = 0;
1411         int nr_thp_failed = 0;
1412         int nr_thp_split = 0;
1413         int pass = 0;
1414         bool is_thp = false;
1415         struct page *page;
1416         struct page *page2;
1417         int swapwrite = current->flags & PF_SWAPWRITE;
1418         int rc, nr_subpages;
1419         LIST_HEAD(ret_pages);
1420
1421         trace_mm_migrate_pages_start(mode, reason);
1422
1423         if (!swapwrite)
1424                 current->flags |= PF_SWAPWRITE;
1425
1426         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1427                 retry = 0;
1428                 thp_retry = 0;
1429
1430                 list_for_each_entry_safe(page, page2, from, lru) {
1431 retry:
1432                         /*
1433                          * THP statistics is based on the source huge page.
1434                          * Capture required information that might get lost
1435                          * during migration.
1436                          */
1437                         is_thp = PageTransHuge(page) && !PageHuge(page);
1438                         nr_subpages = thp_nr_pages(page);
1439                         cond_resched();
1440
1441                         if (PageHuge(page))
1442                                 rc = unmap_and_move_huge_page(get_new_page,
1443                                                 put_new_page, private, page,
1444                                                 pass > 2, mode, reason,
1445                                                 &ret_pages);
1446                         else
1447                                 rc = unmap_and_move(get_new_page, put_new_page,
1448                                                 private, page, pass > 2, mode,
1449                                                 reason, &ret_pages);
1450                         /*
1451                          * The rules are:
1452                          *      Success: non hugetlb page will be freed, hugetlb
1453                          *               page will be put back
1454                          *      -EAGAIN: stay on the from list
1455                          *      -ENOMEM: stay on the from list
1456                          *      Other errno: put on ret_pages list then splice to
1457                          *                   from list
1458                          */
1459                         switch(rc) {
1460                         /*
1461                          * THP migration might be unsupported or the
1462                          * allocation could've failed so we should
1463                          * retry on the same page with the THP split
1464                          * to base pages.
1465                          *
1466                          * Head page is retried immediately and tail
1467                          * pages are added to the tail of the list so
1468                          * we encounter them after the rest of the list
1469                          * is processed.
1470                          */
1471                         case -ENOSYS:
1472                                 /* THP migration is unsupported */
1473                                 if (is_thp) {
1474                                         if (!try_split_thp(page, &page2, from)) {
1475                                                 nr_thp_split++;
1476                                                 goto retry;
1477                                         }
1478
1479                                         nr_thp_failed++;
1480                                         nr_failed += nr_subpages;
1481                                         break;
1482                                 }
1483
1484                                 /* Hugetlb migration is unsupported */
1485                                 nr_failed++;
1486                                 break;
1487                         case -ENOMEM:
1488                                 /*
1489                                  * When memory is low, don't bother to try to migrate
1490                                  * other pages, just exit.
1491                                  */
1492                                 if (is_thp) {
1493                                         if (!try_split_thp(page, &page2, from)) {
1494                                                 nr_thp_split++;
1495                                                 goto retry;
1496                                         }
1497
1498                                         nr_thp_failed++;
1499                                         nr_failed += nr_subpages;
1500                                         goto out;
1501                                 }
1502                                 nr_failed++;
1503                                 goto out;
1504                         case -EAGAIN:
1505                                 if (is_thp) {
1506                                         thp_retry++;
1507                                         break;
1508                                 }
1509                                 retry++;
1510                                 break;
1511                         case MIGRATEPAGE_SUCCESS:
1512                                 if (is_thp) {
1513                                         nr_thp_succeeded++;
1514                                         nr_succeeded += nr_subpages;
1515                                         break;
1516                                 }
1517                                 nr_succeeded++;
1518                                 break;
1519                         default:
1520                                 /*
1521                                  * Permanent failure (-EBUSY, etc.):
1522                                  * unlike -EAGAIN case, the failed page is
1523                                  * removed from migration page list and not
1524                                  * retried in the next outer loop.
1525                                  */
1526                                 if (is_thp) {
1527                                         nr_thp_failed++;
1528                                         nr_failed += nr_subpages;
1529                                         break;
1530                                 }
1531                                 nr_failed++;
1532                                 break;
1533                         }
1534                 }
1535         }
1536         nr_failed += retry + thp_retry;
1537         nr_thp_failed += thp_retry;
1538         rc = nr_failed;
1539 out:
1540         /*
1541          * Put the permanent failure page back to migration list, they
1542          * will be put back to the right list by the caller.
1543          */
1544         list_splice(&ret_pages, from);
1545
1546         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1547         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1548         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1549         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1550         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1551         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1552                                nr_thp_failed, nr_thp_split, mode, reason);
1553
1554         if (!swapwrite)
1555                 current->flags &= ~PF_SWAPWRITE;
1556
1557         return rc;
1558 }
1559
1560 struct page *alloc_migration_target(struct page *page, unsigned long private)
1561 {
1562         struct migration_target_control *mtc;
1563         gfp_t gfp_mask;
1564         unsigned int order = 0;
1565         struct page *new_page = NULL;
1566         int nid;
1567         int zidx;
1568
1569         mtc = (struct migration_target_control *)private;
1570         gfp_mask = mtc->gfp_mask;
1571         nid = mtc->nid;
1572         if (nid == NUMA_NO_NODE)
1573                 nid = page_to_nid(page);
1574
1575         if (PageHuge(page)) {
1576                 struct hstate *h = page_hstate(compound_head(page));
1577
1578                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1579                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1580         }
1581
1582         if (PageTransHuge(page)) {
1583                 /*
1584                  * clear __GFP_RECLAIM to make the migration callback
1585                  * consistent with regular THP allocations.
1586                  */
1587                 gfp_mask &= ~__GFP_RECLAIM;
1588                 gfp_mask |= GFP_TRANSHUGE;
1589                 order = HPAGE_PMD_ORDER;
1590         }
1591         zidx = zone_idx(page_zone(page));
1592         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1593                 gfp_mask |= __GFP_HIGHMEM;
1594
1595         new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1596
1597         if (new_page && PageTransHuge(new_page))
1598                 prep_transhuge_page(new_page);
1599
1600         return new_page;
1601 }
1602
1603 #ifdef CONFIG_NUMA
1604
1605 static int store_status(int __user *status, int start, int value, int nr)
1606 {
1607         while (nr-- > 0) {
1608                 if (put_user(value, status + start))
1609                         return -EFAULT;
1610                 start++;
1611         }
1612
1613         return 0;
1614 }
1615
1616 static int do_move_pages_to_node(struct mm_struct *mm,
1617                 struct list_head *pagelist, int node)
1618 {
1619         int err;
1620         struct migration_target_control mtc = {
1621                 .nid = node,
1622                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1623         };
1624
1625         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1626                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1627         if (err)
1628                 putback_movable_pages(pagelist);
1629         return err;
1630 }
1631
1632 /*
1633  * Resolves the given address to a struct page, isolates it from the LRU and
1634  * puts it to the given pagelist.
