dm zoned: check superblock location
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_zone_device_page(new))) {
250                         if (is_device_private_page(new)) {
251                                 entry = make_device_private_entry(new, pte_write(pte));
252                                 pte = swp_entry_to_pte(entry);
253                                 if (pte_swp_uffd_wp(*pvmw.pte))
254                                         pte = pte_mkuffd_wp(pte);
255                         }
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += hpage_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498                 }
499                 if (dirty && mapping_cap_account_dirty(mapping)) {
500                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504                 }
505         }
506         local_irq_enable();
507
508         return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517                                    struct page *newpage, struct page *page)
518 {
519         XA_STATE(xas, &mapping->i_pages, page_index(page));
520         int expected_count;
521
522         xas_lock_irq(&xas);
523         expected_count = 2 + page_has_private(page);
524         if (page_count(page) != expected_count || xas_load(&xas) != page) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         if (!page_ref_freeze(page, expected_count)) {
530                 xas_unlock_irq(&xas);
531                 return -EAGAIN;
532         }
533
534         newpage->index = page->index;
535         newpage->mapping = page->mapping;
536
537         get_page(newpage);
538
539         xas_store(&xas, newpage);
540
541         page_ref_unfreeze(page, expected_count - 1);
542
543         xas_unlock_irq(&xas);
544
545         return MIGRATEPAGE_SUCCESS;
546 }
547
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554                                 int nr_pages)
555 {
556         int i;
557         struct page *dst_base = dst;
558         struct page *src_base = src;
559
560         for (i = 0; i < nr_pages; ) {
561                 cond_resched();
562                 copy_highpage(dst, src);
563
564                 i++;
565                 dst = mem_map_next(dst, dst_base, i);
566                 src = mem_map_next(src, src_base, i);
567         }
568 }
569
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572         int i;
573         int nr_pages;
574
575         if (PageHuge(src)) {
576                 /* hugetlbfs page */
577                 struct hstate *h = page_hstate(src);
578                 nr_pages = pages_per_huge_page(h);
579
580                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581                         __copy_gigantic_page(dst, src, nr_pages);
582                         return;
583                 }
584         } else {
585                 /* thp page */
586                 BUG_ON(!PageTransHuge(src));
587                 nr_pages = hpage_nr_pages(src);
588         }
589
590         for (i = 0; i < nr_pages; i++) {
591                 cond_resched();
592                 copy_highpage(dst + i, src + i);
593         }
594 }
595
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601         int cpupid;
602
603         if (PageError(page))
604                 SetPageError(newpage);
605         if (PageReferenced(page))
606                 SetPageReferenced(newpage);
607         if (PageUptodate(page))
608                 SetPageUptodate(newpage);
609         if (TestClearPageActive(page)) {
610                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611                 SetPageActive(newpage);
612         } else if (TestClearPageUnevictable(page))
613                 SetPageUnevictable(newpage);
614         if (PageWorkingset(page))
615                 SetPageWorkingset(newpage);
616         if (PageChecked(page))
617                 SetPageChecked(newpage);
618         if (PageMappedToDisk(page))
619                 SetPageMappedToDisk(newpage);
620
621         /* Move dirty on pages not done by migrate_page_move_mapping() */
622         if (PageDirty(page))
623                 SetPageDirty(newpage);
624
625         if (page_is_young(page))
626                 set_page_young(newpage);
627         if (page_is_idle(page))
628                 set_page_idle(newpage);
629
630         /*
631          * Copy NUMA information to the new page, to prevent over-eager
632          * future migrations of this same page.
633          */
634         cpupid = page_cpupid_xchg_last(page, -1);
635         page_cpupid_xchg_last(newpage, cpupid);
636
637         ksm_migrate_page(newpage, page);
638         /*
639          * Please do not reorder this without considering how mm/ksm.c's
640          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641          */
642         if (PageSwapCache(page))
643                 ClearPageSwapCache(page);
644         ClearPagePrivate(page);
645         set_page_private(page, 0);
646
647         /*
648          * If any waiters have accumulated on the new page then
649          * wake them up.
650          */
651         if (PageWriteback(newpage))
652                 end_page_writeback(newpage);
653
654         /*
655          * PG_readahead shares the same bit with PG_reclaim.  The above
656          * end_page_writeback() may clear PG_readahead mistakenly, so set the
657          * bit after that.
658          */
659         if (PageReadahead(page))
660                 SetPageReadahead(newpage);
661
662         copy_page_owner(page, newpage);
663
664         mem_cgroup_migrate(page, newpage);
665 }
666 EXPORT_SYMBOL(migrate_page_states);
667
668 void migrate_page_copy(struct page *newpage, struct page *page)
669 {
670         if (PageHuge(page) || PageTransHuge(page))
671                 copy_huge_page(newpage, page);
672         else
673                 copy_highpage(newpage, page);
674
675         migrate_page_states(newpage, page);
676 }
677 EXPORT_SYMBOL(migrate_page_copy);
678
679 /************************************************************
680  *                    Migration functions
681  ***********************************************************/
682
683 /*
684  * Common logic to directly migrate a single LRU page suitable for
685  * pages that do not use PagePrivate/PagePrivate2.
686  *
687  * Pages are locked upon entry and exit.
688  */
689 int migrate_page(struct address_space *mapping,
690                 struct page *newpage, struct page *page,
691                 enum migrate_mode mode)
692 {
693         int rc;
694
695         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
696
697         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
698
699         if (rc != MIGRATEPAGE_SUCCESS)
700                 return rc;
701
702         if (mode != MIGRATE_SYNC_NO_COPY)
703                 migrate_page_copy(newpage, page);
704         else
705                 migrate_page_states(newpage, page);
706         return MIGRATEPAGE_SUCCESS;
707 }
708 EXPORT_SYMBOL(migrate_page);
709
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713                                                         enum migrate_mode mode)
714 {
715         struct buffer_head *bh = head;
716
717         /* Simple case, sync compaction */
718         if (mode != MIGRATE_ASYNC) {
719                 do {
720                         lock_buffer(bh);
721                         bh = bh->b_this_page;
722
723                 } while (bh != head);
724
725                 return true;
726         }
727
728         /* async case, we cannot block on lock_buffer so use trylock_buffer */
729         do {
730                 if (!trylock_buffer(bh)) {
731                         /*
732                          * We failed to lock the buffer and cannot stall in
733                          * async migration. Release the taken locks
734                          */
735                         struct buffer_head *failed_bh = bh;
736                         bh = head;
737                         while (bh != failed_bh) {
738                                 unlock_buffer(bh);
739                                 bh = bh->b_this_page;
740                         }
741                         return false;
742                 }
743
744                 bh = bh->b_this_page;
745         } while (bh != head);
746         return true;
747 }
748
749 static int __buffer_migrate_page(struct address_space *mapping,
750                 struct page *newpage, struct page *page, enum migrate_mode mode,
751                 bool check_refs)
752 {
753         struct buffer_head *bh, *head;
754         int rc;
755         int expected_count;
756
757         if (!page_has_buffers(page))
758                 return migrate_page(mapping, newpage, page, mode);
759
760         /* Check whether page does not have extra refs before we do more work */
761         expected_count = expected_page_refs(mapping, page);
762         if (page_count(page) != expected_count)
763                 return -EAGAIN;
764
765         head = page_buffers(page);
766         if (!buffer_migrate_lock_buffers(head, mode))
767                 return -EAGAIN;
768
769         if (check_refs) {
770                 bool busy;
771                 bool invalidated = false;
772
773 recheck_buffers:
774                 busy = false;
775                 spin_lock(&mapping->private_lock);
776                 bh = head;
777                 do {
778                         if (atomic_read(&bh->b_count)) {
779                                 busy = true;
780                                 break;
781                         }
782                         bh = bh->b_this_page;
783                 } while (bh != head);
784                 if (busy) {
785                         if (invalidated) {
786                                 rc = -EAGAIN;
787                                 goto unlock_buffers;
788                         }
789                         spin_unlock(&mapping->private_lock);
790                         invalidate_bh_lrus();
791                         invalidated = true;
792                         goto recheck_buffers;
793                 }
794         }
795
796         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797         if (rc != MIGRATEPAGE_SUCCESS)
798                 goto unlock_buffers;
799
800         ClearPagePrivate(page);
801         set_page_private(newpage, page_private(page));
802         set_page_private(page, 0);
803         put_page(page);
804         get_page(newpage);
805
806         bh = head;
807         do {
808                 set_bh_page(bh, newpage, bh_offset(bh));
809                 bh = bh->b_this_page;
810
811         } while (bh != head);
812
813         SetPagePrivate(newpage);
814
815         if (mode != MIGRATE_SYNC_NO_COPY)
816                 migrate_page_copy(newpage, page);
817         else
818                 migrate_page_states(newpage, page);
819
820         rc = MIGRATEPAGE_SUCCESS;
821 unlock_buffers:
822         if (check_refs)
823                 spin_unlock(&mapping->private_lock);
824         bh = head;
825         do {
826                 unlock_buffer(bh);
827                 bh = bh->b_this_page;
828
829         } while (bh != head);
830
831         return rc;
832 }
833
834 /*
835  * Migration function for pages with buffers. This function can only be used
836  * if the underlying filesystem guarantees that no other references to "page"
837  * exist. For example attached buffer heads are accessed only under page lock.
838  */
839 int buffer_migrate_page(struct address_space *mapping,
840                 struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842         return __buffer_migrate_page(mapping, newpage, page, mode, false);
843 }
844 EXPORT_SYMBOL(buffer_migrate_page);
845
846 /*
847  * Same as above except that this variant is more careful and checks that there
848  * are also no buffer head references. This function is the right one for
849  * mappings where buffer heads are directly looked up and referenced (such as
850  * block device mappings).
