perf evlist: Add a method to return the list of evsels as a string
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79         lru_add_drain();
80 }
81
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84         struct address_space *mapping;
85
86         /*
87          * Avoid burning cycles with pages that are yet under __free_pages(),
88          * or just got freed under us.
89          *
90          * In case we 'win' a race for a movable page being freed under us and
91          * raise its refcount preventing __free_pages() from doing its job
92          * the put_page() at the end of this block will take care of
93          * release this page, thus avoiding a nasty leakage.
94          */
95         if (unlikely(!get_page_unless_zero(page)))
96                 goto out;
97
98         /*
99          * Check PageMovable before holding a PG_lock because page's owner
100          * assumes anybody doesn't touch PG_lock of newly allocated page
101          * so unconditionally grabbing the lock ruins page's owner side.
102          */
103         if (unlikely(!__PageMovable(page)))
104                 goto out_putpage;
105         /*
106          * As movable pages are not isolated from LRU lists, concurrent
107          * compaction threads can race against page migration functions
108          * as well as race against the releasing a page.
109          *
110          * In order to avoid having an already isolated movable page
111          * being (wrongly) re-isolated while it is under migration,
112          * or to avoid attempting to isolate pages being released,
113          * lets be sure we have the page lock
114          * before proceeding with the movable page isolation steps.
115          */
116         if (unlikely(!trylock_page(page)))
117                 goto out_putpage;
118
119         if (!PageMovable(page) || PageIsolated(page))
120                 goto out_no_isolated;
121
122         mapping = page_mapping(page);
123         VM_BUG_ON_PAGE(!mapping, page);
124
125         if (!mapping->a_ops->isolate_page(page, mode))
126                 goto out_no_isolated;
127
128         /* Driver shouldn't use PG_isolated bit of page->flags */
129         WARN_ON_ONCE(PageIsolated(page));
130         __SetPageIsolated(page);
131         unlock_page(page);
132
133         return 0;
134
135 out_no_isolated:
136         unlock_page(page);
137 out_putpage:
138         put_page(page);
139 out:
140         return -EBUSY;
141 }
142
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146         struct address_space *mapping;
147
148         VM_BUG_ON_PAGE(!PageLocked(page), page);
149         VM_BUG_ON_PAGE(!PageMovable(page), page);
150         VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152         mapping = page_mapping(page);
153         mapping->a_ops->putback_page(page);
154         __ClearPageIsolated(page);
155 }
156
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167         struct page *page;
168         struct page *page2;
169
170         list_for_each_entry_safe(page, page2, l, lru) {
171                 if (unlikely(PageHuge(page))) {
172                         putback_active_hugepage(page);
173                         continue;
174                 }
175                 list_del(&page->lru);
176                 /*
177                  * We isolated non-lru movable page so here we can use
178                  * __PageMovable because LRU page's mapping cannot have
179                  * PAGE_MAPPING_MOVABLE.
180                  */
181                 if (unlikely(__PageMovable(page))) {
182                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
183                         lock_page(page);
184                         if (PageMovable(page))
185                                 putback_movable_page(page);
186                         else
187                                 __ClearPageIsolated(page);
188                         unlock_page(page);
189                         put_page(page);
190                 } else {
191                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192                                         page_is_file_lru(page), -thp_nr_pages(page));
193                         putback_lru_page(page);
194                 }
195         }
196 }
197
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202                                  unsigned long addr, void *old)
203 {
204         struct page_vma_mapped_walk pvmw = {
205                 .page = old,
206                 .vma = vma,
207                 .address = addr,
208                 .flags = PVMW_SYNC | PVMW_MIGRATION,
209         };
210         struct page *new;
211         pte_t pte;
212         swp_entry_t entry;
213
214         VM_BUG_ON_PAGE(PageTail(page), page);
215         while (page_vma_mapped_walk(&pvmw)) {
216                 if (PageKsm(page))
217                         new = page;
218                 else
219                         new = page - pvmw.page->index +
220                                 linear_page_index(vma, pvmw.address);
221
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223                 /* PMD-mapped THP migration entry */
224                 if (!pvmw.pte) {
225                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226                         remove_migration_pmd(&pvmw, new);
227                         continue;
228                 }
229 #endif
230
231                 get_page(new);
232                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233                 if (pte_swp_soft_dirty(*pvmw.pte))
234                         pte = pte_mksoft_dirty(pte);
235
236                 /*
237                  * Recheck VMA as permissions can change since migration started
238                  */
239                 entry = pte_to_swp_entry(*pvmw.pte);
240                 if (is_write_migration_entry(entry))
241                         pte = maybe_mkwrite(pte, vma);
242                 else if (pte_swp_uffd_wp(*pvmw.pte))
243                         pte = pte_mkuffd_wp(pte);
244
245                 if (unlikely(is_device_private_page(new))) {
246                         entry = make_device_private_entry(new, pte_write(pte));
247                         pte = swp_entry_to_pte(entry);
248                         if (pte_swp_soft_dirty(*pvmw.pte))
249                                 pte = pte_swp_mksoft_dirty(pte);
250                         if (pte_swp_uffd_wp(*pvmw.pte))
251                                 pte = pte_swp_mkuffd_wp(pte);
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once page cache replacement of page migration started, page_count
328          * is zero; but we must not call put_and_wait_on_page_locked() without
329          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330          */
331         if (!get_page_unless_zero(page))
332                 goto out;
333         pte_unmap_unlock(ptep, ptl);
334         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
335         return;
336 out:
337         pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341                                 unsigned long address)
342 {
343         spinlock_t *ptl = pte_lockptr(mm, pmd);
344         pte_t *ptep = pte_offset_map(pmd, address);
345         __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349                 struct mm_struct *mm, pte_t *pte)
350 {
351         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352         __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358         spinlock_t *ptl;
359         struct page *page;
360
361         ptl = pmd_lock(mm, pmd);
362         if (!is_pmd_migration_entry(*pmd))
363                 goto unlock;
364         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365         if (!get_page_unless_zero(page))
366                 goto unlock;
367         spin_unlock(ptl);
368         put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
369         return;
370 unlock:
371         spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377         int expected_count = 1;
378
379         /*
380          * Device private pages have an extra refcount as they are
381          * ZONE_DEVICE pages.
382          */
383         expected_count += is_device_private_page(page);
384         if (mapping)
385                 expected_count += thp_nr_pages(page) + page_has_private(page);
386
387         return expected_count;
388 }
389
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399                 struct page *newpage, struct page *page, int extra_count)
400 {
401         XA_STATE(xas, &mapping->i_pages, page_index(page));
402         struct zone *oldzone, *newzone;
403         int dirty;
404         int expected_count = expected_page_refs(mapping, page) + extra_count;
405         int nr = thp_nr_pages(page);
406
407         if (!mapping) {
408                 /* Anonymous page without mapping */
409                 if (page_count(page) != expected_count)
410                         return -EAGAIN;
411
412                 /* No turning back from here */
413                 newpage->index = page->index;
414                 newpage->mapping = page->mapping;
415                 if (PageSwapBacked(page))
416                         __SetPageSwapBacked(newpage);
417
418                 return MIGRATEPAGE_SUCCESS;
419         }
420
421         oldzone = page_zone(page);
422         newzone = page_zone(newpage);
423
424         xas_lock_irq(&xas);
425         if (page_count(page) != expected_count || xas_load(&xas) != page) {
426                 xas_unlock_irq(&xas);
427                 return -EAGAIN;
428         }
429
430         if (!page_ref_freeze(page, expected_count)) {
431                 xas_unlock_irq(&xas);
432                 return -EAGAIN;
433         }
434
435         /*
436          * Now we know that no one else is looking at the page:
437          * no turning back from here.
438          */
439         newpage->index = page->index;
440         newpage->mapping = page->mapping;
441         page_ref_add(newpage, nr); /* add cache reference */
442         if (PageSwapBacked(page)) {
443                 __SetPageSwapBacked(newpage);
444                 if (PageSwapCache(page)) {
445                         SetPageSwapCache(newpage);
446                         set_page_private(newpage, page_private(page));
447                 }
448         } else {
449                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
450         }
451
452         /* Move dirty while page refs frozen and newpage not yet exposed */
453         dirty = PageDirty(page);
454         if (dirty) {
455                 ClearPageDirty(page);
456                 SetPageDirty(newpage);
457         }
458
459         xas_store(&xas, newpage);
460         if (PageTransHuge(page)) {
461                 int i;
462
463                 for (i = 1; i < nr; i++) {
464                         xas_next(&xas);
465                         xas_store(&xas, newpage);
466                 }
467         }
468
469         /*
470          * Drop cache reference from old page by unfreezing
471          * to one less reference.
472          * We know this isn't the last reference.
473          */
474         page_ref_unfreeze(page, expected_count - nr);
475
476         xas_unlock(&xas);
477         /* Leave irq disabled to prevent preemption while updating stats */
478
479         /*
480          * If moved to a different zone then also account
481          * the page for that zone. Other VM counters will be
482          * taken care of when we establish references to the
483          * new page and drop references to the old page.
484          *
485          * Note that anonymous pages are accounted for
486          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487          * are mapped to swap space.
488          */
489         if (newzone != oldzone) {
490                 struct lruvec *old_lruvec, *new_lruvec;
491                 struct mem_cgroup *memcg;
492
493                 memcg = page_memcg(page);
494                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496
497                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
500                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
502                 }
503 #ifdef CONFIG_SWAP
504                 if (PageSwapCache(page)) {
505                         __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
506                         __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
507                 }
508 #endif
509                 if (dirty && mapping_can_writeback(mapping)) {
510                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
511                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
512                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
513                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
514                 }
515         }
516         local_irq_enable();
517
518         return MIGRATEPAGE_SUCCESS;
519 }
520 EXPORT_SYMBOL(migrate_page_move_mapping);
521
522 /*
523  * The expected number of remaining references is the same as that
524  * of migrate_page_move_mapping().
525  */
526 int migrate_huge_page_move_mapping(struct address_space *mapping,
527                                    struct page *newpage, struct page *page)
528 {
529         XA_STATE(xas, &mapping->i_pages, page_index(page));
530         int expected_count;
531
532         xas_lock_irq(&xas);
533         expected_count = 2 + page_has_private(page);
534         if (page_count(page) != expected_count || xas_load(&xas) != page) {
535                 xas_unlock_irq(&xas);
536                 return -EAGAIN;
537         }
538
539         if (!page_ref_freeze(page, expected_count)) {
540                 xas_unlock_irq(&xas);
541                 return -EAGAIN;
542         }
543
544         newpage->index = page->index;
545         newpage->mapping = page->mapping;
546
547         get_page(newpage);
548
549         xas_store(&xas, newpage);
550
551         page_ref_unfreeze(page, expected_count - 1);
552
553         xas_unlock_irq(&xas);
554
555         return MIGRATEPAGE_SUCCESS;
556 }
557
558 /*
559  * Gigantic pages are so large that we do not guarantee that page++ pointer
560  * arithmetic will work across the entire page.  We need something more
561  * specialized.
