hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_cache(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246
247                 if (unlikely(is_zone_device_page(new))) {
248                         if (is_device_private_page(new)) {
249                                 entry = make_device_private_entry(new, pte_write(pte));
250                                 pte = swp_entry_to_pte(entry);
251                         }
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device public or private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406         if (!mapping) {
407                 /* Anonymous page without mapping */
408                 if (page_count(page) != expected_count)
409                         return -EAGAIN;
410
411                 /* No turning back from here */
412                 newpage->index = page->index;
413                 newpage->mapping = page->mapping;
414                 if (PageSwapBacked(page))
415                         __SetPageSwapBacked(newpage);
416
417                 return MIGRATEPAGE_SUCCESS;
418         }
419
420         oldzone = page_zone(page);
421         newzone = page_zone(newpage);
422
423         xas_lock_irq(&xas);
424         if (page_count(page) != expected_count || xas_load(&xas) != page) {
425                 xas_unlock_irq(&xas);
426                 return -EAGAIN;
427         }
428
429         if (!page_ref_freeze(page, expected_count)) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         /*
435          * Now we know that no one else is looking at the page:
436          * no turning back from here.
437          */
438         newpage->index = page->index;
439         newpage->mapping = page->mapping;
440         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441         if (PageSwapBacked(page)) {
442                 __SetPageSwapBacked(newpage);
443                 if (PageSwapCache(page)) {
444                         SetPageSwapCache(newpage);
445                         set_page_private(newpage, page_private(page));
446                 }
447         } else {
448                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449         }
450
451         /* Move dirty while page refs frozen and newpage not yet exposed */
452         dirty = PageDirty(page);
453         if (dirty) {
454                 ClearPageDirty(page);
455                 SetPageDirty(newpage);
456         }
457
458         xas_store(&xas, newpage);
459         if (PageTransHuge(page)) {
460                 int i;
461
462                 for (i = 1; i < HPAGE_PMD_NR; i++) {
463                         xas_next(&xas);
464                         xas_store(&xas, newpage);
465                 }
466         }
467
468         /*
469          * Drop cache reference from old page by unfreezing
470          * to one less reference.
471          * We know this isn't the last reference.
472          */
473         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474
475         xas_unlock(&xas);
476         /* Leave irq disabled to prevent preemption while updating stats */
477
478         /*
479          * If moved to a different zone then also account
480          * the page for that zone. Other VM counters will be
481          * taken care of when we establish references to the
482          * new page and drop references to the old page.
483          *
484          * Note that anonymous pages are accounted for
485          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486          * are mapped to swap space.
487          */
488         if (newzone != oldzone) {
489                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494                 }
495                 if (dirty && mapping_cap_account_dirty(mapping)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500                 }
501         }
502         local_irq_enable();
503
504         return MIGRATEPAGE_SUCCESS;
505 }
506 EXPORT_SYMBOL(migrate_page_move_mapping);
507
508 /*
509  * The expected number of remaining references is the same as that
510  * of migrate_page_move_mapping().
511  */
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513                                    struct page *newpage, struct page *page)
514 {
515         XA_STATE(xas, &mapping->i_pages, page_index(page));
516         int expected_count;
517
518         xas_lock_irq(&xas);
519         expected_count = 2 + page_has_private(page);
520         if (page_count(page) != expected_count || xas_load(&xas) != page) {
521                 xas_unlock_irq(&xas);
522                 return -EAGAIN;
523         }
524
525         if (!page_ref_freeze(page, expected_count)) {
526                 xas_unlock_irq(&xas);
527                 return -EAGAIN;
528         }
529
530         newpage->index = page->index;
531         newpage->mapping = page->mapping;
532
533         get_page(newpage);
534
535         xas_store(&xas, newpage);
536
537         page_ref_unfreeze(page, expected_count - 1);
538
539         xas_unlock_irq(&xas);
540
541         return MIGRATEPAGE_SUCCESS;
542 }
543
544 /*
545  * Gigantic pages are so large that we do not guarantee that page++ pointer
546  * arithmetic will work across the entire page.  We need something more
547  * specialized.
548  */
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550                                 int nr_pages)
551 {
552         int i;
553         struct page *dst_base = dst;
554         struct page *src_base = src;
555
556         for (i = 0; i < nr_pages; ) {
557                 cond_resched();
558                 copy_highpage(dst, src);
559
560                 i++;
561                 dst = mem_map_next(dst, dst_base, i);
562                 src = mem_map_next(src, src_base, i);
563         }
564 }
565
566 static void copy_huge_page(struct page *dst, struct page *src)
567 {
568         int i;
569         int nr_pages;
570
571         if (PageHuge(src)) {
572                 /* hugetlbfs page */
573                 struct hstate *h = page_hstate(src);
574                 nr_pages = pages_per_huge_page(h);
575
576                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577                         __copy_gigantic_page(dst, src, nr_pages);
578                         return;
579                 }
580         } else {
581                 /* thp page */
582                 BUG_ON(!PageTransHuge(src));
583                 nr_pages = hpage_nr_pages(src);
584         }
585
586         for (i = 0; i < nr_pages; i++) {
587                 cond_resched();
588                 copy_highpage(dst + i, src + i);
589         }
590 }
591
592 /*
593  * Copy the page to its new location
594  */
595 void migrate_page_states(struct page *newpage, struct page *page)
596 {
597         int cpupid;
598
599         if (PageError(page))
600                 SetPageError(newpage);
601         if (PageReferenced(page))
602                 SetPageReferenced(newpage);
603         if (PageUptodate(page))
604                 SetPageUptodate(newpage);
605         if (TestClearPageActive(page)) {
606                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607                 SetPageActive(newpage);
608         } else if (TestClearPageUnevictable(page))
609                 SetPageUnevictable(newpage);
610         if (PageWorkingset(page))
611                 SetPageWorkingset(newpage);
612         if (PageChecked(page))
613                 SetPageChecked(newpage);
614         if (PageMappedToDisk(page))
615                 SetPageMappedToDisk(newpage);
616
617         /* Move dirty on pages not done by migrate_page_move_mapping() */
618         if (PageDirty(page))
619                 SetPageDirty(newpage);
620
621         if (page_is_young(page))
622                 set_page_young(newpage);
623         if (page_is_idle(page))
624                 set_page_idle(newpage);
625
626         /*
627          * Copy NUMA information to the new page, to prevent over-eager
628          * future migrations of this same page.
629          */
630         cpupid = page_cpupid_xchg_last(page, -1);
631         page_cpupid_xchg_last(newpage, cpupid);
632
633         ksm_migrate_page(newpage, page);
634         /*
635          * Please do not reorder this without considering how mm/ksm.c's
636          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637          */
638         if (PageSwapCache(page))
639                 ClearPageSwapCache(page);
640         ClearPagePrivate(page);
641         set_page_private(page, 0);
642
643         /*
644          * If any waiters have accumulated on the new page then
645          * wake them up.
646          */
647         if (PageWriteback(newpage))
648                 end_page_writeback(newpage);
649
650         copy_page_owner(page, newpage);
651
652         mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658         if (PageHuge(page) || PageTransHuge(page))
659                 copy_huge_page(newpage, page);
660         else
661                 copy_highpage(newpage, page);
662
663         migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678                 struct page *newpage, struct page *page,
679                 enum migrate_mode mode)
680 {
681         int rc;
682
683         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
684
685         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686
687         if (rc != MIGRATEPAGE_SUCCESS)
688                 return rc;
689
690         if (mode != MIGRATE_SYNC_NO_COPY)
691                 migrate_page_copy(newpage, page);
692         else
693                 migrate_page_states(newpage, page);
694         return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701                                                         enum migrate_mode mode)
702 {
703         struct buffer_head *bh = head;
704
705         /* Simple case, sync compaction */
706         if (mode != MIGRATE_ASYNC) {
707                 do {
708                         lock_buffer(bh);
709                         bh = bh->b_this_page;
710
711                 } while (bh != head);
712
713                 return true;
714         }
715
716         /* async case, we cannot block on lock_buffer so use trylock_buffer */
717         do {
718                 if (!trylock_buffer(bh)) {
719                         /*
720                          * We failed to lock the buffer and cannot stall in
721                          * async migration. Release the taken locks
722                          */
723                         struct buffer_head *failed_bh = bh;
724                         bh = head;
725                         while (bh != failed_bh) {
726                                 unlock_buffer(bh);
727                                 bh = bh->b_this_page;
728                         }
729                         return false;
730                 }
731
732                 bh = bh->b_this_page;
733         } while (bh != head);
734         return true;
735 }
736
737 static int __buffer_migrate_page(struct address_space *mapping,
738                 struct page *newpage, struct page *page, enum migrate_mode mode,
739                 bool check_refs)
740 {
741         struct buffer_head *bh, *head;
742         int rc;
743         int expected_count;
744
745         if (!page_has_buffers(page))
746                 return migrate_page(mapping, newpage, page, mode);
747
748         /* Check whether page does not have extra refs before we do more work */
749         expected_count = expected_page_refs(mapping, page);
750         if (page_count(page) != expected_count)
751                 return -EAGAIN;
752
753         head = page_buffers(page);
754         if (!buffer_migrate_lock_buffers(head, mode))
755                 return -EAGAIN;
756
757         if (check_refs) {
758                 bool busy;
759                 bool invalidated = false;
760
761 recheck_buffers:
762                 busy = false;
763                 spin_lock(&mapping->private_lock);
764                 bh = head;
765                 do {
766                         if (atomic_read(&bh->b_count)) {
767                                 busy = true;
768                                 break;
769                         }
770                         bh = bh->b_this_page;
771                 } while (bh != head);
772                 if (busy) {
773                         if (invalidated) {
774                                 rc = -EAGAIN;
775                                 goto unlock_buffers;
776                         }
777                         spin_unlock(&mapping->private_lock);
778                         invalidate_bh_lrus();
779                         invalidated = true;
780                         goto recheck_buffers;
781                 }
782         }
783
784         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785         if (rc != MIGRATEPAGE_SUCCESS)
786                 goto unlock_buffers;
787
788         ClearPagePrivate(page);
789         set_page_private(newpage, page_private(page));
790         set_page_private(page, 0);
791         put_page(page);
792         get_page(newpage);
793
794         bh = head;
795         do {
796                 set_bh_page(bh, newpage, bh_offset(bh));
797                 bh = bh->b_this_page;
798
799         } while (bh != head);
800
801         SetPagePrivate(newpage);
802
803         if (mode != MIGRATE_SYNC_NO_COPY)
804                 migrate_page_copy(newpage, page);
805         else
806                 migrate_page_states(newpage, page);
807
808         rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810         if (check_refs)
811                 spin_unlock(&mapping->private_lock);
812         bh = head;
813         do {
814                 unlock_buffer(bh);
815                 bh = bh->b_this_page;
816
817         } while (bh != head);
818
819         return rc;
820 }
821
822 /*
823  * Migration function for pages with buffers. This function can only be used
824  * if the underlying filesystem guarantees that no other references to "page"
825  * exist. For example attached buffer heads are accessed only under page lock.
