mptcp: fix NULL ptr dereference on bad MPJ
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_device_private_page(new))) {
250                         entry = make_device_private_entry(new, pte_write(pte));
251                         pte = swp_entry_to_pte(entry);
252                         if (pte_swp_soft_dirty(*pvmw.pte))
253                                 pte = pte_swp_mksoft_dirty(pte);
254                         if (pte_swp_uffd_wp(*pvmw.pte))
255                                 pte = pte_swp_mkuffd_wp(pte);
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += thp_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 struct lruvec *old_lruvec, *new_lruvec;
494                 struct mem_cgroup *memcg;
495
496                 memcg = page_memcg(page);
497                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500                 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501                 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503                         __dec_lruvec_state(old_lruvec, NR_SHMEM);
504                         __inc_lruvec_state(new_lruvec, NR_SHMEM);
505                 }
506                 if (dirty && mapping_can_writeback(mapping)) {
507                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511                 }
512         }
513         local_irq_enable();
514
515         return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524                                    struct page *newpage, struct page *page)
525 {
526         XA_STATE(xas, &mapping->i_pages, page_index(page));
527         int expected_count;
528
529         xas_lock_irq(&xas);
530         expected_count = 2 + page_has_private(page);
531         if (page_count(page) != expected_count || xas_load(&xas) != page) {
532                 xas_unlock_irq(&xas);
533                 return -EAGAIN;
534         }
535
536         if (!page_ref_freeze(page, expected_count)) {
537                 xas_unlock_irq(&xas);
538                 return -EAGAIN;
539         }
540
541         newpage->index = page->index;
542         newpage->mapping = page->mapping;
543
544         get_page(newpage);
545
546         xas_store(&xas, newpage);
547
548         page_ref_unfreeze(page, expected_count - 1);
549
550         xas_unlock_irq(&xas);
551
552         return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561                                 int nr_pages)
562 {
563         int i;
564         struct page *dst_base = dst;
565         struct page *src_base = src;
566
567         for (i = 0; i < nr_pages; ) {
568                 cond_resched();
569                 copy_highpage(dst, src);
570
571                 i++;
572                 dst = mem_map_next(dst, dst_base, i);
573                 src = mem_map_next(src, src_base, i);
574         }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579         int i;
580         int nr_pages;
581
582         if (PageHuge(src)) {
583                 /* hugetlbfs page */
584                 struct hstate *h = page_hstate(src);
585                 nr_pages = pages_per_huge_page(h);
586
587                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588                         __copy_gigantic_page(dst, src, nr_pages);
589                         return;
590                 }
591         } else {
592                 /* thp page */
593                 BUG_ON(!PageTransHuge(src));
594                 nr_pages = thp_nr_pages(src);
595         }
596
597         for (i = 0; i < nr_pages; i++) {
598                 cond_resched();
599                 copy_highpage(dst + i, src + i);
600         }
601 }
602
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608         int cpupid;
609
610         if (PageError(page))
611                 SetPageError(newpage);
612         if (PageReferenced(page))
613                 SetPageReferenced(newpage);
614         if (PageUptodate(page))
615                 SetPageUptodate(newpage);
616         if (TestClearPageActive(page)) {
617                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618                 SetPageActive(newpage);
619         } else if (TestClearPageUnevictable(page))
620                 SetPageUnevictable(newpage);
621         if (PageWorkingset(page))
622                 SetPageWorkingset(newpage);
623         if (PageChecked(page))
624                 SetPageChecked(newpage);
625         if (PageMappedToDisk(page))
626                 SetPageMappedToDisk(newpage);
627
628         /* Move dirty on pages not done by migrate_page_move_mapping() */
629         if (PageDirty(page))
630                 SetPageDirty(newpage);
631
632         if (page_is_young(page))
633                 set_page_young(newpage);
634         if (page_is_idle(page))
635                 set_page_idle(newpage);
636
637         /*
638          * Copy NUMA information to the new page, to prevent over-eager
639          * future migrations of this same page.
640          */
641         cpupid = page_cpupid_xchg_last(page, -1);
642         page_cpupid_xchg_last(newpage, cpupid);
643
644         ksm_migrate_page(newpage, page);
645         /*
646          * Please do not reorder this without considering how mm/ksm.c's
647          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648          */
649         if (PageSwapCache(page))
650                 ClearPageSwapCache(page);
651         ClearPagePrivate(page);
652         set_page_private(page, 0);
653
654         /*
655          * If any waiters have accumulated on the new page then
656          * wake them up.
657          */
658         if (PageWriteback(newpage))
659                 end_page_writeback(newpage);
660
661         /*
662          * PG_readahead shares the same bit with PG_reclaim.  The above
663          * end_page_writeback() may clear PG_readahead mistakenly, so set the
664          * bit after that.
665          */
666         if (PageReadahead(page))
667                 SetPageReadahead(newpage);
668
669         copy_page_owner(page, newpage);
670
671         if (!PageHuge(page))
672                 mem_cgroup_migrate(page, newpage);
673 }
674 EXPORT_SYMBOL(migrate_page_states);
675
676 void migrate_page_copy(struct page *newpage, struct page *page)
677 {
678         if (PageHuge(page) || PageTransHuge(page))
679                 copy_huge_page(newpage, page);
680         else
681                 copy_highpage(newpage, page);
682
683         migrate_page_states(newpage, page);
684 }
685 EXPORT_SYMBOL(migrate_page_copy);
686
687 /************************************************************
688  *                    Migration functions
689  ***********************************************************/
690
691 /*
692  * Common logic to directly migrate a single LRU page suitable for
693  * pages that do not use PagePrivate/PagePrivate2.
694  *
695  * Pages are locked upon entry and exit.
696  */
697 int migrate_page(struct address_space *mapping,
698                 struct page *newpage, struct page *page,
699                 enum migrate_mode mode)
700 {
701         int rc;
702
703         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
704
705         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
706
707         if (rc != MIGRATEPAGE_SUCCESS)
708                 return rc;
709
710         if (mode != MIGRATE_SYNC_NO_COPY)
711                 migrate_page_copy(newpage, page);
712         else
713                 migrate_page_states(newpage, page);
714         return MIGRATEPAGE_SUCCESS;
715 }
716 EXPORT_SYMBOL(migrate_page);
717
718 #ifdef CONFIG_BLOCK
719 /* Returns true if all buffers are successfully locked */
720 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721                                                         enum migrate_mode mode)
722 {
723         struct buffer_head *bh = head;
724
725         /* Simple case, sync compaction */
726         if (mode != MIGRATE_ASYNC) {
727                 do {
728                         lock_buffer(bh);
729                         bh = bh->b_this_page;
730
731                 } while (bh != head);
732
733                 return true;
734         }
735
736         /* async case, we cannot block on lock_buffer so use trylock_buffer */
737         do {
738                 if (!trylock_buffer(bh)) {
739                         /*
740                          * We failed to lock the buffer and cannot stall in
741                          * async migration. Release the taken locks
742                          */
743                         struct buffer_head *failed_bh = bh;
744                         bh = head;
745                         while (bh != failed_bh) {
746                                 unlock_buffer(bh);
747                                 bh = bh->b_this_page;
748                         }
749                         return false;
750                 }
751
752                 bh = bh->b_this_page;
753         } while (bh != head);
754         return true;
755 }
756
757 static int __buffer_migrate_page(struct address_space *mapping,
758                 struct page *newpage, struct page *page, enum migrate_mode mode,
759                 bool check_refs)
760 {
761         struct buffer_head *bh, *head;
762         int rc;
763         int expected_count;
764
765         if (!page_has_buffers(page))
766                 return migrate_page(mapping, newpage, page, mode);
767
768         /* Check whether page does not have extra refs before we do more work */
769         expected_count = expected_page_refs(mapping, page);
770         if (page_count(page) != expected_count)
771                 return -EAGAIN;
772
773         head = page_buffers(page);
774         if (!buffer_migrate_lock_buffers(head, mode))
775                 return -EAGAIN;
776
777         if (check_refs) {
778                 bool busy;
779                 bool invalidated = false;
780
781 recheck_buffers:
782                 busy = false;
783                 spin_lock(&mapping->private_lock);
784                 bh = head;
785                 do {
786                         if (atomic_read(&bh->b_count)) {
787                                 busy = true;
788                                 break;
789                         }
790                         bh = bh->b_this_page;
791                 } while (bh != head);
792                 if (busy) {
793                         if (invalidated) {
794                                 rc = -EAGAIN;
795                                 goto unlock_buffers;
796                         }
797                         spin_unlock(&mapping->private_lock);
798                         invalidate_bh_lrus();
799                         invalidated = true;
800                         goto recheck_buffers;
801                 }
802         }
803
804         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
805         if (rc != MIGRATEPAGE_SUCCESS)
806                 goto unlock_buffers;
807
808         attach_page_private(newpage, detach_page_private(page));
809
810         bh = head;
811         do {
812                 set_bh_page(bh, newpage, bh_offset(bh));
813                 bh = bh->b_this_page;
814
815         } while (bh != head);
816
817         if (mode != MIGRATE_SYNC_NO_COPY)
818                 migrate_page_copy(newpage, page);
819         else
820                 migrate_page_states(newpage, page);
821
822         rc = MIGRATEPAGE_SUCCESS;
823 unlock_buffers:
824         if (check_refs)
825                 spin_unlock(&mapping->private_lock);
826         bh = head;
827         do {
828                 unlock_buffer(bh);
829                 bh = bh->b_this_page;
830
831         } while (bh != head);
832
833         return rc;
834 }
835
836 /*
837  * Migration function for pages with buffers. This function can only be used
838  * if the underlying filesystem guarantees that no other references to "page"
839  * exist. For example attached buffer heads are accessed only under page lock.
840  */
841 int buffer_migrate_page(struct address_space *mapping,
842                 struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844         return __buffer_migrate_page(mapping, newpage, page, mode, false);
845 }
846 EXPORT_SYMBOL(buffer_migrate_page);
847
848 /*
849  * Same as above except that this variant is more careful and checks that there
850  * are also no buffer head references. This function is the right one for
851  * mappings where buffer heads are directly looked up and referenced (such as
852  * block device mappings).