562  */
563 static void __copy_gigantic_page(struct page *dst, struct page *src,
564                                 int nr_pages)
565 {
566         int i;
567         struct page *dst_base = dst;
568         struct page *src_base = src;
569
570         for (i = 0; i < nr_pages; ) {
571                 cond_resched();
572                 copy_highpage(dst, src);
573
574                 i++;
575                 dst = mem_map_next(dst, dst_base, i);
576                 src = mem_map_next(src, src_base, i);
577         }
578 }
579
580 static void copy_huge_page(struct page *dst, struct page *src)
581 {
582         int i;
583         int nr_pages;
584
585         if (PageHuge(src)) {
586                 /* hugetlbfs page */
587                 struct hstate *h = page_hstate(src);
588                 nr_pages = pages_per_huge_page(h);
589
590                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
591                         __copy_gigantic_page(dst, src, nr_pages);
592                         return;
593                 }
594         } else {
595                 /* thp page */
596                 BUG_ON(!PageTransHuge(src));
597                 nr_pages = thp_nr_pages(src);
598         }
599
600         for (i = 0; i < nr_pages; i++) {
601                 cond_resched();
602                 copy_highpage(dst + i, src + i);
603         }
604 }
605
606 /*
607  * Copy the page to its new location
608  */
609 void migrate_page_states(struct page *newpage, struct page *page)
610 {
611         int cpupid;
612
613         if (PageError(page))
614                 SetPageError(newpage);
615         if (PageReferenced(page))
616                 SetPageReferenced(newpage);
617         if (PageUptodate(page))
618                 SetPageUptodate(newpage);
619         if (TestClearPageActive(page)) {
620                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
621                 SetPageActive(newpage);
622         } else if (TestClearPageUnevictable(page))
623                 SetPageUnevictable(newpage);
624         if (PageWorkingset(page))
625                 SetPageWorkingset(newpage);
626         if (PageChecked(page))
627                 SetPageChecked(newpage);
628         if (PageMappedToDisk(page))
629                 SetPageMappedToDisk(newpage);
630
631         /* Move dirty on pages not done by migrate_page_move_mapping() */
632         if (PageDirty(page))
633                 SetPageDirty(newpage);
634
635         if (page_is_young(page))
636                 set_page_young(newpage);
637         if (page_is_idle(page))
638                 set_page_idle(newpage);
639
640         /*
641          * Copy NUMA information to the new page, to prevent over-eager
642          * future migrations of this same page.
643          */
644         cpupid = page_cpupid_xchg_last(page, -1);
645         page_cpupid_xchg_last(newpage, cpupid);
646
647         ksm_migrate_page(newpage, page);
648         /*
649          * Please do not reorder this without considering how mm/ksm.c's
650          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651          */
652         if (PageSwapCache(page))
653                 ClearPageSwapCache(page);
654         ClearPagePrivate(page);
655         set_page_private(page, 0);
656
657         /*
658          * If any waiters have accumulated on the new page then
659          * wake them up.
660          */
661         if (PageWriteback(newpage))
662                 end_page_writeback(newpage);
663
664         /*
665          * PG_readahead shares the same bit with PG_reclaim.  The above
666          * end_page_writeback() may clear PG_readahead mistakenly, so set the
667          * bit after that.
668          */
669         if (PageReadahead(page))
670                 SetPageReadahead(newpage);
671
672         copy_page_owner(page, newpage);
673
674         if (!PageHuge(page))
675                 mem_cgroup_migrate(page, newpage);
676 }
677 EXPORT_SYMBOL(migrate_page_states);
678
679 void migrate_page_copy(struct page *newpage, struct page *page)
680 {
681         if (PageHuge(page) || PageTransHuge(page))
682                 copy_huge_page(newpage, page);
683         else
684                 copy_highpage(newpage, page);
685
686         migrate_page_states(newpage, page);
687 }
688 EXPORT_SYMBOL(migrate_page_copy);
689
690 /************************************************************
691  *                    Migration functions
692  ***********************************************************/
693
694 /*
695  * Common logic to directly migrate a single LRU page suitable for
696  * pages that do not use PagePrivate/PagePrivate2.
697  *
698  * Pages are locked upon entry and exit.
699  */
700 int migrate_page(struct address_space *mapping,
701                 struct page *newpage, struct page *page,
702                 enum migrate_mode mode)
703 {
704         int rc;
705
706         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
707
708         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
709
710         if (rc != MIGRATEPAGE_SUCCESS)
711                 return rc;
712
713         if (mode != MIGRATE_SYNC_NO_COPY)
714                 migrate_page_copy(newpage, page);
715         else
716                 migrate_page_states(newpage, page);
717         return MIGRATEPAGE_SUCCESS;
718 }
719 EXPORT_SYMBOL(migrate_page);
720
721 #ifdef CONFIG_BLOCK
722 /* Returns true if all buffers are successfully locked */
723 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
724                                                         enum migrate_mode mode)
725 {
726         struct buffer_head *bh = head;
727
728         /* Simple case, sync compaction */
729         if (mode != MIGRATE_ASYNC) {
730                 do {
731                         lock_buffer(bh);
732                         bh = bh->b_this_page;
733
734                 } while (bh != head);
735
736                 return true;
737         }
738
739         /* async case, we cannot block on lock_buffer so use trylock_buffer */
740         do {
741                 if (!trylock_buffer(bh)) {
742                         /*
743                          * We failed to lock the buffer and cannot stall in
744                          * async migration. Release the taken locks
745                          */
746                         struct buffer_head *failed_bh = bh;
747                         bh = head;
748                         while (bh != failed_bh) {
749                                 unlock_buffer(bh);
750                                 bh = bh->b_this_page;
751                         }
752                         return false;
753                 }
754
755                 bh = bh->b_this_page;
756         } while (bh != head);
757         return true;
758 }
759
760 static int __buffer_migrate_page(struct address_space *mapping,
761                 struct page *newpage, struct page *page, enum migrate_mode mode,
762                 bool check_refs)
763 {
764         struct buffer_head *bh, *head;
765         int rc;
766         int expected_count;
767
768         if (!page_has_buffers(page))
769                 return migrate_page(mapping, newpage, page, mode);
770
771         /* Check whether page does not have extra refs before we do more work */
772         expected_count = expected_page_refs(mapping, page);
773         if (page_count(page) != expected_count)
774                 return -EAGAIN;
775
776         head = page_buffers(page);
777         if (!buffer_migrate_lock_buffers(head, mode))
778                 return -EAGAIN;
779
780         if (check_refs) {
781                 bool busy;
782                 bool invalidated = false;
783
784 recheck_buffers:
785                 busy = false;
786                 spin_lock(&mapping->private_lock);
787                 bh = head;
788                 do {
789                         if (atomic_read(&bh->b_count)) {
790                                 busy = true;
791                                 break;
792                         }
793                         bh = bh->b_this_page;
794                 } while (bh != head);
795                 if (busy) {
796                         if (invalidated) {
797                                 rc = -EAGAIN;
798                                 goto unlock_buffers;
799                         }
800                         spin_unlock(&mapping->private_lock);
801                         invalidate_bh_lrus();
802                         invalidated = true;
803                         goto recheck_buffers;
804                 }
805         }
806
807         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
808         if (rc != MIGRATEPAGE_SUCCESS)
809                 goto unlock_buffers;
810
811         attach_page_private(newpage, detach_page_private(page));
812
813         bh = head;
814         do {
815                 set_bh_page(bh, newpage, bh_offset(bh));
816                 bh = bh->b_this_page;
817
818         } while (bh != head);
819
820         if (mode != MIGRATE_SYNC_NO_COPY)
821                 migrate_page_copy(newpage, page);
822         else
823                 migrate_page_states(newpage, page);
824
825         rc = MIGRATEPAGE_SUCCESS;
826 unlock_buffers:
827         if (check_refs)
828                 spin_unlock(&mapping->private_lock);
829         bh = head;
830         do {
831                 unlock_buffer(bh);
832                 bh = bh->b_this_page;
833
834         } while (bh != head);
835
836         return rc;
837 }
838
839 /*
840  * Migration function for pages with buffers. This function can only be used
841  * if the underlying filesystem guarantees that no other references to "page"
842  * exist. For example attached buffer heads are accessed only under page lock.
843  */
844 int buffer_migrate_page(struct address_space *mapping,
845                 struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847         return __buffer_migrate_page(mapping, newpage, page, mode, false);
848 }
849 EXPORT_SYMBOL(buffer_migrate_page);
850
851 /*
852  * Same as above except that this variant is more careful and checks that there
853  * are also no buffer head references. This function is the right one for
854  * mappings where buffer heads are directly looked up and referenced (such as
855  * block device mappings).
856  */
857 int buffer_migrate_page_norefs(struct address_space *mapping,
858                 struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860         return __buffer_migrate_page(mapping, newpage, page, mode, true);
861 }
862 #endif
863
864 /*
865  * Writeback a page to clean the dirty state
866  */
867 static int writeout(struct address_space *mapping, struct page *page)
868 {
869         struct writeback_control wbc = {
870                 .sync_mode = WB_SYNC_NONE,
871                 .nr_to_write = 1,
872                 .range_start = 0,
873                 .range_end = LLONG_MAX,
874                 .for_reclaim = 1
875         };
876         int rc;
877
878         if (!mapping->a_ops->writepage)
879                 /* No write method for the address space */
880                 return -EINVAL;
881
882         if (!clear_page_dirty_for_io(page))
883                 /* Someone else already triggered a write */
884                 return -EAGAIN;
885
886         /*
887          * A dirty page may imply that the underlying filesystem has
888          * the page on some queue. So the page must be clean for
889          * migration. Writeout may mean we loose the lock and the
890          * page state is no longer what we checked for earlier.
891          * At this point we know that the migration attempt cannot
892          * be successful.
893          */
894         remove_migration_ptes(page, page, false);
895
896         rc = mapping->a_ops->writepage(page, &wbc);
897
898         if (rc != AOP_WRITEPAGE_ACTIVATE)
899                 /* unlocked. Relock */
900                 lock_page(page);
901
902         return (rc < 0) ? -EIO : -EAGAIN;
903 }
904
905 /*
906  * Default handling if a filesystem does not provide a migration function.
907  */
908 static int fallback_migrate_page(struct address_space *mapping,
909         struct page *newpage, struct page *page, enum migrate_mode mode)
910 {
911         if (PageDirty(page)) {
912                 /* Only writeback pages in full synchronous migration */
913                 switch (mode) {
914                 case MIGRATE_SYNC:
915                 case MIGRATE_SYNC_NO_COPY:
916                         break;
917                 default:
918                         return -EBUSY;
919                 }
920                 return writeout(mapping, page);
921         }
922
923         /*
924          * Buffers may be managed in a filesystem specific way.
925          * We must have no buffers or drop them.
926          */
927         if (page_has_private(page) &&
928             !try_to_release_page(page, GFP_KERNEL))
929                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
930
931         return migrate_page(mapping, newpage, page, mode);
932 }
933
934 /*
935  * Move a page to a newly allocated page
936  * The page is locked and all ptes have been successfully removed.
937  *
938  * The new page will have replaced the old page if this function
939  * is successful.
940  *
941  * Return value:
942  *   < 0 - error code
943  *  MIGRATEPAGE_SUCCESS - success
944  */
945 static int move_to_new_page(struct page *newpage, struct page *page,
946                                 enum migrate_mode mode)
947 {
948         struct address_space *mapping;
949         int rc = -EAGAIN;
950         bool is_lru = !__PageMovable(page);
951
952         VM_BUG_ON_PAGE(!PageLocked(page), page);
953         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
954
955         mapping = page_mapping(page);
956
957         if (likely(is_lru)) {
958                 if (!mapping)
959                         rc = migrate_page(mapping, newpage, page, mode);
960                 else if (mapping->a_ops->migratepage)
961                         /*
962                          * Most pages have a mapping and most filesystems
963                          * provide a migratepage callback. Anonymous pages
964                          * are part of swap space which also has its own
965                          * migratepage callback. This is the most common path
966                          * for page migration.
967                          */
968                         rc = mapping->a_ops->migratepage(mapping, newpage,
969                                                         page, mode);
970                 else
971                         rc = fallback_migrate_page(mapping, newpage,
972                                                         page, mode);
973         } else {
974                 /*
975                  * In case of non-lru page, it could be released after
976                  * isolation step. In that case, we shouldn't try migration.