826  */
827 int buffer_migrate_page(struct address_space *mapping,
828                 struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830         return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833
834 /*
835  * Same as above except that this variant is more careful and checks that there
836  * are also no buffer head references. This function is the right one for
837  * mappings where buffer heads are directly looked up and referenced (such as
838  * block device mappings).
839  */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841                 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843         return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846
847 /*
848  * Writeback a page to clean the dirty state
849  */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852         struct writeback_control wbc = {
853                 .sync_mode = WB_SYNC_NONE,
854                 .nr_to_write = 1,
855                 .range_start = 0,
856                 .range_end = LLONG_MAX,
857                 .for_reclaim = 1
858         };
859         int rc;
860
861         if (!mapping->a_ops->writepage)
862                 /* No write method for the address space */
863                 return -EINVAL;
864
865         if (!clear_page_dirty_for_io(page))
866                 /* Someone else already triggered a write */
867                 return -EAGAIN;
868
869         /*
870          * A dirty page may imply that the underlying filesystem has
871          * the page on some queue. So the page must be clean for
872          * migration. Writeout may mean we loose the lock and the
873          * page state is no longer what we checked for earlier.
874          * At this point we know that the migration attempt cannot
875          * be successful.
876          */
877         remove_migration_ptes(page, page, false);
878
879         rc = mapping->a_ops->writepage(page, &wbc);
880
881         if (rc != AOP_WRITEPAGE_ACTIVATE)
882                 /* unlocked. Relock */
883                 lock_page(page);
884
885         return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889  * Default handling if a filesystem does not provide a migration function.
890  */
891 static int fallback_migrate_page(struct address_space *mapping,
892         struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894         if (PageDirty(page)) {
895                 /* Only writeback pages in full synchronous migration */
896                 switch (mode) {
897                 case MIGRATE_SYNC:
898                 case MIGRATE_SYNC_NO_COPY:
899                         break;
900                 default:
901                         return -EBUSY;
902                 }
903                 return writeout(mapping, page);
904         }
905
906         /*
907          * Buffers may be managed in a filesystem specific way.
908          * We must have no buffers or drop them.
909          */
910         if (page_has_private(page) &&
911             !try_to_release_page(page, GFP_KERNEL))
912                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913
914         return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918  * Move a page to a newly allocated page
919  * The page is locked and all ptes have been successfully removed.
920  *
921  * The new page will have replaced the old page if this function
922  * is successful.
923  *
924  * Return value:
925  *   < 0 - error code
926  *  MIGRATEPAGE_SUCCESS - success
927  */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929                                 enum migrate_mode mode)
930 {
931         struct address_space *mapping;
932         int rc = -EAGAIN;
933         bool is_lru = !__PageMovable(page);
934
935         VM_BUG_ON_PAGE(!PageLocked(page), page);
936         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938         mapping = page_mapping(page);
939
940         if (likely(is_lru)) {
941                 if (!mapping)
942                         rc = migrate_page(mapping, newpage, page, mode);
943                 else if (mapping->a_ops->migratepage)
944                         /*
945                          * Most pages have a mapping and most filesystems
946                          * provide a migratepage callback. Anonymous pages
947                          * are part of swap space which also has its own
948                          * migratepage callback. This is the most common path
949                          * for page migration.
950                          */
951                         rc = mapping->a_ops->migratepage(mapping, newpage,
952                                                         page, mode);
953                 else
954                         rc = fallback_migrate_page(mapping, newpage,
955                                                         page, mode);
956         } else {
957                 /*
958                  * In case of non-lru page, it could be released after
959                  * isolation step. In that case, we shouldn't try migration.
960                  */
961                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962                 if (!PageMovable(page)) {
963                         rc = MIGRATEPAGE_SUCCESS;
964                         __ClearPageIsolated(page);
965                         goto out;
966                 }
967
968                 rc = mapping->a_ops->migratepage(mapping, newpage,
969                                                 page, mode);
970                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971                         !PageIsolated(page));
972         }
973
974         /*
975          * When successful, old pagecache page->mapping must be cleared before
976          * page is freed; but stats require that PageAnon be left as PageAnon.
977          */
978         if (rc == MIGRATEPAGE_SUCCESS) {
979                 if (__PageMovable(page)) {
980                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982                         /*
983                          * We clear PG_movable under page_lock so any compactor
984                          * cannot try to migrate this page.
985                          */
986                         __ClearPageIsolated(page);
987                 }
988
989                 /*
990                  * Anonymous and movable page->mapping will be cleared by
991                  * free_pages_prepare so don't reset it here for keeping
992                  * the type to work PageAnon, for example.
993                  */
994                 if (!PageMappingFlags(page))
995                         page->mapping = NULL;
996
997                 if (likely(!is_zone_device_page(newpage)))
998                         flush_dcache_page(newpage);
999
1000         }
1001 out:
1002         return rc;
1003 }
1004
1005 static int __unmap_and_move(struct page *page, struct page *newpage,
1006                                 int force, enum migrate_mode mode)
1007 {
1008         int rc = -EAGAIN;
1009         int page_was_mapped = 0;
1010         struct anon_vma *anon_vma = NULL;
1011         bool is_lru = !__PageMovable(page);
1012
1013         if (!trylock_page(page)) {
1014                 if (!force || mode == MIGRATE_ASYNC)
1015                         goto out;
1016
1017                 /*
1018                  * It's not safe for direct compaction to call lock_page.
1019                  * For example, during page readahead pages are added locked
1020                  * to the LRU. Later, when the IO completes the pages are
1021                  * marked uptodate and unlocked. However, the queueing
1022                  * could be merging multiple pages for one bio (e.g.
1023                  * mpage_readpages). If an allocation happens for the
1024                  * second or third page, the process can end up locking
1025                  * the same page twice and deadlocking. Rather than
1026                  * trying to be clever about what pages can be locked,
1027                  * avoid the use of lock_page for direct compaction
1028                  * altogether.
1029                  */
1030                 if (current->flags & PF_MEMALLOC)
1031                         goto out;
1032
1033                 lock_page(page);
1034         }
1035
1036         if (PageWriteback(page)) {
1037                 /*
1038                  * Only in the case of a full synchronous migration is it
1039                  * necessary to wait for PageWriteback. In the async case,
1040                  * the retry loop is too short and in the sync-light case,
1041                  * the overhead of stalling is too much
1042                  */
1043                 switch (mode) {
1044                 case MIGRATE_SYNC:
1045                 case MIGRATE_SYNC_NO_COPY:
1046                         break;
1047                 default:
1048                         rc = -EBUSY;
1049                         goto out_unlock;
1050                 }
1051                 if (!force)
1052                         goto out_unlock;
1053                 wait_on_page_writeback(page);
1054         }
1055
1056         /*
1057          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058          * we cannot notice that anon_vma is freed while we migrates a page.
1059          * This get_anon_vma() delays freeing anon_vma pointer until the end
1060          * of migration. File cache pages are no problem because of page_lock()
1061          * File Caches may use write_page() or lock_page() in migration, then,
1062          * just care Anon page here.
1063          *
1064          * Only page_get_anon_vma() understands the subtleties of
1065          * getting a hold on an anon_vma from outside one of its mms.
1066          * But if we cannot get anon_vma, then we won't need it anyway,
1067          * because that implies that the anon page is no longer mapped
1068          * (and cannot be remapped so long as we hold the page lock).
1069          */
1070         if (PageAnon(page) && !PageKsm(page))
1071                 anon_vma = page_get_anon_vma(page);
1072
1073         /*
1074          * Block others from accessing the new page when we get around to
1075          * establishing additional references. We are usually the only one
1076          * holding a reference to newpage at this point. We used to have a BUG
1077          * here if trylock_page(newpage) fails, but would like to allow for
1078          * cases where there might be a race with the previous use of newpage.
1079          * This is much like races on refcount of oldpage: just don't BUG().
1080          */
1081         if (unlikely(!trylock_page(newpage)))
1082                 goto out_unlock;
1083
1084         if (unlikely(!is_lru)) {
1085                 rc = move_to_new_page(newpage, page, mode);
1086                 goto out_unlock_both;
1087         }
1088
1089         /*
1090          * Corner case handling:
1091          * 1. When a new swap-cache page is read into, it is added to the LRU
1092          * and treated as swapcache but it has no rmap yet.
1093          * Calling try_to_unmap() against a page->mapping==NULL page will
1094          * trigger a BUG.  So handle it here.