853  */
854 int buffer_migrate_page_norefs(struct address_space *mapping,
855                 struct page *newpage, struct page *page, enum migrate_mode mode)
856 {
857         return __buffer_migrate_page(mapping, newpage, page, mode, true);
858 }
859 #endif
860
861 /*
862  * Writeback a page to clean the dirty state
863  */
864 static int writeout(struct address_space *mapping, struct page *page)
865 {
866         struct writeback_control wbc = {
867                 .sync_mode = WB_SYNC_NONE,
868                 .nr_to_write = 1,
869                 .range_start = 0,
870                 .range_end = LLONG_MAX,
871                 .for_reclaim = 1
872         };
873         int rc;
874
875         if (!mapping->a_ops->writepage)
876                 /* No write method for the address space */
877                 return -EINVAL;
878
879         if (!clear_page_dirty_for_io(page))
880                 /* Someone else already triggered a write */
881                 return -EAGAIN;
882
883         /*
884          * A dirty page may imply that the underlying filesystem has
885          * the page on some queue. So the page must be clean for
886          * migration. Writeout may mean we loose the lock and the
887          * page state is no longer what we checked for earlier.
888          * At this point we know that the migration attempt cannot
889          * be successful.
890          */
891         remove_migration_ptes(page, page, false);
892
893         rc = mapping->a_ops->writepage(page, &wbc);
894
895         if (rc != AOP_WRITEPAGE_ACTIVATE)
896                 /* unlocked. Relock */
897                 lock_page(page);
898
899         return (rc < 0) ? -EIO : -EAGAIN;
900 }
901
902 /*
903  * Default handling if a filesystem does not provide a migration function.
904  */
905 static int fallback_migrate_page(struct address_space *mapping,
906         struct page *newpage, struct page *page, enum migrate_mode mode)
907 {
908         if (PageDirty(page)) {
909                 /* Only writeback pages in full synchronous migration */
910                 switch (mode) {
911                 case MIGRATE_SYNC:
912                 case MIGRATE_SYNC_NO_COPY:
913                         break;
914                 default:
915                         return -EBUSY;
916                 }
917                 return writeout(mapping, page);
918         }
919
920         /*
921          * Buffers may be managed in a filesystem specific way.
922          * We must have no buffers or drop them.
923          */
924         if (page_has_private(page) &&
925             !try_to_release_page(page, GFP_KERNEL))
926                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927
928         return migrate_page(mapping, newpage, page, mode);
929 }
930
931 /*
932  * Move a page to a newly allocated page
933  * The page is locked and all ptes have been successfully removed.
934  *
935  * The new page will have replaced the old page if this function
936  * is successful.
937  *
938  * Return value:
939  *   < 0 - error code
940  *  MIGRATEPAGE_SUCCESS - success
941  */
942 static int move_to_new_page(struct page *newpage, struct page *page,
943                                 enum migrate_mode mode)
944 {
945         struct address_space *mapping;
946         int rc = -EAGAIN;
947         bool is_lru = !__PageMovable(page);
948
949         VM_BUG_ON_PAGE(!PageLocked(page), page);
950         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
951
952         mapping = page_mapping(page);
953
954         if (likely(is_lru)) {
955                 if (!mapping)
956                         rc = migrate_page(mapping, newpage, page, mode);
957                 else if (mapping->a_ops->migratepage)
958                         /*
959                          * Most pages have a mapping and most filesystems
960                          * provide a migratepage callback. Anonymous pages
961                          * are part of swap space which also has its own
962                          * migratepage callback. This is the most common path
963                          * for page migration.
964                          */
965                         rc = mapping->a_ops->migratepage(mapping, newpage,
966                                                         page, mode);
967                 else
968                         rc = fallback_migrate_page(mapping, newpage,
969                                                         page, mode);
970         } else {
971                 /*
972                  * In case of non-lru page, it could be released after
973                  * isolation step. In that case, we shouldn't try migration.
974                  */
975                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
976                 if (!PageMovable(page)) {
977                         rc = MIGRATEPAGE_SUCCESS;
978                         __ClearPageIsolated(page);
979                         goto out;
980                 }
981
982                 rc = mapping->a_ops->migratepage(mapping, newpage,
983                                                 page, mode);
984                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985                         !PageIsolated(page));
986         }
987
988         /*
989          * When successful, old pagecache page->mapping must be cleared before
990          * page is freed; but stats require that PageAnon be left as PageAnon.
991          */
992         if (rc == MIGRATEPAGE_SUCCESS) {
993                 if (__PageMovable(page)) {
994                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
995
996                         /*
997                          * We clear PG_movable under page_lock so any compactor
998                          * cannot try to migrate this page.
999                          */
1000                         __ClearPageIsolated(page);
1001                 }
1002
1003                 /*
1004                  * Anonymous and movable page->mapping will be cleared by
1005                  * free_pages_prepare so don't reset it here for keeping
1006                  * the type to work PageAnon, for example.
1007                  */
1008                 if (!PageMappingFlags(page))
1009                         page->mapping = NULL;
1010
1011                 if (likely(!is_zone_device_page(newpage)))
1012                         flush_dcache_page(newpage);
1013
1014         }
1015 out:
1016         return rc;
1017 }
1018
1019 static int __unmap_and_move(struct page *page, struct page *newpage,
1020                                 int force, enum migrate_mode mode)
1021 {
1022         int rc = -EAGAIN;
1023         int page_was_mapped = 0;
1024         struct anon_vma *anon_vma = NULL;
1025         bool is_lru = !__PageMovable(page);
1026
1027         if (!trylock_page(page)) {
1028                 if (!force || mode == MIGRATE_ASYNC)
1029                         goto out;
1030
1031                 /*
1032                  * It's not safe for direct compaction to call lock_page.
1033                  * For example, during page readahead pages are added locked
1034                  * to the LRU. Later, when the IO completes the pages are
1035                  * marked uptodate and unlocked. However, the queueing
1036                  * could be merging multiple pages for one bio (e.g.
1037                  * mpage_readahead). If an allocation happens for the
1038                  * second or third page, the process can end up locking
1039                  * the same page twice and deadlocking. Rather than
1040                  * trying to be clever about what pages can be locked,
1041                  * avoid the use of lock_page for direct compaction
1042                  * altogether.
1043                  */
1044                 if (current->flags & PF_MEMALLOC)
1045                         goto out;
1046
1047                 lock_page(page);
1048         }
1049
1050         if (PageWriteback(page)) {
1051                 /*
1052                  * Only in the case of a full synchronous migration is it
1053                  * necessary to wait for PageWriteback. In the async case,
1054                  * the retry loop is too short and in the sync-light case,
1055                  * the overhead of stalling is too much
1056                  */
1057                 switch (mode) {
1058                 case MIGRATE_SYNC:
1059                 case MIGRATE_SYNC_NO_COPY:
1060                         break;
1061                 default:
1062                         rc = -EBUSY;
1063                         goto out_unlock;
1064                 }
1065                 if (!force)
1066                         goto out_unlock;
1067                 wait_on_page_writeback(page);
1068         }
1069
1070         /*
1071          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072          * we cannot notice that anon_vma is freed while we migrates a page.
1073          * This get_anon_vma() delays freeing anon_vma pointer until the end
1074          * of migration. File cache pages are no problem because of page_lock()
1075          * File Caches may use write_page() or lock_page() in migration, then,
1076          * just care Anon page here.
1077          *
1078          * Only page_get_anon_vma() understands the subtleties of
1079          * getting a hold on an anon_vma from outside one of its mms.
1080          * But if we cannot get anon_vma, then we won't need it anyway,
1081          * because that implies that the anon page is no longer mapped
1082          * (and cannot be remapped so long as we hold the page lock).
1083          */
1084         if (PageAnon(page) && !PageKsm(page))
1085                 anon_vma = page_get_anon_vma(page);
1086
1087         /*
1088          * Block others from accessing the new page when we get around to
1089          * establishing additional references. We are usually the only one
1090          * holding a reference to newpage at this point. We used to have a BUG
1091          * here if trylock_page(newpage) fails, but would like to allow for
1092          * cases where there might be a race with the previous use of newpage.
1093          * This is much like races on refcount of oldpage: just don't BUG().
1094          */
1095         if (unlikely(!trylock_page(newpage)))
1096                 goto out_unlock;
1097
1098         if (unlikely(!is_lru)) {
1099                 rc = move_to_new_page(newpage, page, mode);
1100                 goto out_unlock_both;
1101         }
1102
1103         /*
1104          * Corner case handling:
1105          * 1. When a new swap-cache page is read into, it is added to the LRU
1106          * and treated as swapcache but it has no rmap yet.
1107          * Calling try_to_unmap() against a page->mapping==NULL page will
1108          * trigger a BUG.  So handle it here.
1109          * 2. An orphaned page (see truncate_complete_page) might have
1110          * fs-private metadata. The page can be picked up due to memory
1111          * offlining.  Everywhere else except page reclaim, the page is
1112          * invisible to the vm, so the page can not be migrated.  So try to
1113          * free the metadata, so the page can be freed.
1114          */
1115         if (!page->mapping) {
1116                 VM_BUG_ON_PAGE(PageAnon(page), page);
1117                 if (page_has_private(page)) {
1118                         try_to_free_buffers(page);
1119                         goto out_unlock_both;
1120                 }
1121         } else if (page_mapped(page)) {
1122                 /* Establish migration ptes */
1123                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124                                 page);
1125                 try_to_unmap(page,
1126                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1127                 page_was_mapped = 1;
1128         }
1129
1130         if (!page_mapped(page))
1131                 rc = move_to_new_page(newpage, page, mode);
1132
1133         if (page_was_mapped)
1134                 remove_migration_ptes(page,
1135                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137 out_unlock_both:
1138         unlock_page(newpage);
1139 out_unlock:
1140         /* Drop an anon_vma reference if we took one */
1141         if (anon_vma)
1142                 put_anon_vma(anon_vma);
1143         unlock_page(page);
1144 out:
1145         /*
1146          * If migration is successful, decrease refcount of the newpage
1147          * which will not free the page because new page owner increased
1148          * refcounter. As well, if it is LRU page, add the page to LRU
1149          * list in here. Use the old state of the isolated source page to
1150          * determine if we migrated a LRU page. newpage was already unlocked
1151          * and possibly modified by its owner - don't rely on the page
1152          * state.