977                  */
978                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979                 if (!PageMovable(page)) {
980                         rc = MIGRATEPAGE_SUCCESS;
981                         __ClearPageIsolated(page);
982                         goto out;
983                 }
984
985                 rc = mapping->a_ops->migratepage(mapping, newpage,
986                                                 page, mode);
987                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
988                         !PageIsolated(page));
989         }
990
991         /*
992          * When successful, old pagecache page->mapping must be cleared before
993          * page is freed; but stats require that PageAnon be left as PageAnon.
994          */
995         if (rc == MIGRATEPAGE_SUCCESS) {
996                 if (__PageMovable(page)) {
997                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
998
999                         /*
1000                          * We clear PG_movable under page_lock so any compactor
1001                          * cannot try to migrate this page.
1002                          */
1003                         __ClearPageIsolated(page);
1004                 }
1005
1006                 /*
1007                  * Anonymous and movable page->mapping will be cleared by
1008                  * free_pages_prepare so don't reset it here for keeping
1009                  * the type to work PageAnon, for example.
1010                  */
1011                 if (!PageMappingFlags(page))
1012                         page->mapping = NULL;
1013
1014                 if (likely(!is_zone_device_page(newpage)))
1015                         flush_dcache_page(newpage);
1016
1017         }
1018 out:
1019         return rc;
1020 }
1021
1022 static int __unmap_and_move(struct page *page, struct page *newpage,
1023                                 int force, enum migrate_mode mode)
1024 {
1025         int rc = -EAGAIN;
1026         int page_was_mapped = 0;
1027         struct anon_vma *anon_vma = NULL;
1028         bool is_lru = !__PageMovable(page);
1029
1030         if (!trylock_page(page)) {
1031                 if (!force || mode == MIGRATE_ASYNC)
1032                         goto out;
1033
1034                 /*
1035                  * It's not safe for direct compaction to call lock_page.
1036                  * For example, during page readahead pages are added locked
1037                  * to the LRU. Later, when the IO completes the pages are
1038                  * marked uptodate and unlocked. However, the queueing
1039                  * could be merging multiple pages for one bio (e.g.
1040                  * mpage_readahead). If an allocation happens for the
1041                  * second or third page, the process can end up locking
1042                  * the same page twice and deadlocking. Rather than
1043                  * trying to be clever about what pages can be locked,
1044                  * avoid the use of lock_page for direct compaction
1045                  * altogether.
1046                  */
1047                 if (current->flags & PF_MEMALLOC)
1048                         goto out;
1049
1050                 lock_page(page);
1051         }
1052
1053         if (PageWriteback(page)) {
1054                 /*
1055                  * Only in the case of a full synchronous migration is it
1056                  * necessary to wait for PageWriteback. In the async case,
1057                  * the retry loop is too short and in the sync-light case,
1058                  * the overhead of stalling is too much
1059                  */
1060                 switch (mode) {
1061                 case MIGRATE_SYNC:
1062                 case MIGRATE_SYNC_NO_COPY:
1063                         break;
1064                 default:
1065                         rc = -EBUSY;
1066                         goto out_unlock;
1067                 }
1068                 if (!force)
1069                         goto out_unlock;
1070                 wait_on_page_writeback(page);
1071         }
1072
1073         /*
1074          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1075          * we cannot notice that anon_vma is freed while we migrates a page.
1076          * This get_anon_vma() delays freeing anon_vma pointer until the end
1077          * of migration. File cache pages are no problem because of page_lock()
1078          * File Caches may use write_page() or lock_page() in migration, then,
1079          * just care Anon page here.
1080          *
1081          * Only page_get_anon_vma() understands the subtleties of
1082          * getting a hold on an anon_vma from outside one of its mms.
1083          * But if we cannot get anon_vma, then we won't need it anyway,
1084          * because that implies that the anon page is no longer mapped
1085          * (and cannot be remapped so long as we hold the page lock).
1086          */
1087         if (PageAnon(page) && !PageKsm(page))
1088                 anon_vma = page_get_anon_vma(page);
1089
1090         /*
1091          * Block others from accessing the new page when we get around to
1092          * establishing additional references. We are usually the only one
1093          * holding a reference to newpage at this point. We used to have a BUG
1094          * here if trylock_page(newpage) fails, but would like to allow for
1095          * cases where there might be a race with the previous use of newpage.
1096          * This is much like races on refcount of oldpage: just don't BUG().
1097          */
1098         if (unlikely(!trylock_page(newpage)))
1099                 goto out_unlock;
1100
1101         if (unlikely(!is_lru)) {
1102                 rc = move_to_new_page(newpage, page, mode);
1103                 goto out_unlock_both;
1104         }
1105
1106         /*
1107          * Corner case handling:
1108          * 1. When a new swap-cache page is read into, it is added to the LRU
1109          * and treated as swapcache but it has no rmap yet.
1110          * Calling try_to_unmap() against a page->mapping==NULL page will
1111          * trigger a BUG.  So handle it here.
1112          * 2. An orphaned page (see truncate_cleanup_page) might have
1113          * fs-private metadata. The page can be picked up due to memory
1114          * offlining.  Everywhere else except page reclaim, the page is
1115          * invisible to the vm, so the page can not be migrated.  So try to
1116          * free the metadata, so the page can be freed.
1117          */
1118         if (!page->mapping) {
1119                 VM_BUG_ON_PAGE(PageAnon(page), page);
1120                 if (page_has_private(page)) {
1121                         try_to_free_buffers(page);
1122                         goto out_unlock_both;
1123                 }
1124         } else if (page_mapped(page)) {
1125                 /* Establish migration ptes */
1126                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1127                                 page);
1128                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1129                 page_was_mapped = 1;
1130         }
1131
1132         if (!page_mapped(page))
1133                 rc = move_to_new_page(newpage, page, mode);
1134
1135         if (page_was_mapped)
1136                 remove_migration_ptes(page,
1137                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1138
1139 out_unlock_both:
1140         unlock_page(newpage);
1141 out_unlock:
1142         /* Drop an anon_vma reference if we took one */
1143         if (anon_vma)
1144                 put_anon_vma(anon_vma);
1145         unlock_page(page);
1146 out:
1147         /*
1148          * If migration is successful, decrease refcount of the newpage
1149          * which will not free the page because new page owner increased
1150          * refcounter. As well, if it is LRU page, add the page to LRU
1151          * list in here. Use the old state of the isolated source page to
1152          * determine if we migrated a LRU page. newpage was already unlocked
1153          * and possibly modified by its owner - don't rely on the page
1154          * state.
1155          */
1156         if (rc == MIGRATEPAGE_SUCCESS) {
1157                 if (unlikely(!is_lru))
1158                         put_page(newpage);
1159                 else
1160                         putback_lru_page(newpage);
1161         }
1162
1163         return rc;
1164 }
1165
1166 /*
1167  * Obtain the lock on page, remove all ptes and migrate the page
1168  * to the newly allocated page in newpage.
1169  */
1170 static int unmap_and_move(new_page_t get_new_page,
1171                                    free_page_t put_new_page,
1172                                    unsigned long private, struct page *page,
1173                                    int force, enum migrate_mode mode,
1174                                    enum migrate_reason reason,
1175                                    struct list_head *ret)
1176 {
1177         int rc = MIGRATEPAGE_SUCCESS;
1178         struct page *newpage = NULL;
1179
1180         if (!thp_migration_supported() && PageTransHuge(page))
1181                 return -ENOSYS;
1182
1183         if (page_count(page) == 1) {
1184                 /* page was freed from under us. So we are done. */
1185                 ClearPageActive(page);
1186                 ClearPageUnevictable(page);
1187                 if (unlikely(__PageMovable(page))) {
1188                         lock_page(page);
1189                         if (!PageMovable(page))
1190                                 __ClearPageIsolated(page);
1191                         unlock_page(page);
1192                 }
1193                 goto out;
1194         }
1195
1196         newpage = get_new_page(page, private);
1197         if (!newpage)
1198                 return -ENOMEM;
1199
1200         rc = __unmap_and_move(page, newpage, force, mode);
1201         if (rc == MIGRATEPAGE_SUCCESS)
1202                 set_page_owner_migrate_reason(newpage, reason);
1203
1204 out:
1205         if (rc != -EAGAIN) {
1206                 /*
1207                  * A page that has been migrated has all references
1208                  * removed and will be freed. A page that has not been
1209                  * migrated will have kept its references and be restored.
1210                  */
1211                 list_del(&page->lru);
1212         }
1213
1214         /*
1215          * If migration is successful, releases reference grabbed during
1216          * isolation. Otherwise, restore the page to right list unless
1217          * we want to retry.
1218          */
1219         if (rc == MIGRATEPAGE_SUCCESS) {
1220                 /*
1221                  * Compaction can migrate also non-LRU pages which are
1222                  * not accounted to NR_ISOLATED_*. They can be recognized
1223                  * as __PageMovable
1224                  */
1225                 if (likely(!__PageMovable(page)))
1226                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1227                                         page_is_file_lru(page), -thp_nr_pages(page));
1228
1229                 if (reason != MR_MEMORY_FAILURE)
1230                         /*
1231                          * We release the page in page_handle_poison.
1232                          */
1233                         put_page(page);
1234         } else {
1235                 if (rc != -EAGAIN)
1236                         list_add_tail(&page->lru, ret);
1237
1238                 if (put_new_page)
1239                         put_new_page(newpage, private);
1240                 else
1241                         put_page(newpage);
1242         }
1243
1244         return rc;
1245 }
1246
1247 /*
1248  * Counterpart of unmap_and_move_page() for hugepage migration.
1249  *
1250  * This function doesn't wait the completion of hugepage I/O
1251  * because there is no race between I/O and migration for hugepage.
1252  * Note that currently hugepage I/O occurs only in direct I/O
1253  * where no lock is held and PG_writeback is irrelevant,
1254  * and writeback status of all subpages are counted in the reference
1255  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1256  * under direct I/O, the reference of the head page is 512 and a bit more.)
1257  * This means that when we try to migrate hugepage whose subpages are
1258  * doing direct I/O, some references remain after try_to_unmap() and
1259  * hugepage migration fails without data corruption.
1260  *
1261  * There is also no race when direct I/O is issued on the page under migration,
1262  * because then pte is replaced with migration swap entry and direct I/O code
1263  * will wait in the page fault for migration to complete.
1264  */
1265 static int unmap_and_move_huge_page(new_page_t get_new_page,
1266                                 free_page_t put_new_page, unsigned long private,
1267                                 struct page *hpage, int force,
1268                                 enum migrate_mode mode, int reason,
1269                                 struct list_head *ret)
1270 {
1271         int rc = -EAGAIN;
1272         int page_was_mapped = 0;
1273         struct page *new_hpage;
1274         struct anon_vma *anon_vma = NULL;
1275         struct address_space *mapping = NULL;
1276
1277         /*
1278          * Migratability of hugepages depends on architectures and their size.
1279          * This check is necessary because some callers of hugepage migration
1280          * like soft offline and memory hotremove don't walk through page
1281          * tables or check whether the hugepage is pmd-based or not before
1282          * kicking migration.