1095          * 2. An orphaned page (see truncate_complete_page) might have
1096          * fs-private metadata. The page can be picked up due to memory
1097          * offlining.  Everywhere else except page reclaim, the page is
1098          * invisible to the vm, so the page can not be migrated.  So try to
1099          * free the metadata, so the page can be freed.
1100          */
1101         if (!page->mapping) {
1102                 VM_BUG_ON_PAGE(PageAnon(page), page);
1103                 if (page_has_private(page)) {
1104                         try_to_free_buffers(page);
1105                         goto out_unlock_both;
1106                 }
1107         } else if (page_mapped(page)) {
1108                 /* Establish migration ptes */
1109                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110                                 page);
1111                 try_to_unmap(page,
1112                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113                 page_was_mapped = 1;
1114         }
1115
1116         if (!page_mapped(page))
1117                 rc = move_to_new_page(newpage, page, mode);
1118
1119         if (page_was_mapped)
1120                 remove_migration_ptes(page,
1121                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123 out_unlock_both:
1124         unlock_page(newpage);
1125 out_unlock:
1126         /* Drop an anon_vma reference if we took one */
1127         if (anon_vma)
1128                 put_anon_vma(anon_vma);
1129         unlock_page(page);
1130 out:
1131         /*
1132          * If migration is successful, decrease refcount of the newpage
1133          * which will not free the page because new page owner increased
1134          * refcounter. As well, if it is LRU page, add the page to LRU
1135          * list in here. Use the old state of the isolated source page to
1136          * determine if we migrated a LRU page. newpage was already unlocked
1137          * and possibly modified by its owner - don't rely on the page
1138          * state.
1139          */
1140         if (rc == MIGRATEPAGE_SUCCESS) {
1141                 if (unlikely(!is_lru))
1142                         put_page(newpage);
1143                 else
1144                         putback_lru_page(newpage);
1145         }
1146
1147         return rc;
1148 }
1149
1150 /*
1151  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152  * around it.
1153  */
1154 #if defined(CONFIG_ARM) && \
1155         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166                                    free_page_t put_new_page,
1167                                    unsigned long private, struct page *page,
1168                                    int force, enum migrate_mode mode,
1169                                    enum migrate_reason reason)
1170 {
1171         int rc = MIGRATEPAGE_SUCCESS;
1172         struct page *newpage = NULL;
1173
1174         if (!thp_migration_supported() && PageTransHuge(page))
1175                 return -ENOMEM;
1176
1177         if (page_count(page) == 1) {
1178                 /* page was freed from under us. So we are done. */
1179                 ClearPageActive(page);
1180                 ClearPageUnevictable(page);
1181                 if (unlikely(__PageMovable(page))) {
1182                         lock_page(page);
1183                         if (!PageMovable(page))
1184                                 __ClearPageIsolated(page);
1185                         unlock_page(page);
1186                 }
1187                 goto out;
1188         }
1189
1190         newpage = get_new_page(page, private);
1191         if (!newpage)
1192                 return -ENOMEM;
1193
1194         rc = __unmap_and_move(page, newpage, force, mode);
1195         if (rc == MIGRATEPAGE_SUCCESS)
1196                 set_page_owner_migrate_reason(newpage, reason);
1197
1198 out:
1199         if (rc != -EAGAIN) {
1200                 /*
1201                  * A page that has been migrated has all references
1202                  * removed and will be freed. A page that has not been
1203                  * migrated will have kept its references and be restored.
1204                  */
1205                 list_del(&page->lru);
1206
1207                 /*
1208                  * Compaction can migrate also non-LRU pages which are
1209                  * not accounted to NR_ISOLATED_*. They can be recognized
1210                  * as __PageMovable
1211                  */
1212                 if (likely(!__PageMovable(page)))
1213                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214                                         page_is_file_cache(page), -hpage_nr_pages(page));
1215         }
1216
1217         /*
1218          * If migration is successful, releases reference grabbed during
1219          * isolation. Otherwise, restore the page to right list unless
1220          * we want to retry.
1221          */
1222         if (rc == MIGRATEPAGE_SUCCESS) {
1223                 put_page(page);
1224                 if (reason == MR_MEMORY_FAILURE) {
1225                         /*
1226                          * Set PG_HWPoison on just freed page
1227                          * intentionally. Although it's rather weird,
1228                          * it's how HWPoison flag works at the moment.
1229                          */
1230                         if (set_hwpoison_free_buddy_page(page))
1231                                 num_poisoned_pages_inc();
1232                 }
1233         } else {
1234                 if (rc != -EAGAIN) {
1235                         if (likely(!__PageMovable(page))) {
1236                                 putback_lru_page(page);
1237                                 goto put_new;
1238                         }
1239
1240                         lock_page(page);
1241                         if (PageMovable(page))
1242                                 putback_movable_page(page);
1243                         else
1244                                 __ClearPageIsolated(page);
1245                         unlock_page(page);
1246                         put_page(page);
1247                 }
1248 put_new:
1249                 if (put_new_page)
1250                         put_new_page(newpage, private);
1251                 else
1252                         put_page(newpage);
1253         }
1254
1255         return rc;
1256 }
1257
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277                                 free_page_t put_new_page, unsigned long private,
1278                                 struct page *hpage, int force,
1279                                 enum migrate_mode mode, int reason)
1280 {
1281         int rc = -EAGAIN;
1282         int page_was_mapped = 0;
1283         struct page *new_hpage;
1284         struct anon_vma *anon_vma = NULL;
1285         struct address_space *mapping = NULL;
1286
1287         /*
1288          * Migratability of hugepages depends on architectures and their size.
1289          * This check is necessary because some callers of hugepage migration
1290          * like soft offline and memory hotremove don't walk through page
1291          * tables or check whether the hugepage is pmd-based or not before
1292          * kicking migration.
1293          */
1294         if (!hugepage_migration_supported(page_hstate(hpage))) {
1295                 putback_active_hugepage(hpage);
1296                 return -ENOSYS;
1297         }
1298
1299         new_hpage = get_new_page(hpage, private);
1300         if (!new_hpage)
1301                 return -ENOMEM;
1302
1303         if (!trylock_page(hpage)) {
1304                 if (!force)
1305                         goto out;
1306                 switch (mode) {
1307                 case MIGRATE_SYNC:
1308                 case MIGRATE_SYNC_NO_COPY:
1309                         break;
1310                 default:
1311                         goto out;
1312                 }
1313                 lock_page(hpage);
1314         }
1315
1316         /*
1317          * Check for pages which are in the process of being freed.  Without
1318          * page_mapping() set, hugetlbfs specific move page routine will not
1319          * be called and we could leak usage counts for subpools.
1320          */
1321         if (page_private(hpage) && !page_mapping(hpage)) {
1322                 rc = -EBUSY;
1323                 goto out_unlock;
1324         }
1325
1326         if (PageAnon(hpage))
1327                 anon_vma = page_get_anon_vma(hpage);
1328
1329         if (unlikely(!trylock_page(new_hpage)))
1330                 goto put_anon;
1331
1332         if (page_mapped(hpage)) {
1333                 /*
1334                  * try_to_unmap could potentially call huge_pmd_unshare.
1335                  * Because of this, take semaphore in write mode here and
1336                  * set TTU_RMAP_LOCKED to let lower levels know we have
1337                  * taken the lock.
1338                  */
1339                 mapping = hugetlb_page_mapping_lock_write(hpage);
1340                 if (unlikely(!mapping))
1341                         goto unlock_put_anon;
1342
1343                 try_to_unmap(hpage,
1344                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1345                         TTU_RMAP_LOCKED);
1346                 page_was_mapped = 1;
1347                 /*
1348                  * Leave mapping locked until after subsequent call to
1349                  * remove_migration_ptes()
1350                  */
1351         }
1352
1353         if (!page_mapped(hpage))
1354                 rc = move_to_new_page(new_hpage, hpage, mode);
1355
1356         if (page_was_mapped) {
1357                 remove_migration_ptes(hpage,
1358                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1359                 i_mmap_unlock_write(mapping);
1360         }
1361
1362 unlock_put_anon:
1363         unlock_page(new_hpage);
1364
1365 put_anon:
1366         if (anon_vma)
1367                 put_anon_vma(anon_vma);
1368
1369         if (rc == MIGRATEPAGE_SUCCESS) {
1370                 move_hugetlb_state(hpage, new_hpage, reason);
1371                 put_new_page = NULL;
1372         }
1373
1374 out_unlock:
1375         unlock_page(hpage);
1376 out:
1377         if (rc != -EAGAIN)
1378                 putback_active_hugepage(hpage);
1379
1380         /*
1381          * If migration was not successful and there's a freeing callback, use
1382          * it.  Otherwise, put_page() will drop the reference grabbed during
1383          * isolation.
1384          */
1385         if (put_new_page)
1386                 put_new_page(new_hpage, private);
1387         else
1388                 putback_active_hugepage(new_hpage);
1389
1390         return rc;
1391 }
1392
1393 /*
1394  * migrate_pages - migrate the pages specified in a list, to the free pages
1395  *                 supplied as the target for the page migration
1396  *
1397  * @from:               The list of pages to be migrated.
1398  * @get_new_page:       The function used to allocate free pages to be used
1399  *                      as the target of the page migration.
1400  * @put_new_page:       The function used to free target pages if migration
1401  *                      fails, or NULL if no special handling is necessary.
1402  * @private:            Private data to be passed on to get_new_page()
1403  * @mode:               The migration mode that specifies the constraints for
1404  *                      page migration, if any.
1405  * @reason:             The reason for page migration.
1406  *
1407  * The function returns after 10 attempts or if no pages are movable any more
1408  * because the list has become empty or no retryable pages exist any more.
1409  * The caller should call putback_movable_pages() to return pages to the LRU
1410  * or free list only if ret != 0.
1411  *
1412  * Returns the number of pages that were not migrated, or an error code.