1635  * Returns:
1636  *     errno - if the page cannot be found/isolated
1637  *     0 - when it doesn't have to be migrated because it is already on the
1638  *         target node
1639  *     1 - when it has been queued
1640  */
1641 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1642                 int node, struct list_head *pagelist, bool migrate_all)
1643 {
1644         struct vm_area_struct *vma;
1645         struct page *page;
1646         unsigned int follflags;
1647         int err;
1648
1649         mmap_read_lock(mm);
1650         err = -EFAULT;
1651         vma = find_vma(mm, addr);
1652         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1653                 goto out;
1654
1655         /* FOLL_DUMP to ignore special (like zero) pages */
1656         follflags = FOLL_GET | FOLL_DUMP;
1657         page = follow_page(vma, addr, follflags);
1658
1659         err = PTR_ERR(page);
1660         if (IS_ERR(page))
1661                 goto out;
1662
1663         err = -ENOENT;
1664         if (!page)
1665                 goto out;
1666
1667         err = 0;
1668         if (page_to_nid(page) == node)
1669                 goto out_putpage;
1670
1671         err = -EACCES;
1672         if (page_mapcount(page) > 1 && !migrate_all)
1673                 goto out_putpage;
1674
1675         if (PageHuge(page)) {
1676                 if (PageHead(page)) {
1677                         isolate_huge_page(page, pagelist);
1678                         err = 1;
1679                 }
1680         } else {
1681                 struct page *head;
1682
1683                 head = compound_head(page);
1684                 err = isolate_lru_page(head);
1685                 if (err)
1686                         goto out_putpage;
1687
1688                 err = 1;
1689                 list_add_tail(&head->lru, pagelist);
1690                 mod_node_page_state(page_pgdat(head),
1691                         NR_ISOLATED_ANON + page_is_file_lru(head),
1692                         thp_nr_pages(head));
1693         }
1694 out_putpage:
1695         /*
1696          * Either remove the duplicate refcount from
1697          * isolate_lru_page() or drop the page ref if it was
1698          * not isolated.
1699          */
1700         put_page(page);
1701 out:
1702         mmap_read_unlock(mm);
1703         return err;
1704 }
1705
1706 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1707                 struct list_head *pagelist, int __user *status,
1708                 int start, int i, unsigned long nr_pages)
1709 {
1710         int err;
1711
1712         if (list_empty(pagelist))
1713                 return 0;
1714
1715         err = do_move_pages_to_node(mm, pagelist, node);
1716         if (err) {
1717                 /*
1718                  * Positive err means the number of failed
1719                  * pages to migrate.  Since we are going to
1720                  * abort and return the number of non-migrated
1721                  * pages, so need to include the rest of the
1722                  * nr_pages that have not been attempted as
1723                  * well.
1724                  */
1725                 if (err > 0)
1726                         err += nr_pages - i - 1;
1727                 return err;
1728         }
1729         return store_status(status, start, node, i - start);
1730 }
1731
1732 /*
1733  * Migrate an array of page address onto an array of nodes and fill
1734  * the corresponding array of status.
1735  */
1736 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1737                          unsigned long nr_pages,
1738                          const void __user * __user *pages,
1739                          const int __user *nodes,
1740                          int __user *status, int flags)
1741 {
1742         int current_node = NUMA_NO_NODE;
1743         LIST_HEAD(pagelist);
1744         int start, i;
1745         int err = 0, err1;
1746
1747         lru_cache_disable();
1748
1749         for (i = start = 0; i < nr_pages; i++) {
1750                 const void __user *p;
1751                 unsigned long addr;
1752                 int node;
1753
1754                 err = -EFAULT;
1755                 if (get_user(p, pages + i))
1756                         goto out_flush;
1757                 if (get_user(node, nodes + i))
1758                         goto out_flush;
1759                 addr = (unsigned long)untagged_addr(p);
1760
1761                 err = -ENODEV;
1762                 if (node < 0 || node >= MAX_NUMNODES)
1763                         goto out_flush;
1764                 if (!node_state(node, N_MEMORY))
1765                         goto out_flush;
1766
1767                 err = -EACCES;
1768                 if (!node_isset(node, task_nodes))
1769                         goto out_flush;
1770
1771                 if (current_node == NUMA_NO_NODE) {
1772                         current_node = node;
1773                         start = i;
1774                 } else if (node != current_node) {
1775                         err = move_pages_and_store_status(mm, current_node,
1776                                         &pagelist, status, start, i, nr_pages);
1777                         if (err)
1778                                 goto out;
1779                         start = i;
1780                         current_node = node;
1781                 }
1782
1783                 /*
1784                  * Errors in the page lookup or isolation are not fatal and we simply
1785                  * report them via status
1786                  */
1787                 err = add_page_for_migration(mm, addr, current_node,
1788                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1789
1790                 if (err > 0) {
1791                         /* The page is successfully queued for migration */
1792                         continue;
1793                 }
1794
1795                 /*
1796                  * If the page is already on the target node (!err), store the
1797                  * node, otherwise, store the err.
1798                  */
1799                 err = store_status(status, i, err ? : current_node, 1);
1800                 if (err)
1801                         goto out_flush;
1802
1803                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1804                                 status, start, i, nr_pages);
1805                 if (err)
1806                         goto out;
1807                 current_node = NUMA_NO_NODE;
1808         }
1809 out_flush:
1810         /* Make sure we do not overwrite the existing error */
1811         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1812                                 status, start, i, nr_pages);
1813         if (err >= 0)
1814                 err = err1;
1815 out:
1816         lru_cache_enable();
1817         return err;
1818 }
1819
1820 /*
1821  * Determine the nodes of an array of pages and store it in an array of status.
1822  */
1823 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1824                                 const void __user **pages, int *status)
1825 {
1826         unsigned long i;
1827
1828         mmap_read_lock(mm);
1829
1830         for (i = 0; i < nr_pages; i++) {
1831                 unsigned long addr = (unsigned long)(*pages);
1832                 struct vm_area_struct *vma;
1833                 struct page *page;
1834                 int err = -EFAULT;
1835
1836                 vma = find_vma(mm, addr);
1837                 if (!vma || addr < vma->vm_start)
1838                         goto set_status;
1839
1840                 /* FOLL_DUMP to ignore special (like zero) pages */
1841                 page = follow_page(vma, addr, FOLL_DUMP);
1842
1843                 err = PTR_ERR(page);
1844                 if (IS_ERR(page))
1845                         goto set_status;
1846
1847                 err = page ? page_to_nid(page) : -ENOENT;
1848 set_status:
1849                 *status = err;
1850
1851                 pages++;
1852                 status++;
1853         }
1854
1855         mmap_read_unlock(mm);
1856 }
1857
1858 /*
1859  * Determine the nodes of a user array of pages and store it in
1860  * a user array of status.