1283          */
1284         if (!hugepage_migration_supported(page_hstate(hpage))) {
1285                 list_move_tail(&hpage->lru, ret);
1286                 return -ENOSYS;
1287         }
1288
1289         if (page_count(hpage) == 1) {
1290                 /* page was freed from under us. So we are done. */
1291                 putback_active_hugepage(hpage);
1292                 return MIGRATEPAGE_SUCCESS;
1293         }
1294
1295         new_hpage = get_new_page(hpage, private);
1296         if (!new_hpage)
1297                 return -ENOMEM;
1298
1299         if (!trylock_page(hpage)) {
1300                 if (!force)
1301                         goto out;
1302                 switch (mode) {
1303                 case MIGRATE_SYNC:
1304                 case MIGRATE_SYNC_NO_COPY:
1305                         break;
1306                 default:
1307                         goto out;
1308                 }
1309                 lock_page(hpage);
1310         }
1311
1312         /*
1313          * Check for pages which are in the process of being freed.  Without
1314          * page_mapping() set, hugetlbfs specific move page routine will not
1315          * be called and we could leak usage counts for subpools.
1316          */
1317         if (page_private(hpage) && !page_mapping(hpage)) {
1318                 rc = -EBUSY;
1319                 goto out_unlock;
1320         }
1321
1322         if (PageAnon(hpage))
1323                 anon_vma = page_get_anon_vma(hpage);
1324
1325         if (unlikely(!trylock_page(new_hpage)))
1326                 goto put_anon;
1327
1328         if (page_mapped(hpage)) {
1329                 bool mapping_locked = false;
1330                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1331
1332                 if (!PageAnon(hpage)) {
1333                         /*
1334                          * In shared mappings, try_to_unmap could potentially
1335                          * call huge_pmd_unshare.  Because of this, take
1336                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1337                          * to let lower levels know we have taken the lock.
1338                          */
1339                         mapping = hugetlb_page_mapping_lock_write(hpage);
1340                         if (unlikely(!mapping))
1341                                 goto unlock_put_anon;
1342
1343                         mapping_locked = true;
1344                         ttu |= TTU_RMAP_LOCKED;
1345                 }
1346
1347                 try_to_unmap(hpage, ttu);
1348                 page_was_mapped = 1;
1349
1350                 if (mapping_locked)
1351                         i_mmap_unlock_write(mapping);
1352         }
1353
1354         if (!page_mapped(hpage))
1355                 rc = move_to_new_page(new_hpage, hpage, mode);
1356
1357         if (page_was_mapped)
1358                 remove_migration_ptes(hpage,
1359                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1360
1361 unlock_put_anon:
1362         unlock_page(new_hpage);
1363
1364 put_anon:
1365         if (anon_vma)
1366                 put_anon_vma(anon_vma);
1367
1368         if (rc == MIGRATEPAGE_SUCCESS) {
1369                 move_hugetlb_state(hpage, new_hpage, reason);
1370                 put_new_page = NULL;
1371         }
1372
1373 out_unlock:
1374         unlock_page(hpage);
1375 out:
1376         if (rc == MIGRATEPAGE_SUCCESS)
1377                 putback_active_hugepage(hpage);
1378         else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1379                 list_move_tail(&hpage->lru, ret);
1380
1381         /*
1382          * If migration was not successful and there's a freeing callback, use
1383          * it.  Otherwise, put_page() will drop the reference grabbed during
1384          * isolation.
1385          */
1386         if (put_new_page)
1387                 put_new_page(new_hpage, private);
1388         else
1389                 putback_active_hugepage(new_hpage);
1390
1391         return rc;
1392 }
1393
1394 static inline int try_split_thp(struct page *page, struct page **page2,
1395                                 struct list_head *from)
1396 {
1397         int rc = 0;
1398
1399         lock_page(page);
1400         rc = split_huge_page_to_list(page, from);
1401         unlock_page(page);
1402         if (!rc)
1403                 list_safe_reset_next(page, *page2, lru);
1404
1405         return rc;
1406 }
1407
1408 /*
1409  * migrate_pages - migrate the pages specified in a list, to the free pages
1410  *                 supplied as the target for the page migration
1411  *
1412  * @from:               The list of pages to be migrated.
1413  * @get_new_page:       The function used to allocate free pages to be used
1414  *                      as the target of the page migration.
1415  * @put_new_page:       The function used to free target pages if migration
1416  *                      fails, or NULL if no special handling is necessary.
1417  * @private:            Private data to be passed on to get_new_page()
1418  * @mode:               The migration mode that specifies the constraints for
1419  *                      page migration, if any.
1420  * @reason:             The reason for page migration.
1421  *
1422  * The function returns after 10 attempts or if no pages are movable any more
1423  * because the list has become empty or no retryable pages exist any more.
1424  * It is caller's responsibility to call putback_movable_pages() to return pages
1425  * to the LRU or free list only if ret != 0.
1426  *
1427  * Returns the number of pages that were not migrated, or an error code.
1428  */
1429 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1430                 free_page_t put_new_page, unsigned long private,
1431                 enum migrate_mode mode, int reason)
1432 {
1433         int retry = 1;
1434         int thp_retry = 1;
1435         int nr_failed = 0;
1436         int nr_succeeded = 0;
1437         int nr_thp_succeeded = 0;
1438         int nr_thp_failed = 0;
1439         int nr_thp_split = 0;
1440         int pass = 0;
1441         bool is_thp = false;
1442         struct page *page;
1443         struct page *page2;
1444         int swapwrite = current->flags & PF_SWAPWRITE;
1445         int rc, nr_subpages;
1446         LIST_HEAD(ret_pages);
1447
1448         if (!swapwrite)
1449                 current->flags |= PF_SWAPWRITE;
1450
1451         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1452                 retry = 0;
1453                 thp_retry = 0;
1454
1455                 list_for_each_entry_safe(page, page2, from, lru) {
1456 retry:
1457                         /*
1458                          * THP statistics is based on the source huge page.
1459                          * Capture required information that might get lost
1460                          * during migration.
1461                          */
1462                         is_thp = PageTransHuge(page) && !PageHuge(page);
1463                         nr_subpages = thp_nr_pages(page);
1464                         cond_resched();
1465
1466                         if (PageHuge(page))
1467                                 rc = unmap_and_move_huge_page(get_new_page,
1468                                                 put_new_page, private, page,
1469                                                 pass > 2, mode, reason,
1470                                                 &ret_pages);
1471                         else
1472                                 rc = unmap_and_move(get_new_page, put_new_page,
1473                                                 private, page, pass > 2, mode,
1474                                                 reason, &ret_pages);
1475                         /*
1476                          * The rules are:
1477                          *      Success: non hugetlb page will be freed, hugetlb
1478                          *               page will be put back
1479                          *      -EAGAIN: stay on the from list
1480                          *      -ENOMEM: stay on the from list
1481                          *      Other errno: put on ret_pages list then splice to
1482                          *                   from list
1483                          */
1484                         switch(rc) {
1485                         /*
1486                          * THP migration might be unsupported or the
1487                          * allocation could've failed so we should
1488                          * retry on the same page with the THP split
1489                          * to base pages.
1490                          *
1491                          * Head page is retried immediately and tail
1492                          * pages are added to the tail of the list so
1493                          * we encounter them after the rest of the list
1494                          * is processed.
1495                          */
1496                         case -ENOSYS:
1497                                 /* THP migration is unsupported */
1498                                 if (is_thp) {
1499                                         if (!try_split_thp(page, &page2, from)) {
1500                                                 nr_thp_split++;
1501                                                 goto retry;
1502                                         }
1503
1504                                         nr_thp_failed++;
1505                                         nr_failed += nr_subpages;
1506                                         break;
1507                                 }
1508
1509                                 /* Hugetlb migration is unsupported */
1510                                 nr_failed++;
1511                                 break;
1512                         case -ENOMEM:
1513                                 /*
1514                                  * When memory is low, don't bother to try to migrate
1515                                  * other pages, just exit.
1516                                  */
1517                                 if (is_thp) {
1518                                         if (!try_split_thp(page, &page2, from)) {
1519                                                 nr_thp_split++;
1520                                                 goto retry;
1521                                         }
1522
1523                                         nr_thp_failed++;
1524                                         nr_failed += nr_subpages;
1525                                         goto out;
1526                                 }
1527                                 nr_failed++;
1528                                 goto out;
1529                         case -EAGAIN:
1530                                 if (is_thp) {
1531                                         thp_retry++;
1532                                         break;
1533                                 }
1534                                 retry++;
1535                                 break;
1536                         case MIGRATEPAGE_SUCCESS:
1537                                 if (is_thp) {
1538                                         nr_thp_succeeded++;
1539                                         nr_succeeded += nr_subpages;
1540                                         break;
1541                                 }
1542                                 nr_succeeded++;
1543                                 break;
1544                         default:
1545                                 /*
1546                                  * Permanent failure (-EBUSY, etc.):
1547                                  * unlike -EAGAIN case, the failed page is
1548                                  * removed from migration page list and not
1549                                  * retried in the next outer loop.
1550                                  */
1551                                 if (is_thp) {
1552                                         nr_thp_failed++;
1553                                         nr_failed += nr_subpages;
1554                                         break;
1555                                 }
1556                                 nr_failed++;
1557                                 break;
1558                         }
1559                 }
1560         }
1561         nr_failed += retry + thp_retry;
1562         nr_thp_failed += thp_retry;
1563         rc = nr_failed;
1564 out:
1565         /*
1566          * Put the permanent failure page back to migration list, they
1567          * will be put back to the right list by the caller.
1568          */
1569         list_splice(&ret_pages, from);
1570
1571         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1572         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1573         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1574         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1575         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1576         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1577                                nr_thp_failed, nr_thp_split, mode, reason);
1578
1579         if (!swapwrite)
1580                 current->flags &= ~PF_SWAPWRITE;
1581
1582         return rc;
1583 }
1584
1585 struct page *alloc_migration_target(struct page *page, unsigned long private)
1586 {
1587         struct migration_target_control *mtc;
1588         gfp_t gfp_mask;
1589         unsigned int order = 0;
1590         struct page *new_page = NULL;
1591         int nid;
1592         int zidx;
1593
1594         mtc = (struct migration_target_control *)private;
1595         gfp_mask = mtc->gfp_mask;
1596         nid = mtc->nid;
1597         if (nid == NUMA_NO_NODE)
1598                 nid = page_to_nid(page);
1599
1600         if (PageHuge(page)) {
1601                 struct hstate *h = page_hstate(compound_head(page));
1602
1603                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1604                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1605         }
1606
1607         if (PageTransHuge(page)) {
1608                 /*
1609                  * clear __GFP_RECLAIM to make the migration callback
1610                  * consistent with regular THP allocations.
1611                  */
1612                 gfp_mask &= ~__GFP_RECLAIM;
1613                 gfp_mask |= GFP_TRANSHUGE;
1614                 order = HPAGE_PMD_ORDER;
1615         }
1616         zidx = zone_idx(page_zone(page));
1617         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1618                 gfp_mask |= __GFP_HIGHMEM;
1619
1620         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1621
1622         if (new_page && PageTransHuge(new_page))
1623                 prep_transhuge_page(new_page);
1624
1625         return new_page;
1626 }
1627
1628 #ifdef CONFIG_NUMA
1629
1630 static int store_status(int __user *status, int start, int value, int nr)
1631 {
1632         while (nr-- > 0) {
1633                 if (put_user(value, status + start))
1634                         return -EFAULT;
1635                 start++;
1636         }
1637
1638         return 0;
1639 }
1640
1641 static int do_move_pages_to_node(struct mm_struct *mm,
1642                 struct list_head *pagelist, int node)
1643 {
1644         int err;
1645         struct migration_target_control mtc = {
1646                 .nid = node,
1647                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1648         };
1649
1650         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1651                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1652         if (err)
1653                 putback_movable_pages(pagelist);
1654         return err;
1655 }
1656
1657 /*
1658  * Resolves the given address to a struct page, isolates it from the LRU and
1659  * puts it to the given pagelist.