1413  */
1414 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1415                 free_page_t put_new_page, unsigned long private,
1416                 enum migrate_mode mode, int reason)
1417 {
1418         int retry = 1;
1419         int nr_failed = 0;
1420         int nr_succeeded = 0;
1421         int pass = 0;
1422         struct page *page;
1423         struct page *page2;
1424         int swapwrite = current->flags & PF_SWAPWRITE;
1425         int rc;
1426
1427         if (!swapwrite)
1428                 current->flags |= PF_SWAPWRITE;
1429
1430         for(pass = 0; pass < 10 && retry; pass++) {
1431                 retry = 0;
1432
1433                 list_for_each_entry_safe(page, page2, from, lru) {
1434 retry:
1435                         cond_resched();
1436
1437                         if (PageHuge(page))
1438                                 rc = unmap_and_move_huge_page(get_new_page,
1439                                                 put_new_page, private, page,
1440                                                 pass > 2, mode, reason);
1441                         else
1442                                 rc = unmap_and_move(get_new_page, put_new_page,
1443                                                 private, page, pass > 2, mode,
1444                                                 reason);
1445
1446                         switch(rc) {
1447                         case -ENOMEM:
1448                                 /*
1449                                  * THP migration might be unsupported or the
1450                                  * allocation could've failed so we should
1451                                  * retry on the same page with the THP split
1452                                  * to base pages.
1453                                  *
1454                                  * Head page is retried immediately and tail
1455                                  * pages are added to the tail of the list so
1456                                  * we encounter them after the rest of the list
1457                                  * is processed.
1458                                  */
1459                                 if (PageTransHuge(page) && !PageHuge(page)) {
1460                                         lock_page(page);
1461                                         rc = split_huge_page_to_list(page, from);
1462                                         unlock_page(page);
1463                                         if (!rc) {
1464                                                 list_safe_reset_next(page, page2, lru);
1465                                                 goto retry;
1466                                         }
1467                                 }
1468                                 nr_failed++;
1469                                 goto out;
1470                         case -EAGAIN:
1471                                 retry++;
1472                                 break;
1473                         case MIGRATEPAGE_SUCCESS:
1474                                 nr_succeeded++;
1475                                 break;
1476                         default:
1477                                 /*
1478                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1479                                  * unlike -EAGAIN case, the failed page is
1480                                  * removed from migration page list and not
1481                                  * retried in the next outer loop.
1482                                  */
1483                                 nr_failed++;
1484                                 break;
1485                         }
1486                 }
1487         }
1488         nr_failed += retry;
1489         rc = nr_failed;
1490 out:
1491         if (nr_succeeded)
1492                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1493         if (nr_failed)
1494                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1495         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1496
1497         if (!swapwrite)
1498                 current->flags &= ~PF_SWAPWRITE;
1499
1500         return rc;
1501 }
1502
1503 #ifdef CONFIG_NUMA
1504
1505 static int store_status(int __user *status, int start, int value, int nr)
1506 {
1507         while (nr-- > 0) {
1508                 if (put_user(value, status + start))
1509                         return -EFAULT;
1510                 start++;
1511         }
1512
1513         return 0;
1514 }
1515
1516 static int do_move_pages_to_node(struct mm_struct *mm,
1517                 struct list_head *pagelist, int node)
1518 {
1519         int err;
1520
1521         if (list_empty(pagelist))
1522                 return 0;
1523
1524         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1525                         MIGRATE_SYNC, MR_SYSCALL);
1526         if (err)
1527                 putback_movable_pages(pagelist);
1528         return err;
1529 }
1530
1531 /*
1532  * Resolves the given address to a struct page, isolates it from the LRU and
1533  * puts it to the given pagelist.
1534  * Returns:
1535  *     errno - if the page cannot be found/isolated
1536  *     0 - when it doesn't have to be migrated because it is already on the
1537  *         target node
1538  *     1 - when it has been queued
1539  */
1540 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1541                 int node, struct list_head *pagelist, bool migrate_all)
1542 {
1543         struct vm_area_struct *vma;
1544         struct page *page;
1545         unsigned int follflags;
1546         int err;
1547
1548         down_read(&mm->mmap_sem);
1549         err = -EFAULT;
1550         vma = find_vma(mm, addr);
1551         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1552                 goto out;
1553
1554         /* FOLL_DUMP to ignore special (like zero) pages */
1555         follflags = FOLL_GET | FOLL_DUMP;
1556         page = follow_page(vma, addr, follflags);
1557
1558         err = PTR_ERR(page);
1559         if (IS_ERR(page))
1560                 goto out;
1561
1562         err = -ENOENT;
1563         if (!page)
1564                 goto out;
1565
1566         err = 0;
1567         if (page_to_nid(page) == node)
1568                 goto out_putpage;
1569
1570         err = -EACCES;
1571         if (page_mapcount(page) > 1 && !migrate_all)
1572                 goto out_putpage;
1573
1574         if (PageHuge(page)) {
1575                 if (PageHead(page)) {
1576                         isolate_huge_page(page, pagelist);
1577                         err = 1;
1578                 }
1579         } else {
1580                 struct page *head;
1581
1582                 head = compound_head(page);
1583                 err = isolate_lru_page(head);
1584                 if (err)
1585                         goto out_putpage;
1586
1587                 err = 1;
1588                 list_add_tail(&head->lru, pagelist);
1589                 mod_node_page_state(page_pgdat(head),
1590                         NR_ISOLATED_ANON + page_is_file_cache(head),
1591                         hpage_nr_pages(head));
1592         }
1593 out_putpage:
1594         /*
1595          * Either remove the duplicate refcount from
1596          * isolate_lru_page() or drop the page ref if it was
1597          * not isolated.
1598          */
1599         put_page(page);
1600 out:
1601         up_read(&mm->mmap_sem);
1602         return err;
1603 }
1604
1605 /*
1606  * Migrate an array of page address onto an array of nodes and fill
1607  * the corresponding array of status.
1608  */
1609 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1610                          unsigned long nr_pages,
1611                          const void __user * __user *pages,
1612                          const int __user *nodes,
1613                          int __user *status, int flags)
1614 {
1615         int current_node = NUMA_NO_NODE;
1616         LIST_HEAD(pagelist);
1617         int start, i;
1618         int err = 0, err1;
1619
1620         migrate_prep();
1621
1622         for (i = start = 0; i < nr_pages; i++) {
1623                 const void __user *p;
1624                 unsigned long addr;
1625                 int node;
1626
1627                 err = -EFAULT;
1628                 if (get_user(p, pages + i))
1629                         goto out_flush;
1630                 if (get_user(node, nodes + i))
1631                         goto out_flush;
1632                 addr = (unsigned long)untagged_addr(p);
1633
1634                 err = -ENODEV;
1635                 if (node < 0 || node >= MAX_NUMNODES)
1636                         goto out_flush;
1637                 if (!node_state(node, N_MEMORY))
1638                         goto out_flush;
1639
1640                 err = -EACCES;
1641                 if (!node_isset(node, task_nodes))
1642                         goto out_flush;
1643
1644                 if (current_node == NUMA_NO_NODE) {
1645                         current_node = node;
1646                         start = i;
1647                 } else if (node != current_node) {
1648                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1649                         if (err) {
1650                                 /*
1651                                  * Positive err means the number of failed
1652                                  * pages to migrate.  Since we are going to
1653                                  * abort and return the number of non-migrated
1654                                  * pages, so need to incude the rest of the
1655                                  * nr_pages that have not been attempted as
1656                                  * well.
1657                                  */
1658                                 if (err > 0)
1659                                         err += nr_pages - i - 1;
1660                                 goto out;
1661                         }
1662                         err = store_status(status, start, current_node, i - start);
1663                         if (err)
1664                                 goto out;
1665                         start = i;
1666                         current_node = node;
1667                 }
1668
1669                 /*
1670                  * Errors in the page lookup or isolation are not fatal and we simply
1671                  * report them via status
1672                  */
1673                 err = add_page_for_migration(mm, addr, current_node,
1674                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1675
1676                 if (!err) {
1677                         /* The page is already on the target node */
1678                         err = store_status(status, i, current_node, 1);
1679                         if (err)
1680                                 goto out_flush;
1681                         continue;
1682                 } else if (err > 0) {
1683                         /* The page is successfully queued for migration */
1684                         continue;
1685                 }
1686
1687                 err = store_status(status, i, err, 1);
1688                 if (err)
1689                         goto out_flush;
1690
1691                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1692                 if (err) {
1693                         if (err > 0)
1694                                 err += nr_pages - i - 1;
1695                         goto out;
1696                 }
1697                 if (i > start) {
1698                         err = store_status(status, start, current_node, i - start);
1699                         if (err)
1700                                 goto out;
1701                 }
1702                 current_node = NUMA_NO_NODE;
1703         }
1704 out_flush:
1705         if (list_empty(&pagelist))
1706                 return err;
1707
1708         /* Make sure we do not overwrite the existing error */
1709         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1710         /*
1711          * Don't have to report non-attempted pages here since:
1712          *     - If the above loop is done gracefully all pages have been
1713          *       attempted.
1714          *     - If the above loop is aborted it means a fatal error
1715          *       happened, should return ret.
1716          */
1717         if (!err1)
1718                 err1 = store_status(status, start, current_node, i - start);
1719         if (err >= 0)
1720                 err = err1;
1721 out:
1722         return err;
1723 }
1724
1725 /*
1726  * Determine the nodes of an array of pages and store it in an array of status.