1861  */
1862 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1863                          const void __user * __user *pages,
1864                          int __user *status)
1865 {
1866 #define DO_PAGES_STAT_CHUNK_NR 16
1867         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1868         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1869
1870         while (nr_pages) {
1871                 unsigned long chunk_nr;
1872
1873                 chunk_nr = nr_pages;
1874                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1875                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1876
1877                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1878                         break;
1879
1880                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1881
1882                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1883                         break;
1884
1885                 pages += chunk_nr;
1886                 status += chunk_nr;
1887                 nr_pages -= chunk_nr;
1888         }
1889         return nr_pages ? -EFAULT : 0;
1890 }
1891
1892 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1893 {
1894         struct task_struct *task;
1895         struct mm_struct *mm;
1896
1897         /*
1898          * There is no need to check if current process has the right to modify
1899          * the specified process when they are same.
1900          */
1901         if (!pid) {
1902                 mmget(current->mm);
1903                 *mem_nodes = cpuset_mems_allowed(current);
1904                 return current->mm;
1905         }
1906
1907         /* Find the mm_struct */
1908         rcu_read_lock();
1909         task = find_task_by_vpid(pid);
1910         if (!task) {
1911                 rcu_read_unlock();
1912                 return ERR_PTR(-ESRCH);
1913         }
1914         get_task_struct(task);
1915
1916         /*
1917          * Check if this process has the right to modify the specified
1918          * process. Use the regular "ptrace_may_access()" checks.
1919          */
1920         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1921                 rcu_read_unlock();
1922                 mm = ERR_PTR(-EPERM);
1923                 goto out;
1924         }
1925         rcu_read_unlock();
1926
1927         mm = ERR_PTR(security_task_movememory(task));
1928         if (IS_ERR(mm))
1929                 goto out;
1930         *mem_nodes = cpuset_mems_allowed(task);
1931         mm = get_task_mm(task);
1932 out:
1933         put_task_struct(task);
1934         if (!mm)
1935                 mm = ERR_PTR(-EINVAL);
1936         return mm;
1937 }
1938
1939 /*
1940  * Move a list of pages in the address space of the currently executing
1941  * process.
1942  */
1943 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1944                              const void __user * __user *pages,
1945                              const int __user *nodes,
1946                              int __user *status, int flags)
1947 {
1948         struct mm_struct *mm;
1949         int err;
1950         nodemask_t task_nodes;
1951
1952         /* Check flags */
1953         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1954                 return -EINVAL;
1955
1956         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1957                 return -EPERM;
1958
1959         mm = find_mm_struct(pid, &task_nodes);
1960         if (IS_ERR(mm))
1961                 return PTR_ERR(mm);
1962
1963         if (nodes)
1964                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1965                                     nodes, status, flags);
1966         else
1967                 err = do_pages_stat(mm, nr_pages, pages, status);
1968
1969         mmput(mm);
1970         return err;
1971 }
1972
1973 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1974                 const void __user * __user *, pages,
1975                 const int __user *, nodes,
1976                 int __user *, status, int, flags)
1977 {
1978         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979 }
1980
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1983                        compat_uptr_t __user *, pages32,
1984                        const int __user *, nodes,
1985                        int __user *, status,
1986                        int, flags)
1987 {
1988         const void __user * __user *pages;
1989         int i;
1990
1991         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1992         for (i = 0; i < nr_pages; i++) {
1993                 compat_uptr_t p;
1994
1995                 if (get_user(p, pages32 + i) ||
1996                         put_user(compat_ptr(p), pages + i))
1997                         return -EFAULT;
1998         }
1999         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2000 }
2001 #endif /* CONFIG_COMPAT */
2002
2003 #ifdef CONFIG_NUMA_BALANCING
2004 /*
2005  * Returns true if this is a safe migration target node for misplaced NUMA
2006  * pages. Currently it only checks the watermarks which crude
2007  */
2008 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2009                                    unsigned long nr_migrate_pages)
2010 {
2011         int z;
2012
2013         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2014                 struct zone *zone = pgdat->node_zones + z;
2015
2016                 if (!populated_zone(zone))
2017                         continue;
2018
2019                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2020                 if (!zone_watermark_ok(zone, 0,
2021                                        high_wmark_pages(zone) +
2022                                        nr_migrate_pages,
2023                                        ZONE_MOVABLE, 0))
2024                         continue;
2025                 return true;
2026         }
2027         return false;
2028 }
2029
2030 static struct page *alloc_misplaced_dst_page(struct page *page,
2031                                            unsigned long data)
2032 {
2033         int nid = (int) data;
2034         struct page *newpage;
2035
2036         newpage = __alloc_pages_node(nid,
2037                                          (GFP_HIGHUSER_MOVABLE |
2038                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2039                                           __GFP_NORETRY | __GFP_NOWARN) &
2040                                          ~__GFP_RECLAIM, 0);
2041
2042         return newpage;
2043 }
2044
2045 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2046 {
2047         int page_lru;
2048
2049         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2050
2051         /* Avoid migrating to a node that is nearly full */
2052         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2053                 return 0;
2054
2055         if (isolate_lru_page(page))
2056                 return 0;
2057
2058         /*
2059          * migrate_misplaced_transhuge_page() skips page migration's usual
2060          * check on page_count(), so we must do it here, now that the page
2061          * has been isolated: a GUP pin, or any other pin, prevents migration.
2062          * The expected page count is 3: 1 for page's mapcount and 1 for the
2063          * caller's pin and 1 for the reference taken by isolate_lru_page().
2064          */
2065         if (PageTransHuge(page) && page_count(page) != 3) {
2066                 putback_lru_page(page);
2067                 return 0;
2068         }
2069
2070         page_lru = page_is_file_lru(page);
2071         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2072                                 thp_nr_pages(page));
2073
2074         /*
2075          * Isolating the page has taken another reference, so the
2076          * caller's reference can be safely dropped without the page
2077          * disappearing underneath us during migration.
2078          */
2079         put_page(page);
2080         return 1;
2081 }
2082
2083 bool pmd_trans_migrating(pmd_t pmd)
2084 {
2085         struct page *page = pmd_page(pmd);
2086         return PageLocked(page);
2087 }
2088
2089 /*
2090  * Attempt to migrate a misplaced page to the specified destination
2091  * node. Caller is expected to have an elevated reference count on
2092  * the page that will be dropped by this function before returning.