1660  * Returns:
1661  *     errno - if the page cannot be found/isolated
1662  *     0 - when it doesn't have to be migrated because it is already on the
1663  *         target node
1664  *     1 - when it has been queued
1665  */
1666 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1667                 int node, struct list_head *pagelist, bool migrate_all)
1668 {
1669         struct vm_area_struct *vma;
1670         struct page *page;
1671         unsigned int follflags;
1672         int err;
1673
1674         mmap_read_lock(mm);
1675         err = -EFAULT;
1676         vma = find_vma(mm, addr);
1677         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1678                 goto out;
1679
1680         /* FOLL_DUMP to ignore special (like zero) pages */
1681         follflags = FOLL_GET | FOLL_DUMP;
1682         page = follow_page(vma, addr, follflags);
1683
1684         err = PTR_ERR(page);
1685         if (IS_ERR(page))
1686                 goto out;
1687
1688         err = -ENOENT;
1689         if (!page)
1690                 goto out;
1691
1692         err = 0;
1693         if (page_to_nid(page) == node)
1694                 goto out_putpage;
1695
1696         err = -EACCES;
1697         if (page_mapcount(page) > 1 && !migrate_all)
1698                 goto out_putpage;
1699
1700         if (PageHuge(page)) {
1701                 if (PageHead(page)) {
1702                         isolate_huge_page(page, pagelist);
1703                         err = 1;
1704                 }
1705         } else {
1706                 struct page *head;
1707
1708                 head = compound_head(page);
1709                 err = isolate_lru_page(head);
1710                 if (err)
1711                         goto out_putpage;
1712
1713                 err = 1;
1714                 list_add_tail(&head->lru, pagelist);
1715                 mod_node_page_state(page_pgdat(head),
1716                         NR_ISOLATED_ANON + page_is_file_lru(head),
1717                         thp_nr_pages(head));
1718         }
1719 out_putpage:
1720         /*
1721          * Either remove the duplicate refcount from
1722          * isolate_lru_page() or drop the page ref if it was
1723          * not isolated.
1724          */
1725         put_page(page);
1726 out:
1727         mmap_read_unlock(mm);
1728         return err;
1729 }
1730
1731 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1732                 struct list_head *pagelist, int __user *status,
1733                 int start, int i, unsigned long nr_pages)
1734 {
1735         int err;
1736
1737         if (list_empty(pagelist))
1738                 return 0;
1739
1740         err = do_move_pages_to_node(mm, pagelist, node);
1741         if (err) {
1742                 /*
1743                  * Positive err means the number of failed
1744                  * pages to migrate.  Since we are going to
1745                  * abort and return the number of non-migrated
1746                  * pages, so need to include the rest of the
1747                  * nr_pages that have not been attempted as
1748                  * well.
1749                  */
1750                 if (err > 0)
1751                         err += nr_pages - i - 1;
1752                 return err;
1753         }
1754         return store_status(status, start, node, i - start);
1755 }
1756
1757 /*
1758  * Migrate an array of page address onto an array of nodes and fill
1759  * the corresponding array of status.
1760  */
1761 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1762                          unsigned long nr_pages,
1763                          const void __user * __user *pages,
1764                          const int __user *nodes,
1765                          int __user *status, int flags)
1766 {
1767         int current_node = NUMA_NO_NODE;
1768         LIST_HEAD(pagelist);
1769         int start, i;
1770         int err = 0, err1;
1771
1772         migrate_prep();
1773
1774         for (i = start = 0; i < nr_pages; i++) {
1775                 const void __user *p;
1776                 unsigned long addr;
1777                 int node;
1778
1779                 err = -EFAULT;
1780                 if (get_user(p, pages + i))
1781                         goto out_flush;
1782                 if (get_user(node, nodes + i))
1783                         goto out_flush;
1784                 addr = (unsigned long)untagged_addr(p);
1785
1786                 err = -ENODEV;
1787                 if (node < 0 || node >= MAX_NUMNODES)
1788                         goto out_flush;
1789                 if (!node_state(node, N_MEMORY))
1790                         goto out_flush;
1791
1792                 err = -EACCES;
1793                 if (!node_isset(node, task_nodes))
1794                         goto out_flush;
1795
1796                 if (current_node == NUMA_NO_NODE) {
1797                         current_node = node;
1798                         start = i;
1799                 } else if (node != current_node) {
1800                         err = move_pages_and_store_status(mm, current_node,
1801                                         &pagelist, status, start, i, nr_pages);
1802                         if (err)
1803                                 goto out;
1804                         start = i;
1805                         current_node = node;
1806                 }
1807
1808                 /*
1809                  * Errors in the page lookup or isolation are not fatal and we simply
1810                  * report them via status
1811                  */
1812                 err = add_page_for_migration(mm, addr, current_node,
1813                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1814
1815                 if (err > 0) {
1816                         /* The page is successfully queued for migration */
1817                         continue;
1818                 }
1819
1820                 /*
1821                  * If the page is already on the target node (!err), store the
1822                  * node, otherwise, store the err.
1823                  */
1824                 err = store_status(status, i, err ? : current_node, 1);
1825                 if (err)
1826                         goto out_flush;
1827
1828                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1829                                 status, start, i, nr_pages);
1830                 if (err)
1831                         goto out;
1832                 current_node = NUMA_NO_NODE;
1833         }
1834 out_flush:
1835         /* Make sure we do not overwrite the existing error */
1836         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1837                                 status, start, i, nr_pages);
1838         if (err >= 0)
1839                 err = err1;
1840 out:
1841         return err;
1842 }
1843
1844 /*
1845  * Determine the nodes of an array of pages and store it in an array of status.
1846  */
1847 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1848                                 const void __user **pages, int *status)
1849 {
1850         unsigned long i;
1851
1852         mmap_read_lock(mm);
1853
1854         for (i = 0; i < nr_pages; i++) {
1855                 unsigned long addr = (unsigned long)(*pages);
1856                 struct vm_area_struct *vma;
1857                 struct page *page;
1858                 int err = -EFAULT;
1859
1860                 vma = find_vma(mm, addr);
1861                 if (!vma || addr < vma->vm_start)
1862                         goto set_status;
1863
1864                 /* FOLL_DUMP to ignore special (like zero) pages */
1865                 page = follow_page(vma, addr, FOLL_DUMP);
1866
1867                 err = PTR_ERR(page);
1868                 if (IS_ERR(page))
1869                         goto set_status;
1870
1871                 err = page ? page_to_nid(page) : -ENOENT;
1872 set_status:
1873                 *status = err;
1874
1875                 pages++;
1876                 status++;
1877         }
1878
1879         mmap_read_unlock(mm);
1880 }
1881
1882 /*
1883  * Determine the nodes of a user array of pages and store it in
1884  * a user array of status.
1885  */
1886 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1887                          const void __user * __user *pages,
1888                          int __user *status)
1889 {
1890 #define DO_PAGES_STAT_CHUNK_NR 16
1891         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1892         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1893
1894         while (nr_pages) {
1895                 unsigned long chunk_nr;
1896
1897                 chunk_nr = nr_pages;
1898                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1899                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1900
1901                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1902                         break;
1903
1904                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1905
1906                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1907                         break;
1908
1909                 pages += chunk_nr;
1910                 status += chunk_nr;
1911                 nr_pages -= chunk_nr;
1912         }
1913         return nr_pages ? -EFAULT : 0;
1914 }
1915
1916 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1917 {
1918         struct task_struct *task;
1919         struct mm_struct *mm;
1920
1921         /*
1922          * There is no need to check if current process has the right to modify
1923          * the specified process when they are same.
1924          */
1925         if (!pid) {
1926                 mmget(current->mm);
1927                 *mem_nodes = cpuset_mems_allowed(current);
1928                 return current->mm;
1929         }
1930
1931         /* Find the mm_struct */
1932         rcu_read_lock();
1933         task = find_task_by_vpid(pid);
1934         if (!task) {
1935                 rcu_read_unlock();
1936                 return ERR_PTR(-ESRCH);
1937         }
1938         get_task_struct(task);
1939
1940         /*
1941          * Check if this process has the right to modify the specified
1942          * process. Use the regular "ptrace_may_access()" checks.
1943          */
1944         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1945                 rcu_read_unlock();
1946                 mm = ERR_PTR(-EPERM);
1947                 goto out;
1948         }
1949         rcu_read_unlock();
1950
1951         mm = ERR_PTR(security_task_movememory(task));
1952         if (IS_ERR(mm))
1953                 goto out;
1954         *mem_nodes = cpuset_mems_allowed(task);
1955         mm = get_task_mm(task);
1956 out:
1957         put_task_struct(task);
1958         if (!mm)
1959                 mm = ERR_PTR(-EINVAL);
1960         return mm;
1961 }
1962
1963 /*
1964  * Move a list of pages in the address space of the currently executing
1965  * process.
1966  */
1967 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1968                              const void __user * __user *pages,
1969                              const int __user *nodes,
1970                              int __user *status, int flags)
1971 {
1972         struct mm_struct *mm;
1973         int err;
1974         nodemask_t task_nodes;
1975
1976         /* Check flags */
1977         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1978                 return -EINVAL;
1979
1980         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1981                 return -EPERM;
1982
1983         mm = find_mm_struct(pid, &task_nodes);
1984         if (IS_ERR(mm))
1985                 return PTR_ERR(mm);
1986
1987         if (nodes)
1988                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1989                                     nodes, status, flags);
1990         else
1991                 err = do_pages_stat(mm, nr_pages, pages, status);
1992
1993         mmput(mm);
1994         return err;
1995 }
1996
1997 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1998                 const void __user * __user *, pages,
1999                 const int __user *, nodes,
2000                 int __user *, status, int, flags)
2001 {
2002         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2003 }
2004
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2007                        compat_uptr_t __user *, pages32,
2008                        const int __user *, nodes,
2009                        int __user *, status,
2010                        int, flags)
2011 {
2012         const void __user * __user *pages;
2013         int i;
2014
2015         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2016         for (i = 0; i < nr_pages; i++) {
2017                 compat_uptr_t p;
2018
2019                 if (get_user(p, pages32 + i) ||
2020                         put_user(compat_ptr(p), pages + i))
2021                         return -EFAULT;
2022         }
2023         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2024 }
2025 #endif /* CONFIG_COMPAT */
2026
2027 #ifdef CONFIG_NUMA_BALANCING
2028 /*
2029  * Returns true if this is a safe migration target node for misplaced NUMA
2030  * pages. Currently it only checks the watermarks which crude
2031  */
2032 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2033                                    unsigned long nr_migrate_pages)
2034 {
2035         int z;
2036
2037         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2038                 struct zone *zone = pgdat->node_zones + z;
2039
2040                 if (!populated_zone(zone))
2041                         continue;
2042
2043                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2044                 if (!zone_watermark_ok(zone, 0,
2045                                        high_wmark_pages(zone) +
2046                                        nr_migrate_pages,
2047                                        ZONE_MOVABLE, 0))
2048                         continue;
2049                 return true;
2050         }
2051         return false;
2052 }
2053
2054 static struct page *alloc_misplaced_dst_page(struct page *page,
2055                                            unsigned long data)
2056 {
2057         int nid = (int) data;
2058         struct page *newpage;
2059
2060         newpage = __alloc_pages_node(nid,
2061                                          (GFP_HIGHUSER_MOVABLE |
2062                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2063                                           __GFP_NORETRY | __GFP_NOWARN) &
2064                                          ~__GFP_RECLAIM, 0);
2065
2066         return newpage;
2067 }
2068
2069 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2070 {
2071         int page_lru;
2072
2073         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2074
2075         /* Avoid migrating to a node that is nearly full */
2076         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2077                 return 0;
2078
2079         if (isolate_lru_page(page))
2080                 return 0;
2081
2082         /*
2083          * migrate_misplaced_transhuge_page() skips page migration's usual
2084          * check on page_count(), so we must do it here, now that the page
2085          * has been isolated: a GUP pin, or any other pin, prevents migration.