1727  */
1728 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1729                                 const void __user **pages, int *status)
1730 {
1731         unsigned long i;
1732
1733         down_read(&mm->mmap_sem);
1734
1735         for (i = 0; i < nr_pages; i++) {
1736                 unsigned long addr = (unsigned long)(*pages);
1737                 struct vm_area_struct *vma;
1738                 struct page *page;
1739                 int err = -EFAULT;
1740
1741                 vma = find_vma(mm, addr);
1742                 if (!vma || addr < vma->vm_start)
1743                         goto set_status;
1744
1745                 /* FOLL_DUMP to ignore special (like zero) pages */
1746                 page = follow_page(vma, addr, FOLL_DUMP);
1747
1748                 err = PTR_ERR(page);
1749                 if (IS_ERR(page))
1750                         goto set_status;
1751
1752                 err = page ? page_to_nid(page) : -ENOENT;
1753 set_status:
1754                 *status = err;
1755
1756                 pages++;
1757                 status++;
1758         }
1759
1760         up_read(&mm->mmap_sem);
1761 }
1762
1763 /*
1764  * Determine the nodes of a user array of pages and store it in
1765  * a user array of status.
1766  */
1767 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1768                          const void __user * __user *pages,
1769                          int __user *status)
1770 {
1771 #define DO_PAGES_STAT_CHUNK_NR 16
1772         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1773         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1774
1775         while (nr_pages) {
1776                 unsigned long chunk_nr;
1777
1778                 chunk_nr = nr_pages;
1779                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1780                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1781
1782                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1783                         break;
1784
1785                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1786
1787                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1788                         break;
1789
1790                 pages += chunk_nr;
1791                 status += chunk_nr;
1792                 nr_pages -= chunk_nr;
1793         }
1794         return nr_pages ? -EFAULT : 0;
1795 }
1796
1797 /*
1798  * Move a list of pages in the address space of the currently executing
1799  * process.
1800  */
1801 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1802                              const void __user * __user *pages,
1803                              const int __user *nodes,
1804                              int __user *status, int flags)
1805 {
1806         struct task_struct *task;
1807         struct mm_struct *mm;
1808         int err;
1809         nodemask_t task_nodes;
1810
1811         /* Check flags */
1812         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1813                 return -EINVAL;
1814
1815         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1816                 return -EPERM;
1817
1818         /* Find the mm_struct */
1819         rcu_read_lock();
1820         task = pid ? find_task_by_vpid(pid) : current;
1821         if (!task) {
1822                 rcu_read_unlock();
1823                 return -ESRCH;
1824         }
1825         get_task_struct(task);
1826
1827         /*
1828          * Check if this process has the right to modify the specified
1829          * process. Use the regular "ptrace_may_access()" checks.
1830          */
1831         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1832                 rcu_read_unlock();
1833                 err = -EPERM;
1834                 goto out;
1835         }
1836         rcu_read_unlock();
1837
1838         err = security_task_movememory(task);
1839         if (err)
1840                 goto out;
1841
1842         task_nodes = cpuset_mems_allowed(task);
1843         mm = get_task_mm(task);
1844         put_task_struct(task);
1845
1846         if (!mm)
1847                 return -EINVAL;
1848
1849         if (nodes)
1850                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1851                                     nodes, status, flags);
1852         else
1853                 err = do_pages_stat(mm, nr_pages, pages, status);
1854
1855         mmput(mm);
1856         return err;
1857
1858 out:
1859         put_task_struct(task);
1860         return err;
1861 }
1862
1863 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1864                 const void __user * __user *, pages,
1865                 const int __user *, nodes,
1866                 int __user *, status, int, flags)
1867 {
1868         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1869 }
1870
1871 #ifdef CONFIG_COMPAT
1872 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1873                        compat_uptr_t __user *, pages32,
1874                        const int __user *, nodes,
1875                        int __user *, status,
1876                        int, flags)
1877 {
1878         const void __user * __user *pages;
1879         int i;
1880
1881         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1882         for (i = 0; i < nr_pages; i++) {
1883                 compat_uptr_t p;
1884
1885                 if (get_user(p, pages32 + i) ||
1886                         put_user(compat_ptr(p), pages + i))
1887                         return -EFAULT;
1888         }
1889         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1890 }
1891 #endif /* CONFIG_COMPAT */
1892
1893 #ifdef CONFIG_NUMA_BALANCING
1894 /*
1895  * Returns true if this is a safe migration target node for misplaced NUMA
1896  * pages. Currently it only checks the watermarks which crude
1897  */
1898 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1899                                    unsigned long nr_migrate_pages)
1900 {
1901         int z;
1902
1903         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1904                 struct zone *zone = pgdat->node_zones + z;
1905
1906                 if (!populated_zone(zone))
1907                         continue;
1908
1909                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1910                 if (!zone_watermark_ok(zone, 0,
1911                                        high_wmark_pages(zone) +
1912                                        nr_migrate_pages,
1913                                        ZONE_MOVABLE, 0))
1914                         continue;
1915                 return true;
1916         }
1917         return false;
1918 }
1919
1920 static struct page *alloc_misplaced_dst_page(struct page *page,
1921                                            unsigned long data)
1922 {
1923         int nid = (int) data;
1924         struct page *newpage;
1925
1926         newpage = __alloc_pages_node(nid,
1927                                          (GFP_HIGHUSER_MOVABLE |
1928                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1929                                           __GFP_NORETRY | __GFP_NOWARN) &
1930                                          ~__GFP_RECLAIM, 0);
1931
1932         return newpage;
1933 }
1934
1935 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1936 {
1937         int page_lru;
1938
1939         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1940
1941         /* Avoid migrating to a node that is nearly full */
1942         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1943                 return 0;
1944
1945         if (isolate_lru_page(page))
1946                 return 0;
1947
1948         /*
1949          * migrate_misplaced_transhuge_page() skips page migration's usual
1950          * check on page_count(), so we must do it here, now that the page
1951          * has been isolated: a GUP pin, or any other pin, prevents migration.
1952          * The expected page count is 3: 1 for page's mapcount and 1 for the
1953          * caller's pin and 1 for the reference taken by isolate_lru_page().
1954          */
1955         if (PageTransHuge(page) && page_count(page) != 3) {
1956                 putback_lru_page(page);
1957                 return 0;
1958         }
1959
1960         page_lru = page_is_file_cache(page);
1961         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1962                                 hpage_nr_pages(page));
1963
1964         /*
1965          * Isolating the page has taken another reference, so the
1966          * caller's reference can be safely dropped without the page
1967          * disappearing underneath us during migration.
1968          */
1969         put_page(page);
1970         return 1;
1971 }
1972
1973 bool pmd_trans_migrating(pmd_t pmd)
1974 {
1975         struct page *page = pmd_page(pmd);
1976         return PageLocked(page);
1977 }
1978
1979 /*
1980  * Attempt to migrate a misplaced page to the specified destination
1981  * node. Caller is expected to have an elevated reference count on
1982  * the page that will be dropped by this function before returning.
1983  */
1984 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1985                            int node)
1986 {
1987         pg_data_t *pgdat = NODE_DATA(node);
1988         int isolated;
1989         int nr_remaining;
1990         LIST_HEAD(migratepages);
1991
1992         /*
1993          * Don't migrate file pages that are mapped in multiple processes
1994          * with execute permissions as they are probably shared libraries.
1995          */
1996         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1997             (vma->vm_flags & VM_EXEC))
1998                 goto out;
1999
2000         /*
2001          * Also do not migrate dirty pages as not all filesystems can move
2002          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2003          */
2004         if (page_is_file_cache(page) && PageDirty(page))
2005                 goto out;
2006
2007         isolated = numamigrate_isolate_page(pgdat, page);
2008         if (!isolated)
2009                 goto out;
2010
2011         list_add(&page->lru, &migratepages);
2012         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2013                                      NULL, node, MIGRATE_ASYNC,
2014                                      MR_NUMA_MISPLACED);
2015         if (nr_remaining) {
2016                 if (!list_empty(&migratepages)) {
2017                         list_del(&page->lru);
2018                         dec_node_page_state(page, NR_ISOLATED_ANON +
2019                                         page_is_file_cache(page));
2020                         putback_lru_page(page);
2021                 }
2022                 isolated = 0;
2023         } else
2024                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2025         BUG_ON(!list_empty(&migratepages));
2026         return isolated;
2027
2028 out:
2029         put_page(page);
2030         return 0;
2031 }
2032 #endif /* CONFIG_NUMA_BALANCING */
2033
2034 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2035 /*
2036  * Migrates a THP to a given target node. page must be locked and is unlocked
2037  * before returning.
2038  */
2039 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2040                                 struct vm_area_struct *vma,
2041                                 pmd_t *pmd, pmd_t entry,
2042                                 unsigned long address,
2043                                 struct page *page, int node)
2044 {
2045         spinlock_t *ptl;
2046         pg_data_t *pgdat = NODE_DATA(node);
2047         int isolated = 0;
2048         struct page *new_page = NULL;
2049         int page_lru = page_is_file_cache(page);
2050         unsigned long start = address & HPAGE_PMD_MASK;
2051
2052         new_page = alloc_pages_node(node,
2053                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2054                 HPAGE_PMD_ORDER);
2055         if (!new_page)
2056                 goto out_fail;
2057         prep_transhuge_page(new_page);
2058
2059         isolated = numamigrate_isolate_page(pgdat, page);
2060         if (!isolated) {
2061                 put_page(new_page);
2062                 goto out_fail;
2063         }
2064
2065         /* Prepare a page as a migration target */
2066         __SetPageLocked(new_page);
2067         if (PageSwapBacked(page))
2068                 __SetPageSwapBacked(new_page);
2069
2070         /* anon mapping, we can simply copy page->mapping to the new page: */
2071         new_page->mapping = page->mapping;
2072         new_page->index = page->index;
2073         /* flush the cache before copying using the kernel virtual address */
2074         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2075         migrate_page_copy(new_page, page);
2076         WARN_ON(PageLRU(new_page));
2077
2078         /* Recheck the target PMD */
2079         ptl = pmd_lock(mm, pmd);
2080         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2081                 spin_unlock(ptl);
2082
2083                 /* Reverse changes made by migrate_page_copy() */
2084                 if (TestClearPageActive(new_page))
2085                         SetPageActive(page);
2086                 if (TestClearPageUnevictable(new_page))
2087                         SetPageUnevictable(page);
2088
2089                 unlock_page(new_page);
2090                 put_page(new_page);             /* Free it */
2091
2092                 /* Retake the callers reference and putback on LRU */
2093                 get_page(page);
2094                 putback_lru_page(page);
2095                 mod_node_page_state(page_pgdat(page),
2096                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2097
2098                 goto out_unlock;
2099         }
2100
2101         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2102         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2103
2104         /*
2105          * Overwrite the old entry under pagetable lock and establish
2106          * the new PTE. Any parallel GUP will either observe the old
2107          * page blocking on the page lock, block on the page table
2108          * lock or observe the new page. The SetPageUptodate on the
2109          * new page and page_add_new_anon_rmap guarantee the copy is
2110          * visible before the pagetable update.