2093  */
2094 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2095                            int node)
2096 {
2097         pg_data_t *pgdat = NODE_DATA(node);
2098         int isolated;
2099         int nr_remaining;
2100         LIST_HEAD(migratepages);
2101
2102         /*
2103          * Don't migrate file pages that are mapped in multiple processes
2104          * with execute permissions as they are probably shared libraries.
2105          */
2106         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2107             (vma->vm_flags & VM_EXEC))
2108                 goto out;
2109
2110         /*
2111          * Also do not migrate dirty pages as not all filesystems can move
2112          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2113          */
2114         if (page_is_file_lru(page) && PageDirty(page))
2115                 goto out;
2116
2117         isolated = numamigrate_isolate_page(pgdat, page);
2118         if (!isolated)
2119                 goto out;
2120
2121         list_add(&page->lru, &migratepages);
2122         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2123                                      NULL, node, MIGRATE_ASYNC,
2124                                      MR_NUMA_MISPLACED);
2125         if (nr_remaining) {
2126                 if (!list_empty(&migratepages)) {
2127                         list_del(&page->lru);
2128                         dec_node_page_state(page, NR_ISOLATED_ANON +
2129                                         page_is_file_lru(page));
2130                         putback_lru_page(page);
2131                 }
2132                 isolated = 0;
2133         } else
2134                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2135         BUG_ON(!list_empty(&migratepages));
2136         return isolated;
2137
2138 out:
2139         put_page(page);
2140         return 0;
2141 }
2142 #endif /* CONFIG_NUMA_BALANCING */
2143
2144 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2145 /*
2146  * Migrates a THP to a given target node. page must be locked and is unlocked
2147  * before returning.
2148  */
2149 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2150                                 struct vm_area_struct *vma,
2151                                 pmd_t *pmd, pmd_t entry,
2152                                 unsigned long address,
2153                                 struct page *page, int node)
2154 {
2155         spinlock_t *ptl;
2156         pg_data_t *pgdat = NODE_DATA(node);
2157         int isolated = 0;
2158         struct page *new_page = NULL;
2159         int page_lru = page_is_file_lru(page);
2160         unsigned long start = address & HPAGE_PMD_MASK;
2161
2162         new_page = alloc_pages_node(node,
2163                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2164                 HPAGE_PMD_ORDER);
2165         if (!new_page)
2166                 goto out_fail;
2167         prep_transhuge_page(new_page);
2168
2169         isolated = numamigrate_isolate_page(pgdat, page);
2170         if (!isolated) {
2171                 put_page(new_page);
2172                 goto out_fail;
2173         }
2174
2175         /* Prepare a page as a migration target */
2176         __SetPageLocked(new_page);
2177         if (PageSwapBacked(page))
2178                 __SetPageSwapBacked(new_page);
2179
2180         /* anon mapping, we can simply copy page->mapping to the new page: */
2181         new_page->mapping = page->mapping;
2182         new_page->index = page->index;
2183         /* flush the cache before copying using the kernel virtual address */
2184         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2185         migrate_page_copy(new_page, page);
2186         WARN_ON(PageLRU(new_page));
2187
2188         /* Recheck the target PMD */
2189         ptl = pmd_lock(mm, pmd);
2190         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2191                 spin_unlock(ptl);
2192
2193                 /* Reverse changes made by migrate_page_copy() */
2194                 if (TestClearPageActive(new_page))
2195                         SetPageActive(page);
2196                 if (TestClearPageUnevictable(new_page))
2197                         SetPageUnevictable(page);
2198
2199                 unlock_page(new_page);
2200                 put_page(new_page);             /* Free it */
2201
2202                 /* Retake the callers reference and putback on LRU */
2203                 get_page(page);
2204                 putback_lru_page(page);
2205                 mod_node_page_state(page_pgdat(page),
2206                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2207
2208                 goto out_unlock;
2209         }
2210
2211         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2212         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2213
2214         /*
2215          * Overwrite the old entry under pagetable lock and establish
2216          * the new PTE. Any parallel GUP will either observe the old
2217          * page blocking on the page lock, block on the page table
2218          * lock or observe the new page. The SetPageUptodate on the
2219          * new page and page_add_new_anon_rmap guarantee the copy is
2220          * visible before the pagetable update.
2221          */
2222         page_add_anon_rmap(new_page, vma, start, true);
2223         /*
2224          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2225          * has already been flushed globally.  So no TLB can be currently
2226          * caching this non present pmd mapping.  There's no need to clear the
2227          * pmd before doing set_pmd_at(), nor to flush the TLB after
2228          * set_pmd_at().  Clearing the pmd here would introduce a race
2229          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2230          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2231          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2232          * pmd.
2233          */
2234         set_pmd_at(mm, start, pmd, entry);
2235         update_mmu_cache_pmd(vma, address, &entry);
2236
2237         page_ref_unfreeze(page, 2);
2238         mlock_migrate_page(new_page, page);
2239         page_remove_rmap(page, true);
2240         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2241
2242         spin_unlock(ptl);
2243
2244         /* Take an "isolate" reference and put new page on the LRU. */
2245         get_page(new_page);
2246         putback_lru_page(new_page);
2247
2248         unlock_page(new_page);
2249         unlock_page(page);
2250         put_page(page);                 /* Drop the rmap reference */
2251         put_page(page);                 /* Drop the LRU isolation reference */
2252
2253         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2254         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2255
2256         mod_node_page_state(page_pgdat(page),
2257                         NR_ISOLATED_ANON + page_lru,
2258                         -HPAGE_PMD_NR);
2259         return isolated;
2260
2261 out_fail:
2262         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2263         ptl = pmd_lock(mm, pmd);
2264         if (pmd_same(*pmd, entry)) {
2265                 entry = pmd_modify(entry, vma->vm_page_prot);
2266                 set_pmd_at(mm, start, pmd, entry);
2267                 update_mmu_cache_pmd(vma, address, &entry);
2268         }
2269         spin_unlock(ptl);
2270
2271 out_unlock:
2272         unlock_page(page);
2273         put_page(page);
2274         return 0;
2275 }
2276 #endif /* CONFIG_NUMA_BALANCING */
2277
2278 #endif /* CONFIG_NUMA */
2279
2280 #ifdef CONFIG_DEVICE_PRIVATE
2281 static int migrate_vma_collect_skip(unsigned long start,
2282                                     unsigned long end,
2283                                     struct mm_walk *walk)
2284 {
2285         struct migrate_vma *migrate = walk->private;
2286         unsigned long addr;
2287
2288         for (addr = start; addr < end; addr += PAGE_SIZE) {
2289                 migrate->dst[migrate->npages] = 0;
2290                 migrate->src[migrate->npages++] = 0;
2291         }
2292
2293         return 0;
2294 }
2295
2296 static int migrate_vma_collect_hole(unsigned long start,
2297                                     unsigned long end,