1153          */
1154         if (rc == MIGRATEPAGE_SUCCESS) {
1155                 if (unlikely(!is_lru))
1156                         put_page(newpage);
1157                 else
1158                         putback_lru_page(newpage);
1159         }
1160
1161         return rc;
1162 }
1163
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static int unmap_and_move(new_page_t get_new_page,
1169                                    free_page_t put_new_page,
1170                                    unsigned long private, struct page *page,
1171                                    int force, enum migrate_mode mode,
1172                                    enum migrate_reason reason)
1173 {
1174         int rc = MIGRATEPAGE_SUCCESS;
1175         struct page *newpage = NULL;
1176
1177         if (!thp_migration_supported() && PageTransHuge(page))
1178                 return -ENOMEM;
1179
1180         if (page_count(page) == 1) {
1181                 /* page was freed from under us. So we are done. */
1182                 ClearPageActive(page);
1183                 ClearPageUnevictable(page);
1184                 if (unlikely(__PageMovable(page))) {
1185                         lock_page(page);
1186                         if (!PageMovable(page))
1187                                 __ClearPageIsolated(page);
1188                         unlock_page(page);
1189                 }
1190                 goto out;
1191         }
1192
1193         newpage = get_new_page(page, private);
1194         if (!newpage)
1195                 return -ENOMEM;
1196
1197         rc = __unmap_and_move(page, newpage, force, mode);
1198         if (rc == MIGRATEPAGE_SUCCESS)
1199                 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202         if (rc != -EAGAIN) {
1203                 /*
1204                  * A page that has been migrated has all references
1205                  * removed and will be freed. A page that has not been
1206                  * migrated will have kept its references and be restored.
1207                  */
1208                 list_del(&page->lru);
1209
1210                 /*
1211                  * Compaction can migrate also non-LRU pages which are
1212                  * not accounted to NR_ISOLATED_*. They can be recognized
1213                  * as __PageMovable
1214                  */
1215                 if (likely(!__PageMovable(page)))
1216                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217                                         page_is_file_lru(page), -thp_nr_pages(page));
1218         }
1219
1220         /*
1221          * If migration is successful, releases reference grabbed during
1222          * isolation. Otherwise, restore the page to right list unless
1223          * we want to retry.
1224          */
1225         if (rc == MIGRATEPAGE_SUCCESS) {
1226                 if (reason != MR_MEMORY_FAILURE)
1227                         /*
1228                          * We release the page in page_handle_poison.
1229                          */
1230                         put_page(page);
1231         } else {
1232                 if (rc != -EAGAIN) {
1233                         if (likely(!__PageMovable(page))) {
1234                                 putback_lru_page(page);
1235                                 goto put_new;
1236                         }
1237
1238                         lock_page(page);
1239                         if (PageMovable(page))
1240                                 putback_movable_page(page);
1241                         else
1242                                 __ClearPageIsolated(page);
1243                         unlock_page(page);
1244                         put_page(page);
1245                 }
1246 put_new:
1247                 if (put_new_page)
1248                         put_new_page(newpage, private);
1249                 else
1250                         put_page(newpage);
1251         }
1252
1253         return rc;
1254 }
1255
1256 /*
1257  * Counterpart of unmap_and_move_page() for hugepage migration.
1258  *
1259  * This function doesn't wait the completion of hugepage I/O
1260  * because there is no race between I/O and migration for hugepage.
1261  * Note that currently hugepage I/O occurs only in direct I/O
1262  * where no lock is held and PG_writeback is irrelevant,
1263  * and writeback status of all subpages are counted in the reference
1264  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1265  * under direct I/O, the reference of the head page is 512 and a bit more.)
1266  * This means that when we try to migrate hugepage whose subpages are
1267  * doing direct I/O, some references remain after try_to_unmap() and
1268  * hugepage migration fails without data corruption.
1269  *
1270  * There is also no race when direct I/O is issued on the page under migration,
1271  * because then pte is replaced with migration swap entry and direct I/O code
1272  * will wait in the page fault for migration to complete.
1273  */
1274 static int unmap_and_move_huge_page(new_page_t get_new_page,
1275                                 free_page_t put_new_page, unsigned long private,
1276                                 struct page *hpage, int force,
1277                                 enum migrate_mode mode, int reason)
1278 {
1279         int rc = -EAGAIN;
1280         int page_was_mapped = 0;
1281         struct page *new_hpage;
1282         struct anon_vma *anon_vma = NULL;
1283         struct address_space *mapping = NULL;
1284
1285         /*
1286          * Migratability of hugepages depends on architectures and their size.
1287          * This check is necessary because some callers of hugepage migration
1288          * like soft offline and memory hotremove don't walk through page
1289          * tables or check whether the hugepage is pmd-based or not before
1290          * kicking migration.
1291          */
1292         if (!hugepage_migration_supported(page_hstate(hpage))) {
1293                 putback_active_hugepage(hpage);
1294                 return -ENOSYS;
1295         }
1296
1297         new_hpage = get_new_page(hpage, private);
1298         if (!new_hpage)
1299                 return -ENOMEM;
1300
1301         if (!trylock_page(hpage)) {
1302                 if (!force)
1303                         goto out;
1304                 switch (mode) {
1305                 case MIGRATE_SYNC:
1306                 case MIGRATE_SYNC_NO_COPY:
1307                         break;
1308                 default:
1309                         goto out;
1310                 }
1311                 lock_page(hpage);
1312         }
1313
1314         /*
1315          * Check for pages which are in the process of being freed.  Without
1316          * page_mapping() set, hugetlbfs specific move page routine will not
1317          * be called and we could leak usage counts for subpools.
1318          */
1319         if (page_private(hpage) && !page_mapping(hpage)) {
1320                 rc = -EBUSY;
1321                 goto out_unlock;
1322         }
1323
1324         if (PageAnon(hpage))
1325                 anon_vma = page_get_anon_vma(hpage);
1326
1327         if (unlikely(!trylock_page(new_hpage)))
1328                 goto put_anon;
1329
1330         if (page_mapped(hpage)) {
1331                 bool mapping_locked = false;
1332                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK|
1333                                         TTU_IGNORE_ACCESS;
1334
1335                 if (!PageAnon(hpage)) {
1336                         /*
1337                          * In shared mappings, try_to_unmap could potentially
1338                          * call huge_pmd_unshare.  Because of this, take
1339                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1340                          * to let lower levels know we have taken the lock.
1341                          */
1342                         mapping = hugetlb_page_mapping_lock_write(hpage);
1343                         if (unlikely(!mapping))
1344                                 goto unlock_put_anon;
1345
1346                         mapping_locked = true;
1347                         ttu |= TTU_RMAP_LOCKED;
1348                 }
1349
1350                 try_to_unmap(hpage, ttu);
1351                 page_was_mapped = 1;
1352
1353                 if (mapping_locked)
1354                         i_mmap_unlock_write(mapping);
1355         }
1356
1357         if (!page_mapped(hpage))
1358                 rc = move_to_new_page(new_hpage, hpage, mode);
1359
1360         if (page_was_mapped)
1361                 remove_migration_ptes(hpage,
1362                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1363
1364 unlock_put_anon:
1365         unlock_page(new_hpage);
1366
1367 put_anon:
1368         if (anon_vma)
1369                 put_anon_vma(anon_vma);
1370
1371         if (rc == MIGRATEPAGE_SUCCESS) {
1372                 move_hugetlb_state(hpage, new_hpage, reason);
1373                 put_new_page = NULL;
1374         }
1375
1376 out_unlock:
1377         unlock_page(hpage);
1378 out:
1379         if (rc != -EAGAIN)
1380                 putback_active_hugepage(hpage);
1381
1382         /*
1383          * If migration was not successful and there's a freeing callback, use
1384          * it.  Otherwise, put_page() will drop the reference grabbed during
1385          * isolation.
1386          */
1387         if (put_new_page)
1388                 put_new_page(new_hpage, private);
1389         else
1390                 putback_active_hugepage(new_hpage);
1391
1392         return rc;
1393 }
1394
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *                 supplied as the target for the page migration
1398  *
1399  * @from:               The list of pages to be migrated.
1400  * @get_new_page:       The function used to allocate free pages to be used
1401  *                      as the target of the page migration.
1402  * @put_new_page:       The function used to free target pages if migration
1403  *                      fails, or NULL if no special handling is necessary.
1404  * @private:            Private data to be passed on to get_new_page()
1405  * @mode:               The migration mode that specifies the constraints for
1406  *                      page migration, if any.
1407  * @reason:             The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * The caller should call putback_movable_pages() to return pages to the LRU
1412  * or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417                 free_page_t put_new_page, unsigned long private,
1418                 enum migrate_mode mode, int reason)
1419 {
1420         int retry = 1;
1421         int thp_retry = 1;
1422         int nr_failed = 0;
1423         int nr_succeeded = 0;
1424         int nr_thp_succeeded = 0;
1425         int nr_thp_failed = 0;
1426         int nr_thp_split = 0;
1427         int pass = 0;
1428         bool is_thp = false;
1429         struct page *page;
1430         struct page *page2;
1431         int swapwrite = current->flags & PF_SWAPWRITE;
1432         int rc, nr_subpages;
1433
1434         if (!swapwrite)
1435                 current->flags |= PF_SWAPWRITE;
1436
1437         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438                 retry = 0;
1439                 thp_retry = 0;
1440
1441                 list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1443                         /*
1444                          * THP statistics is based on the source huge page.
1445                          * Capture required information that might get lost
1446                          * during migration.
1447                          */
1448                         is_thp = PageTransHuge(page) && !PageHuge(page);
1449                         nr_subpages = thp_nr_pages(page);
1450                         cond_resched();
1451
1452                         if (PageHuge(page))
1453                                 rc = unmap_and_move_huge_page(get_new_page,
1454                                                 put_new_page, private, page,
1455                                                 pass > 2, mode, reason);
1456                         else
1457                                 rc = unmap_and_move(get_new_page, put_new_page,
1458                                                 private, page, pass > 2, mode,
1459                                                 reason);
1460
1461                         switch(rc) {
1462                         case -ENOMEM:
1463                                 /*
1464                                  * THP migration might be unsupported or the
1465                                  * allocation could've failed so we should
1466                                  * retry on the same page with the THP split
1467                                  * to base pages.