851  */
852 int buffer_migrate_page_norefs(struct address_space *mapping,
853                 struct page *newpage, struct page *page, enum migrate_mode mode)
854 {
855         return __buffer_migrate_page(mapping, newpage, page, mode, true);
856 }
857 #endif
858
859 /*
860  * Writeback a page to clean the dirty state
861  */
862 static int writeout(struct address_space *mapping, struct page *page)
863 {
864         struct writeback_control wbc = {
865                 .sync_mode = WB_SYNC_NONE,
866                 .nr_to_write = 1,
867                 .range_start = 0,
868                 .range_end = LLONG_MAX,
869                 .for_reclaim = 1
870         };
871         int rc;
872
873         if (!mapping->a_ops->writepage)
874                 /* No write method for the address space */
875                 return -EINVAL;
876
877         if (!clear_page_dirty_for_io(page))
878                 /* Someone else already triggered a write */
879                 return -EAGAIN;
880
881         /*
882          * A dirty page may imply that the underlying filesystem has
883          * the page on some queue. So the page must be clean for
884          * migration. Writeout may mean we loose the lock and the
885          * page state is no longer what we checked for earlier.
886          * At this point we know that the migration attempt cannot
887          * be successful.
888          */
889         remove_migration_ptes(page, page, false);
890
891         rc = mapping->a_ops->writepage(page, &wbc);
892
893         if (rc != AOP_WRITEPAGE_ACTIVATE)
894                 /* unlocked. Relock */
895                 lock_page(page);
896
897         return (rc < 0) ? -EIO : -EAGAIN;
898 }
899
900 /*
901  * Default handling if a filesystem does not provide a migration function.
902  */
903 static int fallback_migrate_page(struct address_space *mapping,
904         struct page *newpage, struct page *page, enum migrate_mode mode)
905 {
906         if (PageDirty(page)) {
907                 /* Only writeback pages in full synchronous migration */
908                 switch (mode) {
909                 case MIGRATE_SYNC:
910                 case MIGRATE_SYNC_NO_COPY:
911                         break;
912                 default:
913                         return -EBUSY;
914                 }
915                 return writeout(mapping, page);
916         }
917
918         /*
919          * Buffers may be managed in a filesystem specific way.
920          * We must have no buffers or drop them.
921          */
922         if (page_has_private(page) &&
923             !try_to_release_page(page, GFP_KERNEL))
924                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
925
926         return migrate_page(mapping, newpage, page, mode);
927 }
928
929 /*
930  * Move a page to a newly allocated page
931  * The page is locked and all ptes have been successfully removed.
932  *
933  * The new page will have replaced the old page if this function
934  * is successful.
935  *
936  * Return value:
937  *   < 0 - error code
938  *  MIGRATEPAGE_SUCCESS - success
939  */
940 static int move_to_new_page(struct page *newpage, struct page *page,
941                                 enum migrate_mode mode)
942 {
943         struct address_space *mapping;
944         int rc = -EAGAIN;
945         bool is_lru = !__PageMovable(page);
946
947         VM_BUG_ON_PAGE(!PageLocked(page), page);
948         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
949
950         mapping = page_mapping(page);
951
952         if (likely(is_lru)) {
953                 if (!mapping)
954                         rc = migrate_page(mapping, newpage, page, mode);
955                 else if (mapping->a_ops->migratepage)
956                         /*
957                          * Most pages have a mapping and most filesystems
958                          * provide a migratepage callback. Anonymous pages
959                          * are part of swap space which also has its own
960                          * migratepage callback. This is the most common path
961                          * for page migration.
962                          */
963                         rc = mapping->a_ops->migratepage(mapping, newpage,
964                                                         page, mode);
965                 else
966                         rc = fallback_migrate_page(mapping, newpage,
967                                                         page, mode);
968         } else {
969                 /*
970                  * In case of non-lru page, it could be released after
971                  * isolation step. In that case, we shouldn't try migration.
972                  */
973                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
974                 if (!PageMovable(page)) {
975                         rc = MIGRATEPAGE_SUCCESS;
976                         __ClearPageIsolated(page);
977                         goto out;
978                 }
979
980                 rc = mapping->a_ops->migratepage(mapping, newpage,
981                                                 page, mode);
982                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
983                         !PageIsolated(page));
984         }
985
986         /*
987          * When successful, old pagecache page->mapping must be cleared before
988          * page is freed; but stats require that PageAnon be left as PageAnon.
989          */
990         if (rc == MIGRATEPAGE_SUCCESS) {
991                 if (__PageMovable(page)) {
992                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
993
994                         /*
995                          * We clear PG_movable under page_lock so any compactor
996                          * cannot try to migrate this page.
997                          */
998                         __ClearPageIsolated(page);
999                 }
1000
1001                 /*
1002                  * Anonymous and movable page->mapping will be cleared by
1003                  * free_pages_prepare so don't reset it here for keeping
1004                  * the type to work PageAnon, for example.
1005                  */
1006                 if (!PageMappingFlags(page))
1007                         page->mapping = NULL;
1008
1009                 if (likely(!is_zone_device_page(newpage)))
1010                         flush_dcache_page(newpage);
1011
1012         }
1013 out:
1014         return rc;
1015 }
1016
1017 static int __unmap_and_move(struct page *page, struct page *newpage,
1018                                 int force, enum migrate_mode mode)
1019 {
1020         int rc = -EAGAIN;
1021         int page_was_mapped = 0;
1022         struct anon_vma *anon_vma = NULL;
1023         bool is_lru = !__PageMovable(page);
1024
1025         if (!trylock_page(page)) {
1026                 if (!force || mode == MIGRATE_ASYNC)
1027                         goto out;
1028
1029                 /*
1030                  * It's not safe for direct compaction to call lock_page.
1031                  * For example, during page readahead pages are added locked
1032                  * to the LRU. Later, when the IO completes the pages are
1033                  * marked uptodate and unlocked. However, the queueing
1034                  * could be merging multiple pages for one bio (e.g.
1035                  * mpage_readpages). If an allocation happens for the
1036                  * second or third page, the process can end up locking
1037                  * the same page twice and deadlocking. Rather than
1038                  * trying to be clever about what pages can be locked,
1039                  * avoid the use of lock_page for direct compaction
1040                  * altogether.
1041                  */
1042                 if (current->flags & PF_MEMALLOC)
1043                         goto out;
1044
1045                 lock_page(page);
1046         }
1047
1048         if (PageWriteback(page)) {
1049                 /*
1050                  * Only in the case of a full synchronous migration is it
1051                  * necessary to wait for PageWriteback. In the async case,
1052                  * the retry loop is too short and in the sync-light case,
1053                  * the overhead of stalling is too much
1054                  */
1055                 switch (mode) {
1056                 case MIGRATE_SYNC:
1057                 case MIGRATE_SYNC_NO_COPY:
1058                         break;
1059                 default:
1060                         rc = -EBUSY;
1061                         goto out_unlock;
1062                 }
1063                 if (!force)
1064                         goto out_unlock;
1065                 wait_on_page_writeback(page);
1066         }
1067
1068         /*
1069          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1070          * we cannot notice that anon_vma is freed while we migrates a page.
1071          * This get_anon_vma() delays freeing anon_vma pointer until the end
1072          * of migration. File cache pages are no problem because of page_lock()
1073          * File Caches may use write_page() or lock_page() in migration, then,
1074          * just care Anon page here.
1075          *
1076          * Only page_get_anon_vma() understands the subtleties of
1077          * getting a hold on an anon_vma from outside one of its mms.
1078          * But if we cannot get anon_vma, then we won't need it anyway,
1079          * because that implies that the anon page is no longer mapped
1080          * (and cannot be remapped so long as we hold the page lock).
1081          */
1082         if (PageAnon(page) && !PageKsm(page))
1083                 anon_vma = page_get_anon_vma(page);
1084
1085         /*
1086          * Block others from accessing the new page when we get around to
1087          * establishing additional references. We are usually the only one
1088          * holding a reference to newpage at this point. We used to have a BUG
1089          * here if trylock_page(newpage) fails, but would like to allow for
1090          * cases where there might be a race with the previous use of newpage.
1091          * This is much like races on refcount of oldpage: just don't BUG().
1092          */
1093         if (unlikely(!trylock_page(newpage)))
1094                 goto out_unlock;
1095
1096         if (unlikely(!is_lru)) {
1097                 rc = move_to_new_page(newpage, page, mode);
1098                 goto out_unlock_both;
1099         }
1100
1101         /*
1102          * Corner case handling:
1103          * 1. When a new swap-cache page is read into, it is added to the LRU
1104          * and treated as swapcache but it has no rmap yet.
1105          * Calling try_to_unmap() against a page->mapping==NULL page will
1106          * trigger a BUG.  So handle it here.
1107          * 2. An orphaned page (see truncate_complete_page) might have
1108          * fs-private metadata. The page can be picked up due to memory
1109          * offlining.  Everywhere else except page reclaim, the page is
1110          * invisible to the vm, so the page can not be migrated.  So try to
1111          * free the metadata, so the page can be freed.
1112          */
1113         if (!page->mapping) {
1114                 VM_BUG_ON_PAGE(PageAnon(page), page);
1115                 if (page_has_private(page)) {
1116                         try_to_free_buffers(page);
1117                         goto out_unlock_both;
1118                 }
1119         } else if (page_mapped(page)) {
1120                 /* Establish migration ptes */
1121                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1122                                 page);
1123                 try_to_unmap(page,
1124                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1125                 page_was_mapped = 1;
1126         }
1127
1128         if (!page_mapped(page))
1129                 rc = move_to_new_page(newpage, page, mode);
1130
1131         if (page_was_mapped)
1132                 remove_migration_ptes(page,
1133                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1134
1135 out_unlock_both:
1136         unlock_page(newpage);
1137 out_unlock:
1138         /* Drop an anon_vma reference if we took one */
1139         if (anon_vma)
1140                 put_anon_vma(anon_vma);
1141         unlock_page(page);
1142 out:
1143         /*
1144          * If migration is successful, decrease refcount of the newpage
1145          * which will not free the page because new page owner increased
1146          * refcounter. As well, if it is LRU page, add the page to LRU
1147          * list in here. Use the old state of the isolated source page to
1148          * determine if we migrated a LRU page. newpage was already unlocked
1149          * and possibly modified by its owner - don't rely on the page
1150          * state.