2298                                     __always_unused int depth,
2299                                     struct mm_walk *walk)
2300 {
2301         struct migrate_vma *migrate = walk->private;
2302         unsigned long addr;
2303
2304         /* Only allow populating anonymous memory. */
2305         if (!vma_is_anonymous(walk->vma))
2306                 return migrate_vma_collect_skip(start, end, walk);
2307
2308         for (addr = start; addr < end; addr += PAGE_SIZE) {
2309                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2310                 migrate->dst[migrate->npages] = 0;
2311                 migrate->npages++;
2312                 migrate->cpages++;
2313         }
2314
2315         return 0;
2316 }
2317
2318 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2319                                    unsigned long start,
2320                                    unsigned long end,
2321                                    struct mm_walk *walk)
2322 {
2323         struct migrate_vma *migrate = walk->private;
2324         struct vm_area_struct *vma = walk->vma;
2325         struct mm_struct *mm = vma->vm_mm;
2326         unsigned long addr = start, unmapped = 0;
2327         spinlock_t *ptl;
2328         pte_t *ptep;
2329
2330 again:
2331         if (pmd_none(*pmdp))
2332                 return migrate_vma_collect_hole(start, end, -1, walk);
2333
2334         if (pmd_trans_huge(*pmdp)) {
2335                 struct page *page;
2336
2337                 ptl = pmd_lock(mm, pmdp);
2338                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2339                         spin_unlock(ptl);
2340                         goto again;
2341                 }
2342
2343                 page = pmd_page(*pmdp);
2344                 if (is_huge_zero_page(page)) {
2345                         spin_unlock(ptl);
2346                         split_huge_pmd(vma, pmdp, addr);
2347                         if (pmd_trans_unstable(pmdp))
2348                                 return migrate_vma_collect_skip(start, end,
2349                                                                 walk);
2350                 } else {
2351                         int ret;
2352
2353                         get_page(page);
2354                         spin_unlock(ptl);
2355                         if (unlikely(!trylock_page(page)))
2356                                 return migrate_vma_collect_skip(start, end,
2357                                                                 walk);
2358                         ret = split_huge_page(page);
2359                         unlock_page(page);
2360                         put_page(page);
2361                         if (ret)
2362                                 return migrate_vma_collect_skip(start, end,
2363                                                                 walk);
2364                         if (pmd_none(*pmdp))
2365                                 return migrate_vma_collect_hole(start, end, -1,
2366                                                                 walk);
2367                 }
2368         }
2369
2370         if (unlikely(pmd_bad(*pmdp)))
2371                 return migrate_vma_collect_skip(start, end, walk);
2372
2373         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2374         arch_enter_lazy_mmu_mode();
2375
2376         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2377                 unsigned long mpfn = 0, pfn;
2378                 struct page *page;
2379                 swp_entry_t entry;
2380                 pte_t pte;
2381
2382                 pte = *ptep;
2383
2384                 if (pte_none(pte)) {
2385                         if (vma_is_anonymous(vma)) {
2386                                 mpfn = MIGRATE_PFN_MIGRATE;
2387                                 migrate->cpages++;
2388                         }
2389                         goto next;
2390                 }
2391
2392                 if (!pte_present(pte)) {
2393                         /*
2394                          * Only care about unaddressable device page special
2395                          * page table entry. Other special swap entries are not
2396                          * migratable, and we ignore regular swapped page.
2397                          */
2398                         entry = pte_to_swp_entry(pte);
2399                         if (!is_device_private_entry(entry))
2400                                 goto next;
2401
2402                         page = device_private_entry_to_page(entry);
2403                         if (!(migrate->flags &
2404                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2405                             page->pgmap->owner != migrate->pgmap_owner)
2406                                 goto next;
2407
2408                         mpfn = migrate_pfn(page_to_pfn(page)) |
2409                                         MIGRATE_PFN_MIGRATE;
2410                         if (is_write_device_private_entry(entry))
2411                                 mpfn |= MIGRATE_PFN_WRITE;
2412                 } else {
2413                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2414                                 goto next;
2415                         pfn = pte_pfn(pte);
2416                         if (is_zero_pfn(pfn)) {
2417                                 mpfn = MIGRATE_PFN_MIGRATE;
2418                                 migrate->cpages++;
2419                                 goto next;
2420                         }
2421                         page = vm_normal_page(migrate->vma, addr, pte);
2422                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2423                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2424                 }
2425
2426                 /* FIXME support THP */
2427                 if (!page || !page->mapping || PageTransCompound(page)) {
2428                         mpfn = 0;
2429                         goto next;
2430                 }
2431
2432                 /*
2433                  * By getting a reference on the page we pin it and that blocks
2434                  * any kind of migration. Side effect is that it "freezes" the
2435                  * pte.
2436                  *
2437                  * We drop this reference after isolating the page from the lru
2438                  * for non device page (device page are not on the lru and thus
2439                  * can't be dropped from it).
2440                  */
2441                 get_page(page);
2442                 migrate->cpages++;
2443
2444                 /*
2445                  * Optimize for the common case where page is only mapped once
2446                  * in one process. If we can lock the page, then we can safely
2447                  * set up a special migration page table entry now.
2448                  */
2449                 if (trylock_page(page)) {
2450                         pte_t swp_pte;
2451
2452                         mpfn |= MIGRATE_PFN_LOCKED;
2453                         ptep_get_and_clear(mm, addr, ptep);
2454
2455                         /* Setup special migration page table entry */
2456                         entry = make_migration_entry(page, mpfn &
2457                                                      MIGRATE_PFN_WRITE);
2458                         swp_pte = swp_entry_to_pte(entry);
2459                         if (pte_present(pte)) {
2460                                 if (pte_soft_dirty(pte))
2461                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2462                                 if (pte_uffd_wp(pte))
2463                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2464                         } else {
2465                                 if (pte_swp_soft_dirty(pte))
2466                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2467                                 if (pte_swp_uffd_wp(pte))
2468                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2469                         }
2470                         set_pte_at(mm, addr, ptep, swp_pte);
2471
2472                         /*
2473                          * This is like regular unmap: we remove the rmap and
2474                          * drop page refcount. Page won't be freed, as we took
2475                          * a reference just above.