1468                                  *
1469                                  * Head page is retried immediately and tail
1470                                  * pages are added to the tail of the list so
1471                                  * we encounter them after the rest of the list
1472                                  * is processed.
1473                                  */
1474                                 if (is_thp) {
1475                                         lock_page(page);
1476                                         rc = split_huge_page_to_list(page, from);
1477                                         unlock_page(page);
1478                                         if (!rc) {
1479                                                 list_safe_reset_next(page, page2, lru);
1480                                                 nr_thp_split++;
1481                                                 goto retry;
1482                                         }
1483
1484                                         nr_thp_failed++;
1485                                         nr_failed += nr_subpages;
1486                                         goto out;
1487                                 }
1488                                 nr_failed++;
1489                                 goto out;
1490                         case -EAGAIN:
1491                                 if (is_thp) {
1492                                         thp_retry++;
1493                                         break;
1494                                 }
1495                                 retry++;
1496                                 break;
1497                         case MIGRATEPAGE_SUCCESS:
1498                                 if (is_thp) {
1499                                         nr_thp_succeeded++;
1500                                         nr_succeeded += nr_subpages;
1501                                         break;
1502                                 }
1503                                 nr_succeeded++;
1504                                 break;
1505                         default:
1506                                 /*
1507                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1508                                  * unlike -EAGAIN case, the failed page is
1509                                  * removed from migration page list and not
1510                                  * retried in the next outer loop.
1511                                  */
1512                                 if (is_thp) {
1513                                         nr_thp_failed++;
1514                                         nr_failed += nr_subpages;
1515                                         break;
1516                                 }
1517                                 nr_failed++;
1518                                 break;
1519                         }
1520                 }
1521         }
1522         nr_failed += retry + thp_retry;
1523         nr_thp_failed += thp_retry;
1524         rc = nr_failed;
1525 out:
1526         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1527         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1528         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1529         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1530         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1531         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1532                                nr_thp_failed, nr_thp_split, mode, reason);
1533
1534         if (!swapwrite)
1535                 current->flags &= ~PF_SWAPWRITE;
1536
1537         return rc;
1538 }
1539
1540 struct page *alloc_migration_target(struct page *page, unsigned long private)
1541 {
1542         struct migration_target_control *mtc;
1543         gfp_t gfp_mask;
1544         unsigned int order = 0;
1545         struct page *new_page = NULL;
1546         int nid;
1547         int zidx;
1548
1549         mtc = (struct migration_target_control *)private;
1550         gfp_mask = mtc->gfp_mask;
1551         nid = mtc->nid;
1552         if (nid == NUMA_NO_NODE)
1553                 nid = page_to_nid(page);
1554
1555         if (PageHuge(page)) {
1556                 struct hstate *h = page_hstate(compound_head(page));
1557
1558                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1559                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1560         }
1561
1562         if (PageTransHuge(page)) {
1563                 /*
1564                  * clear __GFP_RECLAIM to make the migration callback
1565                  * consistent with regular THP allocations.
1566                  */
1567                 gfp_mask &= ~__GFP_RECLAIM;
1568                 gfp_mask |= GFP_TRANSHUGE;
1569                 order = HPAGE_PMD_ORDER;
1570         }
1571         zidx = zone_idx(page_zone(page));
1572         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1573                 gfp_mask |= __GFP_HIGHMEM;
1574
1575         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1576
1577         if (new_page && PageTransHuge(new_page))
1578                 prep_transhuge_page(new_page);
1579
1580         return new_page;
1581 }
1582
1583 #ifdef CONFIG_NUMA
1584
1585 static int store_status(int __user *status, int start, int value, int nr)
1586 {
1587         while (nr-- > 0) {
1588                 if (put_user(value, status + start))
1589                         return -EFAULT;
1590                 start++;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int do_move_pages_to_node(struct mm_struct *mm,
1597                 struct list_head *pagelist, int node)
1598 {
1599         int err;
1600         struct migration_target_control mtc = {
1601                 .nid = node,
1602                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1603         };
1604
1605         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1606                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1607         if (err)
1608                 putback_movable_pages(pagelist);
1609         return err;
1610 }
1611
1612 /*
1613  * Resolves the given address to a struct page, isolates it from the LRU and
1614  * puts it to the given pagelist.
1615  * Returns:
1616  *     errno - if the page cannot be found/isolated
1617  *     0 - when it doesn't have to be migrated because it is already on the
1618  *         target node
1619  *     1 - when it has been queued
1620  */
1621 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1622                 int node, struct list_head *pagelist, bool migrate_all)
1623 {
1624         struct vm_area_struct *vma;
1625         struct page *page;
1626         unsigned int follflags;
1627         int err;
1628
1629         mmap_read_lock(mm);
1630         err = -EFAULT;
1631         vma = find_vma(mm, addr);
1632         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1633                 goto out;
1634
1635         /* FOLL_DUMP to ignore special (like zero) pages */
1636         follflags = FOLL_GET | FOLL_DUMP;
1637         page = follow_page(vma, addr, follflags);
1638
1639         err = PTR_ERR(page);
1640         if (IS_ERR(page))
1641                 goto out;
1642
1643         err = -ENOENT;
1644         if (!page)
1645                 goto out;
1646
1647         err = 0;
1648         if (page_to_nid(page) == node)
1649                 goto out_putpage;
1650
1651         err = -EACCES;
1652         if (page_mapcount(page) > 1 && !migrate_all)
1653                 goto out_putpage;
1654
1655         if (PageHuge(page)) {
1656                 if (PageHead(page)) {
1657                         isolate_huge_page(page, pagelist);
1658                         err = 1;
1659                 }
1660         } else {
1661                 struct page *head;
1662
1663                 head = compound_head(page);
1664                 err = isolate_lru_page(head);
1665                 if (err)
1666                         goto out_putpage;
1667
1668                 err = 1;
1669                 list_add_tail(&head->lru, pagelist);
1670                 mod_node_page_state(page_pgdat(head),
1671                         NR_ISOLATED_ANON + page_is_file_lru(head),
1672                         thp_nr_pages(head));
1673         }
1674 out_putpage:
1675         /*
1676          * Either remove the duplicate refcount from
1677          * isolate_lru_page() or drop the page ref if it was
1678          * not isolated.
1679          */
1680         put_page(page);
1681 out:
1682         mmap_read_unlock(mm);
1683         return err;
1684 }
1685
1686 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1687                 struct list_head *pagelist, int __user *status,
1688                 int start, int i, unsigned long nr_pages)
1689 {
1690         int err;
1691
1692         if (list_empty(pagelist))
1693                 return 0;
1694
1695         err = do_move_pages_to_node(mm, pagelist, node);
1696         if (err) {
1697                 /*
1698                  * Positive err means the number of failed
1699                  * pages to migrate.  Since we are going to
1700                  * abort and return the number of non-migrated
1701                  * pages, so need to incude the rest of the
1702                  * nr_pages that have not been attempted as
1703                  * well.
1704                  */
1705                 if (err > 0)
1706                         err += nr_pages - i - 1;
1707                 return err;
1708         }
1709         return store_status(status, start, node, i - start);
1710 }
1711
1712 /*
1713  * Migrate an array of page address onto an array of nodes and fill
1714  * the corresponding array of status.
1715  */
1716 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1717                          unsigned long nr_pages,
1718                          const void __user * __user *pages,
1719                          const int __user *nodes,
1720                          int __user *status, int flags)
1721 {
1722         int current_node = NUMA_NO_NODE;
1723         LIST_HEAD(pagelist);
1724         int start, i;
1725         int err = 0, err1;
1726
1727         migrate_prep();
1728
1729         for (i = start = 0; i < nr_pages; i++) {
1730                 const void __user *p;
1731                 unsigned long addr;
1732                 int node;
1733
1734                 err = -EFAULT;
1735                 if (get_user(p, pages + i))
1736                         goto out_flush;
1737                 if (get_user(node, nodes + i))
1738                         goto out_flush;
1739                 addr = (unsigned long)untagged_addr(p);
1740
1741                 err = -ENODEV;
1742                 if (node < 0 || node >= MAX_NUMNODES)
1743                         goto out_flush;
1744                 if (!node_state(node, N_MEMORY))
1745                         goto out_flush;
1746
1747                 err = -EACCES;
1748                 if (!node_isset(node, task_nodes))
1749                         goto out_flush;
1750
1751                 if (current_node == NUMA_NO_NODE) {
1752                         current_node = node;
1753                         start = i;
1754                 } else if (node != current_node) {
1755                         err = move_pages_and_store_status(mm, current_node,
1756                                         &pagelist, status, start, i, nr_pages);
1757                         if (err)
1758                                 goto out;
1759                         start = i;
1760                         current_node = node;
1761                 }
1762
1763                 /*
1764                  * Errors in the page lookup or isolation are not fatal and we simply
1765                  * report them via status
1766                  */
1767                 err = add_page_for_migration(mm, addr, current_node,
1768                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1769
1770                 if (err > 0) {
1771                         /* The page is successfully queued for migration */
1772                         continue;
1773                 }
1774
1775                 /*
1776                  * If the page is already on the target node (!err), store the
1777                  * node, otherwise, store the err.
1778                  */
1779                 err = store_status(status, i, err ? : current_node, 1);
1780                 if (err)
1781                         goto out_flush;
1782
1783                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1784                                 status, start, i, nr_pages);
1785                 if (err)
1786                         goto out;
1787                 current_node = NUMA_NO_NODE;
1788         }
1789 out_flush:
1790         /* Make sure we do not overwrite the existing error */
1791         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1792                                 status, start, i, nr_pages);
1793         if (err >= 0)
1794                 err = err1;
1795 out:
1796         return err;
1797 }
1798
1799 /*
1800  * Determine the nodes of an array of pages and store it in an array of status.