1151          */
1152         if (rc == MIGRATEPAGE_SUCCESS) {
1153                 if (unlikely(!is_lru))
1154                         put_page(newpage);
1155                 else
1156                         putback_lru_page(newpage);
1157         }
1158
1159         return rc;
1160 }
1161
1162 /*
1163  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1164  * around it.
1165  */
1166 #if defined(CONFIG_ARM) && \
1167         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1168 #define ICE_noinline noinline
1169 #else
1170 #define ICE_noinline
1171 #endif
1172
1173 /*
1174  * Obtain the lock on page, remove all ptes and migrate the page
1175  * to the newly allocated page in newpage.
1176  */
1177 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1178                                    free_page_t put_new_page,
1179                                    unsigned long private, struct page *page,
1180                                    int force, enum migrate_mode mode,
1181                                    enum migrate_reason reason)
1182 {
1183         int rc = MIGRATEPAGE_SUCCESS;
1184         struct page *newpage = NULL;
1185
1186         if (!thp_migration_supported() && PageTransHuge(page))
1187                 return -ENOMEM;
1188
1189         if (page_count(page) == 1) {
1190                 /* page was freed from under us. So we are done. */
1191                 ClearPageActive(page);
1192                 ClearPageUnevictable(page);
1193                 if (unlikely(__PageMovable(page))) {
1194                         lock_page(page);
1195                         if (!PageMovable(page))
1196                                 __ClearPageIsolated(page);
1197                         unlock_page(page);
1198                 }
1199                 goto out;
1200         }
1201
1202         newpage = get_new_page(page, private);
1203         if (!newpage)
1204                 return -ENOMEM;
1205
1206         rc = __unmap_and_move(page, newpage, force, mode);
1207         if (rc == MIGRATEPAGE_SUCCESS)
1208                 set_page_owner_migrate_reason(newpage, reason);
1209
1210 out:
1211         if (rc != -EAGAIN) {
1212                 /*
1213                  * A page that has been migrated has all references
1214                  * removed and will be freed. A page that has not been
1215                  * migrated will have kept its references and be restored.
1216                  */
1217                 list_del(&page->lru);
1218
1219                 /*
1220                  * Compaction can migrate also non-LRU pages which are
1221                  * not accounted to NR_ISOLATED_*. They can be recognized
1222                  * as __PageMovable
1223                  */
1224                 if (likely(!__PageMovable(page)))
1225                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226                                         page_is_file_lru(page), -hpage_nr_pages(page));
1227         }
1228
1229         /*
1230          * If migration is successful, releases reference grabbed during
1231          * isolation. Otherwise, restore the page to right list unless
1232          * we want to retry.
1233          */
1234         if (rc == MIGRATEPAGE_SUCCESS) {
1235                 put_page(page);
1236                 if (reason == MR_MEMORY_FAILURE) {
1237                         /*
1238                          * Set PG_HWPoison on just freed page
1239                          * intentionally. Although it's rather weird,
1240                          * it's how HWPoison flag works at the moment.
1241                          */
1242                         if (set_hwpoison_free_buddy_page(page))
1243                                 num_poisoned_pages_inc();
1244                 }
1245         } else {
1246                 if (rc != -EAGAIN) {
1247                         if (likely(!__PageMovable(page))) {
1248                                 putback_lru_page(page);
1249                                 goto put_new;
1250                         }
1251
1252                         lock_page(page);
1253                         if (PageMovable(page))
1254                                 putback_movable_page(page);
1255                         else
1256                                 __ClearPageIsolated(page);
1257                         unlock_page(page);
1258                         put_page(page);
1259                 }
1260 put_new:
1261                 if (put_new_page)
1262                         put_new_page(newpage, private);
1263                 else
1264                         put_page(newpage);
1265         }
1266
1267         return rc;
1268 }
1269
1270 /*
1271  * Counterpart of unmap_and_move_page() for hugepage migration.
1272  *
1273  * This function doesn't wait the completion of hugepage I/O
1274  * because there is no race between I/O and migration for hugepage.
1275  * Note that currently hugepage I/O occurs only in direct I/O
1276  * where no lock is held and PG_writeback is irrelevant,
1277  * and writeback status of all subpages are counted in the reference
1278  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279  * under direct I/O, the reference of the head page is 512 and a bit more.)
1280  * This means that when we try to migrate hugepage whose subpages are
1281  * doing direct I/O, some references remain after try_to_unmap() and
1282  * hugepage migration fails without data corruption.
1283  *
1284  * There is also no race when direct I/O is issued on the page under migration,
1285  * because then pte is replaced with migration swap entry and direct I/O code
1286  * will wait in the page fault for migration to complete.
1287  */
1288 static int unmap_and_move_huge_page(new_page_t get_new_page,
1289                                 free_page_t put_new_page, unsigned long private,
1290                                 struct page *hpage, int force,
1291                                 enum migrate_mode mode, int reason)
1292 {
1293         int rc = -EAGAIN;
1294         int page_was_mapped = 0;
1295         struct page *new_hpage;
1296         struct anon_vma *anon_vma = NULL;
1297         struct address_space *mapping = NULL;
1298
1299         /*
1300          * Migratability of hugepages depends on architectures and their size.
1301          * This check is necessary because some callers of hugepage migration
1302          * like soft offline and memory hotremove don't walk through page
1303          * tables or check whether the hugepage is pmd-based or not before
1304          * kicking migration.
1305          */
1306         if (!hugepage_migration_supported(page_hstate(hpage))) {
1307                 putback_active_hugepage(hpage);
1308                 return -ENOSYS;
1309         }
1310
1311         new_hpage = get_new_page(hpage, private);
1312         if (!new_hpage)
1313                 return -ENOMEM;
1314
1315         if (!trylock_page(hpage)) {
1316                 if (!force)
1317                         goto out;
1318                 switch (mode) {
1319                 case MIGRATE_SYNC:
1320                 case MIGRATE_SYNC_NO_COPY:
1321                         break;
1322                 default:
1323                         goto out;
1324                 }
1325                 lock_page(hpage);
1326         }
1327
1328         /*
1329          * Check for pages which are in the process of being freed.  Without
1330          * page_mapping() set, hugetlbfs specific move page routine will not
1331          * be called and we could leak usage counts for subpools.
1332          */
1333         if (page_private(hpage) && !page_mapping(hpage)) {
1334                 rc = -EBUSY;
1335                 goto out_unlock;
1336         }
1337
1338         if (PageAnon(hpage))
1339                 anon_vma = page_get_anon_vma(hpage);
1340
1341         if (unlikely(!trylock_page(new_hpage)))
1342                 goto put_anon;
1343
1344         if (page_mapped(hpage)) {
1345                 /*
1346                  * try_to_unmap could potentially call huge_pmd_unshare.
1347                  * Because of this, take semaphore in write mode here and
1348                  * set TTU_RMAP_LOCKED to let lower levels know we have
1349                  * taken the lock.
1350                  */
1351                 mapping = hugetlb_page_mapping_lock_write(hpage);
1352                 if (unlikely(!mapping))
1353                         goto unlock_put_anon;
1354
1355                 try_to_unmap(hpage,
1356                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1357                         TTU_RMAP_LOCKED);
1358                 page_was_mapped = 1;
1359                 /*
1360                  * Leave mapping locked until after subsequent call to
1361                  * remove_migration_ptes()
1362                  */
1363         }
1364
1365         if (!page_mapped(hpage))
1366                 rc = move_to_new_page(new_hpage, hpage, mode);
1367
1368         if (page_was_mapped) {
1369                 remove_migration_ptes(hpage,
1370                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1371                 i_mmap_unlock_write(mapping);
1372         }
1373
1374 unlock_put_anon:
1375         unlock_page(new_hpage);
1376
1377 put_anon:
1378         if (anon_vma)
1379                 put_anon_vma(anon_vma);
1380
1381         if (rc == MIGRATEPAGE_SUCCESS) {
1382                 move_hugetlb_state(hpage, new_hpage, reason);
1383                 put_new_page = NULL;
1384         }
1385
1386 out_unlock:
1387         unlock_page(hpage);
1388 out:
1389         if (rc != -EAGAIN)
1390                 putback_active_hugepage(hpage);
1391
1392         /*
1393          * If migration was not successful and there's a freeing callback, use
1394          * it.  Otherwise, put_page() will drop the reference grabbed during
1395          * isolation.
1396          */
1397         if (put_new_page)
1398                 put_new_page(new_hpage, private);
1399         else
1400                 putback_active_hugepage(new_hpage);
1401
1402         return rc;
1403 }
1404
1405 /*
1406  * migrate_pages - migrate the pages specified in a list, to the free pages
1407  *                 supplied as the target for the page migration
1408  *
1409  * @from:               The list of pages to be migrated.
1410  * @get_new_page:       The function used to allocate free pages to be used
1411  *                      as the target of the page migration.
1412  * @put_new_page:       The function used to free target pages if migration
1413  *                      fails, or NULL if no special handling is necessary.
1414  * @private:            Private data to be passed on to get_new_page()
1415  * @mode:               The migration mode that specifies the constraints for
1416  *                      page migration, if any.
1417  * @reason:             The reason for page migration.
1418  *
1419  * The function returns after 10 attempts or if no pages are movable any more
1420  * because the list has become empty or no retryable pages exist any more.