2476                          */
2477                         page_remove_rmap(page, false);
2478                         put_page(page);
2479
2480                         if (pte_present(pte))
2481                                 unmapped++;
2482                 }
2483
2484 next:
2485                 migrate->dst[migrate->npages] = 0;
2486                 migrate->src[migrate->npages++] = mpfn;
2487         }
2488         arch_leave_lazy_mmu_mode();
2489         pte_unmap_unlock(ptep - 1, ptl);
2490
2491         /* Only flush the TLB if we actually modified any entries */
2492         if (unmapped)
2493                 flush_tlb_range(walk->vma, start, end);
2494
2495         return 0;
2496 }
2497
2498 static const struct mm_walk_ops migrate_vma_walk_ops = {
2499         .pmd_entry              = migrate_vma_collect_pmd,
2500         .pte_hole               = migrate_vma_collect_hole,
2501 };
2502
2503 /*
2504  * migrate_vma_collect() - collect pages over a range of virtual addresses
2505  * @migrate: migrate struct containing all migration information
2506  *
2507  * This will walk the CPU page table. For each virtual address backed by a
2508  * valid page, it updates the src array and takes a reference on the page, in
2509  * order to pin the page until we lock it and unmap it.
2510  */
2511 static void migrate_vma_collect(struct migrate_vma *migrate)
2512 {
2513         struct mmu_notifier_range range;
2514
2515         /*
2516          * Note that the pgmap_owner is passed to the mmu notifier callback so
2517          * that the registered device driver can skip invalidating device
2518          * private page mappings that won't be migrated.
2519          */
2520         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2521                 migrate->vma->vm_mm, migrate->start, migrate->end,
2522                 migrate->pgmap_owner);
2523         mmu_notifier_invalidate_range_start(&range);
2524
2525         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2526                         &migrate_vma_walk_ops, migrate);
2527
2528         mmu_notifier_invalidate_range_end(&range);
2529         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2530 }
2531
2532 /*
2533  * migrate_vma_check_page() - check if page is pinned or not
2534  * @page: struct page to check
2535  *
2536  * Pinned pages cannot be migrated. This is the same test as in
2537  * migrate_page_move_mapping(), except that here we allow migration of a
2538  * ZONE_DEVICE page.
2539  */
2540 static bool migrate_vma_check_page(struct page *page)
2541 {
2542         /*
2543          * One extra ref because caller holds an extra reference, either from
2544          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2545          * a device page.
2546          */
2547         int extra = 1;
2548
2549         /*
2550          * FIXME support THP (transparent huge page), it is bit more complex to
2551          * check them than regular pages, because they can be mapped with a pmd
2552          * or with a pte (split pte mapping).
2553          */
2554         if (PageCompound(page))
2555                 return false;
2556
2557         /* Page from ZONE_DEVICE have one extra reference */
2558         if (is_zone_device_page(page)) {
2559                 /*
2560                  * Private page can never be pin as they have no valid pte and
2561                  * GUP will fail for those. Yet if there is a pending migration
2562                  * a thread might try to wait on the pte migration entry and
2563                  * will bump the page reference count. Sadly there is no way to
2564                  * differentiate a regular pin from migration wait. Hence to
2565                  * avoid 2 racing thread trying to migrate back to CPU to enter
2566                  * infinite loop (one stopping migration because the other is
2567                  * waiting on pte migration entry). We always return true here.
2568                  *
2569                  * FIXME proper solution is to rework migration_entry_wait() so
2570                  * it does not need to take a reference on page.
2571                  */
2572                 return is_device_private_page(page);
2573         }
2574
2575         /* For file back page */
2576         if (page_mapping(page))
2577                 extra += 1 + page_has_private(page);
2578
2579         if ((page_count(page) - extra) > page_mapcount(page))
2580                 return false;
2581
2582         return true;
2583 }
2584
2585 /*
2586  * migrate_vma_prepare() - lock pages and isolate them from the lru
2587  * @migrate: migrate struct containing all migration information
2588  *
2589  * This locks pages that have been collected by migrate_vma_collect(). Once each
2590  * page is locked it is isolated from the lru (for non-device pages). Finally,
2591  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2592  * migrated by concurrent kernel threads.
2593  */
2594 static void migrate_vma_prepare(struct migrate_vma *migrate)
2595 {
2596         const unsigned long npages = migrate->npages;
2597         const unsigned long start = migrate->start;
2598         unsigned long addr, i, restore = 0;
2599         bool allow_drain = true;
2600
2601         lru_add_drain();
2602
2603         for (i = 0; (i < npages) && migrate->cpages; i++) {
2604                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605                 bool remap = true;
2606
2607                 if (!page)
2608                         continue;
2609
2610                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2611                         /*
2612                          * Because we are migrating several pages there can be
2613                          * a deadlock between 2 concurrent migration where each
2614                          * are waiting on each other page lock.
2615                          *
2616                          * Make migrate_vma() a best effort thing and backoff
2617                          * for any page we can not lock right away.
2618                          */
2619                         if (!trylock_page(page)) {
2620                                 migrate->src[i] = 0;
2621                                 migrate->cpages--;
2622                                 put_page(page);
2623                                 continue;
2624                         }
2625                         remap = false;
2626                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2627                 }
2628
2629                 /* ZONE_DEVICE pages are not on LRU */
2630                 if (!is_zone_device_page(page)) {
2631                         if (!PageLRU(page) && allow_drain) {
2632                                 /* Drain CPU's pagevec */
2633                                 lru_add_drain_all();
2634                                 allow_drain = false;
2635                         }
2636
2637                         if (isolate_lru_page(page)) {
2638                                 if (remap) {
2639                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2640                                         migrate->cpages--;
2641                                         restore++;
2642                                 } else {
2643                                         migrate->src[i] = 0;
2644                                         unlock_page(page);
2645                                         migrate->cpages--;
2646                                         put_page(page);
2647                                 }
2648                                 continue;
2649                         }
2650
2651                         /* Drop the reference we took in collect */
2652                         put_page(page);
2653                 }
2654
2655                 if (!migrate_vma_check_page(page)) {
2656                         if (remap) {
2657                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2658                                 migrate->cpages--;
2659                                 restore++;
2660
2661                                 if (!is_zone_device_page(page)) {
2662                                         get_page(page);
2663                                         putback_lru_page(page);
2664                                 }
2665                         } else {
2666                                 migrate->src[i] = 0;
2667                                 unlock_page(page);
2668                                 migrate->cpages--;
2669
2670                                 if (!is_zone_device_page(page))
2671                                         putback_lru_page(page);
2672                                 else
2673                                         put_page(page);
2674                         }
2675                 }
2676         }
2677
2678         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2679                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2680
2681                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2682                         continue;
2683
2684                 remove_migration_pte(page, migrate->vma, addr, page);
2685
2686                 migrate->src[i] = 0;
2687                 unlock_page(page);
2688                 put_page(page);
2689                 restore--;
2690         }
2691 }
2692
2693 /*
2694  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2695  * @migrate: migrate struct containing all migration information
2696  *
2697  * Replace page mapping (CPU page table pte) with a special migration pte entry
2698  * and check again if it has been pinned. Pinned pages are restored because we
2699  * cannot migrate them.