1801  */
1802 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1803                                 const void __user **pages, int *status)
1804 {
1805         unsigned long i;
1806
1807         mmap_read_lock(mm);
1808
1809         for (i = 0; i < nr_pages; i++) {
1810                 unsigned long addr = (unsigned long)(*pages);
1811                 struct vm_area_struct *vma;
1812                 struct page *page;
1813                 int err = -EFAULT;
1814
1815                 vma = find_vma(mm, addr);
1816                 if (!vma || addr < vma->vm_start)
1817                         goto set_status;
1818
1819                 /* FOLL_DUMP to ignore special (like zero) pages */
1820                 page = follow_page(vma, addr, FOLL_DUMP);
1821
1822                 err = PTR_ERR(page);
1823                 if (IS_ERR(page))
1824                         goto set_status;
1825
1826                 err = page ? page_to_nid(page) : -ENOENT;
1827 set_status:
1828                 *status = err;
1829
1830                 pages++;
1831                 status++;
1832         }
1833
1834         mmap_read_unlock(mm);
1835 }
1836
1837 /*
1838  * Determine the nodes of a user array of pages and store it in
1839  * a user array of status.
1840  */
1841 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1842                          const void __user * __user *pages,
1843                          int __user *status)
1844 {
1845 #define DO_PAGES_STAT_CHUNK_NR 16
1846         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1847         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1848
1849         while (nr_pages) {
1850                 unsigned long chunk_nr;
1851
1852                 chunk_nr = nr_pages;
1853                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1854                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1855
1856                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1857                         break;
1858
1859                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1860
1861                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1862                         break;
1863
1864                 pages += chunk_nr;
1865                 status += chunk_nr;
1866                 nr_pages -= chunk_nr;
1867         }
1868         return nr_pages ? -EFAULT : 0;
1869 }
1870
1871 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1872 {
1873         struct task_struct *task;
1874         struct mm_struct *mm;
1875
1876         /*
1877          * There is no need to check if current process has the right to modify
1878          * the specified process when they are same.
1879          */
1880         if (!pid) {
1881                 mmget(current->mm);
1882                 *mem_nodes = cpuset_mems_allowed(current);
1883                 return current->mm;
1884         }
1885
1886         /* Find the mm_struct */
1887         rcu_read_lock();
1888         task = find_task_by_vpid(pid);
1889         if (!task) {
1890                 rcu_read_unlock();
1891                 return ERR_PTR(-ESRCH);
1892         }
1893         get_task_struct(task);
1894
1895         /*
1896          * Check if this process has the right to modify the specified
1897          * process. Use the regular "ptrace_may_access()" checks.
1898          */
1899         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1900                 rcu_read_unlock();
1901                 mm = ERR_PTR(-EPERM);
1902                 goto out;
1903         }
1904         rcu_read_unlock();
1905
1906         mm = ERR_PTR(security_task_movememory(task));
1907         if (IS_ERR(mm))
1908                 goto out;
1909         *mem_nodes = cpuset_mems_allowed(task);
1910         mm = get_task_mm(task);
1911 out:
1912         put_task_struct(task);
1913         if (!mm)
1914                 mm = ERR_PTR(-EINVAL);
1915         return mm;
1916 }
1917
1918 /*
1919  * Move a list of pages in the address space of the currently executing
1920  * process.
1921  */
1922 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1923                              const void __user * __user *pages,
1924                              const int __user *nodes,
1925                              int __user *status, int flags)
1926 {
1927         struct mm_struct *mm;
1928         int err;
1929         nodemask_t task_nodes;
1930
1931         /* Check flags */
1932         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1933                 return -EINVAL;
1934
1935         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1936                 return -EPERM;
1937
1938         mm = find_mm_struct(pid, &task_nodes);
1939         if (IS_ERR(mm))
1940                 return PTR_ERR(mm);
1941
1942         if (nodes)
1943                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1944                                     nodes, status, flags);
1945         else
1946                 err = do_pages_stat(mm, nr_pages, pages, status);
1947
1948         mmput(mm);
1949         return err;
1950 }
1951
1952 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1953                 const void __user * __user *, pages,
1954                 const int __user *, nodes,
1955                 int __user *, status, int, flags)
1956 {
1957         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1958 }
1959
1960 #ifdef CONFIG_COMPAT
1961 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1962                        compat_uptr_t __user *, pages32,
1963                        const int __user *, nodes,
1964                        int __user *, status,
1965                        int, flags)
1966 {
1967         const void __user * __user *pages;
1968         int i;
1969
1970         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1971         for (i = 0; i < nr_pages; i++) {
1972                 compat_uptr_t p;
1973
1974                 if (get_user(p, pages32 + i) ||
1975                         put_user(compat_ptr(p), pages + i))
1976                         return -EFAULT;
1977         }
1978         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979 }
1980 #endif /* CONFIG_COMPAT */
1981
1982 #ifdef CONFIG_NUMA_BALANCING
1983 /*
1984  * Returns true if this is a safe migration target node for misplaced NUMA
1985  * pages. Currently it only checks the watermarks which crude
1986  */
1987 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1988                                    unsigned long nr_migrate_pages)
1989 {
1990         int z;
1991
1992         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1993                 struct zone *zone = pgdat->node_zones + z;
1994
1995                 if (!populated_zone(zone))
1996                         continue;
1997
1998                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1999                 if (!zone_watermark_ok(zone, 0,
2000                                        high_wmark_pages(zone) +
2001                                        nr_migrate_pages,
2002                                        ZONE_MOVABLE, 0))
2003                         continue;
2004                 return true;
2005         }
2006         return false;
2007 }
2008
2009 static struct page *alloc_misplaced_dst_page(struct page *page,
2010                                            unsigned long data)
2011 {
2012         int nid = (int) data;
2013         struct page *newpage;
2014
2015         newpage = __alloc_pages_node(nid,
2016                                          (GFP_HIGHUSER_MOVABLE |
2017                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2018                                           __GFP_NORETRY | __GFP_NOWARN) &
2019                                          ~__GFP_RECLAIM, 0);
2020
2021         return newpage;
2022 }
2023
2024 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2025 {
2026         int page_lru;
2027
2028         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2029
2030         /* Avoid migrating to a node that is nearly full */
2031         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2032                 return 0;
2033
2034         if (isolate_lru_page(page))
2035                 return 0;
2036
2037         /*
2038          * migrate_misplaced_transhuge_page() skips page migration's usual
2039          * check on page_count(), so we must do it here, now that the page
2040          * has been isolated: a GUP pin, or any other pin, prevents migration.
2041          * The expected page count is 3: 1 for page's mapcount and 1 for the
2042          * caller's pin and 1 for the reference taken by isolate_lru_page().
2043          */
2044         if (PageTransHuge(page) && page_count(page) != 3) {
2045                 putback_lru_page(page);
2046                 return 0;
2047         }
2048
2049         page_lru = page_is_file_lru(page);
2050         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2051                                 thp_nr_pages(page));
2052
2053         /*
2054          * Isolating the page has taken another reference, so the
2055          * caller's reference can be safely dropped without the page
2056          * disappearing underneath us during migration.
2057          */
2058         put_page(page);
2059         return 1;
2060 }
2061
2062 bool pmd_trans_migrating(pmd_t pmd)
2063 {
2064         struct page *page = pmd_page(pmd);
2065         return PageLocked(page);
2066 }
2067
2068 /*
2069  * Attempt to migrate a misplaced page to the specified destination
2070  * node. Caller is expected to have an elevated reference count on
2071  * the page that will be dropped by this function before returning.
2072  */
2073 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2074                            int node)
2075 {
2076         pg_data_t *pgdat = NODE_DATA(node);
2077         int isolated;
2078         int nr_remaining;
2079         LIST_HEAD(migratepages);
2080
2081         /*
2082          * Don't migrate file pages that are mapped in multiple processes
2083          * with execute permissions as they are probably shared libraries.
2084          */
2085         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2086             (vma->vm_flags & VM_EXEC))
2087                 goto out;
2088
2089         /*
2090          * Also do not migrate dirty pages as not all filesystems can move
2091          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2092          */
2093         if (page_is_file_lru(page) && PageDirty(page))
2094                 goto out;
2095
2096         isolated = numamigrate_isolate_page(pgdat, page);
2097         if (!isolated)
2098                 goto out;
2099
2100         list_add(&page->lru, &migratepages);
2101         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2102                                      NULL, node, MIGRATE_ASYNC,
2103                                      MR_NUMA_MISPLACED);
2104         if (nr_remaining) {
2105                 if (!list_empty(&migratepages)) {
2106                         list_del(&page->lru);
2107                         dec_node_page_state(page, NR_ISOLATED_ANON +
2108                                         page_is_file_lru(page));
2109                         putback_lru_page(page);
2110                 }
2111                 isolated = 0;
2112         } else
2113                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2114         BUG_ON(!list_empty(&migratepages));
2115         return isolated;
2116
2117 out:
2118         put_page(page);
2119         return 0;
2120 }
2121 #endif /* CONFIG_NUMA_BALANCING */
2122
2123 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2124 /*
2125  * Migrates a THP to a given target node. page must be locked and is unlocked
2126  * before returning.
2127  */
2128 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2129                                 struct vm_area_struct *vma,
2130                                 pmd_t *pmd, pmd_t entry,
2131                                 unsigned long address,
2132                                 struct page *page, int node)
2133 {
2134         spinlock_t *ptl;
2135         pg_data_t *pgdat = NODE_DATA(node);
2136         int isolated = 0;
2137         struct page *new_page = NULL;
2138         int page_lru = page_is_file_lru(page);
2139         unsigned long start = address & HPAGE_PMD_MASK;
2140
2141         new_page = alloc_pages_node(node,
2142                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2143                 HPAGE_PMD_ORDER);
2144         if (!new_page)
2145                 goto out_fail;
2146         prep_transhuge_page(new_page);
2147
2148         isolated = numamigrate_isolate_page(pgdat, page);
2149         if (!isolated) {
2150                 put_page(new_page);
2151                 goto out_fail;
2152         }
2153
2154         /* Prepare a page as a migration target */
2155         __SetPageLocked(new_page);
2156         if (PageSwapBacked(page))
2157                 __SetPageSwapBacked(new_page);
2158
2159         /* anon mapping, we can simply copy page->mapping to the new page: */
2160         new_page->mapping = page->mapping;
2161         new_page->index = page->index;
2162         /* flush the cache before copying using the kernel virtual address */
2163         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2164         migrate_page_copy(new_page, page);
2165         WARN_ON(PageLRU(new_page));
2166
2167         /* Recheck the target PMD */
2168         ptl = pmd_lock(mm, pmd);
2169         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2170                 spin_unlock(ptl);
2171
2172                 /* Reverse changes made by migrate_page_copy() */
2173                 if (TestClearPageActive(new_page))
2174                         SetPageActive(page);
2175                 if (TestClearPageUnevictable(new_page))
2176                         SetPageUnevictable(page);
2177
2178                 unlock_page(new_page);
2179                 put_page(new_page);             /* Free it */
2180
2181                 /* Retake the callers reference and putback on LRU */
2182                 get_page(page);
2183                 putback_lru_page(page);
2184                 mod_node_page_state(page_pgdat(page),
2185                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2186
2187                 goto out_unlock;
2188         }
2189
2190         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2191         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2192
2193         /*
2194          * Overwrite the old entry under pagetable lock and establish
2195          * the new PTE. Any parallel GUP will either observe the old
2196          * page blocking on the page lock, block on the page table
2197          * lock or observe the new page. The SetPageUptodate on the
2198          * new page and page_add_new_anon_rmap guarantee the copy is
2199          * visible before the pagetable update.