1421  * The caller should call putback_movable_pages() to return pages to the LRU
1422  * or free list only if ret != 0.
1423  *
1424  * Returns the number of pages that were not migrated, or an error code.
1425  */
1426 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1427                 free_page_t put_new_page, unsigned long private,
1428                 enum migrate_mode mode, int reason)
1429 {
1430         int retry = 1;
1431         int nr_failed = 0;
1432         int nr_succeeded = 0;
1433         int pass = 0;
1434         struct page *page;
1435         struct page *page2;
1436         int swapwrite = current->flags & PF_SWAPWRITE;
1437         int rc;
1438
1439         if (!swapwrite)
1440                 current->flags |= PF_SWAPWRITE;
1441
1442         for(pass = 0; pass < 10 && retry; pass++) {
1443                 retry = 0;
1444
1445                 list_for_each_entry_safe(page, page2, from, lru) {
1446 retry:
1447                         cond_resched();
1448
1449                         if (PageHuge(page))
1450                                 rc = unmap_and_move_huge_page(get_new_page,
1451                                                 put_new_page, private, page,
1452                                                 pass > 2, mode, reason);
1453                         else
1454                                 rc = unmap_and_move(get_new_page, put_new_page,
1455                                                 private, page, pass > 2, mode,
1456                                                 reason);
1457
1458                         switch(rc) {
1459                         case -ENOMEM:
1460                                 /*
1461                                  * THP migration might be unsupported or the
1462                                  * allocation could've failed so we should
1463                                  * retry on the same page with the THP split
1464                                  * to base pages.
1465                                  *
1466                                  * Head page is retried immediately and tail
1467                                  * pages are added to the tail of the list so
1468                                  * we encounter them after the rest of the list
1469                                  * is processed.
1470                                  */
1471                                 if (PageTransHuge(page) && !PageHuge(page)) {
1472                                         lock_page(page);
1473                                         rc = split_huge_page_to_list(page, from);
1474                                         unlock_page(page);
1475                                         if (!rc) {
1476                                                 list_safe_reset_next(page, page2, lru);
1477                                                 goto retry;
1478                                         }
1479                                 }
1480                                 nr_failed++;
1481                                 goto out;
1482                         case -EAGAIN:
1483                                 retry++;
1484                                 break;
1485                         case MIGRATEPAGE_SUCCESS:
1486                                 nr_succeeded++;
1487                                 break;
1488                         default:
1489                                 /*
1490                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1491                                  * unlike -EAGAIN case, the failed page is
1492                                  * removed from migration page list and not
1493                                  * retried in the next outer loop.
1494                                  */
1495                                 nr_failed++;
1496                                 break;
1497                         }
1498                 }
1499         }
1500         nr_failed += retry;
1501         rc = nr_failed;
1502 out:
1503         if (nr_succeeded)
1504                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1505         if (nr_failed)
1506                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1507         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1508
1509         if (!swapwrite)
1510                 current->flags &= ~PF_SWAPWRITE;
1511
1512         return rc;
1513 }
1514
1515 #ifdef CONFIG_NUMA
1516
1517 static int store_status(int __user *status, int start, int value, int nr)
1518 {
1519         while (nr-- > 0) {
1520                 if (put_user(value, status + start))
1521                         return -EFAULT;
1522                 start++;
1523         }
1524
1525         return 0;
1526 }
1527
1528 static int do_move_pages_to_node(struct mm_struct *mm,
1529                 struct list_head *pagelist, int node)
1530 {
1531         int err;
1532
1533         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1534                         MIGRATE_SYNC, MR_SYSCALL);
1535         if (err)
1536                 putback_movable_pages(pagelist);
1537         return err;
1538 }
1539
1540 /*
1541  * Resolves the given address to a struct page, isolates it from the LRU and
1542  * puts it to the given pagelist.
1543  * Returns:
1544  *     errno - if the page cannot be found/isolated
1545  *     0 - when it doesn't have to be migrated because it is already on the
1546  *         target node
1547  *     1 - when it has been queued
1548  */
1549 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1550                 int node, struct list_head *pagelist, bool migrate_all)
1551 {
1552         struct vm_area_struct *vma;
1553         struct page *page;
1554         unsigned int follflags;
1555         int err;
1556
1557         down_read(&mm->mmap_sem);
1558         err = -EFAULT;
1559         vma = find_vma(mm, addr);
1560         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1561                 goto out;
1562
1563         /* FOLL_DUMP to ignore special (like zero) pages */
1564         follflags = FOLL_GET | FOLL_DUMP;
1565         page = follow_page(vma, addr, follflags);
1566
1567         err = PTR_ERR(page);
1568         if (IS_ERR(page))
1569                 goto out;
1570
1571         err = -ENOENT;
1572         if (!page)
1573                 goto out;
1574
1575         err = 0;
1576         if (page_to_nid(page) == node)
1577                 goto out_putpage;
1578
1579         err = -EACCES;
1580         if (page_mapcount(page) > 1 && !migrate_all)
1581                 goto out_putpage;
1582
1583         if (PageHuge(page)) {
1584                 if (PageHead(page)) {
1585                         isolate_huge_page(page, pagelist);
1586                         err = 1;
1587                 }
1588         } else {
1589                 struct page *head;
1590
1591                 head = compound_head(page);
1592                 err = isolate_lru_page(head);
1593                 if (err)
1594                         goto out_putpage;
1595
1596                 err = 1;
1597                 list_add_tail(&head->lru, pagelist);
1598                 mod_node_page_state(page_pgdat(head),
1599                         NR_ISOLATED_ANON + page_is_file_lru(head),
1600                         hpage_nr_pages(head));
1601         }
1602 out_putpage:
1603         /*
1604          * Either remove the duplicate refcount from
1605          * isolate_lru_page() or drop the page ref if it was
1606          * not isolated.
1607          */
1608         put_page(page);
1609 out:
1610         up_read(&mm->mmap_sem);
1611         return err;
1612 }
1613
1614 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1615                 struct list_head *pagelist, int __user *status,
1616                 int start, int i, unsigned long nr_pages)
1617 {
1618         int err;
1619
1620         if (list_empty(pagelist))
1621                 return 0;
1622
1623         err = do_move_pages_to_node(mm, pagelist, node);
1624         if (err) {
1625                 /*
1626                  * Positive err means the number of failed
1627                  * pages to migrate.  Since we are going to
1628                  * abort and return the number of non-migrated
1629                  * pages, so need to incude the rest of the
1630                  * nr_pages that have not been attempted as
1631                  * well.
1632                  */
1633                 if (err > 0)
1634                         err += nr_pages - i - 1;
1635                 return err;
1636         }
1637         return store_status(status, start, node, i - start);
1638 }
1639
1640 /*
1641  * Migrate an array of page address onto an array of nodes and fill
1642  * the corresponding array of status.
1643  */
1644 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1645                          unsigned long nr_pages,
1646                          const void __user * __user *pages,
1647                          const int __user *nodes,
1648                          int __user *status, int flags)
1649 {
1650         int current_node = NUMA_NO_NODE;
1651         LIST_HEAD(pagelist);
1652         int start, i;
1653         int err = 0, err1;
1654
1655         migrate_prep();
1656
1657         for (i = start = 0; i < nr_pages; i++) {
1658                 const void __user *p;
1659                 unsigned long addr;
1660                 int node;
1661
1662                 err = -EFAULT;
1663                 if (get_user(p, pages + i))
1664                         goto out_flush;
1665                 if (get_user(node, nodes + i))
1666                         goto out_flush;
1667                 addr = (unsigned long)untagged_addr(p);
1668
1669                 err = -ENODEV;
1670                 if (node < 0 || node >= MAX_NUMNODES)
1671                         goto out_flush;
1672                 if (!node_state(node, N_MEMORY))
1673                         goto out_flush;
1674
1675                 err = -EACCES;
1676                 if (!node_isset(node, task_nodes))
1677                         goto out_flush;
1678
1679                 if (current_node == NUMA_NO_NODE) {
1680                         current_node = node;
1681                         start = i;
1682                 } else if (node != current_node) {
1683                         err = move_pages_and_store_status(mm, current_node,
1684                                         &pagelist, status, start, i, nr_pages);
1685                         if (err)
1686                                 goto out;
1687                         start = i;
1688                         current_node = node;
1689                 }
1690
1691                 /*
1692                  * Errors in the page lookup or isolation are not fatal and we simply
1693                  * report them via status
1694                  */
1695                 err = add_page_for_migration(mm, addr, current_node,
1696                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1697
1698                 if (err > 0) {
1699                         /* The page is successfully queued for migration */
1700                         continue;
1701                 }
1702
1703                 /*
1704                  * If the page is already on the target node (!err), store the
1705                  * node, otherwise, store the err.
1706                  */
1707                 err = store_status(status, i, err ? : current_node, 1);
1708                 if (err)
1709                         goto out_flush;
1710
1711                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1712                                 status, start, i, nr_pages);
1713                 if (err)
1714                         goto out;
1715                 current_node = NUMA_NO_NODE;
1716         }
1717 out_flush:
1718         /* Make sure we do not overwrite the existing error */
1719         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1720                                 status, start, i, nr_pages);
1721         if (err >= 0)
1722                 err = err1;
1723 out:
1724         return err;
1725 }
1726
1727 /*
1728  * Determine the nodes of an array of pages and store it in an array of status.