2111          */
2112         page_add_anon_rmap(new_page, vma, start, true);
2113         /*
2114          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2115          * has already been flushed globally.  So no TLB can be currently
2116          * caching this non present pmd mapping.  There's no need to clear the
2117          * pmd before doing set_pmd_at(), nor to flush the TLB after
2118          * set_pmd_at().  Clearing the pmd here would introduce a race
2119          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2120          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2121          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2122          * pmd.
2123          */
2124         set_pmd_at(mm, start, pmd, entry);
2125         update_mmu_cache_pmd(vma, address, &entry);
2126
2127         page_ref_unfreeze(page, 2);
2128         mlock_migrate_page(new_page, page);
2129         page_remove_rmap(page, true);
2130         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2131
2132         spin_unlock(ptl);
2133
2134         /* Take an "isolate" reference and put new page on the LRU. */
2135         get_page(new_page);
2136         putback_lru_page(new_page);
2137
2138         unlock_page(new_page);
2139         unlock_page(page);
2140         put_page(page);                 /* Drop the rmap reference */
2141         put_page(page);                 /* Drop the LRU isolation reference */
2142
2143         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2144         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2145
2146         mod_node_page_state(page_pgdat(page),
2147                         NR_ISOLATED_ANON + page_lru,
2148                         -HPAGE_PMD_NR);
2149         return isolated;
2150
2151 out_fail:
2152         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2153         ptl = pmd_lock(mm, pmd);
2154         if (pmd_same(*pmd, entry)) {
2155                 entry = pmd_modify(entry, vma->vm_page_prot);
2156                 set_pmd_at(mm, start, pmd, entry);
2157                 update_mmu_cache_pmd(vma, address, &entry);
2158         }
2159         spin_unlock(ptl);
2160
2161 out_unlock:
2162         unlock_page(page);
2163         put_page(page);
2164         return 0;
2165 }
2166 #endif /* CONFIG_NUMA_BALANCING */
2167
2168 #endif /* CONFIG_NUMA */
2169
2170 #ifdef CONFIG_DEVICE_PRIVATE
2171 static int migrate_vma_collect_hole(unsigned long start,
2172                                     unsigned long end,
2173                                     __always_unused int depth,
2174                                     struct mm_walk *walk)
2175 {
2176         struct migrate_vma *migrate = walk->private;
2177         unsigned long addr;
2178
2179         for (addr = start; addr < end; addr += PAGE_SIZE) {
2180                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2181                 migrate->dst[migrate->npages] = 0;
2182                 migrate->npages++;
2183                 migrate->cpages++;
2184         }
2185
2186         return 0;
2187 }
2188
2189 static int migrate_vma_collect_skip(unsigned long start,
2190                                     unsigned long end,
2191                                     struct mm_walk *walk)
2192 {
2193         struct migrate_vma *migrate = walk->private;
2194         unsigned long addr;
2195
2196         for (addr = start; addr < end; addr += PAGE_SIZE) {
2197                 migrate->dst[migrate->npages] = 0;
2198                 migrate->src[migrate->npages++] = 0;
2199         }
2200
2201         return 0;
2202 }
2203
2204 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2205                                    unsigned long start,
2206                                    unsigned long end,
2207                                    struct mm_walk *walk)
2208 {
2209         struct migrate_vma *migrate = walk->private;
2210         struct vm_area_struct *vma = walk->vma;
2211         struct mm_struct *mm = vma->vm_mm;
2212         unsigned long addr = start, unmapped = 0;
2213         spinlock_t *ptl;
2214         pte_t *ptep;
2215
2216 again:
2217         if (pmd_none(*pmdp))
2218                 return migrate_vma_collect_hole(start, end, -1, walk);
2219
2220         if (pmd_trans_huge(*pmdp)) {
2221                 struct page *page;
2222
2223                 ptl = pmd_lock(mm, pmdp);
2224                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2225                         spin_unlock(ptl);
2226                         goto again;
2227                 }
2228
2229                 page = pmd_page(*pmdp);
2230                 if (is_huge_zero_page(page)) {
2231                         spin_unlock(ptl);
2232                         split_huge_pmd(vma, pmdp, addr);
2233                         if (pmd_trans_unstable(pmdp))
2234                                 return migrate_vma_collect_skip(start, end,
2235                                                                 walk);
2236                 } else {
2237                         int ret;
2238
2239                         get_page(page);
2240                         spin_unlock(ptl);
2241                         if (unlikely(!trylock_page(page)))
2242                                 return migrate_vma_collect_skip(start, end,
2243                                                                 walk);
2244                         ret = split_huge_page(page);
2245                         unlock_page(page);
2246                         put_page(page);
2247                         if (ret)
2248                                 return migrate_vma_collect_skip(start, end,
2249                                                                 walk);
2250                         if (pmd_none(*pmdp))
2251                                 return migrate_vma_collect_hole(start, end, -1,
2252                                                                 walk);
2253                 }
2254         }
2255
2256         if (unlikely(pmd_bad(*pmdp)))
2257                 return migrate_vma_collect_skip(start, end, walk);
2258
2259         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2260         arch_enter_lazy_mmu_mode();
2261
2262         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2263                 unsigned long mpfn, pfn;
2264                 struct page *page;
2265                 swp_entry_t entry;
2266                 pte_t pte;
2267
2268                 pte = *ptep;
2269
2270                 if (pte_none(pte)) {
2271                         mpfn = MIGRATE_PFN_MIGRATE;
2272                         migrate->cpages++;
2273                         goto next;
2274                 }
2275
2276                 if (!pte_present(pte)) {
2277                         mpfn = 0;
2278
2279                         /*
2280                          * Only care about unaddressable device page special
2281                          * page table entry. Other special swap entries are not
2282                          * migratable, and we ignore regular swapped page.
2283                          */
2284                         entry = pte_to_swp_entry(pte);
2285                         if (!is_device_private_entry(entry))
2286                                 goto next;
2287
2288                         page = device_private_entry_to_page(entry);
2289                         mpfn = migrate_pfn(page_to_pfn(page)) |
2290                                         MIGRATE_PFN_MIGRATE;
2291                         if (is_write_device_private_entry(entry))
2292                                 mpfn |= MIGRATE_PFN_WRITE;
2293                 } else {
2294                         pfn = pte_pfn(pte);
2295                         if (is_zero_pfn(pfn)) {
2296                                 mpfn = MIGRATE_PFN_MIGRATE;
2297                                 migrate->cpages++;
2298                                 goto next;
2299                         }
2300                         page = vm_normal_page(migrate->vma, addr, pte);
2301                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2302                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2303                 }
2304
2305                 /* FIXME support THP */
2306                 if (!page || !page->mapping || PageTransCompound(page)) {
2307                         mpfn = 0;
2308                         goto next;
2309                 }
2310
2311                 /*
2312                  * By getting a reference on the page we pin it and that blocks
2313                  * any kind of migration. Side effect is that it "freezes" the
2314                  * pte.
2315                  *
2316                  * We drop this reference after isolating the page from the lru
2317                  * for non device page (device page are not on the lru and thus
2318                  * can't be dropped from it).
2319                  */
2320                 get_page(page);
2321                 migrate->cpages++;
2322
2323                 /*
2324                  * Optimize for the common case where page is only mapped once
2325                  * in one process. If we can lock the page, then we can safely
2326                  * set up a special migration page table entry now.
2327                  */
2328                 if (trylock_page(page)) {
2329                         pte_t swp_pte;
2330
2331                         mpfn |= MIGRATE_PFN_LOCKED;
2332                         ptep_get_and_clear(mm, addr, ptep);
2333
2334                         /* Setup special migration page table entry */
2335                         entry = make_migration_entry(page, mpfn &
2336                                                      MIGRATE_PFN_WRITE);
2337                         swp_pte = swp_entry_to_pte(entry);
2338                         if (pte_soft_dirty(pte))
2339                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2340                         set_pte_at(mm, addr, ptep, swp_pte);
2341
2342                         /*
2343                          * This is like regular unmap: we remove the rmap and
2344                          * drop page refcount. Page won't be freed, as we took
2345                          * a reference just above.
2346                          */
2347                         page_remove_rmap(page, false);
2348                         put_page(page);
2349
2350                         if (pte_present(pte))
2351                                 unmapped++;
2352                 }
2353
2354 next:
2355                 migrate->dst[migrate->npages] = 0;
2356                 migrate->src[migrate->npages++] = mpfn;
2357         }
2358         arch_leave_lazy_mmu_mode();
2359         pte_unmap_unlock(ptep - 1, ptl);
2360
2361         /* Only flush the TLB if we actually modified any entries */
2362         if (unmapped)
2363                 flush_tlb_range(walk->vma, start, end);
2364
2365         return 0;
2366 }
2367
2368 static const struct mm_walk_ops migrate_vma_walk_ops = {
2369         .pmd_entry              = migrate_vma_collect_pmd,
2370         .pte_hole               = migrate_vma_collect_hole,
2371 };
2372
2373 /*
2374  * migrate_vma_collect() - collect pages over a range of virtual addresses
2375  * @migrate: migrate struct containing all migration information
2376  *
2377  * This will walk the CPU page table. For each virtual address backed by a
2378  * valid page, it updates the src array and takes a reference on the page, in
2379  * order to pin the page until we lock it and unmap it.