2200          */
2201         page_add_anon_rmap(new_page, vma, start, true);
2202         /*
2203          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2204          * has already been flushed globally.  So no TLB can be currently
2205          * caching this non present pmd mapping.  There's no need to clear the
2206          * pmd before doing set_pmd_at(), nor to flush the TLB after
2207          * set_pmd_at().  Clearing the pmd here would introduce a race
2208          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2209          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2210          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2211          * pmd.
2212          */
2213         set_pmd_at(mm, start, pmd, entry);
2214         update_mmu_cache_pmd(vma, address, &entry);
2215
2216         page_ref_unfreeze(page, 2);
2217         mlock_migrate_page(new_page, page);
2218         page_remove_rmap(page, true);
2219         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2220
2221         spin_unlock(ptl);
2222
2223         /* Take an "isolate" reference and put new page on the LRU. */
2224         get_page(new_page);
2225         putback_lru_page(new_page);
2226
2227         unlock_page(new_page);
2228         unlock_page(page);
2229         put_page(page);                 /* Drop the rmap reference */
2230         put_page(page);                 /* Drop the LRU isolation reference */
2231
2232         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2233         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2234
2235         mod_node_page_state(page_pgdat(page),
2236                         NR_ISOLATED_ANON + page_lru,
2237                         -HPAGE_PMD_NR);
2238         return isolated;
2239
2240 out_fail:
2241         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2242         ptl = pmd_lock(mm, pmd);
2243         if (pmd_same(*pmd, entry)) {
2244                 entry = pmd_modify(entry, vma->vm_page_prot);
2245                 set_pmd_at(mm, start, pmd, entry);
2246                 update_mmu_cache_pmd(vma, address, &entry);
2247         }
2248         spin_unlock(ptl);
2249
2250 out_unlock:
2251         unlock_page(page);
2252         put_page(page);
2253         return 0;
2254 }
2255 #endif /* CONFIG_NUMA_BALANCING */
2256
2257 #endif /* CONFIG_NUMA */
2258
2259 #ifdef CONFIG_DEVICE_PRIVATE
2260 static int migrate_vma_collect_hole(unsigned long start,
2261                                     unsigned long end,
2262                                     __always_unused int depth,
2263                                     struct mm_walk *walk)
2264 {
2265         struct migrate_vma *migrate = walk->private;
2266         unsigned long addr;
2267
2268         /* Only allow populating anonymous memory. */
2269         if (!vma_is_anonymous(walk->vma)) {
2270                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2271                         migrate->src[migrate->npages] = 0;
2272                         migrate->dst[migrate->npages] = 0;
2273                         migrate->npages++;
2274                 }
2275                 return 0;
2276         }
2277
2278         for (addr = start; addr < end; addr += PAGE_SIZE) {
2279                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2280                 migrate->dst[migrate->npages] = 0;
2281                 migrate->npages++;
2282                 migrate->cpages++;
2283         }
2284
2285         return 0;
2286 }
2287
2288 static int migrate_vma_collect_skip(unsigned long start,
2289                                     unsigned long end,
2290                                     struct mm_walk *walk)
2291 {
2292         struct migrate_vma *migrate = walk->private;
2293         unsigned long addr;
2294
2295         for (addr = start; addr < end; addr += PAGE_SIZE) {
2296                 migrate->dst[migrate->npages] = 0;
2297                 migrate->src[migrate->npages++] = 0;
2298         }
2299
2300         return 0;
2301 }
2302
2303 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2304                                    unsigned long start,
2305                                    unsigned long end,
2306                                    struct mm_walk *walk)
2307 {
2308         struct migrate_vma *migrate = walk->private;
2309         struct vm_area_struct *vma = walk->vma;
2310         struct mm_struct *mm = vma->vm_mm;
2311         unsigned long addr = start, unmapped = 0;
2312         spinlock_t *ptl;
2313         pte_t *ptep;
2314
2315 again:
2316         if (pmd_none(*pmdp))
2317                 return migrate_vma_collect_hole(start, end, -1, walk);
2318
2319         if (pmd_trans_huge(*pmdp)) {
2320                 struct page *page;
2321
2322                 ptl = pmd_lock(mm, pmdp);
2323                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2324                         spin_unlock(ptl);
2325                         goto again;
2326                 }
2327
2328                 page = pmd_page(*pmdp);
2329                 if (is_huge_zero_page(page)) {
2330                         spin_unlock(ptl);
2331                         split_huge_pmd(vma, pmdp, addr);
2332                         if (pmd_trans_unstable(pmdp))
2333                                 return migrate_vma_collect_skip(start, end,
2334                                                                 walk);
2335                 } else {
2336                         int ret;
2337
2338                         get_page(page);
2339                         spin_unlock(ptl);
2340                         if (unlikely(!trylock_page(page)))
2341                                 return migrate_vma_collect_skip(start, end,
2342                                                                 walk);
2343                         ret = split_huge_page(page);
2344                         unlock_page(page);
2345                         put_page(page);
2346                         if (ret)
2347                                 return migrate_vma_collect_skip(start, end,
2348                                                                 walk);
2349                         if (pmd_none(*pmdp))
2350                                 return migrate_vma_collect_hole(start, end, -1,
2351                                                                 walk);
2352                 }
2353         }
2354
2355         if (unlikely(pmd_bad(*pmdp)))
2356                 return migrate_vma_collect_skip(start, end, walk);
2357
2358         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2359         arch_enter_lazy_mmu_mode();
2360
2361         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2362                 unsigned long mpfn = 0, pfn;
2363                 struct page *page;
2364                 swp_entry_t entry;
2365                 pte_t pte;
2366
2367                 pte = *ptep;
2368
2369                 if (pte_none(pte)) {
2370                         if (vma_is_anonymous(vma)) {
2371                                 mpfn = MIGRATE_PFN_MIGRATE;
2372                                 migrate->cpages++;
2373                         }
2374                         goto next;
2375                 }
2376
2377                 if (!pte_present(pte)) {
2378                         /*
2379                          * Only care about unaddressable device page special
2380                          * page table entry. Other special swap entries are not
2381                          * migratable, and we ignore regular swapped page.
2382                          */
2383                         entry = pte_to_swp_entry(pte);
2384                         if (!is_device_private_entry(entry))
2385                                 goto next;
2386
2387                         page = device_private_entry_to_page(entry);
2388                         if (!(migrate->flags &
2389                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2390                             page->pgmap->owner != migrate->pgmap_owner)
2391                                 goto next;
2392
2393                         mpfn = migrate_pfn(page_to_pfn(page)) |
2394                                         MIGRATE_PFN_MIGRATE;
2395                         if (is_write_device_private_entry(entry))
2396                                 mpfn |= MIGRATE_PFN_WRITE;
2397                 } else {
2398                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2399                                 goto next;
2400                         pfn = pte_pfn(pte);
2401                         if (is_zero_pfn(pfn)) {
2402                                 mpfn = MIGRATE_PFN_MIGRATE;
2403                                 migrate->cpages++;
2404                                 goto next;
2405                         }
2406                         page = vm_normal_page(migrate->vma, addr, pte);
2407                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2408                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2409                 }
2410
2411                 /* FIXME support THP */
2412                 if (!page || !page->mapping || PageTransCompound(page)) {
2413                         mpfn = 0;
2414                         goto next;
2415                 }
2416
2417                 /*
2418                  * By getting a reference on the page we pin it and that blocks
2419                  * any kind of migration. Side effect is that it "freezes" the
2420                  * pte.
2421                  *
2422                  * We drop this reference after isolating the page from the lru
2423                  * for non device page (device page are not on the lru and thus
2424                  * can't be dropped from it).
2425                  */
2426                 get_page(page);
2427                 migrate->cpages++;
2428
2429                 /*
2430                  * Optimize for the common case where page is only mapped once
2431                  * in one process. If we can lock the page, then we can safely
2432                  * set up a special migration page table entry now.
2433                  */
2434                 if (trylock_page(page)) {
2435                         pte_t swp_pte;
2436
2437                         mpfn |= MIGRATE_PFN_LOCKED;
2438                         ptep_get_and_clear(mm, addr, ptep);
2439
2440                         /* Setup special migration page table entry */
2441                         entry = make_migration_entry(page, mpfn &
2442                                                      MIGRATE_PFN_WRITE);
2443                         swp_pte = swp_entry_to_pte(entry);
2444                         if (pte_present(pte)) {
2445                                 if (pte_soft_dirty(pte))
2446                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2447                                 if (pte_uffd_wp(pte))
2448                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2449                         } else {
2450                                 if (pte_swp_soft_dirty(pte))
2451                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2452                                 if (pte_swp_uffd_wp(pte))
2453                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2454                         }
2455                         set_pte_at(mm, addr, ptep, swp_pte);
2456
2457                         /*
2458                          * This is like regular unmap: we remove the rmap and
2459                          * drop page refcount. Page won't be freed, as we took
2460                          * a reference just above.