1729  */
1730 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1731                                 const void __user **pages, int *status)
1732 {
1733         unsigned long i;
1734
1735         down_read(&mm->mmap_sem);
1736
1737         for (i = 0; i < nr_pages; i++) {
1738                 unsigned long addr = (unsigned long)(*pages);
1739                 struct vm_area_struct *vma;
1740                 struct page *page;
1741                 int err = -EFAULT;
1742
1743                 vma = find_vma(mm, addr);
1744                 if (!vma || addr < vma->vm_start)
1745                         goto set_status;
1746
1747                 /* FOLL_DUMP to ignore special (like zero) pages */
1748                 page = follow_page(vma, addr, FOLL_DUMP);
1749
1750                 err = PTR_ERR(page);
1751                 if (IS_ERR(page))
1752                         goto set_status;
1753
1754                 err = page ? page_to_nid(page) : -ENOENT;
1755 set_status:
1756                 *status = err;
1757
1758                 pages++;
1759                 status++;
1760         }
1761
1762         up_read(&mm->mmap_sem);
1763 }
1764
1765 /*
1766  * Determine the nodes of a user array of pages and store it in
1767  * a user array of status.
1768  */
1769 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1770                          const void __user * __user *pages,
1771                          int __user *status)
1772 {
1773 #define DO_PAGES_STAT_CHUNK_NR 16
1774         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1775         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1776
1777         while (nr_pages) {
1778                 unsigned long chunk_nr;
1779
1780                 chunk_nr = nr_pages;
1781                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1782                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1783
1784                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1785                         break;
1786
1787                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1788
1789                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1790                         break;
1791
1792                 pages += chunk_nr;
1793                 status += chunk_nr;
1794                 nr_pages -= chunk_nr;
1795         }
1796         return nr_pages ? -EFAULT : 0;
1797 }
1798
1799 /*
1800  * Move a list of pages in the address space of the currently executing
1801  * process.
1802  */
1803 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1804                              const void __user * __user *pages,
1805                              const int __user *nodes,
1806                              int __user *status, int flags)
1807 {
1808         struct task_struct *task;
1809         struct mm_struct *mm;
1810         int err;
1811         nodemask_t task_nodes;
1812
1813         /* Check flags */
1814         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1815                 return -EINVAL;
1816
1817         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1818                 return -EPERM;
1819
1820         /* Find the mm_struct */
1821         rcu_read_lock();
1822         task = pid ? find_task_by_vpid(pid) : current;
1823         if (!task) {
1824                 rcu_read_unlock();
1825                 return -ESRCH;
1826         }
1827         get_task_struct(task);
1828
1829         /*
1830          * Check if this process has the right to modify the specified
1831          * process. Use the regular "ptrace_may_access()" checks.
1832          */
1833         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1834                 rcu_read_unlock();
1835                 err = -EPERM;
1836                 goto out;
1837         }
1838         rcu_read_unlock();
1839
1840         err = security_task_movememory(task);
1841         if (err)
1842                 goto out;
1843
1844         task_nodes = cpuset_mems_allowed(task);
1845         mm = get_task_mm(task);
1846         put_task_struct(task);
1847
1848         if (!mm)
1849                 return -EINVAL;
1850
1851         if (nodes)
1852                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1853                                     nodes, status, flags);
1854         else
1855                 err = do_pages_stat(mm, nr_pages, pages, status);
1856
1857         mmput(mm);
1858         return err;
1859
1860 out:
1861         put_task_struct(task);
1862         return err;
1863 }
1864
1865 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1866                 const void __user * __user *, pages,
1867                 const int __user *, nodes,
1868                 int __user *, status, int, flags)
1869 {
1870         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871 }
1872
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1875                        compat_uptr_t __user *, pages32,
1876                        const int __user *, nodes,
1877                        int __user *, status,
1878                        int, flags)
1879 {
1880         const void __user * __user *pages;
1881         int i;
1882
1883         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1884         for (i = 0; i < nr_pages; i++) {
1885                 compat_uptr_t p;
1886
1887                 if (get_user(p, pages32 + i) ||
1888                         put_user(compat_ptr(p), pages + i))
1889                         return -EFAULT;
1890         }
1891         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1892 }
1893 #endif /* CONFIG_COMPAT */
1894
1895 #ifdef CONFIG_NUMA_BALANCING
1896 /*
1897  * Returns true if this is a safe migration target node for misplaced NUMA
1898  * pages. Currently it only checks the watermarks which crude
1899  */
1900 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1901                                    unsigned long nr_migrate_pages)
1902 {
1903         int z;
1904
1905         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1906                 struct zone *zone = pgdat->node_zones + z;
1907
1908                 if (!populated_zone(zone))
1909                         continue;
1910
1911                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1912                 if (!zone_watermark_ok(zone, 0,
1913                                        high_wmark_pages(zone) +
1914                                        nr_migrate_pages,
1915                                        ZONE_MOVABLE, 0))
1916                         continue;
1917                 return true;
1918         }
1919         return false;
1920 }
1921
1922 static struct page *alloc_misplaced_dst_page(struct page *page,
1923                                            unsigned long data)
1924 {
1925         int nid = (int) data;
1926         struct page *newpage;
1927
1928         newpage = __alloc_pages_node(nid,
1929                                          (GFP_HIGHUSER_MOVABLE |
1930                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1931                                           __GFP_NORETRY | __GFP_NOWARN) &
1932                                          ~__GFP_RECLAIM, 0);
1933
1934         return newpage;
1935 }
1936
1937 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1938 {
1939         int page_lru;
1940
1941         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1942
1943         /* Avoid migrating to a node that is nearly full */
1944         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1945                 return 0;
1946
1947         if (isolate_lru_page(page))
1948                 return 0;
1949
1950         /*
1951          * migrate_misplaced_transhuge_page() skips page migration's usual
1952          * check on page_count(), so we must do it here, now that the page
1953          * has been isolated: a GUP pin, or any other pin, prevents migration.
1954          * The expected page count is 3: 1 for page's mapcount and 1 for the
1955          * caller's pin and 1 for the reference taken by isolate_lru_page().
1956          */
1957         if (PageTransHuge(page) && page_count(page) != 3) {
1958                 putback_lru_page(page);
1959                 return 0;
1960         }
1961
1962         page_lru = page_is_file_lru(page);
1963         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1964                                 hpage_nr_pages(page));
1965
1966         /*
1967          * Isolating the page has taken another reference, so the
1968          * caller's reference can be safely dropped without the page
1969          * disappearing underneath us during migration.
1970          */
1971         put_page(page);
1972         return 1;
1973 }
1974
1975 bool pmd_trans_migrating(pmd_t pmd)
1976 {
1977         struct page *page = pmd_page(pmd);
1978         return PageLocked(page);
1979 }
1980
1981 /*
1982  * Attempt to migrate a misplaced page to the specified destination
1983  * node. Caller is expected to have an elevated reference count on
1984  * the page that will be dropped by this function before returning.
1985  */
1986 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1987                            int node)
1988 {
1989         pg_data_t *pgdat = NODE_DATA(node);
1990         int isolated;
1991         int nr_remaining;
1992         LIST_HEAD(migratepages);
1993
1994         /*
1995          * Don't migrate file pages that are mapped in multiple processes
1996          * with execute permissions as they are probably shared libraries.
1997          */
1998         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1999             (vma->vm_flags & VM_EXEC))
2000                 goto out;
2001
2002         /*
2003          * Also do not migrate dirty pages as not all filesystems can move
2004          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2005          */
2006         if (page_is_file_lru(page) && PageDirty(page))
2007                 goto out;
2008
2009         isolated = numamigrate_isolate_page(pgdat, page);
2010         if (!isolated)
2011                 goto out;
2012
2013         list_add(&page->lru, &migratepages);
2014         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2015                                      NULL, node, MIGRATE_ASYNC,
2016                                      MR_NUMA_MISPLACED);
2017         if (nr_remaining) {
2018                 if (!list_empty(&migratepages)) {
2019                         list_del(&page->lru);
2020                         dec_node_page_state(page, NR_ISOLATED_ANON +
2021                                         page_is_file_lru(page));
2022                         putback_lru_page(page);
2023                 }
2024                 isolated = 0;
2025         } else
2026                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2027         BUG_ON(!list_empty(&migratepages));
2028         return isolated;
2029
2030 out:
2031         put_page(page);
2032         return 0;
2033 }
2034 #endif /* CONFIG_NUMA_BALANCING */
2035
2036 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2037 /*
2038  * Migrates a THP to a given target node. page must be locked and is unlocked
2039  * before returning.
2040  */
2041 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2042                                 struct vm_area_struct *vma,
2043                                 pmd_t *pmd, pmd_t entry,
2044                                 unsigned long address,
2045                                 struct page *page, int node)
2046 {
2047         spinlock_t *ptl;
2048         pg_data_t *pgdat = NODE_DATA(node);
2049         int isolated = 0;
2050         struct page *new_page = NULL;
2051         int page_lru = page_is_file_lru(page);
2052         unsigned long start = address & HPAGE_PMD_MASK;
2053
2054         new_page = alloc_pages_node(node,
2055                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2056                 HPAGE_PMD_ORDER);
2057         if (!new_page)
2058                 goto out_fail;
2059         prep_transhuge_page(new_page);
2060
2061         isolated = numamigrate_isolate_page(pgdat, page);
2062         if (!isolated) {
2063                 put_page(new_page);
2064                 goto out_fail;
2065         }
2066
2067         /* Prepare a page as a migration target */
2068         __SetPageLocked(new_page);
2069         if (PageSwapBacked(page))
2070                 __SetPageSwapBacked(new_page);
2071
2072         /* anon mapping, we can simply copy page->mapping to the new page: */
2073         new_page->mapping = page->mapping;
2074         new_page->index = page->index;
2075         /* flush the cache before copying using the kernel virtual address */
2076         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2077         migrate_page_copy(new_page, page);
2078         WARN_ON(PageLRU(new_page));
2079
2080         /* Recheck the target PMD */
2081         ptl = pmd_lock(mm, pmd);
2082         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2083                 spin_unlock(ptl);
2084
2085                 /* Reverse changes made by migrate_page_copy() */
2086                 if (TestClearPageActive(new_page))
2087                         SetPageActive(page);
2088                 if (TestClearPageUnevictable(new_page))
2089                         SetPageUnevictable(page);
2090
2091                 unlock_page(new_page);
2092                 put_page(new_page);             /* Free it */
2093
2094                 /* Retake the callers reference and putback on LRU */
2095                 get_page(page);
2096                 putback_lru_page(page);
2097                 mod_node_page_state(page_pgdat(page),
2098                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2099
2100                 goto out_unlock;
2101         }
2102
2103         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2104         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2105
2106         /*
2107          * Overwrite the old entry under pagetable lock and establish
2108          * the new PTE. Any parallel GUP will either observe the old
2109          * page blocking on the page lock, block on the page table
2110          * lock or observe the new page. The SetPageUptodate on the
2111          * new page and page_add_new_anon_rmap guarantee the copy is
2112          * visible before the pagetable update.