2700  *
2701  * This is the last step before we call the device driver callback to allocate
2702  * destination memory and copy contents of original page over to new page.
2703  */
2704 static void migrate_vma_unmap(struct migrate_vma *migrate)
2705 {
2706         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2707         const unsigned long npages = migrate->npages;
2708         const unsigned long start = migrate->start;
2709         unsigned long addr, i, restore = 0;
2710
2711         for (i = 0; i < npages; i++) {
2712                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2713
2714                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2715                         continue;
2716
2717                 if (page_mapped(page)) {
2718                         try_to_unmap(page, flags);
2719                         if (page_mapped(page))
2720                                 goto restore;
2721                 }
2722
2723                 if (migrate_vma_check_page(page))
2724                         continue;
2725
2726 restore:
2727                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2728                 migrate->cpages--;
2729                 restore++;
2730         }
2731
2732         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2733                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2734
2735                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2736                         continue;
2737
2738                 remove_migration_ptes(page, page, false);
2739
2740                 migrate->src[i] = 0;
2741                 unlock_page(page);
2742                 restore--;
2743
2744                 if (is_zone_device_page(page))
2745                         put_page(page);
2746                 else
2747                         putback_lru_page(page);
2748         }
2749 }
2750
2751 /**
2752  * migrate_vma_setup() - prepare to migrate a range of memory
2753  * @args: contains the vma, start, and pfns arrays for the migration
2754  *
2755  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2756  * without an error.
2757  *
2758  * Prepare to migrate a range of memory virtual address range by collecting all
2759  * the pages backing each virtual address in the range, saving them inside the
2760  * src array.  Then lock those pages and unmap them. Once the pages are locked
2761  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2762  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2763  * corresponding src array entry.  Then restores any pages that are pinned, by
2764  * remapping and unlocking those pages.
2765  *
2766  * The caller should then allocate destination memory and copy source memory to
2767  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2768  * flag set).  Once these are allocated and copied, the caller must update each
2769  * corresponding entry in the dst array with the pfn value of the destination
2770  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2771  * (destination pages must have their struct pages locked, via lock_page()).
2772  *
2773  * Note that the caller does not have to migrate all the pages that are marked
2774  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2775  * device memory to system memory.  If the caller cannot migrate a device page
2776  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2777  * consequences for the userspace process, so it must be avoided if at all
2778  * possible.
2779  *
2780  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2781  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2782  * allowing the caller to allocate device memory for those unbacked virtual
2783  * addresses.  For this the caller simply has to allocate device memory and
2784  * properly set the destination entry like for regular migration.  Note that
2785  * this can still fail, and thus inside the device driver you must check if the
2786  * migration was successful for those entries after calling migrate_vma_pages(),
2787  * just like for regular migration.
2788  *
2789  * After that, the callers must call migrate_vma_pages() to go over each entry
2790  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2791  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2792  * then migrate_vma_pages() to migrate struct page information from the source
2793  * struct page to the destination struct page.  If it fails to migrate the
2794  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2795  * src array.
2796  *
2797  * At this point all successfully migrated pages have an entry in the src
2798  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2799  * array entry with MIGRATE_PFN_VALID flag set.
2800  *
2801  * Once migrate_vma_pages() returns the caller may inspect which pages were
2802  * successfully migrated, and which were not.  Successfully migrated pages will
2803  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2804  *
2805  * It is safe to update device page table after migrate_vma_pages() because
2806  * both destination and source page are still locked, and the mmap_lock is held
2807  * in read mode (hence no one can unmap the range being migrated).
2808  *
2809  * Once the caller is done cleaning up things and updating its page table (if it
2810  * chose to do so, this is not an obligation) it finally calls
2811  * migrate_vma_finalize() to update the CPU page table to point to new pages
2812  * for successfully migrated pages or otherwise restore the CPU page table to
2813  * point to the original source pages.
2814  */
2815 int migrate_vma_setup(struct migrate_vma *args)
2816 {
2817         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2818
2819         args->start &= PAGE_MASK;
2820         args->end &= PAGE_MASK;
2821         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2822             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2823                 return -EINVAL;
2824         if (nr_pages <= 0)
2825                 return -EINVAL;
2826         if (args->start < args->vma->vm_start ||
2827             args->start >= args->vma->vm_end)
2828                 return -EINVAL;
2829         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2830                 return -EINVAL;
2831         if (!args->src || !args->dst)
2832                 return -EINVAL;
2833
2834         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2835         args->cpages = 0;
2836         args->npages = 0;
2837
2838         migrate_vma_collect(args);
2839
2840         if (args->cpages)
2841                 migrate_vma_prepare(args);
2842         if (args->cpages)
2843                 migrate_vma_unmap(args);
2844
2845         /*
2846          * At this point pages are locked and unmapped, and thus they have
2847          * stable content and can safely be copied to destination memory that
2848          * is allocated by the drivers.
2849          */
2850         return 0;
2851
2852 }
2853 EXPORT_SYMBOL(migrate_vma_setup);
2854
2855 /*
2856  * This code closely matches the code in:
2857  *   __handle_mm_fault()
2858  *     handle_pte_fault()
2859  *       do_anonymous_page()
2860  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2861  * private page.
2862  */
2863 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2864                                     unsigned long addr,
2865                                     struct page *page,
2866                                     unsigned long *src)
2867 {
2868         struct vm_area_struct *vma = migrate->vma;
2869         struct mm_struct *mm = vma->vm_mm;
2870         bool flush = false;
2871         spinlock_t *ptl;
2872         pte_t entry;
2873         pgd_t *pgdp;
2874         p4d_t *p4dp;
2875         pud_t *pudp;
2876         pmd_t *pmdp;
2877         pte_t *ptep;
2878
2879         /* Only allow populating anonymous memory */
2880         if (!vma_is_anonymous(vma))
2881                 goto abort;
2882
2883         pgdp = pgd_offset(mm, addr);
2884         p4dp = p4d_alloc(mm, pgdp, addr);
2885         if (!p4dp)
2886                 goto abort;
2887         pudp = pud_alloc(mm, p4dp, addr);
2888         if (!pudp)
2889                 goto abort;
2890         pmdp = pmd_alloc(mm, pudp, addr);
2891         if (!pmdp)
2892                 goto abort;
2893
2894         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2895                 goto abort;
2896
2897         /*
2898          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2899          * pte_offset_map() on pmds where a huge pmd might be created
2900          * from a different thread.
2901          *
2902          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2903          * parallel threads are excluded by other means.
2904          *
2905          * Here we only have mmap_read_lock(mm).