2461                          */
2462                         page_remove_rmap(page, false);
2463                         put_page(page);
2464
2465                         if (pte_present(pte))
2466                                 unmapped++;
2467                 }
2468
2469 next:
2470                 migrate->dst[migrate->npages] = 0;
2471                 migrate->src[migrate->npages++] = mpfn;
2472         }
2473         arch_leave_lazy_mmu_mode();
2474         pte_unmap_unlock(ptep - 1, ptl);
2475
2476         /* Only flush the TLB if we actually modified any entries */
2477         if (unmapped)
2478                 flush_tlb_range(walk->vma, start, end);
2479
2480         return 0;
2481 }
2482
2483 static const struct mm_walk_ops migrate_vma_walk_ops = {
2484         .pmd_entry              = migrate_vma_collect_pmd,
2485         .pte_hole               = migrate_vma_collect_hole,
2486 };
2487
2488 /*
2489  * migrate_vma_collect() - collect pages over a range of virtual addresses
2490  * @migrate: migrate struct containing all migration information
2491  *
2492  * This will walk the CPU page table. For each virtual address backed by a
2493  * valid page, it updates the src array and takes a reference on the page, in
2494  * order to pin the page until we lock it and unmap it.
2495  */
2496 static void migrate_vma_collect(struct migrate_vma *migrate)
2497 {
2498         struct mmu_notifier_range range;
2499
2500         /*
2501          * Note that the pgmap_owner is passed to the mmu notifier callback so
2502          * that the registered device driver can skip invalidating device
2503          * private page mappings that won't be migrated.
2504          */
2505         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2506                 migrate->vma->vm_mm, migrate->start, migrate->end,
2507                 migrate->pgmap_owner);
2508         mmu_notifier_invalidate_range_start(&range);
2509
2510         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2511                         &migrate_vma_walk_ops, migrate);
2512
2513         mmu_notifier_invalidate_range_end(&range);
2514         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2515 }
2516
2517 /*
2518  * migrate_vma_check_page() - check if page is pinned or not
2519  * @page: struct page to check
2520  *
2521  * Pinned pages cannot be migrated. This is the same test as in
2522  * migrate_page_move_mapping(), except that here we allow migration of a
2523  * ZONE_DEVICE page.
2524  */
2525 static bool migrate_vma_check_page(struct page *page)
2526 {
2527         /*
2528          * One extra ref because caller holds an extra reference, either from
2529          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2530          * a device page.
2531          */
2532         int extra = 1;
2533
2534         /*
2535          * FIXME support THP (transparent huge page), it is bit more complex to
2536          * check them than regular pages, because they can be mapped with a pmd
2537          * or with a pte (split pte mapping).
2538          */
2539         if (PageCompound(page))
2540                 return false;
2541
2542         /* Page from ZONE_DEVICE have one extra reference */
2543         if (is_zone_device_page(page)) {
2544                 /*
2545                  * Private page can never be pin as they have no valid pte and
2546                  * GUP will fail for those. Yet if there is a pending migration
2547                  * a thread might try to wait on the pte migration entry and
2548                  * will bump the page reference count. Sadly there is no way to
2549                  * differentiate a regular pin from migration wait. Hence to
2550                  * avoid 2 racing thread trying to migrate back to CPU to enter
2551                  * infinite loop (one stoping migration because the other is
2552                  * waiting on pte migration entry). We always return true here.
2553                  *
2554                  * FIXME proper solution is to rework migration_entry_wait() so
2555                  * it does not need to take a reference on page.
2556                  */
2557                 return is_device_private_page(page);
2558         }
2559
2560         /* For file back page */
2561         if (page_mapping(page))
2562                 extra += 1 + page_has_private(page);
2563
2564         if ((page_count(page) - extra) > page_mapcount(page))
2565                 return false;
2566
2567         return true;
2568 }
2569
2570 /*
2571  * migrate_vma_prepare() - lock pages and isolate them from the lru
2572  * @migrate: migrate struct containing all migration information
2573  *
2574  * This locks pages that have been collected by migrate_vma_collect(). Once each
2575  * page is locked it is isolated from the lru (for non-device pages). Finally,
2576  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2577  * migrated by concurrent kernel threads.
2578  */
2579 static void migrate_vma_prepare(struct migrate_vma *migrate)
2580 {
2581         const unsigned long npages = migrate->npages;
2582         const unsigned long start = migrate->start;
2583         unsigned long addr, i, restore = 0;
2584         bool allow_drain = true;
2585
2586         lru_add_drain();
2587
2588         for (i = 0; (i < npages) && migrate->cpages; i++) {
2589                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2590                 bool remap = true;
2591
2592                 if (!page)
2593                         continue;
2594
2595                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2596                         /*
2597                          * Because we are migrating several pages there can be
2598                          * a deadlock between 2 concurrent migration where each
2599                          * are waiting on each other page lock.
2600                          *
2601                          * Make migrate_vma() a best effort thing and backoff
2602                          * for any page we can not lock right away.
2603                          */
2604                         if (!trylock_page(page)) {
2605                                 migrate->src[i] = 0;
2606                                 migrate->cpages--;
2607                                 put_page(page);
2608                                 continue;
2609                         }
2610                         remap = false;
2611                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2612                 }
2613
2614                 /* ZONE_DEVICE pages are not on LRU */
2615                 if (!is_zone_device_page(page)) {
2616                         if (!PageLRU(page) && allow_drain) {
2617                                 /* Drain CPU's pagevec */
2618                                 lru_add_drain_all();
2619                                 allow_drain = false;
2620                         }
2621
2622                         if (isolate_lru_page(page)) {
2623                                 if (remap) {
2624                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2625                                         migrate->cpages--;
2626                                         restore++;
2627                                 } else {
2628                                         migrate->src[i] = 0;
2629                                         unlock_page(page);
2630                                         migrate->cpages--;
2631                                         put_page(page);
2632                                 }
2633                                 continue;
2634                         }
2635
2636                         /* Drop the reference we took in collect */
2637                         put_page(page);
2638                 }
2639
2640                 if (!migrate_vma_check_page(page)) {
2641                         if (remap) {
2642                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643                                 migrate->cpages--;
2644                                 restore++;
2645
2646                                 if (!is_zone_device_page(page)) {
2647                                         get_page(page);
2648                                         putback_lru_page(page);
2649                                 }
2650                         } else {
2651                                 migrate->src[i] = 0;
2652                                 unlock_page(page);
2653                                 migrate->cpages--;
2654
2655                                 if (!is_zone_device_page(page))
2656                                         putback_lru_page(page);
2657                                 else
2658                                         put_page(page);
2659                         }
2660                 }
2661         }
2662
2663         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2664                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2665
2666                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2667                         continue;
2668
2669                 remove_migration_pte(page, migrate->vma, addr, page);
2670
2671                 migrate->src[i] = 0;
2672                 unlock_page(page);
2673                 put_page(page);
2674                 restore--;
2675         }
2676 }
2677
2678 /*
2679  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2680  * @migrate: migrate struct containing all migration information
2681  *
2682  * Replace page mapping (CPU page table pte) with a special migration pte entry
2683  * and check again if it has been pinned. Pinned pages are restored because we
2684  * cannot migrate them.
2685  *
2686  * This is the last step before we call the device driver callback to allocate
2687  * destination memory and copy contents of original page over to new page.
2688  */
2689 static void migrate_vma_unmap(struct migrate_vma *migrate)
2690 {
2691         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2692         const unsigned long npages = migrate->npages;
2693         const unsigned long start = migrate->start;
2694         unsigned long addr, i, restore = 0;
2695
2696         for (i = 0; i < npages; i++) {
2697                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2698
2699                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700                         continue;
2701
2702                 if (page_mapped(page)) {
2703                         try_to_unmap(page, flags);
2704                         if (page_mapped(page))
2705                                 goto restore;
2706                 }
2707
2708                 if (migrate_vma_check_page(page))
2709                         continue;
2710
2711 restore:
2712                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2713                 migrate->cpages--;
2714                 restore++;
2715         }
2716
2717         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2718                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2719
2720                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2721                         continue;
2722
2723                 remove_migration_ptes(page, page, false);
2724
2725                 migrate->src[i] = 0;
2726                 unlock_page(page);
2727                 restore--;
2728
2729                 if (is_zone_device_page(page))
2730                         put_page(page);
2731                 else
2732                         putback_lru_page(page);
2733         }
2734 }
2735
2736 /**
2737  * migrate_vma_setup() - prepare to migrate a range of memory
2738  * @args: contains the vma, start, and pfns arrays for the migration
2739  *
2740  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2741  * without an error.
2742  *
2743  * Prepare to migrate a range of memory virtual address range by collecting all
2744  * the pages backing each virtual address in the range, saving them inside the
2745  * src array.  Then lock those pages and unmap them. Once the pages are locked
2746  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2747  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2748  * corresponding src array entry.  Then restores any pages that are pinned, by
2749  * remapping and unlocking those pages.
2750  *
2751  * The caller should then allocate destination memory and copy source memory to
2752  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2753  * flag set).  Once these are allocated and copied, the caller must update each
2754  * corresponding entry in the dst array with the pfn value of the destination
2755  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2756  * (destination pages must have their struct pages locked, via lock_page()).
2757  *
2758  * Note that the caller does not have to migrate all the pages that are marked
2759  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2760  * device memory to system memory.  If the caller cannot migrate a device page
2761  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2762  * consequences for the userspace process, so it must be avoided if at all
2763  * possible.
2764  *
2765  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2766  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2767  * allowing the caller to allocate device memory for those unback virtual
2768  * address.  For this the caller simply has to allocate device memory and
2769  * properly set the destination entry like for regular migration.  Note that
2770  * this can still fails and thus inside the device driver must check if the
2771  * migration was successful for those entries after calling migrate_vma_pages()
2772  * just like for regular migration.
2773  *
2774  * After that, the callers must call migrate_vma_pages() to go over each entry
2775  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2776  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2777  * then migrate_vma_pages() to migrate struct page information from the source
2778  * struct page to the destination struct page.  If it fails to migrate the
2779  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2780  * src array.
2781  *
2782  * At this point all successfully migrated pages have an entry in the src
2783  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2784  * array entry with MIGRATE_PFN_VALID flag set.