2113          */
2114         page_add_anon_rmap(new_page, vma, start, true);
2115         /*
2116          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2117          * has already been flushed globally.  So no TLB can be currently
2118          * caching this non present pmd mapping.  There's no need to clear the
2119          * pmd before doing set_pmd_at(), nor to flush the TLB after
2120          * set_pmd_at().  Clearing the pmd here would introduce a race
2121          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2122          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2123          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2124          * pmd.
2125          */
2126         set_pmd_at(mm, start, pmd, entry);
2127         update_mmu_cache_pmd(vma, address, &entry);
2128
2129         page_ref_unfreeze(page, 2);
2130         mlock_migrate_page(new_page, page);
2131         page_remove_rmap(page, true);
2132         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2133
2134         spin_unlock(ptl);
2135
2136         /* Take an "isolate" reference and put new page on the LRU. */
2137         get_page(new_page);
2138         putback_lru_page(new_page);
2139
2140         unlock_page(new_page);
2141         unlock_page(page);
2142         put_page(page);                 /* Drop the rmap reference */
2143         put_page(page);                 /* Drop the LRU isolation reference */
2144
2145         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2146         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2147
2148         mod_node_page_state(page_pgdat(page),
2149                         NR_ISOLATED_ANON + page_lru,
2150                         -HPAGE_PMD_NR);
2151         return isolated;
2152
2153 out_fail:
2154         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2155         ptl = pmd_lock(mm, pmd);
2156         if (pmd_same(*pmd, entry)) {
2157                 entry = pmd_modify(entry, vma->vm_page_prot);
2158                 set_pmd_at(mm, start, pmd, entry);
2159                 update_mmu_cache_pmd(vma, address, &entry);
2160         }
2161         spin_unlock(ptl);
2162
2163 out_unlock:
2164         unlock_page(page);
2165         put_page(page);
2166         return 0;
2167 }
2168 #endif /* CONFIG_NUMA_BALANCING */
2169
2170 #endif /* CONFIG_NUMA */
2171
2172 #ifdef CONFIG_DEVICE_PRIVATE
2173 static int migrate_vma_collect_hole(unsigned long start,
2174                                     unsigned long end,
2175                                     __always_unused int depth,
2176                                     struct mm_walk *walk)
2177 {
2178         struct migrate_vma *migrate = walk->private;
2179         unsigned long addr;
2180
2181         for (addr = start; addr < end; addr += PAGE_SIZE) {
2182                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2183                 migrate->dst[migrate->npages] = 0;
2184                 migrate->npages++;
2185                 migrate->cpages++;
2186         }
2187
2188         return 0;
2189 }
2190
2191 static int migrate_vma_collect_skip(unsigned long start,
2192                                     unsigned long end,
2193                                     struct mm_walk *walk)
2194 {
2195         struct migrate_vma *migrate = walk->private;
2196         unsigned long addr;
2197
2198         for (addr = start; addr < end; addr += PAGE_SIZE) {
2199                 migrate->dst[migrate->npages] = 0;
2200                 migrate->src[migrate->npages++] = 0;
2201         }
2202
2203         return 0;
2204 }
2205
2206 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2207                                    unsigned long start,
2208                                    unsigned long end,
2209                                    struct mm_walk *walk)
2210 {
2211         struct migrate_vma *migrate = walk->private;
2212         struct vm_area_struct *vma = walk->vma;
2213         struct mm_struct *mm = vma->vm_mm;
2214         unsigned long addr = start, unmapped = 0;
2215         spinlock_t *ptl;
2216         pte_t *ptep;
2217
2218 again:
2219         if (pmd_none(*pmdp))
2220                 return migrate_vma_collect_hole(start, end, -1, walk);
2221
2222         if (pmd_trans_huge(*pmdp)) {
2223                 struct page *page;
2224
2225                 ptl = pmd_lock(mm, pmdp);
2226                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2227                         spin_unlock(ptl);
2228                         goto again;
2229                 }
2230
2231                 page = pmd_page(*pmdp);
2232                 if (is_huge_zero_page(page)) {
2233                         spin_unlock(ptl);
2234                         split_huge_pmd(vma, pmdp, addr);
2235                         if (pmd_trans_unstable(pmdp))
2236                                 return migrate_vma_collect_skip(start, end,
2237                                                                 walk);
2238                 } else {
2239                         int ret;
2240
2241                         get_page(page);
2242                         spin_unlock(ptl);
2243                         if (unlikely(!trylock_page(page)))
2244                                 return migrate_vma_collect_skip(start, end,
2245                                                                 walk);
2246                         ret = split_huge_page(page);
2247                         unlock_page(page);
2248                         put_page(page);
2249                         if (ret)
2250                                 return migrate_vma_collect_skip(start, end,
2251                                                                 walk);
2252                         if (pmd_none(*pmdp))
2253                                 return migrate_vma_collect_hole(start, end, -1,
2254                                                                 walk);
2255                 }
2256         }
2257
2258         if (unlikely(pmd_bad(*pmdp)))
2259                 return migrate_vma_collect_skip(start, end, walk);
2260
2261         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2262         arch_enter_lazy_mmu_mode();
2263
2264         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2265                 unsigned long mpfn = 0, pfn;
2266                 struct page *page;
2267                 swp_entry_t entry;
2268                 pte_t pte;
2269
2270                 pte = *ptep;
2271
2272                 if (pte_none(pte)) {
2273                         mpfn = MIGRATE_PFN_MIGRATE;
2274                         migrate->cpages++;
2275                         goto next;
2276                 }
2277
2278                 if (!pte_present(pte)) {
2279                         /*
2280                          * Only care about unaddressable device page special
2281                          * page table entry. Other special swap entries are not
2282                          * migratable, and we ignore regular swapped page.
2283                          */
2284                         entry = pte_to_swp_entry(pte);
2285                         if (!is_device_private_entry(entry))
2286                                 goto next;
2287
2288                         page = device_private_entry_to_page(entry);
2289                         if (page->pgmap->owner != migrate->src_owner)
2290                                 goto next;
2291
2292                         mpfn = migrate_pfn(page_to_pfn(page)) |
2293                                         MIGRATE_PFN_MIGRATE;
2294                         if (is_write_device_private_entry(entry))
2295                                 mpfn |= MIGRATE_PFN_WRITE;
2296                 } else {
2297                         if (migrate->src_owner)
2298                                 goto next;
2299                         pfn = pte_pfn(pte);
2300                         if (is_zero_pfn(pfn)) {
2301                                 mpfn = MIGRATE_PFN_MIGRATE;
2302                                 migrate->cpages++;
2303                                 goto next;
2304                         }
2305                         page = vm_normal_page(migrate->vma, addr, pte);
2306                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2307                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2308                 }
2309
2310                 /* FIXME support THP */
2311                 if (!page || !page->mapping || PageTransCompound(page)) {
2312                         mpfn = 0;
2313                         goto next;
2314                 }
2315
2316                 /*
2317                  * By getting a reference on the page we pin it and that blocks
2318                  * any kind of migration. Side effect is that it "freezes" the
2319                  * pte.
2320                  *
2321                  * We drop this reference after isolating the page from the lru
2322                  * for non device page (device page are not on the lru and thus
2323                  * can't be dropped from it).
2324                  */
2325                 get_page(page);
2326                 migrate->cpages++;
2327
2328                 /*
2329                  * Optimize for the common case where page is only mapped once
2330                  * in one process. If we can lock the page, then we can safely
2331                  * set up a special migration page table entry now.
2332                  */
2333                 if (trylock_page(page)) {
2334                         pte_t swp_pte;
2335
2336                         mpfn |= MIGRATE_PFN_LOCKED;
2337                         ptep_get_and_clear(mm, addr, ptep);
2338
2339                         /* Setup special migration page table entry */
2340                         entry = make_migration_entry(page, mpfn &
2341                                                      MIGRATE_PFN_WRITE);
2342                         swp_pte = swp_entry_to_pte(entry);
2343                         if (pte_soft_dirty(pte))
2344                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2345                         if (pte_uffd_wp(pte))
2346                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2347                         set_pte_at(mm, addr, ptep, swp_pte);
2348
2349                         /*
2350                          * This is like regular unmap: we remove the rmap and
2351                          * drop page refcount. Page won't be freed, as we took
2352                          * a reference just above.
2353                          */
2354                         page_remove_rmap(page, false);
2355                         put_page(page);
2356
2357                         if (pte_present(pte))
2358                                 unmapped++;
2359                 }
2360
2361 next:
2362                 migrate->dst[migrate->npages] = 0;
2363                 migrate->src[migrate->npages++] = mpfn;
2364         }
2365         arch_leave_lazy_mmu_mode();
2366         pte_unmap_unlock(ptep - 1, ptl);
2367
2368         /* Only flush the TLB if we actually modified any entries */
2369         if (unmapped)
2370                 flush_tlb_range(walk->vma, start, end);
2371
2372         return 0;
2373 }
2374
2375 static const struct mm_walk_ops migrate_vma_walk_ops = {
2376         .pmd_entry              = migrate_vma_collect_pmd,
2377         .pte_hole               = migrate_vma_collect_hole,
2378 };
2379
2380 /*
2381  * migrate_vma_collect() - collect pages over a range of virtual addresses
2382  * @migrate: migrate struct containing all migration information
2383  *
2384  * This will walk the CPU page table. For each virtual address backed by a
2385  * valid page, it updates the src array and takes a reference on the page, in
2386  * order to pin the page until we lock it and unmap it.