2380  */
2381 static void migrate_vma_collect(struct migrate_vma *migrate)
2382 {
2383         struct mmu_notifier_range range;
2384
2385         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2386                         migrate->vma->vm_mm, migrate->start, migrate->end);
2387         mmu_notifier_invalidate_range_start(&range);
2388
2389         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2390                         &migrate_vma_walk_ops, migrate);
2391
2392         mmu_notifier_invalidate_range_end(&range);
2393         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2394 }
2395
2396 /*
2397  * migrate_vma_check_page() - check if page is pinned or not
2398  * @page: struct page to check
2399  *
2400  * Pinned pages cannot be migrated. This is the same test as in
2401  * migrate_page_move_mapping(), except that here we allow migration of a
2402  * ZONE_DEVICE page.
2403  */
2404 static bool migrate_vma_check_page(struct page *page)
2405 {
2406         /*
2407          * One extra ref because caller holds an extra reference, either from
2408          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2409          * a device page.
2410          */
2411         int extra = 1;
2412
2413         /*
2414          * FIXME support THP (transparent huge page), it is bit more complex to
2415          * check them than regular pages, because they can be mapped with a pmd
2416          * or with a pte (split pte mapping).
2417          */
2418         if (PageCompound(page))
2419                 return false;
2420
2421         /* Page from ZONE_DEVICE have one extra reference */
2422         if (is_zone_device_page(page)) {
2423                 /*
2424                  * Private page can never be pin as they have no valid pte and
2425                  * GUP will fail for those. Yet if there is a pending migration
2426                  * a thread might try to wait on the pte migration entry and
2427                  * will bump the page reference count. Sadly there is no way to
2428                  * differentiate a regular pin from migration wait. Hence to
2429                  * avoid 2 racing thread trying to migrate back to CPU to enter
2430                  * infinite loop (one stoping migration because the other is
2431                  * waiting on pte migration entry). We always return true here.
2432                  *
2433                  * FIXME proper solution is to rework migration_entry_wait() so
2434                  * it does not need to take a reference on page.
2435                  */
2436                 return is_device_private_page(page);
2437         }
2438
2439         /* For file back page */
2440         if (page_mapping(page))
2441                 extra += 1 + page_has_private(page);
2442
2443         if ((page_count(page) - extra) > page_mapcount(page))
2444                 return false;
2445
2446         return true;
2447 }
2448
2449 /*
2450  * migrate_vma_prepare() - lock pages and isolate them from the lru
2451  * @migrate: migrate struct containing all migration information
2452  *
2453  * This locks pages that have been collected by migrate_vma_collect(). Once each
2454  * page is locked it is isolated from the lru (for non-device pages). Finally,
2455  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2456  * migrated by concurrent kernel threads.
2457  */
2458 static void migrate_vma_prepare(struct migrate_vma *migrate)
2459 {
2460         const unsigned long npages = migrate->npages;
2461         const unsigned long start = migrate->start;
2462         unsigned long addr, i, restore = 0;
2463         bool allow_drain = true;
2464
2465         lru_add_drain();
2466
2467         for (i = 0; (i < npages) && migrate->cpages; i++) {
2468                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2469                 bool remap = true;
2470
2471                 if (!page)
2472                         continue;
2473
2474                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2475                         /*
2476                          * Because we are migrating several pages there can be
2477                          * a deadlock between 2 concurrent migration where each
2478                          * are waiting on each other page lock.
2479                          *
2480                          * Make migrate_vma() a best effort thing and backoff
2481                          * for any page we can not lock right away.
2482                          */
2483                         if (!trylock_page(page)) {
2484                                 migrate->src[i] = 0;
2485                                 migrate->cpages--;
2486                                 put_page(page);
2487                                 continue;
2488                         }
2489                         remap = false;
2490                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2491                 }
2492
2493                 /* ZONE_DEVICE pages are not on LRU */
2494                 if (!is_zone_device_page(page)) {
2495                         if (!PageLRU(page) && allow_drain) {
2496                                 /* Drain CPU's pagevec */
2497                                 lru_add_drain_all();
2498                                 allow_drain = false;
2499                         }
2500
2501                         if (isolate_lru_page(page)) {
2502                                 if (remap) {
2503                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2504                                         migrate->cpages--;
2505                                         restore++;
2506                                 } else {
2507                                         migrate->src[i] = 0;
2508                                         unlock_page(page);
2509                                         migrate->cpages--;
2510                                         put_page(page);
2511                                 }
2512                                 continue;
2513                         }
2514
2515                         /* Drop the reference we took in collect */
2516                         put_page(page);
2517                 }
2518
2519                 if (!migrate_vma_check_page(page)) {
2520                         if (remap) {
2521                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2522                                 migrate->cpages--;
2523                                 restore++;
2524
2525                                 if (!is_zone_device_page(page)) {
2526                                         get_page(page);
2527                                         putback_lru_page(page);
2528                                 }
2529                         } else {
2530                                 migrate->src[i] = 0;
2531                                 unlock_page(page);
2532                                 migrate->cpages--;
2533
2534                                 if (!is_zone_device_page(page))
2535                                         putback_lru_page(page);
2536                                 else
2537                                         put_page(page);
2538                         }
2539                 }
2540         }
2541
2542         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2543                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544
2545                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546                         continue;
2547
2548                 remove_migration_pte(page, migrate->vma, addr, page);
2549
2550                 migrate->src[i] = 0;
2551                 unlock_page(page);
2552                 put_page(page);
2553                 restore--;
2554         }
2555 }
2556
2557 /*
2558  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2559  * @migrate: migrate struct containing all migration information
2560  *
2561  * Replace page mapping (CPU page table pte) with a special migration pte entry
2562  * and check again if it has been pinned. Pinned pages are restored because we
2563  * cannot migrate them.
2564  *
2565  * This is the last step before we call the device driver callback to allocate
2566  * destination memory and copy contents of original page over to new page.
2567  */
2568 static void migrate_vma_unmap(struct migrate_vma *migrate)
2569 {
2570         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2571         const unsigned long npages = migrate->npages;
2572         const unsigned long start = migrate->start;
2573         unsigned long addr, i, restore = 0;
2574
2575         for (i = 0; i < npages; i++) {
2576                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2577
2578                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2579                         continue;
2580
2581                 if (page_mapped(page)) {
2582                         try_to_unmap(page, flags);
2583                         if (page_mapped(page))
2584                                 goto restore;
2585                 }
2586
2587                 if (migrate_vma_check_page(page))
2588                         continue;
2589
2590 restore:
2591                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2592                 migrate->cpages--;
2593                 restore++;
2594         }
2595
2596         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2597                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2598
2599                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2600                         continue;
2601
2602                 remove_migration_ptes(page, page, false);
2603
2604                 migrate->src[i] = 0;
2605                 unlock_page(page);
2606                 restore--;
2607
2608                 if (is_zone_device_page(page))
2609                         put_page(page);
2610                 else
2611                         putback_lru_page(page);
2612         }
2613 }
2614
2615 /**
2616  * migrate_vma_setup() - prepare to migrate a range of memory
2617  * @args: contains the vma, start, and and pfns arrays for the migration
2618  *
2619  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2620  * without an error.
2621  *
2622  * Prepare to migrate a range of memory virtual address range by collecting all
2623  * the pages backing each virtual address in the range, saving them inside the
2624  * src array.  Then lock those pages and unmap them. Once the pages are locked
2625  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2626  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2627  * corresponding src array entry.  Then restores any pages that are pinned, by
2628  * remapping and unlocking those pages.
2629  *
2630  * The caller should then allocate destination memory and copy source memory to
2631  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2632  * flag set).  Once these are allocated and copied, the caller must update each
2633  * corresponding entry in the dst array with the pfn value of the destination
2634  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2635  * (destination pages must have their struct pages locked, via lock_page()).
2636  *
2637  * Note that the caller does not have to migrate all the pages that are marked
2638  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2639  * device memory to system memory.  If the caller cannot migrate a device page
2640  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2641  * consequences for the userspace process, so it must be avoided if at all
2642  * possible.
2643  *
2644  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2645  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2646  * allowing the caller to allocate device memory for those unback virtual
2647  * address.  For this the caller simply has to allocate device memory and
2648  * properly set the destination entry like for regular migration.  Note that
2649  * this can still fails and thus inside the device driver must check if the
2650  * migration was successful for those entries after calling migrate_vma_pages()
2651  * just like for regular migration.
2652  *
2653  * After that, the callers must call migrate_vma_pages() to go over each entry
2654  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2655  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2656  * then migrate_vma_pages() to migrate struct page information from the source
2657  * struct page to the destination struct page.  If it fails to migrate the
2658  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2659  * src array.
2660  *
2661  * At this point all successfully migrated pages have an entry in the src
2662  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2663  * array entry with MIGRATE_PFN_VALID flag set.
2664  *
2665  * Once migrate_vma_pages() returns the caller may inspect which pages were
2666  * successfully migrated, and which were not.  Successfully migrated pages will
2667  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2668  *
2669  * It is safe to update device page table after migrate_vma_pages() because
2670  * both destination and source page are still locked, and the mmap_sem is held
2671  * in read mode (hence no one can unmap the range being migrated).
2672  *
2673  * Once the caller is done cleaning up things and updating its page table (if it
2674  * chose to do so, this is not an obligation) it finally calls
2675  * migrate_vma_finalize() to update the CPU page table to point to new pages
2676  * for successfully migrated pages or otherwise restore the CPU page table to
2677  * point to the original source pages.