2906          */
2907         if (pte_alloc(mm, pmdp))
2908                 goto abort;
2909
2910         /* See the comment in pte_alloc_one_map() */
2911         if (unlikely(pmd_trans_unstable(pmdp)))
2912                 goto abort;
2913
2914         if (unlikely(anon_vma_prepare(vma)))
2915                 goto abort;
2916         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2917                 goto abort;
2918
2919         /*
2920          * The memory barrier inside __SetPageUptodate makes sure that
2921          * preceding stores to the page contents become visible before
2922          * the set_pte_at() write.
2923          */
2924         __SetPageUptodate(page);
2925
2926         if (is_zone_device_page(page)) {
2927                 if (is_device_private_page(page)) {
2928                         swp_entry_t swp_entry;
2929
2930                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2931                         entry = swp_entry_to_pte(swp_entry);
2932                 } else {
2933                         /*
2934                          * For now we only support migrating to un-addressable
2935                          * device memory.
2936                          */
2937                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2938                         goto abort;
2939                 }
2940         } else {
2941                 entry = mk_pte(page, vma->vm_page_prot);
2942                 if (vma->vm_flags & VM_WRITE)
2943                         entry = pte_mkwrite(pte_mkdirty(entry));
2944         }
2945
2946         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2947
2948         if (check_stable_address_space(mm))
2949                 goto unlock_abort;
2950
2951         if (pte_present(*ptep)) {
2952                 unsigned long pfn = pte_pfn(*ptep);
2953
2954                 if (!is_zero_pfn(pfn))
2955                         goto unlock_abort;
2956                 flush = true;
2957         } else if (!pte_none(*ptep))
2958                 goto unlock_abort;
2959
2960         /*
2961          * Check for userfaultfd but do not deliver the fault. Instead,
2962          * just back off.
2963          */
2964         if (userfaultfd_missing(vma))
2965                 goto unlock_abort;
2966
2967         inc_mm_counter(mm, MM_ANONPAGES);
2968         page_add_new_anon_rmap(page, vma, addr, false);
2969         if (!is_zone_device_page(page))
2970                 lru_cache_add_inactive_or_unevictable(page, vma);
2971         get_page(page);
2972
2973         if (flush) {
2974                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2975                 ptep_clear_flush_notify(vma, addr, ptep);
2976                 set_pte_at_notify(mm, addr, ptep, entry);
2977                 update_mmu_cache(vma, addr, ptep);
2978         } else {
2979                 /* No need to invalidate - it was non-present before */
2980                 set_pte_at(mm, addr, ptep, entry);
2981                 update_mmu_cache(vma, addr, ptep);
2982         }
2983
2984         pte_unmap_unlock(ptep, ptl);
2985         *src = MIGRATE_PFN_MIGRATE;
2986         return;
2987
2988 unlock_abort:
2989         pte_unmap_unlock(ptep, ptl);
2990 abort:
2991         *src &= ~MIGRATE_PFN_MIGRATE;
2992 }
2993
2994 /**
2995  * migrate_vma_pages() - migrate meta-data from src page to dst page
2996  * @migrate: migrate struct containing all migration information
2997  *
2998  * This migrates struct page meta-data from source struct page to destination
2999  * struct page. This effectively finishes the migration from source page to the
3000  * destination page.
3001  */
3002 void migrate_vma_pages(struct migrate_vma *migrate)
3003 {
3004         const unsigned long npages = migrate->npages;
3005         const unsigned long start = migrate->start;
3006         struct mmu_notifier_range range;
3007         unsigned long addr, i;
3008         bool notified = false;
3009
3010         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3011                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3012                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3013                 struct address_space *mapping;
3014                 int r;
3015
3016                 if (!newpage) {
3017                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3018                         continue;
3019                 }
3020
3021                 if (!page) {
3022                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3023                                 continue;
3024                         if (!notified) {
3025                                 notified = true;
3026
3027                                 mmu_notifier_range_init_migrate(&range, 0,
3028                                         migrate->vma, migrate->vma->vm_mm,
3029                                         addr, migrate->end,
3030                                         migrate->pgmap_owner);
3031                                 mmu_notifier_invalidate_range_start(&range);
3032                         }
3033                         migrate_vma_insert_page(migrate, addr, newpage,
3034                                                 &migrate->src[i]);
3035                         continue;
3036                 }
3037
3038                 mapping = page_mapping(page);
3039
3040                 if (is_zone_device_page(newpage)) {
3041                         if (is_device_private_page(newpage)) {
3042                                 /*
3043                                  * For now only support private anonymous when
3044                                  * migrating to un-addressable device memory.
3045                                  */
3046                                 if (mapping) {
3047                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3048                                         continue;
3049                                 }
3050                         } else {
3051                                 /*
3052                                  * Other types of ZONE_DEVICE page are not
3053                                  * supported.
3054                                  */
3055                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3056                                 continue;
3057                         }
3058                 }
3059
3060                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3061                 if (r != MIGRATEPAGE_SUCCESS)
3062                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3063         }
3064
3065         /*
3066          * No need to double call mmu_notifier->invalidate_range() callback as
3067          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3068          * did already call it.
3069          */
3070         if (notified)
3071                 mmu_notifier_invalidate_range_only_end(&range);
3072 }
3073 EXPORT_SYMBOL(migrate_vma_pages);
3074
3075 /**
3076  * migrate_vma_finalize() - restore CPU page table entry
3077  * @migrate: migrate struct containing all migration information
3078  *
3079  * This replaces the special migration pte entry with either a mapping to the
3080  * new page if migration was successful for that page, or to the original page
3081  * otherwise.
3082  *
3083  * This also unlocks the pages and puts them back on the lru, or drops the extra
3084  * refcount, for device pages.
3085  */
3086 void migrate_vma_finalize(struct migrate_vma *migrate)
3087 {
3088         const unsigned long npages = migrate->npages;
3089         unsigned long i;
3090
3091         for (i = 0; i < npages; i++) {
3092                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3093                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3094
3095                 if (!page) {
3096                         if (newpage) {
3097                                 unlock_page(newpage);
3098                                 put_page(newpage);
3099                         }
3100                         continue;
3101                 }
3102
3103                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3104                         if (newpage) {
3105                                 unlock_page(newpage);
3106                                 put_page(newpage);
3107                         }
3108                         newpage = page;
3109                 }
3110
3111                 remove_migration_ptes(page, newpage, false);
3112                 unlock_page(page);
3113
3114                 if (is_zone_device_page(page))
3115                         put_page(page);
3116                 else
3117                         putback_lru_page(page);
3118
3119                 if (newpage != page) {
3120                         unlock_page(newpage);
3121                         if (is_zone_device_page(newpage))
3122                                 put_page(newpage);
3123                         else
3124                                 putback_lru_page(newpage);
3125                 }
3126         }
3127 }
3128 EXPORT_SYMBOL(migrate_vma_finalize);
3129 #endif /* CONFIG_DEVICE_PRIVATE */