2387  */
2388 static void migrate_vma_collect(struct migrate_vma *migrate)
2389 {
2390         struct mmu_notifier_range range;
2391
2392         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2393                         migrate->vma->vm_mm, migrate->start, migrate->end);
2394         mmu_notifier_invalidate_range_start(&range);
2395
2396         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2397                         &migrate_vma_walk_ops, migrate);
2398
2399         mmu_notifier_invalidate_range_end(&range);
2400         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2401 }
2402
2403 /*
2404  * migrate_vma_check_page() - check if page is pinned or not
2405  * @page: struct page to check
2406  *
2407  * Pinned pages cannot be migrated. This is the same test as in
2408  * migrate_page_move_mapping(), except that here we allow migration of a
2409  * ZONE_DEVICE page.
2410  */
2411 static bool migrate_vma_check_page(struct page *page)
2412 {
2413         /*
2414          * One extra ref because caller holds an extra reference, either from
2415          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2416          * a device page.
2417          */
2418         int extra = 1;
2419
2420         /*
2421          * FIXME support THP (transparent huge page), it is bit more complex to
2422          * check them than regular pages, because they can be mapped with a pmd
2423          * or with a pte (split pte mapping).
2424          */
2425         if (PageCompound(page))
2426                 return false;
2427
2428         /* Page from ZONE_DEVICE have one extra reference */
2429         if (is_zone_device_page(page)) {
2430                 /*
2431                  * Private page can never be pin as they have no valid pte and
2432                  * GUP will fail for those. Yet if there is a pending migration
2433                  * a thread might try to wait on the pte migration entry and
2434                  * will bump the page reference count. Sadly there is no way to
2435                  * differentiate a regular pin from migration wait. Hence to
2436                  * avoid 2 racing thread trying to migrate back to CPU to enter
2437                  * infinite loop (one stoping migration because the other is
2438                  * waiting on pte migration entry). We always return true here.
2439                  *
2440                  * FIXME proper solution is to rework migration_entry_wait() so
2441                  * it does not need to take a reference on page.
2442                  */
2443                 return is_device_private_page(page);
2444         }
2445
2446         /* For file back page */
2447         if (page_mapping(page))
2448                 extra += 1 + page_has_private(page);
2449
2450         if ((page_count(page) - extra) > page_mapcount(page))
2451                 return false;
2452
2453         return true;
2454 }
2455
2456 /*
2457  * migrate_vma_prepare() - lock pages and isolate them from the lru
2458  * @migrate: migrate struct containing all migration information
2459  *
2460  * This locks pages that have been collected by migrate_vma_collect(). Once each
2461  * page is locked it is isolated from the lru (for non-device pages). Finally,
2462  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463  * migrated by concurrent kernel threads.
2464  */
2465 static void migrate_vma_prepare(struct migrate_vma *migrate)
2466 {
2467         const unsigned long npages = migrate->npages;
2468         const unsigned long start = migrate->start;
2469         unsigned long addr, i, restore = 0;
2470         bool allow_drain = true;
2471
2472         lru_add_drain();
2473
2474         for (i = 0; (i < npages) && migrate->cpages; i++) {
2475                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476                 bool remap = true;
2477
2478                 if (!page)
2479                         continue;
2480
2481                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2482                         /*
2483                          * Because we are migrating several pages there can be
2484                          * a deadlock between 2 concurrent migration where each
2485                          * are waiting on each other page lock.
2486                          *
2487                          * Make migrate_vma() a best effort thing and backoff
2488                          * for any page we can not lock right away.
2489                          */
2490                         if (!trylock_page(page)) {
2491                                 migrate->src[i] = 0;
2492                                 migrate->cpages--;
2493                                 put_page(page);
2494                                 continue;
2495                         }
2496                         remap = false;
2497                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2498                 }
2499
2500                 /* ZONE_DEVICE pages are not on LRU */
2501                 if (!is_zone_device_page(page)) {
2502                         if (!PageLRU(page) && allow_drain) {
2503                                 /* Drain CPU's pagevec */
2504                                 lru_add_drain_all();
2505                                 allow_drain = false;
2506                         }
2507
2508                         if (isolate_lru_page(page)) {
2509                                 if (remap) {
2510                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511                                         migrate->cpages--;
2512                                         restore++;
2513                                 } else {
2514                                         migrate->src[i] = 0;
2515                                         unlock_page(page);
2516                                         migrate->cpages--;
2517                                         put_page(page);
2518                                 }
2519                                 continue;
2520                         }
2521
2522                         /* Drop the reference we took in collect */
2523                         put_page(page);
2524                 }
2525
2526                 if (!migrate_vma_check_page(page)) {
2527                         if (remap) {
2528                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529                                 migrate->cpages--;
2530                                 restore++;
2531
2532                                 if (!is_zone_device_page(page)) {
2533                                         get_page(page);
2534                                         putback_lru_page(page);
2535                                 }
2536                         } else {
2537                                 migrate->src[i] = 0;
2538                                 unlock_page(page);
2539                                 migrate->cpages--;
2540
2541                                 if (!is_zone_device_page(page))
2542                                         putback_lru_page(page);
2543                                 else
2544                                         put_page(page);
2545                         }
2546                 }
2547         }
2548
2549         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2550                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551
2552                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553                         continue;
2554
2555                 remove_migration_pte(page, migrate->vma, addr, page);
2556
2557                 migrate->src[i] = 0;
2558                 unlock_page(page);
2559                 put_page(page);
2560                 restore--;
2561         }
2562 }
2563
2564 /*
2565  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566  * @migrate: migrate struct containing all migration information
2567  *
2568  * Replace page mapping (CPU page table pte) with a special migration pte entry
2569  * and check again if it has been pinned. Pinned pages are restored because we
2570  * cannot migrate them.
2571  *
2572  * This is the last step before we call the device driver callback to allocate
2573  * destination memory and copy contents of original page over to new page.
2574  */
2575 static void migrate_vma_unmap(struct migrate_vma *migrate)
2576 {
2577         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2578         const unsigned long npages = migrate->npages;
2579         const unsigned long start = migrate->start;
2580         unsigned long addr, i, restore = 0;
2581
2582         for (i = 0; i < npages; i++) {
2583                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586                         continue;
2587
2588                 if (page_mapped(page)) {
2589                         try_to_unmap(page, flags);
2590                         if (page_mapped(page))
2591                                 goto restore;
2592                 }
2593
2594                 if (migrate_vma_check_page(page))
2595                         continue;
2596
2597 restore:
2598                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2599                 migrate->cpages--;
2600                 restore++;
2601         }
2602
2603         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2604                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605
2606                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2607                         continue;
2608
2609                 remove_migration_ptes(page, page, false);
2610
2611                 migrate->src[i] = 0;
2612                 unlock_page(page);
2613                 restore--;
2614
2615                 if (is_zone_device_page(page))
2616                         put_page(page);
2617                 else
2618                         putback_lru_page(page);
2619         }
2620 }
2621
2622 /**
2623  * migrate_vma_setup() - prepare to migrate a range of memory
2624  * @args: contains the vma, start, and and pfns arrays for the migration
2625  *
2626  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2627  * without an error.
2628  *
2629  * Prepare to migrate a range of memory virtual address range by collecting all
2630  * the pages backing each virtual address in the range, saving them inside the
2631  * src array.  Then lock those pages and unmap them. Once the pages are locked
2632  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2633  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2634  * corresponding src array entry.  Then restores any pages that are pinned, by
2635  * remapping and unlocking those pages.
2636  *
2637  * The caller should then allocate destination memory and copy source memory to
2638  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2639  * flag set).  Once these are allocated and copied, the caller must update each
2640  * corresponding entry in the dst array with the pfn value of the destination
2641  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2642  * (destination pages must have their struct pages locked, via lock_page()).
2643  *
2644  * Note that the caller does not have to migrate all the pages that are marked
2645  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2646  * device memory to system memory.  If the caller cannot migrate a device page
2647  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2648  * consequences for the userspace process, so it must be avoided if at all
2649  * possible.
2650  *
2651  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2652  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2653  * allowing the caller to allocate device memory for those unback virtual
2654  * address.  For this the caller simply has to allocate device memory and
2655  * properly set the destination entry like for regular migration.  Note that
2656  * this can still fails and thus inside the device driver must check if the
2657  * migration was successful for those entries after calling migrate_vma_pages()
2658  * just like for regular migration.
2659  *
2660  * After that, the callers must call migrate_vma_pages() to go over each entry
2661  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2662  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2663  * then migrate_vma_pages() to migrate struct page information from the source
2664  * struct page to the destination struct page.  If it fails to migrate the
2665  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2666  * src array.
2667  *
2668  * At this point all successfully migrated pages have an entry in the src
2669  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2670  * array entry with MIGRATE_PFN_VALID flag set.
2671  *
2672  * Once migrate_vma_pages() returns the caller may inspect which pages were
2673  * successfully migrated, and which were not.  Successfully migrated pages will
2674  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2675  *
2676  * It is safe to update device page table after migrate_vma_pages() because
2677  * both destination and source page are still locked, and the mmap_sem is held
2678  * in read mode (hence no one can unmap the range being migrated).
2679  *
2680  * Once the caller is done cleaning up things and updating its page table (if it
2681  * chose to do so, this is not an obligation) it finally calls
2682  * migrate_vma_finalize() to update the CPU page table to point to new pages
2683  * for successfully migrated pages or otherwise restore the CPU page table to
2684  * point to the original source pages.