2678  */
2679 int migrate_vma_setup(struct migrate_vma *args)
2680 {
2681         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2682
2683         args->start &= PAGE_MASK;
2684         args->end &= PAGE_MASK;
2685         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2686             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2687                 return -EINVAL;
2688         if (nr_pages <= 0)
2689                 return -EINVAL;
2690         if (args->start < args->vma->vm_start ||
2691             args->start >= args->vma->vm_end)
2692                 return -EINVAL;
2693         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2694                 return -EINVAL;
2695         if (!args->src || !args->dst)
2696                 return -EINVAL;
2697
2698         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2699         args->cpages = 0;
2700         args->npages = 0;
2701
2702         migrate_vma_collect(args);
2703
2704         if (args->cpages)
2705                 migrate_vma_prepare(args);
2706         if (args->cpages)
2707                 migrate_vma_unmap(args);
2708
2709         /*
2710          * At this point pages are locked and unmapped, and thus they have
2711          * stable content and can safely be copied to destination memory that
2712          * is allocated by the drivers.
2713          */
2714         return 0;
2715
2716 }
2717 EXPORT_SYMBOL(migrate_vma_setup);
2718
2719 /*
2720  * This code closely matches the code in:
2721  *   __handle_mm_fault()
2722  *     handle_pte_fault()
2723  *       do_anonymous_page()
2724  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2725  * private page.
2726  */
2727 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2728                                     unsigned long addr,
2729                                     struct page *page,
2730                                     unsigned long *src,
2731                                     unsigned long *dst)
2732 {
2733         struct vm_area_struct *vma = migrate->vma;
2734         struct mm_struct *mm = vma->vm_mm;
2735         struct mem_cgroup *memcg;
2736         bool flush = false;
2737         spinlock_t *ptl;
2738         pte_t entry;
2739         pgd_t *pgdp;
2740         p4d_t *p4dp;
2741         pud_t *pudp;
2742         pmd_t *pmdp;
2743         pte_t *ptep;
2744
2745         /* Only allow populating anonymous memory */
2746         if (!vma_is_anonymous(vma))
2747                 goto abort;
2748
2749         pgdp = pgd_offset(mm, addr);
2750         p4dp = p4d_alloc(mm, pgdp, addr);
2751         if (!p4dp)
2752                 goto abort;
2753         pudp = pud_alloc(mm, p4dp, addr);
2754         if (!pudp)
2755                 goto abort;
2756         pmdp = pmd_alloc(mm, pudp, addr);
2757         if (!pmdp)
2758                 goto abort;
2759
2760         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2761                 goto abort;
2762
2763         /*
2764          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2765          * pte_offset_map() on pmds where a huge pmd might be created
2766          * from a different thread.
2767          *
2768          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2769          * parallel threads are excluded by other means.
2770          *
2771          * Here we only have down_read(mmap_sem).
2772          */
2773         if (pte_alloc(mm, pmdp))
2774                 goto abort;
2775
2776         /* See the comment in pte_alloc_one_map() */
2777         if (unlikely(pmd_trans_unstable(pmdp)))
2778                 goto abort;
2779
2780         if (unlikely(anon_vma_prepare(vma)))
2781                 goto abort;
2782         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2783                 goto abort;
2784
2785         /*
2786          * The memory barrier inside __SetPageUptodate makes sure that
2787          * preceding stores to the page contents become visible before
2788          * the set_pte_at() write.
2789          */
2790         __SetPageUptodate(page);
2791
2792         if (is_zone_device_page(page)) {
2793                 if (is_device_private_page(page)) {
2794                         swp_entry_t swp_entry;
2795
2796                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2797                         entry = swp_entry_to_pte(swp_entry);
2798                 }
2799         } else {
2800                 entry = mk_pte(page, vma->vm_page_prot);
2801                 if (vma->vm_flags & VM_WRITE)
2802                         entry = pte_mkwrite(pte_mkdirty(entry));
2803         }
2804
2805         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2806
2807         if (check_stable_address_space(mm))
2808                 goto unlock_abort;
2809
2810         if (pte_present(*ptep)) {
2811                 unsigned long pfn = pte_pfn(*ptep);
2812
2813                 if (!is_zero_pfn(pfn))
2814                         goto unlock_abort;
2815                 flush = true;
2816         } else if (!pte_none(*ptep))
2817                 goto unlock_abort;
2818
2819         /*
2820          * Check for userfaultfd but do not deliver the fault. Instead,
2821          * just back off.
2822          */
2823         if (userfaultfd_missing(vma))
2824                 goto unlock_abort;
2825
2826         inc_mm_counter(mm, MM_ANONPAGES);
2827         page_add_new_anon_rmap(page, vma, addr, false);
2828         mem_cgroup_commit_charge(page, memcg, false, false);
2829         if (!is_zone_device_page(page))
2830                 lru_cache_add_active_or_unevictable(page, vma);
2831         get_page(page);
2832
2833         if (flush) {
2834                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2835                 ptep_clear_flush_notify(vma, addr, ptep);
2836                 set_pte_at_notify(mm, addr, ptep, entry);
2837                 update_mmu_cache(vma, addr, ptep);
2838         } else {
2839                 /* No need to invalidate - it was non-present before */
2840                 set_pte_at(mm, addr, ptep, entry);
2841                 update_mmu_cache(vma, addr, ptep);
2842         }
2843
2844         pte_unmap_unlock(ptep, ptl);
2845         *src = MIGRATE_PFN_MIGRATE;
2846         return;
2847
2848 unlock_abort:
2849         pte_unmap_unlock(ptep, ptl);
2850         mem_cgroup_cancel_charge(page, memcg, false);
2851 abort:
2852         *src &= ~MIGRATE_PFN_MIGRATE;
2853 }
2854
2855 /**
2856  * migrate_vma_pages() - migrate meta-data from src page to dst page
2857  * @migrate: migrate struct containing all migration information
2858  *
2859  * This migrates struct page meta-data from source struct page to destination
2860  * struct page. This effectively finishes the migration from source page to the
2861  * destination page.
2862  */
2863 void migrate_vma_pages(struct migrate_vma *migrate)
2864 {
2865         const unsigned long npages = migrate->npages;
2866         const unsigned long start = migrate->start;
2867         struct mmu_notifier_range range;
2868         unsigned long addr, i;
2869         bool notified = false;
2870
2871         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2872                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2873                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2874                 struct address_space *mapping;
2875                 int r;
2876
2877                 if (!newpage) {
2878                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2879                         continue;
2880                 }
2881
2882                 if (!page) {
2883                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2884                                 continue;
2885                         if (!notified) {
2886                                 notified = true;
2887
2888                                 mmu_notifier_range_init(&range,
2889                                                         MMU_NOTIFY_CLEAR, 0,
2890                                                         NULL,
2891                                                         migrate->vma->vm_mm,
2892                                                         addr, migrate->end);
2893                                 mmu_notifier_invalidate_range_start(&range);
2894                         }
2895                         migrate_vma_insert_page(migrate, addr, newpage,
2896                                                 &migrate->src[i],
2897                                                 &migrate->dst[i]);
2898                         continue;
2899                 }
2900
2901                 mapping = page_mapping(page);
2902
2903                 if (is_zone_device_page(newpage)) {
2904                         if (is_device_private_page(newpage)) {
2905                                 /*
2906                                  * For now only support private anonymous when
2907                                  * migrating to un-addressable device memory.
2908                                  */
2909                                 if (mapping) {
2910                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911                                         continue;
2912                                 }
2913                         } else {
2914                                 /*
2915                                  * Other types of ZONE_DEVICE page are not
2916                                  * supported.
2917                                  */
2918                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2919                                 continue;
2920                         }
2921                 }
2922
2923                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2924                 if (r != MIGRATEPAGE_SUCCESS)
2925                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2926         }
2927
2928         /*
2929          * No need to double call mmu_notifier->invalidate_range() callback as
2930          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2931          * did already call it.
2932          */
2933         if (notified)
2934                 mmu_notifier_invalidate_range_only_end(&range);
2935 }
2936 EXPORT_SYMBOL(migrate_vma_pages);
2937
2938 /**
2939  * migrate_vma_finalize() - restore CPU page table entry
2940  * @migrate: migrate struct containing all migration information
2941  *
2942  * This replaces the special migration pte entry with either a mapping to the
2943  * new page if migration was successful for that page, or to the original page
2944  * otherwise.
2945  *
2946  * This also unlocks the pages and puts them back on the lru, or drops the extra
2947  * refcount, for device pages.
2948  */
2949 void migrate_vma_finalize(struct migrate_vma *migrate)
2950 {
2951         const unsigned long npages = migrate->npages;
2952         unsigned long i;
2953
2954         for (i = 0; i < npages; i++) {
2955                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2956                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2957
2958                 if (!page) {
2959                         if (newpage) {
2960                                 unlock_page(newpage);
2961                                 put_page(newpage);
2962                         }
2963                         continue;
2964                 }
2965
2966                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2967                         if (newpage) {
2968                                 unlock_page(newpage);
2969                                 put_page(newpage);
2970                         }
2971                         newpage = page;
2972                 }
2973
2974                 remove_migration_ptes(page, newpage, false);
2975                 unlock_page(page);
2976                 migrate->cpages--;
2977
2978                 if (is_zone_device_page(page))
2979                         put_page(page);
2980                 else
2981                         putback_lru_page(page);
2982
2983                 if (newpage != page) {
2984                         unlock_page(newpage);
2985                         if (is_zone_device_page(newpage))
2986                                 put_page(newpage);
2987                         else
2988                                 putback_lru_page(newpage);
2989                 }
2990         }
2991 }
2992 EXPORT_SYMBOL(migrate_vma_finalize);
2993 #endif /* CONFIG_DEVICE_PRIVATE */