2086          * The expected page count is 3: 1 for page's mapcount and 1 for the
2087          * caller's pin and 1 for the reference taken by isolate_lru_page().
2088          */
2089         if (PageTransHuge(page) && page_count(page) != 3) {
2090                 putback_lru_page(page);
2091                 return 0;
2092         }
2093
2094         page_lru = page_is_file_lru(page);
2095         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2096                                 thp_nr_pages(page));
2097
2098         /*
2099          * Isolating the page has taken another reference, so the
2100          * caller's reference can be safely dropped without the page
2101          * disappearing underneath us during migration.
2102          */
2103         put_page(page);
2104         return 1;
2105 }
2106
2107 bool pmd_trans_migrating(pmd_t pmd)
2108 {
2109         struct page *page = pmd_page(pmd);
2110         return PageLocked(page);
2111 }
2112
2113 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2114                                        struct page *page)
2115 {
2116         if (page_mapcount(page) != 1 &&
2117             (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2118             (vma->vm_flags & VM_EXEC))
2119                 return true;
2120
2121         return false;
2122 }
2123
2124 /*
2125  * Attempt to migrate a misplaced page to the specified destination
2126  * node. Caller is expected to have an elevated reference count on
2127  * the page that will be dropped by this function before returning.
2128  */
2129 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2130                            int node)
2131 {
2132         pg_data_t *pgdat = NODE_DATA(node);
2133         int isolated;
2134         int nr_remaining;
2135         LIST_HEAD(migratepages);
2136
2137         /*
2138          * Don't migrate file pages that are mapped in multiple processes
2139          * with execute permissions as they are probably shared libraries.
2140          */
2141         if (is_shared_exec_page(vma, page))
2142                 goto out;
2143
2144         /*
2145          * Also do not migrate dirty pages as not all filesystems can move
2146          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2147          */
2148         if (page_is_file_lru(page) && PageDirty(page))
2149                 goto out;
2150
2151         isolated = numamigrate_isolate_page(pgdat, page);
2152         if (!isolated)
2153                 goto out;
2154
2155         list_add(&page->lru, &migratepages);
2156         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2157                                      NULL, node, MIGRATE_ASYNC,
2158                                      MR_NUMA_MISPLACED);
2159         if (nr_remaining) {
2160                 if (!list_empty(&migratepages)) {
2161                         list_del(&page->lru);
2162                         dec_node_page_state(page, NR_ISOLATED_ANON +
2163                                         page_is_file_lru(page));
2164                         putback_lru_page(page);
2165                 }
2166                 isolated = 0;
2167         } else
2168                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2169         BUG_ON(!list_empty(&migratepages));
2170         return isolated;
2171
2172 out:
2173         put_page(page);
2174         return 0;
2175 }
2176 #endif /* CONFIG_NUMA_BALANCING */
2177
2178 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2179 /*
2180  * Migrates a THP to a given target node. page must be locked and is unlocked
2181  * before returning.
2182  */
2183 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2184                                 struct vm_area_struct *vma,
2185                                 pmd_t *pmd, pmd_t entry,
2186                                 unsigned long address,
2187                                 struct page *page, int node)
2188 {
2189         spinlock_t *ptl;
2190         pg_data_t *pgdat = NODE_DATA(node);
2191         int isolated = 0;
2192         struct page *new_page = NULL;
2193         int page_lru = page_is_file_lru(page);
2194         unsigned long start = address & HPAGE_PMD_MASK;
2195
2196         if (is_shared_exec_page(vma, page))
2197                 goto out;
2198
2199         new_page = alloc_pages_node(node,
2200                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2201                 HPAGE_PMD_ORDER);
2202         if (!new_page)
2203                 goto out_fail;
2204         prep_transhuge_page(new_page);
2205
2206         isolated = numamigrate_isolate_page(pgdat, page);
2207         if (!isolated) {
2208                 put_page(new_page);
2209                 goto out_fail;
2210         }
2211
2212         /* Prepare a page as a migration target */
2213         __SetPageLocked(new_page);
2214         if (PageSwapBacked(page))
2215                 __SetPageSwapBacked(new_page);
2216
2217         /* anon mapping, we can simply copy page->mapping to the new page: */
2218         new_page->mapping = page->mapping;
2219         new_page->index = page->index;
2220         /* flush the cache before copying using the kernel virtual address */
2221         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2222         migrate_page_copy(new_page, page);
2223         WARN_ON(PageLRU(new_page));
2224
2225         /* Recheck the target PMD */
2226         ptl = pmd_lock(mm, pmd);
2227         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2228                 spin_unlock(ptl);
2229
2230                 /* Reverse changes made by migrate_page_copy() */
2231                 if (TestClearPageActive(new_page))
2232                         SetPageActive(page);
2233                 if (TestClearPageUnevictable(new_page))
2234                         SetPageUnevictable(page);
2235
2236                 unlock_page(new_page);
2237                 put_page(new_page);             /* Free it */
2238
2239                 /* Retake the callers reference and putback on LRU */
2240                 get_page(page);
2241                 putback_lru_page(page);
2242                 mod_node_page_state(page_pgdat(page),
2243                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2244
2245                 goto out_unlock;
2246         }
2247
2248         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2249         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2250
2251         /*
2252          * Overwrite the old entry under pagetable lock and establish
2253          * the new PTE. Any parallel GUP will either observe the old
2254          * page blocking on the page lock, block on the page table
2255          * lock or observe the new page. The SetPageUptodate on the
2256          * new page and page_add_new_anon_rmap guarantee the copy is
2257          * visible before the pagetable update.
2258          */
2259         page_add_anon_rmap(new_page, vma, start, true);
2260         /*
2261          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2262          * has already been flushed globally.  So no TLB can be currently
2263          * caching this non present pmd mapping.  There's no need to clear the
2264          * pmd before doing set_pmd_at(), nor to flush the TLB after
2265          * set_pmd_at().  Clearing the pmd here would introduce a race
2266          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2267          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2268          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2269          * pmd.
2270          */
2271         set_pmd_at(mm, start, pmd, entry);
2272         update_mmu_cache_pmd(vma, address, &entry);
2273
2274         page_ref_unfreeze(page, 2);
2275         mlock_migrate_page(new_page, page);
2276         page_remove_rmap(page, true);
2277         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2278
2279         spin_unlock(ptl);
2280
2281         /* Take an "isolate" reference and put new page on the LRU. */
2282         get_page(new_page);
2283         putback_lru_page(new_page);
2284
2285         unlock_page(new_page);
2286         unlock_page(page);
2287         put_page(page);                 /* Drop the rmap reference */
2288         put_page(page);                 /* Drop the LRU isolation reference */
2289
2290         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2291         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2292
2293         mod_node_page_state(page_pgdat(page),
2294                         NR_ISOLATED_ANON + page_lru,
2295                         -HPAGE_PMD_NR);
2296         return isolated;
2297
2298 out_fail:
2299         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2300         ptl = pmd_lock(mm, pmd);
2301         if (pmd_same(*pmd, entry)) {
2302                 entry = pmd_modify(entry, vma->vm_page_prot);
2303                 set_pmd_at(mm, start, pmd, entry);
2304                 update_mmu_cache_pmd(vma, address, &entry);
2305         }
2306         spin_unlock(ptl);
2307
2308 out_unlock:
2309         unlock_page(page);
2310 out:
2311         put_page(page);
2312         return 0;
2313 }
2314 #endif /* CONFIG_NUMA_BALANCING */
2315
2316 #endif /* CONFIG_NUMA */
2317
2318 #ifdef CONFIG_DEVICE_PRIVATE
2319 static int migrate_vma_collect_hole(unsigned long start,
2320                                     unsigned long end,
2321                                     __always_unused int depth,
2322                                     struct mm_walk *walk)
2323 {
2324         struct migrate_vma *migrate = walk->private;
2325         unsigned long addr;
2326
2327         /* Only allow populating anonymous memory. */
2328         if (!vma_is_anonymous(walk->vma)) {
2329                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2330                         migrate->src[migrate->npages] = 0;
2331                         migrate->dst[migrate->npages] = 0;
2332                         migrate->npages++;
2333                 }
2334                 return 0;
2335         }
2336
2337         for (addr = start; addr < end; addr += PAGE_SIZE) {
2338                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2339                 migrate->dst[migrate->npages] = 0;
2340                 migrate->npages++;
2341                 migrate->cpages++;
2342         }
2343
2344         return 0;
2345 }
2346
2347 static int migrate_vma_collect_skip(unsigned long start,
2348                                     unsigned long end,
2349                                     struct mm_walk *walk)
2350 {
2351         struct migrate_vma *migrate = walk->private;
2352         unsigned long addr;
2353
2354         for (addr = start; addr < end; addr += PAGE_SIZE) {
2355                 migrate->dst[migrate->npages] = 0;
2356                 migrate->src[migrate->npages++] = 0;
2357         }
2358
2359         return 0;
2360 }
2361
2362 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2363                                    unsigned long start,
2364                                    unsigned long end,
2365                                    struct mm_walk *walk)
2366 {
2367         struct migrate_vma *migrate = walk->private;
2368         struct vm_area_struct *vma = walk->vma;
2369         struct mm_struct *mm = vma->vm_mm;
2370         unsigned long addr = start, unmapped = 0;
2371         spinlock_t *ptl;
2372         pte_t *ptep;
2373
2374 again:
2375         if (pmd_none(*pmdp))
2376                 return migrate_vma_collect_hole(start, end, -1, walk);
2377
2378         if (pmd_trans_huge(*pmdp)) {
2379                 struct page *page;
2380
2381                 ptl = pmd_lock(mm, pmdp);
2382                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2383                         spin_unlock(ptl);
2384                         goto again;
2385                 }
2386
2387                 page = pmd_page(*pmdp);
2388                 if (is_huge_zero_page(page)) {
2389                         spin_unlock(ptl);
2390                         split_huge_pmd(vma, pmdp, addr);
2391                         if (pmd_trans_unstable(pmdp))
2392                                 return migrate_vma_collect_skip(start, end,
2393                                                                 walk);
2394                 } else {
2395                         int ret;
2396
2397                         get_page(page);
2398                         spin_unlock(ptl);
2399                         if (unlikely(!trylock_page(page)))
2400                                 return migrate_vma_collect_skip(start, end,
2401                                                                 walk);
2402                         ret = split_huge_page(page);
2403                         unlock_page(page);
2404                         put_page(page);
2405                         if (ret)
2406                                 return migrate_vma_collect_skip(start, end,
2407                                                                 walk);
2408                         if (pmd_none(*pmdp))
2409                                 return migrate_vma_collect_hole(start, end, -1,
2410                                                                 walk);
2411                 }
2412         }
2413
2414         if (unlikely(pmd_bad(*pmdp)))
2415                 return migrate_vma_collect_skip(start, end, walk);
2416
2417         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2418         arch_enter_lazy_mmu_mode();
2419
2420         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2421                 unsigned long mpfn = 0, pfn;
2422                 struct page *page;
2423                 swp_entry_t entry;
2424                 pte_t pte;
2425
2426                 pte = *ptep;
2427
2428                 if (pte_none(pte)) {
2429                         if (vma_is_anonymous(vma)) {
2430                                 mpfn = MIGRATE_PFN_MIGRATE;
2431                                 migrate->cpages++;
2432                         }
2433                         goto next;
2434                 }
2435
2436                 if (!pte_present(pte)) {
2437                         /*
2438                          * Only care about unaddressable device page special
2439                          * page table entry. Other special swap entries are not
2440                          * migratable, and we ignore regular swapped page.