2685  */
2686 int migrate_vma_setup(struct migrate_vma *args)
2687 {
2688         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2689
2690         args->start &= PAGE_MASK;
2691         args->end &= PAGE_MASK;
2692         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2693             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2694                 return -EINVAL;
2695         if (nr_pages <= 0)
2696                 return -EINVAL;
2697         if (args->start < args->vma->vm_start ||
2698             args->start >= args->vma->vm_end)
2699                 return -EINVAL;
2700         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2701                 return -EINVAL;
2702         if (!args->src || !args->dst)
2703                 return -EINVAL;
2704
2705         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2706         args->cpages = 0;
2707         args->npages = 0;
2708
2709         migrate_vma_collect(args);
2710
2711         if (args->cpages)
2712                 migrate_vma_prepare(args);
2713         if (args->cpages)
2714                 migrate_vma_unmap(args);
2715
2716         /*
2717          * At this point pages are locked and unmapped, and thus they have
2718          * stable content and can safely be copied to destination memory that
2719          * is allocated by the drivers.
2720          */
2721         return 0;
2722
2723 }
2724 EXPORT_SYMBOL(migrate_vma_setup);
2725
2726 /*
2727  * This code closely matches the code in:
2728  *   __handle_mm_fault()
2729  *     handle_pte_fault()
2730  *       do_anonymous_page()
2731  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2732  * private page.
2733  */
2734 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2735                                     unsigned long addr,
2736                                     struct page *page,
2737                                     unsigned long *src,
2738                                     unsigned long *dst)
2739 {
2740         struct vm_area_struct *vma = migrate->vma;
2741         struct mm_struct *mm = vma->vm_mm;
2742         struct mem_cgroup *memcg;
2743         bool flush = false;
2744         spinlock_t *ptl;
2745         pte_t entry;
2746         pgd_t *pgdp;
2747         p4d_t *p4dp;
2748         pud_t *pudp;
2749         pmd_t *pmdp;
2750         pte_t *ptep;
2751
2752         /* Only allow populating anonymous memory */
2753         if (!vma_is_anonymous(vma))
2754                 goto abort;
2755
2756         pgdp = pgd_offset(mm, addr);
2757         p4dp = p4d_alloc(mm, pgdp, addr);
2758         if (!p4dp)
2759                 goto abort;
2760         pudp = pud_alloc(mm, p4dp, addr);
2761         if (!pudp)
2762                 goto abort;
2763         pmdp = pmd_alloc(mm, pudp, addr);
2764         if (!pmdp)
2765                 goto abort;
2766
2767         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2768                 goto abort;
2769
2770         /*
2771          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2772          * pte_offset_map() on pmds where a huge pmd might be created
2773          * from a different thread.
2774          *
2775          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2776          * parallel threads are excluded by other means.
2777          *
2778          * Here we only have down_read(mmap_sem).
2779          */
2780         if (pte_alloc(mm, pmdp))
2781                 goto abort;
2782
2783         /* See the comment in pte_alloc_one_map() */
2784         if (unlikely(pmd_trans_unstable(pmdp)))
2785                 goto abort;
2786
2787         if (unlikely(anon_vma_prepare(vma)))
2788                 goto abort;
2789         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2790                 goto abort;
2791
2792         /*
2793          * The memory barrier inside __SetPageUptodate makes sure that
2794          * preceding stores to the page contents become visible before
2795          * the set_pte_at() write.
2796          */
2797         __SetPageUptodate(page);
2798
2799         if (is_zone_device_page(page)) {
2800                 if (is_device_private_page(page)) {
2801                         swp_entry_t swp_entry;
2802
2803                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2804                         entry = swp_entry_to_pte(swp_entry);
2805                 }
2806         } else {
2807                 entry = mk_pte(page, vma->vm_page_prot);
2808                 if (vma->vm_flags & VM_WRITE)
2809                         entry = pte_mkwrite(pte_mkdirty(entry));
2810         }
2811
2812         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2813
2814         if (check_stable_address_space(mm))
2815                 goto unlock_abort;
2816
2817         if (pte_present(*ptep)) {
2818                 unsigned long pfn = pte_pfn(*ptep);
2819
2820                 if (!is_zero_pfn(pfn))
2821                         goto unlock_abort;
2822                 flush = true;
2823         } else if (!pte_none(*ptep))
2824                 goto unlock_abort;
2825
2826         /*
2827          * Check for userfaultfd but do not deliver the fault. Instead,
2828          * just back off.
2829          */
2830         if (userfaultfd_missing(vma))
2831                 goto unlock_abort;
2832
2833         inc_mm_counter(mm, MM_ANONPAGES);
2834         page_add_new_anon_rmap(page, vma, addr, false);
2835         mem_cgroup_commit_charge(page, memcg, false, false);
2836         if (!is_zone_device_page(page))
2837                 lru_cache_add_active_or_unevictable(page, vma);
2838         get_page(page);
2839
2840         if (flush) {
2841                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2842                 ptep_clear_flush_notify(vma, addr, ptep);
2843                 set_pte_at_notify(mm, addr, ptep, entry);
2844                 update_mmu_cache(vma, addr, ptep);
2845         } else {
2846                 /* No need to invalidate - it was non-present before */
2847                 set_pte_at(mm, addr, ptep, entry);
2848                 update_mmu_cache(vma, addr, ptep);
2849         }
2850
2851         pte_unmap_unlock(ptep, ptl);
2852         *src = MIGRATE_PFN_MIGRATE;
2853         return;
2854
2855 unlock_abort:
2856         pte_unmap_unlock(ptep, ptl);
2857         mem_cgroup_cancel_charge(page, memcg, false);
2858 abort:
2859         *src &= ~MIGRATE_PFN_MIGRATE;
2860 }
2861
2862 /**
2863  * migrate_vma_pages() - migrate meta-data from src page to dst page
2864  * @migrate: migrate struct containing all migration information
2865  *
2866  * This migrates struct page meta-data from source struct page to destination
2867  * struct page. This effectively finishes the migration from source page to the
2868  * destination page.
2869  */
2870 void migrate_vma_pages(struct migrate_vma *migrate)
2871 {
2872         const unsigned long npages = migrate->npages;
2873         const unsigned long start = migrate->start;
2874         struct mmu_notifier_range range;
2875         unsigned long addr, i;
2876         bool notified = false;
2877
2878         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2879                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2880                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2881                 struct address_space *mapping;
2882                 int r;
2883
2884                 if (!newpage) {
2885                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2886                         continue;
2887                 }
2888
2889                 if (!page) {
2890                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2891                                 continue;
2892                         if (!notified) {
2893                                 notified = true;
2894
2895                                 mmu_notifier_range_init(&range,
2896                                                         MMU_NOTIFY_CLEAR, 0,
2897                                                         NULL,
2898                                                         migrate->vma->vm_mm,
2899                                                         addr, migrate->end);
2900                                 mmu_notifier_invalidate_range_start(&range);
2901                         }
2902                         migrate_vma_insert_page(migrate, addr, newpage,
2903                                                 &migrate->src[i],
2904                                                 &migrate->dst[i]);
2905                         continue;
2906                 }
2907
2908                 mapping = page_mapping(page);
2909
2910                 if (is_zone_device_page(newpage)) {
2911                         if (is_device_private_page(newpage)) {
2912                                 /*
2913                                  * For now only support private anonymous when
2914                                  * migrating to un-addressable device memory.
2915                                  */
2916                                 if (mapping) {
2917                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918                                         continue;
2919                                 }
2920                         } else {
2921                                 /*
2922                                  * Other types of ZONE_DEVICE page are not
2923                                  * supported.
2924                                  */
2925                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2926                                 continue;
2927                         }
2928                 }
2929
2930                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2931                 if (r != MIGRATEPAGE_SUCCESS)
2932                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2933         }
2934
2935         /*
2936          * No need to double call mmu_notifier->invalidate_range() callback as
2937          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2938          * did already call it.
2939          */
2940         if (notified)
2941                 mmu_notifier_invalidate_range_only_end(&range);
2942 }
2943 EXPORT_SYMBOL(migrate_vma_pages);
2944
2945 /**
2946  * migrate_vma_finalize() - restore CPU page table entry
2947  * @migrate: migrate struct containing all migration information
2948  *
2949  * This replaces the special migration pte entry with either a mapping to the
2950  * new page if migration was successful for that page, or to the original page
2951  * otherwise.
2952  *
2953  * This also unlocks the pages and puts them back on the lru, or drops the extra
2954  * refcount, for device pages.
2955  */
2956 void migrate_vma_finalize(struct migrate_vma *migrate)
2957 {
2958         const unsigned long npages = migrate->npages;
2959         unsigned long i;
2960
2961         for (i = 0; i < npages; i++) {
2962                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2963                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2964
2965                 if (!page) {
2966                         if (newpage) {
2967                                 unlock_page(newpage);
2968                                 put_page(newpage);
2969                         }
2970                         continue;
2971                 }
2972
2973                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2974                         if (newpage) {
2975                                 unlock_page(newpage);
2976                                 put_page(newpage);
2977                         }
2978                         newpage = page;
2979                 }
2980
2981                 remove_migration_ptes(page, newpage, false);
2982                 unlock_page(page);
2983                 migrate->cpages--;
2984
2985                 if (is_zone_device_page(page))
2986                         put_page(page);
2987                 else
2988                         putback_lru_page(page);
2989
2990                 if (newpage != page) {
2991                         unlock_page(newpage);
2992                         if (is_zone_device_page(newpage))
2993                                 put_page(newpage);
2994                         else
2995                                 putback_lru_page(newpage);
2996                 }
2997         }
2998 }
2999 EXPORT_SYMBOL(migrate_vma_finalize);
3000 #endif /* CONFIG_DEVICE_PRIVATE */