2785  *
2786  * Once migrate_vma_pages() returns the caller may inspect which pages were
2787  * successfully migrated, and which were not.  Successfully migrated pages will
2788  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2789  *
2790  * It is safe to update device page table after migrate_vma_pages() because
2791  * both destination and source page are still locked, and the mmap_lock is held
2792  * in read mode (hence no one can unmap the range being migrated).
2793  *
2794  * Once the caller is done cleaning up things and updating its page table (if it
2795  * chose to do so, this is not an obligation) it finally calls
2796  * migrate_vma_finalize() to update the CPU page table to point to new pages
2797  * for successfully migrated pages or otherwise restore the CPU page table to
2798  * point to the original source pages.
2799  */
2800 int migrate_vma_setup(struct migrate_vma *args)
2801 {
2802         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2803
2804         args->start &= PAGE_MASK;
2805         args->end &= PAGE_MASK;
2806         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2807             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2808                 return -EINVAL;
2809         if (nr_pages <= 0)
2810                 return -EINVAL;
2811         if (args->start < args->vma->vm_start ||
2812             args->start >= args->vma->vm_end)
2813                 return -EINVAL;
2814         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2815                 return -EINVAL;
2816         if (!args->src || !args->dst)
2817                 return -EINVAL;
2818
2819         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2820         args->cpages = 0;
2821         args->npages = 0;
2822
2823         migrate_vma_collect(args);
2824
2825         if (args->cpages)
2826                 migrate_vma_prepare(args);
2827         if (args->cpages)
2828                 migrate_vma_unmap(args);
2829
2830         /*
2831          * At this point pages are locked and unmapped, and thus they have
2832          * stable content and can safely be copied to destination memory that
2833          * is allocated by the drivers.
2834          */
2835         return 0;
2836
2837 }
2838 EXPORT_SYMBOL(migrate_vma_setup);
2839
2840 /*
2841  * This code closely matches the code in:
2842  *   __handle_mm_fault()
2843  *     handle_pte_fault()
2844  *       do_anonymous_page()
2845  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2846  * private page.
2847  */
2848 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2849                                     unsigned long addr,
2850                                     struct page *page,
2851                                     unsigned long *src,
2852                                     unsigned long *dst)
2853 {
2854         struct vm_area_struct *vma = migrate->vma;
2855         struct mm_struct *mm = vma->vm_mm;
2856         bool flush = false;
2857         spinlock_t *ptl;
2858         pte_t entry;
2859         pgd_t *pgdp;
2860         p4d_t *p4dp;
2861         pud_t *pudp;
2862         pmd_t *pmdp;
2863         pte_t *ptep;
2864
2865         /* Only allow populating anonymous memory */
2866         if (!vma_is_anonymous(vma))
2867                 goto abort;
2868
2869         pgdp = pgd_offset(mm, addr);
2870         p4dp = p4d_alloc(mm, pgdp, addr);
2871         if (!p4dp)
2872                 goto abort;
2873         pudp = pud_alloc(mm, p4dp, addr);
2874         if (!pudp)
2875                 goto abort;
2876         pmdp = pmd_alloc(mm, pudp, addr);
2877         if (!pmdp)
2878                 goto abort;
2879
2880         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2881                 goto abort;
2882
2883         /*
2884          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2885          * pte_offset_map() on pmds where a huge pmd might be created
2886          * from a different thread.
2887          *
2888          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2889          * parallel threads are excluded by other means.
2890          *
2891          * Here we only have mmap_read_lock(mm).
2892          */
2893         if (pte_alloc(mm, pmdp))
2894                 goto abort;
2895
2896         /* See the comment in pte_alloc_one_map() */
2897         if (unlikely(pmd_trans_unstable(pmdp)))
2898                 goto abort;
2899
2900         if (unlikely(anon_vma_prepare(vma)))
2901                 goto abort;
2902         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2903                 goto abort;
2904
2905         /*
2906          * The memory barrier inside __SetPageUptodate makes sure that
2907          * preceding stores to the page contents become visible before
2908          * the set_pte_at() write.
2909          */
2910         __SetPageUptodate(page);
2911
2912         if (is_zone_device_page(page)) {
2913                 if (is_device_private_page(page)) {
2914                         swp_entry_t swp_entry;
2915
2916                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2917                         entry = swp_entry_to_pte(swp_entry);
2918                 }
2919         } else {
2920                 entry = mk_pte(page, vma->vm_page_prot);
2921                 if (vma->vm_flags & VM_WRITE)
2922                         entry = pte_mkwrite(pte_mkdirty(entry));
2923         }
2924
2925         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2926
2927         if (check_stable_address_space(mm))
2928                 goto unlock_abort;
2929
2930         if (pte_present(*ptep)) {
2931                 unsigned long pfn = pte_pfn(*ptep);
2932
2933                 if (!is_zero_pfn(pfn))
2934                         goto unlock_abort;
2935                 flush = true;
2936         } else if (!pte_none(*ptep))
2937                 goto unlock_abort;
2938
2939         /*
2940          * Check for userfaultfd but do not deliver the fault. Instead,
2941          * just back off.
2942          */
2943         if (userfaultfd_missing(vma))
2944                 goto unlock_abort;
2945
2946         inc_mm_counter(mm, MM_ANONPAGES);
2947         page_add_new_anon_rmap(page, vma, addr, false);
2948         if (!is_zone_device_page(page))
2949                 lru_cache_add_inactive_or_unevictable(page, vma);
2950         get_page(page);
2951
2952         if (flush) {
2953                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2954                 ptep_clear_flush_notify(vma, addr, ptep);
2955                 set_pte_at_notify(mm, addr, ptep, entry);
2956                 update_mmu_cache(vma, addr, ptep);
2957         } else {
2958                 /* No need to invalidate - it was non-present before */
2959                 set_pte_at(mm, addr, ptep, entry);
2960                 update_mmu_cache(vma, addr, ptep);
2961         }
2962
2963         pte_unmap_unlock(ptep, ptl);
2964         *src = MIGRATE_PFN_MIGRATE;
2965         return;
2966
2967 unlock_abort:
2968         pte_unmap_unlock(ptep, ptl);
2969 abort:
2970         *src &= ~MIGRATE_PFN_MIGRATE;
2971 }
2972
2973 /**
2974  * migrate_vma_pages() - migrate meta-data from src page to dst page
2975  * @migrate: migrate struct containing all migration information
2976  *
2977  * This migrates struct page meta-data from source struct page to destination
2978  * struct page. This effectively finishes the migration from source page to the
2979  * destination page.
2980  */
2981 void migrate_vma_pages(struct migrate_vma *migrate)
2982 {
2983         const unsigned long npages = migrate->npages;
2984         const unsigned long start = migrate->start;
2985         struct mmu_notifier_range range;
2986         unsigned long addr, i;
2987         bool notified = false;
2988
2989         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2990                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2991                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2992                 struct address_space *mapping;
2993                 int r;
2994
2995                 if (!newpage) {
2996                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2997                         continue;
2998                 }
2999
3000                 if (!page) {
3001                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3002                                 continue;
3003                         if (!notified) {
3004                                 notified = true;
3005
3006                                 mmu_notifier_range_init(&range,
3007                                                         MMU_NOTIFY_CLEAR, 0,
3008                                                         NULL,
3009                                                         migrate->vma->vm_mm,
3010                                                         addr, migrate->end);
3011                                 mmu_notifier_invalidate_range_start(&range);
3012                         }
3013                         migrate_vma_insert_page(migrate, addr, newpage,
3014                                                 &migrate->src[i],
3015                                                 &migrate->dst[i]);
3016                         continue;
3017                 }
3018
3019                 mapping = page_mapping(page);
3020
3021                 if (is_zone_device_page(newpage)) {
3022                         if (is_device_private_page(newpage)) {
3023                                 /*
3024                                  * For now only support private anonymous when
3025                                  * migrating to un-addressable device memory.
3026                                  */
3027                                 if (mapping) {
3028                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3029                                         continue;
3030                                 }
3031                         } else {
3032                                 /*
3033                                  * Other types of ZONE_DEVICE page are not
3034                                  * supported.
3035                                  */
3036                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3037                                 continue;
3038                         }
3039                 }
3040
3041                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3042                 if (r != MIGRATEPAGE_SUCCESS)
3043                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3044         }
3045
3046         /*
3047          * No need to double call mmu_notifier->invalidate_range() callback as
3048          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3049          * did already call it.
3050          */
3051         if (notified)
3052                 mmu_notifier_invalidate_range_only_end(&range);
3053 }
3054 EXPORT_SYMBOL(migrate_vma_pages);
3055
3056 /**
3057  * migrate_vma_finalize() - restore CPU page table entry
3058  * @migrate: migrate struct containing all migration information
3059  *
3060  * This replaces the special migration pte entry with either a mapping to the
3061  * new page if migration was successful for that page, or to the original page
3062  * otherwise.
3063  *
3064  * This also unlocks the pages and puts them back on the lru, or drops the extra
3065  * refcount, for device pages.
3066  */
3067 void migrate_vma_finalize(struct migrate_vma *migrate)
3068 {
3069         const unsigned long npages = migrate->npages;
3070         unsigned long i;
3071
3072         for (i = 0; i < npages; i++) {
3073                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3074                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3075
3076                 if (!page) {
3077                         if (newpage) {
3078                                 unlock_page(newpage);
3079                                 put_page(newpage);
3080                         }
3081                         continue;
3082                 }
3083
3084                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3085                         if (newpage) {
3086                                 unlock_page(newpage);
3087                                 put_page(newpage);
3088                         }
3089                         newpage = page;
3090                 }
3091
3092                 remove_migration_ptes(page, newpage, false);
3093                 unlock_page(page);
3094
3095                 if (is_zone_device_page(page))
3096                         put_page(page);
3097                 else
3098                         putback_lru_page(page);
3099
3100                 if (newpage != page) {
3101                         unlock_page(newpage);
3102                         if (is_zone_device_page(newpage))
3103                                 put_page(newpage);
3104                         else
3105                                 putback_lru_page(newpage);
3106                 }
3107         }
3108 }
3109 EXPORT_SYMBOL(migrate_vma_finalize);
3110 #endif /* CONFIG_DEVICE_PRIVATE */