2441                          */
2442                         entry = pte_to_swp_entry(pte);
2443                         if (!is_device_private_entry(entry))
2444                                 goto next;
2445
2446                         page = device_private_entry_to_page(entry);
2447                         if (!(migrate->flags &
2448                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2449                             page->pgmap->owner != migrate->pgmap_owner)
2450                                 goto next;
2451
2452                         mpfn = migrate_pfn(page_to_pfn(page)) |
2453                                         MIGRATE_PFN_MIGRATE;
2454                         if (is_write_device_private_entry(entry))
2455                                 mpfn |= MIGRATE_PFN_WRITE;
2456                 } else {
2457                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2458                                 goto next;
2459                         pfn = pte_pfn(pte);
2460                         if (is_zero_pfn(pfn)) {
2461                                 mpfn = MIGRATE_PFN_MIGRATE;
2462                                 migrate->cpages++;
2463                                 goto next;
2464                         }
2465                         page = vm_normal_page(migrate->vma, addr, pte);
2466                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2467                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2468                 }
2469
2470                 /* FIXME support THP */
2471                 if (!page || !page->mapping || PageTransCompound(page)) {
2472                         mpfn = 0;
2473                         goto next;
2474                 }
2475
2476                 /*
2477                  * By getting a reference on the page we pin it and that blocks
2478                  * any kind of migration. Side effect is that it "freezes" the
2479                  * pte.
2480                  *
2481                  * We drop this reference after isolating the page from the lru
2482                  * for non device page (device page are not on the lru and thus
2483                  * can't be dropped from it).
2484                  */
2485                 get_page(page);
2486                 migrate->cpages++;
2487
2488                 /*
2489                  * Optimize for the common case where page is only mapped once
2490                  * in one process. If we can lock the page, then we can safely
2491                  * set up a special migration page table entry now.
2492                  */
2493                 if (trylock_page(page)) {
2494                         pte_t swp_pte;
2495
2496                         mpfn |= MIGRATE_PFN_LOCKED;
2497                         ptep_get_and_clear(mm, addr, ptep);
2498
2499                         /* Setup special migration page table entry */
2500                         entry = make_migration_entry(page, mpfn &
2501                                                      MIGRATE_PFN_WRITE);
2502                         swp_pte = swp_entry_to_pte(entry);
2503                         if (pte_present(pte)) {
2504                                 if (pte_soft_dirty(pte))
2505                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2506                                 if (pte_uffd_wp(pte))
2507                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2508                         } else {
2509                                 if (pte_swp_soft_dirty(pte))
2510                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2511                                 if (pte_swp_uffd_wp(pte))
2512                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2513                         }
2514                         set_pte_at(mm, addr, ptep, swp_pte);
2515
2516                         /*
2517                          * This is like regular unmap: we remove the rmap and
2518                          * drop page refcount. Page won't be freed, as we took
2519                          * a reference just above.
2520                          */
2521                         page_remove_rmap(page, false);
2522                         put_page(page);
2523
2524                         if (pte_present(pte))
2525                                 unmapped++;
2526                 }
2527
2528 next:
2529                 migrate->dst[migrate->npages] = 0;
2530                 migrate->src[migrate->npages++] = mpfn;
2531         }
2532         arch_leave_lazy_mmu_mode();
2533         pte_unmap_unlock(ptep - 1, ptl);
2534
2535         /* Only flush the TLB if we actually modified any entries */
2536         if (unmapped)
2537                 flush_tlb_range(walk->vma, start, end);
2538
2539         return 0;
2540 }
2541
2542 static const struct mm_walk_ops migrate_vma_walk_ops = {
2543         .pmd_entry              = migrate_vma_collect_pmd,
2544         .pte_hole               = migrate_vma_collect_hole,
2545 };
2546
2547 /*
2548  * migrate_vma_collect() - collect pages over a range of virtual addresses
2549  * @migrate: migrate struct containing all migration information
2550  *
2551  * This will walk the CPU page table. For each virtual address backed by a
2552  * valid page, it updates the src array and takes a reference on the page, in
2553  * order to pin the page until we lock it and unmap it.
2554  */
2555 static void migrate_vma_collect(struct migrate_vma *migrate)
2556 {
2557         struct mmu_notifier_range range;
2558
2559         /*
2560          * Note that the pgmap_owner is passed to the mmu notifier callback so
2561          * that the registered device driver can skip invalidating device
2562          * private page mappings that won't be migrated.
2563          */
2564         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2565                 migrate->vma->vm_mm, migrate->start, migrate->end,
2566                 migrate->pgmap_owner);
2567         mmu_notifier_invalidate_range_start(&range);
2568
2569         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2570                         &migrate_vma_walk_ops, migrate);
2571
2572         mmu_notifier_invalidate_range_end(&range);
2573         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2574 }
2575
2576 /*
2577  * migrate_vma_check_page() - check if page is pinned or not
2578  * @page: struct page to check
2579  *
2580  * Pinned pages cannot be migrated. This is the same test as in
2581  * migrate_page_move_mapping(), except that here we allow migration of a
2582  * ZONE_DEVICE page.
2583  */
2584 static bool migrate_vma_check_page(struct page *page)
2585 {
2586         /*
2587          * One extra ref because caller holds an extra reference, either from
2588          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2589          * a device page.
2590          */
2591         int extra = 1;
2592
2593         /*
2594          * FIXME support THP (transparent huge page), it is bit more complex to
2595          * check them than regular pages, because they can be mapped with a pmd
2596          * or with a pte (split pte mapping).
2597          */
2598         if (PageCompound(page))
2599                 return false;
2600
2601         /* Page from ZONE_DEVICE have one extra reference */
2602         if (is_zone_device_page(page)) {
2603                 /*
2604                  * Private page can never be pin as they have no valid pte and
2605                  * GUP will fail for those. Yet if there is a pending migration
2606                  * a thread might try to wait on the pte migration entry and
2607                  * will bump the page reference count. Sadly there is no way to
2608                  * differentiate a regular pin from migration wait. Hence to
2609                  * avoid 2 racing thread trying to migrate back to CPU to enter
2610                  * infinite loop (one stopping migration because the other is
2611                  * waiting on pte migration entry). We always return true here.
2612                  *
2613                  * FIXME proper solution is to rework migration_entry_wait() so
2614                  * it does not need to take a reference on page.
2615                  */
2616                 return is_device_private_page(page);
2617         }
2618
2619         /* For file back page */
2620         if (page_mapping(page))
2621                 extra += 1 + page_has_private(page);
2622
2623         if ((page_count(page) - extra) > page_mapcount(page))
2624                 return false;
2625
2626         return true;
2627 }
2628
2629 /*
2630  * migrate_vma_prepare() - lock pages and isolate them from the lru
2631  * @migrate: migrate struct containing all migration information
2632  *
2633  * This locks pages that have been collected by migrate_vma_collect(). Once each
2634  * page is locked it is isolated from the lru (for non-device pages). Finally,
2635  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2636  * migrated by concurrent kernel threads.
2637  */
2638 static void migrate_vma_prepare(struct migrate_vma *migrate)
2639 {
2640         const unsigned long npages = migrate->npages;
2641         const unsigned long start = migrate->start;
2642         unsigned long addr, i, restore = 0;
2643         bool allow_drain = true;
2644
2645         lru_add_drain();
2646
2647         for (i = 0; (i < npages) && migrate->cpages; i++) {
2648                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2649                 bool remap = true;
2650
2651                 if (!page)
2652                         continue;
2653
2654                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2655                         /*
2656                          * Because we are migrating several pages there can be
2657                          * a deadlock between 2 concurrent migration where each
2658                          * are waiting on each other page lock.
2659                          *
2660                          * Make migrate_vma() a best effort thing and backoff
2661                          * for any page we can not lock right away.
2662                          */
2663                         if (!trylock_page(page)) {
2664                                 migrate->src[i] = 0;
2665                                 migrate->cpages--;
2666                                 put_page(page);
2667                                 continue;
2668                         }
2669                         remap = false;
2670                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2671                 }
2672
2673                 /* ZONE_DEVICE pages are not on LRU */
2674                 if (!is_zone_device_page(page)) {
2675                         if (!PageLRU(page) && allow_drain) {
2676                                 /* Drain CPU's pagevec */
2677                                 lru_add_drain_all();
2678                                 allow_drain = false;
2679                         }
2680
2681                         if (isolate_lru_page(page)) {
2682                                 if (remap) {
2683                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2684                                         migrate->cpages--;
2685                                         restore++;
2686                                 } else {
2687                                         migrate->src[i] = 0;
2688                                         unlock_page(page);
2689                                         migrate->cpages--;
2690                                         put_page(page);
2691                                 }
2692                                 continue;
2693                         }
2694
2695                         /* Drop the reference we took in collect */
2696                         put_page(page);
2697                 }
2698
2699                 if (!migrate_vma_check_page(page)) {
2700                         if (remap) {
2701                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2702                                 migrate->cpages--;
2703                                 restore++;
2704
2705                                 if (!is_zone_device_page(page)) {
2706                                         get_page(page);
2707                                         putback_lru_page(page);
2708                                 }
2709                         } else {
2710                                 migrate->src[i] = 0;
2711                                 unlock_page(page);
2712                                 migrate->cpages--;
2713
2714                                 if (!is_zone_device_page(page))
2715                                         putback_lru_page(page);
2716                                 else
2717                                         put_page(page);
2718                         }
2719                 }
2720         }
2721
2722         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2723                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2724
2725                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2726                         continue;
2727
2728                 remove_migration_pte(page, migrate->vma, addr, page);
2729
2730                 migrate->src[i] = 0;
2731                 unlock_page(page);
2732                 put_page(page);
2733                 restore--;
2734         }
2735 }
2736
2737 /*
2738  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2739  * @migrate: migrate struct containing all migration information
2740  *
2741  * Replace page mapping (CPU page table pte) with a special migration pte entry
2742  * and check again if it has been pinned. Pinned pages are restored because we
2743  * cannot migrate them.
2744  *
2745  * This is the last step before we call the device driver callback to allocate
2746  * destination memory and copy contents of original page over to new page.
2747  */
2748 static void migrate_vma_unmap(struct migrate_vma *migrate)
2749 {
2750         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2751         const unsigned long npages = migrate->npages;
2752         const unsigned long start = migrate->start;
2753         unsigned long addr, i, restore = 0;
2754
2755         for (i = 0; i < npages; i++) {
2756                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2757
2758                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2759                         continue;
2760
2761                 if (page_mapped(page)) {
2762                         try_to_unmap(page, flags);
2763                         if (page_mapped(page))
2764                                 goto restore;
2765                 }
2766
2767                 if (migrate_vma_check_page(page))
2768                         continue;
2769
2770 restore:
2771                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2772                 migrate->cpages--;
2773                 restore++;
2774         }
2775
2776         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2777                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2778
2779                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2780                         continue;
2781
2782                 remove_migration_ptes(page, page, false);
2783
2784                 migrate->src[i] = 0;
2785                 unlock_page(page);
2786                 restore--;
2787
2788                 if (is_zone_device_page(page))
2789                         put_page(page);
2790                 else
2791                         putback_lru_page(page);
2792         }
2793 }
2794
2795 /**
2796  * migrate_vma_setup() - prepare to migrate a range of memory
2797  * @args: contains the vma, start, and pfns arrays for the migration
2798  *
2799  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2800  * without an error.
2801  *
2802  * Prepare to migrate a range of memory virtual address range by collecting all
2803  * the pages backing each virtual address in the range, saving them inside the
2804  * src array.  Then lock those pages and unmap them. Once the pages are locked
2805  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2806  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2807  * corresponding src array entry.  Then restores any pages that are pinned, by
2808  * remapping and unlocking those pages.
2809  *
2810  * The caller should then allocate destination memory and copy source memory to
2811  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2812  * flag set).  Once these are allocated and copied, the caller must update each
2813  * corresponding entry in the dst array with the pfn value of the destination
2814  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2815  * (destination pages must have their struct pages locked, via lock_page()).
2816  *
2817  * Note that the caller does not have to migrate all the pages that are marked
2818  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2819  * device memory to system memory.  If the caller cannot migrate a device page
2820  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2821  * consequences for the userspace process, so it must be avoided if at all
2822  * possible.
2823  *
2824  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2825  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2826  * allowing the caller to allocate device memory for those unback virtual
2827  * address.  For this the caller simply has to allocate device memory and
2828  * properly set the destination entry like for regular migration.  Note that
2829  * this can still fails and thus inside the device driver must check if the
2830  * migration was successful for those entries after calling migrate_vma_pages()
2831  * just like for regular migration.
2832  *
2833  * After that, the callers must call migrate_vma_pages() to go over each entry
2834  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2835  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2836  * then migrate_vma_pages() to migrate struct page information from the source
2837  * struct page to the destination struct page.  If it fails to migrate the
2838  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2839  * src array.
2840  *
2841  * At this point all successfully migrated pages have an entry in the src
2842  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2843  * array entry with MIGRATE_PFN_VALID flag set.
2844  *
2845  * Once migrate_vma_pages() returns the caller may inspect which pages were
2846  * successfully migrated, and which were not.  Successfully migrated pages will
2847  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2848  *
2849  * It is safe to update device page table after migrate_vma_pages() because
2850  * both destination and source page are still locked, and the mmap_lock is held
2851  * in read mode (hence no one can unmap the range being migrated).
2852  *
2853  * Once the caller is done cleaning up things and updating its page table (if it
2854  * chose to do so, this is not an obligation) it finally calls
2855  * migrate_vma_finalize() to update the CPU page table to point to new pages
2856  * for successfully migrated pages or otherwise restore the CPU page table to
2857  * point to the original source pages.
2858  */
2859 int migrate_vma_setup(struct migrate_vma *args)
2860 {
2861         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2862
2863         args->start &= PAGE_MASK;
2864         args->end &= PAGE_MASK;
2865         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2866             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2867                 return -EINVAL;
2868         if (nr_pages <= 0)
2869                 return -EINVAL;
2870         if (args->start < args->vma->vm_start ||
2871             args->start >= args->vma->vm_end)
2872                 return -EINVAL;
2873         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2874                 return -EINVAL;
2875         if (!args->src || !args->dst)
2876                 return -EINVAL;
2877
2878         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2879         args->cpages = 0;
2880         args->npages = 0;
2881
2882         migrate_vma_collect(args);
2883
2884         if (args->cpages)
2885                 migrate_vma_prepare(args);
2886         if (args->cpages)
2887                 migrate_vma_unmap(args);
2888
2889         /*
2890          * At this point pages are locked and unmapped, and thus they have
2891          * stable content and can safely be copied to destination memory that
2892          * is allocated by the drivers.
2893          */
2894         return 0;
2895
2896 }
2897 EXPORT_SYMBOL(migrate_vma_setup);
2898
2899 /*
2900  * This code closely matches the code in:
2901  *   __handle_mm_fault()
2902  *     handle_pte_fault()
2903  *       do_anonymous_page()
2904  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2905  * private page.
2906  */
2907 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2908                                     unsigned long addr,
2909                                     struct page *page,
2910                                     unsigned long *src)
2911 {
2912         struct vm_area_struct *vma = migrate->vma;
2913         struct mm_struct *mm = vma->vm_mm;
2914         bool flush = false;
2915         spinlock_t *ptl;
2916         pte_t entry;
2917         pgd_t *pgdp;
2918         p4d_t *p4dp;
2919         pud_t *pudp;
2920         pmd_t *pmdp;
2921         pte_t *ptep;
2922
2923         /* Only allow populating anonymous memory */
2924         if (!vma_is_anonymous(vma))
2925                 goto abort;
2926
2927         pgdp = pgd_offset(mm, addr);
2928         p4dp = p4d_alloc(mm, pgdp, addr);
2929         if (!p4dp)
2930                 goto abort;
2931         pudp = pud_alloc(mm, p4dp, addr);
2932         if (!pudp)
2933                 goto abort;
2934         pmdp = pmd_alloc(mm, pudp, addr);
2935         if (!pmdp)
2936                 goto abort;
2937
2938         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2939                 goto abort;
2940
2941         /*
2942          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2943          * pte_offset_map() on pmds where a huge pmd might be created
2944          * from a different thread.
2945          *
2946          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2947          * parallel threads are excluded by other means.
2948          *
2949          * Here we only have mmap_read_lock(mm).
2950          */
2951         if (pte_alloc(mm, pmdp))
2952                 goto abort;
2953
2954         /* See the comment in pte_alloc_one_map() */
2955         if (unlikely(pmd_trans_unstable(pmdp)))
2956                 goto abort;
2957
2958         if (unlikely(anon_vma_prepare(vma)))
2959                 goto abort;
2960         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2961                 goto abort;
2962
2963         /*
2964          * The memory barrier inside __SetPageUptodate makes sure that
2965          * preceding stores to the page contents become visible before
2966          * the set_pte_at() write.
2967          */
2968         __SetPageUptodate(page);
2969
2970         if (is_zone_device_page(page)) {
2971                 if (is_device_private_page(page)) {
2972                         swp_entry_t swp_entry;
2973
2974                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2975                         entry = swp_entry_to_pte(swp_entry);
2976                 }
2977         } else {
2978                 entry = mk_pte(page, vma->vm_page_prot);
2979                 if (vma->vm_flags & VM_WRITE)
2980                         entry = pte_mkwrite(pte_mkdirty(entry));
2981         }
2982
2983         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2984
2985         if (check_stable_address_space(mm))
2986                 goto unlock_abort;
2987
2988         if (pte_present(*ptep)) {
2989                 unsigned long pfn = pte_pfn(*ptep);
2990
2991                 if (!is_zero_pfn(pfn))
2992                         goto unlock_abort;
2993                 flush = true;
2994         } else if (!pte_none(*ptep))
2995                 goto unlock_abort;
2996
2997         /*
2998          * Check for userfaultfd but do not deliver the fault. Instead,
2999          * just back off.
3000          */
3001         if (userfaultfd_missing(vma))
3002                 goto unlock_abort;
3003
3004         inc_mm_counter(mm, MM_ANONPAGES);
3005         page_add_new_anon_rmap(page, vma, addr, false);
3006         if (!is_zone_device_page(page))
3007                 lru_cache_add_inactive_or_unevictable(page, vma);
3008         get_page(page);
3009
3010         if (flush) {
3011                 flush_cache_page(vma, addr, pte_pfn(*ptep));
3012                 ptep_clear_flush_notify(vma, addr, ptep);
3013                 set_pte_at_notify(mm, addr, ptep, entry);
3014                 update_mmu_cache(vma, addr, ptep);
3015         } else {
3016                 /* No need to invalidate - it was non-present before */
3017                 set_pte_at(mm, addr, ptep, entry);
3018                 update_mmu_cache(vma, addr, ptep);
3019         }
3020
3021         pte_unmap_unlock(ptep, ptl);
3022         *src = MIGRATE_PFN_MIGRATE;
3023         return;
3024
3025 unlock_abort:
3026         pte_unmap_unlock(ptep, ptl);
3027 abort:
3028         *src &= ~MIGRATE_PFN_MIGRATE;
3029 }
3030
3031 /**
3032  * migrate_vma_pages() - migrate meta-data from src page to dst page
3033  * @migrate: migrate struct containing all migration information
3034  *
3035  * This migrates struct page meta-data from source struct page to destination
3036  * struct page. This effectively finishes the migration from source page to the
3037  * destination page.
3038  */
3039 void migrate_vma_pages(struct migrate_vma *migrate)
3040 {
3041         const unsigned long npages = migrate->npages;
3042         const unsigned long start = migrate->start;
3043         struct mmu_notifier_range range;
3044         unsigned long addr, i;
3045         bool notified = false;
3046
3047         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3048                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3049                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3050                 struct address_space *mapping;
3051                 int r;
3052
3053                 if (!newpage) {
3054                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3055                         continue;
3056                 }
3057
3058                 if (!page) {
3059                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3060                                 continue;
3061                         if (!notified) {
3062                                 notified = true;
3063
3064                                 mmu_notifier_range_init_migrate(&range, 0,
3065                                         migrate->vma, migrate->vma->vm_mm,
3066                                         addr, migrate->end,
3067                                         migrate->pgmap_owner);
3068                                 mmu_notifier_invalidate_range_start(&range);
3069                         }
3070                         migrate_vma_insert_page(migrate, addr, newpage,
3071                                                 &migrate->src[i]);
3072                         continue;
3073                 }
3074
3075                 mapping = page_mapping(page);
3076
3077                 if (is_zone_device_page(newpage)) {
3078                         if (is_device_private_page(newpage)) {
3079                                 /*
3080                                  * For now only support private anonymous when
3081                                  * migrating to un-addressable device memory.
3082                                  */
3083                                 if (mapping) {
3084                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3085                                         continue;
3086                                 }
3087                         } else {
3088                                 /*
3089                                  * Other types of ZONE_DEVICE page are not
3090                                  * supported.
3091                                  */
3092                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3093                                 continue;
3094                         }
3095                 }
3096
3097                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3098                 if (r != MIGRATEPAGE_SUCCESS)
3099                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3100         }
3101
3102         /*
3103          * No need to double call mmu_notifier->invalidate_range() callback as
3104          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3105          * did already call it.
3106          */
3107         if (notified)
3108                 mmu_notifier_invalidate_range_only_end(&range);
3109 }
3110 EXPORT_SYMBOL(migrate_vma_pages);
3111
3112 /**
3113  * migrate_vma_finalize() - restore CPU page table entry
3114  * @migrate: migrate struct containing all migration information
3115  *
3116  * This replaces the special migration pte entry with either a mapping to the
3117  * new page if migration was successful for that page, or to the original page
3118  * otherwise.
3119  *
3120  * This also unlocks the pages and puts them back on the lru, or drops the extra
3121  * refcount, for device pages.
3122  */
3123 void migrate_vma_finalize(struct migrate_vma *migrate)
3124 {
3125         const unsigned long npages = migrate->npages;
3126         unsigned long i;
3127
3128         for (i = 0; i < npages; i++) {
3129                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3130                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3131
3132                 if (!page) {
3133                         if (newpage) {
3134                                 unlock_page(newpage);
3135                                 put_page(newpage);
3136                         }
3137                         continue;
3138                 }
3139
3140                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3141                         if (newpage) {
3142                                 unlock_page(newpage);
3143                                 put_page(newpage);
3144                         }
3145                         newpage = page;
3146                 }
3147
3148                 remove_migration_ptes(page, newpage, false);
3149                 unlock_page(page);
3150
3151                 if (is_zone_device_page(page))
3152                         put_page(page);
3153                 else
3154                         putback_lru_page(page);
3155
3156                 if (newpage != page) {
3157                         unlock_page(newpage);
3158                         if (is_zone_device_page(newpage))
3159                                 put_page(newpage);
3160                         else
3161                                 putback_lru_page(newpage);
3162                 }
3163         }
3164 }
3165 EXPORT_SYMBOL(migrate_vma_finalize);
3166 #endif /* CONFIG_DEVICE_PRIVATE */